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ON THE CENTERS OF QUANTUM GROUPS OF An-TYPE

LIBIN LI†, LI-MENG XIA, AND YINHUO ZHANG

Abstract. Let g be the finite dimensional simple Lie algebra of type An, and let U = Uq(g,Λ)

and U = Uq(g, Q) be the quantum groups defined over the weight lattice and over the root lattice

respectively. In this paper, we find two algebraically independent central elements in U for all

n ≥ 2 and give an explicit formula of the Casimir elements for the quantum group U = Uq(g,Λ),

which corresponds to the Casimir element of the enveloping algebra U(g). Moreover, for n = 2

we give explicitly generators of the center subalgebras of the quantum groups U = Uq(g,Λ) and

U = Uq(g, Q).

1. Introduction

1.1. Background. Let g be the finite dimensional simple Lie algebra of type An over the complex

number field C. We let U = Uq(g,Λ) and U = Uq(g, Q) be the quantum groups defined over the

weight lattice and over the root lattice respectively (see [2] and [5]). By the quantum analogue of

the Harish-Chandra Theorem, the center of U is a polynomial algebra. In [3], a generator set of

the center of U is given for a generic q (referred to [1]). Unfortunately, these papers do not contain

complete proofs.

The situation turns more complicated when one considers the center of U with q being generic.

The center subalgebra Z(U) of U is not a polynomial algebra except n = 1. In [7], by using the

quantized Harish-Chandra Theorem, we proved that the center of U is a finitely generated algebra.

In the special case where n = 2, the center of U is isomorphic to the algebra generated by x, y, z

subject to the relation xy = z3(also see [6]). However, the generators of Z(U) in U are still

unknown in general.

Let UA ⊂ U be the Lusztig A-form of U , where A = Z[q, q−1]. Then C ⊗Z limq→1 UA is

isomorphic to the enveloping algebra U(g) of g. Obviously, the central elements of UA correspond

to the central elements of U(g). Up to a scalar, the Casimir element of U(g) means the quadratic

central element
∑
i xiyi ∈ U(g), where {xi|1 ≤ i ≤ dimg} is a basis of g and {yi|1 ≤ i ≤ dimg}

is the dual dual basis. As far as we know, the quantized Casimir element, the analogue of the

Casimir element of U(g) has not been given.

In this paper, we find two algebraically independent central elements in U for n ≥ 2 and give

a quantum analogue of the Casimir element in U corresponding to the Casimir element of U(g).

For the type A2, we give explicitly the generators of the centers Z(U) and Z(U) respectively.

†The corresponding author.
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1.2. Main results. Let Ei, Fi,K±λi be the commonly-used generators of U corresponding to the

cartan matrix (ai,j = 2δi,j − δ|i−j|,1). For 1 ≤ i ≤ j ≤ n, set

Fi,j = [· · · [Fi, Fi+1]q, · · · , Fj ]q,

Ei,j = [· · · [Ei, Ei+1]q−1 , · · · , Ej ]q−1 ,

Ki,j = K−λi−1+λi−λj+λj+1 .

In particular, Fi,i = Fi, Ei,i = Ei and Ki,i = K−λi−1+λi+1
.

Let σ be the diagram automorphism of U . Define

C1 =

n+1∑
i=1

qn−2(i−1)K2λi−2λi−1 + (q − q−1)2
∑

1≤i≤j≤n

(−1)j−iqn+1−i−jFi,jEi,jKi,j ,

Cn = σ(C1).

Note that n ≥ 2, the diagram automorphism σ of U is nontrivial and C1 6= Cn. These two elements

also appeared in [3](also see [1]), where they were defined independently.

In the following we always assume that g is of type An(n ≥ 2) and q is generic. Our main

results are as follows.

Theorem 1.1. The two elements C1 and Cn = σ(C1) are central in U . In particular, they are

algebraically independent.

Theorem 1.2. Let UA be the A-form of U and cas = 1
4(q−1)2 (C1 + Cn − 2n − 2) − n(n+1)(n+2)

12 .

Then cas ∈ UA and limq→1 cas is the Casimir element of U(g).

We call cas the quantum Casimir element of U .

