
An Activity-Based Scheduling Framework Incorporating Reinforcement

Learning

Marlies Vanhulsel

January 26, 2010

2

To my husband and Sri Lankanjer

Acknowledgements

Dit werk zou ik niet tot een goed einde gebracht kunnen hebben zonder de steun en hulp

van vele anderen. Daarom wil ik langs deze weg al die mensen bedanken voor hun al dan

niet wetenschappelijke bijdragen.

Vooreerst wil ik de Universiteit Hasselt bedanken voor haar financiële en praktische steun.

In de vier jaar die ik er heb doorgebracht in het kader van mijn doctoraat, heb ik veel kansen

gekregen en heb ik enorm veel geleerd.

I also would like to thank the external members of the examination committee, Ann

Nowé, Harry Timmermans and Julie Thompson, for having reviewed this dissertation.

Natuurlijk zijn er ook nog een heleboel andere personen die het werk aanzienlijk hebben

verlicht. Ik denk daarbij eerst aan mijn (ex-)collega’s op Imob. Jullie zijn met te veel om

namen te noemen, maar ik zou jullie willen bedanken voor de aangename werksfeer. Actually,

I want to say the same to my non-Dutch speaking colleagues at Imob. Thank you for having

made this job easier, and thank you for the daily “joke-time”; it all began with Peanuts...

Thanks for having made this time a wonderful time; I will miss all of you.

Verder wil ik een aparte paragraaf wijden aan mijn collega’s en ondertussen ook vrien-

dinnen Kelly, Carolien en Els. Jullie hebben ervoor gezorgd dat mijn periode bij Imob een

onvergetelijke tijd geworden is. Ik kon steeds op jullie rekenen voor inspiratie, een luisterend

oor, steun en advies. Bedankt voor alle middag- en fruitpauzes! Jullie hebben er geen idee

van wat die voor mij hebben betekend. Hopelijk kan ik voor jullie ooit iets terug doen.

Bovendien wil ik ook mijn nieuwe collega’s op VITO bedanken. Jullie hebben je uiterste

best gedaan om ons (Hans, ik hoop dat je het niet erg vindt dat ik voor ons twee spreek?)

vanaf dag één welkom te laten voelen. Jullie hebben steeds begrip gehad voor mijn situatie

i

ACKNOWLEDGEMENTS

en hebben me meermaals een hart onder de riem gestoken. In de relatief korte periode dat ik

nu op VITO werk, heb ik reeds veel bijgeleerd. Ik ben verder ook blij dat ik me nu eindelijk

voor meer dan 100% kan richten op deze nieuwe uitdaging.

Ook buiten het werkterrein zijn er heel wat mensen die ik wil bedanken, met name

mijn familie, schoonfamilie, de ladies en vrienden uit allerlei hoeken. Dank je wel voor de

schouderklopjes en om te begrijpen waarom ik (weer maar eens) “vanavond niet mee kon

gaan”, en vooral bedankt om me er af en toe aan te herinneren dat het leven meer is dan

(mopperen over) het werk alleen. Bedankt voor de gezellige terrasjes, lekkere etentjes, fijne

bezoekjes en vrolijke momenten. Speciale aandacht gaat hierbij naar mijn metekindjes, Rob

en Kato, wie ik bij deze plechtig beloof dat ik vanaf nu meer tijd zal hebben om in het

weekend te komen spelen. Daarnaast wil ik in het bijzonder mijn schoonvader bedanken

voor zijn interesse in mijn werk: jammer dat je er op de valreep niet bij kon zijn.

Ik wil ook van de gelegenheid gebruik maken om mijn ouders extra te bedanken voor

de kansen die ze mij gegeven hebben. Ik heb veel van jullie geleerd en jullie staan aan de

basis van de toekomst die me wacht. Bovendien hebben jullie altijd met raad en daad voor

me klaar gestaan, wat niet altijd even evident was en evenveel geapprecieerd werd. Dank

je wel, mama, om je kostbare sabbatsperiode te onderbreken voor het nalezen van deze

onbegrijpelijke verzameling woorden.

Last but not least, wil ik mijn echtgenoot Wim bedanken voor zijn onvoorwaardelijke

steun. Zonder jou zou ik al lang geleden gestopt zijn met het afwerken van dit doctoraat.

Het is een wonder hoe je me steeds wist te motiveren en het geduld bleef vinden om mijn

grillen te trotseren (is dit het understatement van het jaar?). Bedankt voor die duizend-en-

één kleine en minder kleine dingen. Vanaf nu is er weer meer tijd om verder te bouwen aan

ons huisje-tuintje-kindje in welke volgorde dan ook.

ii

Abstract

While making decisions, governments and policy makers wish to be supported by models in

order to estimate the impact of their decisions on society as a whole. Transportation models

comprise a major example of such decision supporting models, as they are applied to monitor

travel behaviour, to evaluate policy decisions, to assess the environmental influence of traffic,

etc. Traditionally, transportation modelling highly concentrated on trip-based modelling.

Yet, recently activity-based modelling is gaining importance. This type of modelling

assumes that travel patterns are the result of activity schedules that individuals execute

in their attempt to achieve certain goals, taking into account individual needs, preferences,

opportunities and constraints. Consequently, activity-based models aim at simulating the

individual decision-making behaviour considering the distinct activity-travel related dimen-

sions simultaneously. As such, an activity-based model predicts for each individual which

activities to perform at which locations, when to start these activities and for how long

and which transport modes are used in order to get to the desired locations. The resulting

activity-travel sequences constitute the basis of the assignment of the individual routes to

the transportation network, and as such estimating aggregate travel demand (Ettema &

Timmermans, 1997a; Timmermans, 2000).

As a result, activity-based transportation models offer the opportunity of predicting travel

demand more accurately as they provide a more profound insight into individual activity-

travel behaviour. Furthermore these models are capable of estimating more realistically the

impact of a policy on transportation related issues, for instance traffic safety, environmental

pollution and land use patterns. Yet, the majority of such models is still quite static. This

signifies that these models disregard the interaction between individual agents, as well the

iii

ABSTRACT

effect of unforeseen events which occur in the course of the execution of the activity schedule

(e.g. unexpected travel times) (Arentze et al., 2005).

To this end, the present research contributes to the state-of-the-art of activity-based

travel-demand modelling by presenting a framework to simulate activity-travel sequences,

taking these requirements into account. For this purpose, the entire prediction process from

pre-processing the data up to analysing the activity-travel sequences generated by the core

scheduling engine is designed and tested in this dissertation.

To start with, the suitability of reinforcement learning to generate activity-travel patterns

based on observed activity-travel diary data is explored. As the traditional reinforcement

learning technique is not capable of learning efficiently in large state and action spaces with

respect to memory and computational requirements on the one hand, and of generalizing

based on infrequent visits of all state-action pairs on the other hand, the Q-learning technique

used in most applications, is enhanced, by implementing an incremental regression tree

function approximator. Furthermore, to incorporate the impact of interactions between the

different aspects of activity-travel decisions (Gärling et al., 1997; Joh et al., 2002), multi-actor

reinforcement learning is introduced.

Next, the data feeding the algorithm is examined. These data consist of observed activity-

travel diaries on the one hand, and corresponding socio-demographic data on the other hand.

Because people differ in their needs and preferences, while facing different opportunities and

constraints, the observed activity-travel diaries expose a large variation. From this per-

spective, the predictive power of the scheduling algorithm can be increased by splitting the

observed activity-travel sequences, which serve as input to the algorithm, into a number of

clusters displaying similar activity-travel behaviour. For that reason, the current research

presents a technique, founded on work conducted by Wilson (2008) - in which a multidimen-

sional extension of the well-known sequence alignment method (Wilson, 1998a) is introduced

-, which is capable of estimating the dissimilarity between sequences, considering the activity

type as well as the relative positions of the locations in a sequence with regard to one another

and the distances travelled between these locations.

Based on the dissimilarities between the observed patterns calculated by means of this

technique, the observed data are divided into a number of groups. Subsequently, these clus-

iv

ters are linked to the socio-demographic data so as to formulate socio-demographic profiles

matching the clusters by means of a classification tree. The profiles can now be used to

partition the synthetic population according to their socio-demographic attributes.

Thereafter, the current dissertation describes the actual core of the scheduling engine,

which is composed of five decision modules, each of which incorporates a reinforcement

learning system enhanced with a regression tree function approximator and connected to the

subsequent module through multi-actor reinforcement learning. The first module determines

the activity duration. In the second module the agent decides whether or not he wants to

execute the next fixed activity (in this case sleeping or working) while the agent chooses

which activity to perform in the third module. The fourth module is held responsible for

selecting the distance band of the location where the agent wants to execute the selected

activity. Finally, the agent fixes the travel mode to get to this location in the fifth module.

The decisions in these modules are all guided by reward functions which are calibrated

on the observed activity-travel sequences. The design of the reward functions incorporated

in these modules, as well as the functioning of each of the modules, is examined carefully.

To speed up the learning process, one prototype agent for each cluster is trained first and

the knowledge acquired by these prototype agents is used to initialize the individual agents

corresponding to a member of the synthetic population thereafter.

Finally, as the main goal of the current research comprises formulating a framework to

simulate activity-travel patterns within an activity-based travel-demand model, the perfor-

mance - both with respect to the predictive power and the computational requirements - of

the presented scheduling engine is assessed. To begin with, the execution time of the algo-

rithm is investigated, pushing forward some adjustments to the program code to increase its

efficiency. In addition, two conceptual improvements are advanced. Firstly, more prototype

agents are included in the scheduling algorithm. These prototype agents no longer match

the clusters of similar activity-travel patters, but are linked to the (terminal) nodes of the

decision tree, attaching socio-demographic profiles to each of these clusters. Consequently,

the membership degrees in the nodes - which are determined by the distribution of the ob-

served sequences belonging to that node over these clusters - now serve as weighting factors

in the reward functions.

v

ABSTRACT

The second suggestion to enable scaling up the algorithm concentrates on converting

the ε-greedy action selection strategy into a softmax action selection strategy. Such action

selection strategy assigns a probability of being selected to every action within the set of

feasible actions based on the experienced Q-values. As a result, the agent can recognize a

set of optimal actions and their corresponding probability, rather than selecting either the

most optimal action (i.e. exploit) or picking an action uniformly randomly (i.e. explore)

as is the case for the ε-greedy action selection strategy. Because both suggestions introduce

more variability into the predicted activity-travel patterns, it is no longer required to attune

the reinforcement learning to each individual agent in the synthetic population.

After implementing these modifications, the reinforcement learning framework proves to

be able to train the prototype agents in a time span of one hour (for ten prototype agents)

and to generate one-day activity-travel sequences at a time resolution of five minutes for a

population of five million agents in the course of approximately ten hours. This execution

time can even be reduced when utilizing multiple parallel processors.

Concerning the predictive performance of this scheduling algorithm, the resulting acti-

vity-travel patterns are set side by side to a set of observed test sequences by means of a

multidimensional sequence alignment method and descriptive statistics with regard to the

simulated versus the observed activity types, duration and location. The outcome of these

analyses shows that the algorithm is particularly suited to predict activity-travel behaviour

based on observed activity-travel diaries.

vi

Samenvatting

Overheden en beleidsmakers wensen ondersteund te worden door modellen die de impact van

hun beslissingen op de maatschappij weergeven. Belangrijke voorbeelden van zulke beslis-

singsondersteunende modellen zijn transportmodellen die verplaatsingsgedrag onderzoeken,

beleidsbeslissingen evalueren en de milieu-invloeden van verkeer beoordelen, enz. Vroeger

bestonden transportmodellen vaak uit tripgebaseerde modellen.

Echter, recentelijk worden deze modellen steeds vaker vervangen door activiteitengeba-

seerde modellen, die ervan uitgaan dat verplaatsingsgedrag afgeleid is van de activiteiten die

individuen (willen) uitvoeren om zo bepaalde doelen te bereiken. In dit proces moet uiteraard

rekening gehouden worden met hun behoeftes, voorkeuren, mogelijkheden en beperkingen.

Vanuit dit perspectief streven activiteitengebaseerde modellen ernaar individuele beslissings-

processen te simuleren die de verschillende dimensies van activiteitenverplaatsingspatronen

gelijktijdig in aanmerking kunnen nemen. Op die manier trachten activiteitengebaseerde

modellen voor elk individu te voorspellen welke activiteiten hij uitvoert, hoe lang deze acti-

viteiten duren en wanneer en waar deze plaatsvinden en met welk vervoersmiddel hij deze

gewenste locaties kan bereiken. De resulterende activiteitenverplaatsingssequenties vormen

de basis om de individueel afgelegde routes op het transportnetwerk te projecteren, en om zo

de vraag naar verplaatsingen op geaggregeerd niveau te schatten (Ettema & Timmermans,

1997a; Timmermans, 2000).

Activiteitengebaseerde transportmodellen het mogelijk om de vraag naar verplaatsingen

nauwkeuriger te voorspellen omdat ze een dieper inzicht bieden in individueel activiteitenver-

plaatsingsgedrag. Bovendien kunnen deze modellen de impact van een beleidsmaatregel op

transportgerelateerde kwesties, zoals verkeersveiligheid, milieuvervuiling en landgebruikpa-

vii

SAMENVATTING

tronen, realistischer beoordelen. Echter, de meerderheid van dit type modellen is nog steeds

vrij statisch, wat inhoudt dat deze modellen geen rekening houden zowel met de interactie

tussen individuele agenten, als met het effect van onverwachte gebeurtenissen die optreden

terwijl een activiteitenplan uitgevoerd wordt (zoals onvoorziene verplaatsingstijden) (Arentze

et al., 2005).

In dit opzicht, draagt dit onderzoek bij aan de stand van zaken met betrekking tot

activiteitengebaseerde verplaatsingsmodellen door een kader te schetsen waarin activiteiten-

verplaatsingspatronen gesimuleerd kunnen worden, rekening houdend met deze vereisten.

Het gehele proces - gaande van het voorbereiden van de data tot het analyseren van de acti-

viteitenverplaatsingssequenties, die de uitkomst vormen van het planningsalgoritme - wordt

in deze thesis ontworpen en getest.

Om te beginnen wordt een algoritme gebaseerd op leren door bekrachtiging, ofwel reinfor-

cement learning, bestudeerd en wordt de geschiktheid om activiteitenverplaatsingspatronen

te genereren uitgaande van geobserveerde activiteitenverplaatsingsdagboekjes met behulp

van zulk algorithme onderzocht. Hieruit blijkt dat het traditionele reinforcement learning

algoritme niet efficiënt leert met betrekking tot geheugencapaciteit en rekenvereisten in pro-

bleemgebieden met een groot aantal toestanden (states) en acties (actions). Verder is het

onmogelijk binnen het traditionele reinforcement learning algoritme om op basis van een

klein aantal ervaringen van een onvolledige set toestanden en acties te veralgemenen voor

alle toestanden en acties. Daarom stelt het huidig onderzoek voor om de veelvuldig gebruikte

Q-learning techniek aan te vullen met een benadering door middel van een incrementeel re-

gressieboomalgoritme. Om bovendien de wisselwerking tussen de verschillende aspecten van

activiteitenverplaatsingsbeslissingen (Gärling et al., 1997; Joh et al., 2002) te kunnen mo-

delleren, ontleent het huidige algoritme concepten van multi-actor reinforcement learning.

Daarnaast worden in deze thesis de inputdata van het algoritme onder de loep genomen.

Deze data bestaan uit geobserveerde activiteitenverplaatsingsdagboekjes en socio-demogra-

fische gegevens. Aangezien mensen verschillen in hun behoeftes en voorkeuren terwijl ze

rekening moeten houden met verschillende kansen en beperkingen, leggen de geobserveerde

activiteitenverplaatsingsdagboekjes een grote verscheidenheid aan de dag. Uit dit oogpunt

kan de voorspellingskracht van het planningsalgoritme verbeterd worden wanneer deze ge-

viii

observeerde activiteitenverplaatsingssequenties onderverdeeld worden in groepen of clusters

die verondersteld worden gelijkaardig activiteitenverplaatsingsgedrag te vertonen. Vanuit

deze overweging wordt in het huidige onderzoek een een multidimensionele uitbereiding van

de bekende sequentie alignement methode (Wilson, 1998a) gëıntroduceerd, die een maat

definieert die aangeeft in hoeverre sequenties van elkaar verschillen met betrekking tot de

activiteitstypes en de relatieve posities van de locaties binnen een sequentie en de afstan-

den afgelegd tussen deze locaties. Op basis van deze ongelijkheidsmaat kunnen de data

opgedeeld worden in een aantal clusters. Vervolgens worden deze clusters gekoppeld aan

de socio-demografische gegevens om zo te komen tot socio-demografische profielen die deze

clusters beschrijven. Deze socio-demografische profielen kunnen aangewend worden om de

synthetische populatie in te delen.

Vervolgens beschrijft de huidige scriptie de kern van het planningsalgoritme, dat bestaat

uit vijf beslissingsmodules. Elk van deze modules is opgebouwd met een reinforcement

learning systeem met een functiebenadering gebaseerd op regressiebomen en is verbonden

met de daaropvolgende module met behulp van multi-actor reinforcement learning. De eerste

module bepaalt de duur van elke activiteit. In de tweede module beslist de agent of hij de

volgende vaste activiteit (d.i. slapen of werken) wil uitvoeren of niet. In de derde module

selecteert de agent welke activiteit hij wil uitvoeren. De vierde module is verantwoordelijk

voor het kiezen van een afstandsbereik voor de plaats waar deze activiteit moet plaatsvinden.

Tot slot legt de agent het verplaatsingsmiddel om deze locatie te bereiken vast in de vijfde

module.

De nutsfuncties die de beslissingen in deze modules ondersteunen, worden geijkt op basis

van de geobserveerde activiteitenverplaatsingssequenties. Het ontwerp van deze nutsfuncties

en de werking van elke module worden onderworpen aan diepgaand onderzoek. Om het

leerproces te versnellen, wordt eerst per cluster één prototypeagent getraind en de kennis die

deze agenten opgedaan hebben, wordt vervolgens gebruikt om de individuele agenten - die

overeenkomen met een individu uit de synthetische populatie - te initialiseren.

Tot slot wordt de werking van het voorgestelde algoritme met betrekking tot de voorspel-

lingswaarde en de rekenvereisten geanalyseerd, aangezien het huidige onderzoek zich eerst en

vooral richt op het formuleren van een kader om activiteitenverplaatsingspatronen te simule-

ix

SAMENVATTING

ren binnen een activiteitengebaseerd verplaatsingsmodel. Om te beginnen wordt de looptijd

van het algoritme bestudeerd. Uit deze analyse komt naar voren dat een aantal aanpassin-

gen aan de programmacode noodzakelijk zijn om de efficiëntie ervan te verhogen. Daarnaast

worden twee conceptuele verbeteringen voorgesteld. Ten eerste worden meer prototypeagen-

ten opgenomen in het planningsalgoritme. Deze prototypeagenten zijn niet langer gekoppeld

de clusters met gelijkaardige sequenties, maar komen nu overeen met een (eind)knooppunt

in de beslissingsboom die socio-demografische profielen definieert voor elke cluster. Om dit

mogelijk te maken worden de lidmaatschapsgraden binnen deze knooppunten - die bepaald

worden door de verdeling van de geobserveerde sequenties binnen het knooppunt over de

verschillende clusters - nu gebruikt als wegingsfactoren in de nutsfuncties.

Het tweede voorstel om het algoritme te verbeteren legt de nadruk op de introductie van

een softmax actieselectiestrategie in plaats van de eerder gebruikte ε-greedy actieselectiestra-

tegie. Deze actieselectiestrategie leidt uit the Q-waardes de kans af dat een actie, die behoort

tot de set van mogelijke acties, geselecteerd wordt. Hierdoor erkent de agent een set van

optimale acties en hun bijhorende kansverdeling in plaats van ofwel de meest optimale actie

te selecteren (d.i. exploiteren) ofwel een actie willekeurig volgens een uniforme verdeling te

kiezen (d.i. verkennen), zoals het geval is voor de ε-greedy strategie. Beide suggesties hebben

meer variabiliteit in de voorspelde activiteitenverplaatsingspatronen tot gevolg, waardoor het

niet meer nodig is om de reinforcement learning modules op elke specifieke individuele agent

binnen de synthetische populatie af te stemmen.

Na de implementatie van deze wijzigingen blijkt dat het reinforcement learning algoritme

de prototypeagenten kan trainen in een tijdspanne van één uur (voor tien prototypeagenten)

en dat het tien uur in beslag neemt om activiteitenverplaatingspatronen te simuleren voor

één dag voor een populatie bestaande uit vijf miljoen agenten en een tijdsresolutie van vijf

minuten. Dit proces kan nog versneld worden wanneer er gewerkt wordt met verschillende

parallelle processors.

Met het oog op het schatten van de voorspellingswaarde van dit planningsalgoritme wor-

den de gesimuleerde activiteitenverplaatsingspatronen vergeleken met een set geobserveerde

test sequenties met behulp van een multidimensionele sequentie aligment methode en een

aantal beschrijvende statistieken op het niveau van de activiteitscategorieën, de activiteits-

x

duur en -locatie. Het resultaat van deze analyses toont aan dat het algoritme in het bijzonder

geschikt is om activiteitenverplaatsingsgedrag te voorspellen op basis van geobserveerde ac-

tiviteitenverplaatsingsdagboekjes.

xi

SAMENVATTING

xii

Contents

1 Introduction 1

1.1 Research Setting . 1

1.2 Travel-Demand Models . 2

1.3 Basic Requirements for Activity-Based Models 5

1.4 Research questions . 8

1.5 Contributions . 9

1.6 Outline . 9

2 Methodology 11

2.1 Introduction . 11

2.2 Reinforcement Learning . 12

2.2.1 Fundamentals . 12

2.2.2 Q-Learning . 14

2.2.3 Bucket-Brigade Updating . 17

2.2.4 Disadvantages of Reinforcement Learning Approach 18

2.3 Function Approximation . 18

2.3.1 Regression Tree-Based Function Approximation 19

2.3.2 Regression Tree Algorithm . 20

2.4 Multi-Actor Reinforcement Learning . 49

2.5 Related Research Efforts . 56

2.6 Conclusions . 57

xiii

CONTENTS

3 Data Pre-processing 59

3.1 Introduction . 59

3.2 Data . 60

3.2.1 Data Collection Effort . 60

3.2.2 Some Descriptive Statistics . 61

3.3 Measures of (Dis)similarity . 69

3.3.1 Sequence Alignment Method . 69

3.3.2 Multidimensional Dissimilarity Measure 73

3.3.3 Spatio-Temporal Dissimilarity Measure 74

3.4 Identification of Groups of Similar Behaviour 89

3.4.1 Clustering . 89

3.4.2 Validation of the Spatio-Temporal Dissimilarity Measure 92

3.4.3 Design of Socio-Demographic Profiles 100

3.5 Conclusions . 106

4 Design of the System 109

4.1 Introduction . 109

4.2 Module 1: Duration . 116

4.2.1 Reward Function . 116

4.2.2 Validation . 125

4.3 Module 2: Fixed Activities . 142

4.3.1 Reward Function . 142

4.4 Module 3: Activity selection . 144

4.4.1 Reward Function . 144

4.4.2 Validation . 148

4.5 Module 4: Location . 153

4.5.1 Reward Function . 153

4.5.2 Validation . 159

4.6 Module 5: Travel mode . 159

4.6.1 Reward Function . 159

4.6.2 Validation . 161

xiv

CONTENTS

4.7 Conclusions . 164

5 Performance 167

5.1 Introduction . 167

5.2 Analysis of the Performance of the Algorithm 168

5.2.1 Preliminary Operations . 168

5.2.2 A First Glance at the Performance of the Algorithm 175

5.2.3 Streamlining of the Program Code . 177

5.3 Suggestions to Scaling Up the Algorithm . 178

5.3.1 Increase in the Number of Prototype Agents 178

5.3.2 Softmax Action Selection . 180

5.4 Validation . 181

5.4.1 Computational requirements . 181

5.4.2 Predictive Power . 184

5.5 Conclusions . 201

6 Final Conclusions 203

6.1 Key Findings . 203

6.2 Topics for Further Research . 207

A Sequences in Short Form: Results 211

A.1 Identification of Groups of Similar Behaviour 211

A.1.1 Clustering . 211

A.1.2 Design of Socio-Demographical Profiles 217

xv

CONTENTS

xvi

List of Tables

2.1 Reinforcement learning algorithm: Q-learning 16

2.2 Reinforcement learning algorithm: Bucket-Brigade updating 17

2.3 Reinforcement learning algorithm: Regression tree-based function approxima-

tion . 20

2.4 Parameter settings for model tree induction algorithms 31

2.5 Impact of parameter f on accuracy of the batch induction algorithm 41

2.6 Impact of parameter n on accuracy of the batch induction algorithm 42

2.7 Impact of parameter f on accuracy of the batch/incremental induction algorithm 43

2.8 Impact of parameter n on accuracy of the batch/incremental induction algorithm 44

2.9 Comparison of tree induction algorithms . 48

2.10 Rewards assigned to choice of activity and location 51

2.11 Multi-actor reinforcement learning process . 53

3.1 Descriptive statistics concerning the activity-travel sequences 63

3.2 Average silhouette width for varying number of clusters k based on the pro-

posed spatio-temporal dissimilarity measure 94

3.3 Average silhouette width for varying number of clusters k based on the existing

distance measure . 96

3.4 Descriptive statistics of cluster results based on the proposed spatio-temporal

dissimilarity measure . 99

3.5 Descriptive statistics of cluster results based on the existing distance measure 100

3.6 P -values of ANOVA tests . 101

xvii

LIST OF TABLES

3.7 Outcome of decision tree attaching socio-demographical profiles to the cluster

results . 105

4.1 Parameters of the best curve fitted to the observed data of cluster 1 124

4.2 Parameters of the alternative reward functions based in module 1 on the

observed data of cluster 1 . 125

4.3 Validation results for the duration module for cluster 1 127

4.4 Validation results for the duration module for cluster 2 128

4.5 Validation results for the duration module for cluster 3 129

4.6 Root of average squared difference between the predicted duration and the

average observed duration for the corresponding activity calculated in the

training dataset . 131

4.7 Root of average squared difference between the predicted duration and ob-

served duration of the activity in the corresponding validation sequence . . . 132

4.8 Validation results for the duration module for cluster 1 based on traditional

reinforcement learning agents . 135

4.9 Validation results for the duration module for cluster 2 based on traditional

reinforcement learning agents . 136

4.10 Validation results for the duration module for cluster 3 based on traditional

reinforcement learning agents . 137

4.11 Parameters of the best curve fitted to the observed data of cluster 1 147

4.12 Parameters for the alternative reward functions in module 3 based on the

observed data of cluster 1 . 148

4.13 Validation results for the fixed activity selection module 2 150

4.14 Validation results for the activity selection modules 2 and 3 generated by

means of the SAM-based reward function . 151

4.15 Validation results for the activity selection modules 2 and 3 generated by

means of the history-based reward functions 152

4.16 Validation results for the activity selection modules 2 and 3: relative frequency

(%) of sequences containing the specified activity type 153

xviii

LIST OF TABLES

4.17 Validation results for the activity selection modules 2 and 3: average number

of episodes of the specified activity type within the sequences containing this

activity type . 153

4.18 Parameters for the reward functions in module 4 based on the observed data

of cluster 1 . 155

4.19 Parameters for the reward functions in module 4 based on the observed data

of cluster 2 . 156

4.20 Parameters for the reward functions in module 4 based on the observed data

of cluster 3 . 157

4.21 Validation results for the location module 4 160

4.22 Validation results for DP-SAM calculated based on the short format sequences

simulated by the entire multi-actor reinforcement learning system 162

4.23 Validation results for DP-SAM calculated based on the long format sequences

simulated by the entire multi-actor reinforcement learning system 163

5.1 Number of activity episodes observed for the old and new activity classification169

5.2 Some general descriptive statistics of the clusters 171

5.3 Percentage of sequences in clusters containing the listed activities at least once171

5.4 Number of observed activity episodes and average and standard deviation of

the duration of these activity episodes . 171

5.5 Number of sequences containing activities and average and standard deviation

of the total duration of the activities within these sequences 172

5.6 Percentage of sequences in which the listed distance bands corresponds to the

farthest location reached . 172

5.7 Outcome of decision tree attaching socio-demographical profiles to the cluster

results . 174

5.8 Time usage of functions for the multi-actor reinforcement learning scheduler

incorporating Q-tables . 176

5.9 Time usage of functions for the multi-actor reinforcement learning scheduler

including a regression tree function approximator 176

xix

LIST OF TABLES

5.10 Time usage of functions for the multi-actor reinforcement learning scheduler

incorporating Q-tables after improving code efficiency 178

5.11 Time usage of functions for the multi-actor reinforcement learning scheduler

including a regression tree function approximator after improving code efficiency179

5.12 Time usage of functions for the multi-actor reinforcement learning scheduler

including a regression tree function approximator incorporating the suggested

enhancements . 182

5.13 Membership degrees for set of test cases . 183

5.14 Validation results for DP-SAM calculated based on the long format sequences

simulated by the multi-actor reinforcement learning system for four scenarios 186

5.15 Validation results for DP-SAM calculated based on the short format sequences

simulated by the optimized multi-actor reinforcement learning system 187

5.16 Validation results for DP-SAM calculated based on the long format sequences

simulated by the optimized multi-actor reinforcement learning system 187

5.17 Some general descriptive statistics of the test sequences 190

5.18 Some general descriptive statistics of the simulated sequences 190

5.19 Percentage of test sequences containing the listed activities at least once . . . 191

5.20 Percentage of simulated sequences containing the listed activities at least once 191

5.21 Number of activity episodes and average and standard deviation of the dura-

tion of these activity episodes in the test sequences 192

5.22 Number of activity episodes and average and standard deviation of the dura-

tion of these activity episodes in the simulated sequences 193

5.23 Number of test sequences containing activities and average and standard de-

viation of the total duration of the activities in these sequences 194

5.24 Number of simulated sequences containing activities and average and standard

deviation of the total duration of the activities in these sequences 195

5.25 Percentage of test sequences in which the listed distance bands corresponds

to the farthest location reached . 196

5.26 Percentage of simulated sequences in which the listed distance bands corre-

sponds to the farthest location reached . 196

xx

LIST OF TABLES

5.27 Refined socio-demographical profiles of prototype P10 198

5.28 Refined membership degrees for set of test cases matching prototype P10 . . 199

5.29 Validation results for DP-SAM calculated based on the short format sequences

simulated by the optimized multi-actor reinforcement learning system, refined

for prototype P10 . 200

5.30 Validation results for DP-SAM calculated based on the long format sequences

simulated by the optimized multi-actor reinforcement learning system, refined

for prototype P10 . 200

A.1 Average silhouette width for varying number of clusters k based on the pro-

posed spatio-temporal dissimilarity measure 212

A.2 Average silhouette width for varying number of clusters k based on the existing

distance measure . 212

A.3 Descriptive statistics of cluster results based on the proposed spatio-temporal

dissimilarity measure . 215

A.4 Descriptive statistics of cluster results based on the existing distance measure 216

A.5 P-values of ANOVA tests for the sequences in the short form 217

A.6 Outcome of decision tree attaching socio-demographical profiles to the cluster

results for the sequences in the short form . 220

xxi

LIST OF TABLES

xxii

List of Figures

2.1 Weight of concept . 30

2.2 Impact of parameter f on accuracy of the batch induction algorithm estimated

on data excluding noise . 33

2.3 Impact of parameter f on accuracy of the batch induction algorithm estimated

on data including noise . 34

2.4 Impact of parameter n on accuracy of the batch induction algorithm estimated

on data excluding noise . 35

2.5 Impact of parameter n on accuracy of the batch induction algorithm estimated

on data including noise . 36

2.6 Impact of parameter f on accuracy of the batch/incremental induction algo-

rithm estimated on data excluding noise . 37

2.7 Impact of parameter f on accuracy of the batch/incremental induction algo-

rithm estimated on data including noise . 38

2.8 Impact of parameter n on accuracy of the batch/incremental induction algo-

rithm estimated on data excluding noise . 39

2.9 Impact of parameter n on accuracy of the batch/incremental induction algo-

rithm estimated on data including noise . 40

2.10 Comparison of tree induction algorithms estimated based on data excluding

noise . 46

2.11 Comparison of tree induction algorithms estimated based on data including

noise . 47

2.12 Multi-actor reinforcement learning system . 50

xxiii

LIST OF FIGURES

2.13 Learning scheme . 53

2.14 Evolution of optimal composite action . 55

3.1 Histograms concerning the socio-demographical data: age and gender 65

3.2 Histograms concerning the socio-demographical data: marital status and num-

ber of children . 66

3.3 Histograms concerning the socio-demographical data: work schedule and num-

ber of working hours . 67

3.4 Histograms concerning the socio-demographical data: income category and

day of the week . 68

3.5 Hägerstrand trajectories of a subset of the data projected on a map of the

study area . 70

3.6 Examples of unidimensional sequences . 71

3.7 Empty N ×M matrix for sequence alignment 71

3.8 N ×M matrix for sequence alignment in the course of the alignment process 72

3.9 N ×M matrix for sequence alignment at the end of the alignment process . . 72

3.10 Examples of multidimensional sequences containing the activity type and

(x, y)-coordinates of the activity location . 73

3.11 Hägerstrand trajectories of example sequences 75

3.12 Sequences: rotated, translated and mirrored 77

3.13 Calculating the trajectory of AAL-pairs for the base sequence 78

3.14 (Normalized) trajectories of angles of the sequences of figure 3.12 compared

to the (normalized) trajectory of angles of the base sequence 80

3.15 Mirrored trajectory of normalized angles of the mirror sequences of figure 3.12

compared to the trajectory of normalized angles of the base sequence 81

3.16 Sequences 2: rotated and mirrored . 82

3.17 (Normalized) trajectories of angles of the sequences of figure 3.16 compared

to the (normalized) trajectory of angles of the base sequence 83

3.18 Corrected (normalized) trajectories of angles of the sequences of figure 3.16

compared to the (normalized) trajectory of angles of the base sequence 85

3.19 Hägerstrand trajectory of one of the sequences 87

xxiv

LIST OF FIGURES

3.20 Normalized AAL-trajectory of sequence displayed in figure 3.19 88

3.21 Sequence represented in the long form (time slots of 1 hour) vs. the short

form for the example sequence S of figure 3.10 91

3.22 Hägerstrand trajectories of sequences represented in the long form (time slots

of 1 minute) vs. the short form for the sequence recorded in figure 3.19 . . . 91

3.23 Cluster results for varying number of clusters k based on the proposed spatio-

temporal dissimilarity measure . 93

3.24 Cluster results for varying number of clusters k based on the existing distance

measure . 95

3.25 Determining the SDD-value for an observed sequence 97

3.26 Determining the SDE-value for an observed sequence 98

3.27 Decision tree attaching socio-demographical profiles to the cluster results . . 102

3.28 Overall standard deviation of predictor variable 103

4.1 Agent-based micro simulation framework . 111

4.2 Reinforcement learning system . 112

4.3 An example of the scheduling process illustrated 115

4.4 Traditional reward function in module 1 for the working activity of cluster 1 . 117

4.5 Reward function using progress estimators in module 1 for the working activity

of cluster 1 . 118

4.6 Example of rewards assigned . 119

4.7 Alternative reward function using progress estimators in module 1 for the

working activity of cluster 1 . 121

4.8 Exploration rate implemented in module 1 for the traditional reinforcement

learning agents . 139

4.9 Exploration rate generated in the course of the learning process for module 1

for the reinforcement learning agents enhanced with regression tree function

approximation . 141

4.10 Reward function for module 2 for the fixed working activity 143

4.11 Alternative reward function in module 3 for the grocery shopping activity of

cluster 1 . 149

xxv

LIST OF FIGURES

4.12 Reward function in module 5 for the working activity of cluster 1 161

A.1 Cluster results for varying number of clusters k based on the proposed spatio-

temporal dissimilarity measure . 213

A.2 Cluster results for varying number of clusters k based on the existing distance

measure . 214

A.3 Decision tree attaching socio-demographical profiles to the cluster results for

the sequences in the short form . 218

A.4 Overall standard deviation of predictor variable for the sequences in the short

form . 219

xxvi

Chapter 1

Introduction

1.1 Research Setting

Mobility proves to be a driving force impacting economy, society and the environment. For

instance, the socio-economic effects of a well-constructed transportation network include

opening up areas in order to attract capital and people while creating employment, prevent-

ing social exclusion and enhancing liveability. In this sense, mobility offers the means to

bridge geographical distances, while taking into account temporal restrictions (Hägerstrand,

1970). However, mobility also brings along a number of less favourable side effects. One

of these comprises the fact that transportation consumes a major part of total commer-

cial energy and produces a huge amount of emissions, which are known to have negative

environmental and health implications.

In addition, transportation appears to be the cause of a number of social and economic

issues, for example traffic unsafety and congestion, creating as such a cost to society. There-

fore, in order to assess the impact of mobility on non-transport-related issues, such as air

quality, as well as to evaluate the influence of transport- and non-transport-related policies

on mobility, transport modelling emerges (Fried et al., 1977; Shiftan & Surhbier, 2002; Shif-

tan et al., 2003; Stead & Banister, 2001). After all, governments and policy makers wish to

be supported by models in order to estimate the impact of their decisions on society as a

whole. Within this scope, transportation models are developed.

1

CHAPTER 1. INTRODUCTION

1.2 Travel-Demand Models

For this purpose, many modelling approaches can be utilized. A well-known and widely

used method to replicate and simulate behaviour, is the four-step modelling approach, a so-

called trip-based model including a series of mathematical models calibrated on trip origin-

destination data (McNally, 2008). Even though a behavioural resistance with regard to this

type of modelling exists, this modelling approach is still very popular and applied very fre-

quently due to its simplicity in calculations and limited need of computational requirements.

Yet, as already indicated, this type of modelling contains a number of limitations as

formulated in McNally (2000). Most importantly, as trip-based models focus on individual

trips, they disregard the basic principle that the demand for travel is derived from activity

participation, and that trips and activities within a pattern are spatially and temporally

related. Furthermore, four-step models neglect the behavioural foundation underlying travel

behaviour, such as complex choice sets, which are limited by personal and interpersonal

constraints, household dynamics and interrelationships between travel and activity partici-

pation.

However, the breakthrough of computational capacity and the growing insight that indi-

vidual travel behaviour should constitute the basis of travel-demand models, initiated a shift

away from these four-step models. Travel-demand modelling moved to tour-based modelling,

which are assumed to enhance the behavioural realism by joining series of separate trips into

tours beginning and ending at home or work. This type of modelling is founded on the idea

that each tour contains one main goal, the so-called primary destination. The trip to and

from this primary destination can be interrupted by a number of intermediate stops. To

identify the primary destination, tour-based models hypothesize the existence of a hierarchy

within the tour purposes, namely (1) mandatory activities (work or school), (2) maintenance

activities (shop or pick-up/drop-off) and (3) discretionary activities (social, leisure, other).

Although these models offer greater behavioural realism, enable a more precise representation

of travel and are more suited to assess the impact of transportation demand management

policies compared to the four-step models, a third type of models, activity-based models,

recently gained more importance.

Rather than concentrating on the connection between the activities executed in the course

2

1.2. TRAVEL-DEMAND MODELS

of the same home- or work-based tour, activity-based models focus on the relationship be-

tween all activities executed in the course of a day/week/month and on the interaction

between household members. Five assumptions constitute the basis of these activity-based

models and are summarized in the remainder of this paragraph.

Firstly, the demand for travel is a derived demand from the demand for activities (Jones,

1979). Jones (1979) believes that travel cannot be studied in isolation as it is part of a

sequence of events which occur in space and time. As such, he fosters the idea of the

existence of space-time prisms, in which travel enables a trade off between time and space.

This assumption is also supported by Hägerstrand (1970). Consequently, travel is required if

an individual wishes to participate in activities at a location different from his home location.

This viewpoint implies that trips are merely a by-product of activity choices and are thus

defined by the set of activities, the set of destinations offering suitable facilities for these

activities and the characteristics of the transport system.

Secondly, Chapin (1974) states that activity patterns are the means by which humans

satisfy their needs and wants. An activity pattern is thus the result of the interplay be-

tween the propensity and opportunity to engage in certain activities. On the one hand, the

propensity to execute an activity is guided by a set of energizing factors, being motivations

and thought ways, and by a set of constraining factors, being roles and individual character-

istics. Chapin (1974) distinguishes two types of motivations for performing an activity: an

activity can be driven either by subsistence needs, for instance sleeping, eating and health

care, including activities providing income to meet these basic needs, for example working,

or by culturally, socially and individually defined needs, such as social and leisure activities.

On the other hand, the opportunity to participate in an activity depends on the perceived

availability of facilities and services and on the perceived quality of these facilities and ser-

vices. The choice to execute a certain activity is a function of one or more wants, a set of

perceived and feasible alternatives for achieving these wants and the perceived cultural and

social context for making this choice. In this perspective, performing a series of activities

results in satisfaction and feedback.

Thirdly, instead of starting from the motivations and opportunities of people, Häger-

strand (1970) focuses on the constraints limiting human behaviour. First, he distinguishes

3

CHAPTER 1. INTRODUCTION

capability constraints which restrict the activities people can execute because of their bio-

logical constructions and/or the tools one can operate. Second, he lists coupling constraints,

which define the timing and location of activities and the available infrastructure to execute

these activities. From this viewpoint, he states that telecommunication allows people to

engage in certain activities without losing time in transportation. Next, Hägerstrand (1970)

discerns authority constraints, which are mainly spatial and include the idea that a number

of space-time entities are under the control of a certain individual or group, e.g. a piece of

land or a home. Combining these constraints, Hägerstrand (1970) comes to the definition of

so-called space-time prisms, which reflect these interdependencies between time and space.

