On the centers of quantum groups of $A(n)$-type
Peer-reviewed author version

Li, Libin; Xia, Limeng \& ZHANG, Yinhuo (2018) On the centers of quantum groups of A(n)-type. In: Science China-Mathematics, 61(2), p. 287-294.

DOI: 10.1007/s11425-017-9119-0
Handle: http://hdl.handle.net/1942/25465

ON THE CENTERS OF QUANTUM GROUPS OF A_{n}-TYPE

LIBIN LI ${ }^{\dagger}$, LI-MENG XIA, AND YINHUO ZHANG

Abstract

Let \mathfrak{g} be the finite dimensional simple Lie algebra of type A_{n}, and let $\bar{U}=U_{q}(\mathfrak{g}, \Lambda)$ and $U=U_{q}(\mathfrak{g}, Q)$ be the quantum groups defined over the weight lattice and over the root lattice respectively. In this paper, we find two algebraically independent central elements in \bar{U} for all $n \geq 2$ and give an explicit formula of the Casimir elements for the quantum group $\bar{U}=U_{q}(\mathfrak{g}, \Lambda)$, which corresponds to the Casimir element of the enveloping algebra $U(\mathfrak{g})$. Moreover, for $n=2$ we give explicitly generators of the center subalgebras of the quantum groups $\bar{U}=U_{q}(\mathfrak{g}, \Lambda)$ and $U=U_{q}(\mathfrak{g}, Q)$.

1. Introduction

1.1. Background. Let \mathfrak{g} be the finite dimensional simple Lie algebra of type A_{n} over the complex number field \mathbb{C}. We let $\bar{U}=U_{q}(\mathfrak{g}, \Lambda)$ and $U=U_{q}(\mathfrak{g}, Q)$ be the quantum groups defined over the weight lattice and over the root lattice respectively (see [2] and [5]). By the quantum analogue of the Harish-Chandra Theorem, the center of \bar{U} is a polynomial algebra. In [3], a generator set of the center of \bar{U} is given for a generic q (referred to [1]). Unfortunately, these papers do not contain complete proofs.

The situation turns more complicated when one considers the center of U with q being generic. The center subalgebra $Z(U)$ of U is not a polynomial algebra except $n=1$. In [7], by using the quantized Harish-Chandra Theorem, we proved that the center of U is a finitely generated algebra. In the special case where $n=2$, the center of U is isomorphic to the algebra generated by x, y, z subject to the relation $x y=z^{3}$ (also see [6]). However, the generators of $Z(U)$ in U are still unknown in general.

Let $\bar{U}_{A} \subset \bar{U}$ be the Lusztig A-form of \bar{U}, where $A=\mathbb{Z}\left[q, q^{-1}\right]$. Then $\mathbb{C} \otimes_{\mathbb{Z}} \lim _{q \rightarrow 1} \bar{U}_{A}$ is isomorphic to the enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g}. Obviously, the central elements of \bar{U}_{A} correspond to the central elements of $U(\mathfrak{g})$. Up to a scalar, the Casimir element of $U(\mathfrak{g})$ means the quadratic central element $\sum_{i} x_{i} y_{i} \in U(\mathfrak{g})$, where $\left\{x_{i} \mid 1 \leq i \leq \operatorname{dimg}\right\}$ is a basis of \mathfrak{g} and $\left\{y_{i} \mid 1 \leq i \leq \operatorname{dimg}\right\}$ is the dual dual basis. As far as we know, the quantized Casimir element, the analogue of the Casimir element of $U(\mathfrak{g})$ has not been given.

In this paper, we find two algebraically independent central elements in \bar{U} for $n \geq 2$ and give a quantum analogue of the Casimir element in \bar{U} corresponding to the Casimir element of $U(\mathfrak{g})$. For the type A_{2}, we give explicitly the generators of the centers $Z(\bar{U})$ and $Z(U)$ respectively.

[^0]1.2. Main results. Let $E_{i}, F_{i}, K_{ \pm \lambda_{i}}$ be the commonly-used generators of \bar{U} corresponding to the cartan matrix $\left(a_{i, j}=2 \delta_{i, j}-\delta_{|i-j|, 1}\right)$. For $1 \leq i \leq j \leq n$, set
\[

$$
\begin{aligned}
F_{i, j} & =\left[\cdots\left[F_{i}, F_{i+1}\right]_{q}, \cdots, F_{j}\right]_{q} \\
E_{i, j} & =\left[\cdots\left[E_{i}, E_{i+1}\right]_{q^{-1}}, \cdots, E_{j}\right]_{q^{-1}} \\
K_{i, j} & =K_{-\lambda_{i-1}+\lambda_{i}-\lambda_{j}+\lambda_{j+1}}
\end{aligned}
$$
\]

In particular, $F_{i, i}=F_{i}, E_{i, i}=E_{i}$ and $K_{i, i}=K_{-\lambda_{i-1}+\lambda_{i+1}}$.
Let σ be the diagram automorphism of \bar{U}. Define

$$
\begin{aligned}
C_{1} & =\sum_{i=1}^{n+1} q^{n-2(i-1)} K_{2 \lambda_{i}-2 \lambda_{i-1}}+\left(q-q^{-1}\right)^{2} \sum_{1 \leq i \leq j \leq n}(-1)^{j-i} q^{n+1-i-j} F_{i, j} E_{i, j} K_{i, j}, \\
C_{n} & =\sigma\left(C_{1}\right) .
\end{aligned}
$$

Note that $n \geq 2$, the diagram automorphism σ of \bar{U} is nontrivial and $C_{1} \neq C_{n}$. These two elements also appeared in [3](also see [1]), where they were defined independently.

