

"COST Network Tu1301 NORM4Building" (2014-2017)

Wouter Schroeyers, UHasselt

NORM ENVIRONET Project, Vienna, 16-20/10/2017

Centre of Environmental Sciences: Research Themes

1. Effect of environmental stressors on organisms

2. Sustainable and Clean Technologies

3. Biodiversity, Ecosystem Services and Climate Change

OWLEDGE IN ACTION

Outline – NORM4Building

I. Introduction

- 2. Databases
 - I. General NORM4Building database
 - 2. BY-BM Database
- 3. Publications
- 4. Conclusions Outlook

The NORM4Building Network

 Exchange of multidisciplinary knowledge and experiences (radiological, technical, economical, legislative, ecological, ...)

Stimulate the reuse of by-products in new tailor-made sustainable building materials While assuring (radiation) protection of the population / environment

Objectives NORM4Building

Working Group I

- Studying **state of the art** in the reuse of NORM by-products in construction materials
- Development of a data base with good practices

Working Group 2

• Develop **new options** for **tailor-made building materials to incorporate NORM residues**.

Working Group 3

- Improve **measurement capacity** for NORM containing building materials
- **Standardization** of measurement protocols and development of (pre-) standards.

Working Group 4

- Improving **dosimetric models** for a number of building scenarios.
- Investigating the impact of the new Euratom Basic safety standards

The NORM4Building Network

Meetings – Training schools – STSMs - …

Outline – NORM4Building

I. Introduction

2. Databases

- I. General NORM4Building database
- 2. BY-BM Database
- 3. Publications
- 4. Conclusions Outlook

General NORM4Building database

www.norm4building.org

Database team:

Tibor Kovacs Gergo Bator Zoltan Sas

Verification team:

Cristina Nuccetelli Rosabianca Trevisi Federica Leonardi

W. Schroeyers et al. Construction and building materials, 2017, paper in publication

Building the NORM4Building database:

- Semi-automatic approach for data collection
 - >68.000 publications processed (from Science Direct, Web of Science, etc...)
 - Manual validation of entries (so far 460 entries validated: 7705 samples)

G. Bator et al, V. Terrestrial Radioisotopes in Environment International Conference on Environmental Protection, 17-20th May (2016), Veszprém

Fly ash from coal, peat and heavy oil fired power plants

NORM4Building database (<u>www.norm4building.org</u>)

W. Schroeyers et al. Construction and building materials, 2017, paper in publication

By-products from ferrous industry

NORM4Building database (<u>www.norm4building.org</u>)

W. Schroeyers et al. Construction and building materials, 2017, paper in publication

By-products from non-ferrous industry

NORM4Building database (www.norm4building.org)

 W. Schroeyers et al. Construction and building materials, 2017, paper in publication

Discussion: evaluating datamining approach

- Strength:
 - Hundreds of publications can be processed monthly
 - Finds data **accurately**
 - Allows continuous (automated) search for new data: useful for keeping inventory up to date
 - Can run again on collected data using different key-words

Limitations

- Reliability of the data is strongly dependent of the **reliability of the published results**:
- Validation is a labour intensive step
- > Data from graphical images (eg.: histograms) is currently not collected
- Licence for datamining software is expensive
- Industrially relevant?
 - There is a need to filter out publications according to date, insert more data from national surveys

I-index calculations

$$I - index = \frac{Ac_{226Ra}}{300 B q/k g} + \frac{Ac_{232Th}}{200 B q/k g} + \frac{Ac_{40K}}{3000 B q/k g}$$

Euratom-BSS, 2013

- First screening to verify if I-index < I to assess which materials need further investigation
- Only used for building materials (or for their constituents if the constituents are also building materials)
- Values used in calculations:
 - Cement: I-index 0,38 (*)
 Soil/aggregates: I-index 0,45 (*)

*R. Trevisi et al. J. Environ. Radioact. 105 (2012) 11-20.

Scenarios for evaluation use of by-products

Scenario	Construction Material	Composition (kg/m ³)				
ID		Cement	By-	Aggregates	Water	
		Contene	product		,, acci	
1	Reference concrete	400		1850	150	
2	High volume fly ash (HVFA)	160	220 (fly ash	1700	140	
	concrete		(FA))			
3	Concrete with FA as partial	320	130 (FA)	1750	150	
	replacement of cement and sand'					
4	Concrete with FA as partial	360	90 (FA)	1800	150	
	replacement of sand					
5	Concrete with slag as partial	80	720 (slag)	1850	150	
	replacement of cement and					
	aggregates'					
6	Concrete with slag as partial	80	320 (slag)	1850	150	
	replacement of cement					
7	Concrete with slag as partial	400	400 (slag)	1450	150	
	replacement of aggregates'					
8	Alkali activated concrete containing	(1800 (red	450	150	
	red mud as partial replacement of		mud)			
	cement and aggregates					