Furthermore, interrelating this idea and the previous one, Gärling et al. (1997) substan-

tiate that different aspects of activity and travel decisions are interdependent. This notion

is also supported by Joh et al. (2002) and signifies that the utility of one decision component

is influenced by the outcome of another decision component. For instance, the activity type

decision affects the utility of the subsequent destination choice, which influences the utility

of the departure time, travel mode decision and route choice.

Fourthly, given the fact that the characteristics of the household influence the char-

acteristics of the individuals’ activity patterns to a great extent, and as such impacting

travel-demand as well, the understanding of individual activity and travel decisions can be

enhanced by incorporating interactions between household members within a travel-demand

model (Jones et al., 1983).

Timmermans (2006) also stresses the importance of including interactions between in-

dividuals, and in particular between household members. In this context, he defines three

types of decisions that have to be considered when modelling household interactions. The

first category consists of resource allocation and usage decisions which take into account the

assignment of constrained resources, such as transport modes, on the household level. Sec-

ond, a number of household tasks and activities have to be performed by only one household

member, for example bring/get activities or daily shopping. This type of decisions is called

task and time allocation decisions. On the contrary, joint activity participation decisions

refer to activities which have to be executed jointly, for instance leisure or social activities.

Though these interactions are widely recognized, Timmermans (2006) points out that the

4

1.3. BASIC REQUIREMENTS FOR ACTIVITY-BASED MODELS

majority of the existing activity-based modelling efforts focuses on maximizing individual

utility functions, instead of maximizing household utility functions.

Finally, activity and travel decisions are affected to a large extent by past and anticipated

future events (Bowman, 1995). After all, human behaviour is often impacted by habits or

inertia, and responses to change are known to display lags and asymmetry.

Recapitulating these concepts, an activity-based travel-demand model thus aims at pre-

dicting which activity is executed, where, when, for how long and which transport mode is

used to get to the desired location (Arentze & Timmermans, 2005a). As a result, activity-

based travel-demand models offer the opportunity of approaching travel-demand more real-

istically and predicting it more accurately than traditional four-step models, as they provide

a more profound insight into the daily individual activity-travel behaviour (Algers et al.,

2005; Kitamura, 1996).

Moreover, if implemented well, activity-based travel-demand models offer the opportu-

nity of assessing the implications of non-transport policies or technological developments on

travel, examining the impact of transport-related policies on non-travel issues and gaining a

qualitative and quantitative insight of role of travel in people’s lives (Jones, 1979). Further-

more, activity-based micro simulations provide numerous additional advantages, including

predicting along a continuous time-axis instead of the traditional aggregated peak/off-peak

estimations, the ability of realistically assessing the impact of travel-demand measures on

individual activity-travel behaviour, and hence on travel-demand, the flexibility and versa-

tility with respect to specific study objects and policy scenarios, the control on the accuracy

by defining the desired level of spatial and temporal resolution and the comprehensibility as

an evaluation tool (Kitamura, 1996).

1.3 Basic Requirements for Activity-Based Travel-Demand Models

However, in order to comply with the expectations, activity-based models have to meet a

number of requirements, as outlined by Pendyala & Bhat (2006) and reviewed here.

First, travel-demand models should be responsive to changes in land use, socio-economic

and demographic characteristics, such as changes in population and employment totals,

household distribution by zone, income, car ownership, household size, dwelling unit type,

5

CHAPTER 1. INTRODUCTION

number of children, employment distributions by zone, occupation per industry and per type,

person distribution by age, employment status and gender.

Subsequently, travel-demand models should be able to account for changes in the charac-

teristics of the multi-modal transport network to assess the impact on modal level of service

attributes, such as distance, time and cost. This requirement implies being responsive to

changes in highway network speeds, transit route frequencies, introduction of new facilities,

new highway links, new transit stops and new bicycle and pedestrian facilities.

Thirdly, these models should enable implementing transportation policies, for instance

pricing policies, policies aiming at encouraging alternate mode use or alternative work/school

arrangements. Furthermore, the models should be able to consider the impact of new tech-

nologies and to account for changes to the spatial and temporal resolution.

Last but not least, activity-based modelling approaches should accommodate the emerg-

ing behavioural paradigms and concepts discussed above. These include resuming inter-

dependencies and interactions (for instance modal, temporal and spatial interdependen-

cies among trips in a chain and chains in a day, interdependencies in activity engagement

across days and weeks, household interactions and interdependencies between residence and

work/school locations), constraints and flexibility (for example modal, situational, institu-

tional, household and personal constraints and flexibilities), a positive utility of travel, time

use and activity pattern analysis (such as taking into account history dependency, effects

of substitution and generation of in-home versus out-of-home activities, induced demand,

travel efficiency and behaviour processes and decision rules).

The purpose of the current research covers designing a framework for generating activi-

ty-travel sequences within such dynamic activity-based travel-demand model. A prominent

requirement of this framework includes the ability to incorporate both short term and long

term dynamics (Goodwin et al., 1990). The former dynamics occur within a day and refer to

rescheduling due to the effect of preceding decisions or events on subsequent choices, and/or

of later objectives on earlier decisions. An example is the occurrence of an unforeseen event

in the course of the execution of an activity - either a negative or a positive delay - or

unexpected travel times, resulting in a time-surplus or time-lack situation which triggers

short-term adaptation (Arentze et al., 2005; Goodwin et al., 1990).

6

1.3. BASIC REQUIREMENTS FOR ACTIVITY-BASED MODELS

Long term dynamics cover the impact of experiences of previous actions on activity-

travel patterns over a longer time frame. While conducting activities, individuals build up

expectations and beliefs based on the outcomes of their behaviour. New experiences cause

these expectations and beliefs to be updated, and behaviour to change accordingly. This type

of dynamics is subject to a high degree of inertia, implying a slow response rate. For instance,

long term dynamics can cause household relocation or a change in the car availability of the

household (Arentze et al., 2005; Arentze & Timmermans, 2005b; Goodwin et al., 1990).

Numerous activity-based models exist, which attempt to predict travel demand. Three

major methodologies can be distinguished within these models. The first category consists of

utility-maximizing models, which suggest that individual decision-making behaviour aims at

maximizing the overall utility. These models typically include a multinomial or nested logit

model, covering the different decision aspects (Timmermans, 2001). Examples of utility-

maximizing models are COBRA (Wang & Timmermans, 2000), the Day Activity Schedule

Model (Bowman, 1998), PATRICIA (Borgers et al., 2002) and STARCHILD (Recker et al.,

1983).

Computational process models constitute the second type of model. These models explic-

itly focus on the decision process shaping activity-travel patterns. Computational process

models mainly comprise context-dependent choice heuristics to model the scheduling process.

The techniques used in these models include amongst others decision trees, neural networks

and discrete choice models (Timmermans, 2001). Examples of computational process models

are ALBATROSS (Arentze & Timmermans, 2004), AMOS (Kitamura & Fujii, 1998), GIS-

CAS (Kwan, 1997), RAP (Kulkarni & McNally, 2001) and SCHEDULER (Doherty et al.,

2002).

The last category of models contains hybrid models which use the concept of utility but

which do not necessarily aim at maximizing it. These models rather concentrate on integrat-

ing utility-maximizing and computational process models (Timmermans, 2001). Examples

of hybrid models are AURORA (Arentze et al., 2005), PCATS-RUM (Fujii et al., 1998) and

SMASH (Ettema et al., 1996).

The present research effort fits in with this last category of models, as it fixes its attention

on modelling individual behaviour by means of reinforcement learning - a technique which

7

CHAPTER 1. INTRODUCTION

borrows some ideas from reward (utility)-driven behaviour. It is assumed here that rein-

forcement learning is able to provide an adequate activity-based travel-demand framework

for several reasons.

Firstly, reinforcement learning is inspired on the human way of learning through trial-

and-error interactions with a dynamic environment (Kaelbling et al., 1996). Long term learn-

ing, as discussed in the previous paragraph, can thus be incorporated because changes in the

environment influencing activity-travel behaviour are reflected through changes in the rein-

forcement signal. If such changes persist, the activity-travel behaviour of the reinforcement

learning agent is adapted accordingly.

Next, the technique does not require scheduling for a full day ahead, but instead it enables

scheduling one activity after another while the schedule is being executed (as is discussed

in chapter 4). This way, short term dynamics are being accounted for, because unforeseen

events are included in the schedule right away. Furthermore, reinforcement learning is par-

ticularly suited to account for future events as it is able to take future (delayed) rewards

into consideration (Sutton & Barto, 1998).

An additional advantage of Q-learning, which is a particular version of reinforcement

learning elaborated on in section 2.2 and implemented here, includes the fact that the algo-

rithm does not require a model of the environment (Sutton & Barto, 1998). Finally, aiming

at incorporating interactions between decision aspects, multi-actor reinforcement learning

provides a solution, as is described in section 2.4.

1.4 Research questions

Consequently, the main research question representing the focus of this thesis, can be for-

mulated as follows:

Is reinforcement learning able to constitute a solid basis for
modelling individual activity-travel behaviour?

This research question can be converted into a number of subquestions, guiding the

current research effort.

8

1.5. CONTRIBUTIONS

1. (a) What are the aspects of reinforcement learning restricting its applicability in the

current study area?

(b) Which adaptations are required to meet these limitations?

2. To which extent is reinforcement learning able to account for interactions?

3. (a) Which type of data is required to serve as input?

(b) To which extent do these data require pre-processing for the benefit of the rein-

forcement learning algorithm?

4. Can a conceptual framework incorporating reinforcement learning be defined which

aims at simulating activity-travel sequences?

5. (a) To which extent is this reinforcement learning framework able to generate mean-

ingful activity-travel sequences based on observed data?

(b) To which extent is this reinforcement learning framework able to do so within an

acceptable time frame for a given synthetic population?

1.5 Contributions

This thesis contributes to the state-of-the-art of activity-based travel-demand modelling by

developing a scheduling framework inspired on the human way of learning. The founding

technique is reinforcement learning, which is enhanced with a regression tree-based func-

tion approximator to meet the major shortcomings of the algorithm. Furthermore, this

manuscript describes the entire scheduling process starting from handling the data in order

to define socio-demographic profiles based on an improved (dis)similarity measure, cali-

brating the parameters of the system, running the proposed algorithm and processing and

validating the resulting activity-travel patterns.

1.6 Outline

This manuscript is organized as follows: chapter 2 first introduces some of the terminology

and concepts used within reinforcement learning, which is the algorithm that founds the

9

CHAPTER 1. INTRODUCTION

framework proposed in this project. This chapter discusses some drawbacks attached to this

algorithm and, advances a technique, in particular a regression tree function approximator,

to meet these objections. Furthermore, chapter 2 examines an extension of traditional re-

inforcement learning to enable including interactions between decision components. Next,

chapter 3 elaborates on the data which serve as input to the scheduling algorithm. This

chapter presents a method to calculate the (dis)similarity between activity-travel patterns of

different individuals on different days of the week, aiming at identifying homogeneous groups

of which the members display similar activity-travel behaviour in time and space. To end

with, socio-demographic profiles are attached to these groups in chapter 3. Thereafter, chap-

ter 4 describes the main scheduling engine, which consists of five interconnected modules,

each of which is in charge of reproducing a different aspect of activity-travel behaviour. This

chapter also illustrates and validates the functioning of each component of the scheduling

engine. Subsequently, chapter 5 examines the applicability of the proposed algorithm within

a large-scale activity-travel based framework. This chapter suggests and implements a num-

ber of measures which drive at scaling up the algorithm in order to improve its usability.

To end with, chapter 6 summarizes the conclusions of the current dissertation and indicate

some topics for further research.

10

Chapter 2

Methodology

2.1 Introduction

In order to model a dynamic system of activity-travel behaviour, the ability to learn through

interaction with an uncertain and constrained environment should be incorporated (Arentze

& Timmermans, 2003; 2005b). After all, such interaction leads to adaptation of behaviour,

including within-day rescheduling or longer-term changes in preferences, and thus in be-

haviour (Arentze & Timmermans, 2003; 2005b; Charypar & Nagel, 2005). Therefore, the

presented framework should be able to model continuously adapting activity-travel choices,

which are formed by learning through interaction with the environment (Arentze & Tim-

mermans, 2003).

To this end, a model based on reinforcement learning - which replicates the nature of

human learning through trial-and-error interactions with a dynamic environment (Kaelbling

et al., 1996) - is developed in the current research. Reinforcement learning also entails a

number of eye-catching advantages compared to existing statistical and data mining tech-

niques. First, the reinforcement learning approach introduced here does not require a model

of the environment to be present. Next, reinforcement learning enables taking into account

delayed decisions and their value. Finally, reinforcement learning is particularly suited in

goal-directed problem areas.

The remainder of this chapter first introduces the fundamentals of reinforcement learning

and its well-known variant, Q-learning. After discussing some of the disadvantages of this

11

CHAPTER 2. METHODOLOGY

traditional technique, section 2.3 elaborates on function approximation based on regression

tree induction to tackle the reported restrictions. This section examines some tree induc-

tion algorithms and their applicability within the described framework. Subsequently, to

incorporate interactions between decision components, multi-actor reinforcement learning

is described and evaluated in section 2.4. To end with, the application of reinforcement

learning in related research efforts is summarized in section 2.5.

2.2 Reinforcement Learning

In order to grasp the core of the model applied in the present research effort, a concise de-

scription of reinforcement learning is included here. Yet for a detailed review of reinforcement

learning, the reader is referred to Kaelbling et al. (1996) and Sutton & Barto (1998).

2.2.1 Fundamentals

Reinforcement learning corresponds to the nature of human learning through trial-and-error

interactions with a dynamic environment (Kaelbling et al., 1996). In order to comprehend

this reinforcement learning problem more thoroughly following key concepts are explained

first (Kaelbling et al., 1996; Mitchell, 1997b; Sutton & Barto, 1998).

Agent. An agent is the decision-making unit being considered.

State. A state s is defined by a number of dimensions which describe the conditions of the

environment which are observable to the agent. This perception of the environment

is the first connection of the agent with its environment. A reinforcement learning

system is composed of a finite set S of feasible states.

Action. An action refers to the decision that can be taken in a certain state, and provides

the second connection between the environment and the agent. An action a is also

described by a number of dimensions. In each state s, the agent can choose from a

number of feasible actions, which are contained in the action set A(s).

Transition function. Executing an action a in state s changes the state of the environment

into the next state s′. The transition function δ : S×A→ S determines this transition

12

2.2. REINFORCEMENT LEARNING

from state s to state s′ through action a and is unknown to the agent.

Reward function. A reward function R : S×A→ R defines the feedback that the agent re-

ceives from its environment while making decisions and executing actions. The reward

can be compared to the concept of utility in conventional choice models. Additionally,

the nature of the reward, which can be either immediate or delayed, and direct or

indirect, depends on the goal of the reinforcement learning problem.

Policy. A policy π : S → A defines which action the agent performs in each state s.

The transition function and the reward function can either be deterministic or non-

deterministic. A deterministic function always produces the same outcome for a given state

s and action a. For non-deterministic functions, several outcomes for a given state s and

action a are feasible, and are randomly drawn from a probability distribution. In the present

research, these reward and transition functions are assumed to deterministic.

In reinforcement learning, an agent observes the state s of the environment and selects an

action a to execute at each time step. The objective of the agent is to find a policy π, which

maximizes the expected sum of rewards over time, which is denoted as follows (Kaelbling

et al., 1996; Mitchell, 1997b):

V π(st) ≡ rt + rt+1 + rt+2 + (2.1)

As a reinforcement learning agent not only takes into account immediate rewards - he

is also susceptible to delayed rewards -, a discounting factor 0 ≤ γ ≤ 1 is introduced to

determine this cumulative reward. With respect to this discounting factor, γir reflects the

present value of a reward r received i time steps into the future (Sutton & Barto, 1998). A

value of γ close to 0 signifies that immediate rewards are considered to be more valuable

compared to delayed rewards; whereas a value of γ close to 1 indicates that future rewards

impact the value of an action more (Mitchell, 1997b). The value V π(s) of the cumulative

reward of an arbitrary policy π(s) starting in state s can now be defined as follows:

V π(st) ≡ rt + γrt+1 + γ2rt+2 + ... ≡
∑

i

γirt+i. (2.2)

13

CHAPTER 2. METHODOLOGY

The optimal policy π∗ maximizes the discounted cumulative reward. It equals:

π∗ ≡ argmax
π

V π(s) , ∀s. (2.3)

The value corresponding to this optimal policy is denoted as V ∗. Otherwise stated, the

agent seeks to find the optimal policy by defining in each state s the action a which enables

reaching V ∗. This goal corresponds to determining the action in each state that maximizes

the sum of the immediate reward r(s, a) and the value V ∗(δ(s, a)) of the optimal policy of

the subsequent state s′ (=δ(s, a)), discounted by γ. For a state s, this can be written as

follows (Kaelbling et al., 1996; Mitchell, 1997a):

π∗(s) = argmax
a

[r(s, a) + γV ∗ (δ(s, a))] . (2.4)

2.2.2 Q-Learning

The learning approach described above requires a model of its environment in order to be

able to derive the optimal policy, as perfect knowledge of the immediate reward function R

and of the state transition function δ is needed to estimate the value function V (Mitchell,

1997b). However, perfect knowledge of these functions is usually not prevalent in real world

settings. To that purpose, Watkins (1989) introduces a novel value evaluation function Q to

select the optimal policy without requiring a model of the environment to be present. The

Q(s, a)-value denotes the expected utility of taking action a in state s and following a fixed

policy thereafter (Kaelbling et al., 1996; Mitchell, 1997b; Watkins, 1989). The Q(s, a)-value

is defined as follows:

Q(s, a) ≡ r(s, a) + γV ∗ (δ(s, a)) . (2.5)

r(s, a) is the immediate reward of executing action a in state s. V ∗(δ(s, a)) is the value of

the optimal policy in the state determined by δ(s, a). The optimal policy π∗ can be rewritten

in terms of Q(s, a):

π∗(s) = argmax
a

Q(s, a), (2.6)

14

2.2. REINFORCEMENT LEARNING

and thus:

Q(s, a) = r(s, a) + γ

{

max
a′

[

Q
(

δ(s, a), a′
)]

}

. (2.7)

The global optimal policy now consists of successively selecting an action a based on the

local Q(s, a)-values for state s (Mitchell, 1997b). The Q(s, a)-values are stored in a look-

up table of which each entry matches a particular (s, a)-pair. On each encounter with a

(state,action)-pair (s, a), the corresponding Q(s, a)-values are updated.

Additionally, a Q-learning agent has to be able to take into account previously gathered

experience. To this purpose, a new model parameter, the step-size parameter or learning

rate αt+1(s, a), is introduced. The learning rate expresses the weight assigned to the cur-

rently calculated Q(s, a)-value (r(s, a) + γ max
a′

[

Q̂t(s
′, a′)

]

) compared to the Qt(s, a)value,

calculated and stored during a previous visit to the (s, a)-pair. The estimate Q̂t+1(s, a) can

be calculated according to following formula:

Q̂t+1(s, a)← [1− αt+1(s, a)] Q̂t(s, a) + αt+1(s, a)

{

r(s, a) + γ max
a′

[

Q̂t(s
′, a′)

]

}

. (2.8)

Consequently, the Q̂t+1(s, a)-value represents a weighted average of all experiences. The

Q̂t+1(s, a)-values are proved to converge to the optimal Q∗(s, a)-values, provided that action

a in state s is selected an infinite number of times and αt+1(s, a) decreases appropriately,

i.e. according to following conditions (Kaelbling et al., 1996; Mitchell, 1997b; Watkins, 1989;

Watkins & Dayan, 1992):

∑

t

αt+1(s, a) =∞. (2.9)

∑

t

[αt+1(s, a)]
2 <∞. (2.10)

The estimation of the Q̂t+1(s, a)-values in the Q-learning algorithm is described in table

2.1. To start with, the Q-learning algorithm initializes all entries of the Q-table. Subse-

quently, the algorithm starts learning the optimal policy in the course of subsequent learning

15

CHAPTER 2. METHODOLOGY

episodes, in which the agent observes its current state s of the environment, selects an action

a to perform, receives an immediate reward r(s, a) and calculates and updates the entry of

the Q-table corresponding to the (s, a)-pair according to Equation 2.8 (Kaelbling et al., 1996;

Sutton & Barto, 1998; Watkins & Dayan, 1992).

Initialize each entry Q̂(s, a) in the Q-table.
Repeat:

Observe state s.
Select and execute action a.
Observe next state s′.
Observe reward r(s, a).

Calculate Q̂t+1(s, a) based on (s, a, r(s, a))-triplet
according to Equation 2.8.

Update Q-table.

Table 2.1: Reinforcement learning algorithm: Q-learning

Faced with a decision in each state, the agent has to decide whether to exploit previously

gathered knowledge or to explore the possible actions. On the one hand, exploiting signifies

choosing the action that is known to yield the highest reward. By doing so, the agent aims

at reaching the state that is close to the currently best solution. This is a so-called greedy

approach. Exploring, on the other hand, denotes selecting an action randomly from the set

of possible actions. Exploring aspires to arrive at a state that might not be visited otherwise,

and which may produce a higher reward than that of the most optimal action so far (Mitchell,

1997b; Sutton & Barto, 1998).

Several strategies exist to deal with this trade-off between exploration and exploitation,

for instance the greedy strategy, randomized strategies and the interval-based techniques

(Kaelbling et al., 1996). In this research, the frequently used ε-greedy strategy, which is a

randomized strategy including greedy action selection, is incorporated to guide this trade-off.

The parameter ε reflects the probability of performing a non-greedy, random action selection

instead of greedily selecting the optimal action. In the case of a ε-greedy action selection

strategy, “random” signifies that the action is selected randomly from all available actions

according to a uniform distribution and independently from the action values.

Furthermore, as exploration generally occurs more in the beginning of the learning process

- at that moment the agent still has to ”‘discover”’ his possibilities in the environment -, the

16

2.2. REINFORCEMENT LEARNING

algorithm starts with a rather large value of ε and decreases this value in the course of the

learning phase (Kaelbling et al., 1996; Sutton & Barto, 1998).

2.2.3 Bucket-Brigade Updating

Although the order in which the Q̂t+1(s, a)-values are updated based on the experienced

(s, a, r(s, a))-triplets, does not endanger the final convergence to the optimal policy, this

order does influence the training efficiency to a large extent (Mitchell, 1997b). In particu-

lar, the convergence to the optimal policy can be somewhat accelerated by using so-called

Bucket-Brigade updating. This approach does not compute and update the Q̂t+1(s, a)-

values every time the agent executes the selected action, receives the corresponding reward

and observes the next state. Instead, the (s, a, r(s, a))-triplets are stored in-between, and

the Q̂t+1(s, a)-values of the visited (s, a)-pairs are calculated in reverse chronological order

at the end of the learning episode. This way, the effects of delayed rewards are incorporated

into the Q̂t+1(s, a)-value within the same learning episode. As a result, a lower number of

learning episodes is required to learn a good approximation of the Q(s, a)-value (Driessens,

2004; Mitchell, 1997b). The reinforcement learning algorithm incorporating Bucket-Brigade

updating is summarized in table 2.2.

Initialize each entry Q̂(s, a) in the Q-table.
Repeat:

Repeat until the end of the learning episode:
Observe state s.
Select and execute action a.
Observe next state s′.
Observe reward r(s, a).
Store (s, a, r(s, a))-triplet in temporary table.

Repeat in reverse chronological order:

Calculate Q̂t+1(s, a) based on stored (s, a, r(s, a))-triplet
according to Equation 2.8.

Update Q-table.
Delete (s, a, r(s, a))-entry from temporary table.

Table 2.2: Reinforcement learning algorithm: Bucket-Brigade updating

17

CHAPTER 2. METHODOLOGY

2.2.4 Disadvantages of Reinforcement Learning Approach

Curse of dimensionality

The Q-learning algorithm described in section 2.2.2, requires storing Q(s, a)-values of all

feasible (s, a)-pairs in a look-up table. Furthermore, in order to converge to the optimal

sequence, the Q-learning approach requires that each (s, a)-pair is visited at least once and

preferably an infinite number of times during the training process (Mitchell, 1997b; Sutton

& Barto, 1998). Therefore, this algorithm is only applicable to small state-action problems,

due to the fact that the look-up table grows exponentially with the dimensionality of the

state and action spaces. Large space problems thus require both a huge amount of memory

to store the large Q-tables and a huge amount of time and data to estimate the Q(s, a)-values

accurately (Sutton & Barto, 1998).

Limited Applicability

Moreover, it is not realistic to assume that an agent visits every feasible (s, a)-pair in the

course of the learning process. Consequently, the algorithm has to be altered in order to

enable using experience of only a limited subset of the state-action space to represent all

(s, a)-pairs, even the ones that have never been visited (Sutton & Barto, 1998).

2.3 Function Approximation

Some approaches tackling these limitations, involve generalizing either state or action space.

To this end, one can apply variable resolution discretization, which consist of either state or

action aggregation. States or actions are joined together to reduce the resolution of the state

and the action spaces. However, a bad discretization may introduce a hidden state in the

problem area, whereas a too fine discretization does not solve the issue of the large amount

of training data required to learn the optimal policy (Smart & Kaelbling, 2000; Uther &

Veloso, 1998).

A better solution is to replace the discrete look-up tables - mapping the state and action

spaces to a Q-function, i.e. S ×A→ Q - by function approximators capable of generalizing

across similar states and actions to reduce these state and action spaces. For the purpose

18

2.3. FUNCTION APPROXIMATION

of function approximation, existing generalization techniques from the area of supervised

learning can be used (Kaelbling et al., 1996; Smart & Kaelbling, 2000; Sutton & Barto,

1998).

2.3.1 Regression Tree-Based Function Approximation

Supervised learning is different from the core of reinforcement learning as it requires training

data, which consist of examples provided from a knowledgeable supervisor outside the agent,

in order to generalize to unseen situations. However, within the reinforcement learning tech-

nique, supervised learning offers the generalization required to enhance the performance of

the core algorithm, based on examples gathered in the course of subsequent learning episodes.

Supervised learning techniques include, amongst others, artificial neural networks, statisti-

cal curve fitting, pattern recognition, fuzzy logic and nearest neighbour methods (Kaelbling

et al., 1996; Sutton & Barto, 1998).

Most researches incorporating function approximation in reinforcement learning focus on

generalizing either over the state space or over the action space so as to reduce the number of

feasible state or action dimensions (Kaelbling et al., 1996; Sutton & Barto, 1998). As opposed

to this approach, the goal of the function approximation here is to generalize over the state

and the action space simultaneously. Therefore, the current research proposes to estimate the

Q̂t+1(s, a)-values based on experienced (s, a, r(s, a))-triplets based on tree induction. Well-

known algorithms for tree induction include CART (Classification and Regression Tree)

(Breiman et al., 1984), ID3 (Mitchell, 1997a) and its extension, C4.5 (Quinlan, 1993).

A regression tree included in the reinforcement learning algorithm - called the Q-tree -

provides the desired conversion of the combinations of the state and the action spaces S×A

to combinations of regions of the state and action spaces, denoted as S × A. The Q-tree

thus replaces the Q̂-estimates belonging to the S × A → Q-mapping stored in the Q-table,

by Q̂-estimates derived from the S ×A → Q-mapping which are saved in the leaves of the

Q-tree.

To incorporate the use of a regression tree algorithm in the Q-learning approach, the

traditional Q-learning algorithm is altered. A schematic overview of this extended Q-learning

approach is illustrated in table 2.3. This technique resembles the traditional Q-learning

19

CHAPTER 2. METHODOLOGY

algorithm to a great extent.

Initialize Q-tree.
Repeat:

Observe state s.
Select and execute action a.
Observe next state s′.
Observe reward r(s, a).

Calculate Q̂t+1(s, a)-value based on (s, a, r(s, a))-triplet
according to Equation 2.8.

Update Q-tree.

Table 2.3: Reinforcement learning algorithm: Regression tree-based function approximation

Initially, the Q-tree only includes the root node. This implies that all states are repre-

sented by one state region and that all actions are merged to one action region. In the course

of the successive learning episodes, which consist of observing the state s of the environment,

selecting and executing an action a, observing the change in the state of the environment

s′ and receiving the reward r(s, a) attached to the (s, a)-pair, the algorithm collects the

instances, composed of the values of the state and action dimensions and the corresponding

Q̂t+1(s, a)-value, used to train the Q-tree. Based on the information contained in these in-

stances, the algorithm splits the nodes of the Q-tree so as to distinguish between values of

the state and action dimensions, which generate distinct Q̂-values.

When selecting the best action - i.e. the action matching the highest attainable Q̂-value

for a given state s -, the reinforcement agent walks through the Q-tree only once to populate

a list of action regions and their corresponding Q̂-values. Next, the agent searches this list

for the best attainable Q̂-value and deduces a corresponding value for the action dimension.

If more than one action can be defined for this action region, an action is selected randomly

within the boundaries of the region.

2.3.2 Regression Tree Algorithm

Regression Tree Induction: Some General Concepts

Decision tree induction offers many advantages with respect to traditional statistical analy-

ses. First, as opposed to most statistical techniques, the outcome of decision tree induction

algorithms is simple to interpret: the resulting decision tree can easily be transformed into

20

2.3. FUNCTION APPROXIMATION

a set of if-then rules (Witten & Frank, 2000). Furthermore, decision tree induction algo-

rithms are well suited to handle large datasets composed of attributes of mixed data types

(categorical or numerical) (Breiman et al., 1984).

In addition, decision trees supply a nice way to deal with missing data as these values are

simply treated as another possible value of the attribute (Witten & Frank, 2000). Moreover,

decision tree induction algorithms are non-parametric or distribu-tion-free. This implies for

instance that the method does not require data that are normally distributed. In addition to

this, outliers and noisy data, which affect the performance of statistical models negatively,

do not harm the outcome of decision trees (Breiman et al., 1984). The terminology and

concept of decision tree induction are introduced in the remainder of this paragraph.

A decision tree consists of a number of nodes, which can be either interior or terminal,

containing a subset of the set of training instances. An interior node splits this set into

two or more sets according to a splitting rule. The resulting nodes are called child nodes

of this parent node. The splitting rule consists of one of the independent attributes and a

corresponding test value. The root node is the starting point of the decision tree, which

holds all instances of the training set. A terminal node, or leaf, assigns a possible value to

the dependent variable based on the instances assigned to this node and is not split further.

Decision tree induction aims at improving the overall accuracy of the prediction in a node

by dividing the instances into child nodes according to an independent variable obtaining

more homogeneous groups (branches) with respect to the dependent variable. A decision

tree initially consists of a single node, the root node, containing all training instances. The

regression tree is then refined by recursively adding splits to the existing interior nodes,

according to the most optimal splitting rule. The resulting child nodes are split further

until a stopping criterion to limit the growth of the tree and to prevent over-fitting the

training data, is met with. The selection of the splitting attribute and the corresponding

test value(s) as well as the possible number of children and the stopping criterion depend on

the tree induction method used.

In data mining, two types of decision trees exist: classification and model trees. If the

predicted value is categorical, classification trees are applied. On the other hand, model

trees are used if the dependent variable is numeric; each leaf node of a model tree contains a

21

CHAPTER 2. METHODOLOGY

model such as a linear regression model (Witten & Frank, 2000). A particular case of such

model tree is the so-called regression tree, in which the model of the dependent variable in

each leaf equals the average value of this dependent variable of all instances belonging to

that leaf.

Although several regression tree induction approaches exist, the current research imposes

a number of requirements. First, the decision tree applied here has to be able to handle a

numeric dependent variable, as the target variable of the tree is the continuous Q(s, a)-value.

Therefore in the current research, a model tree induction technique is applied. Furthermore,

as the data used to estimate the decision tree are subject to a continuously changing envi-

ronment and preferences, the technique has to be responsive to structural changes on the

one hand, while being insusceptible to temporary fluctuations - in this case noise originating

from imperfect observations of the environment and rewards - on the other hand. Addition-

ally, the regression tree has to be estimated based on a continuous stream of data. Moreover,

the regression tree is fitted on a large amount of data, all of which cannot be stored due to

memory limitations and ageing.

A regression tree induction algorithm which complies with these conditions, is described

into detail in following paragraphs.

Batch Regression Tree Algorithm

The goal of this section comprises providing a general introduction to the selected regression

tree technique. The dependent variable of an instance i is denoted yi and the independent

variable or regressor j matching the ith instance is labelled xij . Yet in practice, the training

instances consist of (s, a,Q(s, a))-triplets, where yi corresponds to the Q(s, a)-value while

xij corresponds to the attribute values of the dimensions of the state s and action a.

Potts & Sammut (2005) found the regression tree induction algorithm applied here. In

their research, Potts & Sammut (2005) introduce two similar methods to derive linear model

trees. Both algorithms are suited to process a batch of training instances at once as well

as to learn a model tree incrementally based on a continuous stream of instances. The tree

induction is based on statistical tests performed to determine whether splitting a leaf node

into two child nodes is significant, and to determine the position of the split. The first variant

22

2.3. FUNCTION APPROXIMATION

of the induction technique, alias RD, analyses the difference in residual sum of squares. The

second variant explores the distributions of positive and negative residuals and is called RA.

The RD-approach requires calculating (in batch mode) and maintaining (in incremental

mode) a linear model in each leaf and for each possible split, whereas only a single linear

model is estimated in each leaf for the RA-technique. Consequently, the RA-algorithm is

elaborated in the current research.

The model tree induction algorithm only provides binary splits, which are defined based

on the distribution of the residuals (RA) of all observations assigned to the node into con-

sideration. These residuals yj − ŷj are calculated for each independent variable j and are

equal to the difference between the actual (observed) value yj and the value ŷj predicted

by the linear model in the node. In the present study, for the sake of simplicity, the linear

model equals the average of the dependent variable of all examples belonging to the node.

According to these residuals, the algorithm divides the N instances of the node into con-

sideration in two subsets: the N+ examples with non-negative residuals, denoted x+
ij , are

assigned to S+; and the N− examples with negative residuals, labelled x−

ij , belong to S−

(and N = N+ +N−). For each dependent variable j following statistic is calculated (Potts

& Sammut, 2005):

T
(1)
j =

x+
j − x−

j

sj
√

1
N+ + 1

N−

. (2.11)

Here x+
j and x−

j equal the average of variable j in subset S+ and subset S− respectively,

and sj denotes the pooled variance of this variable over both subsets. T
(1)
j tests for difference

in means (Potts & Sammut, 2005).

Subsequently, the absolute differences z+ij =
∣

∣xij − x+
j

∣

∣ for all instances of S+ and z−ij =
∣

∣xij − x−

j

∣

∣ for all instances of S−, are determined. Based on these z-values T
(2)
j is defined,

which tests for a difference in variances (Potts & Sammut, 2005):

T
(2)
j =

z+j − z−j

wj

√

1
N+ + 1

N−

. (2.12)

Here z+j and z−j equal the average of the absolute differences of variable j in subset

S+ and subset S− respectively, and wj refers to the pooled variance of z-values over both

23

CHAPTER 2. METHODOLOGY

subsets. Having calculated both T -values for all attributes, the split attribute is defined to

be the variable corresponding to T = maxj,n

∣

∣

∣
T

(n)
j

∣

∣

∣
. The corresponding attribute test value

is determined as the average of the means x+
j and x−

j (Potts & Sammut, 2005).

Next, the probability α, in which |t| > T , is retrieved from the Student’s t distribution

and compared to a predefined threshold αsplit, in order to check whether the proposed split

is meaningful. Additionally, the growth of the tree is limited by estimating the contribution

of the split to the overall tree accuracy by calculating (Potts & Sammut, 2005):

δ =
1

s2root

(

RSS

N − d
−

RSSL +RSSR

NL +NR − d

)

. (2.13)

Here L and R refer to the left (xij ≤ test value) and right (xij > test value) child

node respectively, RSS is the residual sum of squares, s2root is the standard deviance of the

dependent variable calculated based on all cases and d is the number of dimensions. This

value is also put against a user-defined threshold δsplit to allow the algorithm to split the

node, only if the contribution is large enough (Potts & Sammut, 2005). Besides this rule,

the size of the tree can be influenced by only allowing the algorithm to split a node when

this node contains a minimum number of instances.

Yet, in the current configuration of the algorithm, the regression tree is fitted off-line,

which implies that the algorithm is not able to handle a continuous stream of data. Therefore,

the regression tree induced by means of the batch regression tree algorithm has to be re-

estimated from time to time. However, in the present research setting the number of instances

rises rapidly, causing both the amount of memory required to store the training instances

and the time required to estimate the regression tree to increase. Furthermore, as the agent

faces a continuously changing environment and preferences, instances gathered a considerable

time in the past may become outdated, obsolete or even invalid. Consequently, aiming at

reducing memory requirements, speeding up the regression tree induction and mastering the

accuracy of the tree model, a sliding window approach is considered, in which only a fixed

number of the most recently encountered instances are used each time the tree is re-fitted.

The parameters, frequency of re-estimation f (or window shift) and the window size n

(which represents the number of training instances used for each re-estimation), ought to be

considered very carefully. The parameter f here indicates the number of training instances

24

2.3. FUNCTION APPROXIMATION

gathered between two consecutive re-fits. First, re-fitting the regression tree more frequently

(low f) increases the ability to react to changes underlying the data stream, but increases the

burden of updating the model tree. On the other hand, a low frequency of re-estimation (high

f) decreases both the total time required to keep the model up to date and the responsiveness

of the model to changes in the data. Besides, using more data to train the model tree (high

n) increases the accuracy and enables the regression tree to level out temporary fluctuations.

However, using a large number of training instances implies including instances gathered a

long time ago, restricting the responsiveness of the algorithm to structural changes because

the information recorded by these “old” instances may be outdated and in this way could

interfere with the prediction of recent trends. This issue can be tackled by decreasing the

importance of older instances by assigning weights to the instances, based on their age. This

option is not further taken into account. Furthermore, as the number of instances used to

estimate the tree increases, both the memory capacity required to store a large amount of

instances and the computational time required to estimate a regression tree grow.

Incremental Regression Tree Algorithm

The drawbacks of the off-line batch induction algorithms require looking for an on-line tree

induction algorithm as described in Potts & Sammut (2005). The main concepts of the

incremental learning process are similar to the batch regression tree approach discussed in

the previous paragraph. In essence, these algorithms differ in the fact that the incremental

algorithm starts with an empty tree and updates the model tree on each encounter with a

new instance. To this end, the incremental approach updates the statistics in each node of

the tree that is affected by the training instance into consideration, instead of calculating

these statistics based on a subset of the training set as is the case for the batch algorithm.

If necessary, the incremental algorithm updates the existing tree by either creating an ad-

ditional split or pruning a number of existing leaves (Potts & Sammut, 2005). The latter

action allows the algorithm to correct previously defined splits which are no longer significant

based on the most recently observed instances by comparing the α-value of the node to a

predefined threshold level αprune. After updating the model tree, the training instance can

be discarded. As a result, it is not required to store the training instances recorded during

25

CHAPTER 2. METHODOLOGY

the learning process. Consequently, the incremental approach saves memory space.

In addition to this advantage, an intrinsic feature of the incremental algorithm consists of

the ability of handling a continuous stream of data without having to re-train the model tree

from scratch when a new instance becomes available. However, the gradual updating of the

tree implies that the sequence in which the training instances are processed influences the

structure of the regression tree to a large extent. This causes an incremental model tree to

reveal a different structure from a batch regression tree, which is fitted on the same dataset

but drawn up examining a large number of training instances at once.

Batch/Incremental Regression Tree Algorithm

In order to tackle the computational limitations of the batch algorithm and to reduce

the sequence effects of the incremental algorithm, the current research proposes a hybrid

batch/incremental model tree induction method combining both algorithms. To start with,

the batch tree induction algorithm is applied to fit a model tree based on the first n instances

collected. Thereafter, the resulting tree is updated on-line by applying the incremental in-

duction algorithm when a new instance enters the system. The algorithm re-estimates the

tree from scratch, based on the n most recent instances at a rate f . This approach allows

the algorithm to formulate an initial tree, which already captures the most significant splits

deduced from the data available for the batch algorithm. The existence of such structure

facilitates the updating process within the incremental learning process. Because of this,

it is assumed that the batch/incremental algorithm performs better than the incremental

approach.

This hybrid technique is comparable to the batch algorithm, because it requires storing

the nmost recently gathered instances as well. Yet the incremental updating process weakens

the influence of the frequency f of re-fitting the model tree on the accuracy of the resulting

model, while decreasing the computational burden.

To reduce the computational burden even more, an additional rule is introduced, indicat-

ing whether or not the resulting model improves significantly. Consequently, the algorithm

can decide whether these repeated batch re-fitting actions are required and, if not, that it

can safely switch to incremental updating. However, this rule also indicates when the es-

26

2.3. FUNCTION APPROXIMATION

timated accuracy of the model drops due to persistent changes in the data. In this case,

the algorithm can decide to restart the recurring batch re-fitting. This rule is founded on a

traditional statistical one-tailed t-test, which verifies whether the average of the SE (squared

errors) of the nrecent recent training instances (µrecent) differs significantly from the average

error of the preceding nprevious training instances (µprevious). Each SE-value is calculated

when the current training instance occurs and before the tree model is updated according to

this instance. For the stopping rule, the statistical hypotheses can be formulated as follows:

H0 : µrecent = µprevious,

H1 : µrecent < µprevious. (2.14)

The batch re-fitting continues as long as H0 is rejected, as this signifies that the average

SE still decreases and there is still potential to improve the tree model. The hypotheses of

the starting rule look as follows:

H0 : µrecent = µprevious,

H1 : µrecent > µprevious. (2.15)

The algorithm re-starts the batch re-fitting when H0 can be rejected. In this case, reject-

ingH0 denotes that the average of SE increases, and that the accuracy of the model decreases,

probably due to changes in the data. The number of instances considered when calculating

µrecent and µprevious (in this case nrecent and nprevious respectively), as well as the prob-

ability of accepting/rejecting these hypothesis (in this case αbatchstop and αbatchstart), are

passed on to the algorithm a priori.