In the following we always assume that \mathfrak{g} is of type $A_{n}(n \geq 2)$ and q is generic. Our main results are as follows.

Theorem 1.1. The two elements C_{1} and $C_{n}=\sigma\left(C_{1}\right)$ are central in \bar{U}. In particular, they are algebraically independent.

Theorem 1.2. Let \bar{U}_{A} be the A-form of \bar{U} and $\mathfrak{c a s}=\frac{1}{4(q-1)^{2}}\left(C_{1}+C_{n}-2 n-2\right)-\frac{n(n+1)(n+2)}{12}$. Then $\mathfrak{c a s} \in \bar{U}_{A}$ and $\lim _{q \rightarrow 1} \mathfrak{c a s}$ is the Casimir element of $U(\mathfrak{g})$.

We call $\mathfrak{c a s}$ the quantum Casimir element of \bar{U}.
Theorem 1.3. Let \mathfrak{g} be of type A_{2}. Then
(i) the center $Z(\bar{U})$ of \bar{U} is the polynomial algebra in two variables C_{1}, C_{2};
(ii) the center $Z(U)$ of U is the subalgebra generated by three elements $C_{1}^{3}, C_{2}^{3}, C_{1} C_{2}$.

2. BASICS

2.1. Lie algebra and its invariant bilinear form. The complex simple Lie algebra \mathfrak{g} of type A_{n} is generated by elements $e_{i}, f_{i}, h_{i}(1 \leq i \leq n)$ subject to the relations:

$$
\begin{aligned}
& {\left[e_{i}, f_{j}\right]=\delta_{i, j} h_{i},\left[h_{i}, e_{j}\right]=a_{i, j} e_{j},\left[h_{i}, f_{j}\right]=-a_{i, j} f_{j}} \\
& {\left[e_{i},\left[e_{i}, e_{j}\right]\right]=0,\left[f_{i},\left[f_{i}, f_{j}\right]\right]=0,|i-j|=1} \\
& {\left[e_{i}, e_{j}\right]=0,\left[f_{i}, f_{j}\right]=0,|i-j|>1}
\end{aligned}
$$

where $\left(a_{i, j}=2 \delta_{i, j}-\delta_{|i-j|, 1}\right)$ is the Cartan matrix (see [4]).
There exists a unique invariant symmetric bilinear form on \mathfrak{g} determined by

$$
\left(e_{i}, f_{j}\right)=\delta_{i, j}
$$

which is a nonzero scalar of the Killing form.
The Cartan subalgebra \mathfrak{h} can be identified by its dual \mathfrak{h}^{*} via

$$
\gamma: h_{i} \mapsto \alpha_{i}
$$

satisfying $\alpha(h)=\left(\gamma^{-1}(\alpha), h\right)$. Consequently, there exists a unique bilinear form on \mathfrak{h}^{*} such that $(\lambda, \mu)=\lambda\left(\gamma^{-1}(\mu)\right), \forall \lambda, \mu \in \mathfrak{h}^{*}$.

Let $\left\{x_{i} \mid 1 \leq i \leq \operatorname{dimg}\right\}$ be an arbitrary basis of \mathfrak{g}, and let $\left\{y_{i} \mid 1 \leq i \leq \operatorname{dimg}\right\}$ be the dual basis associated to (,). It is well known that

$$
\sum_{i=1}^{\text {dimg }} x_{i} y_{i}
$$

is the Casimir elements of \mathfrak{g}, independent of the choice of x_{i} 's.
For example, \mathfrak{g} has a Chevalley basis $\left\{x_{\alpha}, h_{i} \mid \alpha \in \Phi, 1 \leq i \leq n\right\}$ such that

$$
\begin{aligned}
& x_{\alpha_{i}}=e_{i}, x_{-\alpha_{i}}=f_{i},\left[x_{\alpha}, x_{-\alpha}\right]=\gamma^{-1}(\alpha), \\
& {\left[x_{\alpha}, x_{\beta}\right]=N_{\alpha, \beta} x_{\alpha+\beta}, \text { if } \alpha+\beta \neq 0,}
\end{aligned}
$$

where $N_{\alpha, \beta} \in\{0, \pm 1\}$ and Φ is the root system of \mathfrak{g}. The dual basis is given as follows:

$$
\left\{x_{-\alpha}, \gamma^{-1}\left(\lambda_{i}\right) \mid \alpha \in \Phi, 1 \leq i \leq n\right\}=\left\{x_{\alpha}, \gamma^{-1}\left(\lambda_{i}\right) \mid \alpha \in \Phi, 1 \leq i \leq n\right\} .
$$