Theorem 1.3. Let g be of type A2. Then

(i) the center Z(U) of U is the polynomial algebra in two variables C1, C2;

(ii) the center Z(U) of U is the subalgebra generated by three elements C3
1 , C

3
2 , C1C2.

2. Basics

2.1. Lie algebra and its invariant bilinear form. The complex simple Lie algebra g of type

An is generated by elements ei, fi, hi(1 ≤ i ≤ n) subject to the relations:

[ei, fj ] = δi,jhi, [hi, ej ] = ai,jej , [hi, fj ] = −ai,jfj ,

[ei, [ei, ej ]] = 0, [fi, [fi, fj ]] = 0, |i− j| = 1,

[ei, ej ] = 0, [fi, fj ] = 0, |i− j| > 1,

where (ai,j = 2δi,j − δ|i−j|,1) is the Cartan matrix (see [4]).

There exists a unique invariant symmetric bilinear form on g determined by

(ei, fj) = δi,j ,

which is a nonzero scalar of the Killing form.

The Cartan subalgebra h can be identified by its dual h∗ via

γ : hi 7→ αi,



3

satisfying α(h) = (γ−1(α), h). Consequently, there exists a unique bilinear form on h∗ such that

(λ, µ) = λ(γ−1(µ)),∀λ, µ ∈ h∗.

Let {xi|1 ≤ i ≤ dimg} be an arbitrary basis of g, and let {yi|1 ≤ i ≤ dimg} be the dual basis

associated to (, ). It is well known that

dimg∑
i=1

xiyi

is the Casimir elements of g, independent of the choice of xi’s.

For example, g has a Chevalley basis {xα, hi|α ∈ Φ, 1 ≤ i ≤ n} such that

xαi = ei, x−αi = fi, [xα, x−α] = γ−1(α),

[xα, xβ ] = Nα,βxα+β , if α+ β 6= 0,

where Nα,β ∈ {0,±1} and Φ is the root system of g. The dual basis is given as follows:

{x−α, γ−1(λi)|α ∈ Φ, 1 ≤ i ≤ n} = {xα, γ−1(λi)|α ∈ Φ, 1 ≤ i ≤ n}.

As usual, let Λ =
∑n
i=1 Zλi and Q =

∑n
i=1 Zαi respectively denote the weight lattice and the

root lattice, where λi and αi stand for the fundamental weight and the simple root associated to

index i. For convenience, we let λ0 = λn+1 = 0. Thus, we have αi = −λi−1 + 2λi − λi+1.

2.2. Quantum group. The simply-connected type quantum group U = Uq(g,Λ) is a q-analogue

of the enveloping algebra U(g) of g. As an associative algebra over C(q), U is generated by the

elements Ei, Fi(1 ≤ i ≤ n) and Kλ(λ ∈ Λ) subject to the relations:

K0 = 1,KλKµ = Kλ+µ,KλeiK−λ = q(λ,αi),KλfiK−λ = q−(λ,αi)fi

[Ei, Fj ] = δi,j
Kαi −K−αi
q − q−1

,

[Ei, Ej ] = 0, [Fi, Fj ] = 0, |i− j| > 1,

and the q-Serre relations:

[Ei, [Ei, Ej ]q−1 ]q = 0, [Fi, [Fi, Fj ]q−1 ]q = 0, |i− j| = 1,

where [a, b]v = ab− vba, for all a, b ∈ U and v ∈ C(q).

We arrange the sets {Fi,j |1 ≤ i ≤ j ≤ n} and {Ei,j |1 ≤ i ≤ j ≤ n} in numerical order so that

we have:

{Fi,j |1 ≤ i ≤ j ≤ n} = {Fi|1 ≤ i ≤ n(n+ 1)/2},

{Ei,j |1 ≤ i ≤ j ≤ n} = {Ei|1 ≤ i ≤ n(n+ 1)/2}.

In this way, U has a PBW type basis (one is referred to [5], see the Theorem in 8.24 for the PBW

type basis of U): {
Fi11 · · ·F

in(n+1)/2

n(n+1)/2KλE
j1
1 · · ·E

jn(n+1)/2

n(n+1)/2|ik, jk ∈ N, λ ∈ Λ
}
.