As is the case for the incremental approach, the batch/incremental algorithm can discard

the training instances after the batch training and the subsequent updating of the model tree.

The major advantage of this on-line approach with regard to the batch algorithm consists

of the decrease in the computational time required to update the tree compared to the time

required to fit the model tree from scratch every time a new instance arrives. The next

27

CHAPTER 2. METHODOLOGY

section empirically evaluates the described batch, incremental and the batch/incremental

induction methods.

Case Study

Remember that the tree induction approach required in the current research has to be able

to: (1) handle a numeric dependent variable, (2) be responsive to structural changes, (3)

handle a continuous stream of data, and (4) handle a large amount of data.

The three model tree induction techniques proposed are particularly suited to deal with

a numeric dependent variable. Furthermore, the previous paragraphs also showed that the

nature of these algorithms enable processing a large and continuous stream of data. The

second requirement refers to the term “concept drift”, which causes a model to become

outdated as the data underlying the model tend to change. In this context, the following

dimensions affect the responsiveness of the modelling algorithm: (1) the noise present in the

training data, (2) the speed of the drift, (3) the extent of the drift, and (4) the presence of

additional irrelevant attributes (Widmer & Kubat, 1996).

To assess the ability of the presented model tree algorithms to cope with these aspects,

a case study is used, which consists of a synthetic problem using drifting hyperplanes as

described in Kolter & Maloof (2005). Even though this synthetic problem is not directly

related to the current research area, it is particularly suited to demonstrate the impact of

these aspects on the responsiveness of the algorithms, because it enables the user to control

for noise, the speed and extent of the drift and the presence of irrelevant attributes.

The training instances consist of ten numeric variables xi, which are uniformly distributed

in the range [0, 1]. The data include four different concepts with respect to the regressor

y, which equals (xj + xj+1 + xj+2)/3, where j is 1 for the first, 2 for the second, 4 for the

third concept and 7 for the last concept. Each concept lasts for τ time steps. Furthermore,

a parameter ν is introduced to account for the speed of the concept drift and denotes the

number time steps required for the new concept to become effective.

During this transition period (t > τ − ν) the regressor y corresponds to a weighted

average of y according to the old concept Ci and the new one Ci+1: y = [(τ − t)/ν] yCi

+ [(t− (τ − ν))/ν] yCi+1 . Large values of ν indicate a rather gradual drift, while a value of

28

2.3. FUNCTION APPROXIMATION

ν close to zero signifies an abrupt concept drift or so-called concept shift (Widmer & Kubat,

1996), as displayed in figure 2.1. The presence of noise is introduced into the synthetic

example by adding a random variate in the interval [−ε,+ε] to y (Kolter & Maloof, 2005).

In each concept, all of the ten attributes, also the ones which are considered to be irrelevant

to the prevailing concept, are included in the training instances. To measure the predictive

power of the trees, a test set of 100 samples is generated. At each time step, for each of

these test samples the actual value according to the prevailing concept is compared to the

prediction deduced from the tree by means of the root mean squared error (RMSE). The

accuracy of the prediction is expressed as the average of the RMSE-values of these 100 test

instances.

29

C
H
A
P
T
E
R

2
.

M
E
T
H
O
D
O
L
O
G
Y

Gradual concept drift Concept shift

Time

W
ei

g
h

t
o

f
co

n
ce

p
t

τ − ν τ

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Concept 1
Concept 2

Time

W
ei

g
h

t
o

f
co

n
ce

p
t

τ

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Concept 1
Concept 2

Figure 2.1: Weight of concept

3
0

2.3. FUNCTION APPROXIMATION

The parameter τ is fixed to 1, 000. Four scenarios are examined based on the values of

ν and ε. The value of the speed of the drift ν is set to 500 to simulate a gradual drift and

to 0 to simulate an abrupt concept shift. The parameter ε equals 0.01 when studying the

influence of noise, and 0.00 when disregarding noise. Furthermore, the impact of the rate

of re-fitting the tree f and number of instances used to execute this re-estimation n on the

predictive accuracy of the tree, is analysed by varying these parameters. An overview of the

remaining parameter settings is summarized in table 2.4.

Parameter Value(s)

Standard model tree settings
Significance possible split αsplit 0.00001
Significance actual split αprune 0.1
Contribution possible split δsplit 0.0005
Minimum number of instances in node 5

On-line model tree settings
Number of instances used for re-training n 100/250/500
Re-training frequency f 1/250/100/500

Batch/Incremental tree settings
Significance starting rule αbatchstart 0.01
Significance stopping rule αbatchstop 0.05
Number of most recent instances nrecent 100
Number of previous instances nprevious 100

Simulation settings
Duration of concept τ 1000
Speed of drift ν 0/500
Noise ε 0/0.01

Table 2.4: Parameter settings for model tree induction algorithms

The results are illustrated in figures 2.2 to 2.5 and tables 2.5 and 2.6 for the on-line batch

induction algorithm, and figures 2.6 to 2.9 and tables 2.7 and 2.8 for the batch/incremental

induction approach. The columns of these tables labelled “Timex” estimate the time re-

quired for the algorithm to converge to the best attainable result after the concept x is fully

introduced, which is measured by the range of lowest RMSE. The average RMSE in the

tables represents the average RMSE within this area of convergence.

In case of the batch algorithm, it is shown that it is necessary to re-train the model tree

more frequently in order to maintain a high accuracy (i.e. low average RMSE). Concerning

the number of training instances used to re-train, the analysis indicates that a low number

31

CHAPTER 2. METHODOLOGY

of training instances cannot guarantee a high predictive accuracy (e.g. n = 100). Yet, a high

number of training instances impedes the responsiveness of the model to changes underlying

the data (e.g. n = 500). With respect to the batch/incremental algorithm, the preceding

findings are also valid, although one can easily infer from the graphs that the impact of

these parameters is less pronounced compared to the case of the batch approach. As can

be derived from the graphs, the speed of the concept drift does influence the shape of the

average RMSE curve. However, it does not impact the validity of the conclusions. Finally,

these figures reveal that the presence of noise does not affect the accuracy obtained by the

algorithms.

32

2
.3
.

F
U
N
C
T
IO

N
A
P
P
R
O
X
IM

A
T
IO

N

No noise/Gradual concept drift No noise/Concept shift

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

f = 500 f = 250 f = 100 f = 1

Time step
A

ve
ra

g
e

R
M

S
E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

f = 500 f = 250 f = 100 f = 1

Figure 2.2: Impact of parameter f on accuracy of the batch induction algorithm (n = 250) estimated on data excluding noise

3
3

C
H
A
P
T
E
R

2
.

M
E
T
H
O
D
O
L
O
G
Y

Noise/Gradual concept drift Noise/Concept shift

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

f = 500 f = 250 f = 100 f = 1

Time step
A

ve
ra

g
e

R
M

S
E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

f = 500 f = 250 f = 100 f = 1

Figure 2.3: Impact of parameter f on accuracy of the batch induction algorithm (n = 250) estimated on data including noise

3
4

2
.3
.

F
U
N
C
T
IO

N
A
P
P
R
O
X
IM

A
T
IO

N

No noise/Gradual concept drift No noise/Concept shift

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

n = 500 n = 250 n = 100

Time step
A

ve
ra

g
e

R
M

S
E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

n = 500 n = 250 n = 100

Figure 2.4: Impact of parameter n on accuracy of the batch induction algorithm (f = 1) estimated on data excluding noise

3
5

C
H
A
P
T
E
R

2
.

M
E
T
H
O
D
O
L
O
G
Y

Noise/Gradual concept drift Noise/Concept shift

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

n = 500 n = 250 n = 100

Time step
A

ve
ra

g
e

R
M

S
E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

n = 500 n = 250 n = 100

Figure 2.5: Impact of parameter n on accuracy of the batch induction algorithm (f = 1) estimated on data including noise

3
6

2
.3
.

F
U
N
C
T
IO

N
A
P
P
R
O
X
IM

A
T
IO

N

No noise/Gradual concept drift No noise/Concept shift

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

f = 500 f = 250 f = 100 f = 1

Time step
A

ve
ra

g
e

R
M

S
E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

f = 500 f = 250 f = 100 f = 1

Figure 2.6: Impact of parameter f on accuracy of the batch/incremental induction algorithm (n = 250) estimated on data excluding noise

3
7

C
H
A
P
T
E
R

2
.

M
E
T
H
O
D
O
L
O
G
Y

Noise/Gradual concept drift Noise/Concept shift

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

f = 500 f = 250 f = 100 f = 1

Time step
A

ve
ra

g
e

R
M

S
E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

f = 500 f = 250 f = 100 f = 1

Figure 2.7: Impact of parameter f on accuracy of the batch/incremental induction algorithm (n = 250) estimated on data including noise

3
8

2
.3
.

F
U
N
C
T
IO

N
A
P
P
R
O
X
IM

A
T
IO

N

No noise/Gradual concept drift No noise/Concept shift

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

n = 500 n = 250 n = 100

Time step
A

ve
ra

g
e

R
M

S
E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

n = 500 n = 250 n = 100

Figure 2.8: Impact of parameter n on accuracy of the batch/incremental induction algorithm (f = 100) estimated on data excluding noise

3
9

C
H
A
P
T
E
R

2
.

M
E
T
H
O
D
O
L
O
G
Y

Noise/Gradual concept drift Noise/Concept shift

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

n = 500 n = 250 n = 100

Time step
A

ve
ra

g
e

R
M

S
E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

n = 500 n = 250 n = 100

Figure 2.9: Impact of parameter n on accuracy of the batch/incremental induction algorithm (f = 100) estimated on data including noise

4
0

2
.3
.

F
U
N
C
T
IO

N
A
P
P
R
O
X
IM

A
T
IO

N

f Time1 Avg RMSE1 Time2 Avg RMSE2 Time3 Avg RMSE3 Time4 Avg RMSE4

No noise/Gradual concept drift
500 500 0.00863 1500 0.00642 2001 0.01214 3500 0.00877
250 250 0.00774 1001 0.00697 2250 0.00756 3500 0.00797
100 200 0.00770 1100 0.00742 2100 0.00699 3400 0.00786
1 148 0.00698 1001 0.00693 2111 0.00674 3234 0.00712

No noise/Concept shift
500 500 0.00535 1500 0.00699 2500 0.00687 3500 0.00628
250 250 0.00645 1250 0.00635 2250 0.00698 3250 0.00691
100 200 0.00781 1400 0.00634 2300 0.00598 3200 0.00870
1 132 0.00674 1237 0.00721 2204 0.00854 3209 0.00581

Noise/Gradual concept drift
500 500 0.00784 1001 0.00773 2001 0.00955 3500 0.00674
250 250 0.00833 1250 0.00701 2001 0.00853 3262 0.00580
100 200 0.00858 1100 0.00685 2001 0.00684 3200 0.00629
1 143 0.00801 1011 0.00643 2053 0.00797 3134 0.00720

Noise/Concept shift
500 500 0.00677 1500 0.00804 2500 0.00589 3500 0.00850
250 250 0.00658 1250 0.00789 2250 0.00766 3250 0.00846
100 200 0.00735 1300 0.00719 2300 0.00696 3200 0.00759
1 94 0.00733 1207 0.00680 2185 0.00662 3197 0.00836

Table 2.5: Impact of parameter f on accuracy of the batch induction algorithm (n = 250)

4
1

C
H
A
P
T
E
R

2
.

M
E
T
H
O
D
O
L
O
G
Y

n Time1 Avg RMSE1 Time2 Avg RMSE2 Time3 Avg RMSE3 Time4 Avg RMSE4

No noise/Gradual concept drift
500 161 0.00563 1119 0.00603 2115 0.00662 3242 0.00505
250 148 0.00698 1001 0.00693 2111 0.00674 3234 0.00712
100 140 0.01410 1031 0.01454 2022 0.01452 3001 0.01627

No noise/Concept shift
500 130 0.00630 1337 0.00584 2307 0.00653 3332 0.00618
250 132 0.00674 1237 0.00721 2204 0.00854 3209 0.00581
100 177 0.01577 1091 0.01881 2083 0.01733 3167 0.01601

Noise/Gradual concept drift
500 239 0.00624 1044 0.00588 2079 0.00574 3225 0.00562
250 143 0.00801 1011 0.00643 2053 0.00797 3134 0.00720
100 187 0.01491 1011 0.01581 2017 0.01398 3001 0.01655

Noise/Concept shift
500 178 0.00573 1331 0.00681 2342 0.00559 3316 0.00666
250 94 0.00733 1207 0.00680 2185 0.00662 3197 0.00836
100 186 0.01737 1162 0.01450 2134 0.01731 3087 0.01754

Table 2.6: Impact of parameter n on accuracy of the batch induction algorithm (f = 1)

4
2

2
.3
.

F
U
N
C
T
IO

N
A
P
P
R
O
X
IM

A
T
IO

N

f Time1 Avg RMSE1 Time2 Avg RMSE2 Time3 Avg RMSE3 Time4 Avg RMSE4

No noise/Gradual concept drift
500 277 0.00772 1229 0.00704 2036 0.00800 3444 0.00738
250 266 0.00797 1423 0.00661 2054 0.01066 3160 0.00729
100 200 0.00805 1100 0.00879 2100 0.00787 3100 0.00877
1 148 0.00698 1001 0.00693 2111 0.00674 3234 0.00712

No noise/Concept shift
500 373 0.00681 1238 0.00632 2268 0.00807 3622 0.01052
250 227 0.00707 1342 0.00831 2433 0.00909 3406 0.00726
100 200 0.00891 1202 0.00651 2273 0.00629 3277 0.00834
1 132 0.00674 1237 0.00721 2204 0.00854 3209 0.00581

Noise/Gradual concept drift
500 247 0.00733 1138 0.00781 2500 0.00582 3130 0.00928
250 223 0.00665 1047 0.01056 2233 0.00844 3378 0.01064
100 200 0.00876 1100 0.00679 2001 0.00700 3100 0.00784
1 143 0.00801 1011 0.00643 2053 0.00797 3134 0.00720

Noise/Concept shift
500 183 0.00664 1485 0.00925 2383 0.01019 3629 0.01067
250 250 0.00592 1269 0.00634 2229 0.00830 3579 0.00992
100 200 0.00745 1300 0.00762 2300 0.00708 3200 0.00798
1 94 0.00733 1207 0.00680 2185 0.00662 3197 0.00836

Table 2.7: Impact of parameter f on accuracy of the batch/incremental induction algorithm (n = 250)

4
3

C
H
A
P
T
E
R

2
.

M
E
T
H
O
D
O
L
O
G
Y

n Time1 Avg RMSE1 Time2 Avg RMSE2 Time3 Avg RMSE3 Time4 Avg RMSE4

No noise/Gradual concept drift
500 200 0.00626 1100 0.00689 2100 0.00719 3200 0.00618
250 200 0.00805 1100 0.00879 2100 0.00787 3100 0.00877
100 169 0.01334 1200 0.01394 2532 0.00978 3092 0.01824

No noise/Concept shift
500 300 0.00545 1400 0.00588 2400 0.00609 3300 0.00619
250 200 0.00891 1202 0.00651 2273 0.00629 3277 0.00834
100 186 0.01714 1390 0.01684 2185 0.01766 3570 0.01596

Noise/Gradual concept drift
500 300 0.00652 1100 0.00554 2200 0.00542 3200 0.00600
250 200 0.00876 1100 0.00679 2001 0.00700 3100 0.00784
100 400 0.01672 1170 0.01433 2128 0.01407 3091 0.02141

Noise/Concept shift
500 200 0.00638 1400 0.00583 2300 0.00687 3400 0.00601
250 200 0.00745 1300 0.00762 2300 0.00708 3200 0.00798
100 200 0.01462 1800 0.00825 2100 0.01650 3200 0.01741

Table 2.8: Impact of parameter n on accuracy of the batch/incremental induction algorithm (f = 100)

4
4

2.3. FUNCTION APPROXIMATION

Figures 2.10 and 2.11 and table 2.9 join the results of the batch (n = 250 and f = 1), the

batch/ incremental (n = 250 and f = 100) and incremental methods, denoted B, B/I and I

respectively. The graph also includes the predictive performance of a baseline model (denoted

base), of which the prediction at a certain time step equals the average value of the regressor

variable of the n preceding training instances. In order to enable a fair comparison, n equals

250 as well. The graph illustrates well that the accuracy achieved by the batch/incremental

tree induction algorithm approaches the accuracy of the batch tree induction algorithm very

closely. However, to reach this level of predictive performance, the latter technique is far

more demanding regarding the computational requirements than the former, as the batch

model tree has to be re-fitted every time while the batch/incremental model tree is only re-

estimated from scratch at most every 100 instances and updated in-between. Furthermore,

the graph shows that both approaches outperform the baseline model. Finally, figures 2.10

and 2.11 and table 2.9 also prove that the purely incremental approach performs well when

no changes in the data occur. Yet, when concept drift does take place, the resulting tree is

not able to adapt accordingly, causing the accuracy to drop considerably, and even causing

the tree to perform worse than the baseline model.

45

C
H
A
P
T
E
R

2
.

M
E
T
H
O
D
O
L
O
G
Y

No noise/Gradual concept drift No noise/Concept shift

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

Base B I B/I

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

Base B I B/I

Figure 2.10: Comparison of tree induction algorithms (n = 250 and f = 1 for the on-line batch algorithm and f = 100 for the batch/incremental
algorithm) estimated based on data excluding noise

4
6

2
.3
.

F
U
N
C
T
IO

N
A
P
P
R
O
X
IM

A
T
IO

N

Noise/Gradual concept drift Noise/Concept shift

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

Base B I B/I

Time step

A
ve

ra
g

e
R

M
S

E

0 500 1000 1500 2000 2500 3000 3500 4000

0.
00

0.
02

0.
04

0.
06

Base B I B/I

Figure 2.11: Comparison of tree induction algorithms (n = 250 and f = 1 for the on-line batch algorithm and f = 100 for the batch/incremental
algorithm) estimated based on data including noise

4
7

C
H
A
P
T
E
R

2
.

M
E
T
H
O
D
O
L
O
G
Y

Alg. Time1 Avg RMSE1 Time2 Avg RMSE2 Time3 Avg RMSE3 Time4 Avg RMSE4

No noise/Gradual concept drift
BL 658 0.02550 1593 0.02162 2649 0.01776 3200 0.02597
B 148 0.00698 1001 0.00693 2111 0.00674 3234 0.00712
B/I 200 0.00805 1100 0.00879 2100 0.00787 3100 0.00877
I 222 0.00780 1356 0.00601 2601 0.01605 3700 0.02457

No noise/Concept shift
BL 9 0.02903 1162 0.03282 2001 0.03348 3114 0.03104
B 132 0.00674 1237 0.00721 2204 0.00854 3209 0.00581
B/I 200 0.00891 1202 0.00651 2273 0.00629 3277 0.00834
I 302 0.00668 1796 0.01035 2564 0.03179 3706 0.03703

Noise/Gradual concept drift
BL 603 0.02316 642 0.01962 618 0.01504 42 0.02502
B 143 0.00801 1011 0.00643 2053 0.00797 3134 0.00720
B/I 200 0.00876 1100 0.00679 2001 0.00700 3100 0.00784
I 319 0.00698 1307 0.00640 2593 0.01387 3107 0.02717

Noise/Concept shift
BL 10 0.02603 1001 0.02890 2007 0.02791 3059 0.03009
B 94 0.00733 1207 0.00680 2185 0.00662 3197 0.00836
B/I 200 0.00745 1300 0.00762 2300 0.00708 3200 0.00798
I 278 0.00644 1664 0.00826 2495 0.02487 3465 0.03411

Table 2.9: Comparison of tree induction algorithms (n = 250 and f = 1 for the on-line batch algorithm and f = 100 for the batch/incremental
algorithm)

4
8

2.4. MULTI-ACTOR REINFORCEMENT LEARNING

It can thus be concluded that the batch/incremental algorithm performs well - even in the

presence of noise or after the introduction of a new concept -, while not being computationally

or memory-wise as demanding as the batch algorithm. As a result, the batch/incremental

technique is incorporated as the function approximator in the reinforcement learning algo-

rithm.

2.4 Multi-Actor Reinforcement Learning

In some reinforcement learning problems, an agent can be contemplated as a multi-actor

system, in which each action of this agent can in fact be determined by a number of sub-

actions (Zennir & Couturier, 2005). For instance in the current research area, an agent

corresponds to a household member who decides which activity he wants to execute at which

location, given a certain state of the environment. Assume that such agent can select from

four activities (e.g. in-home activities, out-of-home work, maintenance or leisure activities)

and from four locations (e.g. home, location 1, 2 or 3). Instead of considering a joint decision

fixing the activity and the location simultaneously, this decision can be divided into its two

compounding sub-decisions, determining the activity and the location successively. In the

former case of one global action, the agent faces sixteen feasible actions (= 4 activities ×

4 locations), while in the latter case, the action set in each component includes only four

feasible actions.

Clearly, the curse of dimensionality also leaves its mark here. After all, in the traditional

reinforcement learning system the number of feasible actions increases rapidly with the num-

ber of alternatives for each sub-decision, which has repercussions on the computational and

memory requirements of the learning process because all of these alternatives have to be

explored. However in the multi-actor reinforcement setting, an increase in the number of

alternatives for one sub-decision does not impact the size of the action sets of the remaining

sub-decisions. Consequently, if a reinforcement learning problem, that is suitable for a multi-

actor setting, can be reformulated so that the global reward equals the sum of the reward of

these sub-actions, it is advantageous to design a multi-actor reinforcement learning system,

as is substantiated in the remainder of this section.

In a multi-actor reinforcement learning system, an agent is composed of a number of

49

CHAPTER 2. METHODOLOGY

components - or also called modules or actors -, corresponding to a particular subaction ai

of the composite action a and incorporating an autonomous reinforcement learning system.

This idea is visualized in figure 2.12 for the example described above. The learning process

of a multi-actor agent is similar to that of a traditional reinforcement learning agent. First,

the multi-actor agent observes the state of the environment. Next, the agent calls each of

the action modules successively to determine the sub-actions, which jointly define the global

action. This global action is communicated to the environment and executed. Subsequently,

the agent receives a global reward from the environment, which serves as input to update

the Q(s, a)-values within each of the modules.

A

G

E

N

T

Choose

location

Choose

activity

ACTION

E

N

V

I

R

O

N

M

E

N

T

MODULE 1

MODULE 2

STATE

REWARD

ACTION

Figure 2.12: Multi-actor reinforcement learning system

Additionally, interactions between the components in the multi-actor reinforcement learn-

ing system may exist, which influence the outcome of the joint action (Zennir & Couturier,

2005). This is also the case in the current research area, in which the components founding

activity-travel behaviour are supposed to be interrelated, as pointed out by Gärling et al.

(1997) and Joh et al. (2002). To illustrate this for the example outlined above, assume a

rather simple, tabular reward function as shown in table 2.10, and an additive effect of the

rewards received for each of the sub-actions.

50

2
.4
.

M
U
L
T
I-A

C
T
O
R

R
E
IN

F
O
R
C
E
M
E
N
T

L
E
A
R
N
IN

G

Composite action id Activity Location Reward activity Additional reward location

1 In-home activities Home 3 5
2 Location 1 0
3 Location 2 0
4 Location 3 0

5 Out-of-home work Home 4 0
6 Location 1 5
7 Location 2 4
8 Location 3 1

9 Out-of-home maintenance Home 1 0
10 Location 1 6
11 Location 2 0
12 Location 3 4

13 Out-of-home leisure Home 2 0
14 Location 1 1
15 Location 2 1
16 Location 3 8

Table 2.10: Rewards assigned to choice of activity and location

5
1

CHAPTER 2. METHODOLOGY

The optimal action disregarding interaction between the modules is composed of the

sub-actions which maximise the local reward of each module individually. Taking a close

look at the reward table, one can easily infer that the global optimal action disregarding

interaction thus consists of working out-of-home - generating a reward of 4 for the activity

module - at location 1 - yielding a reward of 5 for the location module. The total reward of

this composite action (labelled composite action 6) is equal to 9 (=4+5). Yet, if the additive

effect of location is accounted for when deciding on the activity to perform, the optimal

joint action includes an out-of-home leisure activity - creating a reward of 2 for the activity

module - at location 3 - giving a reward of 8 for the location module. In this case, the

total reward of the system equals 10 (=2+8), which exceeds the optimal solution without

considering interaction. This global optimal action is referred to as composite action 16.

In order to take these interactions into account and to enable the system to reach

the global optimal solution, concepts from distributed reinforcement learning are borrowed

(Littman & Boyan, 1993). In particular, experiences on individual rewards given the actions

of preceding modules are shared between the modules. The learning scheme in figure 2.13

illustrates the difference between traditional reinforcement learning and the proposed multi-

actor reinforcement learning (denoted traditional RIL and multi-actor RIL respectively).

When selecting a sub-action a(i), module M (i) communicates this decision to module

M (i+1) and queries the latter on the best value he expects to benefit given the decision

of module M (i), i.e. Q̂
(i+1)
t (s, a(i+1)|a(i)). This way, module M (i) incorporates the effect

of selecting action a(i) on the action values of the subsequent modules when updating its

Q̂(i)-values (cf. methodology described in Littman & Boyan (1993)).

For this purpose, the Q̂(i)-value of module M (i) is updated according to the following

rule, as inspired on Littman & Boyan (1993):

Q̂
(i)
t+1(s, a

(i)) ← [1− αt+1(s, a)] Q̂
(i)
t (s, a(i))

+αt+1(s, a)

{

r(i)(s, a(i)) + max
a(i+1)

[

Q̂
(i+1)
t (s, a(i+1)|a(i))

]

}

. (2.16)

This formula differs from the updating rule 2.8 of the original Q-learning in the value of

52

2.4. MULTI-ACTOR REINFORCEMENT LEARNING

Traditional RIL Multi-actor RIL

Module i

S
T
A
T
E

S
U
B
-A
C
T
IO
N

S
U
B
-R
E
W
A
R
D

Module i+1

S
T
A
T
E

S
U
B
-R
E
W
A
R
D

S
U
B
-A
C
T
IO
N

S
T
A
T
E

R
E
W
A
R
D

A
C
T
IO
N

Module i

S
T
A
T
E

S
U
B
-A
C
T
IO
N

S
U
B
-R
E
W
A
R
D

Module i+1

S
T
A
T
E

S
U
B
-R
E
W
A
R
D

Sub-action

Best Q-value

S
U
B
-A
C
T
IO
N

S
T
A
T
E

R
E
W
A
R
D

A
C
T
IO
N

Figure 2.13: Learning schemes

the “new” estimate r(i)(s, a(i))+ max
a(i+1)

[

Q̂
(i+1)
t (s, a(i+1)|a(i))

]

, which is now composed of the

immediate reward r(i)(s, a(i)) of action a(i) in state s and the estimate of the best value that

module M (i+1) can attain given state s and action a(i), i.e. Q̂
∗(i+1)
t (s, a(i+1)|a(i)). Table 2.11

outlines the learning process in the proposed multi-actor reinforcement learning scheme.

Initialize each entry Q̂(i)(s, a) in the Q(i)-table of module M (i).
Repeat:

Observe state s.

For each module M (i):

Select sub-action a(i).
Execute composite action a.
Observe next state s′.

For each module M (i):

Observe sub-reward r(i)(s, a(i)).

Query Q̂
(i+1)
t -value of module M (i+1) given action a(i).

Calculate Q̂
(i)
t+1(s, a

(i)) based on (s, a(i), r(s, a(i)))-triplet
according to Equation 2.16.

Update Q(i)-table.

Table 2.11: Multi-actor reinforcement learning process

To assess the applicability of this multi-actor reinforcement learning approach in the

53

CHAPTER 2. METHODOLOGY

present study area, the example sketched above is implemented. The label of the optimal

composite action as well as the evolution of the total value of these actions generated in the

course of 100 learning episodes by the traditional modular and multi-actor reinforcement

learning approach (labelled traditional RIL and multi-actor RIL respectively), are presented

in figure 2.14. This figure reveals that both algorithms are able to learn a global optimal

action after an initial learning phase, during which the optimal composite action is selected

randomly. However, the optimal solution generated by the multi-actor reinforcement learn-

ing approach converges to the global optimal action (action value of 10), while the traditional

modular reinforcement learning algorithm converges to the suboptimal action (action value

of 9). The example presented here clearly demonstrates that the proposed multi-actor rein-

forcement learning approach enables the system to reach a higher global solution due to the

incorporation of interactions between the decision units.

54

2
.4
.

M
U
L
T
I-A

C
T
O
R

R
E
IN

F
O
R
C
E
M
E
N
T

L
E
A
R
N
IN

G

Global reward Composite action id

Learning episode

T
o

ta
l r

ew
ar

d

0 20 40 60 80 100

0
2

4
6

8
10

Multi−actor RIL
Traditional RIL

Learning episode

C
o

m
p

o
si

te
 a

ct
io

n
 id

0 20 40 60 80 100
0

2
4

6
8

10
12

14
16

Multi−actor RIL
Traditional RIL

Figure 2.14: Evolution of optimal composite action

5
5

CHAPTER 2. METHODOLOGY

Obviously, the order in which the decisions are selected does not influence the ability

of attaining the global optimal solution. Furthermore, due to multi-actor reinforcement

learning the optimal composite action can also be learnt in a system containing more than

two decision components.

2.5 Related Research Efforts Applying Reinforcement Learning

This section provides a brief summary of research applying reinforcement learning in the

field of activity-based travel-demand modelling. In their attempt to incorporate learning and

adaptation processes in activity-travel behaviour modelling, Arentze & Timmermans (2003)

propose a framework to simulate activity-travel choices, in which the individual agent ex-

plores his environment and learns from past experiences. To meet the curse of dimensionality

of the state and action spaces, the authors introduce two changes to the traditional rein-

forcement learning system. First they also assume a modular framework in which decisions

on subactions are made sequentially instead of simultaneously. Consequently, the decisions

of the subactions preceding the considered subaction are supposed to be given and can thus

be treated as part of the state of this lower-level decision component.

Furthermore, Arentze & Timmermans (2003) implement an incremental CHAID-based

tree mechanism to map state dimensions to state conditions, which maximize the homogene-

ity within these condition groups with respect to the reward values. These state conditions

are then used as feasible state values within the reinforcement learning approach. Each time

new state conditions are created or existing state conditions are joined - i.e. when splitting

or pruning nodes - the Q̂-values are estimated non-incrementally, based on all Q̂(s, a)-values

within the relevant subset. Even though the experiments are conducted on a hypothetical

choice situation which covers route and destination choice, and choice of transport mode, the

results show that this system is able to handle the full complexity of real-world situations.

Additionally, this framework enables to take interactions between choice facets into account.

Finally, the research also lifted the veil on the ability of the system to deal with a dynamic

environment.

Charypar & Nagel (2005) apply reinforcement learning to generate daily activity plans.

To accomplish this goal, Charypar & Nagel (2005) divide a day into a number time slots.

56

2.6. CONCLUSIONS

At every time step, an agent decides whether he wants to extend the duration of the current

activity or whether he wants to execute another activity. Additionally, the authors assume

a fixed sequence in which the activities occur. The action space is thus limited to either stay

(i.e. prolong the duration of the current activity with one time unit) or move (i.e. execute

the next activity of the sequence). The state space is composed of the activity, the starting

time of the activity, and the current activity duration.

Although the framework is tested on a rather small-scale example, the analyses con-

ducted by Charypar & Nagel (2005), prove that Q-learning is particularly suited to include

within-day re-planning caused by unexpected events which interfere with the execution of

the “optimal” activity-travel sequence (e.g. due to traffic congestion), even without explic-

itly modelling rescheduling. After all, during the learning phase the agent learns to behave

optimally, even if he is faced with states which he would never have reached when executing

the “optimal” plan, thanks to exploration of the state space. In other words, Q-learning

enables selecting the best continuation of the plan in every feasible state.

Janssens et al. (2005) extend the time allocation approach introduced by Charypar &

Nagel (2005) by incorporating location choice based on travel time. To this end, travel mode

information is recorded in the fixed sequence as well. These authors also conclude that the

Q-learning technique enables the agent to respond gracefully to unforeseen incidents.

2.6 Conclusions

This chapter supplies an overview of the concepts defining reinforcement learning in general

and Q-learning in particular. This technique provides a solid ground of the modelling frame-

work designed in the present research as it simulates the human way of learning through

trial-and-error interactions with a dynamic environment while not requiring an explicit model

of this environment. Yet, reinforcement learning does entail a number of drawbacks, and, as

a result, restricting its applicable in research areas containing large state-action spaces.

To meet these limitations, the current research proposes to extend the Q-learning frame-

work with a regression tree function approximator to enable generalization of the state-action

spaces. The regression tree induction algorithm founding this function approximation is in-

troduced by Potts & Sammut (2005) and is discussed briefly in the current chapter. Although

57

CHAPTER 2. METHODOLOGY

this regression tree induction algorithm can either be used as a batch or as an incremental

induction algorithm, both variants include some restrictions. Therefore, the present effort

suggests a hybrid batch/incremental version aiming at countering these constraints. A case

study illustrates the added value of this hybrid batch/incremental regression tree induction

algorithm.

Additionally, this chapter examines the ability to incorporate interactions between de-

cision components in the reinforcement learning framework. To this end, multi-actor re-

inforcement learning is introduced. The functioning and applicability of this technique is

demonstrated by means of an example originating from the area of activity-based modelling.

Finally, this chapter reviews related research efforts including reinforcement learning to

model activity-travel behaviour.

58

Chapter 3

Data Pre-processing

3.1 Introduction

Activity-based travel-demand models are generally calibrated based on data observed from

a number of individuals, who are assumed to be representative of the (synthetic) population

the model intends to simulate. As these data originate from individuals, who differ in their

preferences and wants, and who face different opportunities and constraints, the data are

likely to contain very divergent activity-travel sequences with respect to the activity types

included in the individual schedule, the order of the activity episodes, the duration of these

activity episodes, the geographical dispersion of the locations visited, the travel modes used

to reach these locations, etc. Consequently, it is generally accepted that sequences has to

be analysed both in space and time (Joh et al., 2001; 2002; 2007; Kulkarni & McNally,

2001; Kwan, 2000; Pas, 1983; Schlich, 2001; Wilson, 1998a;b; 2001; 2008). This way, it is

possible to identify groups of individuals revealing similar activity-travel patterns and to

attach socio-demographic profiles to each of these groups (Wilson, 1998b).

This chapter first gives a brief description of the available data set. Next, section 3.3.1

introduces the reader to a widely applied technique, denoted sequence alignment method,

which aims at comparing activity patterns while taking the sequential aspect into consid-

eration (Joh et al., 2007; Wilson, 1998a;b; 2001). Yet only a limited number of research

efforts do account for multidimensional sequences including spatial characteristics. There-

fore, section 3.3.2 provides an overview of an extension, described in Wilson (2008), to the

59

CHAPTER 3. DATA PRE-PROCESSING

sequence alignment method, which enables comparing the observed sequences both in space

and time. However, the presented technique entails one major drawback: it is mainly suited

to compare sequences in a small study area. To this end, section 3.3.3 attempts to design

a spatio-temporal dissimilarity measure which enables determining similarities between ge-

ographically dispersed sequences, regardless of their absolute geographical location. Next,

after having analysed the differences in the individual activity-travel sequences based on

the activity type, duration and location, section 3.4.1 aims at identifying groups of individ-

uals displaying similar activity-travel behaviour. Finally, the recorded socio-demographic

attributes are linked to these groups in section 3.4.3 in order to formulate a number of socio-

demographic profiles which can be applied to divide the synthetic population into a number

of subsets matching the groups discerned in the preceding section.

3.2 Data

3.2.1 Data Collection Effort

The data used in this research stem from a project entitled ”An Activity-Based Approach

for Surveying and Modelling Travel Behaviour”, aiming at collecting seven-day activity-

travel diaries recorded from one adult member of 2,500 households across Flanders (Belgium)

(Bellemans et al., 2008; Janssens & Wets, 2005). For each day of the week, an activity-travel

diary records a sequence - sometimes also called an activity schedule - containing all activities

executed on that day along with their location, starting time and duration, travel mode used

to get to the location, travel time and travel party. In the current study, each of these

activities along with their characteristics is referred to as an activity episode. Furthermore,

the terms “sequence” and “patterns” both refer to this ordered assembly of activity episodes,

belonging to one day, and are used interchangeably. The activities used in this research

are classified into thirteen activity categories: grocery shopping (G), non-daily shopping

(N), education (D), social activities (O), leisure (L), bring/get activities (B), touring (T),

working (W), services (V), out-of-home eating (E), sleeping (S), in-home activities (H) and

a remainder category (R).

Beside these activity-travel characteristics, the respondents are asked to fill out an indi-

60

3.2. DATA

vidual and household survey covering socio-demographic variables, such as age, household

composition, income, educational background and work situation. Furthermore, this re-

search analyses the data recorded by means of a GPS-based personal digital assistant. As a

consequence, the collected diaries contain geographical information, of which the importance

emerges in the next section. Nevertheless, the data used in this research embrace only a part

of the gathered individual activity-travel diaries within the project, as the entire dataset is

not available at the time of writing this manuscript due to backlogs in inputting and clean-

ing the gathered data. Additionally, some of the diaries are not included as the data goes

through an extensive data cleaning process in order to assure sufficient quality of the data

constituting the basis of the algorithm described in chapter 4.

3.2.2 Some Descriptive Statistics

The data consist of 594 activity-travel patterns of 280 distinct individuals. Table 3.1 contains

some information on the composition of these sequences. The column titled “%seq” quantifies

the percentage of sequences in which the activity is observed at least once. The total duration

per sequence and the average duration per episode are based only on the sequences which

report at least one episode of the activity type into consideration. The observed sequences

include minimum 3, maximum 17 and on average 4.82 activity episodes. Each of these

patterns contains one sleeping episode preceding the activity sequence and one at the end of

the sequence. In addition, the majority of the sequences (98%) records at least one in-home

activity episode. Together with sleeping, the in-home activities are the only activity type

executed on average more than once per sequence; the average total duration spent on these

two activity categories is by far the highest. Though a note has to be made on the total

duration of the sleeping activity: this total duration includes both the morning sleep episode

and the evening sleep episode and thus actually spans two days, while the total duration of

the non-sleeping activities occur within only one diary day. Both the time spent on each

in-home activity episode and the total duration spent on this activity in the course of one

sequence display a large variation, as is reflected by the standard deviance. 33% patterns

comprise one or more working episode(s). When executed, the working activity is ranked

third when examining the average of the total duration per sequence as well as of the average

61

CHAPTER 3. DATA PRE-PROCESSING

duration per episode. Touring or the remainder activity categories are observed in none of

the sequences.

62

3
.2
.

D
A
T
A

Activity type %seq
episodes per seq Total duration per seq Duration per episode

Min Max Avg. Sd Min Max Avg Sd Min Max Avg Sd

In-home activities 97.98 0 7 1.68 0.91 20 1680 640 320 20 1680 481 353
Working 33.16 0 2 0.38 0.58 10 975 473 144 10 975 436 162
Services 3.87 0 2 0.05 0.24 5 360 98 104 5 360 88 97
Out-of-home eating 8.42 0 3 0.09 0.33 15 300 79 67 15 300 74 67
Grocery shopping 8.42 0 2 0.09 0.29 5 115 30 26 5 115 29 26
Non-daily shopping 6.57 0 1 0.07 0.25 5 290 61 65 5 290 61 65
Education 4.21 0 2 0.05 0.26 50 490 318 147 50 490 266 133
Social activity 12.63 0 2 0.13 0.36 35 770 202 162 32 770 198 164
Leisure 8.59 0 3 0.10 0.33 10 655 191 137 10 655 178 129
Bring/get 11.28 0 5 0.18 0.63 5 205 31 41 5 135 21 30
Touring 0.00 0 0 0.00 0.00 - - - - - - - -
Other 0.00 0 0 0.00 0.00 - - - - - - - -
Sleeping 100.00 2 3 2.01 0.09 435 1482 906 119 218 705 451 57

Table 3.1: Descriptive statistics concerning the activity-travel sequences

6
3

CHAPTER 3. DATA PRE-PROCESSING

Figures 3.1 to 3.4 display the histograms with respect to the socio-demographical data

underlying the activity-travel sequences. Because these figures are self-explanatory, only

the most salient characteristics of these variables are emphasized. The number of working

hours is estimated based on the work schedule and is not deduced from the diary data. This

variable is only calculated for the individuals who work either part time or full time. This

number reaches its highest level around 40 hours, which corresponds to a full time work

schedule which is widely applied in Belgium. The histogram displaying the counts of the

weekdays shows that the data are more or less evenly distributed along the days of the week,

with the largest share of the sequences recorded on Sundays and the smallest on Wednesdays.

64

3
.2
.

D
A
T
A

Age

N
u

m
b

er
 o

f
o

b
se

rv
ed

 c
as

es

0
50

10
0

20 40 60 80

Gender

N
u

m
b

er
 o

f
o

b
se

rv
ed

 c
as

es

0
10

0
20

0
30

0
40

0

male female na

Figure 3.1: Histograms concerning the socio-demographical data: age and gender

6
5

C
H
A
P
T
E
R

3
.