As usual, let $\Lambda=\sum_{i=1}^{n} \mathbb{Z} \lambda_{i}$ and $Q=\sum_{i=1}^{n} \mathbb{Z} \alpha_{i}$ respectively denote the weight lattice and the root lattice, where λ_{i} and α_{i} stand for the fundamental weight and the simple root associated to index i. For convenience, we let $\lambda_{0}=\lambda_{n+1}=0$. Thus, we have $\alpha_{i}=-\lambda_{i-1}+2 \lambda_{i}-\lambda_{i+1}$.
2.2. Quantum group. The simply-connected type quantum group $\bar{U}=U_{q}(\mathfrak{g}, \Lambda)$ is a q-analogue of the enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g}. As an associative algebra over $\mathbb{C}(q), \bar{U}$ is generated by the elements $E_{i}, F_{i}(1 \leq i \leq n)$ and $K_{\lambda}(\lambda \in \Lambda)$ subject to the relations:

$$
\begin{aligned}
& K_{0}=1, K_{\lambda} K_{\mu}=K_{\lambda+\mu}, K_{\lambda} e_{i} K_{-\lambda}=q^{\left(\lambda, \alpha_{i}\right)}, K_{\lambda} f_{i} K_{-\lambda}=q^{-\left(\lambda, \alpha_{i}\right)} f_{i} \\
& {\left[E_{i}, F_{j}\right]=\delta_{i, j} \frac{K_{\alpha_{i}}-K_{-\alpha_{i}}}{q-q^{-1}}} \\
& {\left[E_{i}, E_{j}\right]=0,\left[F_{i}, F_{j}\right]=0,|i-j|>1,}
\end{aligned}
$$

and the q-Serre relations:

$$
\left[E_{i},\left[E_{i}, E_{j}\right]_{q^{-1}}\right]_{q}=0,\left[F_{i},\left[F_{i}, F_{j}\right]_{q^{-1}}\right]_{q}=0,|i-j|=1,
$$

where $[a, b]_{v}=a b-v b a$, for all $a, b \in \bar{U}$ and $v \in \mathbb{C}(q)$.
We arrange the sets $\left\{F_{i, j} \mid 1 \leq i \leq j \leq n\right\}$ and $\left\{E_{i, j} \mid 1 \leq i \leq j \leq n\right\}$ in numerical order so that we have:

$$
\begin{aligned}
\left\{F_{i, j} \mid 1 \leq i \leq j \leq n\right\} & =\left\{\mathfrak{F}_{i} \mid 1 \leq i \leq n(n+1) / 2\right\}, \\
\left\{E_{i, j} \mid 1 \leq i \leq j \leq n\right\} & =\left\{\mathfrak{E}_{i} \mid 1 \leq i \leq n(n+1) / 2\right\} .
\end{aligned}
$$

In this way, \bar{U} has a PBW type basis (one is referred to [5], see the Theorem in 8.24 for the PBW type basis of U):

$$
\left\{\mathfrak{F}_{1}^{i_{1}} \cdots \mathfrak{F}_{n(n+1) / 2}^{i_{n(n+1) / 2}} K_{\lambda} \mathfrak{E}_{1}^{j_{1}} \cdots \mathfrak{E}_{n(n+1) / 2}^{j_{n(n+1) / 2}} \mid i_{k}, j_{k} \in \mathbb{N}, \lambda \in \Lambda\right\} .
$$

The quantum group $U=U_{q}(\mathfrak{g}, Q)$ is the subalgebra of \bar{U} generated by elements $E_{i}, F_{i}(1 \leq$ $i \leq n)$ and $K_{\alpha}(\alpha \in Q)$, this is the quantized enveloping algebra in the Jantzen's sense.

The diagram automorphism σ of \bar{U} is defined via

$$
\sigma\left(E_{i}\right)=E_{n+1-i}, \sigma\left(F_{i}\right)=F_{n+1-i}, \sigma\left(K_{\lambda_{i}}\right)=K_{\lambda_{n+1-i}} .
$$

Note that $\alpha_{i}=-\lambda_{i-1}+2 \lambda_{i}-\lambda_{i+1}$. We have $\sigma\left(K_{\alpha_{i}}\right)=K_{\alpha_{n+1-i}}$. The restriction $\left.\sigma\right|_{U}$ of σ on U is also an automorphism.
2.3. Lusztig $\mathbb{Z}\left[q, q^{-1}\right]$-form. Let $A=\mathbb{Z}\left[q, q^{-1}\right]$ be the Laurent polynomial ring in variable q. The Lusztig A-form of U is an A-algebra U_{A} generated by the elements:

$$
E_{i}^{(N)}=E_{i}^{N} /[N]_{q}!, F_{i}^{(N)}=F_{i}^{N} /[N]_{q}!, 1 \leq i \leq n, N \geq 1
$$

Since U_{A} is an A-algebra and $\left[E_{i}, F_{j}\right]=\delta_{i, j} \frac{K_{\alpha_{i}}-K_{-\alpha_{i}}}{q-q^{-1}}$, the limit of U_{A} as $q \rightarrow 1$ can be well defined in the sense of $K_{\alpha}=\exp \left(\hbar \gamma^{-1}(\alpha)\right)$, where $\hbar=\log q$. Then

$$
\lim _{q \rightarrow 1} \frac{K_{\alpha_{i}}-K_{-\alpha_{i}}}{q-q^{-1}}=\lim _{\hbar \rightarrow 0} \frac{K_{\alpha_{i}}-K_{-\alpha_{i}}}{q-q^{-1}}=h_{i}
$$

Moreover, we have the following identification:

$$
\mathbb{C} \otimes_{\mathbb{Z}} \lim _{q \rightarrow 1} U_{A} \cong U(\mathfrak{g})
$$

We let \bar{U}_{A} be the A-algebra generated by the elements:

$$
E_{i}^{(N)}=E_{i}^{N} /[N]_{q}!, F_{i}^{(N)}=F_{i}^{N} /[N]_{q}!, K_{\lambda}, \frac{K_{\lambda}-K_{-\lambda}}{q-q^{-1}}, 1 \leq i \leq n, N \geq 1, \lambda \in \Lambda
$$