The quantum group U = Uq(g, Q) is the subalgebra of U generated by elements Ei, Fi(1 ≤
i ≤ n) and Kα(α ∈ Q), this is the quantized enveloping algebra in the Jantzen’s sense.

The diagram automorphism σ of U is defined via

σ(Ei) = En+1−i, σ(Fi) = Fn+1−i, σ(Kλi) = Kλn+1−i .
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Note that αi = −λi−1 + 2λi − λi+1. We have σ(Kαi) = Kαn+1−i . The restriction σ|U of σ on U is

also an automorphism.

2.3. Lusztig Z[q, q−1]-form. Let A = Z[q, q−1] be the Laurent polynomial ring in variable q. The

Lusztig A-form of U is an A-algebra UA generated by the elements:

E
(N)
i = ENi /[N ]q!, F

(N)
i = FNi /[N ]q!, 1 ≤ i ≤ n,N ≥ 1.

Since UA is an A-algebra and [Ei, Fj ] = δi,j
Kαi−K−αi
q−q−1 , the limit of UA as q → 1 can be well

defined in the sense of Kα = exp(~γ−1(α)), where ~ = log q. Then

lim
q→1

Kαi −K−αi
q − q−1

= lim
~→0

Kαi −K−αi
q − q−1

= hi.

Moreover, we have the following identification:

C⊗Z lim
q→1

UA ∼= U(g).

We let UA be the A-algebra generated by the elements:

E
(N)
i = ENi /[N ]q!, F

(N)
i = FNi /[N ]q!, Kλ,

Kλ −K−λ
q − q−1

, 1 ≤ i ≤ n,N ≥ 1, λ ∈ Λ.

The limit of UA as q → 1 can be defined in a similar way. In particular, lim
q→1

Kλ = 1 and U(g)

is also identified with C ⊗Z lim
q→1

UA. In particular, with this identification, lim
q→1

Fi,j and lim
q→1

Ei,j

correspond respectively to the root vectors x−α and xα with roots ±α = ±(αi + · · · + αj). It

follows that

(lim
q→1

Fi,j , lim
q→1

Ei,j) = (−1)j−i.

2.4. Quantized Harish-Chandra isomorphism. The algebra U is Λ-graded with homogeneous

spaces

Uν = {u|KµuK−µ = q(µ,ν)}.

Let U
0

be the subalgebra generated by Kµ(µ ∈ Λ). Identify U as the triangular decomposition

U
− ⊗ U0 ⊗ U+

. Then U0 has a decomposition

U0 = U
0 ⊕

⊕
ν>0

U
−
−νU

0
U

+

ν .

Let π : U0 → U
0

be the projection with respect to this decomposition. Then π is an algebra

homomorphism.

Let Γ : U
0 → U

0
be an algebra automorphism defined by

Γ(Kλi) = q−(n+1−i)i/2Kλi .

Let W be the Weyl group and (U
0
)ev be the subalgebra generated by Kλ(λ ∈ 2Λ). Then

Γ ◦ π is the quantized Harish-Chandra isomorphism from the center Z(U) of U to the algebra

(U
0

ev)
W of W -invariants in U

0

ev. Moreover, it is also an isomorphism from the center Z(U) of U to

(U0
ev)

W := U ∩ (U
0

ev)
W . The algebra (U

0

ev)
W is obviously generated by the elements∑

ω∈W
Kω(2λi), i = 1, · · · , n.
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In particular, when n = 2, the invariant subalgebra (U
0

ev)
W can be generated by two elements:

Z1 = K2λ1
+K2λ2−2λ1

+K−2λ2
,

Z2 = K−2λ1 +K2λ1−2λ2 +K2λ2 .

and (U0
ev)

W can be generated by three elements (see [6] and [7])

Z3 = K6λ1 +K6λ2−6λ1 +K−6λ2 ,

Z4 = K−6λ1
+K6λ1−6λ2

+K6λ2
,

Z5 = K2λ1+2λ2
+K−2λ1+4λ4

+K4λ1−2λ2
+K2λ1−4λ2

+K−4λ1+2λ2
+K−2λ1−2λ2

.

2.5. Some useful lemmas.

Lemma 2.1. The following equations hold for 1 ≤ i ≤ n :

[Ei, [Ei, Ei±1]q±1 ]q∓1 = [Fi, [Fi, Fi±1]q±1 ]q∓1 = 0.