D
A
T
A

P
R
E
-P

R
O
C
E
S
S
IN

G

Marital status

N
u

m
b

er
 o

f
o

b
se

rv
ed

 c
as

es

0
10

0
20

0
30

0
40

0

na not married cohabit married divorced widow(er)

Number of children

N
u

m
b

er
 o

f
o

b
se

rv
ed

 c
as

es

0
50

10
0

15
0

20
0

25
0

0 1 2 3 4

Figure 3.2: Histograms concerning the socio-demographical data: marital status and number of children

6
6

3
.2
.

D
A
T
A

Work schedule

N
u

m
b

er
 o

f
o

b
se

rv
ed

 c
as

es

0
10

0
20

0
30

0

full time part time na

Number of working hours
N

u
m

b
er

 o
f

o
b

se
rv

ed
 c

as
es

0
50

10
0

15
0

20
0

0 20 40 60

Figure 3.3: Histograms concerning the socio-demographical data: work schedule and number of working hours

6
7

C
H
A
P
T
E
R

3
.

D
A
T
A

P
R
E
-P

R
O
C
E
S
S
IN

G

Personal income

N
u

m
b

er
 o

f
o

b
se

rv
ed

 c
as

es

0
50

10
0

15
0

na <750 750−1250 1250−1750 1750−2250 2250−2750 >2750

Day of the week
N

u
m

b
er

 o
f

o
b

se
rv

ed
 c

as
es

0
20

40
60

80
10

0

Mon Tue Wed Thu Fri Sat Sun

Figure 3.4: Histograms concerning the socio-demographical data: income category and day of the week

6
8

3.3. MEASURES OF (DIS)SIMILARITY

3.3 Measures of (Dis)similarity

3.3.1 Sequence Alignment Method

As already pointed out in the introduction to this chapter, activity-travel sequences of in-

dividuals differ in time and space. After all, in their goal to satisfy their diverse needs and

wants, people engage in a number of activities (Chapin, 1974). Yet a number of constraints -

such as capability constraints, coupling constraints and authority constraints, also discussed

in section 1.2 - restrict people’s motivations and opportunities (Hägerstrand, 1970). Con-

sequently, Hägerstrand (1970) argues that time and space are interrelated and have to be

accounted for simultaneously. From this point of view, he recognizes the existence of so-called

space-time prisms which define both the geographical and temporal boundaries of an indi-

vidual’s activity pattern by accounting for the available time budget, the transport system

and perceived choice options, and in which travel enables trading time for distance (Häger-

strand, 1970; Jones, 1979). Bearing this in mind, the observed activity-travel sequences can

be converted to Hägerstrand trajectories, which show for each time step - plotted on the

Z-axis - the geographical position of an individual - determined by the (x, y)-coordinates of

the location and plotted in the (X,Y)-plane. Figure 3.5 illustrates the revealed Hägerstrand

trajectories of a random subset of the data described in section 3.2, which are projected on

a map of the study area (Flanders, Belgium). The time step in this figure is equal to one

minute.

From this perspective, this section intends to reveal space-time dependencies and to

analyse differences in the individual space-time paths. To this end, a technique is introduced

to compare individuals’ activity-travel patterns in space and time. On the one hand, this

method enables identifying groups of individuals revealing similar activity-travel sequences

and linking socio-demographic profiles to these groups (Wilson, 1998b). On the other hand,

this technique can be applied to quantify the fit of predicted activity-travel patterns to

observed ones (Joh, 2004).

Several attempts are formulated to grasp differences or similarities between activity-travel

sequences. Previous analyses often focus on clustering similar daily activity-travel patterns

based on differences in the time and space allocation among subgroups (Kulkarni & McNally,

69

CHAPTER 3. DATA PRE-PROCESSING

Figure 3.5: Hägerstrand trajectories of a subset of the data projected on a map of the study
area

2001; Pas, 1983; Schlich, 2001), while disregarding the relationship between the elements of

the sequence (Wilson, 1998a). However recently, efforts studying the sequences as a whole,

gain importance (Joh et al., 2001; 2002; 2007; Wilson, 1998a;b; 2001; 2008). These researches

are based on a technique originating from the disciplines of computer science and molecular

biology and which is called the sequence alignment or string matching method. This method

is assumed to define a concept of difference and similarity, which captures the complexity of

activity-travel patterns. The goal of the procedure is to equalize (align) two sequences by

means of a minimal number of changes in the sequences as explained in the remainder of

this paragraph (Wilson, 1998a;b). The outcome of this method is a measure of dissimilarity

or distance between two sequences.

For the purpose of explaining the theoretic concept, assume two unidimensional se-

quences, a source S and target sequence T , which have to be aligned. The sequences of

activities displayed in figure 3.6 are used to illustrate the functioning of this method. Both

sequences consist of a number of episodes or elements si (i ∈ [1, N]) and tj (j ∈ [1,M])

where N and M are the length of the sequences S and T respectively.

70

3.3. MEASURES OF (DIS)SIMILARITY

S1 = S H W H S N = 5

S2 = S H W G H S M = 6

T = S H W L H S M = 6

Figure 3.6: Examples of unidimensional sequences

Basically, the sequence alignment method aims at transforming the source sequence into

the target sequence by means of a number of elementary operations. The elementary op-

erations include either indel or substitution. Indel refers to either deleting an element si

from sequence S, - which corresponds to inserting this element si into the sequence T - or

vice versa. In the example where sequence S1 is transformed into sequence T , an activity

episode characterized by activity type “L” has to be inserted at position 4 in sequence S1.

Or the other way round, to transform sequence T into sequence S1, the activity episode

denoted by “L” ought to be deleted from T . Substitution comprises a pair of deletion and

insertion: first an element si is deleted from sequence S, which is followed by inserting the

element tj into the same sequence S. In the example, when aligning sequences S2 and T , the

activity denoted by “G” should be deleted from sequence S2, and an activity characterized

by activity type “L” should be inserted at this position in the sequence S2; the activity “G”

of sequence S2 is thus substituted by an activity “L” to match sequence T .

Each of these elementary operations is assigned a penalty c; the relative size of which

depends on the purpose of the research. The total penalty accumulated to equalize the two

sequences reflects the dissimilarity of the two sequences (Wilson, 1998a;b). In case multiple

alignments are feasible, the alignment inferring the lowest total penalty is selected.

The actual alignment algorithm is designed as follows. First, an empty N ×M matrix is

created. In this matrix, row i corresponds to the element si of sequence S, whereas column

j matches the element tj of sequence T , as is visualized in figure 3.7.

S H W L H S

S
H
W
H
S

Figure 3.7: Empty N ×M matrix for sequence alignment

71

CHAPTER 3. DATA PRE-PROCESSING

The matrix is filled out from left to right and from top to bottom, starting at the top

left corner (i = 1 and j = 1) by means of a recursive matching procedure: the score D(i, j)

for an optimal alignment in cell (i, j) depends on the cost d(si, tj) of the match or mismatch

between the elements si and tj and the optima D(i− 1, j), D(i, j− 1) and D(i− 1, j− 1) (if

these exist), and can be calculated as follows (Wilson, 2008):

D(i, j) = min[D(i− 1, j − 1) + d(si, tj),

D(i− 1, j) + c,

D(i, j − 1) + c]. (3.1)

In the current research area, the cost d(si, tj) of the (mis)match between si and tj is

generally set to 0 if si equals tj and 1 otherwise; and the penalty c is equal to 1 (Wilson,

1998a). Figures 3.8 and 3.9 illustrate how the algorithm calculates the sequence alignment

method for the example sequences S1 and T of figure 3.6, in the course of the alignment

process and at the end of this process respectively. The final cost of the optimal alignment is

equal to the value D(N,M), which indicates the minimal number of elementary operations

required to align the sequences.

S H W L H S

S 0 1 2 3 4 4
H 1 0 1 2 2 3
W 1 1 0
H
S

Figure 3.8: N ×M matrix for sequence alignment in the course of the alignment process

S H W L H S

S 0 1 2 3 4 4
H 1 0 1 2 2 3
W 1 1 0 1 2 2
H 1 1 1 1 1 2
S 0 1 2 2 2 1

Figure 3.9: N ×M matrix for sequence alignment at the end of the alignment process

72

3.3. MEASURES OF (DIS)SIMILARITY

3.3.2 Multidimensional Dissimilarity Measure

This method provides a valuable measure for determining the dissimilarity between two se-

quences of activity episodes because it analyses the whole sequence at once. However, in

some cases it is not sufficient for a number of reasons. First, the traditional sequence align-

ment technique only deals with unidimensional patterns, although in the current research

area, activity-travel sequences are composed of a number of dimensions (e.g. the activity and

the location) which are interrelated (Gärling et al., 1997; Joh et al., 2002). To this end, Joh

et al. (2002) propose a multidimensional sequence alignment method to meet this limitation.

Furthermore, the conventional sequence alignment method is designed in particular to com-

pare sequences containing nominal attributes, such as activity types, but are less suited to

analyse sequences which consist of scale values, such as location characteristics (e.g. (x, y)-

coordinates). Figure 3.10 illustrates such multidimensional sequence. The first dimension

reflects the activity type, whereas the second dimension records the (x, y)-coordinates of the

corresponding activity locations.

S =
S H W H S

(30,40) (30,40) (60,50) (30,40) (30,40)
N = 5

T1 =
S H W H S

(180,60) (180,60) (150,50) (180,60) (180,60)
M = 5

T2 =
S H W H S

(30,40) (30,40) (27.5,35) (30,40) (30,40)
M = 5

Figure 3.10: Examples of multidimensional sequences containing the activity type and (x, y)-
coordinates of the activity location

In order to compare sequences based on both the activity type and location, Wilson (2008)

extends the basic algorithm discussed in the previous paragraph. To this end, he redefines

the unidimensional distance penalty d(si, tj) to a multidimensional distance penalty, which

is equal to the weighted sum of (1) the penalty da(si, tj) of the (mis)match between the

activity component of the ith element of sequence S and the jth element of sequence T on

the one hand and (2) the cost dl(si, tj) of the (mis)match between the corresponding location

components on the other hand. d(si, tj) is now calculated as follows:

73

CHAPTER 3. DATA PRE-PROCESSING

d(si, tj) = wa ∗ da(si, tj) + wl ∗ dl(si, tj). (3.2)

The penalty da(si, tj) of the mismatch of the activity components still equals zero when

the activities are identical and one otherwise. The penalty dl(si, tj) of the mismatch of the

location components are calculated by means of the Euclidean distance between the location

of element si and the location of element tj based on their (x, y)-coordinates (Wilson, 2008):

dl(si, tj) =
√

(xsi − xtj)
2 + (ysi − ytj)

2. (3.3)

However, the range of the penalty costs calculated based on the activity type and the

location, differ arbitrarily, depending on the data. Therefore, the scales of these costs have

to be equalized (Wilson, 2008). For this purpose, Wilson (2008) suggests to use the ratio of

these ranges to attune the costs of these components.

3.3.3 Spatio-Temporal Dissimilarity Measure

Even though this technique is particularly suited to compute similarities of activity-travel

patterns in a small area, such as a city or a region, it is less applicable when comparing

sequences in a large area, such as a country, because the method disregards similarities

within individual activity-travel patterns, which cover different locations and/or are oriented

in different directions (Kwan, 2000). Consider for instance, the three sequences recorded in

figure 3.10 and visualized in figure 3.11. These sequences all contain five activity episodes,

in particular sleep-home-work-home-sleep (S-H-W-H-S). The first sequence is registered by

an individual living in the east, and travelling a distance of approximately 30 kilometres to

work in the west. The second sequence belongs to an individual whose home is located in

the west and whose work location is situated at a distance of more or less 30 kilometres to

the east. Finally, the third sequence is recorded by the first individual’s neighbour, who also

lives in east, but who only travels roughly 5 kilometres to work in the south.

Figure 3.11 now indicates that traditional similarity measures would fail in comparing

these geographically dispersed sequences. After all, based on the dissimilarity measure de-

scribed in the previous paragraph, the first and second sequence proves to be less similar

74

3.3. MEASURES OF (DIS)SIMILARITY

 0 50 100 150 200

0

 5
00

10
00

15
00

 0
 20

 40
 60

 80
100

X

Y

T
im

e

Sequence S
Sequence T1
Sequence T2

Figure 3.11: Hägerstrand trajectories of example sequences of figure 3.10

75

CHAPTER 3. DATA PRE-PROCESSING

than the first and third sequence. However, the only fundamental difference between the

two former sequences is the absolute geographical location of the activity locations, while

the first individual and the latter one should differ more as their activity sequences do not

cover the same area.

These shortcomings can be attributed to two aspects of the method elaborated in the

previous paragraph. First, this method calculates the distances between the locations of

two sequences rather than accounting for the difference in the distances travelled between

the locations within each sequence and for the relative position of these locations within

this sequence. Furthermore, the proposed similarity measure does not capture the fact that

one sequence can be geographically rotated and/or translated with respect to the other one.

Some simplified cases of these geographical transformations, projected on the (X,Y)-plane,

are illustrated in figure 3.12.

Assuming that the sequences depicted in this figure contain the same sequence of activities

(e.g. home-work-shop-leisure) in the same time span, the distance measures between all

sequences should equal zero because the relative positions of the locations within these

patterns and the distances covered in the course of executing this sequence are identical as

well. In this respect, Kwan (2000) proposes to transform or standardize the coordinates of

the locations based on the coordinates of the home and work location. In her analysis the

home location is situated at the origin (0, 0) and the home-work axis is rotated so as to

become the positive X-axis and the corresponding plane to become the home-work plane.

This transformation enables revealing valuable information contained in activity-travel

sequences, as it eliminates the influence of the absolute geographical position of the locations

within a sequence, as well as the effect of the orientation of the sequence on the analysis of

dissimilarities between patterns. Yet, one major drawback of this solution is that a number of

these patterns do not include a working activity, and can thus not be transformed according

to the approach introduced by Kwan (2000).

Given the inadequacy of the existing techniques in comparing geographically dispersed

activity-travel patterns, an improvement of the multidimensional sequence alignment method

introduced above is proposed here. The purpose of this novel technique entails meeting the

limitations of the existing techniques, while being able to account for the multiple dimensions

76

3.3. MEASURES OF (DIS)SIMILARITY

X

Y

Base
Rotated
Translated
Translated & Rotated
Mirrored

Figure 3.12: Sequences: rotated, translated and mirrored

77

CHAPTER 3. DATA PRE-PROCESSING

included in activity-travel sequences. Summarized, the technique first transforms and stan-

dardizes the geographical coordinates to reflect the relative geographical movements within

the sequences. Subsequently, the multidimensional sequence alignment method introduced

by Wilson (2008) is utilized to estimate the dissimilarity between the sequences, considering

both the relative geographical movements within the sequences and the remaining dimensions

which can be categorical, for example the activity type.

The transformation of the geographical coordinates to attributes describing the relative

movements is based on the method described in Vlachos et al. (2004). The authors consider

a sequence S to be a trajectory of (N − 1) movement vectors Vsi , each determined by the

spatial coordinates (xsi−1 , ysi−1) and (xsi , ysi), as shown in Figure 3.13.

S = (0, 0) (0, 1) (1, 0) (1, 1)

V = [(0, 0)(0, 1)] [(0, 1)(1, 0)] [(1, 0)(1, 1)]

V̂ = −π
2

π
4

−π
2

V̂Normalized = −π
4

π
2

−π
4

∥

∥

∥
V̂
∥

∥

∥
= 1 1.4142 1

Figure 3.13: Calculating the trajectory of AAL-pairs for the base sequence visualised in
figure 3.12

For such vectors Vsi the rotation angle V̂si with respect to a reference movement vector

Vref , which is set to the positive X-axis, is calculated. This angle is a number in the range

between −π and π.

V̂si = acos(
xsi − xsi−1

√

(xsi − xsi−1)
2 + (ysi − ysi−1)

2
). (3.4)

Next to this rotation angle, the Euclidean length of the arc
∥

∥

∥
V̂si

∥

∥

∥
is computed as well

and equals:

∥

∥

∥
V̂si

∥

∥

∥
=

√

(xsi − xsi−1)
2 + (ysi − ysi−1)

2. (3.5)

As a result the spatial coordinates of a sequence are transformed into a trajectory of

78

3.3. MEASURES OF (DIS)SIMILARITY

Angle/Arc Length pairs (AAL). In order to become a rotation invariant transformation,

Vlachos et al. (2004) propose to normalize the angles values. To this purpose, the average

angle value is subtracted from all values within the trajectory of angles. To ensure that the

normalized value falls within the range of [−π, π], the resulting angle values are wrapped

within this range by subtracting or adding 2π if necessary. Figure 3.13 illustrates the calcula-

tion of the AAL-pairs for the base sequences visualized in figure 3.12, while figure 3.14 shows

the transformation of the patterns displayed in figure 3.12 to their corresponding angles and

subsequently normalized angles. For episode si, the latter figure shows the value V̂ of the

angle determined by Si−1 and Si. The corresponding arc lengths are not displayed as these

are equal for all of the sequences due to the equal distances between the activity locations.

79

C
H
A
P
T
E
R

3
.

D
A
T
A

P
R
E
-P

R
O
C
E
S
S
IN

G

Transformation Normalized transformation

Time

A
n

g
le

0 1 2 3 4

−
pi

−
pi

/2
0

pi
/2

pi Base
Rotated
Translated
Translated & Rotated
Mirrored

Time

A
n

g
le

0 1 2 3 4

−
pi

−
pi

/2
0

pi
/2

pi

Base
Rotated
Translated
Translated & Rotated
Mirrored

Figure 3.14: (Normalized) trajectories of angles of the sequences of figure 3.12 compared to the (normalized) trajectory of angles of the base
sequence

8
0

3.3. MEASURES OF (DIS)SIMILARITY

Figure 3.14 reveals that the trajectories of the normalized angles of the rotated and/or

translated sequences are the same as the trajectory of the base sequence. This signifies

that a distance measure calculated based on the AAL-pairs are invariant to both translation

and rotation of activity-travel sequences. However, in the case of the mirrored sequence,

the figure indicates that the AAL-trajectories do not run parallel. To solve this issue, the

normalized AAL-values have to be mirrored along the X-axis by multiplying all angles by

-1, as shown in figure 3.15

Time

A
n

g
le

0 1 2 3 4

−
pi

−
pi

/2
0

pi
/2

pi

Base
Mirrored

Figure 3.15: Mirrored trajectory of normalized angles of the mirror sequences of figure 3.12
compared to the trajectory of normalized angles of the base sequence

Although this approach seems to be able to meet its objective, in a number of cases the

method fails. Some of these “problematic” sequences are illustrated in figure 3.16, next to

81

CHAPTER 3. DATA PRE-PROCESSING

their corresponding (normalized) trajectories of angles in figure 3.17. Figure 3.16 also sets

these sequences side by side to the sequence matching the normalized trajectory of angles.

This figure shows that the overall rotation angles of these problematic sequences do not fall

within the range of [−π/2, π/2] as is assumed in Vlachos et al. (2004).

X

Y

Normalized base
Rotated 2
Mirrored 2

Figure 3.16: Sequences 2: rotated and mirrored

82

3
.3
.

M
E
A
S
U
R
E
S
O
F

(D
IS
)S
IM

IL
A
R
IT

Y

Transformation Normalized transformation

Time

A
n

g
le

0 1 2 3 4

−
pi

−
pi

/2
0

pi
/2

pi

Normalized base
Rotated 2
Mirrored 2

Time

A
n

g
le

0 1 2 3 4

−
pi

−
pi

/2
0

pi
/2

pi

Normalized base
Rotated 2
Mirrored 2

Figure 3.17: (Normalized) trajectories of angles of the sequences of figure 3.16 compared to the (normalized) trajectory of angles of the base
sequence

8
3

CHAPTER 3. DATA PRE-PROCESSING

Consequently, the trajectories of angles of these sequences are not comparable to the

base sequence. To tackle this problem, the trajectories of angles - either normalized or not

- are corrected by subtracting π, wrapping the resulting angles in the range [−π, π] and

normalizing these angles. The corrected (normalized) trajectories of angles are displayed

in figure 3.18. The corrected trajectories reveal the same pattern as the base trajectory,

indicating that the underlying sequences are similar.

84

3
.3
.

M
E
A
S
U
R
E
S
O
F

(D
IS
)S
IM

IL
A
R
IT

Y

Transformation Normalized transformation

Time

A
n

g
le

0 1 2 3 4

−
pi

−
pi

/2
0

pi
/2

pi

Normalized base
Rotated 2
Mirrored 2

Time

A
n

g
le

0 1 2 3 4

−
pi

−
pi

/2
0

pi
/2

pi

Normalized base
Rotated 2
Mirrored 2

Figure 3.18: Corrected (normalized) trajectories of angles of the sequences of figure 3.16 compared to the (normalized) trajectory of angles of
the base sequence

8
5

CHAPTER 3. DATA PRE-PROCESSING

The resulting AAL-patterns thus form the basis of the estimation of the geographical

dissimilarity designed here. Therefore, a dissimilarity score needs to be defined: the dissim-

ilarity of two AAL-values daal(aal1, aal2) equals the weighted sum of the distance between

the arc lengths and the distance between the angles. To equalize the ranges of these two dis-

tance values, the arc length distance is divided by the maximum arc length observed within

the data, and the angle distance is divided by 2π.

daal(aal1, aal2) = warc ∗
darc(aal1, aal2)

max(arc length)
+ wangle ∗

dangle(aal1, aal2)

2π
. (3.6)

The distance of two arc lengths is computed by the Euclidean distance, while the dis-

tance of two angles a1 and a2 is defined as the minimum of |a1 − a2| and 2π−|a1 − a2|. This

penalty cost daal replaces the distance measure of the location component in Equation 3.2.

The alignment of the sequences is thus based on the AAL’s instead of the geographical coor-

dinates. Nevertheless, the actual alignment method remains unaltered. It should be noted

that this computational process from defining the AALs to determining the dissimilarity

score is entirely automated, and no manual intervention or judgement is required.

Figure 3.19 illustrates one of the sequences shown in figure 3.5 next to its normal-

ized transformation, which is reconstructed based on the corresponding normalized AAL-

trajectory displayed in figure 3.20. In the latter figure, the distance from the home location

is added for the sake of clarity to show the movements within the pattern, and does not

influence the calculation of the AAL-trajectories as such. The figure indicates that in the

course of the activity execution, the location of the episodes does not change, causing the

angles and arc length to equal zero. Yet, when travelling from one activity location to the

next one, the angles and arc lengths differ from zero. In order to compose the normalized

transformed sequence of figure 3.19, it is assumed that the first episode is executed at the

location with coordinates (0, 0).

86

3
.3
.

M
E
A
S
U
R
E
S
O
F

(D
IS
)S
IM

IL
A
R
IT

Y

Original sequence Transformed sequence

250000 300000 350000 400000 450000 500000

0

 5
00

10
00

15
00

5620000

5640000

5660000

5680000

5700000

5720000

X

Y

T
im

e

−20000 0 20000 40000 60000 80000

0

 5
00

10
00

15
00

−100000

 −50000

 0

 50000

 100000

 150000

X

Y

T
im

e

Figure 3.19: Hägerstrand trajectory of one of the sequences

8
7

CHAPTER 3. DATA PRE-PROCESSING

TimeD
is

ta
n

ce
 f

ro
m

 h
o

m
e

(k
m

)

0
50

15
0

Time

A
n

g
le

−
pi

0
+

pi

Time

A
rc

 L
en

g
th

 (
km

)

0.
0

1.
0

2.
0

Figure 3.20: Normalized AAL-trajectory of sequence displayed in figure 3.19

The approach presented here has much ground in common with other researches. For

instance, Vlachos et al. (2004) aspires at capturing similarities of two-dimensional motion

patterns (e.g. handwriting data) which can be oriented differently. For this purpose, Vla-

chos et al. (2004) introduced the AAL-transformation discussed above, followed by Dynamic

Time Warping to estimate the actual (dis)similarity. Next to this research, McIntosh &

Yuan (2005) aims at assessing the similarity of geographic processes and events (e.g. rainfall

data), which are described by number of indices - such as the relative movement, the growth,

the orientation with respect to the direction of the movement, the size, the granularity of the

change -, determining the spatio-temporal characteristics of these sequences and which serve

88

3.4. IDENTIFICATION OF GROUPS OF SIMILAR BEHAVIOUR

as basis for the spatio-temporal comparison. (Dis)similarities between these events are also

estimated by means of Dynamic Time Warping. Yet, the differences of the current approach

with respect to these studies are three-fold. Firstly, the proposed technique does not require

calculating geographical indices ahead. The comparison of the activity-travel sequences is

based directly on the recorded activity-travel data. Secondly, next to the two-dimensional

geographic data of the activity locations, the dissimilarity measure needs to incorporate the

remaining dimensions of activity-travel data as well. In particular, the activity type is in

any case included in the comparison of activity-travel patterns. The activity type contains

a categorical variable, and cannot be processed using Dynamic Time Warping. However,

applying an adapted sequence alignment method to calculate the dissimilarity of activity-

travel sequences meets this requirement. Thirdly, the rotation invariant distance measure

forwarded in Vlachos et al. (2004) disregards similarities between sequences with a mutual

rotation outside the interval [−π/2, π/2]. Though efficient when comparing handwriting

data (e.g. the number 6 should not be similar to the number 9), this assumption restricts

the usefulness of the approach in the current research area. Therefore, the proposed ap-

proach elaborates on the suggested transformation of the geographical coordinates to enable

comparing sequences which are rotated up to 2π with respect to one another.

3.4 Identification of Groups of Similar Behaviour

3.4.1 Clustering

As already pointed out in the introduction to the previous section, the purpose of the

technique described above includes identifying groups of individuals who show strong re-

semblance in their Hägerstrand trajectories. To reach this aim, first the mutual distances

between sequences present in the data are calculated based on the proposed spatio-temporal

dissimilarity measure. The sequences can be processed either in the so-called short or in the

long form. The short form describes activity-travel sequences by the activity and location

attributes of the episodes, while a sequence in the long form consists of a number of time

slots, each of which represent t minutes within a day and which are characterized by an

activity type and a location. The long form enables incorporating the activity duration into

89

CHAPTER 3. DATA PRE-PROCESSING

the distance measure (Wilson, 1998b). The difference between these formats is illustrated

in figure 3.21 for the example sequence S of figure 3.10, and in figure 3.22 for the sequence

recorded in figure 3.19.

90

3
.4
.

ID
E
N
T
IF

IC
A
T
IO

N
O
F

G
R
O
U
P
S
O
F

S
IM

IL
A
R

B
E
H
A
V
IO

U
R

Sshort = S H W H S N = 5

Slong = S S S S S S S H W W W W W W W W W W H H H H H S N = 24

Figure 3.21: Sequence represented in the long form (time slots of 1 hour) vs. the short form for the example sequence S of figure 3.10

Long form Short form

250000 300000 350000 400000 450000 500000

0

 5
00

10
00

15
00

5620000

5640000

5660000

5680000

5700000

5720000

X

Y

T
im

e

250000 300000 350000 400000 450000 500000
 0

 2
 4

 6
 8

10

5620000
5640000

5660000
5680000

5700000
5720000

X

Y

E
p

is
o

d
e

n
u

m
b

er

Figure 3.22: Hägerstrand trajectories of sequences represented in the long form (time slots of 1 minute) vs. the short form for the sequence
recorded in figure 3.19

9
1

CHAPTER 3. DATA PRE-PROCESSING

In the current research the size t of the time slots equals one, causing each sequence in

the long format to contain 1440 episodes. For the purpose of clarity, the results based on

the sequences in the short form are enclosed in the Appendix A.

After having calculated the mutual dissimilarity scores, these values are fed into a clus-

tering algorithm dividing the sequences into homogeneous groups. Because the aim of the

current research consists of finding the best classification of the data into a number of

groups, a partitioning algorithm is preferred to a hierarchical clustering method (Kaufman

& Rousseeuw, 1990). Furthermore, the clustering technique selected here has to be able to

accept a predefined dissimilarity table as input, because recalculating dissimilarities in the

course of the clustering process - as is the case for the well-known k-means clustering method

- is not feasible. The basic clustering approach pam (Partitioning Around Medoids) satisfies

these requirements Kaufman & Rousseeuw (1990), and therefore is applied here. Further-

more, the pam method is supplied by cluster package implemented in R, a free software

environment for statistical computing and graphics. More details on the selected clustering

algorithm can be found in Kaufman & Rousseeuw (1990).

In order to determine the number of clusters k, the pam clustering algorithm is run

several times, while varying the number of clusters k. The number of clusters is set based

on the average silhouette width for the entire data set. This measure is provided by the

algorithm and reflects the quality of the clusters: the average silhouette width approaches

one if the clustering enables revealing a strong structure, while an average silhouette width

of −1 signifies that the clustering does not disclose a substantial structure. The average

silhouette width should exceed 0.25 at least (and preferably even 0.50) if a structure is

revealed within the data (Kaufman & Rousseeuw, 1990). Based on this knowledge and the

findings summarized in table 3.2 and figure 3.23, the number of clusters is fixed to 3.

3.4.2 Validation of the Spatio-Temporal Dissimilarity Measure

The cluster results enable indicating the validity of the distance measure developed in section

3.3.3. To this end, the existing distance measure described in section 3.3.2 is applied to the

data as well, and is used to cluster the sequences into groups displaying similar spatial and

temporal behaviour. The number of clusters based on these dissimilarity scores is also set

92

3.4. IDENTIFICATION OF GROUPS OF SIMILAR BEHAVIOUR

0 5 10 15 20

0.
2

0.
3

0.
4

0.
5

Number of clusters

A
ve

ra
g

e
si

lh
o

u
et

te
 w

id
th

0 5 10 15 20

0.
2

0.
3

0.
4

0.
5

Figure 3.23: Cluster results for varying number of clusters k based on the proposed spatio-
temporal dissimilarity measure defined in section 3.3.3

93

CHAPTER 3. DATA PRE-PROCESSING

k Avg sil. width Min. # Max. #

2 0.3824 192 402
3 0.4411 92 313
4 0.4392 17 299
5 0.3366 17 242
6 0.2732 17 179
7 0.2149 17 176
8 0.2275 16 176
9 0.2404 12 174
10 0.2170 12 174
11 0.2148 11 174
12 0.1910 11 129
13 0.1971 11 128
14 0.1783 11 128
15 0.1810 11 112
16 0.1814 11 111
17 0.1748 11 111
18 0.1763 6 109
19 0.1694 6 109
20 0.1604 6 85

Table 3.2: Average silhouette width for varying number of clusters k based on the proposed
spatio-temporal dissimilarity measure defined in section 3.3.3

to 3 as shown in table 3.3 and figure 3.24.

The actual validation of the proposed distance measure occurs based on a number of fig-

ures describing some features of the sequences classified in each of the clusters. The first set

of statistics to be calculated are introduced by Lefever (1926), adapted by Bachi (1963) and

Yuill (1971) and implemented by Buliung & Remmel (2008) in the aspace toolkit available

within the statistical package R. This toolkit aims at visualizing and describing spatial prop-

erties of individual activity spaces by establishing an approach to quantify the centrality and

dispersion of the activity sequences in space. To reach this goal, the aspace toolkit includes

two centrographic statistical functions, computing either the standard distance deviation

(SDD) (Bachi, 1963) or the standard deviation ellipse (SDE) (Yuill, 1971). The SDD-value

reflects the standard deviation of the distances between the activity locations and a centre

location which can be defined either exogenously by the user or which can be estimated

by the algorithm. This SDD value equals the radius of a circle for which the centre is set

to a predetermined or estimated centre location and is interpreted as the dispersion of the

activity locations with respect to this centre location. For the sequence presented in figure

94

3.4. IDENTIFICATION OF GROUPS OF SIMILAR BEHAVIOUR

0 5 10 15 20

0.
2

0.
3

0.
4

0.
5

Number of clusters

A
ve

ra
g

e
si

lh
o

u
et

te
 w

id
th

0 5 10 15 20

0.
2

0.
3

0.
4

0.
5

Figure 3.24: Cluster results for varying number of clusters k based on the existing distance
measure described in section 3.3.2

95

CHAPTER 3. DATA PRE-PROCESSING

k Avg sil. width Min. # Max. #

2 0.5183 283 311
3 0.4638 131 248
4 0.3732 130 187
5 0.4163 48 146
6 0.4240 38 146
7 0.3527 38 137
8 0.3233 38 122
9 0.3306 32 101
10 0.3568 18 111
11 0.3429 18 111
12 0.3537 18 111
13 0.3249 17 80
14 0.3297 15 70
15 0.3236 13 66
16 0.3234 10 66
17 0.3207 10 68
18 0.3277 10 68
19 0.3197 10 68
20 0.3250 10 68

Table 3.3: Average silhouette width for varying number of clusters k based on the existing
distance measure described in section 3.3.2

3.19, this concept is illustrated in figure 3.25.

However, the presence of spatial outliers within an activity sequence proves to bias the

SDD measure. Therefore, the SDE measure is established, which expresses the dispersion and

directional bias of spatial sequences without being as distracted by spatial outliers compared

to the SDD measure. The SDE method hypothesizes that the spatial dispersion of the

activity locations can be characterized as a rotated ellipse with respect to a predetermined

or estimated centre location, rather than a circle. This SDE-value for the sequence of figure

3.19 is displayed in figure 3.26.

In the presented research, the SDE measure is calculated for each of the activity-travel

sequences, assuming the centre location equals the home location. Bearing in mind the

main focus of this study, the eccentricity and the area of the ellipse resulting from the SDE

calculations are recorded because these parameters indicate the shape and the size of the

ellipse respectively. An eccentricity approaching one, signifies an elongated ellipse, while an

eccentricity of zero indicates a circle, in which the minor axis equals the major axis (Buliung

& Remmel, 2008). Next to these spatial descriptive statistics, the main geographical position

96

3.4. IDENTIFICATION OF GROUPS OF SIMILAR BEHAVIOUR

300000 350000 400000 450000 500000

56
00

00
0

56
50

00
0

57
00

00
0

57
50

00
0

X

Y

Centre Location
Remaining locations

SDD

Figure 3.25: Determining the SDD-value for the observed sequence visualised in figure 3.19

97

CHAPTER 3. DATA PRE-PROCESSING

300000 350000 400000 450000 500000

56
00

00
0

56
50

00
0

57
00

00
0

57
50

00
0

58
00

00
0

X

Y

Centre Location
Remaining locations

SDE

Figure 3.26: Determining the SDE-value for the observed sequence visualised in figure 3.19

98

3.4. IDENTIFICATION OF GROUPS OF SIMILAR BEHAVIOUR

of the sequence is determined, founded on the average (x, y)-coordinates weighted according

to the duration spent at each location.

Cluster 1 Cluster 2 Cluster 3 All

of sequences 189 313 92 594

of episodes per sequence
Avg 5.91 4.60 3.30 4.82
Sd 1.39 2.24 0.69 2.02

Eccentricity
Avg 0.9909 0.4905 0.3260 0.6242
Sd 0.0781 0.4993 0.4713 0.4830

Area of SDE (km2)
Avg 128 11 13 49
Sd 646 76 129 375

Weighted Avg x (km)
Avg 375 362 376 368
Sd 62 76 69 71

Weighted Avg y (km)
Avg 5,668 5,670 5,671 5,670
Sd 17 17 17 17

Table 3.4: Descriptive statistics of cluster results based on the proposed spatio-temporal
dissimilarity measure defined in section 3.3.3

Tables 3.4 and 3.5 summarize these statistics based on the clustering performed on both

distance measures. The numbers in these tables already lift the veil on the potential of both

methods and the differences between these approaches. While the values of the average and

standard deviation of the eccentricity and area of SDE show that the groups defined based

on the proposed spatio-temporal dissimilarity measure are largely distinct with respect to

the criteria of the extent of spatial dispersion, these differences are less explicit in case of the

cluster results obtained by the existing distance measure. The other way round, the clusters

distinguished based on the proposed spatio-temporal dissimilarity measure display a larger

geographical spread as reflected in the weighted average (x, y)-coordinates, than the clusters

formulated based on the existing distance measure. What strikes one most is the relatively

low standard deviation of the weighted average (x, y)-coordinates of the latter cluster results,

compared to the former cluster results, underpinning this finding.

However, these conclusions should be supported formally. For that purpose, ANOVA is

99

CHAPTER 3. DATA PRE-PROCESSING

Cluster 1 Cluster 2 Cluster 3 All

of sequences 131 215 248 594

of episodes per sequence
Avg 4.70 4.76 4.93 4.82
St. dev 1.74 2.07 2.12 2.02

Eccentricity
Avg 0.6060 0.6032 0.6521 0.6242
Sd 0.4870 0.4890 0.4761 0.4830

Area of SDE (km2)
Avg 87 46 31 49
Sd 692 264 156 375

Weighted Avg x (km)
Avg 267 355 433 368
Sd 33 20 34 71

Weighted Avg y (km)
Avg 5,687 5,675 5,656 5,670
Sd 15 12 10 17

Table 3.5: Descriptive statistics of cluster results based on the existing distance measure
described in section 3.3.2

applied to both cluster results to check whether the averages for each cluster are significantly

different. The outcome of this effort is displayed in table 3.6. For the proposed spatio-

temporal dissimilarity measure, only the differences between the clusters with respect to

the values of eccentricity and area of SDE are statistically significant at the 0.05-level (P -

values of 0.0028 and 0.0000 respectively), which indicates that the proposed spatio-temporal

dissimilarity measure enables identifying groups of activity-travel sequences which do not

cover the same geographical region, but which do share spatial characteristics. Conversely,

for the clustering based on the existing dissimilarity measure, the table shows that, at the

0.05-level, statistically significant differences between the clusters are found for the weighted

average (x, y)-coordinates (P -value of 0.0000), which proves that the existing dissimilarity

measure is extremely suited to indicate geographical similarity while disregarding spatial

proportions.

3.4.3 Design of Socio-Demographic Profiles

Starting from the clustering results obtained in the previous paragraph, socio-demographic

profiles can be developed which characterize each cluster of similar activity-travel behaviour.

100

3.4. IDENTIFICATION OF GROUPS OF SIMILAR BEHAVIOUR

Proposed measure Existing measure

Area of SDE 0.0028∗ 0.1812
Eccentricity 0.0000∗ 0.3081
Weighted Avg x 0.6309 0.0000∗

Weighted Avg y 0.2282 0.0000∗

∗ Significant on 0.05 level

Table 3.6: P -values of ANOVA tests

For this purpose, a decision tree is built based on the data because decision trees are par-

ticularly suited for this type of analysis. After all, decision tree algorithms are designed to

process large datasets which include attributes of mixed data types (categorical or numer-

ical) and to cope with missing values, unlike most statistical techniques pursuing the same

goal (e.g. multinomial logit models) (Witten & Frank, 2000). Additionally, decision trees

do not impose restrictions on the distribution of the data, as it provides a non-parametric

or distribution-free algorithm (Breiman et al., 1984). Most importantly, the outcome of a

decision tree is easy to interpret and to convert into a set of if-then decision rules (Breiman

et al., 1984; Witten & Frank, 2000).

The decision tree algorithm applied in the current research is founded on the Classification

and Regression Tree (CART) introduced by Breiman et al. (1984) and available in the tree

toolkit included in the statistical software package R. The resulting classification tree is

visualized in figure 3.27. Below each terminal node a bar plot reflects the segmentation of

the predictor variable in that node. Figure 3.28 plots the standard deviation with respect to

the predictor variable (in this case the cluster id) against the number of terminal nodes or

leaves.

Table 3.7 displays more details concerning the decision tree and shows that the day

of the week is the most distinguishing variable, especially with respect to cluster id 1, in

which most sequences seem to be recorded on a working day (0=Monday, 1=Tuesday, ...,

6=Sunday). Next, the number of working hours per week (which is based on the theoretic

work schedule, i.e. part time or full time, and not deduced from the activity sequences)

appears to discriminate largely between cluster id 1 and cluster id 2. These findings are

also supported in related researches where weekdays are distinguished from weekend days

(Borgers et al., 2002; Schlich, 2001; Wilson, 2001), and workers are treated differently from

101

CHAPTER 3. DATA PRE-PROCESSING

|
Weekday: M,T,W,D,F

Workinghours < 20.5

Age < 53.5

NumChild: 0,2,3,3+

Age < 56

NumChild: 0,3,3+

Age < 27

2

1

2

2

2 1

2

1

1

1 1

2

2

3 2

Figure 3.27: Decision tree attaching socio-demographical profiles to the cluster results (labels
for weekday: M = Monday, T = Tuesday, W = Wednesday, D = Thursday, F = Friday,
S = Saturday, Z = Sunday)

102

3.4. IDENTIFICATION OF GROUPS OF SIMILAR BEHAVIOUR

1 2 3 4 5 6 7 8

85
0

90
0

95
0

10
00

10
50

11
00

11
50

Number of terminal nodes

D
ev

ia
n

ce

Figure 3.28: Overall standard deviation of predictor variable (i.e. cluster id)

103

CHAPTER 3. DATA PRE-PROCESSING

non-workers (Anderson et al., 2003; Bhat et al., 2003; 2004; Borgers et al., 2002; Bowman,

1998; Kulkarni & McNally, 2001; Schlich & Axhausen, 2004; Wilson, 2001).

104

3
.4
.