The limit of \bar{U}_{A} as $q \rightarrow 1$ can be defined in a similar way. In particular, $\lim _{q \rightarrow 1} K_{\lambda}=1$ and $U(\mathfrak{g})$ is also identified with $\mathbb{C} \otimes_{\mathbb{Z}} \lim _{q \rightarrow 1} \bar{U}_{A}$. In particular, with this identification, $\lim _{q \rightarrow 1} F_{i, j}$ and $\lim _{q \rightarrow 1} E_{i, j}$ correspond respectively to the root vectors $x_{-\alpha}$ and x_{α} with roots $\pm \alpha= \pm\left(\alpha_{i}+\cdots+\alpha_{j}\right)$. It follows that

$$
\left(\lim _{q \rightarrow 1} F_{i, j}, \lim _{q \rightarrow 1} E_{i, j}\right)=(-1)^{j-i}
$$

2.4. Quantized Harish-Chandra isomorphism. The algebra \bar{U} is Λ-graded with homogeneous spaces

$$
\bar{U}_{\nu}=\left\{u \mid K^{\mu} u K^{-\mu}=q^{(\mu, \nu)}\right\}
$$

Let \bar{U}^{0} be the subalgebra generated by $K^{\mu}(\mu \in \Lambda)$. Identify \bar{U} as the triangular decomposition $\bar{U}^{-} \otimes \bar{U}^{0} \otimes \bar{U}^{+}$. Then \bar{U}_{0} has a decomposition

$$
\bar{U}_{0}=\bar{U}^{0} \oplus \bigoplus_{\nu>0} \bar{U}_{-\nu}^{-} \bar{U}^{0} \bar{U}_{\nu}^{+}
$$

Let $\pi: \bar{U}_{0} \rightarrow \bar{U}^{0}$ be the projection with respect to this decomposition. Then π is an algebra homomorphism.

Let $\Gamma: \bar{U}^{0} \rightarrow \bar{U}^{0}$ be an algebra automorphism defined by

$$
\Gamma\left(K_{\lambda_{i}}\right)=q^{-(n+1-i) i / 2} K_{\lambda_{i}}
$$

Let W be the Weyl group and $\left(\bar{U}^{0}\right)_{e v}$ be the subalgebra generated by $K_{\lambda}(\lambda \in 2 \Lambda)$. Then $\Gamma \circ \pi$ is the quantized Harish-Chandra isomorphism from the center $Z(\bar{U})$ of \bar{U} to the algebra $\left(\bar{U}_{e v}^{0}\right)^{W}$ of W-invariants in $\bar{U}_{e v}^{0}$. Moreover, it is also an isomorphism from the center $Z(U)$ of U to $\left(U_{e v}^{0}\right)^{W}:=U \cap\left(\bar{U}_{e v}^{0}\right)^{W}$. The algebra $\left(\bar{U}_{e v}^{0}\right)^{W}$ is obviously generated by the elements

$$
\sum_{\omega \in W} K_{\omega\left(2 \lambda_{i}\right)}, i=1, \cdots, n
$$

In particular, when $n=2$, the invariant subalgebra $\left(\bar{U}_{e v}^{0}\right)^{W}$ can be generated by two elements:

$$
\begin{aligned}
Z_{1} & =K_{2 \lambda_{1}}+K_{2 \lambda_{2}-2 \lambda_{1}}+K_{-2 \lambda_{2}} \\
Z_{2} & =K_{-2 \lambda_{1}}+K_{2 \lambda_{1}-2 \lambda_{2}}+K_{2 \lambda_{2}} .
\end{aligned}
$$

and $\left(U_{e v}^{0}\right)^{W}$ can be generated by three elements (see [6] and [7])

$$
\begin{aligned}
Z_{3} & =K_{6 \lambda_{1}}+K_{6 \lambda_{2}-6 \lambda_{1}}+K_{-6 \lambda_{2}} \\
Z_{4} & =K_{-6 \lambda_{1}}+K_{6 \lambda_{1}-6 \lambda_{2}}+K_{6 \lambda_{2}} \\
Z_{5} & =K_{2 \lambda_{1}+2 \lambda_{2}}+K_{-2 \lambda_{1}+4 \lambda_{4}}+K_{4 \lambda_{1}-2 \lambda_{2}}+K_{2 \lambda_{1}-4 \lambda_{2}}+K_{-4 \lambda_{1}+2 \lambda_{2}}+K_{-2 \lambda_{1}-2 \lambda_{2}}
\end{aligned}
$$

2.5. Some useful lemmas.

Lemma 2.1. The following equations hold for $1 \leq i \leq n$:

$$
\left[E_{i},\left[E_{i}, E_{i \pm 1}\right]_{q^{ \pm 1}}\right]_{q^{\mp 1}}=\left[F_{i},\left[F_{i}, F_{i \pm 1}\right]_{q^{ \pm 1}}\right]_{q^{\mp 1}}=0 .
$$

Proof. They are the q-Serre relations.
Lemma 2.2. The following hold for $1 \leq i \leq n$:

$$
\left[E_{i},\left[E_{i-1},\left[E_{i}, E_{i+1}\right]_{q^{ \pm 1}}\right]_{q^{ \pm 1}}\right]=\left[F_{i},\left[F_{i-1},\left[F_{i}, F_{i+1}\right]_{q^{ \pm 1}}\right]_{q^{ \pm 1}}\right]=0
$$