Proof. They are the q-Serre relations. �

Lemma 2.2. The following hold for 1 ≤ i ≤ n :

[Ei, [Ei−1, [Ei, Ei+1]q±1 ]q±1 ] = [Fi, [Fi−1, [Fi, Fi+1]q±1 ]q±1 ] = 0.

Proof. We only check [Ei, [Ei−1, [Ei, Ei+1]q]q] = 0, the proof for other cases is similar. In fact,

[Ei, [Ei−1, [Ei, Ei+1]q]q]

= EiEi−1EiEi+1 − qEiEi−1Ei+1Ei − qEiEiEi+1Ei−1 + q2EiEi+1EiEi−1

−Ei−1EiEi+1Ei + qEi−1Ei+1EiEi + qEiEi+1Ei−1Ei − q2Ei+1EiEi−1Ei

= EiEi−1EiEi+1 − qEiEiEi+1Ei−1 + q2EiEi+1EiEi−1

−Ei−1EiEi+1Ei + qEi−1Ei+1EiEi − q2Ei+1EiEi−1Ei

=
1

q + q−1
(EiEiEi−1Ei+1 + Ei−1EiEiEi+1)− qEiEiEi+1Ei−1

+
q2

q + q−1
(EiEiEi+1Ei−1 + Ei+1EiEiEi−1)

− 1

q + q−1
(Ei−1EiEiEi+1 + Ei−1Ei+1EiEi) + qEi−1Ei+1EiEi

− q2

q + q−1
(Ei+1EiEiEi−1 + Ei+1Ei−1EiEi)

=
( 1

q + q−1
− q +

q2

q + q−1

)
(EiEiEi−1Ei+1 + Ei−1Ei+1EiEi) = 0.

�

Lemma 2.3. The following equations hold for i 6= j:

[Ei, Ei,j ]q = 0, [Ei−1, Ei,j ]q−1 = Ei−1,j ,

[Ej , Ei,j ]q−1 = 0, [Ej+1, Ei,j ]q = −qEi,j+1.

Moreover, if k 6= i− 1, i, j, j + 1, then

[Ek, Ei,j ] = 0.

Proof. Follow from Lemma 2.2, the q-Serre relations and the definition of Ei,j . �
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Lemma 2.4. If i 6= j, then for any k, we have

[Ek, Fi,j ] = δi,kFi+1,jK−αi − qδj,kEi,j−1Kαj .

Proof. If k 6= i, j, it is clear that [Ek, Fi,j ] = 0. If k = i, then

[Ek, Fi,j ] = [· · · [[Ei, Fi], Fi+1]q, · · · , Fj ]q

=
1

q − q−1
[· · · [Kαi −K−αi , Fi+1]q, · · · , Fj ]q

= [· · · [Fi+1, Fi+2]q, · · · , Fj ]qK−αi = Fi+1,jK−αi .

If k = j, then

[Ek, Fi,j ] = [· · · [Fi, Fi+1]q, · · · , [Ej , Fj ]]q

=
1

q − q−1
[[· · · [Fi, Fi+1]q, · · · , Fj−1]q,Kαj −K−αj ]q

= −q[· · · [Fi+1, Fi+2]q, · · · , Fj−1]qKαj = −qFi,j−1Kαj .

�

Lemma 2.5. If k 6= i− 1, i, j, j + 1, then

[Ek, Fi,jEi,jKi,j ] = 0.

Proof. If k 6= i − 1, i, j, j + 1, then [Ek,Ki,j ] = 0. The rest follows from Lemmas 2.3 and Lemma

2.4. �

Lemma 2.6. The group-like elements Kλi(1 ≤ i ≤ n)are algebraically independent.

Proof. We only prove for n = 2. The proof for general n is similar.

We assume that

ζ :=
∑
i,j

ci,jK
i
λ1
Kj
λ2

= 0,

for finitely many nonzero ci,j ∈ C(q).

Let V be a weight module with a weight vector v corresponding to the weight λ = kα1 + lα2.

Then

ζ · v =
(∑
i,j

ci,jq
ik+jl

)
v = 0,

and hence ∑
i,j

ci,jq
ik+jl = 0.