ID
E
N
T
IF

IC
A
T
IO

N
O
F

G
R
O
U
P
S
O
F

S
IM

IL
A
R

B
E
H
A
V
IO

U
R

Test rule #cases Pred. %clu1 %clu2 %clu3 Leaf

Root 594 2 0.3182 0.5269 0.1549
Weekday : workday 412 1 0.3081 0.2896 0.0960

Workinghours < 20.5 176 2 0.0421 0.2037 0.0505
Age < 53.5 97 2 0.0404 0.0892 0.0337

#child. : 0, 2, 3, 3+ 78 2 0.0202 0.0791 0.0320 *
#child : 1 19 1 0.0202 0.0101 0.0017 *

Age > 53.5 79 2 0.0017 0.1145 0.0168 *
Workinghours > 20.5 236 1 0.2660 0.0859 0.0455

Age < 56 229 1 0.2660 0.0758 0.0438
#child. : 0, 3, 3+ 98 1 0.1145 0.0455 0.0050 *
#child. : 1, 2 131 1 0.1515 0.0303 0.0387 *

Age > 56 7 2 0.0000 0.0101 0.0017 *
Weekday : weekend 182 2 0.0101 0.2374 0.0589

Age < 27 18 3 0.0034 0.0101 0.0168 *
Age > 27 164 2 0.0067 0.2273 0.0421 *

Table 3.7: Outcome of decision tree attaching socio-demographical profiles to the cluster results

1
0
5

CHAPTER 3. DATA PRE-PROCESSING

3.5 Conclusions

The current chapter provides an overview of the data required for the activity-based frame-

work presented in this manuscript. To this end, the data effort is introduced and described by

means of some general statistics. Nevertheless, because this data set contains activity-travel

sequences collected by a number of individuals varying in their desires, needs, opportuni-

ties and constraints, these activity-travel patterns are assumed to be different in various

aspects, e.g. the number of activity episodes contained in the sequences, their duration and

geographical distribution.

Therefore this chapter designs a multidimensional measure to calculate the spatio-tem-

poral (dis)similarity of activity-travel sequences, which incorporates the distances travelled

between the activity locations and the relative location within a sequence rather than the dis-

tances between the locations of the sequences. After all, the methods advanced in literature

generally are not able to compare sequences including non-nominal attributes and disregard

the distances travelled within the separate sequences and the relative position of the loca-

tions within the same sequence with respect to one another. To this end, a multidimensional

spatio-temporal dissimilarity measure is developed, which transforms and normalizes the

geographical information contained by the (x, y)-coordinates of the activity locations into

corresponding Angle/Arc Length (AAL)-trajectories to reflect the relative movements made

within the sequence. Based on these AAL-trajectories, the traditional alignment technique

can be used to calculate the mutual dissimilarities between the sequences.

Subsequently, a clustering technique, pam (Partitioning Around Medoids), is applied to

the results of this dissimilarity approach in order to divide the data into a number of groups

exhibiting a similar activity-travel pattern.

Finally, for the benefit of the scheduling framework, this chapter pursues a model which

enables partitioning the individuals of the synthetic population based on a number of known

attributes, such as age, gender, work status, work schedule and day of the week, into sub-

groups of individuals who are assumed to display similar activity-travel behaviour. As such,

the current chapter concentrates on attaching socio-demographic profiles to each of the

clusters determined previously by means of a classification tree. The main variables discrim-

inating between the various types of activity-travel patterns within the observed data set

106

3.5. CONCLUSIONS

prove to be the day of the week and the work schedule.

107

CHAPTER 3. DATA PRE-PROCESSING

108

Chapter 4

Design of the System

4.1 Introduction

To build a framework for simulating activity-travel behaviour, this chapter focuses on de-

signing an agent-based micro simulation based on reinforcement learning. In the presented

modelling framework, it is assumed that the population comprises a number of groups of

individuals, who display similar activity-travel behaviour. As a result, the simulation of an

activity-travel sequences of an individual from the synthetic population, can be based on the

observed activity-travel data of all sequences which are supposed to match the intended in-

dividual most. Figure 4.1 visualizes the suggested modelling framework. The left side of this

figure shows the input to the system, in particular activity-travel diaries, the corresponding

diary attributes (e.g. day of the week) and socio-demographic data of the observed popula-

tion. To start with, the activity, timing and location components in the diaries are processed

in order to distinguish clusters of sequences displaying similar behaviour, as explained in sec-

tion 3.4.1, based on the spatio-temporal dissimilarities between the activity-travel sequences

computed according to the method introduced in section 3.3.3. For the purpose of assign-

ing each individual in the synthetic population to the clusters defined here, the clusters are

linked to the socio-demographic data and diary attributes to draw up a socio-demographic

profile for each cluster, as explained in paragraph 3.4.3. In addition, the parameters for the

reward functions incorporated in the reinforcement learning system, described below, are

estimated for each cluster. Next, a so-called prototype agent is trained in the course of a

109

CHAPTER 4. DESIGN OF THE SYSTEM

number of reinforcement learning episodes, based on this information. These components

form the basis of the subsequent simulation steps.

On the right side of the figure, a synthetic population, representing the population which

has to be simulated, is now inserted into the modelling framework. Each member of the

synthetic population - also referred to as an agent - corresponds to an inhabitant of the

selected area, and is first assigned to a cluster based on his socio-demographic profile. After

that, all agents are initialized to the corresponding prototype agent and fine-tuned during

an additional number of reinforcement learning episodes. The agents are now set and ready

to generate the desired activity-travel patterns for the entire synthetic population.

The introduction of the prototype agent into the modelling framework requires some more

explanation. The rationale underlying this agent is to incorporate general prior knowledge

on states, actions and their corresponding rewards into each individual agent. After all, each

prototype agent first gathers knowledge based on the reward functions, which are calibrated

on the observed diary data matching the prototype agent, by running the reinforcement

learning process a number of times. Afterwards, this knowledge is copied to all agents of the

synthetic population which belong to the same cluster. As such, all agents in the synthetic

population do not have to be to be trained from scratch, can proceed from the knowledge

obtained from the corresponding prototype agent, and can refine this knowledge to their

particular situation (e.g. geographical location, availability of transport modes, etc.). This

way, the process of training the agents does not consume as much time as training each of

these agents individually from scratch without any prior knowledge.

The actual reinforcement learning system is formulated according to the methodology

described in chapter 2. The system is outlined in figure 4.2. The environment which the

time of the system as well as the state of the network. Additionally, the agents interact with

this environment. Their actions are controlled by a multi-actor reinforcement learning system

incorporating batch/incremental regression tree function approximation and containing five

decision modules.

The state of each agent is characterized by the activity in which he is currently engaged,

its corresponding duration, location, travel mode and travel time, the travel mode of the

current out-of-home tour, the next fixed activity and the time left to the earliest and last

110

4.1. INTRODUCTION

Socio-demo

profiles

Activity-travel

diaries

Diary attributes

+

Socio-demo

Cluster

assignments

Calculate dissimilarities

Observed

population

Reward functions

per cluster

Activity-travel diariesPrototype agent

per cluster

Link

Calibrate parameters

Reinforcement

learning

Synthetic

population

Diary attributes

+

Socio-demo

Apply profiles

Cluster

assignments

Initialize agents

& simulate diaries

Figure 4.1: Agent-based micro simulation framework

111

CHAPTER 4. DESIGN OF THE SYSTEM

starting time of this fixed activity (EST and LST respectively), the sequence of activities the

agent has been executing since the midnight sleep activity, the total duration spent on each

activity in the course of the day, (also since the midnight sleep activity), and the activity

history (as measured by the time elapsed since the start of the last episode of each activity).

Each agent’s actions entail the activity type, duration, location and travel mode and are

fixed in the course of the five reinforcement learning modules.

Prolong

activity?

AGENTS

NO Choose

location

Choose

activity

Execute

next fixed?
NO

YES

ENVIRONMENT

SIMULATION

YES

Choose

travel mode

Figure 4.2: Reinforcement learning system

In the first module, the agent determines the activity duration by deciding if he wants to

execute the current activity for one more time slot or if he wants to execute another activity.

In case the agent does not want to prolong the duration of the current activity, the agent

indicates in the second module whether he wants to execute the next fixed activity. If not,

the agent selects another activity to perform in the third module. Each time a new fixed

or flexible activity is selected, the fourth and fifth modules are called to select the activity

location and the travel mode. Even though this decision process in itself is sequential,

each decision module takes into account the impact of its decision on the optimal action

of its successor by means of multi-actor reinforcement learning. Consequently, interactions

between decision components as described in Gärling et al. (1997) and Joh et al. (2002),

are accounted for. An example of the functioning of this scheduling process is presented in

112

4.1. INTRODUCTION

figure 4.3. A time step of one hour is assumed in this example.

The next sections elaborate on the specifications of each of the reinforcement learning

modules. These sections draw special attention to the design of the reward functions for

a number of reasons. Firstly, the reward functions can be derived either from frequencies

in observed activity-travel diary data or based on stated-preference experiments (Janssens,

2005). Secondly, even though deterministic, reward functions can take on a number of

functional forms, including a number of (independent) variables. Related research shows that

the formulation of the reward function impacts the performance of reinforcement learning

to a large extent, in particular in domains characterized by multiple goals, noisy states and

inconsistent reinforcement (Mataric̀, 1994).

From this perspective, in order to enhance the learning process, Mataric̀ (1994) describes

some guidelines for formulating reward functions. First, in case an agent has to learn mul-

tiple objectives, a heterogeneous reinforcement function emerges; this signifies that each

goal is reinforced individually. Furthermore, progress estimators - which record a metric of

improvement with respect to a certain objective - can be used when attempting to reach a

distant goal in a noisy world. After all, such a goal is traditionally characterized by a (strong)

reward which is only assigned at the end of a sequence of actions when this ultimate goal is

attained. In this case, progress estimators can also award the actions leading to this goal,

reinforcing the intermediary actions required to reach the distant goal as well. The following

sections elaborate on the design of the reward functions in each of the modules, bearing

these requirements in mind.

Additionally, the functioning of each (isolated) module is illustrated. The results for

each cluster defined in section 3.4, are discussed separately. To this end, the activity-travel

sequences belonging to each cluster are split randomly into two groups: a training sample

of 75% of the observed activity-travel diaries and a validation sample of 25% diaries. The

training samples contain 142, 235 and 69 diaries and the validation samples include 47, 78

and 23 sequences in cluster one, two and three respectively. For each module the parameters

for the reward functions are calibrated based on the activity-travel data contained in the

training sample. These reward functions are then applied to initialize the three prototype

agents, which - on their turn - found the basis of test agents, which correspond to an activity-

113

C
H
A
P
T
E
R

4
.

D
E
S
IG

N
O
F

T
H
E

S
Y
S
T
E
M

1
1
4

4
.1
.

IN
T
R
O
D
U
C
T
IO

N

Figure 4.3: An example of the scheduling process illustrated

1
1
5

CHAPTER 4. DESIGN OF THE SYSTEM

travel sequence of the validation set. Next, the test agents are fine-tuned and used to generate

the desired activity-travel output. Finally, to evaluate the performance of each module, the

output is compared to these validation sequences.

4.2 Module 1: Duration

4.2.1 Reward Function

The first module concentrates on determining the duration of the selected activity. To this

end, at each time step the agent chooses to prolong the activity duration with one time step

(i.e. stay) or to proceed to the next activity (i.e. move), as inspired on work introduced by

Charypar et al. (2004). This module is a typical example of a learning process pursuing a

distant goal.

A traditional reward function guiding this decision module would assign a reward only

when the agent decides to move to the next activity. The magnitude of this reward would

depend on the final duration of the activity. Figure 4.4 plots an example of such a reward

function for the working activity. The reward function for executing the activity for one

more time slot equals zero, whereas the reward function for moving to the next activity is

based on the observed cumulative density distribution with respect to the duration for this

activity type. The grey line reflects a curve fitted based on the observed training data (i.e.

the grey dots).

However, the performance of this decision module can be improved by reformulating the

reward function more carefully employing progress estimators. Consequently, the reward

function indicates to which amount the agent’s action contributes to the final outcome.

Actions leading to the desired goal are rewarded more than those resulting in an unfavourable

state. As such, the reward function for the duration of an activity can be inspired on the

concept of decreasing marginal utility. For example, in case of a working activity, prolonging

the activity for one more time step (e.g. 5 minutes) pays off more than moving to the next

activity when the current duration when the current duration equals 10 minutes, while this

reward is less if the duration of the current working activity already equals 480 minutes.

An example of such reward function is shown in figure 4.5. The reward function for the

116

4.2. MODULE 1: DURATION

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Duration

R
ew

ar
d

Stay
Move − fitted curve
Move − observed data

Figure 4.4: Traditional reward function in module 1 for the working activity of cluster 1

117

CHAPTER 4. DESIGN OF THE SYSTEM

action “move” is identical to the traditional reward function, but the reward function for

the action “stay” equals one minus the reward function for the action “move”. That way,

the agent receives immediate feedback for both actions, and not only for the action move.

As prolonging the current activity now also pays off immediately, the agent is stimulated to

prolong the current activity. The difference between these two reward schemes is illustrated

in figure 4.6. In this figure, the agent prolongs the duration of the current activity up to 480

minutes. Thereafter, he decides to move to the next activity, for which the reward is equal

in both reward schemes.

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Duration

R
ew

ar
d

Stay
Move

Figure 4.5: Reward function using progress estimators in module 1 for the working activity
of cluster 1

Obviously, other reward functions are feasible as well. Figure 4.7 plots an alternative

118

4.2. MODULE 1: DURATION

0 100 200 300 400 500 600 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Duration

R
ew

ar
d

Reward function with progress estimators
Traditional reward function

Figure 4.6: Example of rewards assigned in module 1 for an agent prolonging the duration
of the current working activity up to a duration of 480 minutes and then moving to a next
activity

119

CHAPTER 4. DESIGN OF THE SYSTEM

reward function for the working activity. The discontinuity in this reward function is based

on the minimum, maximum and average duration of this activity. In this case, the agent

receives a rather high, slightly decreasing reward for prolonging the activity duration as long

as the duration is below the minimum observed duration. Between the minimum and the

average observed duration, the reward is reduced, but is still positive. When the duration is

situated in the interval between the average and the maximum observed duration, a small

penalty is assigned to discourage the agent to prolong the duration of this activity. After

that, the reward of prolonging the activity duration drops considerably. On the other hand,

the agent receives a penalty for moving to the next activity while the activity duration is

smaller than the average observed duration. When the duration exceeds the average observed

duration, the reward for moving equals zero.

Additionally, this alternative reward function takes into account the total duration spent

on each activity in the course of the day. If the total duration of a certain activity surpasses

the maximum total duration observed in the data, the agent is assigned a rather large

negative reward.

Both reward schemes are tested in the present research. For the first alternative, the

cumulative distribution function is used to fit the reward function. In this respect, two

functional forms - which are assumed to reflect the utility of executing a certain activity for

a certain duration - are fitted to the data. The functional form representing the data best,

based on the residual standard error, is selected for this experiment. The first function is the

logistic model, as proposed in Joh et al. (2004). In the current research, the general form of

a utility function matching this model, is assumed to be a symmetric S-shaped curve:

U = Umin +
Umax

1 + eβ(α−d)
. (4.1)

Here d is the activity duration, U is the utility, Umin is the minimum utility and Umax is

the maximum attainable utility for the activity. In their research, Joh et al. (2004) assume

that Umax is a function of the activity history of the activity, determining as such the

desirability or need to conduct this activity. However, to extract the reward solely caused by

the duration in this module, the parameter Umax does not depend on the activity history.

Yet, this assumption is applied when selecting which activity to perform in module three (cf.

120

4.2. MODULE 1: DURATION

0 100 200 300 400 500 600 700

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Duration

R
ew

ar
d

Stay
Move

Figure 4.7: Alternative reward function using progress estimators in module 1 for the working
activity of cluster 1

121

CHAPTER 4. DESIGN OF THE SYSTEM

section 4.4). The parameter β determines the slope of the curve and the parameter α the

inflection point. The second functional form is the double logistic model, which is merely a

variant of the first one. The relationship between the utility and the duration for an activity

can be expressed as:

U =
U

(1)
max

1 + eβ(1)(α(1)
−d)

+
U

(2)
max

1 + eβ(2)(α(2)
−d)

. (4.2)

This function looks like a double S-shaped curve. The parameters U
(1)
max, β

(1) and α(1)

correspond to the lower S of the curve while the parameters U
(2)
max, β

(2) and α(2) refer to

the upper S of the curve. To illustrate the tuning of these parameters, table 4.1 displays

for cluster 1 the parameters of the best fit for each activity type for which the number of

observed instances exceeds 20. These utility functions form the basis of the reward functions

and are therefore reformulated to represent progress estimators as indicated above.

Table 4.2 records for each feasible activity type the bounds of the intervals used for the

alternative reward function. The parameter settings are calibrated on the basis of the data

of the 142 training sequences in cluster 1. The information contained in the validation set

is thus not included in these parameters.

122

4
.2
.

M
O
D
U
L
E

1
:
D
U
R
A
T
IO

N
Activity type Functional form Parameters Plot

In-home activities Double logistic

α(1) = 52.1767

β(1) = 0.0711

U
(1)
max = 0.4487

α(2) = 315.7392

β(2) = 0.0126

U
(2)
max = 0.5482

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Duration

C
u

m
u

la
ti

ve
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

Observed data
Fitted curve

Working Double logistic

α(1) = 260.4623

β(1) = 0.0268

U
(1)
max = 0.3277

α(2) = 547.8893

β(2) = 0.0317

U
(2)
max = 0.6431

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Duration

C
u

m
u

la
ti

ve
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

Observed data
Fitted curve

Continued on Next Page. . .

1
2
3

C
H
A
P
T
E
R

4
.

D
E
S
IG

N
O
F

T
H
E

S
Y
S
T
E
M

Activity type Functional form Parameters Plot

Bring/Get Logistic

α = 20.6662

β = 0.1485

Umin = 0.0000

Umax = 0.9290

50 100 150 200

0.
2

0.
4

0.
6

0.
8

1.
0

Duration

C
u

m
u

la
ti

ve
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

Observed data
Fitted curve

Sleeping Logistic

α = 440.9003

β = 1.2002

Umin = 0.0000

Umax = 0.8874

100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Duration

C
u

m
u

la
ti

ve
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

Observed data
Fitted curve

Table 4.1: Parameters of the best curve fitted to the observed data of

cluster 1

1
2
4

4.2. MODULE 1: DURATION

Activity type Avg.dur. Min.dur. Max.dur. Max.tot.dur.

In-home activities 191 19 401 585
Working 164 385 549 639
Services 29 19 76 76
Out-of-home eating 66 0 129 80
Grocery shopping 26 5 58 75
Non-daily shopping 89 0 165 132
Education 139 167 446 528
Social activity 204 81 489 543
Leisure 102 70 274 283
Bring/Get 41 0 77 83
Touring 0 0 0 0
Other 0 0 0 0
Sleeping 67 405 473 967

Table 4.2: Parameters of the alternative reward functions based in module 1 on the observed
data of cluster 1

4.2.2 Validation

As this evaluation is intended to show the added value of the duration module only, the

system assigns a duration to each activity of a given sequence of activities, which is not

determined by the system. To this end, the activity sequences of the validation cases serve

as input to the experiment. The system thus generates 148 agents - each corresponding

to one of the test agents - attaching a duration to each activity of these predetermined

sequences. Two experiments are conducted: one experiment utilizes the alternative reward

functions, whereas the other one applies the reward functions based on the curves estimated

on the observed data. In the latter case, when an activity type is observed less than 20 times

in the sequences included in the training data, the alternative reward function is used as

well.

Tables 4.3 to 4.5 summarize the results of these experiments for clusters one to three

respectively, by means of the average and standard deviation of the durations predicted

for each of the validation sequences, and compare these statistics to those observed in the

training set and the validation set. Furthermore, with respect to the observed training

and validation data, it should be mentioned that some activities exhibit a large standard

deviation (e.g. the social activity). This is due either to the fact that only a low number

of episodes of these activities are observed in the data, or to a rather large variability of

attributes - such as duration - in the activity categories. The latter issue is also remarked by

125

CHAPTER 4. DESIGN OF THE SYSTEM

Doherty (2006). In particular, a large variability of the duration is observed for the in-home

activities, as this activity actually fills the gaps between various out-of-home activities.

126

4
.2
.

M
O
D
U
L
E

1
:
D
U
R
A
T
IO

N

Activity type
Training Validation Simulated(1) Simulated(2)

Avg Sd # Avg Sd Avg Sd Avg Sd

In-home activities 283 210 191 100 203 189 170 25 296 92
Working 153 467 164 55 438 160 519 2 444 113
Services 4 48 29 1 10 - 55 - 65 -
Out-of-home eating 19 63 66 13 59 50 67 6 64 2
Grocery shopping 11 32 26 2 55 7 53 4 43 4
Non-daily shopping 9 76 89 2 198 272 75 0 85 7
Education 13 307 139 3 193 61 312 3 313 3
Social activity 15 285 204 4 151 83 275 0 285 0
Leisure 13 172 102 2 95 7 163 25 175 7
Bring/Get 29 36 41 8 31 43 26 2 36 12
Touring 0 0 0 0 - - - - - -
Other 0 0 0 0 - - - - - -
Sleeping 284 439 67 94 442 71 450 1 444 2

(1) Simulated validation set generated by means of curves-based reward functions
(2) Simulated validation set generated by means of alternative reward functions

Table 4.3: Validation results for the duration module for cluster 1

1
2
7

C
H
A
P
T
E
R

4
.

D
E
S
IG

N
O
F

T
H
E

S
Y
S
T
E
M

Activity type
Training Validation Simulated(1) Simulated(2)

Avg Sd # Avg Sd Avg Sd Avg Sd

In-home activities 403 505 379 123 525 361 435 0 500 0
Working 11 237 134 4 229 220 240 0 239 3
Services 20 115 105 2 85 49 115 0 115 0
Out-of-home eating 14 81 45 7 112 114 93 17 85 0
Grocery shopping 29 36 26 8 41 35 41 18 43 6
Non-daily shopping 22 65 46 5 44 47 64 9 70 0
Education 9 253 107 5 331 186 253 3 255 0
Social activity 33 141 98 16 119 61 105 0 143 8
Leisure 29 183 139 5 180 127 128 32 201 11
Bring/Get 53 30 33 12 16 7 23 17 33 8
Touring 0 0 0 0 - - - - - -
Other 0 0 0 0 - - - - - -
Sleeping 474 456 94 157 467 100 447 12 463 2

(1) Simulated validation set generated by means of curves-based reward functions
(2) Simulated validation set generated by means of alternative reward functions

Table 4.4: Validation results for the duration module for cluster 2

1
2
8

4
.2
.

M
O
D
U
L
E

1
:
D
U
R
A
T
IO

N

Activity type
Training Validation Simulated(1) Simulated(2)

Avg Sd # Avg Sd Avg Sd Avg Sd

In-home activities 66 409 304 21 385 289 288 16 430 67
Working 2 373 4 2 320 262 370 0 370 0
Services 0 0 0 0 - - - - - -
Out-of-home eating 2 210 127 1 40 - 210 - 205 -
Grocery shopping 0 0 0 1 25 - 5 - 5 -
Non-daily shopping 1 90 0 0 - - - - - -
Education 1 500 0 0 - - - - - -
Social activity 5 562 133 6 341 97 563 3 576 2
Leisure 4 336 261 4 150 94 349 5 464 178
Bring/Get 3 13 8 1 100 - 5 - 20 -
Touring 0 0 0 0 - - - - - -
Other 0 0 0 0 - - - - - -
Sleeping 138 449 46 46 440 88 211 15 450 0

(1) Simulated validation set generated by means of curves-based reward functions
(2) Simulated validation set generated by means of alternative reward functions

Table 4.5: Validation results for the duration module for cluster 3

1
2
9

CHAPTER 4. DESIGN OF THE SYSTEM

These statistics already lift the veil on the predictive capability of the current module.

However, to quantify this, table 4.6 and 4.7 display the root of the average of the squared

difference between the predicted duration and the average of the observed duration of the

corresponding activity calculated based on all cases in the training dataset on the one hand

(i.e.

√

(d̂− dtraining set)2/n), and the same difference between the predicted duration and

the corresponding activity of the sequence matching the predicted sequences in the validation

dataset on the other hand (i.e.

√

(d̂− dvalidation set)2/n). The former difference reflects the

deviation of the predicted duration with respect to the average of the observed duration of

the training dataset, while the latter reveals the deviation of the predicted duration from

the corresponding observed duration in the validation dataset. The columns entitled “Obs”

display the deviance of the observed duration in the validation set from the baseline model,

assigning the average duration of the activity type in the training data to each activity

episode in the observed validation sequences.

A brief comparison of both tables shows that the predicted durations match the average

duration observed in the training set (as can be read from table 4.6) better than the average

duration of the observed validation sequences (as displayed in table 4.7), which is as ex-

pected as the models are fitted based on the training data. Furthermore, table 4.7 indicates

that in the majority of the cases the magnitude of the deviance of the predicted durations

with respect to the observed duration in the validation data falls within the same order of

magnitude as the prediction error of the baseline model. From these small-scale experiments

can thus be concluded that this module - regardless of the type of reward function - is able

to assign the duration of an activity episode well.

130

4
.2
.

M
O
D
U
L
E

1
:
D
U
R
A
T
IO

N

Activity type
Cluster 1 Cluster 2 Cluster 3

Obs Sim
(1)

Sim
(2)

Obs Sim
(1)

Sim
(2)

Obs Sim
(1)

Sim
(2)

In-home activities 188 47 126 360 70 5 283 122 68
Working 161 52 114 191 3 3 192 3 3
Services 38 8 18 46 0 0 - - -
Out-of-home eating 48 7 2 110 20 4 170 0 5
Grocery shopping 24 21 11 33 18 9 25 5 5
Non-daily shopping 228 1 10 47 8 5 - - -
Education 124 6 7 183 2 2 - - -
Social activity 152 10 0 63 36 8 238 3 14
Leisure 77 20 6 113 62 20 203 13 200
Bring/Get 41 10 12 15 17 9 87 8 7
Touring - - - - - - - - -
Other - - - - - - - - -
Sleeping 71 11 6 100 15 7 88 239 1

(1) Simulated validation set generated by means of curves-based reward functions
(2) Simulated validation set generated by means of alternative reward functions

Table 4.6: Root of average squared difference between the predicted duration and the average observed duration for the corresponding activity
calculated in the training dataset

1
3
1

C
H
A
P
T
E
R

4
.

D
E
S
IG

N
O
F

T
H
E

S
Y
S
T
E
M

Activity type
Cluster 1 Cluster 2 Cluster 3

Obs Sim
(1)

Sim
(2)

Obs Sim
(1)

Sim
(2)

Obs Sim
(1)

Sim
(2)

In-home activities 188 185 199 360 370 360 283 304 300
Working 161 178 192 191 191 191 192 192 192
Services 38 45 55 46 46 46 - - -
Out-of-home eating 48 49 47 110 103 109 170 170 165
Grocery shopping 24 4 15 33 44 35 25 20 20
Non-daily shopping 228 228 227 47 48 50 - - -
Education 124 129 130 183 184 183 - - -
Social activity 152 143 152 63 61 64 238 240 251
Leisure 77 69 81 113 114 112 203 216 343
Bring/Get 41 39 40 15 18 20 87 95 80
Touring - - - - - - - - -
Other - - - - - - - - -
Sleeping 71 71 71 100 102 100 88 245 88

(1) Simulated validation set generated by means of curves-based reward functions
(2) Simulated validation set generated by means of alternative reward functions

Table 4.7: Root of average squared difference between the predicted duration and observed duration of the activity in the corresponding
validation sequence

1
3
2

4.2. MODULE 1: DURATION

Though, the tables show that the outcomes for both reward schemes are comparable,

the alternative reward function is utilized in this project, under the supposition that this

reward scheme generates better results in the presence of noise. After all, when introducing

the remaining modules of the suggested multi-actor reinforcement learning framework, the

rewards obtained in the current module are biased by the rewards received as a result of

actions taken in the subsequent modules.

Bearing this in mind and given that the alternative reward function includes discontin-

uous, discrete rewards and penalties - as opposed to the continuous reward functions -, the

alternative reward function is assumed to enable the duration module to draw up a more

robust regression tree. After all, clear-cut borders within the reward scheme are easier to

distinguish by a decision tree algorithm compared to a smoothly changing reward function,

because a decision tree searches for significant differences in the dependent variable in order

to partition the attribute space.

Finally, the added value of the regression tree function approximation incorporated in the

reinforcement learning agent can be illustrated by conducting this experiment for traditional

reinforcement learning agents as well. The expected values of the actions taken by these

agents are stored in a so-called Q-table. To enable distinguishing action values dependent

on the state of the system, the agents enhanced with regression tree function approximation

are able to include a large number of state variables in their decision process; for instance

in this module, an agent takes into account the time of the day, the current activity, the

duration of the current activity episode, the time spent on the current activity throughout

the entire day, the location of this activity, the travel mode used to get to this location and

the travel time required, the travel mode of the current home-based tour, the next fixed

activity and the time remaining till the earliest and last starting time of this next fixed

activity.

Yet, due to limited memory capacity, the Q-table for the present module cannot incor-

porate all of these state variables and thus only takes into consideration the time of the day,

the activity which is being performed and its duration. Consequently, even in this simplified

setting the Q-table contains 1, 078, 272 cell entries if the time slot equals 5 minutes: 288

time slots in a day × 13 activity types × 144 values for the activity duration (which is

133

CHAPTER 4. DESIGN OF THE SYSTEM

restricted to 720 minutes and which increments by the selected time slot) × 2 action values

(either continue executing the current activity or move to the next activity). Obviously this

Q-table still requires a large amount of memory capacity. Furthermore, as already indicated

in section 2.2.4 each entry of this table should preferably be visited a number of times in

order to be able to estimate its value accurately. The outcome generated by a traditional

reinforcement learning system is presented in tables 4.8 to 4.10.

134

4
.2
.

M
O
D
U
L
E

1
:
D
U
R
A
T
IO

N

Activity type
Training Validation Simulated(1) Simulated(2)

Avg Sd # Avg Sd Avg Sd Avg Sd

In-home activities 283 210 191 100 203 189 143 19 199 36
Working 153 467 164 55 438 160 458 53 442 48
Services 4 48 29 1 10 - 70 - 65 -
Out-of-home eating 19 63 66 13 59 50 77 7 71 7
Grocery shopping 11 32 26 2 55 7 55 0 55 0
Non-daily shopping 9 76 89 2 198 272 85 7 85 0
Education 13 307 139 3 193 61 222 58 207 12
Social activity 15 285 204 4 151 83 155 0 138 5
Leisure 13 172 102 2 95 7 145 0 115 0
Bring/Get 29 36 41 8 31 43 45 0 56 7
Touring 0 0 0 0 - - - - - -
Other 0 0 0 0 - - - - - -
Sleeping 284 439 67 94 442 71 376 135 332 156

(1) Simulated validation set generated by means of curves-based reward functions
(2) Simulated validation set generated by means of alternative reward functions

Table 4.8: Validation results for the duration module for cluster 1 based on traditional reinforcement learning agents

1
3
5

C
H
A
P
T
E
R

4
.

D
E
S
IG

N
O
F

T
H
E

S
Y
S
T
E
M

Activity type
Training Validation Simulated(1) Simulated(2)

Avg Sd # Avg Sd Avg Sd Avg Sd

In-home activities 403 505 379 123 525 361 404 96 465 118
Working 11 237 134 4 229 220 240 0 213 55
Services 20 115 105 2 85 49 115 0 115 0
Out-of-home eating 14 81 45 7 112 114 85 0 89 2
Grocery shopping 29 36 26 8 41 35 63 8 60 0
Non-daily shopping 22 65 46 5 44 47 77 13 84 8
Education 9 253 107 5 331 186 229 25 198 55
Social activity 33 141 98 16 119 61 94 19 123 38
Leisure 29 183 139 5 180 127 116 2 178 16
Bring/Get 53 30 33 12 16 7 48 18 46 10
Touring 0 0 0 0 - - - - - -
Other 0 0 0 0 - - - - - -
Sleeping 474 456 94 157 467 100 398 113 399 143

(1) Simulated validation set generated by means of curves-based reward functions
(2) Simulated validation set generated by means of alternative reward functions

Table 4.9: Validation results for the duration module for cluster 2 based on traditional reinforcement learning agents

1
3
6

4
.2
.

M
O
D
U
L
E

1
:
D
U
R
A
T
IO

N

Activity type
Training Validation Simulated(1) Simulated(2)

Avg Sd # Avg Sd Avg Sd Avg Sd

In-home activities 66 409 304 21 385 289 302 22 410 0
Working 2 373 4 2 320 262 370 0 370 0
Services 0 0 0 0 - - - - - -
Out-of-home eating 2 210 127 1 40 - 210 - 210 -
Grocery shopping 0 0 0 1 25 - 5 - 5 -
Non-daily shopping 1 90 0 0 - - - - - -
Education 1 500 0 0 - - - - - -
Social activity 5 562 133 6 341 97 443 188 442 191
Leisure 4 336 261 4 150 94 296 88 294 93
Bring/Get 3 13 8 1 100 - 15 - 20 -
Touring 0 0 0 0 - - - - - -
Other 0 0 0 0 - - - - - -
Sleeping 138 449 46 46 440 88 196 30 409 84

(1) Simulated validation set generated by means of curves-based reward functions
(2) Simulated validation set generated by means of alternative reward functions

Table 4.10: Validation results for the duration module for cluster 3 based on traditional reinforcement learning agents

1
3
7

CHAPTER 4. DESIGN OF THE SYSTEM

This experimental setting requires at least 25, 000 learning episodes to approach the

results produced at the end of 5, 000 learning episodes by the reinforcement learning agents

enhanced with regression tree function approximation. However, these results could be

even more improved by adding more learning episodes. This proposition ensues from the

observation that mainly the duration of activities lasting for a long time (e.g. in-home

activities, sleeping and education) are systematically underestimated. This is caused by the

fact that a series of optimal actions - i.e. continue executing the current activity - is required

before being able to reach a state including a long duration. Upon arrival in such state, which

the agent has not visited before, the agent does not favour any of the two feasible actions

and selects one action randomly and only after the same series of optimal actions occurs,

the agents can reach this state again to explore the other action. The optimal duration can

thus only be extended by one more time slot after this series of optimal actions is learnt one

time slot at a time. In case of the reinforcement learning agents enhanced with regression

tree function approximation, the regression tree enables generalizing for instance over the

activity duration, and, as such, learning this series of optimal actions for a number of time

slots at once.

Furthermore, as part of these experiments, special attention is paid to the definition of

the exploration rate, which is introduced in section 2.2.2. While the exploration rate in the

enhanced agents is derived from the regression tree, the exploration rate in the traditional

agents is determined so as to advance this succession of optimal actions. To this end, the

exploration rate has to decrease rapidly, allowing the agent sooner to select the best action

rather than a random action. The exploration rate implemented in the traditional agents is

visualized in figure 4.8 can be expressed as follows:

pexplore = 1−
ln(episode number)

ln(25, 000)
. (4.3)

The exploration rate for the agents enhanced with regression tree function approximation

is based on the reduction of the variance as measured by the proportion of the average

variance of the leaves, weighted according to the number of cases assigned to each leaf,

with respect to the root variance of the regression tree. The formula for calculating this

exploration rate is shown here:

138

4.2. MODULE 1: DURATION

0 5000 10000 15000 20000 25000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Learning episode number

E
xp

lo
ra

ti
o

n
 r

at
e

Figure 4.8: Exploration rate implemented in module 1 for the traditional reinforcement
learning agents

139

CHAPTER 4. DESIGN OF THE SYSTEM

pexplore = 5 ∗

∑
(σ2

leaf∗nleaf)
∑

nleaf−1

σ2
root

. (4.4)

In the course of testing the algorithm, it turned out that the relative reduction in the

root variance has to be multiplied by 5 to obtain a meaningful exploration rate. It should

be noted though that the nature of the exploration rate forces the outcome of equation 4.4

to be clipped within the interval [0, 1]. The values of the exploration rates as generated by

the learning algorithm are displayed in figure 4.9. These plots also reveal that the regression

tree enables to substantially reduce the variance in all the collected cases by splitting the

dataset.

140

4
.2
.

M
O
D
U
L
E

1
:
D
U
R
A
T
IO

N

Reward functions based on curves Alternative reward functions

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Learning episode number

E
xp

lo
ra

ti
o

n
 r

at
e

Cluster1
Cluster2
Cluster3

0 1000 2000 3000 4000 5000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Learning episode number

E
xp

lo
ra

ti
o

n
 r

at
e

Cluster1
Cluster2
Cluster3

Figure 4.9: Exploration rate generated in the course of the learning process for module 1 for the reinforcement learning agents enhanced with
regression tree function approximation

1
4
1

CHAPTER 4. DESIGN OF THE SYSTEM

4.3 Module 2: Fixed Activities

4.3.1 Reward Function

In case the agent does not prolong the duration of the current activity, the agent decides in

the second decision module whether to execute the next fixed activity or not. This decision

module supports the notion of the existence of an activity skeleton containing some activities,

such as working and sleeping, which tend to be rather fixed in time and space (supported

by among others Arentze & Timmermans (2005a), Chapin (1974), Ettema & Timmermans

(1997b) and Jones (1979)). The reward attached to this decision depends on the time of the

day: if the agent decides to execute the next fixed activity, he only receives a positive reward

if he starts this fixed activity between its (given) earliest and last starting time (i.e. EST

and LST respectively). Outside these starting time boundaries, the agent receives a penalty

(i.e. negative reward) for wanting to execute the fixed activity. Furthermore, between these

starting time boundaries, a penalty is assigned as long as the agent does not execute the

fixed activity. Due to the incorporation of multi-actor reinforcement learning, this penalty

is also accounted for in the previous module. The reward function of module 2 is displayed

in figure 4.10.

In the current research, only two activity types are assumed to be fixed: the working and

evening sleep activity. The starting time boundaries of these fixed activities are deduced from

their observed starting times. The earliest starting time corresponds to the 25th percentile

and the last starting time equals the 75th percentile. For clusters 2 and 3 the working activity

is only observed in respectively 5% and 3% of the sequences, whereas it is observed at least

once in 94% of the sequences in cluster 1. Therefore, in the former clusters the working

activity is not treated as a fixed activity. The outcome of this module is presented in the

next section, describing module 3, as these two modules concurrently define the activity to

be executed.

142

4.3. MODULE 2: FIXED ACTIVITIES

Time of the day

R
ew

ar
d

EST LST

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Do not execute fixed
Execute fixed

Figure 4.10: Reward function for module 2 for the fixed working activity

143

CHAPTER 4. DESIGN OF THE SYSTEM

4.4 Module 3: Activity selection

4.4.1 Reward Function

The third module focuses on choosing the next activity to be executed in case the agent

does not want to perform the next fixed activity. Two reward schemes guiding this selection

process are tested. The first reward scheme relies on the activity pattern executed since

midnight, whereas the second accounts for the history of the activities in the sequence. The

former reward consists of a progress estimator deduced from the sequence composed in the

course of the scheduling process, and is calculated by means of a sequence alignment method

(SAM) (Joh et al., 2001). The reward of each action reflects the improvement in matching

the (temporary) sequence to the observed input sequences:

Rt =

∑

j

[

wj(SAM t
j − SAM t−1

j)
]

∑

j wj
. (4.5)

The reward is based on the weighted difference of unidimensional distance measures

calculated by means of a sequence alignment method with respect to the observed sequences.

SAM t−1
j represents the dissimilarity between the existing sequence of activities and the

observed sequence j, whereas SAM t
j is calculated between this sequence appended with the

selected activity and the observed sequence j. wj assigns a weight according to the relative

importance of simulating an activity pattern that matches the observed sequence j. The

sequence alignment method used is founded on the method described in Joh et al. (2001)

and Wilson (1998a), and summarized in section 3.3.1. For this purpose, the elementary

operations - i.e. insert, delete or substitute - of this alignment method can be given different

weights.

The alternative reward function underlying this module is based on the activity history,

which reflects the amount of time (expressed for instance in minutes) which has elapsed

since the start of the last episode of this activity type. It is assumed here that the larger the

activity history - i.e. the longer ago the activity was executed for the last time -, the larger the

reward obtained when selecting this activity. The functional form of this alternative reward

function is inspired on the maximum attainable utility of the selected activity specified in Joh

et al. (2004). The relationship between the activity history and the reward of this activity

144

4.4. MODULE 3: ACTIVITY SELECTION

can be expressed by following function:

R = Rmin +
Rmax

1 + eβ(α−h)
. (4.6)

Here h is the activity history, R is the reward, Rmin is the minimum reward and Rmax

is the maximum attainable reward for the activity. This reward function is a symmetrical

S-shaped curve and resembles the reward function described by Equation 4.1. As is the case

for the utility function in the duration module, the double logistic model is also estimated:

R =
R

(1)
max

1 + eβ(1)(α(1)
−h)

+
R

(2)
max

1 + eβ(2)(α(2)
−h)

. (4.7)

The parameters R
(1)
max, β(1) and α(1) determine the lower S of the curve, while the

parameters R
(2)
max, β

(2) and α(2) fix the upper S of the curve. Both functions are fitted if at

least 20 cases are observed in the data. The parameters of the best fit for each activity type

for cluster one are summarized in table 4.11.

145

C
H
A
P
T
E
R

4
.

D
E
S
IG

N
O
F

T
H
E

S
Y
S
T
E
M

Activity type Functional form Parameters Plot

In-home activities Logistic

α = 638.3798

β = 0.0097

Rmin = 0.0228

Rmax = 0.9034

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

History

C
u

m
u

la
ti

ve
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

Observed data
Fitted curve

Working Double logistic

α(1) = 1290.5521

β(1) = 0.0059

R
(1)
max = 0.7814

α(2) = 4318.3857

β(2) = 0.0165

R
(2)
max = 0.1688

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

History

C
u

m
u

la
ti

ve
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

Observed data
Fitted curve

Continued on Next Page. . .

1
4
6

4
.4
.

