

Towards a sustainable society by adequate measures to reduce impact of NORM

EFRAT User meeting, JRC, Geel, December 4-7 (2017)

Wouter Schroeyers, Tom Croymans, Zoltan Sas, Guillaume Lutter, Gerd Marissens, Heiko Stroh, Mikael Hult, Gergo Bator, Rosabianca Trevisi, Cristina Nuccetelli, Federica Leonardi, Tibor Kovacs, Sonja Schreurs

KNOWLEDGE IN ACTION

Outline

Introduction

- Methodology: a database to screen the potential impact of NORM
- Results & discussion
 - By-products
 - Building materials
- Conclusion

••

Centre of Environmental Sciences: Research Themes

1. Effect of environmental stressors on organisms

2. Sustainable and Clean Technologies

3. Biodiversity, Ecosystem Services and Climate Change

Introduction

- During the 20th Century
 - → fossil fuel use of the world increased 12 times
 - → 34 times more raw materials were extracted
- An average European consumes 16 tons of materials per year (2011)
- Era of cheap and abundant resources is ending.
 - Europe, as a resource poor continent is particularly vulnerable
- To holistically tackle its raw materials challenge, the EC has proposed action on the level of:
 - 1. Trade and investment policy
 - Increased use of secondary raw materials
 - 3. Increased *sustainable mining* within the EU.

The NORM4Building Network

 Exchange of multidisciplinary knowledge and experiences (radiological, technical, economical, legislative, ecological, ...)

Stimulate the reuse of by-products in new tailor-made sustainable building materials While assuring (radiation) protection of the population / environment

Use of by-product in Alkali Activated Materials (AAMs)

Industrial by-products Solid aluminosilicate source

Red Mud Fly ash Slags Phosphogypsum Siliciumdioxide waste

From NORM processing industries

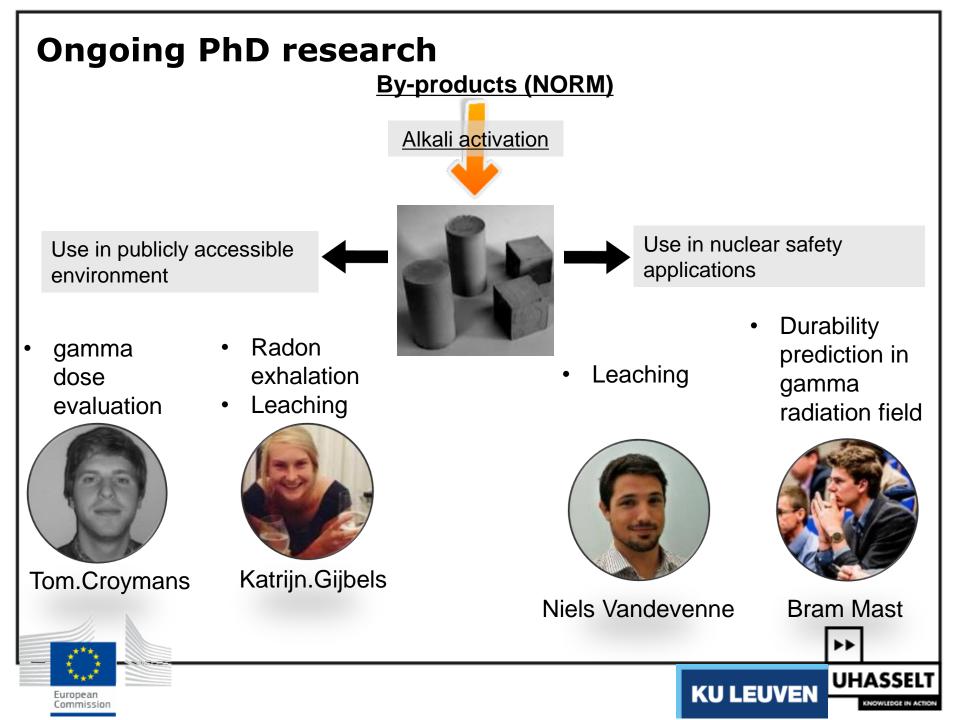
Alkali silicate/hydroxide **Activation solution**

NaOH KOH Na₂SiO₃/NaOH

. . .