Proof. We only check $\left[E_{i},\left[E_{i-1},\left[E_{i}, E_{i+1}\right]_{q}\right]_{q}\right]=0$, the proof for other cases is similar. In fact,

$$
\begin{aligned}
& {\left[E_{i},\left[E_{i-1},\left[E_{i}, E_{i+1}\right]_{q}\right]_{q}\right] } \\
= & E_{i} E_{i-1} E_{i} E_{i+1}-q E_{i} E_{i-1} E_{i+1} E_{i}-q E_{i} E_{i} E_{i+1} E_{i-1}+q^{2} E_{i} E_{i+1} E_{i} E_{i-1} \\
& -E_{i-1} E_{i} E_{i+1} E_{i}+q E_{i-1} E_{i+1} E_{i} E_{i}+q E_{i} E_{i+1} E_{i-1} E_{i}-q^{2} E_{i+1} E_{i} E_{i-1} E_{i} \\
= & E_{i} E_{i-1} E_{i} E_{i+1}-q E_{i} E_{i} E_{i+1} E_{i-1}+q^{2} E_{i} E_{i+1} E_{i} E_{i-1} \\
& -E_{i-1} E_{i} E_{i+1} E_{i}+q E_{i-1} E_{i+1} E_{i} E_{i}-q^{2} E_{i+1} E_{i} E_{i-1} E_{i} \\
= & \frac{1}{q+q^{-1}}\left(E_{i} E_{i} E_{i-1} E_{i+1}+E_{i-1} E_{i} E_{i} E_{i+1}\right)-q E_{i} E_{i} E_{i+1} E_{i-1} \\
& +\frac{q^{2}}{q+q^{-1}}\left(E_{i} E_{i} E_{i+1} E_{i-1}+E_{i+1} E_{i} E_{i} E_{i-1}\right) \\
& -\frac{1}{q+q^{-1}}\left(E_{i-1} E_{i} E_{i} E_{i+1}+E_{i-1} E_{i+1} E_{i} E_{i}\right)+q E_{i-1} E_{i+1} E_{i} E_{i} \\
& -\frac{q^{2}}{q+q^{-1}}\left(E_{i+1} E_{i} E_{i} E_{i-1}+E_{i+1} E_{i-1} E_{i} E_{i}\right) \\
= & \left(\frac{1}{q+q^{-1}}-q+\frac{q^{2}}{q+q^{-1}}\right)\left(E_{i} E_{i} E_{i-1} E_{i+1}+E_{i-1} E_{i+1} E_{i} E_{i}\right)=0 .
\end{aligned}
$$

Lemma 2.3. The following equations hold for $i \neq j$:

$$
\begin{aligned}
{\left[E_{i}, E_{i, j}\right]_{q} } & =0, & {\left[E_{i-1}, E_{i, j}\right]_{q^{-1}}=E_{i-1, j} } \\
{\left[E_{j}, E_{i, j}\right]_{q^{-1}} } & =0, & {\left[E_{j+1}, E_{i, j}\right]_{q}=-q E_{i, j+1} }
\end{aligned}
$$

Moreover, if $k \neq i-1, i, j, j+1$, then

$$
\left[E_{k}, E_{i, j}\right]=0
$$

Proof. Follow from Lemma 2.2, the q-Serre relations and the definition of $E_{i, j}$.

Lemma 2.4. If $i \neq j$, then for any k, we have

$$
\left[E_{k}, F_{i, j}\right]=\delta_{i, k} F_{i+1, j} K_{-\alpha_{i}}-q \delta_{j, k} E_{i, j-1} K_{\alpha_{j}}
$$

Proof. If $k \neq i, j$, it is clear that $\left[E_{k}, F_{i, j}\right]=0$. If $k=i$, then

$$
\begin{aligned}
{\left[E_{k}, F_{i, j}\right] } & =\left[\cdots\left[\left[E_{i}, F_{i}\right], F_{i+1}\right]_{q}, \cdots, F_{j}\right]_{q} \\
& =\frac{1}{q-q^{-1}}\left[\cdots\left[K_{\alpha_{i}}-K_{-\alpha_{i}}, F_{i+1}\right]_{q}, \cdots, F_{j}\right]_{q} \\
& =\left[\cdots\left[F_{i+1}, F_{i+2}\right]_{q}, \cdots, F_{j}\right]_{q} K_{-\alpha_{i}}=F_{i+1, j} K_{-\alpha_{i}}
\end{aligned}
$$

If $k=j$, then

$$
\begin{aligned}
{\left[E_{k}, F_{i, j}\right] } & =\left[\cdots\left[F_{i}, F_{i+1}\right]_{q}, \cdots,\left[E_{j}, F_{j}\right]\right]_{q} \\
& =\frac{1}{q-q^{-1}}\left[\left[\cdots\left[F_{i}, F_{i+1}\right]_{q}, \cdots, F_{j-1}\right]_{q}, K_{\alpha_{j}}-K_{-\alpha_{j}}\right]_{q} \\
& =-q\left[\cdots\left[F_{i+1}, F_{i+2}\right]_{q}, \cdots, F_{j-1}\right]_{q} K_{\alpha_{j}}=-q F_{i, j-1} K_{\alpha_{j}}
\end{aligned}
$$

Lemma 2.5. If $k \neq i-1, i, j, j+1$, then

$$
\left[E_{k}, F_{i, j} E_{i, j} K_{i, j}\right]=0
$$

Proof. If $k \neq i-1, i, j, j+1$, then $\left[E_{k}, K_{i, j}\right]=0$. The rest follows from Lemmas 2.3 and Lemma 2.4.

Lemma 2.6. The group-like elements $K_{\lambda_{i}}(1 \leq i \leq n)$ are algebraically independent.