W. Schroeyers et al. Construction and building materials, 2017, in press

I-index concretes containing fly ash

	0 1 2 3 4 I-index mean	0,36 0,45 0,55 0,65 0,8 HVFA concrete	0,3 0,36 0,45 0,55 Concrete containing FA as partial replacement of cement and sand	0,3 0,36 0,45 0,55 Concrete containing FA as partial replacement of sand
Grand Total	••••1,24 +++ ++ 3, 78 +	1111 0,49 0,72	+++10,43	H0,40 0,4100 0,48
Australia China Greece India Ireland Italy Kosovo Philippines Serbia Slovakia Spain The Netherlands Turkey	1,24 1,24 1,25 1,25 1,02 2,15 378 1,02 1,49 0,17 0,84 0,84 0,29 0,29 0,83 0,87 0,94 0,99 0,84 0,84 1,02 1,37 0,57 0,62 1,76 2,68	0,50 0,50 0,47 0,47 0,56 0,36 0,38 0,43 0,43 0,37 0,37 0,43 0,43 0,43 0,43 0,44 0,44 0,48 0,43 0,41 0,44 0,48 0,43 0,41 0,41 0,61	0,46 0,46 0,41 0,41 0,39 H0,42 0,35 0,35 0,38 0,38 0,38 0,38 0,38 0,38 0,39 0,38 0,39 0,41 0,37 0,43 H0,48	0 44 0,44 0,39 0,89 0,34 0,37 0,89 0,34 0,37 0,37 0,35 0,37 0,37 0,38 0,38 0,37 0,37 0,38 0,38 0,37 0,37 0,38 0,38 0,37 0,37 0,38 0,39 0,36 0,36 0,41 0,44

NORM4Building database (<u>www.norm4building.org</u>)

W. Schroeyers et al. Construction and building materials, 2017, paper in publication

I-index concretes containing blast furnace slag

NORM4Building database (www.norm4building.org)

W. Schroeyers et al. Construction and building materials, 2017, paper in publication

I-index concrete containing non-ferrous slag as replacement aggregates

NORM4Building database (<u>www.norm4building.org</u>)

W. Schroeyers et al. Construction and building materials, 2017, paper in publication

1,24

1,21 1,21

1,5

1.04

I-index Alkali Activated Material (AAM) containing red mud

NORM4Building database (<u>www.norm4building.org</u>)

W. Schroeyers et al. Construction and building materials, 2017, in press

Outline – NORM4Building

I. Introduction

- 2. Databases
 - I. General NORM4Building database
 - 2. BY-BM Database
- 3. Publications
- 4. Conclusions Outlook

Natural radioactivity database

MSCA project: Zoltan Sas

By-BM Database

Record info

Distribution analysis

Visualisation

- Total records: 1526 (1095 Building materials; 436 By-products)
 48 countries
- Mean value of Ra-226, Th-232 and K-40 content were 2.52, 2.35 and 0.39 times higher in case of the By-products
- Demo version is ready

Ra eq conentration of datamined materials

www.bybmproject.com/

By-BM Database

I-index of datamined materials

www.bybmproject.com/

Outline – NORM4Building

I. Introduction

- 2. Databases
 - I. General NORM4Building database
 - 2. BY-BM Database

3. Publications

4. Conclusions - Outlook

NORM4Building, the book

WOODHEAD PUBLISHING SERIES IN CIVIL AND STRUCTURAL ENGINEERING

Naturally Occurring Radioactive Materials in Construction

Integrating Radiation Protection in Reuse (COST Action Tu1301 NORM4BUILDING)

- I. Objectives
- 2. Introduction
- 3. Basic aspects of natural radioactivity
- 4. Legislative aspects
- 5. Measurement of NORM
- 6. From raw materials to NORM by-products
- 7. From NORM by-products to building materials
- 8. Leaching assessment
- 9. Nontechnical aspects
- 10. General conclusion and the way forward

Naturally Occurring Radioactive Materials in Construction

NORM4Building "special issues"

- Previous special issue:
 - Journal of Environmental Radioactivity
 - 'Natural radioactivity in construction'
 - Volume 168, March 2017
- Upcoming special issue
 - Journal: Construction and building materials
 - Expected publication March 2018

Outline – NORM4Building

I. Introduction

- 2. Databases
 - I. General NORM4Building database
 - 2. BY-BM Database
- 3. Publications
- 4. Conclusions Outlook

Conclusion - Outlook

• Maintenance, updating and expanding the database

- To make the database industrially relevant: option is to apply the datamining tool on national surveys (and update it when a new survey is uploaded)?
- Link measurement information (including date of measurement) to data entries (also to data entries in national surveys, international reports...)
 - ► → This means referring to the original reference/source where it was actually measured

Control/verification of entries is a very labour intensive process!

- Especially kicking out overlapping information is cumbersome
- Evolving towards a database of "**original measurement entries**" that allows much more statistics and better visualisation

NORM4Building the book and dedicated publications

Provide information on entries in the database

Towards a "European NORM Association"

The 1st ENA Workshop Katowice Upper Silesia, POLAND

19-23 November 2018

Silesian Centre for Environmental Radioactivity,

Central Mining Institute (GIG), Plac Gwarków 1, Katowice, Poland

The 1st ENA Workshop

See you 19-23 November, 2018!

ENA European NORM Association