Let i0 = max{i|ci,j 6= 0}, j0 = max{j|ci0,j 6= 0} and k′ = j0 + 1, l′ = 1. Then the integers

ik′ + jl′ such taht ci,j 6= 0 are mutually different. Let {η1, · · · , ηN} be an arrangement of such

integers. So the matrix (ar,s = q(s−1)ηr ) is a vandermonde matrix, which is invertible when q is

generic.

Consider k = rk′, l = rl′ for r = 1, 2, · · · . Then
∑
i,j ci,jq

ik+jl = 0 implies that all ci,j are

zeros. Thus the lemma holds. �
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3. Proof for main results

3.1. Proof of Theorem 1.1. By definition, we have

[E1, C1] = [E1, q
nK2λ1 + qn−2K2λ2−2λ1 + (q − q−1)2

∑
1≤i≤j≤2

(−1)j−iqn+1−i−jFi,jEi,jKi,j ]

= qn−1Kλ2
[E1, qKα1

+ q−1K−α1
+ (q − q−1)2F1E1]

+(q − q−1)2
∑
j≥2

[E1, q
n−1−jF2,jE2,jK2,j − qn−jF1,jE1,jK1,j ]

= (q − q−1)2
∑
j≥2

qn−1−j(F2,jE1,jK2,j − q[E1, F1,j ]E1,jK1,j)

= (q − q−1)2
∑
j≥2

qn−1−j(F2,jE1,jK2,j − qF2,jK−α1
E1,jK1,j) = 0.

The proof for [En, C1] = 0 is similar.

For 1 < i < n, we compute

[Ei, C1] = qn+1−2iKλi−1+λi+1
[Ei, qKαi + q−1K−αi + (q − q−1)2FiEi]

+(q − q−1)2
∑
j≥i+1

qn−i−j(−1)j−i−1[Ei, Fi+1,jEi+1,jKi+1,j − qFi,jEi,jKi,j ]

+(q − q−1)2
∑
j≤i−1

qn+1−i−j(−1)j−i+1[Ei, qFj,i−1Ej,i−1Kj,i−1 − Fj,iEj,iKj,i]

= (q − q−1)2
∑
j≥i+1

qn−i−j(−1)j−i−1(Fi+1,jEi,jKi+1,j − qFi+1,jK−αiEi,jKi,j)

+(q − q−1)2
∑
j≤i−1

qn+1−i−j(−1)j−i+1(−q2Fj,i−1Ej,iKj,i−1 + qFj,i−1KαiEj,iKj,i) = 0.

So far we have proved [Ei, C1] = 0 for all i. In a similar way, we obtain [Fi, C1] = 0 for all i. Note

that C1 ∈ U0. So C1 is a central element. By definition, Cn is also a central element.

Now we consider Γ ◦ π(Ci). We have

Γ ◦ π(C1) =

n+1∑
i=1

K2λi−2λi−1 , Γ ◦ π(Cn) =

n+1∑
i=1

K−2λi+2λi−1 .

Thus, for all i, j ∈ Z+, we have

(Γ ◦ π(C1))i(Γ ◦ π(Cn))j = K2iλ1+2jλn + other terms involving λk.

By Lemma 2.6, Kλi , 1 ≤ i ≤ n, are algebraically independent for n ≥ 2. So Γ◦π(C1) and Γ◦π(Cn)

are algebraically independent. It follows that C1 and Cn are algebraically independent. �

3.2. Proof of Theorem 1.2. By definition, we have

cas =
(q−1 + 1)2

4

n+1∑
i=1

q−n+2(i−1)
(qn−2(i−1)Kλi−λi−1

−K−λi+λi−1

q − q−1

)2

− n(n+ 1)(n+ 2)

12

+
∑

1≤i≤j≤n

(−1)j−iqn+1−i−jFi,jEi,jKi,j +
∑

1≤i≤j≤n

(−1)j−iqn+1−i−jσ(Fi,jEi,jKi,j).
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Since

(q−1 + 1)
(qn−2(i−1)Kλi−λi−1 −K−λi+λi−1

q − q−1

)
=

qn−2(i−1) − 1

q − 1
Kλi−λi−1 + (q−1 + 1)

(qn−2(i−1)Kλi−λi−1
−K−λi+λi−1

q − 1

)
,

It is obvious that cas belongs to the Z[q, q−1]-subalgebra of UA generated by the elements

Kλi−λi−1 −K−λi+λi−1

q − q−1
, Fk, Ek,Kk,j , 1 ≤ i ≤ n+ 1, 1 ≤ k ≤ j ≤ n.