Proof. We only prove for $n=2$. The proof for general n is similar.
We assume that

$$
\zeta:=\sum_{i, j} c_{i, j} K_{\lambda_{1}}^{i} K_{\lambda_{2}}^{j}=0
$$

for finitely many nonzero $c_{i, j} \in \mathbb{C}(q)$.
Let V be a weight module with a weight vector v corresponding to the weight $\lambda=k \alpha_{1}+l \alpha_{2}$. Then

$$
\zeta \cdot v=\left(\sum_{i, j} c_{i, j} q^{i k+j l}\right) v=0
$$

and hence

$$
\sum_{i, j} c_{i, j} q^{i k+j l}=0
$$

Let $i_{0}=\max \left\{i \mid c_{i, j} \neq 0\right\}, j_{0}=\max \left\{j \mid c_{i_{0}, j} \neq 0\right\}$ and $k^{\prime}=j_{0}+1, l^{\prime}=1$. Then the integers $i k^{\prime}+j l^{\prime}$ such taht $c_{i, j} \neq 0$ are mutually different. Let $\left\{\eta_{1}, \cdots, \eta_{N}\right\}$ be an arrangement of such integers. So the matrix $\left(a_{r, s}=q^{(s-1) \eta_{r}}\right)$ is a vandermonde matrix, which is invertible when q is generic.

Consider $k=r k^{\prime}, l=r l^{\prime}$ for $r=1,2, \cdots$. Then $\sum_{i, j} c_{i, j} q^{i k+j l}=0$ implies that all $c_{i, j}$ are zeros. Thus the lemma holds.

3. Proof for main results

3.1. Proof of Theorem 1.1. By definition, we have

$$
\begin{aligned}
{\left[E_{1}, C_{1}\right]=} & {\left[E_{1}, q^{n} K_{2 \lambda_{1}}+q^{n-2} K_{2 \lambda_{2}-2 \lambda_{1}}+\left(q-q^{-1}\right)^{2} \sum_{1 \leq i \leq j \leq 2}(-1)^{j-i} q^{n+1-i-j} F_{i, j} E_{i, j} K_{i, j}\right] } \\
= & q^{n-1} K_{\lambda_{2}}\left[E_{1}, q K_{\alpha_{1}}+q^{-1} K_{-\alpha_{1}}+\left(q-q^{-1}\right)^{2} F_{1} E_{1}\right] \\
& +\left(q-q^{-1}\right)^{2} \sum_{j \geq 2}\left[E_{1}, q^{n-1-j} F_{2, j} E_{2, j} K_{2, j}-q^{n-j} F_{1, j} E_{1, j} K_{1, j}\right] \\
= & \left(q-q^{-1}\right)^{2} \sum_{j \geq 2} q^{n-1-j}\left(F_{2, j} E_{1, j} K_{2, j}-q\left[E_{1}, F_{1, j}\right] E_{1, j} K_{1, j}\right) \\
= & \left(q-q^{-1}\right)^{2} \sum_{j \geq 2} q^{n-1-j}\left(F_{2, j} E_{1, j} K_{2, j}-q F_{2, j} K_{-\alpha_{1}} E_{1, j} K_{1, j}\right)=0 .
\end{aligned}
$$

The proof for $\left[E_{n}, C_{1}\right]=0$ is similar.
For $1<i<n$, we compute

$$
\begin{aligned}
{\left[E_{i}, C_{1}\right]=} & q^{n+1-2 i} K_{\lambda_{i-1}+\lambda_{i+1}}\left[E_{i}, q K_{\alpha_{i}}+q^{-1} K_{-\alpha_{i}}+\left(q-q^{-1}\right)^{2} F_{i} E_{i}\right] \\
& +\left(q-q^{-1}\right)^{2} \sum_{j \geq i+1} q^{n-i-j}(-1)^{j-i-1}\left[E_{i}, F_{i+1, j} E_{i+1, j} K_{i+1, j}-q F_{i, j} E_{i, j} K_{i, j}\right] \\
& +\left(q-q^{-1}\right)^{2} \sum_{j \leq i-1} q^{n+1-i-j}(-1)^{j-i+1}\left[E_{i}, q F_{j, i-1} E_{j, i-1} K_{j, i-1}-F_{j, i} E_{j, i} K_{j, i}\right] \\
= & \left(q-q^{-1}\right)^{2} \sum_{j \geq i+1} q^{n-i-j}(-1)^{j-i-1}\left(F_{i+1, j} E_{i, j} K_{i+1, j}-q F_{i+1, j} K_{-\alpha_{i}} E_{i, j} K_{i, j}\right) \\
& +\left(q-q^{-1}\right)^{2} \sum_{j \leq i-1} q^{n+1-i-j}(-1)^{j-i+1}\left(-q^{2} F_{j, i-1} E_{j, i} K_{j, i-1}+q F_{j, i-1} K_{\alpha_{i}} E_{j, i} K_{j, i}\right)=0
\end{aligned}
$$

So far we have proved $\left[E_{i}, C_{1}\right]=0$ for all i. In a similar way, we obtain $\left[F_{i}, C_{1}\right]=0$ for all i. Note that $C_{1} \in \bar{U}_{0}$. So C_{1} is a central element. By definition, C_{n} is also a central element.