M
O
D
U
L
E

3
:
A
C
T
IV

IT
Y

S
E
L
E
C
T
IO

N
Activity type Functional form Parameters Plot

Bring/Get Double logistic

α(1) = 1166.7160

β(1) = 0.0028

R
(1)
max = 0.5930

α(2) = 15,788.2653

β(2) = 0.0003

R
(2)
max = 9.2774

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

History

C
u

m
u

la
ti

ve
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

Observed data
Fitted curve

Sleeping Logistic

α = 1502.1829

β = 0.0197

Rmin = 0.0281

Rmax = 1.0695

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

History

C
u

m
u

la
ti

ve
 d

en
si

ty
 d

is
tr

ib
u

ti
o

n

Observed data
Fitted curve

Table 4.11: Parameters of the best curve fitted to the observed data of

cluster 11
4
7

CHAPTER 4. DESIGN OF THE SYSTEM

These functions do not require being transformed into progress estimators as described

in section 4.2.1, because the current module does not deal with a distant goal for which the

reward is only assigned when this goal is reached. Furthermore, in case an activity type is

observed less than 20 times in the training data, these reward curves can not be estimated

accurately and the reward function is then based on the activity history h and the quantiles

q25, q50 and q75 of the history of the observed activity, with probabilities 25%, 50% and 75%

respectively. The actual reward function looks as follows:

R =

0 if h < q25,

0.50−0.25
q50−q25

∗ (h− q25) + 0.25 if q25 ≤ h < q50,

1.00−0.50
q75−q50

∗ (h− q50) + 0.50 if q50 ≤ h < q75,

1 if h ≥ q75.

(4.8)

An example of this reward function for the grocery shopping activity can be found in

figure 4.11.

Table 4.12 lists the parameters used for this alternative history reward for cluster 1.

Activity type q25 q50 q75

In-home activities - - -
Working - - -
Services 7405 9925 10080
Out-of-home eating 1440 4010 5040
Grocery shopping 2443 4725 7808
Non-daily shopping 4325 7605 8610
Education 1075 2910 4320
Social activity 1655 2930 5415
Leisure 1555 4770 7560
Bring/Get - - -
Touring NA NA NA
Other NA NA NA
Sleeping - - -

Table 4.12: Parameters for the alternative reward functions in module 3 based on the ob-
served data of cluster 1

4.4.2 Validation

This section validates the functioning of the second and third module. To this purpose,

the duration module is trained first. Thereafter, the second and third modules are trained

148

4.4. MODULE 3: ACTIVITY SELECTION

History of current activity

R
ew

ar
d

0 q25 q50 q75 10080

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.11: Alternative reward function in module 3 for the grocery shopping activity of
cluster 1

149

CHAPTER 4. DESIGN OF THE SYSTEM

simultaneously. These training phases both take 5, 000 learning episodes. Additionally, to

demonstrate the full potential of the suggested framework, these modules are interconnected

by means of a multi-actor reinforcement learning framework as discussed in section 2.4.

The functioning of the second module, determining whether or not the next fixed activity

is executed, is analysed first. To this end, a closer look on the action of this module is taken.

Table 4.13 records for each cluster the number of times that the agent decides to perform

the next fixed activity (F=Y) as opposed to proceeding with an alternative activity (F=N),

either inside (Inside fixed time slot (FTS)) or outside (Outside fixed time slot (FTS)) the

predetermined time slot for the starting time of this fixed activity (i.e. [EST, FST]). This

table indicates that, inside the fixed time slot, the agent always chooses to execute the next

fixed activity (22% vs. 0%). Outside this fixed time slot, the agent does not want to turn

to this next fixed activity in the majority of the cases (76% vs. 3%).

F=N F=Y

Cluster 1 Inside FTS 0 0% 82 26%
Outside FTS 222 71% 9 3%

Cluster 2 Inside FTS 0 0% 66 17%
Outside FTS 312 80% 14 4%

Cluster 3 Inside FTS 0 0% 23 25%
Outside FTS 70 75% 0 0%

All Inside FTS 0 0% 172 22%
Outside FTS 604 76% 23 3%

Table 4.13: Validation results for the fixed activity selection module 2

Subsequently, the results generated by modules 2 and 3 are examined in table 4.14 for the

reward scheme based on the sequence alignment method, and in table 4.15 for the history-

based reward functions. These tables compare the simulated sequences to the sequences

observed in the validation set, first for each cluster separately and subsequently for the

entire set. To start with, the average and standard deviation of the number of activities

in the sequences is calculated. Next, the dissimilarity of the sequences in the simulated

set and in the validation set is determined by means of a sequence alignment method, for

which the penalty cost for insertion and deletion is set to one unit, while the penalty cost

for substitution is set to two units. Finally, this sequence alignment measure is also used

150

4.4. MODULE 3: ACTIVITY SELECTION

to estimate the dissimilarity between each simulated sequence and its counterpart in the

validation set.

Cluster 1 Cluster 2 Cluster 3 All

Sequence length of validation sequences
Avg. 6.04 4.41 3.57 4.80
St.dev. 1.35 2.07 1.04 1.95

Sequence length of simulated sequences
Avg. 6.70 5.03 4.00 5.40
St.dev. 0.55 0.16 0.00 1.02

SAM in set of validation sequences
Avg. 0.37 0.41 0.55 0.51
St.dev. 0.23 0.30 0.39 0.28

SAM in set of simulated sequences
Avg. 0.35 0.01 0.20 0.46
St.dev. 0.14 0.04 0.31 0.32

SAM between validation sequences and simulated sequences
Avg. 0.44 0.54 0.55 0.51
St.dev. 0.17 0.10 0.32 0.18
t-statistic 2.63 10.72 -0.05 -0.35
P-value 0.0055 0.0000 0.5182 0.6355

Table 4.14: Validation results for the activity selection modules 2 and 3 generated by means
of the SAM-based reward function

Next to the average and standard deviation of these sequence alignment indicators, the

dissimilarity between the simulated sequences and their corresponding validation sequences

is put against the average dissimilarity in the validation set. For this purpose, a one-tailed

Student’s t-test is applied to prove whether the dissimilarity estimated between the simulated

sequences and the validation sequences substantially exceeds the dissimilarity measured in

the observed validation sequences. The hypotheses supporting this test equal:

H0 : µvalidation = µvalidation vs simulated,

H1 : µvalidation < µvalidation vs simulated. (4.9)

In this case, rejecting the null hypothesis signifies that the simulated sequences differ

significantly more from the validation sequences, compared to the differences between the

151

CHAPTER 4. DESIGN OF THE SYSTEM

Cluster 1 Cluster 2 Cluster 3 All

Sequence length of validation sequences
Avg. 6.04 4.41 3.57 4.80
St.dev. 1.35 2.07 1.04 1.95

Sequence length of simulated sequences
Avg. 7.91 8.72 4.30 7.78
St.dev. 1.23 1.49 0.63 2.02

SAM in set of validation sequences
Avg. 0.37 0.41 0.55 0.51
St.dev. 0.23 0.30 0.39 0.28

SAM in set of simulated sequences
Avg. 0.60 0.85 0.35 0.88
St.dev. 0.17 0.26 0.36 0.27

SAM between validation sequences and simulated sequences
Avg. 0.62 0.87 0.54 0.74
St.dev. 0.21 0.18 0.27 0.25
t-statistic 8.20 21.97 -0.22 11.10
P-value 0.0000 0.0000 0.5861 0.0000

Table 4.15: Validation results for the activity selection modules 2 and 3 generated by means
of the history-based reward functions

sequences within the validation set. Not rejecting the null hypothesis may indicate that the

difference between the simulated sequences and their matching validation sequences is not

larger than the dissimilarity within the validation set.

These tables show that the algorithm implementing the sequence alignment-based reward

scheme outperforms the algorithm using the history-based reward functions, as reflected in

the low sequence alignment values matching the variability in the validation set. However,

a comment should be given with regard to these results: given that the reward function

guiding the learning process of the former reinforcement learning agent is based on the

sequence alignment measure which is also used to validate its outcome, this reward scheme

obviously enables generating sequences which score better with respect to this criterion.

Therefore, additional statistics, displayed in tables 4.16 and 4.17, are calculated to com-

pare the results of the sequence alignment-based and history-based reward functions. These

statistics also support the conclusions drawn from the validation results based on the se-

quence alignment measure. As the outcome of the algorithm utilizing the history-based

reward functions is not satisfactory, the reward scheme based on the sequence alignment

152

4.5. MODULE 4: LOCATION

method is used throughout the remainder of this work.

SAM-based History-based Test

In-home activities 100.00 94.59 96.62
Working 31.76 45.95 34.46
Services 4.05 17.57 2.03
Out-of-home eating 4.05 26.35 12.16
Grocery shopping 3.38 33.78 7.43
Non-daily shopping 0.00 41.89 4.73
Education 3.38 29.05 4.05
Social activity 4.05 37.16 16.89
Leisure 14.86 47.97 7.43
Bring/Get 54.05 83.11 10.14
Touring 4.73 19.59 0.00
Other 5.41 13.51 0.00
Sleeping 100.00 100.00 100.00

Table 4.16: Validation results for the activity selection modules 2 and 3: relative frequency
(%) of sequences containing the specified activity type

SAM-based History-based Test

In-home activities 2.09 1.41 1.71
Working 1.06 1.22 1.20
Services 1.00 1.04 1.00
Out-of-home eating 1.00 1.05 1.17
Grocery shopping 1.00 1.16 1.00
Non-daily shopping NA 1.06 1.00
Education 1.00 1.14 1.33
Social activity 1.00 1.04 1.04
Leisure 1.00 1.13 1.00
Bring/Get 1.00 1.20 1.40
Touring 1.00 1.17 NA
Other 1.00 1.25 NA
Sleeping 1.99 1.93 2.01

Table 4.17: Validation results for the activity selection modules 2 and 3: average number of
episodes of the specified activity type within the sequences containing this activity type

4.5 Module 4: Location

4.5.1 Reward Function

In the fourth module the agent picks the location on which the selected activity takes place.

For this decision, the agent chooses from a set of seven locations. Location zero is the home

153

CHAPTER 4. DESIGN OF THE SYSTEM

location, while locations one to six correspond to a distance band counted from the home

location; the boundaries of these distance bands are: less than 2 km (but not the home

location), 2− 5 km, 5− 10 km, 10− 25 km, 25− 50 km and more than 50 km respectively.

The reward of the location decision is assigned based on the location preferences for the

specified activity type as inferred from probability distribution of the underlying observed

diary data. Tables 4.18 to 4.20 show the observed preferences as estimated from the observed

data for cluster 1 to 3 respectively.

154

4
.5
.

M
O
D
U
L
E

4
:
L
O
C
A
T
IO

N

Activity type Home Location 1 Location 2 Location 3 Location 4 Location 5 Location 6

In-home activities 1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
Working -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 1.0000 -1.0000
Services 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
Out-of-home eating 0.0000 0.0000 0.1579 0.1579 0.2632 0.2632 0.1579
Grocery shopping 0.0000 0.5455 0.0909 0.1818 0.1818 0.0000 0.0000
Non-daily shopping 0.0000 0.1111 0.2222 0.1111 0.2222 0.2222 0.1111
Education 0.0000 0.0000 0.3846 0.0000 0.0769 0.3846 0.1538
Social activity 0.0000 0.1333 0.2000 0.1333 0.2000 0.0667 0.2667
Leisure 0.0000 0.2308 0.1538 0.3077 0.1538 0.0769 0.0769
Bring/Get 0.0000 0.2414 0.4138 0.1379 0.1034 0.1034 0.0000
Touring - - - - - - -
Other - - - - - - -
Sleeping 1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

Table 4.18: Parameters for the reward functions in module 4 based on the observed data of cluster 1

1
5
5

C
H
A
P
T
E
R

4
.

D
E
S
IG

N
O
F

T
H
E

S
Y
S
T
E
M

Activity type Home Location 1 Location 2 Location 3 Location 4 Location 5 Location 6

In-home activities 1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
Working -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 1.0000 -1.0000
Services 0.0000 0.2000 0.2000 0.2500 0.2000 0.1000 0.0500
Out-of-home eating 0.0000 0.4286 0.0714 0 0.2143 0.0714 0.2143
Grocery shopping 0.0000 0.4483 0.4138 0.0690 0.0000 0.0345 0.0345
Non-daily shopping 0.0000 0.2727 0.3182 0.2727 0.0455 0.0909 0.0000
Education 0.0000 0.1111 0.0000 0.3333 0.0000 0.2222 0.3333
Social activity 0.0000 0.1515 0.2121 0.2121 0.2424 0.1212 0.0606
Leisure 0.0000 0.2759 0.1034 0.2069 0.1379 0.0345 0.2414
Bring/Get 0.0000 0.3585 0.0755 0.4717 0.0566 0.0000 0.0377
Touring - - - - - - -
Other - - - - - - -
Sleeping 1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

Table 4.19: Parameters for the reward functions in module 4 based on the observed data of cluster 2

1
5
6

4
.5
.

M
O
D
U
L
E

4
:
L
O
C
A
T
IO

N

Activity type Home Location 1 Location 2 Location 3 Location 4 Location 5 Location 6

In-home activities 1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
Working -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 1.0000
Services - - - - - - -
Out-of-home eating 0.0000 0.0000 0.5000 0.0000 0.5000 0.0000 0.0000
Grocery shopping - - - - - - -
Non-daily shopping 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
Education 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
Social activity 0.0000 0.2000 0.0000 0.2000 0.0000 0.0000 0.6000
Leisure 0.0000 0.0000 0.2500 0.2500 0.2500 0.0000 0.2500
Bring/Get 0.0000 0.6667 0.0000 0.3333 0.0000 0.0000 0.0000
Touring - - - - - - -
Other - - - - - - -
Sleeping 1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

Table 4.20: Parameters for the reward functions in module 4 based on the observed data of cluster 3

1
5
7

CHAPTER 4. DESIGN OF THE SYSTEM

The execution of in-home activities is restricted to the home location, which does not

demand any further explanation. In addition, the current research assumes that the fixed

activities can occur at only one location as well. For the sleeping activity, this location is

set to the home location, whereas the location for the working activity is inferred from the

observed data. The fixed working location is defined to be the location with the highest

probability in the observed sequences. This concept of fixed locations is reflected in the

reward function by assigning a rather high reward for executing the activity at the fixed

location, while determining a large penalty for executing the activity at alternative location

as shown in tables 4.18 to 4.20. Consequently, the location of a fixed activity does not

have to be pre-determined and is selected by the agent based on the reward accumulated

in the course of the learning algorithm. The fixity of the location is thus supported by the

underlying reward function.

Furthermore, it is worth noting that the decision of this module is of major influence

on the selection of the travel mode used to get to this location in the next module. This

interaction between the decision modules brings two advantages of reinforcement learning

and its multi-actor version to the surface.

First, a reinforcement learning agent does not only learn to select the most optimal action

in a given state, he also learns the value of all feasible actions in this state. This characteristic

allows the agent to choose the best action - i.e. the action corresponding to the largest value

-, but it also enables indicating the second best action in case the best action is not attainable

for some reason. For example, presume that the most preferred location for performing a

certain activity is location six (i.e. a location more than 50 km from the home location).

However due to car unavailability, this location may not be reached and is thus infeasible. In

this case, the reinforcement learning agent does not have to be retrained and is able to select

the second optimal location for this activity type autonomously and without any additional

effort.

This leads to the second advantage; one linked to the multi-actor variant of reinforcement

learning. Because the decision modules are strongly interrelated, a high-level decision (in this

case selection of the activity location) is very likely to influence the value of a lower-level

decision (in this case selection of the travel mode) to a large extent. Yet, if the high-

158

4.6. MODULE 5: TRAVEL MODE

level decision module does not take the value of its subordinate decisions modules into

consideration, the reinforcement learning system may get stuck in a suboptimal solution.

For this purpose, multi-actor reinforcement learning is applied here as described in section

2.4. A multi-actor reinforcement learning agent ensures that the order in which the decisions

are taken does not affect the value of the optimal solution selected. After all, a multi-actor

reinforcement agent can select an apparently less optimal action in one module in order to

be able to reach an action in a next module, which results in a higher global action value.

4.5.2 Validation

To verify the functioning of the current module, the duration module is trained first, after

which the second and third modules determining the sequence of activities are trained, and

finally the location module is trained. The number of learning episodes for each training

phase equals 5, 000. Moreover, as is the case for the previous modules, this module is also

incorporated into the learning framework by means of multi-actor reinforcement learning to

enable interaction between the decision levels.

Table 4.21 summarizes for each activity type the location that is selected most. The

results presented here are very favourable: when putting this table against the observed

location preferences displayed in tables 4.18 to 4.20, it can be concluded that the reinforce-

ment learning algorithm is able to reproduce these preferences very well. Furthermore, all

in-home and all sleeping activity episodes in the simulated sequences take place at the home

location, and all working activity episodes occur at the pre-determined fixed work location.

4.6 Module 5: Travel mode

4.6.1 Reward Function

The fifth and final module is held responsible for selecting the transport mode used to reach

the desired location in case this location differs from the location of the previous activity. In

the current research, the travel mode choice set consists of a slow mode (i.e. on foot, by bike

or by moped), a private motorized vehicle (i.e. by motorcycle or by car, either as driver or

as passenger) or public transport (i.e. by train, by bus, by taxi or by subway), called “slow”,

159

CHAPTER 4. DESIGN OF THE SYSTEM

Activity type Cluster 1 Cluster 2 Cluster 3

In-home activities 0 0 0
Working 5 - -
Services 4 - -
Out-of-home eating 5 - -
Grocery shopping 1 1
Non-daily shopping 4 - -
Education 5 - -
Social activity 4 - -
Leisure 3 2
Bring/Get 3 - -
Touring 1/2 - -
Other 2 - -
Sleeping 0 0 0

Table 4.21: Validation results for the location module 4

“car” and “public” respectively.

In this module, the agent receives a reward which depends on the travel time required

to get to the selected location and the travel mode of the current home-based tour (if any).

If the selected travel mode does not equal the travel mode of the current home-based tour,

the agent receives a penalty if he switches from the slow mode or public transportation

to a private motorized vehicle or vice versa. If the travel mode of the home-based tour is

set to the slow mode and the agent chooses to use the public transportation to get to the

desired location or the other way round, the agent does not receive this penalty due to the

interchangeability of these transport modes.

The reward based on the travel time is inspired by the concept of a constant travel time

budget (Zahavi & Talvitie, 1980; Zahavi & Ryan, 1980), which suggests that people are

willing to travel a certain amount of time to reach a certain location to execute a particular

activity. This idea implies that, if - for one reason or another - the speed of the habitual

travel mode used increases or if a particular individual uses an alternative travel mode, both

of which enable spanning a larger distance in the same amount of time, this individual is

prepared to travel further to execute the same activity; causing the individual’s sphere of

action to expand accordingly (Hägerstrand, 1970). In this perspective, the reward of the

fifth module increases linearly towards the highest attainable reward for this module when

the travel time to reach the selected location by means of the chosen travel mode approaches

160

4.6. MODULE 5: TRAVEL MODE

the average of the observed travel times for the current activity. The reward decreases when

the required travel time drifts away from this average. Figure 4.12 displays the course of

this reward function.

Travel time

R
ew

ar
d

0 Avg. travel time 120

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 4.12: Reward function in module 5 for the working activity of cluster 1

4.6.2 Validation

As the choice of the transport mode is highly interrelated with the preceding activity and lo-

cation choices, as well as with the travel mode of the current out-of-home tour, the validation

of the fifth module is included in the validation of the entire scheduling framework. For this

purpose, the generated activity-travel patterns are compared to their corresponding coun-

terparts in the validation set by means of a multidimensional sequence alignment method

161

CHAPTER 4. DESIGN OF THE SYSTEM

(DP-SAM) - as proposed in Joh et al. (2001) - based on the activity type, location category

and travel mode. In this case, the technique is suited as all dimensions which are compared,

contain categorical data. Furthermore, it is assumed here that the distance between two

categories is independent of these categories, which is particularly important for comparing

the location dimension.

To calculate the multidimensional dissimilarities between the sequences, the dimensions

are weighted as follows: the activity type receives a weight of two, while the location category

and travel mode get a weight of one. Tables 4.22 and 4.23 give an overview of the outcome

of this comparison in the short and long format respectively. The hypotheses for the T -tests

in these tables resemble the ones specified in Equation 4.9.

Cluster 1 Cluster 2 Cluster 3 All

SAM in set of validation sequences
Avg. 1.80 1.72 2.16 1.91
St.dev. 0.57 0.76 0.77 0.68

SAM in set of simulated sequences
Avg. 1.07 0.23 1.80 1.19
St.dev. 0.38 0.25 0.65 0.70

SAM between validation sequences and simulated sequences
Avg. 2.08 1.92 2.68 2.09
St.dev. 0.48 0.54 0.79 0.62
t-statistic 3.86 3.30 3.07 3.51
P-value 0.0002 0.0007 0.0025 0.0003

Table 4.22: Validation results for DP-SAM calculated based on the short format sequences
simulated by the entire multi-actor reinforcement learning system

With regard to the comparison of the sequences in their short format, it catches the

eye that for each cluster the distances measured in the set of validation sequences exceeds

this distance measured in the set of simulated sequences. This observation indicates that

the simulated sequences show less variability than the actual observed sequences, which

is also endorsed by the lower standard deviations. This is particularly the case for the

sequences simulated in cluster 2, for which the average DP-SAM is as low as 0.23. It should

be noted here that, depending on the goal of the simulation, a low variability within the

simulated sequences can be considered a drawback. For instance, if one is mainly interested

in analysing the results at the level of the individual agent, rather than concentrating on

162

4.6. MODULE 5: TRAVEL MODE

Cluster 1 Cluster 2 Cluster 3 All

SAM in set of validation sequences
Avg. 0.34 0.25 0.40 0.38
St.dev. 0.08 0.13 0.13 0.13

SAM in set of simulated sequences
Avg. 0.16 0.01 0.26 0.26
St.dev. 0.07 0.01 0.11 0.20

SAM between validation sequences and simulated sequences
Avg. 0.39 0.26 0.48 0.33
St.dev. 0.09 0.08 0.07 0.12
t-statistic 3.66 0.26 4.16 -5.02
P-value 0.0003 0.3975 0.0001 1.000

Table 4.23: Validation results for DP-SAM calculated based on the long format sequences
simulated by the entire multi-actor reinforcement learning system

aggregated results, a low variability usually indicates that all sequences belonging to the

same cluster are (virtually) the same, which may distort the results of subsequent analyses.

Yet, the variability of the simulated sequences within the same cluster can be influenced by

a number of operations, such as increasing the number of prototypes so that less agents from

the synthetic population correspond to the same prototype agent or redesigning the reward

functions to allow for more variability.

When comparing the simulated sequences with their corresponding observed validation

sequences, the average DP-SAM is higher than the average DP-SAM in the validation set.

However, at the 0.01%-level none of these differences are significant. Considering these results

for the multidimensional sequences in the long format presented in table 4.23, the average of

the dissimilarities between the validation and simulated sequences for the entire validation set

is actually smaller than the average dissimilarity of the sequences in the validation set. These

results indicate that the simulated sequences match the corresponding validation sequences

well and that the presented framework is thus highly suited to reproduce individual activity-

travel patterns based information distilled from observed activity-travel sequences. These

results are elaborated and fine-tuned further in the next chapter.

163

CHAPTER 4. DESIGN OF THE SYSTEM

4.7 Conclusions

This chapter describes the scheduling engine, founding the core of the research presented in

this manuscript, based on multi-actor reinforcement learning with regression tree function

approximation. In general, the scheduling process is conceived as follows: at a certain time

of the day, all agents are in a state and are performing an activity (or travel related to this

activity), which is characterized amongst other attributes by the duration of this activity

up till the current time slot, its location and travel mode. Before proceeding to the next

time step, each agent decides either to continue executing the current activity for one more

time step, or to start executing another activity, in which case the agent selects the activity

type, activity location and travel mode used to get to this location. To realize this concept,

the scheduling engine contains five modules, each of which corresponds to one activity-travel

related decision.

The first module is responsible for determining the duration of the activity that is being

executed by deciding either to continue or stop executing the current activity. The reward

guiding the action selection of the corresponding reinforcement learning module is based on

the duration of each activity type observed in the data set. If the agent stops performing

the current activity, the agent proceeds to the next modules.

To account for the existence of fixed activities, such as working and sleeping, the agent

chooses whether or not to start the next fixed activity in the second module. The reward

accompanying this decision depends on the time left to the earliest and last possible starting

times of the fixed activity.

In case the agent does not want to commence this fixed activity, he decides on which

activity he does want to carry out in the third module. In the present chapter, two reward

functions supporting this decision are tested: the first reward function is based on the history

of the selected activity, while the second one reflects the improvement in the unidimensional

sequence alignment measure when adding the selected activity to the existing sequence with

respect to the observed sequences. The analyses in this chapter demonstrated that the

sequence alignment-based reward is preferred to the history-based reward function.

Next, the agent selects a distance band from his home location, defining the location

where he wants to perform the selected activity, either fixed or flexible, in the fourth module.

164

4.7. CONCLUSIONS

The reward of this decision is founded on the attributes describing the locations in the

observed data.

Finally, the fifth reinforcement learning module accounts for selecting the travel mode to

get to the desired location, in case this location does not equal the home location. In this

module, the reward is estimated based on the observed travel time budgets.

For each of these modules, the present chapter elaborates on the design of the reward

functions and illustrates the functioning and validity of these modules. Finally, the results

presented in this chapter indicate that the described scheduling framework reaches it pos-

tulated goals and thus is capable of simulating activity-travel sequences based on observed

diary data. The performance of this framework is analysed in the next chapter.

165

CHAPTER 4. DESIGN OF THE SYSTEM

166

Chapter 5

Performance

5.1 Introduction

The ultimate goal of the scheduling framework described in this dissertation is to be fitted in

an activity-based modelling system. Consequently, the ability of this scheduling algorithm

to generate daily activity-travel sequences within a realistic experimental setting has to be

evaluated. After all, the results presented in the previous chapter - though very promising -

are generated based on a small-scale experiment and do not take into account the usability

of the current scheduling framework in modelling the activity-travel behaviour of a realistic

population group, which for instance contains more than 5 million individuals, as is the

case for the current study area Flanders (Belgium) (in 2008 Flanders consisted of 6, 161, 600

inhabitants; 4, 944, 809 of which are adult inhabitants1 and form the target population of

the present research).

Therefore, this chapter runs through the entire framework discussed in chapter 4 and

visualized in figure 4.1. The current chapter examines the computational performance of

the algorithm in section 5.2 and suggests a number of actions to improve and accelerate the

scheduling algorithm in section 5.3. To end with, these improvements are assessed in section

5.4.

1Source: http://www4.vlaanderen.be/

167

CHAPTER 5. PERFORMANCE

5.2 Analysis of the Performance of the Algorithm

5.2.1 Preliminary Operations

The previous chapter shows that the scheduling algorithm is capable of predicting activity-

travel diaries on a very detailed level - i.e. 5-minute basis, 13 activity categories, 7 feasible

locations and 3 travel modes. However, based on the available data, it should be considered

to drop the level of detail of one or more dimensions to improve the prediction quality.

After all, taking a closer look at the statistics of the observed data as presented in tables

4.3 to 4.5, one will notice that some activity categories do not provide enough instances

to support a substantiated training of the scheduling algorithm. For instance, with respect

to the service activity only 4 episodes in cluster 1, 20 episodes in cluster 2 and not even

one episode in cluster 3 are observed. Consequently, the 13 activity types in the original

data set are aggregated and reclassified into five categories: in-home activities, sleeping,

working, mandatory activities and discretionary activities. The in-home and sleeping activity

categories are adopted from the original activity categories as these activity types occur very

frequently in the observed data set and do not raise any difficulties. The working activity is

also copied from the original activity categories as this activity is considered to be fixed in

time and space, and cannot be put together with more flexible activity types. Furthermore,

the working activity is observed frequently enough in the data set to act as stand-alone

category. The category of mandatory activities joins the service activities, daily shopping,

education and bring/get somebody/something, as they are all supposed to be less susceptible

to delays and substitution by other activities and tend to be more fixed compared to the

activity categories out-of-home eating, non-daily shopping, social activities, leisure touring

and other activities, which are now labelled discretionary activities. The effect on the number

of observed episodes for each activity type is reflected in table 5.1. The careful reader will

notice that the number of observed mandatory and discretionary activity episodes do not

equal the sum of the observed instances of their compounding former activity categories.

This is due to the fact that subsequent activity episodes covering the same activity type are

merged. Taking into account the fact that reducing the level of detail impacts the speed of

the algorithm, this step is contemplated prior to analysing the performance of the algorithm.

168

5.2. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM

The performance analyses thus proceed based on this new activity classification, while the

levels of the dimensions activity location and travel mode remain unchanged.

Old activity type # New activity type #

In-home activities 996 In-home activities 996

Sleeping 1193 Sleeping 1193

Working 227 Working 227

Services 27

Mandatory activities 204
Grocery shopping 51
Education 31
Bring/Get 106

Out-of-home eating 56

Discretionary activities 209

Non-daily shopping 39
Social activity 79
Leisure 57
Touring 0
Other 0

Table 5.1: Number of activity episodes observed for the old and new activity classification

The modified data serve as input to the scheduling algorithm. Aiming at walking through

and evaluating the entire agent-based micro simulation framework summarized in figure 4.1,

the dataset is split into a training and validation set of 75% and 25% respectively at this

point in time. For illustration purposes, the observed population corresponds to the training

set, whereas the synthetic population corresponds to the validation set. This approach does

not entirely match an actual simulation process, in which the observed population generally

contains all observed activity-travel diaries, and the synthetic population is constructed as

such that each individual within the synthetic population matches a particular individual of

the target population (i.e. the population for which a simulation of activity-travel sequences

is desired).

In the first step of the prediction process, the activity-travel diaries contained in the

training set are converted to the long sequence format in order to calculate dissimilarities

between these training sequences. Next, the clustering algorithm described in 3.4.1 is applied

to these dissimilarities. As a result, three clusters of sequences displaying similar activity-

travel behaviour can be identified based on the silhouette width.

Some general statistics on the sequence characteristics and the activities recorded in these

169

CHAPTER 5. PERFORMANCE

sequences for each of the clusters are included in tables 5.2 and 5.3, while tables 5.4 and 5.5

give an overview on the activity durations and table 5.6 examines the radius of action of the

observed sequences. Tables 5.2 and 5.3 indicate that cluster 2 mainly consists of sequences

including at least one working episode (95%), while only 5 and 4 percent of the sequences

of clusters 1 and 3 respectively contain a working activity. Furthermore, both table 5.4 and

table 5.5 show that the average duration spent on the working activity is considerably less for

clusters 1 and 3, compared to cluster 2. Additionally, the majority of the sequences within

cluster 3 (67%) only include an in-home activity in between two sleeping activities, explaining

the large average duration per in-home activity episode (443 minutes) with respect to cluster

2. A rather large number of sequences in cluster 1 and 2 records at least one mandatory

activity (25% and 30% respectively), whereas only a small number of sequences of cluster 3

includes this activity type (7%). Table 5.5 reveals that in cluster 1 more time is spent in the

course of the entire observed sequences on in-home activities (860 minutes) with respect to

the other two clusters and in cluster 3 more time is spent in total on discretionary activities

(344 minutes). Finally, table 5.6 takes a look at the location of the activity which took place

in the highest distance band with respect to the home location. This table shows that the

sequences of clusters 1 and 3 are less geographically dispersed than the sequences of cluster

2.

170

5
.2
.

A
N
A
L
Y
S
IS

O
F

T
H
E

P
E
R
F
O
R
M
A
N
C
E

O
F

T
H
E

A
L
G
O
R
IT

H
M

Cluster 1 Cluster 2 Cluster 3

of sequences 232 147 67
Avg.# of activities in sequences 4.58 5.90 3.28
% of sequences which match the following patterns:

Sleep-Home-Sleep 50.86 0.68 67.16
Sleep-Home-{Some activities,including work}-Home-Sleep 3.45 71.43 0.00
Sleep-Home-{Some activities,not including work}-Home-Sleep 33.62 3.40 5.97

Table 5.2: Some general descriptive statistics of the clusters

Cluster 1 Cluster 2 Cluster 3

In-home activities 100.00 100.00 88.06
Sleeping 100.00 100.00 100.00
Working 4.74 95.24 4.48
Mandatory activities 25.43 30.61 7.46
Discretionary activities 31.03 33.33 22.39

Table 5.3: Percentage of sequences in clusters containing the listed activities at least once

Cluster 1 Cluster 2 Cluster 3
Avg. Sd. # Avg. Sd. # Avg. Sd.

In-home activities 394 507 383 302 209 191 63 443 322
Sleeping 467 459 95 294 442 57 134 450 47
Working 11 230 131 163 459 158 3 338 188
Mandatory activities 97 78 109 56 85 119 5 132 209
Discretionary activities 94 140 124 52 153 161 15 344 210

Table 5.4: Number of observed activity episodes and average and standard deviation of the duration of these activity episodes1
7
1

C
H
A
P
T
E
R

5
.

P
E
R
F
O
R
M
A
N
C
E

Cluster 1 Cluster 2 Cluster 3
Avg. Sd. # Avg. Sd. # Avg. Sd.

In-home activities 232 860 239 147 429 182 59 473 322
Sleeping 232 924 126 147 884 83 67 899 68
Working 11 230 131 140 535 107 3 338 188
Mandatory activities 59 129 139 45 106 144 5 132 209
Discretionary activities 72 183 136 49 162 174 15 344 210

Table 5.5: Number of sequences containing activities and average and standard deviation of the total duration of the activities within these
sequences

Cluster 1 Cluster 2 Cluster 3

Home 51.72 0.68 67.16
<2km 8.62 2.04 7.46
2-5km 8.19 12.93 2.99
5-10km 12.93 12.93 4.48
10-25km 6.90 25.17 10.45
25-50km 6.03 24.49 2.99
>50km 5.60 21.77 4.48

Table 5.6: Percentage of sequences in which the listed distance bands corresponds to the farthest location reached

1
7
2

5.2. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM

In the next step, the regression tree determining the socio-demographic profiles for these

clusters is fitted. The result is displayed in table 5.7. This regression tree shows that the

main explanatory variables are the day of the week (weekdays versus weekend days), age and

two work-related variables, in particular the registered number of working hours per week

and the work schedule. As expected from the descriptive statistics above, cluster 2 covers

sequences recorded on weekdays, the majority of which can be matched to full-time working

individuals (i.e. working more than 20 hours per week) under the age of 55. The sequences

of cluster 1 are mainly recorded on weekdays by non-working individuals or are recorded

on weekend-days. The profile corresponding to the sequences of cluster 3, is not as easily

distinguishable.

This raises one major disadvantage of the described scheduling framework: each proto-

type agent corresponds to one and only one cluster. For each of the test agents, the cluster

number is obtained based on the regression tree as follows: the values of the independent

variables - which are assumed to be known for the agents of the synthetic population and

thus also for the agents of the test set - are used to determine the node of the regression

tree to which the agent belongs. The agent is then assigned the cluster number that cor-

responds to the highest relative frequency in the resulting node. These relative frequencies

are calculated by dividing the number of observed cases of the cluster into consideration and

belonging to the examined node by the sum of the number of observed cases for all clusters

assigned to this node.

However, some clusters are not prevailing enough to be selected in any of the leaves,

which is also the case for cluster 3, as shown in the regression tree results presented in table

5.7. Furthermore, valuable information is lost for the scheduling algorithm when assuming

that an agent is part of one and only one cluster. After all, as the relative frequencies differ

for each node, agents belonging to different nodes should be processed differently in the

scheduling algorithm according to these relative frequencies. This issue is taken on in the

next section.

173

C
H
A
P
T
E
R

5
.

P
E
R
F
O
R
M
A
N
C
E

Test rule NodeNr. #cases Pred. %clu1 %clu2 %clu3 Leaf

Root 0 446 1 0.5202 0.3296 0.1502
Weekday : weekday 1 307 2 0.2803 0.3206 0.0874

Work : no 3 9 1 0.1682 0.0157 0.0381
Age < 37 5 22 1 0.0224 0.0112 0.0157 *
Age > 37 6 74 1 0.1390 0.0045 0.0224 *

Work : parttime, fulltime 4 208 2 0.1121 0.3049 0.0493
Age < 55.5 7 201 2 0.1009 0.3049 0.0448

Workinghours < 20.5 9 15 1 0.0202 0.0090 0.0045 *
Workinghours > 20.5 10 174 2 0.0695 0.2892 0.0314 *

Age > 55.5 8 7 1 0.0112 0.0000 0.0045 *
Weekday : weekend 2 139 1 0.2399 0.0090 0.0628

Age < 41.5 11 46 1 0.0605 0.0000 0.0426 *
Age > 41.5 12 92 1 0.1794 0.0067 0.0202 *

Table 5.7: Outcome of decision tree attaching socio-demographical profiles to the cluster results

1
7
4

5.2. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM

5.2.2 A First Glance at the Performance of the Algorithm

For the purpose of mapping the performance of the algorithm, one individual from the test

set is selected to execute the subsequent analyses. The individual is 39 years old, is married

and works full-time in a 38-hour work schedule. The simulations aim at predicting this

individual’s activity-travel pattern on a weekday. According to the decision tree in table

5.7, the relative frequencies for this agent equal 0.1782, 0.7414 and 0.0805 for cluster 1,

cluster 2 and cluster 3 respectively (i.e. absolute frequencies of 0.0695, 0.2892 and 0.0314

respectively). The time resolution equals 5 minutes and the prototype agent is trained in

the course of 15, 000 episodes and refined in the course of 30 episodes.

In addition, the reinforcement learning framework as discussed in the previous chapter

is compared to a multi-actor reinforcement learning framework incorporating Q-tables. Be-

cause the former approach allows the reinforcement learning agent to generalize over the

state and action variables, the resolution used for training the prototype agents is equal to

15 minutes. A run of the latter approach takes 455 seconds, while a run of the enhanced

reinforcement learning approach lasts for 731 seconds as measured on a server equipped with

a 2.99 GHz Intel(R)Xeon(R) processor and 16.0 GB of RAM. Tables 5.8 and 5.9 provide a

more profound insight into the division of this execution time over the called functions and

the functions called within these functions (i.e. child functions) for both simulations. For the

sake of clarity, only the functions which are no constructors or destructors of classes within

the program and the functions of which the total execution time including the execution

time of the child functions takes up more than five percent, are included in these tables.

Table 5.8 shows that the algorithm incorporating Q-tables spends the majority of its

time (91%) calculating the dissimilarity based on the sequence alignment method for de-

termining the reward of module 3. With respect to the multi-actor reinforcement learning

system incorporating a regression tree function approximator, the share of this function is

considerably less (32%). However, the implementation of this function is equal for both

reinforcement learning systems, implying that the enhanced reinforcement learning system

spends relatively more time maintaining its regression tree function approximator, which is

revealed in table 5.9. In this case, 60% of the execution time is used to update the regression

tree. 12% of the total execution time - i.e. 20% of the execution time required for updating

175

CHAPTER 5. PERFORMANCE

Function Name
%Time Usage
Function+Children

Main 100.00
· Simulation::run · 98.67
· · Agent::updateQ · · 96.80
· · · Agent::calculateRewardmodule3 · · · 91.30
· · · · Inputsequences::calculateSam · · · · 91.25
· · · · · Sequence::calculateUnisam · · · · · 91.12
· · · · · Rest · · · · · 0.13
· · · · Rest · · · · 0.05
· · · Rest · · · 5.50
· · Rest · · 1.87
· Rest · 1.33

Table 5.8: Time usage of functions for the multi-actor reinforcement learning scheduler
incorporating Q-tables

Function Name
%Time Usage
Function+Children

Main 100.00
· Simulation::run · 99.23
· · Agent::updateQ · · 94.94
· · · {Module1::updateQ
· · · Module2::updateQ
· · · Module3-5::updateQ

· · · {45.32
· · · 10.25
· · · 5.70

· · · · Tree::updateTree · · · · 59.71
· · · · · Node::updateNode · · · · · 34.98
· · · · · · Node::updateStats · · · · · · 32.10
· · · · · · · Studentst::calculateAlpha · · · · · · · 11.73
· · · · · · · Node::isLeaf · · · · · · · 7.70
· · · · · · · Rest · · · · · · · 12.67
· · · · · · Rest · · · · · · 2.88
· · · · · Node::fitNode · · · · · 6.53
· · · · · Tree::calculateExplorationrate · · · · · 14.49
· · · · · · Node::getSumvarianceleaves · · · · · · 8.15
· · · · · · Node::getNuminstancesleaves · · · · · · 6.32
· · · · · · Rest · · · · · · 0.02
· · · · · Rest · · · · · 3.71
· · · · Rest · · · · 1.56
· · · Agent::calculateRewardmodule3 · · · 32.18
· · · · Inputsequences::calculateSam · · · · 32.14
· · · · · Sequence::calculateUnisam · · · · · 32.10
· · · · · Rest · · · · · 0.04
· · · · Rest · · · · 0.04
· · · Rest · · · 1.49
· · Rest · · 4.29
· Rest · 0.77

Table 5.9: Time usage of functions for the multi-actor reinforcement learning scheduler
including a regression tree function approximator

176

5.2. ANALYSIS OF THE PERFORMANCE OF THE ALGORITHM

the regression tree - is required to calculate the value of α in the regression tree. Further-

more, 14% of the execution time is consumed in updating the value for the exploration rate

applied in the reinforcement learning mechanism.

5.2.3 Streamlining of the Program Code

To enable the use of the proposed scheduling framework in a large-scale experiment, major

inefficiencies of the program code are eliminated at this point in time. For instance, within

the scope of this research, the function applying the unidimensional sequence alignment

method as part of determining the reward of module 3 is optimized. Additionally, the linear

search algorithm underlying the computation of the value for the updated α-parameter is

changed to a binary search algorithm to enhance the speed of this computation. Finally, the

values founding the calculation of the exploration rate are maintained when updating the

regression tree, rather than calculating them from scratch whenever required.