Thus, cas ∈ UA. Identifying lim
q→1

C ⊗Z UA with U(g), we see that lim
q→1

cas is a central element.

Moreover, we have

lim
q→1

qn−2(i−1) − 1

q − 1
Kλi−λi−1

+ (q−1 + 1)
(qn−2(i−1)Kλi−λi−1

−K−λi+λi−1

q − 1

)
= n− 2(i− 1) + 2γ−1(λi − λi−1),

and

lim
q→1

∑
1≤i≤j≤n

(−1)j−iqn+1−i−jFi,jEi,jKi,j + lim
q→1

∑
1≤i≤j≤n

(−1)j−iqn+1−i−jσ(Fi,jEi,jKi,j)

= 2
∑
α>0

x−αxα = −2γ−1(ρ) +
∑
α∈Φ

x−αxα,

where the xα are root vectors such that (xα, xβ) = δα+β,0, and ρ is the half sum of all positive

roots.

It follows that

lim
q→1

cas = 2γ−1(ρ) +
∑
α∈Φ

x−αxα +

n+1∑
i=1

(
γ−1(λi − λi−1) +

n

2
− (i− 1)

)2

− n(n+ 1)(n+ 2)

12

is a quadratic central element. Now the identity

n+1∑
i=1

(n
2
− (i− 1)

)2

=
n(n+ 1)(n+ 2)

12
,

and the fact that U(h) contains no central elements except scalars, imply that limq→1cas belongs

to
∑
α∈Φ x−αxα + U(h).

This forces

lim
q→1

cas =
∑
α∈Φ

xαx−α +

n∑
i=1

hiγ
−1(λi) =

dimg∑
i=1

xiyi.

�

3.3. Proof of Theorem 1.3.

Proof. Note that the algebra (U
0

ev)
W can be generated by two elements:

Z1 = K2λ1
+K2λ2−2λ1

+K−2λ2
, Z2 = K−2λ1

+K2λ1−2λ2
+K2λ2

.

Since

Γ ◦ π(C1) = K2λ1 +K2λ2−2λ1 +K−2λ2 ,

Γ ◦ π(C2) = K−2λ1
+K2λ1−2λ2

+K2λ2
,
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it follows from the Harish-Chandra isomorphism that the center Z(U) can be generated by C1 and

C2.

Note that 3λ1 = 2α1 − α2, 3λ2 = 2α2 − α1 and λ1 + λ2 = α1 + α2. Thus,

C1 = K2λ1 +K2λ2−2λ1 +K−2λ2 + (q − q−1)2(qF1E1Kλ2 + q−1F2E2K−λ1 − F1,2E1,2Kλ1−λ2)

= Kλ2

(
Kα1

+K−α1
+Kα1−2α2

+ (q − q−1)2(qF1E1 + q−1F2E2K−α1−α2
− F1,2E1,2K−α2

)
)
.

It follows that C1 ∈ Kλ2U and C2 = σ(C1) ∈ Kλ1U . Therefore, we obtain that C3
1 , C

3
2 , C1C2 ∈ U.

Hence C3
1 , C

3
2 , C1C2 ∈ Z(U).

The following calculations:

Γ ◦ π(C3
1 ) = (Γ ◦ π(C1))3 = Z3

1 = Z3 + 3Z5 + 6,

Γ ◦ π(C3
2 ) = (Γ ◦ π(C2))3 = Z3

2 = Z4 + 3Z5 + 6,

Γ ◦ π(C1C2) = Γ ◦ π(C1)Γ ◦ π(C2) = Z1Z2 = Z5 + 3,

and the fact that (U0
ev)

W can be generated by Z3, Z4, Z5, together with the quantum Harish-

CHandra isomorphism, imply that Z(U) can be generated by C3
1 , C

3
2 and C1C2. �
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