Now we consider $\Gamma \circ \pi\left(C_{i}\right)$. We have

$$
\Gamma \circ \pi\left(C_{1}\right)=\sum_{i=1}^{n+1} K_{2 \lambda_{i}-2 \lambda_{i-1}}, \quad \Gamma \circ \pi\left(C_{n}\right)=\sum_{i=1}^{n+1} K_{-2 \lambda_{i}+2 \lambda_{i-1}}
$$

Thus, for all $i, j \in \mathbb{Z}_{+}$, we have

$$
\left(\Gamma \circ \pi\left(C_{1}\right)\right)^{i}\left(\Gamma \circ \pi\left(C_{n}\right)\right)^{j}=K_{2 i \lambda_{1}+2 j \lambda_{n}}+\text { other terms involving } \lambda_{k}
$$

By Lemma 2.6, $K_{\lambda_{i}}, 1 \leq i \leq n$, are algebraically independent for $n \geq 2$. So $\Gamma \circ \pi\left(C_{1}\right)$ and $\Gamma \circ \pi\left(C_{n}\right)$ are algebraically independent. It follows that C_{1} and C_{n} are algebraically independent.
3.2. Proof of Theorem 1.2. By definition, we have

$$
\begin{aligned}
\mathfrak{c a s}= & \frac{\left(q^{-1}+1\right)^{2}}{4} \sum_{i=1}^{n+1} q^{-n+2(i-1)}\left(\frac{q^{n-2(i-1)} K_{\lambda_{i}-\lambda_{i-1}}-K_{-\lambda_{i}+\lambda_{i-1}}}{q-q^{-1}}\right)^{2}-\frac{n(n+1)(n+2)}{12} \\
& +\sum_{1 \leq i \leq j \leq n}(-1)^{j-i} q^{n+1-i-j} F_{i, j} E_{i, j} K_{i, j}+\sum_{1 \leq i \leq j \leq n}(-1)^{j-i} q^{n+1-i-j} \sigma\left(F_{i, j} E_{i, j} K_{i, j}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
& \left(q^{-1}+1\right)\left(\frac{q^{n-2(i-1)} K_{\lambda_{i}-\lambda_{i-1}}-K_{-\lambda_{i}+\lambda_{i-1}}}{q-q^{-1}}\right) \\
= & \frac{q^{n-2(i-1)}-1}{q-1} K_{\lambda_{i}-\lambda_{i-1}}+\left(q^{-1}+1\right)\left(\frac{q^{n-2(i-1)} K_{\lambda_{i}-\lambda_{i-1}}-K_{-\lambda_{i}+\lambda_{i-1}}}{q-1}\right),
\end{aligned}
$$

It is obvious that $\mathfrak{c a s}$ belongs to the $\mathbb{Z}\left[q, q^{-1}\right]$-subalgebra of \bar{U}_{A} generated by the elements

$$
\frac{K_{\lambda_{i}-\lambda_{i-1}}-K_{-\lambda_{i}+\lambda_{i-1}}}{q-q^{-1}}, F_{k}, E_{k}, K_{k, j}, 1 \leq i \leq n+1,1 \leq k \leq j \leq n .
$$

Thus, $\mathfrak{c a s} \in \bar{U}_{A}$. Identifying $\lim _{q \rightarrow 1} \mathbb{C} \otimes_{\mathbb{Z}} \bar{U}_{A}$ with $U(\mathfrak{g})$, we see that $\lim _{q \rightarrow 1} \mathfrak{c a s}$ is a central element. Moreover, we have

$$
\begin{aligned}
& \lim _{q \rightarrow 1} \frac{q^{n-2(i-1)}-1}{q-1} K_{\lambda_{i}-\lambda_{i-1}}+\left(q^{-1}+1\right)\left(\frac{q^{n-2(i-1)} K_{\lambda_{i}-\lambda_{i-1}}-K_{-\lambda_{i}+\lambda_{i-1}}}{q-1}\right) \\
= & n-2(i-1)+2 \gamma^{-1}\left(\lambda_{i}-\lambda_{i-1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{q \rightarrow 1} \sum_{1 \leq i \leq j \leq n}(-1)^{j-i} q^{n+1-i-j} F_{i, j} E_{i, j} K_{i, j}+\lim _{q \rightarrow 1} \sum_{1 \leq i \leq j \leq n}(-1)^{j-i} q^{n+1-i-j} \sigma\left(F_{i, j} E_{i, j} K_{i, j}\right) \\
= & 2 \sum_{\alpha>0} x_{-\alpha} x_{\alpha}=-2 \gamma^{-1}(\rho)+\sum_{\alpha \in \Phi} x_{-\alpha} x_{\alpha},
\end{aligned}
$$

where the x_{α} are root vectors such that $\left(x_{\alpha}, x_{\beta}\right)=\delta_{\alpha+\beta, 0}$, and ρ is the half sum of all positive roots.

It follows that

$$
\lim _{q \rightarrow 1} \mathfrak{c a s}=2 \gamma^{-1}(\rho)+\sum_{\alpha \in \Phi} x_{-\alpha} x_{\alpha}+\sum_{i=1}^{n+1}\left(\gamma^{-1}\left(\lambda_{i}-\lambda_{i-1}\right)+\frac{n}{2}-(i-1)\right)^{2}-\frac{n(n+1)(n+2)}{12}
$$

is a quadratic central element. Now the identity

$$
\sum_{i=1}^{n+1}\left(\frac{n}{2}-(i-1)\right)^{2}=\frac{n(n+1)(n+2)}{12},
$$

and the fact that $U(\mathfrak{h})$ contains no central elements except scalars, imply that $\lim _{q \rightarrow 1} \mathfrak{c a s}$ belongs to $\sum_{\alpha \in \Phi} x_{-\alpha} x_{\alpha}+U(\mathfrak{h})$.