As a result of these actions, the execution time for the reinforcement learning system

incorporating Q-tables drops to 100 seconds and for the enhance reinforcement learning

system to 221 seconds. The breakdowns of these execution times are recorded in tables 5.10

and 5.11. The share of auxiliary functions - such as the functions used to read the parameters

from files - grows due to the fact that the execution time of the main functions of the system

has decreased. Nevertheless, for convenience of comparison, these auxiliary functions are not

included in the tables.

The tables show a considerable drop in the share of some of the functions discussed

in the previous paragraph: for instance the function utilizing the unidimensional sequence

alignment method decreases to 43% in the reinforcement learning system incorporating Q-

tables and to 5% in the enhanced reinforcement learning system. Moreover, some functions

even disappear from these lists, as is the case for the function computing the value of the

α-parameter in the regression tree and the exploration rate for the reinforcement learning

system because the execution time required for these functions dropped considerably due to

the implementation of the code optimizations suggested in the previous paragraph.

177

CHAPTER 5. PERFORMANCE

Function Name
%Time Usage
Function+Children

Main 100.00
· Simulation::run · 72.65
· · Agent::updateQ · · 65.75
· · · Module1::updateQ · · · 9.32
· · · Agent::calculateRewardmodule3 · · · 43.75
· · · · Inputsequences::calculateSam · · · · 43.02
· · · · · Sequence::calculateUnisam · · · · · 42.74
· · · · · Rest · · · · · 0.28
· · · · Rest · · · · 0.73
· · · Rest · · · 12.68
· · Agent::selectAction · · 6.63
· · Rest · · 0.27
· Rest · 27.35

Table 5.10: Time usage of functions for the multi-actor reinforcement learning scheduler
incorporating Q-tables after improving code efficiency

5.3 Suggestions to Scaling Up the Algorithm

The previous section lifted the veil concerning the potential impact of improving the code

efficiency on the speed of the system. Although these improvements are quite favourable,

some advances on the design of the system are also inevitable. Therefore, the remainder of

this section discusses a number of suggestions which aim at scaling up the algorithm for use

in a large-scale experimental setting.

5.3.1 Increase in the Number of Prototype Agents

Firstly, to benefit from the information contained in the socio-demographic profiles, the

notion of a single prototype agent for each separate cluster is abandoned. As such, the

algorithm can take advantage of the assignment frequencies for each cluster as recorded in

the decision tree. This idea behind this improvement is borrowed from the concept of fuzzy

clustering, which is extensively described in Hoppner et al. (1999). Fuzzy set theory does not

assume a hard partitioning of the data set, in which each case of the data set can be assigned

to one and only one cluster. Instead, it introduces the principle of “degree of membership”,

which indicates the extent to which an instance matches the characteristics of each cluster.

In this view, the relative frequencies included in the decision tree are considered to

178

5.3. SUGGESTIONS TO SCALING UP THE ALGORITHM

Function Name
%Time Usage
Function+Children

Main 100.00
· Simulation::run · 88.79
· · Agent::updateQ · · 76.61
· · · {Module1::updateQ
· · · Module2::updateQ
· · · Module3-5::updateQ

· · · {49.07
· · · 13.90
· · · 3.83

· · · · Tree::updateTree · · · · 62.41
· · · · · Node::updateNode · · · · · 33.66
· · · · · · Node::updateStats · · · · · · 24.49
· · · · · · Rest · · · · · · 9.17
· · · · · Node::fitNode · · · · · 17.69
· · · · · · Node::calculateStats · · · · · · 6.85
· · · · · · Rest · · · · · · 10.84
· · · · · Rest · · · · · 11.06
· · · · Rest · · · · 4.39
· · · Agent::calculateRewardmodule3 · · · 5.56
· · · · Inputsequences::calculateSam · · · · 5.35
· · · · · Sequence::calculateUnisam · · · · · 5.27
· · · · · Rest · · · · · 0.08
· · · · Rest · · · · 0.21
· · · Rest · · · 4.25
· · Agent::selectAction · · 12.11
· · · {Module1::selectAction
· · · Module2-5::selectAction

· · · { 9.82
· · · 1.98

· · · · {Module1::selectBestaction
· · · · Module2-5::selectBestaction

· · · · { 9.73
· · · · 1.96

· · · · · Tree::getBestvalue · · · · · 10.75
· · · · · Rest · · · · · 0.94
· · · · Rest · · · · 0.11
· · · Rest · · · 0.31
· · Rest · · 0.07
· Rest · 11.21

Table 5.11: Time usage of functions for the multi-actor reinforcement learning scheduler
including a regression tree function approximator after improving code efficiency

179

CHAPTER 5. PERFORMANCE

indicate membership degrees and are incorporated in the reward functions as follows:

Ri(s, a) =

∑

j [mij ∗Rj(s, a)]
∑

j mij
. (5.1)

Here Ri is the reward of executing action a in state s for prototype agent i, Rj(s, a)

is the reward according to the parameters estimated for cluster j for performing this ac-

tion as defined in the previous chapter, and mij is the membership degree of cluster j for

prototype i, as determined by the corresponding node of the decision tree describing the

socio-demographic profiles. Consequently, one prototype agent can be constructed for each

feasible combination of membership degrees inferred from the decision tree.

5.3.2 Softmax Action Selection

Secondly, it is decided to replace the ε-greedy action selection method. As elaborated on

in section 2.2.1, the ε-greedy action selection strategy is a valuable method of guiding the

exploration-exploitation trade-off. But, when exploring, the algorithm selects an action

randomly from all available actions, disregarding the previously experienced action values.

This signifies that the odds of selecting the worst action - based on the action values - are the

same as the probability of selecting the next best action. Obviously, for the learning system

it is more favourable to explore the opportunities posed by higher valued actions. Moreover,

when exploiting its gathered knowledge, the agent greedily selects the highest valued action.

However, in some cases a number of actions could be regarded as a set of optimal actions

based on their action values. As a result, selecting an action either uniformly randomly and

independently of the action values or greedily, does not capitalize the information collected

on all actions.

From that perspective, it is advantageous to incorporate a softmax action selection strat-

egy in which a selection probability is attached to all available actions according to their

action values. The current research opts to use a Boltzmann distribution to rank and weight

the actions (Sutton & Barto, 1998). The probability of selecting an action ai equals:

eQ(s,ai)/τ

∑

j e
Q(s,aj)/τ

. (5.2)

180

5.4. VALIDATION

Here τ is a positive parameter and is called the temperature. When τ is close to zero, the

softmax action selection approaches the greedy action selection, whereas high temperatures

cause the probabilities of the actions to be equal (Sutton & Barto, 1998). To steer the

reinforcement learning agent, the τ -value is generally set to be high at the start of the

learning process and to decrease thereafter. As a result, the reinforcement learning agent

tends towards a true exploration of the set of feasible actions at first and is inclined to select

an action from a set of optimal actions as the learning process progresses.

Finally, as more prototype agents are being included in the system and the prototype

agents are better attuned to the individual agents, and because the softmax action selection

strategy ensures introducing a certain degree of variability in the simulated activity-travel

behaviour of agents assigned to the same prototype agent, it is no longer required to copy the

prior knowledge of prototype agents gathered in the course of the initial training phase to

the matching individual agents and to subsequently refine the agent’s individual knowledge.

Consequently, each individual agent no longer includes an individually attuned reinforcement

learning system and his actions are predicted based on the reinforcement learner incorpo-

rated within the corresponding prototype agent. This alteration implies that changes in the

reinforcement learning system of the prototype agent impact the decisions of all individual

agents assigned to this prototype.

5.4 Validation

This section gives an overview of the potential of the algorithm in simulating activity-travel

diaries for a large-scale population and at giving an indication of the predictive power of the

algorithm.

5.4.1 Computational requirements

Firstly, a simulation is run to compare the distribution of the execution time of the system.

To this end, an activity-travel pattern on a working day is generated for the individual agent

described in section 5.2.2 and assigned membership degrees 0.1782, 0.7414 and 0.0805 for

cluster 1, cluster 2 and cluster 3 respectively. As is the case in the previous paragraphs, in

this experiment the time resolution for the output sequences equals 5 minutes, while the time

181

CHAPTER 5. PERFORMANCE

resolution for training the prototype agents equals 15 minutes, and the prototype agent is

trained during 15, 000 episodes. The overall execution time of the system increases somewhat

to 238 seconds. The breakdown of this execution time into its major functions is shown in

table 5.12 and is similar to the one displayed in table 5.11.

Function Name
%Time Usage
Function+Children

Main 100.00
· Simulation::run · 98.72
· · Agent::updateQ · · 86.51
· · · {Module1::updateQ
· · · Module2::updateQ
· · · Module3-5::updateQ

· · · {57.87
· · · 14.90
· · · 2.45

· · · · Tree::updateTree · · · · 70.50
· · · · · Node::updateNode · · · · · 36.05
· · · · · · Node::updateStats · · · · · · 26.81
· · · · · · Rest · · · · · · 9.24
· · · · · Node::fitNode · · · · · 23.21
· · · · · · Node::calculateStats · · · · · · 8.67
· · · · · · Rest · · · · · · 14.54
· · · · · Rest · · · · · 11.24
· · · · Rest · · · · 4.72
· · · Agent::calculateRewardmodule3 · · · 7.72
· · · · Inputsequences::calculateSam · · · · 7.21
· · · · · Sequence::calculateUnisam · · · · · 7.08
· · · · · Rest · · · · · 0.13
· · · · Rest · · · · 0.51
· · · Rest · · · 3.57
· · Agent::selectAction · · 11.92
· · · {Module1::selectAction
· · · Module2-5::selectAction

· · · { 10.25
· · · 1.51

· · · Rest · · · 0.16
· · Rest · · 0.29
· Rest · 1.28

Table 5.12: Time usage of functions for the multi-actor reinforcement learning scheduler
including a regression tree function approximator incorporating the suggested enhancements

Next, the proposed multi-actor reinforcement learning framework is used to simulate an

activity-travel pattern for each of the 148 test cases. To start the analysis, membership

degrees are assigned to the test cases based on the tree visualized in table 5.7. The results

- displayed in table 5.13 - demonstrate that the test cases are scattered over 10 prototypes

based on these membership degrees. Note that not every prototype corresponds to a leaf of

182

5.4. VALIDATION

the decision tree: this is due to missing attributes for some cases in the test set. If a case

contains a missing value for one of the decision variables included in the nodes of the decision

tree, this case is not discarded. Instead, the case is dropped down the tree until either a leaf

is reached or until a node is reached for which the attribute is missing. In the latter case, the

relative frequencies in this node are used for prediction. As such, the membership degrees

of the instances belonging to prototypes 3, 4 and 9 are determined.

Prototype
Membership degrees (in %) Number of

Cluster 1 Cluster 2 Cluster 3 test cases

P1 86.96 3.26 9.78 25
P2 83.78 2.70 13.51 26
P3 76.98 2.88 20.14 1
P4 75.76 7.07 17.17 1
P5 71.43 0.00 28.57 4
P6 60.00 26.67 13.33 8
P7 58.70 0.00 41.30 17
P8 45.45 22.73 31.82 7
P9 22.39 67.66 9.95 4
P10 17.82 74.14 8.05 55

Table 5.13: Membership degrees for set of test cases

These prototype agents and their corresponding membership degrees serve as input for the

suggested reinforcement learning system to create a one-day activity-travel pattern for each

of the 148 test agents. Given this setting, the system runs for 3, 663 seconds or approximately

1 hour: 3, 662 seconds are required to initialize and train the 10 prototype agents and, after

that, 1 second is required to generate the 148 individual activity-travel sequences (i.e. on

average 7.2 milliseconds for each individual agent). As the ultimate goal of this research is to

simulate the activity-travel behaviour for each individual of a synthetic population covering

the research area, as discussed in the introduction to this chapter, and for a time resolution

of 5 minutes, these results indicate that - after training the prototype agents - the algorithm

would take up approximately 10 hours in order to create 5, 000, 000 individual activity-travel

patterns for one day.

The amount of time required for the initial training phase depends on the number of

prototypes and - obviously - on the number of training episodes. However, as a result of the

current implementation of the algorithm, once initialized, the prototype agents do not require

183

CHAPTER 5. PERFORMANCE

retraining as long as the founding activity-travel behaviour does not alter. In addition, even

when changes external to the algorithm are assumed to impact the activity-travel behaviour

of individuals, the prototype agents do not have to be retrained from scratch. If necessary,

the algorithm requires to be retrained in the course of only a limited number of episodes

to update its underlying Q-trees and adapt its behaviour accordingly. Moreover, as already

mentioned previously, it is possible to train the prototype agents at a different resolution

from the resolution requested for the output sequences, because the regression tree function

approximator supporting the reinforcement learning technique enables joining values of state

and action variables - including time-related attributes -, which can be treated similarly.

Furthermore, the selected time resolution impacts the timing to a large extent. For

instance, for time slots of 15 minutes for the output sequences and of 30 minutes for the

training phase, the initialization of the prototype agents lasts for 2, 821 seconds (i.e. ap-

proximately 47 minutes) and generating a one-day activity-travel sequence for all of the 148

test agents takes 0.36 seconds (i.e. on average 2.4 milliseconds for each individual agent).

Finally, the processing time can be substantially reduced by using parallel processors. The

current implementation processes all agents sequentially in one time slot before continuing to

the next one. Yet it is also feasible to have all agents select the actions to be executed in one

time step in parallel and then continue to the next time step. As such, the time required to

simulate the daily activity-travel patterns of the synthetic population is distributed among

the available processors, decreasing the overall execution time of the algorithm.

Regarding the memory requirements of the current implementation of the algorithm,

analyses prove to be bounded by the number of prototype agents, rather than by the number

of individual (synthetic) agents. To illustrate this, the algorithm proves to be able to train five

prototype agents and generate in total a maximum of 100 individual activity-travel diaries

at once, given the current memory restrictions, while it is feasible to generate activity-travel

sequences of at least one million individual agents based on only one prototype agent.

5.4.2 Predictive Power

For the purpose of assessing the impact of the suggested improvements on the predictive

power of the algorithm, an activity-travel diary is generated for each of the test agents,

184

5.4. VALIDATION

for four different scenarios based on the use of the softmax action selection strategy and

on the number of prototypes and their corresponding membership degrees. Concerning the

softmax action selection strategy, it can be decided to disregard this strategy and apply the

ε-greedy action selection strategy instead. With respect to the definition of the prototypes,

the prototypes can be scaled back to match the clusters by reducing the number of agents to

the number of clusters and assigning crisp membership degrees (i.e. for a certain prototype,

the membership degree of cluster x equals one if the prototype refers to cluster x, whereas

the membership degrees of the remaining clusters are zero).

The first scenario is the equivalent of the algorithm described in the previous chapter

with no softmax action selection and only three prototype agents, each corresponding to one

cluster. The second scenario does not use the softmax action selection strategy either; yet

this scenario does include the ten prototype agents whose membership degrees are defined in

table 5.13. The third and fourth scenarios do apply softmax action selection; in the former

scenario, the analyses are conducted based on the three agents matching the three clusters,

while in the latter scenario the ten suggested prototype agents are resumed.

Table 5.14 compares the outcome of these four scenarios (15, 000 training episodes and

a time resolution of 15 minutes for the training phase and 5 minutes during the prediction

phase). This table shows that the softmax action selection strategy offers the best oppor-

tunity of enhancing the predictive power of the algorithm. The improvement linked to the

introduction of a larger number of prototype agents by incorporating the membership de-

grees for each cluster into the reward functions, is rather limited. The remainder of this

section elaborates on the results of the last scenario.

Tables 5.15 and 5.16 provide more insight into the breakdown of the results for each

prototype agent. These tables - which are similar to tables 4.22 and 4.23 on page 162 - suggest

that, especially based on the sequence alignment method (SAM) comparing the sequences in

the long format, this optimized method is particularly suited to simulate individual activity-

travel behaviour. Yet, the outcome for prototype P10 is not very favourable. This is caused

by the fact that this prototype still covers a fairly large range of individual types of behaviour.

The results can be further improved by refining the socio-demographic profiles to segregate

these underlying types of behaviour. This can be realized by relaxing the constraints guiding

185

CHAPTER 5. PERFORMANCE

Softmax action selection No No Yes Yes
Number of prototypes 3 10 3 10

SAM in set of test sequences
Avg. 0.34 0.34 0.34 0.34
St.dev. 0.13 0.13 0.13 0.13

SAM in set of simulated sequences
Avg. 0.39 0.13 0.35 0.35
St.dev. 0.12 0.05 0.16 0.13

SAM between test sequences and simulated sequences
Avg. 0.40 0.36 0.36 0.35
St.dev. 0.09 0.06 0.12 0.12
t-statistic 7.97 3.71 1.29 1.18
P-value 0.0000 0.0001 0.0989 0.1197

Table 5.14: Validation results for DP-SAM calculated based on the long format sequences
simulated by the multi-actor reinforcement learning system for four scenarios

the construction of the decision tree, for instance by reducing the minimum number of

observations required in each node or by decreasing the threshold value related to the splitting

criterion.

186

5
.4
.

V
A
L
ID

A
T
IO

N
Prototype P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 All P

SAM in set of test sequences
Avg. 1.07 1.25 NA NA 0.96 1.70 1.57 1.41 1.34 1.43 1.39
St.dev. 0.55 0.88 NA NA 0.27 0.52 0.57 0.56 0.80 0.59 0.60

SAM in set of simulated sequences
Avg. 1.45 1.05 NA NA 1.13 1.41 1.80 1.10 1.04 1.90 1.84
St.dev. 0.54 0.88 NA NA 0.29 0.48 0.56 0.56 0.97 0.59 0.60

SAM between test sequences and simulated sequences
Avg. 1.38 1.32 1.40 1.50 1.65 1.43 1.86 1.57 2.36 1.97 1.69
St.dev. 0.36 0.55 NA NA 0.30 0.58 0.50 0.33 0.16 0.41 0.52
t-statistic 3.72 0.58 NA NA 1.96 -1.21 2.17 1.20 8.20 9.64 6.82
P-value 0.0003 0.2830 NA NA 0.0456 0.8750 0.0199 0.1332 0.0000 0.0000 0.0000

Table 5.15: Validation results for DP-SAM calculated based on the short format sequences simulated by the optimized multi-actor reinforce-
ment learning system

Prototype P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 All P

SAM in set of test sequences
Avg. 0.27 0.23 NA NA 0.19 0.38 0.34 0.38 0.44 0.36 0.34
St.dev. 0.13 0.11 NA NA 0.10 0.10 0.15 0.10 0.08 0.11 0.13

SAM in set of simulated sequences
Avg. 0.22 0.14 NA NA 0.25 0.20 0.28 0.20 0.11 0.31 0.35
St.dev. 0.10 0.11 NA NA 0.08 0.08 0.11 0.09 0.07 0.10 0.13

SAM between test sequences and simulated sequences
Avg. 0.29 0.23 0.33 0.22 0.30 0.38 0.39 0.38 0.52 0.42 0.35
St.dev. 0.10 0.10 NA NA 0.17 0.13 0.11 0.10 0.05 0.08 0.12
t-statistic 0.95 0.04 NA NA 1.23 -0.01 1.53 0.22 2.11 5.59 1.18
P-value 0.1749 0.4858 NA NA 0.1390 0.5049 0.0699 0.4151 0.0341 0.0000 0.1197

Table 5.16: Validation results for DP-SAM calculated based on the long format sequences simulated by the optimized multi-actor reinforcement
learning system

1
8
7

CHAPTER 5. PERFORMANCE

Tables 5.17 to 5.26 display some descriptive statistics for both the test and simulated

sequences. For the majority of the prototypes, the average number of activities in the

simulated sequences exceeds the average length of the corresponding test sequences. Next,

table 5.18 shows that sleep-home-sleep sequences are not predicted by the reinforcement

learning scheduler, while such sequences are indeed observed in the set of training sequences

(51% of the sequences of cluster 1 and 67% of the sequences in cluster 3 are sleep-home-sleep

sequences (cf. table 5.2)). This observation can be attributed to the fact that the prediction

of the duration is attuned to the duration boundaries (as explained in section 4.2) of the

activity episodes observed in the training set. As a result, for each prototype agent the

simulated duration approaches the average duration of the compounding clusters, according

to the defined membership degrees. In case of the in-home activities, these average durations

equal 507, 209 and 443 for cluster 1, 2 and 3 respectively. These durations are predicted

fairly well as recorded in table 5.22. Yet, when comparing the durations of the simulated

in-home activities in table 5.22 to the average of the observed durations in the test sequences

in table 5.21, it attracts the attention that the average duration of the simulated in-home

activities is often considerably smaller than the average duration of the in-home activities

observed in the test set. Consequently, in order to complete the schedule for the day (i.e.

to cover 1440 minutes), the reinforcement learning scheduler adds an out-of-home activity.

Because of this, the sleep-home-sleep sequence is not simulated at all.

With respect to the non in-home activities, tables 5.21 and 5.22 indicate that the sim-

ulated durations approach the observed durations better. Furthermore, the averages of the

total duration of an activity within a sequence of the test and simulated sequences - displayed

in tables 5.23 and 5.24 respectively - substantiate the favourable results presented in table

5.16.

Concerning the activity locations, tables 5.25 and 5.26 show that the majority of the

sequences generated for prototypes 9 and 10 mainly contain a large radius of action (25-

50km and > 50km), which is clearly founded on the distribution of the locations of cluster

2 (cf. table 5.6), matching the membership degrees defined in table 5.13. For prototypes 1

to 8, which principally correspond to cluster 1 according to their membership degrees, table

5.26 displays a larger spread of the locations over the distance bands but with an inclination

188

5.4. VALIDATION

towards the smaller distance bands, as is the case for cluster 1 (cf. table 5.6). For some

prototypes, these results are less clear-cut, as they do not contain many observations.

189

C
H
A
P
T
E
R

5
.

P
E
R
F
O
R
M
A
N
C
E

Prototype P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

#seq 25 26 1 1 4 8 17 7 4 55
Avg.#act 4.04 4.65 3.00 5.00 4.00 5.38 4.24 4.71 4.00 4.89
% of sequences which match the following patterns:

S-H-S 52.00 42.31 100.00 0.00 50.00 25.00 41.18 28.57 50.00 27.27
S-H-{W}-H-S 0.00 7.69 0.00 0.00 0.00 25.00 0.00 0.00 25.00 45.45
S-H-{not W}-H-S 40.00 42.31 0.00 100.00 50.00 25.00 35.29 42.86 0.00 9.09

Table 5.17: Some general descriptive statistics of the test sequences

Prototype P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

#seq 25 26 1 1 4 8 17 7 4 55
Avg.#act 5.16 5.08 6.00 5.00 6.00 5.00 4.65 5.00 5.00 5.84
% of sequences which match the following patterns:

S-H-S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S-H-{W}-H-S 24.00 7.69 0.00 0.00 0.00 0.00 0.00 57.14 0.00 7.27
S-H-{not W}-H-S 64.00 76.92 0.00 100.00 0.00 75.00 29.41 42.86 0.00 0.00

Table 5.18: Some general descriptive statistics of the simulated sequences

1
9
0

5
.4
.

V
A
L
ID

A
T
IO

N

Prototype P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

H 96.00 100.00 100.00 100.00 100.00 100.00 88.24 100.00 100.00 98.18
S 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
W 0.00 7.69 0.00 0.00 0.00 50.00 5.88 0.00 50.00 61.82
M 8.00 26.92 0.00 100.00 50.00 25.00 23.53 71.43 25.00 25.45
D 40.00 34.62 0.00 0.00 0.00 50.00 47.06 28.57 0.00 25.45

Table 5.19: Percentage of test sequences containing the listed activities at least once

Prototype P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

H 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
S 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
W 32.00 15.38 0.00 0.00 25.00 12.50 23.53 57.14 100.00 100.00
M 12.00 15.38 0.00 0.00 0.00 50.00 35.29 0.00 0.00 38.18
D 68.00 80.77 100.00 100.00 75.00 37.5 76.47 42.86 25.00 54.55

Table 5.20: Percentage of simulated sequences containing the listed activities at least once

1
9
1

C
H
A
P
T
E
R

5
.

P
E
R
F
O
R
M
A
N
C
E

P1 P2 P3 P4 P5
Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd.

H 37 544 389 46 445 324 1 780 0 2 428 435 6 518 371
S 51 443 124 53 461 102 2 429 19 2 484 58 8 442 168
W 0 - - 2 245 21 0 - - 0 - - 0 - -
M 2 28 11 11 37 28 0 - - 1 60 0 2 165 184
D 11 206 154 9 143 88 0 - - 0 - - 0 - -

P6 P7 P8 P9 P10
Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd.

H 14 233 233 24 476 359 10 454 389 5 435 376 92 281 244
S 16 453 111 34 469 64 14 446 28 8 447 13 110 437 89
W 6 370 142 1 780 0 0 - - 2 600 64 39 446 192
M 3 53 32 5 12 6 7 253 157 1 50 0 14 58 83
D 4 144 132 8 268 235 2 55 7 0 - - 14 101 97

Table 5.21: Number of activity episodes and average and standard deviation of the duration of these activity episodes in the test sequences

1
9
2

5
.4
.

V
A
L
ID

A
T
IO

N

P1 P2 P3 P4 P5
Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd.

H 49 427 95 53 427 92 3 327 244 2 445 85 12 306 156
S 50 465 1 49 465 1 2 465 0 2 465 0 8 465 0
W 8 232 21 4 270 0 0 - - 0 - - 1 290 0
M 4 101 2 4 100 0 0 - - 0 - - 0 - -
D 18 141 2 22 150 2 1 210 0 1 140 0 3 265 5

P6 P7 P8 P9 P10
Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd.

H 17 436 90 30 442 104 14 366 137 7 252 184 100 244 152
S 15 460 0 26 465 0 14 450 0 4 450 0 96 437 59
W 1 335 0 4 254 93 4 340 0 8 383 78 71 423 82
M 4 90 0 6 129 7 0 - - 0 - - 23 81 17
D 3 160 0 13 275 70 3 270 0 1 10 0 31 115 21

Table 5.22: Number of activity episodes and average and standard deviation of the duration of these activity episodes in the simulated
sequences

1
9
3

C
H
A
P
T
E
R

5
.

P
E
R
F
O
R
M
A
N
C
E

P1 P2 P3 P4 P5
Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd.

H 24 838 246 26 788 178 1 780 0 1 855 0 4 776 182
S 25 903 195 26 940 168 1 857 0 1 967 0 4 884 262
W 0 - - 2 245 21 0 - - 0 - - 0 - -
M 2 28 11 7 58 41 0 - - 1 60 0 2 165 184
D 10 227 147 9 143 88 0 - - 0 - - 0 - -

P6 P7 P8 P9 P10
Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd.

H 8 408 264 15 761 383 7 649 311 4 544 350 54 479 262
S 8 907 179 17 937 89 7 892 33 4 894 19 55 873 133
W 4 555 50 1 780 0 0 - - 2 600 64 34 511 165
M 2 80 64 4 15 4 5 354 221 1 50 0 14 58 83
D 4 144 132 8 268 235 2 55 7 0 - - 14 101 97

Table 5.23: Number of test sequences containing activities and average and standard deviation of the total duration of the activities in these
sequences

1
9
4

5
.4
.

V
A
L
ID

A
T
IO

N

P1 P2 P3 P4 P5
Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd.

H 25 836 98 26 870 50 1 980 0 1 890 0 4 919 13
S 25 930 2 26 860 168 1 470 0 1 930 0 4 470 0
W 8 232 21 4 270 0 0 - - 0 - - 1 290 0
M 3 135 61 4 100 0 0 - - 0 - - 0 - -
D 17 149 35 21 157 33 1 210 0 1 140 0 3 265 5

P6 P7 P8 P9 P10
Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd. # Avg. Sd.

H 8 927 80 17 781 182 7 731 42 4 441 28 55 443 50
S 8 806 212 17 711 239 7 900 0 4 450 0 55 769 200
W 1 335 0 4 254 93 4 340 0 4 766 22 55 546 130
M 4 90 0 6 129 7 0 - - 0 - - 21 89 30
D 3 160 0 13 275 70 3 270 0 1 10 0 30 119 25

Table 5.24: Number of simulated sequences containing activities and average and standard deviation of the total duration of the activities in
these sequences

1
9
5

C
H
A
P
T
E
R

5
.

P
E
R
F
O
R
M
A
N
C
E

Prototype P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Home 56.00 42.31 100.00 0.00 50.00 25.00 41.18 28.57 50.00 27.27
<2km 12.00 11.54 0.00 0.00 0.00 0.00 11.76 0.00 0.00 5.45
2-5km 8.00 3.85 0.00 100.00 0.00 12.50 5.88 14.29 0.00 10.91
5-10km 12.00 19.23 0.00 0.00 50.00 12.50 5.88 28.57 0.00 12.73
10-25km 8.00 15.38 0.00 0.00 0.00 25.00 0.00 0.00 50.00 12.73
25-50km 0.00 7.69 0.00 0.00 0.00 0.00 11.76 14.29 0.00 12.73
>50km 4.00 0.00 0.00 0.00 0.00 25.00 23.53 14.29 0.00 18.18

Table 5.25: Percentage of test sequences in which the listed distance bands corresponds to the farthest location reached

Prototype P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Home 8.00 65.38 0.00 0.00 25.00 12.50 0.00 0.00 0.00 0.00
<2km 16.00 0.00 0.00 0.00 0.00 25.00 47.06 0.00 0.00 3.64
2-5km 24.00 11.54 0.00 100.00 0.00 12.50 23.53 0.00 0.00 3.64
5-10km 4.00 3.85 0.00 0.00 0.00 0.00 17.65 0.00 0.00 1.82
10-25km 4.00 0.00 0.00 0.00 0.00 37.50 5.88 14.29 0.00 3.64
25-50km 44.00 15.38 100.00 0.00 50.00 12.50 5.88 85.71 75.00 74.55
>50km 0.00 3.85 0.00 0.00 25.00 0.00 0.00 0.00 25.00 12.73

Table 5.26: Percentage of simulated sequences in which the listed distance bands corresponds to the farthest location reached

1
9
6

5.4. VALIDATION

To illustrate the effect of refining the decision tree containing the socio-demographic

profiles, the branch of the decision tree (presented in table 5.7) containing the cases of

prototype P10 - which corresponds to node number 10 - is refined by relaxing the threshold

value of the splitting criterion used in fitting the decision tree (in this case the minimum

required ratio of the within-node deviance of the node to be split compared to the root node

is reduced from 0.01 to 0.005). The additional refinement of this branch is shown in table

5.27. Table 5.28 displays the new membership distribution of the 55 affected test cases.

197

C
H
A
P
T
E
R

5
.

P
E
R
F
O
R
M
A
N
C
E

Test rule NodeNr. # Pred. %clu1 %clu2 %clu3 Leaf

Workinghours > 20.5 10 174 2 0.0695 0.2892 0.0314
Age < 37.5 13 68 2 0.0314 0.0035 0.0000

Weekday : M,T,D 15 40 2 0.0045 0.0041 0.0000
#Child : 0 17 14 2 0.0045 0.0038 0.0000 *
#Child : 1, 2, 3 18 26 2 0.0000 0.0043 0.0000 *

Weekday : W,F 16 28 2 0.0269 0.0026 0.0000
Gender : m 19 20 2 0.0135 0.0031 0.0000 *
Gender : f 20 8 1 0.0135 0.0006 0.0000 *

Age > 37.5 14 106 2 0.0381 0.0032 0.0000
Age < 46.5 21 62 2 0.0179 0.0030 0.0001

#Child : 0, 1, 2 23 44 2 0.0135 0.0026 0.0001
#Child : 0, 1 25 13 3 0.0090 0.0021 0.0003 *
#Child : 2 26 31 2 0.0045 0.0032 0.0000

Age < 43.5 27 26 2 0.0000 0.0034 0.0000
Workinghours < 39.5 29 17 2 0.0000 0.0029 0.0000

Work : p 31 5 2 0.0000 0.0045 0.0000 *
Work : f 32 12 2 0.0000 0.0022 0.0000

WD : M,F 33 6 2 0.0000 0.0037 0.0000 *
WD : T,W,D 34 6 3 0.0000 0.0011 0.0000 *

Workinghours > 39.5 30 9 2 0.0000 0.0045 0.0000 *
Age > 43.5 28 5 1 0.0045 0.0009 0.0002 *

#Child : 3, 3+ 24 18 2 0.0045 0.0040 0.0000
Age < 42.5 35 12 2 0.0000 0.0045 0.0000 *
Age > 42.5 36 6 2 0.0045 0.0030 0.0000 *

Age > 46.5 22 44 2 0.0202 0.0035 0.0000
Weekday : M,T,W,D 37 35 2 0.0135 0.0037 0.0000 *
Weekday : F 38 9 2 0.0067 0.0025 0.0001 *

Table 5.27: Refined socio-demographical profiles of prototype P10

1
9
8

5.4. VALIDATION

Prototype
Membership degrees (in %) Number of

Cluster 1 Cluster 2 Cluster 3 test cases

R1 40.00 40.00 20.00 4
R2 33.33 66.67 0.00 5
R3 33.33 55.56 11.11 4
R4 30.77 30.77 38.46 7
R5 30.00 70.00 0.00 6
R6 17.14 82.86 0.00 13
R7 0.00 100.00 0.00 4
R8 0.00 96.15 3.85 6
R9 0.00 83.33 16.67 1
R10 0.00 16.67 83.33 5

Table 5.28: Refined membership degrees for set of test cases matching prototype P10

Next, 10 additional prototype agents are fitted and used to generate activity-travel se-

quences, in order to replace the 55 simulated individuals assigned to prototype P10 in the

previous analyses. The outcome of this simulation, which is presented in tables 5.29 and

5.30, reveals that refining the socio-demographic profiles matching prototype P10 improves

the resemblance between the simulated activity-travel patterns and the observed test cases.

199

C
H
A
P
T
E
R

5
.

P
E
R
F
O
R
M
A
N
C
E

Prototype R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 All R

SAM in set of test sequences
Avg. 0.72 1.52 1.33 1.41 1.38 1.26 0.85 1.57 NA 1.71 1.42
St.dev. 0.79 0.42 0.26 0.47 0.52 0.43 0.34 0.36 NA 0.52 0.51

SAM in set of simulated sequences
Avg. 2.12 1.42 2.37 1.74 1.28 1.58 1.43 1.62 NA 1.90 1.77
St.dev. 0.54 0.61 0.64 0.68 0.38 0.55 0.51 0.49 NA 0.46 0.56

SAM between test sequences and simulated sequences
Avg. 1.71 1.65 1.85 1.54 1.47 1.58 2.00 1.80 1.60 1.99 1.69
St.dev. 0.55 0.57 0.57 0.57 0.53 0.36 0.43 0.40 NA 0.37 0.46
t-statistic 2.33 0.42 1.68 0.53 0.33 2.95 4.46 1.21 NA 1.16 4.15
P-value 0.0243 0.3433 0.0856 0.3029 0.3742 0.0042 0.0026 0.1300 NA 0.1357 0.0001

Table 5.29: Validation results for DP-SAM calculated based on the short format sequences simulated by the optimized multi-actor reinforce-
ment learning system, refined for prototype P10

Prototype R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 All R

SAM in set of test sequences
Avg. 0.25 0.30 0.38 0.31 0.36 0.34 0.29 0.41 NA 0.31 0.36
St.dev. 0.18 0.18 0.05 0.13 0.12 0.09 0.15 0.10 NA 0.07 0.11

SAM in set of simulated sequences
Avg. 0.37 0.25 0.39 0.34 0.21 0.29 0.26 0.26 NA 0.32 0.36
St.dev. 0.07 0.13 0.09 0.12 0.11 0.10 0.08 0.08 NA 0.13 0.11

SAM between test sequences and simulated sequences
Avg. 0.42 0.29 0.43 0.40 0.38 0.41 0.42 0.45 0.41 0.41 0.40
St.dev. 0.08 0.09 0.08 0.08 0.11 0.09 0.01 0.06 NA 0.05 0.08
t-statistic 2.04 -0.19 1.09 2.17 0.35 2.65 2.08 1.02 NA 3.17 3.91
P-value 0.0397 0.5735 0.1651 0.0219 0.3650 0.0088 0.0450 0.1628 NA 0.0048 0.0001

Table 5.30: Validation results for DP-SAM calculated based on the long format sequences simulated by the optimized multi-actor reinforcement
learning system, refined for prototype P10

2
0
0

5.5. CONCLUSIONS

5.5 Conclusions

To conclude, the current chapter focuses on the scalability and validity of the presented

framework incorporating a multi-actor reinforcement learning algorithm amended with a

regression tree function approximator in simulating activity-travel sequences in an activity-

based travel-demand model. Therefore, this chapter walks through the entire prediction

process. With respect to the scalability, the execution time of the algorithm is analysed

and two major methodological suggestions to enhance the performance of the algorithm are

advanced.

The first suggestion proposes to increase the number of prototype agents. To this end,

the one-to-one relation between the prototype agents and the clusters is broken. Instead,

the design of prototype agents is now founded on the membership degrees for each cluster,

estimated in the nodes and leaves of the classification tree determining the socio-demographic

profiles, and the reward functions incorporated in the reinforcement learning system are

adapted accordingly.

Secondly, this chapter suggests to include a softmax action selection strategy rather than

an ε-greedy action selection strategy. This action selection strategy allows the agent to

estimate a probability distribution for each set of actions consistent with the corresponding

Q-values. As a result of implementing both suggestions, it is no longer required to copy the

prior knowledge of the prototype agents - which is built up in the initial training phase - to

the individual agents, and to further refine each of these individual agents’ knowledges.

The outcome of the analyses conducted in this chapter, indicates that the framework

designed her is capable of accurately simulating individual activity-travel behaviour based

on observed activity-travel diaries. Furthermore, the proposed system is able to do so, while

requiring acceptable memory capacity and within a realistic time frame, even when aiming

at generating activity-travel diaries for a large population (e.g. more than 5 million agents).

Additionally, once the prototype agents are initialized, they do not have to be retrained

for further analysis as long as the underlying behaviour does not change. If this behaviour

does alter, the prototype agents only require to be updated rather than to be retrained from

scratch as they are able to recover previously gathered knowledge.

201

CHAPTER 5. PERFORMANCE

202

Chapter 6

Final Conclusions

6.1 Key Findings

The research presented in this manuscript aims at settling the following main research prob-

lem:

Is reinforcement learning able to constitute a solid basis for
modelling individual activity-travel behaviour?

In order to provide a comprehensive answer to this research question, a number of sub-

questions are defined:

1. (a) What are the aspects of reinforcement learning restricting its applicability in the

current study area?

(b) Which adaptations are required to meet these limitations?

2. To which extent is reinforcement learning able to account for interactions?

3. (a) Which type of data is required to serve as input?

(b) To which extent do these data require pre-processing for the benefit of the rein-

forcement learning algorithm?

4. Can a conceptual framework incorporating reinforcement learning be defined which

aims at simulating activity-travel sequences?

203

CHAPTER 6. FINAL CONCLUSIONS

5. (a) To which extent is this reinforcement learning framework able to generate mean-

ingful activity-travel sequences based on observed data?

(b) To which extent is this reinforcement learning framework able to do so within an

acceptable time frame for a given synthetic population?

The remainder of this section attempts to formulate an answer to each of these subques-

tions.

What are the aspects of reinforcement learning restricting its applicability in

the current study area?

In the current research, a well-known variant of reinforcement learning labelled Q-learning is

applied. The advantage of this approach includes the fact that no model of the environment

is required when learning the optimal policy. The rewards guiding the reinforcement learn-

ing approach are processed in so-called Q-values. Traditionally, these Q-values are stored

in a table consisting of one entry for each feasible (state,action)-pair. Yet, for problems

containing large state and action spaces, this Q-learning approach is subject to the curse of

dimensionality, forcing both the memory requirements and the computational time to rise

enormously (Sutton & Barto, 1998).

Furthermore, linked to the previous restriction, the Q-learning approach requires gather-

ing information on all feasible (state,action)-pairs by visiting each at least once and preferably

an infinite number of times, which is impracticable in large state and action spaces (Sutton

& Barto, 1998).

Which adaptations are required to meet these limitations?

To tackle these issues, the present research introduces a function approximator which allows

the reinforcement learning agent to generalize the state and action spaces simultaneously.

To this end, a regression tree induction algorithm - described by Potts & Sammut (2005) - is

advanced, which is able to process a numeric dependent variable, to handle large streams of

on-line data and to be responsive to structural changes in these continuous streams of data.

The applicability of this regression tree induction algorithm is demonstrated by means of a

case study.

204

6.1. KEY FINDINGS

To which extent is reinforcement learning able to account for interactions?

Traditional Q-learning is particularly suited to account for delayed rewards, but it cannot

take into consideration interactions between a number reinforcement learning systems. But,

activity-based travel-demand models have to be able to counter interactions between individ-

uals, in particular household members, on the one hand (Timmermans, 2006), and between

the various attributes of activity-travel sequences on the other hand (Gärling et al., 1997;

Joh et al., 2002). For this purpose, the concepts of multi-actor reinforcement learning are

presented. The relevance of this technique is illustrated based on a case study drawn from

the current research area.

Which type of data is required to serve as input?

For the purpose of calibrating the parameters of the system and of the reward functions,

the data applied here originate from observed activity-travel diaries and contain the activity

type, activity duration and timing, activity location and travel mode used to get to this

location. Moreover, before being incorporated in the scheduling engine, these data are linked

to observed socio-demographic data, as is indicated in the next paragraph.