Production @MTM **KULeuven**

T, t


Curing

Inorganic (Aluminosilicate) polymer

UHASSEL **KU LEUVEN**

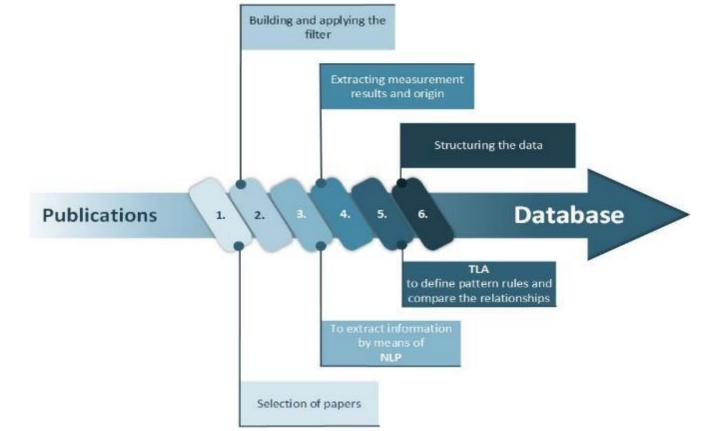
OWLEDGE IN ACTIO

Collaboration NORM4Building - JRC

- METRONORM NORM4Building
 - Strong collaboration & exchange of information
 - Joint meeting: Vienna, 11/06/2015
 - On the final meeting of MetroNORM (Brussels, 21-22 June 2016)
- Eufrat projects directly linked to collaboration with NORM4Building:
 - Eufrat project [Gamma-ray spectrometry analysis of NORM residues that are candidates for inclusion in construction materials] (2015)
 - Eufrat project [Development and testing of inorganic polymers for construction materials using NORM-residue (slag) from novel source in Belgium] (2016)

UHASSE

 Eufrat project [Radiological characterisation of geopolymers produced using NORM residue.] (2016- 2018)

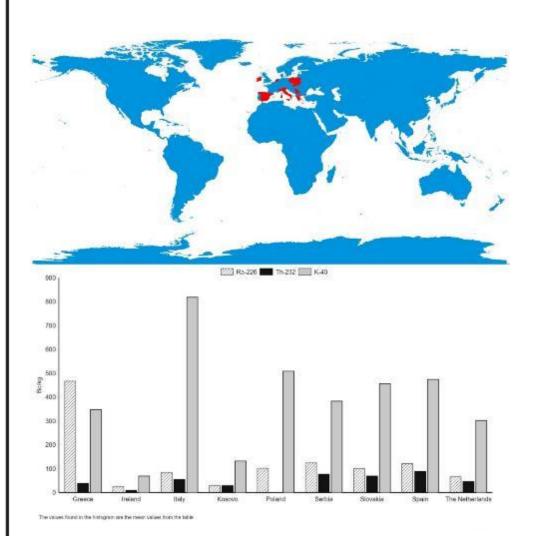


Outline

- Introduction
- Methodology: a database to screen the potential impact of NORM
- Results & discussion
 - By-products
 - Building materials
- Conclusion

••

NORM4Building database (<u>www.norm4building.org</u>)



UHASSEL

OWLEDGE IN ACTION

- Number of entries: 1452 (date: 01/07/2017)
- Current presentation: limited dataset (490 entries)
- 'More realistic' scenarios

General NORM4Building database

www.norm4building.org

Database team:

Tibor Kovacs Gergo Bator Zoltan Sas

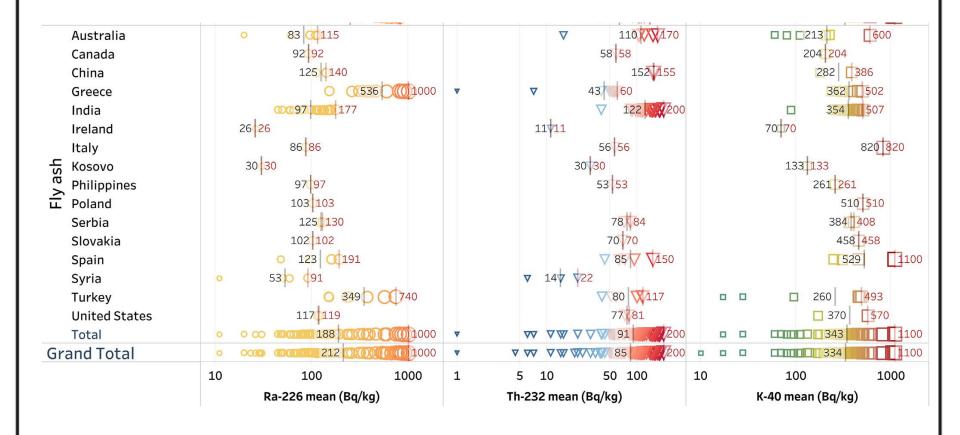
Verification team:

Cristina Nuccetelli Rosabianca Trevisi Federica Leonardi

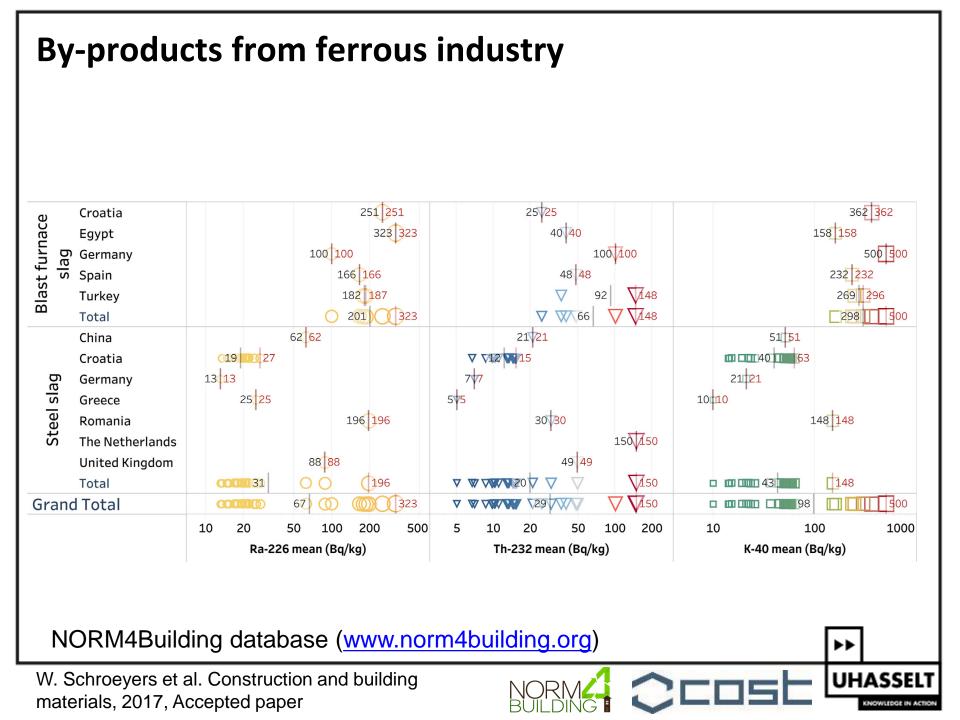
UHASSEL

OWLEDGE IN ACTIO

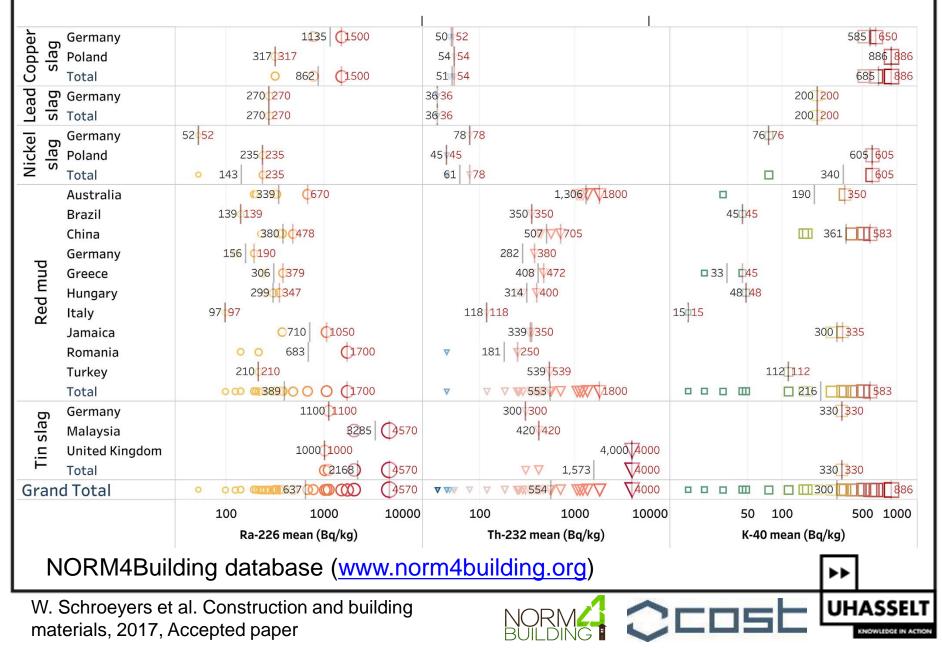
Outline


- Introduction
- Methodology: a database to screen the potential impact of NORM

Results & discussion


- By-products
- Building materials
- Conclusion

·>|


Fly ash from coal, peat and heavy oil fired power plants

By-products from non-ferrous industry

Discussion: evaluating datamining approach

- Strength:
 - Hundreds of publications can be processed monthly
 - Finds data accurately
 - Allows continuous (automated) search for new data: useful for keeping inventory up to date
 - Can run again on collected data using different key-words
- Limitations
 - Reliability of the data is strongly dependent of the reliability of the published results:
 - Validation is a labour intensive step
 - Data from graphical images (eg.: histograms) is currently not collected
 - Licence for datamining software is expensive
 - Industrially relevant?
 - There is a need to filter out publications according to date, insert more data from national surveys

UHASSE

Outline

- Introduction
- Methodology: a database to screen the potential impact of NORM
- Results & discussion
 - By-products
 - Building materials
- Conclusion

••

I-index calculations

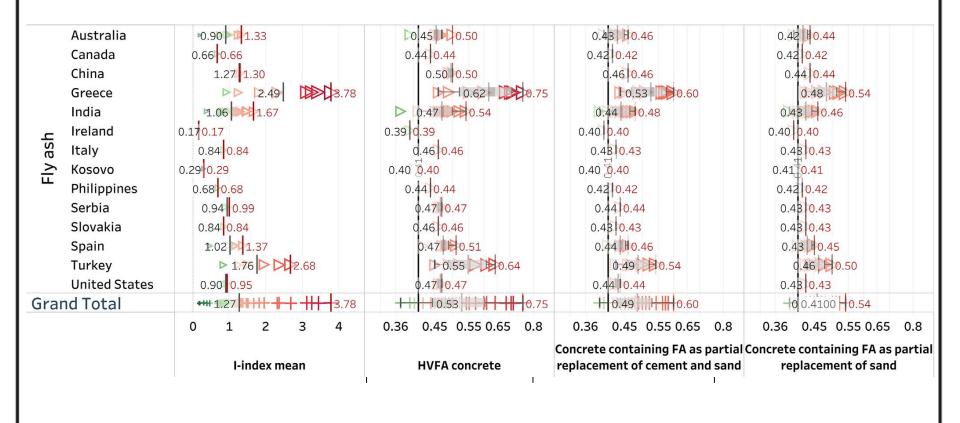
$$V - index = \frac{Ac_{226Ra}}{300 B q/k g} + \frac{Ac_{232Th}}{200 B q/k g} + \frac{Ac_{40K}}{3000 B q/k g}$$