This forces

$$
\lim _{q \rightarrow 1} \mathfrak{c a s}=\sum_{\alpha \in \Phi} x_{\alpha} x_{-\alpha}+\sum_{i=1}^{n} h_{i} \gamma^{-1}\left(\lambda_{i}\right)=\sum_{i=1}^{\text {dimg }} x_{i} y_{i} .
$$

3.3. Proof of Theorem 1.3.

Proof. Note that the algebra $\left(\bar{U}_{e v}^{0}\right)^{W}$ can be generated by two elements:

$$
Z_{1}=K_{2 \lambda_{1}}+K_{2 \lambda_{2}-2 \lambda_{1}}+K_{-2 \lambda_{2}}, \quad Z_{2}=K_{-2 \lambda_{1}}+K_{2 \lambda_{1}-2 \lambda_{2}}+K_{2 \lambda_{2}} .
$$

Since

$$
\begin{aligned}
& \Gamma \circ \pi\left(C_{1}\right)=K_{2 \lambda_{1}}+K_{2 \lambda_{2}-2 \lambda_{1}}+K_{-2 \lambda_{2}}, \\
& \Gamma \circ \pi\left(C_{2}\right)=K_{-2 \lambda_{1}}+K_{2 \lambda_{1}-2 \lambda_{2}}+K_{2 \lambda_{2}},
\end{aligned}
$$

it follows from the Harish-Chandra isomorphism that the center $Z(\bar{U})$ can be generated by C_{1} and C_{2}.

Note that $3 \lambda_{1}=2 \alpha_{1}-\alpha_{2}, 3 \lambda_{2}=2 \alpha_{2}-\alpha_{1}$ and $\lambda_{1}+\lambda_{2}=\alpha_{1}+\alpha_{2}$. Thus,

$$
\begin{aligned}
C_{1} & =K_{2 \lambda_{1}}+K_{2 \lambda_{2}-2 \lambda_{1}}+K_{-2 \lambda_{2}}+\left(q-q^{-1}\right)^{2}\left(q F_{1} E_{1} K_{\lambda_{2}}+q^{-1} F_{2} E_{2} K_{-\lambda_{1}}-F_{1,2} E_{1,2} K_{\lambda_{1}-\lambda_{2}}\right) \\
& =K_{\lambda_{2}}\left(K_{\alpha_{1}}+K_{-\alpha_{1}}+K_{\alpha_{1}-2 \alpha_{2}}+\left(q-q^{-1}\right)^{2}\left(q F_{1} E_{1}+q^{-1} F_{2} E_{2} K_{-\alpha_{1}-\alpha_{2}}-F_{1,2} E_{1,2} K_{-\alpha_{2}}\right)\right) .
\end{aligned}
$$

It follows that $C_{1} \in K_{\lambda_{2}} U$ and $C_{2}=\sigma\left(C_{1}\right) \in K_{\lambda_{1}} U$. Therefore, we obtain that $C_{1}^{3}, C_{2}^{3}, C_{1} C_{2} \in U$. Hence $C_{1}^{3}, C_{2}^{3}, C_{1} C_{2} \in Z(U)$.

The following calculations:

$$
\begin{aligned}
& \Gamma \circ \pi\left(C_{1}^{3}\right)=\left(\Gamma \circ \pi\left(C_{1}\right)\right)^{3}=Z_{1}^{3}=Z_{3}+3 Z_{5}+6, \\
& \Gamma \circ \pi\left(C_{2}^{3}\right)=\left(\Gamma \circ \pi\left(C_{2}\right)\right)^{3}=Z_{2}^{3}=Z_{4}+3 Z_{5}+6, \\
& \Gamma \circ \pi\left(C_{1} C_{2}\right)=\Gamma \circ \pi\left(C_{1}\right) \Gamma \circ \pi\left(C_{2}\right)=Z_{1} Z_{2}=Z_{5}+3,
\end{aligned}
$$

and the fact that $\left(U_{e v}^{0}\right)^{W}$ can be generated by Z_{3}, Z_{4}, Z_{5}, together with the quantum HarishCHandra isomorphism, imply that $Z(U)$ can be generated by C_{1}^{3}, C_{2}^{3} and $C_{1} C_{2}$.

REFERENCES

[1] D. Arnaudon, M. Bauer,Polynomial relations in the centre of $U_{q}(s l(N))$. Lett. Math. Phys. 30 (1994), no. 3, 251-257.
[2] V. G. Drinfeld, Quantum groups, Proc. Int. Congr. Math., Berkeley, 1986, 798-820.
[3] L. D. Faddeev, N.Y. Reshetikhin, L. A. Takhtajan, Quantization of Lie Groups and Lie Algebras, Algebraic analysis, Vol. I, Academic Press, Boston, MA, (1988):129C139.
[4] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, GTM 9, Springer, 1973. 70(1951): 28-96.
[5] J. Jantzen, Lectures on quantum groups, Grad. Stud. Math., vol. 6, Providence RI: Amer. Math. Soc., 1996.
[6] L. Li, J. Wu, Y. Pan, Quantum Weyl symmetric polynomials and the center of quantum group $U_{q}\left(\mathfrak{s l}_{3}\right)$, Algebra Colloq, 19 (2012): 525-532. 683-704. 55-64. doi: 10.1007/s11425-010-4125-1.
[7] L. Li, L. Xia, Y. Zhang, On the center of the quantized enveloping algebra of a simple Lie algebra, arXiv:1607.00802.

[^0]: ${ }^{\dagger}$ The corresponding author.