To which extent do these data require pre-processing for the benefit of the

reinforcement learning algorithm?

Because the observed activity-travel sequences differ due to variances in individual needs,

preferences, opportunities and constraints, the observed activity-travel sequences are split

into groups of sequences which are assumed to display similar activity-travel behaviour. To

this end, a method introduced by Wilson (2008) can be applied, which calculates the dis-

similarity of sequences based on the well-known sequence alignment method (Wilson, 1998a)

while taking the geographic location of the activities into account. However, Wilson’s algo-

rithm disregards the relative position of the locations within a sequence and the distances

travelled within this sequence. Therefore, the current research proposes a spatio-temporal

dissimilarity measure. Applying this method, a number of groups (clusters) of sequences

can be defined. These clusters are matched to observed socio-demographic data and sub-

sequently, for each of these clusters a socio-demographic profile is constructed by means of

205

CHAPTER 6. FINAL CONCLUSIONS

a classification tree. The purpose of these socio-demographic profiles consists of splitting

the synthetic population into more homogeneous groups with respect to their activity-travel

behaviour.

Can a conceptual framework incorporating reinforcement learning be defined

aiming at simulating activity-travel sequences?

The scheduling framework constituting the core of this research contains five decision mod-

ules. Each of these five decision modules includes a reinforcement learning system incor-

porating a regression tree function approximator and is held responsible for simulating one

particular aspect of activity-travel patterns. The first module determines the duration of the

activity, the second decides whether or not to execute a fixed activity (i.e. sleeping or work-

ing), the third concentrates on choosing the activity to be performed, the fourth selects the

activity location and the fifth focuses on the travel mode to be used. The decisions taken

in the course of this scheduling process are linked by applying multi-actor reinforcement

learning.

Furthermore, a number of prototype agents - each of which matches one of the clusters

distinguished in the course of the data pre-processing phase - are defined. These prototype

agents are initialized and trained first to be able to provide prior knowledge to the agents,

corresponding to a member of the synthetic population. The analyses in this manuscript

show that this framework can be calibrated based on the available observed data.

To which extent is this reinforcement learning framework able to generate mean-

ingful activity-travel sequences based on observed data?

The resulting activity-travel sequences are compared to some test sequences by means of the

multidimensional sequence alignment method implemented by Joh et al. (2001), and various

activity-travel related attributes are analysed by means of some descriptive statistics. The

outcomes of these analyses prove that the simulated sequences match the observed activity-

travel patterns well. These results are even improved by refining the proposed framework

through the incorporation of more prototype agents - each of which corresponds to a node

in the classification tree rather than to a cluster - and the introduction of a softmax action

206

6.2. TOPICS FOR FURTHER RESEARCH

selection strategy.

To which extent is this reinforcement learning framework able to do so within

an acceptable time frame for a given synthetic population?

The performance of the algorithm is examined with respect to execution time and memory

requirements. These analyses demonstrate that the algorithm is capable of simulating the

activity-travel behaviour for a realistic synthetic population within an acceptable time frame:

after initializing the prototype agents - a process which lasts about 1 hour for 10 prototype

agents - approximately 10 hours are required to generate for instance 5 million individual

activity-travel patterns with a time resolution of 5 minutes. Obviously, the total execution

time is impacted by the selected time resolution and the number of training episodes, as

well as by the number of prototype agents. Yet, once initialized, the prototype agents

can be re-used because they do not require retraining for each simulation as long as the

underlying activity-travel behaviour does not change. Additionally, the simulation process

can be accelerated by implementing it on parallel processors which simulate the decisions

taken by the agents in each time step simultaneously before continuing to the next time step.

6.2 Topics for Further Research

Despite the favourable results presented in this research, some topics for future research

remain. The first topic regards the proposed spatio-temporal dissimilarity measure incorpo-

rating the geographical location. Before being able to apply this technique to large databases,

its scalability and computational efficiency has to be examined and improved. Furthermore,

the possibility of adapting the actual computation of the dissimilarity measure - i.e. after

having transformed and normalized the geographical information within sequences - to a

more sophisticated multidimensional sequence alignment method as advanced by Joh (2004)

should be investigated.

Secondly, Arentze & Timmermans (2003) point out that having previous knowledge of a

domain and applying it to take more informed decisions concerning alternative choices could

improve the system by searching in a more intelligent way and learn faster. Examples of

such prior knowledge include information on travel modes, on land use or on spatio-temporal

207

CHAPTER 6. FINAL CONCLUSIONS

constraints (for instance opening hours of shops and public services). To this end, further

research is required on the introduction of prior knowledge on the environment and state-

action values into the reinforcement learning algorithm. Yet, the latter part is partially

already covered by the incorporation of the regression tree, which allows the reinforcement

agent to generalize over state-action values.

In addition, - next to accounting for interactions between decision components - Tim-

mermans (2006) indicates the importance of introducing interactions between individuals,

in particular between household members, as these interactions co-found the generation of

individual activity-travel patterns. From this point of view, Timmermans (2006) states that

the majority of the existing activity-based modelling efforts focuses on maximizing individ-

ual utility functions, instead of maximizing household utility functions. Therefore, future

research efforts have to concentrate on incorporating household interactions as well.

Fourthly, the parameter settings used throughout the entire simulation process demand

additional calibration in order to further improve the performance of the algorithm. From

this perspective, a more profound investigation of the functional forms of the reward functions

guiding the reinforcement learning process is required as well. Moreover, the sensitivity of

the reinforcement learning approach to changes either in environmental parameters or to

changes in the underlying activity-travel behaviour has to be examined.

Furthermore, the presented framework consists of a chain of processes which control

the data pre-processing, calculate dissimilarities between the observed activity-travel pat-

terns, distinguish the clusters of sequences displaying similar activity-travel behaviour and

construct socio-demographic profiles which correspond to these clusters, calibrate the pa-

rameters for the reinforcement learning system (mainly for the reward functions) based on

these analyses, assign membership degrees for each individual in the synthetic population,

run the reinforcement learning framework to extract activity-travel sequences for all of these

individuals and analyse this outcome. However, the majority of these building blocks are

not integrated and the micro simulation process therefore needs a large amount of manual

intervention. Consequently, a fifth item of further research includes streamlining this process

from data pre-processing to handling the resulting activity-travel patterns for each member

of the synthetic population.

208

6.2. TOPICS FOR FURTHER RESEARCH

Sixthly, the current implementation of the scheduling framework does not determine the

exact geographic location of each individual for each time step, as it does not include a

geographic network on which the activity-travel patterns can be projected. Future research

efforts should focus on integrating the presented scheduling algorithm with an activity-based

travel-demand model which holds a geographic network and which contains an algorithm to

set the geographic location of an activity.

Last but not least, further research has to examine the conversion of the framework

described in this manuscript into a dynamic activity-based travel-demand model in which

individuals determine their activity-travel sequences dynamically by entering the transporta-

tion network simultaneously and interacting with each other (Arentze et al., 2005). Although

the current research only provides a rather static implementation, the reinforcement learning

technique founding the scheduling framework submitted here is particularly suited to enable

dynamic interaction with the environment and to incorporate learning. Moreover, the pre-

sented scheduling algorithm is conceptualized as such that the individual agent schedules as

time progresses - as opposed to scheduling ahead -, which allows the system to evaluate the

impact of unexpected events in the course of the schedule execution, for instance delays on

the transportation network.

209

CHAPTER 6. FINAL CONCLUSIONS

210

Appendix A

Sequences in Short Form: Results

This appendix presents the results of estimating the dissimilarity and partitioning the data

set into groups of displaying similar activity-travel patterns based on the sequences in the

short form as discussed in section 3.4.1 of chapter 3.

A.1 Identification of Groups of Similar Behaviour

A.1.1 Clustering

The number of clusters k is set to 6 based on table A.1 and Figure A.1.

The number of clusters for the dissimilarity scores determined by means of the existing

technique is also set to 6 as shown in table A.2 and figure A.2.

Tables A.3 and A.4 show the statistics per cluster for the geographical parameters.

Founded on these tables and the results of the corresponding ANOVA tests in table A.5, the

same conclusions as formulated in section 3.4.1 can be drawn. The absolute geographical

location does not distort the ability of the proposed spatio-temporal dissimilarity measure

to identify comparable spatial sequences, while the geographical location - rather than the

spatial dispersion of the sequences - does impact the outcome of the existing distance algo-

rithm.

211

APPENDIX A. SEQUENCES IN SHORT FORM: RESULTS

k Avg sil. width Min. # Max. #

2 0.5893 230 364
3 0.5997 134 230
4 0.6403 52 230
5 0.6467 37 230
6 0.6583 37 230
7 0.6437 26 230
8 0.5544 26 230
9 0.5574 12 230
10 0.5607 10 230
11 0.5616 10 230
12 0.5474 10 230
13 0.5505 9 230
14 0.5406 9 230
15 0.5587 9 230
16 0.5495 9 230
17 0.5543 9 219
18 0.5399 9 219
19 0.5522 9 219
20 0.5590 9 219

Table A.1: Average silhouette width for varying number of clusters k based on the proposed
spatio-temporal dissimilarity measure defined in section 3.3.3 for the sequences in the short
form

k Avg sil. width Min. # Max. #

2 0.5181 276 318
3 0.4654 144 238
4 0.4584 54 205
5 0.4323 49 145
6 0.4443 36 145
7 0.3840 36 136
8 0.3737 34 115
9 0.3566 34 113
10 0.3416 34 113
11 0.3501 19 113
12 0.3398 16 112
13 0.3162 10 80
14 0.3150 10 80
15 0.3162 10 80
16 0.3170 10 80
17 0.3196 10 80
18 0.3257 10 80
19 0.3412 10 80
20 0.3343 10 80

Table A.2: Average silhouette width for varying number of clusters k based on the existing
distance measure described in section 3.3.2 for the sequences in the short form

212

A.1. IDENTIFICATION OF GROUPS OF SIMILAR BEHAVIOUR

0 5 10 15 20

0.
50

0.
55

0.
60

0.
65

0.
70

Number of clusters

A
ve

ra
g

e
si

lh
o

u
et

te
 w

id
th

0 5 10 15 20

0.
50

0.
55

0.
60

0.
65

0.
70

Figure A.1: Cluster results for varying number of clusters k based on the proposed spatio-
temporal dissimilarity measure defined in section 3.3.3 for the sequences in the short form

213

APPENDIX A. SEQUENCES IN SHORT FORM: RESULTS

0 5 10 15 20

0.
2

0.
3

0.
4

0.
5

Number of clusters

A
ve

ra
g

e
si

lh
o

u
et

te
 w

id
th

0 5 10 15 20

0.
2

0.
3

0.
4

0.
5

Figure A.2: Cluster results for varying number of clusters k based on the existing distance
measure described in section 3.3.2 for the sequences in the short form

214

A
.1
.

ID
E
N
T
IF

IC
A
T
IO

N
O
F

G
R
O
U
P
S
O
F

S
IM

IL
A
R

B
E
H
A
V
IO

U
R

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 All

of sequences 230 47 149 52 79 37 594

of episodes per sequence
Avg 3.00 6.02 5.01 4.00 7.18 9.92 4.82
St. dev. 0.00 0.15 0.12 0.00 0.38 1.99 2.02

Eccentricity
Avg 0.0478 0.9879 0.9796 1.0000 0.9966 0.9909 0.6242
St. dev. 0.2139 0.0573 0.1409 0.0000 0.0156 0.0188 0.4830

Area of SDE (km2)
Avg 0 312 8 0 84 172 49
St. dev. 0 1150 40 0 287 557 375

Weighted Avg x (km)
Avg 367 372 371 374 356 377 368
Sd 77 73 70 61 66 54 71

Weighted Avg y (km)
Avg 5,670 5,671 5,670 5,667 5,670 5,668 5,670
Sd 16 18 18 16 17 15 17

Table A.3: Descriptive statistics of cluster results based on the proposed spatio-temporal dissimilarity measure defined in section 3.3.3 for the
sequences in the short form

2
1
5

A
P
P
E
N
D
IX

A
.
S
E
Q
U
E
N
C
E
S
IN

S
H
O
R
T

F
O
R
M
:
R
E
S
U
L
T
S

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 All

of sequences 102 126 145 36 49 136 594
of episodes per sequence

Avg 4.82 4.91 4.89 4.33 4.24 4.99 4.82
Sd 1.79 1.84 2.28 1.60 1.67 2.24 2.02

Eccentricity
Avg 0.6351 0.6655 0.6025 0.4999 0.4894 0.6824 0.6242
Sd 0.4816 0.4725 0.4878 0.5070 0.5047 0.4658 0.4830

Area of SDE (km2)
Avg 89 44 57 20 17 32 49
Sd 723 191 380 115 78 179 375

Weighted Avg x (km)
Avg 287 388 346 224 491 428 368
Sd 18 13 17 39 24 12 71

Weighted Avg y (km)
Avg 5,685 5,664 5,678 5,689 5,653 5,656 5,670
Sd 15 10 12 14 7 9 17

Table A.4: Descriptive statistics of cluster results based on the existing distance measure described in section 3.3.2 for the sequences in the
short form

2
1
6

A.1. IDENTIFICATION OF GROUPS OF SIMILAR BEHAVIOUR

Proposed measure Existing measure

Area of SDE 0.0754∗∗ 0.2614
Eccentricity 0.0000∗ 0.3081
Weigthed Avg x 0.9620 0.0000∗

Weighted Avg y 0.3798 0.0000∗

∗ Significant on 0.05 level
∗∗ Significant on 0.10 level

Table A.5: P-values of ANOVA tests for the sequences in the short form

A.1.2 Design of Socio-Demographical Profiles

These clustering results now serve as a basis for designing the classification tree visualized in

figures A.3 and A.4 and table A.6. In the case of the short form sequences, the classification

tree indicates that the number of working hours is the most important variable in breaking

down the sequences. The sequences found in cluster id 1 are mainly linked to individuals

working less than 20.5 hours per week, which roughly corresponds to working less than half

time. The tree further distinguishes between clusters 1, 2 and 3, based on weekdays vs.

weekend days. As the share of clusters 4, 5 and 6 within the whole dataset is too small

compared to the other clusters, the tree is not able to assign a socio-demographical profile

to these clusters.

217

APPENDIX A. SEQUENCES IN SHORT FORM: RESULTS

|
Workinghours < 20.5

Age < 43.5

MarStat: n,c,d Inc: na,2,3,5

Weekday: M,T,W,D,F

NumChild: 0,1,2,3+

MarStat: n,m,d

Age < 35.5

Workinghours < 36.5 Inc: na

NumChild: 0,2

1

1

1

1 1

1

1 1

3

3

3

3

2

4 2

1

1

1 4

3

3

3

1

Figure A.3: Decision tree attaching socio-demographical profiles to the cluster results for
the sequences in the short form (labels for weekday: M = Monday, T = Tuesday, W =
Wednesday, D = Thursday, F = Friday, S = Saturday, Z = Sunday; labels for income:
0 =< 750, 1 = 750− 1250, 2 = 1250− 1750, 3 = 1750− 2250, 4 = 2250− 2750, 5 => 2750;
labels for marital status: n = notmarried, c = cohabit, m = married, d = divorced,
w = widow(er))

218

A.1. IDENTIFICATION OF GROUPS OF SIMILAR BEHAVIOUR

2 4 6 8 10 12

15
50

16
00

16
50

17
00

17
50

18
00

18
50

Number of terminal nodes

D
ev

ia
n

ce

Figure A.4: Overall standard deviation of predictor variable (i.e. cluster id) for the sequences
in the short form

219

A
P
P
E
N
D
IX

A
.
S
E
Q
U
E
N
C
E
S
IN

S
H
O
R
T

F
O
R
M
:
R
E
S
U
L
T
S

Test rule #cases Pred. %clu1 %clu2 %clu3 %clu4 %clu5 %clu6 Leaf

Root 594 1 0.3872 0.0791 0.2508 0.0875 0.1330 0.0623
Workinghours < 20.5 263 1 0.2256 0.0236 0.0707 0.0404 0.0421 0.0404
Age < 43.5 95 1 0.0690 0.0034 0.0151 0.0303 0.0168 0.0253
Mar.stat. : coh., not mar., div. 45 1 0.0354 0.0034 0.0067 0.0253 0.0034 0.0017 *
Mar.stat. : na,mar. 50 1 0.0337 0.0000 0.0084 0.0051 0.0135 0.0236 *

Age > 43.5 167 1 0.1556 0.0201 0.0552 0.0100 0.0251 0.0151
Inc. : na, 1250− 2250, > 2750 103 1 0.0825 0.0185 0.0320 0.0101 0.0219 0.0084 *
Inc. :< 1250, 2250− 2750 65 1 0.0741 0.0017 0.0236 0.0000 0.0034 0.0067 *

Workinghours > 20.5 331 3 0.1616 0.0556 0.1802 0.0471 0.0909 0.0219
Weekday : workday 236 3 0.0791 0.0522 0.1347 0.0337 0.0825 0.0151
#child. : 0, 1, 2, 3+ 208 3 0.0791 0.0505 0.1077 0.0337 0.0640 0.0152
Mar.stat. : (not)mar., div. 185 3 0.0791 0.0488 0.0842 0.0337 0.0539 0.0118
Age < 35.5 54 2 0.0101 0.0253 0.0168 0.0118 0.0185 0.0084
Work.hours < 36.5 14 4 0.0067 0.0051 0.0034 0.0084 0.0000 0.0000 *
Work.hours. > 36.5 40 2 0.0034 0.0202 0.0135 0.0337 0.0185 0.0084 *

Age > 35.5 131 1 0.0690 0.0236 0.0673 0.0219 0.0354 0.0034
Inc. : na 29 1 0.0168 0.0000 0.0101 0.0151 0.0050 0.0017
#child. : 0, 2 16 1 0.0152 0.0000 0.0034 0.0017 0.0051 0.0017 *
#child. : 1 13 4 0.0017 0.0000 0.0067 0.0135 0.0000 0.0000 *

Inc. : not na 102 3 0.0522 0.0236 0.0572 0.0067 0.0303 0.0017 *
Mar.stat : na, coh., wid. 23 3 0.0000 0.0017 0.0236 0.0000 0.0101 0.0034 *

#child. : 3 28 3 0.0000 0.0017 0.0269 0.0000 0.0185 0.0000 *
Weekday : weekend 95 1 0.0825 0.0034 0.0455 0.0135 0.0084 0.0067 *

Table A.6: Outcome of decision tree attaching socio-demographical profiles to the cluster results for the sequences in the short form

2
2
0

Bibliography

Algers, Staffan, Eliasson, Jonas, & Mattsson, Lars-Göran. 2005. Is It Time to Use Activity-

Based Urban Transport Models? A Discussion of Planning Needs and Modelling Possibil-

ities. The Annals of Regional Science, 39(4), 767–789.

Anderson, Rebekah, Al-Akhras, Ahmad, & Gill, Nicolas. 2003. Implementation of a Tour-

Based Microsimulation Regional Travel Demand Model. Pages 12–24 of: 9th TRB Con-

ference on the Application of Transportation Planning Methods, Session 1: Innovations in

Travel Modeling.

Arentze, Theo A., & Timmermans, Harry J.P. 2003. Modelling Learning and Adaptation

Processes in Activity-Travel Choice. Transportation, 30(1), 37–62.

Arentze, Theo A., & Timmermans, Harry J.P. 2004. A Learning-Based Transportation

Oriented Simulation System. Transportation Research Part B: Methodological, 38(7), 613–

633.

Arentze, Theo A., & Timmermans, Harry J.P. 2005a. ALBATROSS - version 2.0: a

Learning-Based Transportation Oriented Simulation System. 1st edn. EIRASS, Technische

Universiteit Eindhoven, The Netherlands.

Arentze, Theo A., & Timmermans, Harry J.P. 2005b. Modelling Learning and Adaptation

in Transportation Contexts. Transportmetrica, 1(Special issue: Some Recent Advances in

Transportation Studies), 13–22.

Arentze, Theo A., Pelizaro, Claudia, & Timmermans, Harry J.P. 2005. Implementation

of a Model of Dynamic Activity-Travel Rescheduling Decisions: an Agent-Based Micro-

221

BIBLIOGRAPHY

Simulation Framework. In: 9th International Conference on Computers in Urban Planning

and Urban Management (CUPUM).

Bachi, Roberto. 1963. Standard Distance Measures and Related Methods for Spatial Anal-

ysis. Papers of the Regional Science Association, 10(1), 83–132.

Bellemans, Tom, Kochan, Bruno, Janssens, Davy, & Wets, Geert. 2008. In the Field Evalua-

tion of the Impact of a GPS-Enabled Personal Digital Assistant on Activity-Travel Diary

Data Quality. In: 87th Annual Meeting of the Transportation Research Board (TRB).

Bhat, Chandra R., Guo, Jessica Y., Srinivasan, Sivaramakrishnan, & Sivakumar, Aruna.

2003. Activity-Based Travel-Demand Modeling for Metropolitan Areas in Texas: a Micro-

Simulation Framework for Forecasting. Tech. rept. FHWA/TX-03/4080-4, Centre for

Transportation Research, University of Texas.

Bhat, Chandra R., Guo, Jessica Y., Srinivasan, Sivaramakrishnan, & Sivakumar, Aruna.

2004. A Comprehensive Econometric Micro-Simulator for Daily Activity-Travel Patterns

(CEMDAP). Transportation Research Record: Journal of the Transportation Research

Board, 1894, 57–66.

Borgers, Aloys W.J., Timmermans, Harry J.P., & van der Waerden, Peter J.H.J. 2002. Patri-

cia: Predicting Activity-Travel Interdependencies with a Suit of Choice-Based, Interlinked

Analyses. Transportation Research Record: Journal of the Transportation Research Board,

1807, 145–153.

Bowman, John L. 1995. Activity Based Travel Demand Model System with Daily Activity

Schedules. Masterthesis, Massachusetts Institute of Technology.

Bowman, John L. 1998. The Day Activity Schedule Approach to Travel Demand Analysis.

Doctoral dissertation, Massachusetts Institute of Technology.

Breiman, Leo, Friedman, Jerome, Olshen, Richard A., & Stone, Charles J. 1984. Classifica-

tion and Regression Trees. 1st edn. Belmont, California: Wadsworth.

222

BIBLIOGRAPHY

Buliung, Ron N., & Remmel, Tarmo K. 2008. Open Source, Spatial Analysis, and Activity-

Travel Behaviour Research: Capabilities of the Aspace Package. Journal of Geographical

Systems, 10(2), 191–216.

Chapin, F. Stuart. 1974. Human Activity Patterns in the City. 1st edn. New York: John

Wiley and Sons.

Charypar, David, & Nagel, Kai. 2005. Q-Learning for Flexible Learning of Daily Activity

Plans. In: 84th Annual Meeting of the Transportation Research Board (TRB).

Charypar, David, Graf, Philip, & Nagel, Kai. 2004. Q-Learning for Flexible Learning of

Daily Activity Plans. In: 4th Swiss Transport Research Conference (STRC).

Doherty, Sean T. 2006. Should We Abandon Activity Type Analysis? Redefining Activities

by Their Salient Attributes. Transportation, 33(5), 517–536.

Doherty, Sean T., Miller, Eric J., Axhausen, KayW., & Gärling, Tommy. 2002. A Conceptual

Model of the Weekly Household Activity-Travel Scheduling Process. Pages 149–165 of:

Stern, E., Salomon, I., & Bovy, P. (eds), Travel Behaviour: Patterns, Implications and

Modelling, 1st edn. Cheltenham,UK: Elgar Publishing Ltd.

Driessens, Kurt. 2004. Relational Reinforcement Learning. Doctoral dissertation, Katholieke

Universiteit Leuven.

Ettema, Dick, & Timmermans, Harry J.P. 1997a. Activity-Based Approaches to Travel Anal-

ysis. 1st edn. Oxford, UK: Elsevier Science Ltd.

Ettema, Dick, Borgers, Aloys W.J., & Timmermans, Harry J.P. 1996. Simulation Model

of Activity Scheduling Behavior. Transportation Research Record: Journal of the Trans-

portation Research Board, 1551, 1–11.

Ettema, Dick F., & Timmermans, Harry J.P. 1997b. Theories and Models of Activity

Patterns. Pages 1–36 of: Ettema, Dick, & Timmermans, Harry J.P. (eds), Activity-Based

Approaches to Travel-Analysis, 1st edn. Oxford: Pergamon.

223

BIBLIOGRAPHY

Fried, Marc A., Havens, John, & Thall, Matthew. 1977. Travel Behavior - A Synthesized

Theory. Tech. rept. National Cooperative Highway Research Program - Transportation

Research Board - National Research Council.

Fujii, Satoshi, Kitamura, Ryuichi, & Monma, Toshiyuki. 1998. A Utility-Based Micro-

Simulation Model System of Individuals’ Activity-Travel Patterns. In: 77th Annual Meet-

ing of the Transportation Research Board (TRB).

Gärling, Tommy, Gillholm, Robert, Romanus, Joakim, & Selart, Marcus. 1997. Interdepen-

dent Activity and Travel Choices: Behavioural Principles of Integration of Choice Out-

comes. Pages 135–150 of: Ettema, Dick, & Timmermans, Harry J.P. (eds), Activity-Based

Approaches to Travel-Analysis, 1st edn. Oxford: Pergamon.

Goodwin, Phil, Kitamura, Ryuichi, & Meurs, Henk. 1990. Some Principles of Dynamic

Analysis of Travel Behaviour. Pages 56–72 of: Jones, Peter (ed), Developments in Dynamic

and Activity-Based Approaches to Travel Analysis. Aldershot, England: Gower Publishing

Company.

Hägerstrand, Torsten. 1970. What About People in Regional Science? Papers of the Regional

Science Association, 24(1), 7–24.

Hoppner, Frank, Klawonn, Frank, Kruse, Rudolf, & Runkler, Thomas. 1999. Fuzzy Cluster

Analysis: Methods for Classification, Data Analysis and Image Recognition. Chichester:

John Wiley and Sons Ltd.

Janssens, Davy. 2005. Calibrating Unsupervised Machine Learning Algorithms for the Pre-

diction of Activity-Travel Patterns. Doctoral dissertation, Hasselt University.

Janssens, Davy, & Wets, Geert. 2005. The Presentation of an Activity-Based Approach

for Surveying and Modelling Travel Behaviour. Pages 1935–1945 of: 32nd Colloquium

Vervoersplanologisch Speurwerk 2005: Duurzame mobiliteit: Hot or not?, vol. 32(2).

Janssens, Davy, Lan, Yu, Wets, Geert, & Chen, Guoqing. 2005. Optimizing Activity-Travel

Sequences by Means of Reinforcement Learning. In: BIVEC-GIBET Transport Research

Day.

224

BIBLIOGRAPHY

Joh, Chang-Hyeon. 2004. Measuring and Predicting Adaptation in Multidimensional Activity-

Travel Patterns. Doctoral disseration, Eindhoven University.

Joh, Chang-Hyeon, Arentze, Theo A., & Timmermans, Harry J.P. 2001. Pattern Recogni-

tion in Complex Activity-Travel Patterns: A Comparison of Euclidean Distance, Signal

Processing Theoretical, and Multidimensional Sequence Alignment Methods. In: 80th

Annual Meeting of the Transportation Research Board (TRB).

Joh, Chang-Hyeon, Arentze, Theo a., Hofman, Frank, & Timmermans, Harry J.P. 2002. Ac-

tivity Pattern Similarity: a Multidimensional Sequence Alignment Method. Transportation

Research Part B: Methodological, 36(2), 385–403.

Joh, Chang-Hyeon, Arentze, Theo A., & Timmermans, Harry J.P. 2004. Activity-Travel

Scheduling and Rescheduling Decision Processes: Empirical Estimation of Aurora Model.

Transportation Research Record: Journal of the Transportation Research Board, 1898,

10–18.

Joh, Chang-Hyeon, Arentze, Theo A., & Timmermans, Harry J.P. 2007. Identifying Skeletal

Information of Activity Patterns of a Group. In: 86th Annual Meeting of the Transporta-

tion Research Board (TRB).

Jones, Peter M. 1979. New Approaches to Understanding Travel Behaviour: The Human

Activity Approach. Pages 55–80 of: Hensher, D.A., & Stopher, P.R. (eds), Behavioural

Travel Modelling, 1st edn. London: Groom Helm Ltd.

Jones, Peter M., Dix, Martin C., Clarke, Mike I., & Heggie, Ian G. 1983. Understanding

Travel Behaviour. 1st edn. Aldershot, England: Gower Publishing Company Limited.

Kaelbling, Leslie P., Littman, Michael L., & Moore, Andrew W. 1996. Reinforcement Learn-

ing: A Survey. Journal of Artificial Intelligence Research, 4, 237–285.

Kaufman, Leonard, & Rousseeuw, Peter J. 1990. Finding Groups in Data: An Introduction

to Cluster Analysis. Hoboken, New Jersey, USA: John Wiley & Sons Inc.

225

BIBLIOGRAPHY

Kitamura, Ryuichi. 1996. Applications of Models of Activity Behavior for Activity Based

Demand Forecasting. In: Activity-Based Travel Forecasting Conference: Summary, Rec-

ommendations and Compendium of Papers, Texas Transportation Institute.

Kitamura, Ryuichi, & Fujii, Satoshi. 1998. Two Computational Process Models of Activity-

Travel Behavior. Pages 251–279 of: Gärling, Tommy, Laitila, Thomas, & Westin, Kerstin

(eds), Theoretical Foundations of Travel Choice Modeling, 1st edn. Elsevier.

Kolter, Jeremy Z., & Maloof, Marcus A. 2005. Using Additive Expert Ensembles to Cope

with Concept Drift. Pages 449–456 of: 22nd International Conference on Machine learn-

ing. ACM International Conference Proceeding Series, vol. 119. Bonn, Germany: ACM,

New York, NY, USA.

Kulkarni, Anup, & McNally, Michael G. 2001. A Microsimulation of Daily Activity Patterns.

In: 80th Annual Meeting of the Transportation Research Board (TRB).

Kwan, Mei-Po. 1997. Gisicas: An Activity-Based Travel Decision Support System Using a

GIS-Interfaced Computational-Process Model. Pages 263–282 of: Ettema, D., & Timmer-

mans, Harry (eds), Activity-Based Approaches to Activity Analysis, 1st edn. Pergamon.

Kwan, Mei-Po. 2000. Interactive Geovisualization of Activity-Travel Patterns Using Three-

Dimensional Geographical Information Systems: a Methodological Exploration with a

Large Data Set. Transportation Research Part C: Emerging Technologies, 8(1–6), 185–

203.

Lefever, D. Welty. 1926. Measuring Geographic Concentration by Means of the Standard

Deviational Ellipse. American Journal of Sociology, 32(1), 88–94.

Littman, Michael, & Boyan, Justin A. 1993. A Distributed Reinforcement Learning Scheme

for Network Routing. Pages 45–51 of: Alspector, J., Goodman, R., & Brown, T.X.

(eds), International Workshop on Applications of Neural Networks to Telecommunications.

Princeton, USA: Lawrence Erlbaum Associates, Hillsdale, NJ, USA.

Mataric̀, Maja J. 1994. Reward Functions for Accelerated Learning. Pages 181–189 of:

226

BIBLIOGRAPHY

Cohen, William W., & Hirsh, Haym (eds), Eleventh International Conference on Machine

Learning. New Brunswick, NJ, USA: Morgan Kaufmann Publishers.

McIntosh, John, & Yuan, May. 2005. Assessing Similarity of Geographic Processes and

Events. Transactions in GIS, 9(2), 223245.

McNally, Michael G. 2000 (Dec.). The Activity-Based Approach. Tech. rept. UCI-ITS-AS-

WP-00–4. Center for Activity Systems Analysis., Irvine,California.

McNally, Michael G. 2008 (Nov.). The Four Step Model. Tech. rept. UCI-ITS-AS-WP-07–2.

Center for Activity Systems Analysis, Irvine.

Mitchell, T.M. 1997a. Machine Learning. USA: The McGrawhill Companies, Inc.

Mitchell, Tom M. 1997b. Reinforcement Learning. Pages 367–392 of: Machine Learning.

USA: The McGrawhill Companies, Inc.

Pas, Eric I. 1983. A Flexible and Integrated Methodology for Analytical Classification of

Daily Activity-Travel Behavior. Transportation Science, 17(4), 405–429.

Pendyala, Ram M., & Bhat, Chandra R. 2006. Validation and Assessment of Activity-Based

Travel Demand Modeling Systems. In: Innovations in Travel Modelling Conference.

Potts, Duncan, & Sammut, Claude. 2005. Incremental learning of linear model trees. Machine

Learning, 61(1–3), 5–48.

Quinlan, John R. 1993. C4.5: programs for machine learning. 1st edn. San Mateo, Califnor-

nia: Kaufmann.

Recker, Will W., McNally, Michael G., & Root, Gregory S. 1983. A Methodology for Activity-

Based Travel Analysis: The STARCHILD Model. In: 13th North American Meeting of

the Regional Science Association.

Schlich, R. 2001. Measurement Issues in Identifying Variability in Travel Behaviour. In: 1st

Swiss Transport Research Conference.

227

BIBLIOGRAPHY

Schlich, Robert, & Axhausen, Kay W. 2004. Analysing Interpersonal Variability for Ho-

mogeneous Groups of Travellers. Tech. rept. Arbeitsbericht Verkehrs- und Raumplanung,

296, IVT, ETH.

Shiftan, Yoram, & Surhbier, John. 2002. The Analysis of Travel and Emission Impacts

of Travel Demand Management Strategies Using Activity-Based Models. Transportation,

29(2), 145–168.

Shiftan, Yoram, Ben-Akiva, Moshe E., Proussaloglou, Kimon, de Jong, Gerard, Popuri,

Yasasvi, Kasturirangan, Krishnan, & Bekhor, Shlomo. 2003. Activity-Based Modeling as

a Tool for Better Understanding Travel Behaviour. In: 10th International Conference on

Travel Behaviour Research (IATBR).

Smart, William D., & Kaelbling, Leslie P. 2000. Practical Reinforcement Learning in Con-

tinuous Spaces. Pages 903–910 of: 17th International Conference on Machine Learning

(ICML’00).

Stead, Dominic, & Banister, David. 2001. Influencing Mobility Outside Transport Policy.

Innovation: The European Journal of Social Sciences, 14(4), 315–330.

Sutton, Richard S., & Barto, Andrew G. 1998. Reinforcement Learning: An Introduction.

Cambridge, Massachusetts, USA/London, England: The MIT Press.

Timmermans, Harry J.P. 2000. ALBATROSS: a Learning-Based Transportation Oriented

Simulation System. 1st edn. Den Haag,Netherlands: Koninklijke bibliotheek.

Timmermans, Harry J.P. 2001. Models of Activity Scheduling Behaviour. Mobilitat und

Stadt, Stadt Region Land, 33–47.

Timmermans, Harry J.P. 2006. Analyses and Models of Household Decision Making Pro-

cesses. In: International Association for Travel Behaviour Research (IATBR) Conference.

Uther, William T.B., & Veloso, Manuela M. 1998. Tree Based Discretization for Continuous

State Space Reinforcement Learning. Pages 769–774 of: AAAI ’98/IAAI ’98: 15th Na-

tional and 10th Conference on Artificial Intelligence/Innovative Applications of Artificial

Intelligence. American Association for Artificial Intelligence.

228

BIBLIOGRAPHY

Vlachos, Michail, Gunopulos, D., & Das, Gautam. 2004. Rotation Invariant Distance Mea-

sure for Trajectories. In: 10th International Conference on Knowledge Discovery and Data

Mining.

Wang, Donggen, & Timmermans, Harry J.P. 2000. Conjoint-Based Model of Activity En-

gagement, Timing, Scheduling, and Stop Pattern Formation. Transportation Research

Record: Journal of the Transportation Research Board, 1718, 10–17.

Watkins, Christopher J.C.H. 1989. Learning from Delayed Rewards. Doctoral dissertation,

University of Cambridge.

Watkins, Christopher J.C.H., & Dayan, Peter. 1992. Technical Note: Q-Learning. Machine

Learning, 8(3–4), 279–292.

Widmer, Gerhard, & Kubat, Miroslav. 1996. Learning in the Presence of Concept Drift and

Hidden Contexts. Machine Learning, 23(1), 69–101.

Wilson, Clarke. 1998a. Activity Pattern Analysis by Means of Sequence-Alignment Methods.

Environment and Planning A, 30(6), 1017–1038.

Wilson, Clarke. 1998b. Analysis of Travel Behavior Using Sequence Alignment Methods.

Transportation Research Record: Journal of the Transportation Research Board, 1645,

52–59.

Wilson, Clarke. 2001. Activity Patterns of Canadian Women: Application of ClustalG

Sequence Alignment Software. Transportation Research Record: Journal of the Trans-

portation Research Board, 1777, 55–67.

Wilson, Clarke. 2008. Activity Patterns in Space and Time: Calculating Representative

Hagerstrand Trajectories. Transportation, 35(4), 485–499.

Witten, Ian H., & Frank, Eibe. 2000. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. San Francisco, USA: Morgan Kaufmann Publish-

ers.

Yuill, Robert S. 1971. The Standard Deviation Ellipse: an Updated Tool for Spatial De-

scription. Geographiska Annaler Series B Human Geography, 53(1), 28–39.

229

BIBLIOGRAPHY

Zahavi, Yacov, & Ryan, James M. 1980. The Stability of Travel Components over Time.

Transportation Research Record: Journal of the Transportation Research Board, 200, 19–

26.

Zahavi, Yacov, & Talvitie, Antti. 1980. Regularities in Travel Time and Money Expenditures.

Transportation Research Record: Journal of the Transportation Research Board, 750, 13–

19.

Zennir, Youcef, & Couturier, Pierre. 2005. Multiactor approach and hexapod robot learn-

ing. In: IEEE International Symposium on Computational Intelligence in Robotics and

Automations.

230

CURRICULUM VITAE

PERSONAL INFORMATION

VANHULSEL, Marlies

Keizel 9

B-3590 Diepenbeek, Belgium

+32 494 575 369

marliesvanhulsel@gmail.com

COMPETENCES

Analytical

Result-oriented

Inquisitive

Fast learner

Autonomous

Structured

Strong affinity with numbers

EDUCATION

2005 - 2009 Hasselt University Diepenbeek

PhD in Traffic Science

2004-2006 PCVO College of Education Diepenbeek

Certificate of Pedagogical Competences

2003 - 2004 Hasselt University Diepenbeek

Public Law - Relations with the Government

1999 - 2004 Hasselt University Diepenbeek

Commercial Engineering and Management Informatics

WORK EXPERIENCE

2009 - now Vito Mol

Applied research sector

Researcher

Data analysis and modelling

Modelling emission

2005 - 2009 Hasselt University Diepenbeek

Research and education sector

Researcher/PhD Candidate

Data mining and data analysis

Modelling activity-travel sequences

2004-2005 Luminus Hasselt

Energy sector

Pricing analyst

Market research

Price analyses and price fixing

COMPUTER SKILLS

Microsoft Office: proficient

Statistical packages (R, SPlus): independent

Statistical packages (SAS, SPSS): basic

Programming languages (HTML, PHP, VisualC++): independent

LANGUAGES

Dutch: mother tongue

French: independent

English: proficient

Spanish: basic

PUBLICATIONS

Beckx, C., L. Int Panis, M. Vanhulsel, G. Wets, and R. Torfs (2007). Gender-

Linked Disparity in Vehicle Exhaust Emissions? Results from an Activity-Based

Survey. In G. M. Morrison and S. Rauch (Eds.), 8th Highway and Urban Environment

Symposium, Volume 12 of Highway and Urban Environment, Nicosia, Cyprus, pp. 594.

Springer.

Hannes, E., F. Liu, M. Vanhulsel, D. Janssens, T. Bellmans, K. Vanhoof and G.

Wets (2009). Tracking Household Routines Using Scheduling Hypotheses Embedded

in Skeletons (THRUSHES). Submitted to Transportmetrica.

Vanhulsel, M., C. Beckx, D. Janssens, K. Vanhoof, and G. Wets (2009). Mea-

suring Dissimilarity of Geographically Dispersed Space-Time Paths. Submitted to

Transportation.

Vanhulsel, M., D. Janssens, K. Vanhoof, and G. Wets (2008). Application of On-line

Regression Tree Induction to Forecast Traffic Flows. In First Ubiquitous Knowledge

Discovery Workshop (UKD08) (Part of ECML/PKDD 2008 Conferences), Antwerp,

Belgium.

Vanhulsel, M., D. Janssens, and G. Wets (2006). Generating dynamic activity-

travel schedules. In PlanSIG 2006, 25th Workshop of the UK Planning and Scheduling

Special Interest Group, Nottingham, U.K.

Vanhulsel, M., D. Janssens, and G. Wets (2007). Calibrating a New Reinforce-

ment Learning Mechanism for Modeling Dynamic Activity-Travel Behavior and Key

Events. In 86th Annual Meeting of the Transportation Research Board (TRB), Wash-

ington D.C., USA.

Vanhulsel, M., D. Janssens, and G. Wets (2007). Use of a relational reinforcement

learning algorithm to generate dynamic activity-travel patterns. In TRISTAN, 6th

Triennial Symposium on Transportation Analysis, Phuket Island, Thailand.

Vanhulsel, M., D. Janssens, G. Wets, and K. Vanhoof (2008). Implementing an

Improved Reinforcement Learning Algorithm for the Simulation of Weekly Activity-

Travel Sequences. In 87th Annual Meeting of the Transportation Research Board

(TRB), Washington D.C., USA.

Vanhulsel, M., D. Janssens, G. Wets, and K. Vanhoof (2008). Simulation of Se-

quential Data: An Enhanced Reinforcement Learning Approach. Expert Systems

With Applications 36 (4), 8032-8039.