Euratom-BSS, 2013

UHASSE

- First screening to verify if I-index < 1 to assess which materials need further investigation
- Only used for building materials (or for their constituents if the constituents are also building materials)
- Values used in calculations:
 - Cement: I-index 0,38 (*)
 - Soil/aggregates: I-index 0,45 (*)

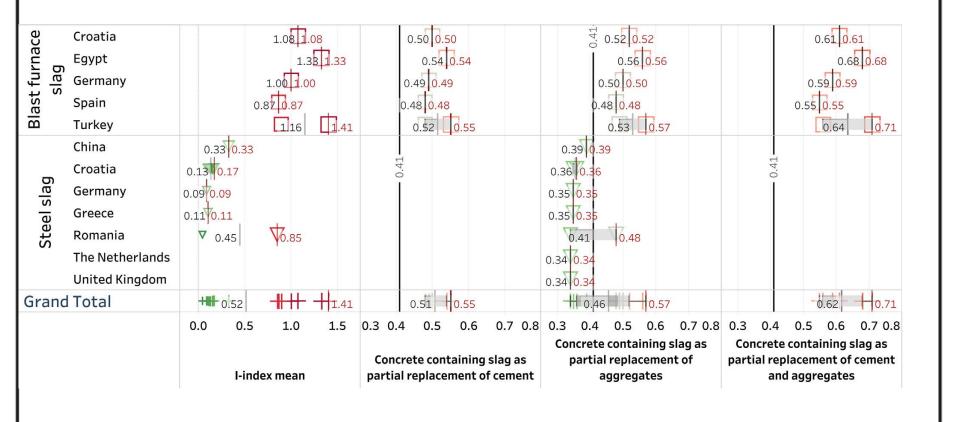
*R. Trevisi et al. J. Environ. Radioact. 105 (2012) 11–20.


Scenarios for evaluation use of by-products

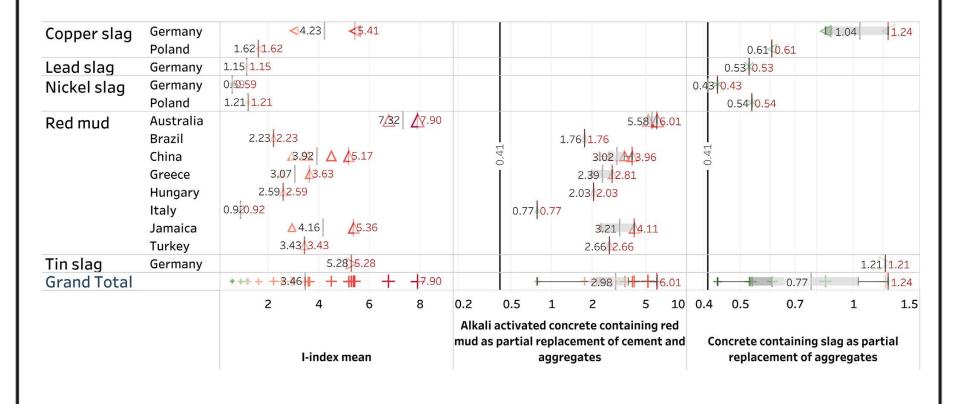
Scenario	Construction Material	Composition (kg/m ³)			
ID					
		Cement	By-	Aggregates	Water
			product		
1	Reference concrete	400		1850	150
2	High volume fly ash (HVFA)	160	220 (fly ash	1700	140
	concrete		(FA))		
3	Concrete with FA as partial	320	130 (FA)	1750	150
	replacement of cement and sand'				
4	Concrete with FA as partial	360	90 (FA)	1800	150
	replacement of sand				
5	Concrete with slag as partial	80	720 (slag)	1850	150
	replacement of cement and				
	aggregates'				
6	Concrete with slag as partial	80	320 (slag)	1850	150
	replacement of cement				
7	Concrete with slag as partial	400	400 (slag)	1450	150
	replacement of aggregates'		\frown		
8	Alkali activated concrete containing	(1800 (red	450	150
	red mud as partial replacement of		mud)		
	cement and aggregates				

UHASSEL1

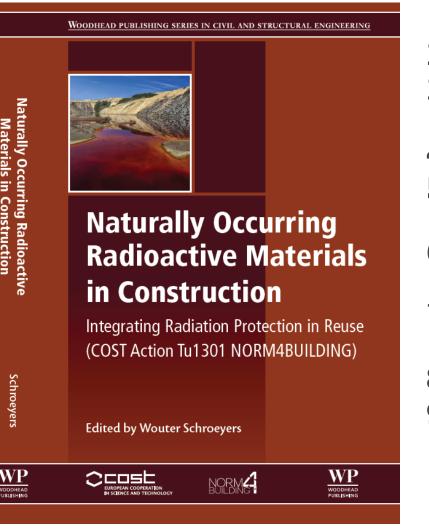
OWLEDGE IN ACTION


I-index concretes containing fly ash

NORM4Building database (www.norm4building.org)


I-index concretes containing blast furnace slag

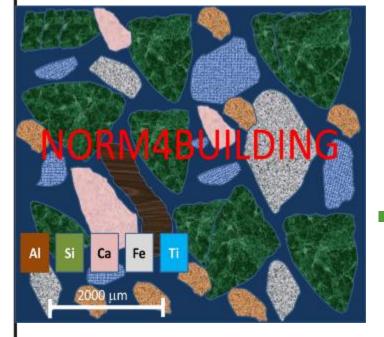
NORM4Building database (www.norm4building.org)


I-index concrete containing non-ferrous slag and red mud as replacement aggregates

NORM4Building database (www.norm4building.org)

"NORM4Building, the book": detailled assessement of impact of use of NORM in construction

Materials in Construction


Schroeyers

- Objectives 1.
- Introduction 2.
- 3. Basic aspects of natural radioactivity
- **Legislative aspects** 4.
- 5. Measurement of NORM
- From raw materials to 6. NORM by-products
- From NORM by-products 7. to building materials
- Leaching assessment 8.
- 9. Nontechnical aspects
- 10. General conclusion and the way forward

UHASSEI

NORM4Building "special issues"

Previous special issue:

- Journal of Environmental Radioactivity
- `Natural radioactivity in construction'
- Volume 168, March 2017
- Upcoming special issue
 - Journal: Construction and building materials
 - Expected publication March 2018

UHASSE

Outline

- Introduction
- Methodology: a database to screen the potential impact of NORM
- Results & discussion
 - By-products
 - Building materials
- Conclusion

••

Conclusion - outlook

- Building expanded **database** for screening: identify materials of concern from radiological perspective
- Realistic models for assessing impact in stead of too conservative scenarios: taking adequate measures
- Outlook:
 - To make the database industrially relevant, option is to apply the datamining tool on national surveys (and update it when a new survey is uploaded)
 - New database based on individual entries, including the date of measurement/study as relevant parameter

Natural radioactivity database

MSCA project: Zoltan Sas

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 701932

Towards a "European NORM Association"

The 1st ENA Workshop Katowice, Upper Silesia, POLAND 19-23 November 2018

Main topics:

- 1. NORM and environment challenges due to the release of formation/process water
- 2. NORM in building materials practical approaches to control radioactivity
- 3. NORM in the industry look beyond oil and gas, phosphorite and red mud.

Silesian Centre for Environmental Radioactivity,

Central Mining Institute (GIG), Plac Gwarków 1, Katowice, Poland

The 1st ENA Workshop Katowice, Upper Silesia, POLAND

- 19th Nov 2018: Training courses on:
 - 1. Application of gamma spectrometry for NORM measurements
 - 2. Application of LSC for NORM measurement
 - 3. Inventory of NORM and existing regulatory context
- 20th Nov 22nd Nov 2018: Scientific sessions and discussions
- 23rd Nov 2018: "Speaker's Corner"
 - Member States sharing experience in implementing the European BSS

The 1st ENA Workshop

See you 19-23 November, 2018!

ENA European NORM Association