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Digenean infection of endangered Greek Kkillifishes

Abstract
We report digeneans (Diplostomidae, Crassiphialinae) in the endangered freshwater fishes Valencia

letourneuxi and Valencia robertae, endemics of Western Greece. Digenean metacercariae occurred
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in two forms in the abdominal cavity, excysted and encysted, the latter attached to gonads, liver and
alimentary tract. Parasites were, using morphological and molecular techniques, identified as two
representatives of Crassiphialinae, specifically part of the Posthodiplostomum-Ornithodiplostomum
clade. The spatial, seasonal and age class variation in parasite prevalence was examined. Autumn
parasite prevalence varied between the six populations sampled (18.2% to 100%). Seasonal
prevalence at the two sites sampled quadannually peaked in autumn and reached its lowest value in
spring; prevalence increased with size to 100% in young adult fish. We did not find a correlation
between prevalence and host sex. Overall parasites’ weight averaged 0.64% of the host’s, while
parasite weight increased with host weight. A comparison of relative condition, and hepatosomatic
and gonadosomatic indices of infected and metacercariae-free specimens showed that infection did
not have a significant effect on host body condition and reproduction. Regarding the parasite’s life
cycle, planorbid gastropods are proposed as potential first intermediate hosts in view of the host’s
diet and occurrence data of molluscs in the ecosystem. This is the first record of a diplostomid
digenean in valenciid fishes and of representatives of the Posthodiplostomum-Ornithodiplostomum
clade in a native Greek freshwater fish. Our findings are discussed in conjunction to fish

conservation interventions, since parasites may contribute to the decline of endangered species.

Keywords

Digenea; parasite prevalence; host body condition; Planorbidae; Platyhelminthes; Valenciidae

Introduction

The critically endangered freshwater fish Valencia letourneuxi (Sauvage, 1880) (Valenciidae) is an
endemic of Western Greece and southern Albania (Crivelli 2006). Its sister species, the recently
described Valencia robertae Freyhof, Karst and Geiger, 2014, endemic of Central Greece,

encompasses the most southern populations previously included in V. letourneuxi. Both species are
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characterized by a fragmented geographical distribution, narrow ecological requirements and low
population densities (Barbieri et al. 2000; Kalogianni et al. 2010a). In the last 30 years, both
species’ geographical range has been reduced, with some populations now being extinct and others
in a precarious state (2005 survey data, Kalogianni et al. 2010b; see also Economidis 1991; Bianco
et al. 1996; Barbieri et al. 2002a, b, 2015). Their decline has been attributed to the degradation of
their habitats due to anthropogenic activities, as well as to predation and competition with the
introduced Eastern mosquitofish Gambusia holbrooki Girard, 1859 (Bianco and Miller 1989;
Barbieri et al. 2000, 2002b; Kottelat and Freyhof 2007). The parasite fauna of these Greek
killifishes has never been studied. Parasitization, however, of individuals of a native fish species,
either by non-native parasites transmitted from introduced fish (Prenter et al. 2004) or by native
parasites, can also potentially contribute to its decline, by influencing host behaviour, survival,
growth and fecundity, as well as host population dynamics (Marcogliese 2004). Parasitic organisms
are often neglected in the management and conservation of biological resources and ecosystems
(Marcogliese 2004). Research on the parasites of endangered species can, however, provide
information about their host organisms and the ecological interactions between these organisms
(e.g. Whiteman et al. 2007). Parasite community composition can provide valuable information for
the management and conservation of aquatic species and habitats, e.g. by contributing to
understanding introduction routes (e.g. Huyse et al. 2015). Furthermore, the assemblage of parasites
within a host organism potentially reflects that host’s trophic position in the food web, as well as
the presence in the ecosystem of various other organisms that participate in the life cycles of these
parasites. Parasite populations and communities could also be useful indicators of environmental
stress, such as eutrophication or acidification, as well as of food web structure and biodiversity
(Marcogliese 2005; Vidal-Martinez et al. 2010).

A preliminary examination of the abdominal cavity of V. letourneuxi and V. robertae revealed
the presence of digenean trematode metacercariae, possibly belonging to Diplostomidae Poirier,

1886. Among parasites, trematodes are the dominant group that causes retarded growth, morbidity
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and mortality, especially in juvenile fishes (Shareef and Abidi 2015). Digenean trematodes are
widespread around the globe and are characterized by a complex life cycle, often involving a
mollusc as first intermediate host, a fish, an amphibian or occasionally a mammal as second
intermediate host and piscivorous birds or mammals as definitive hosts (Niewiadomska 2002; Cribb
et al. 2003). Digeneans have been shown to induce behavioural changes in their fish secondary host,
such as decreasing swimming performance (Coleman 1993) or decreasing predator avoidance
(Poulin 1993) resulting in increased predation of the host (Ondrackova et al. 2006). They have also
been shown to cause damage to fish host tissues resulting in blindness, inflammatory reactions and
perforations in some cases (Sharriff et al. 1980; Niewiadomska 2002; Vianna et al. 2005), though
there are also studies reporting no effect of digenean parasitism on fish host condition (e.g. Silva-

Souza and Ludwig 2005).

In this study, we further examined the abovementioned metacercariae retrieved from V. letourneuxi
and V. robertae in order to identify these parasites using morphological and molecular techniques,
to examine the variation in prevalence between seasons, locations and host sexes and size-classes,

and to assess the effect of the metacercariae on host condition and reproduction.

Materials and methods

Sampling methodology and phenotypic characterisation of hosts and parasites

Samples were collected from six sites in Western Greece, in the autumn of 2005, 2006 and 2009;
one site hosts V. robertae and the other five sites V. letourneuxi (Fig. 1 and Table 1). To explore
seasonal variation in parasitization, seasonal samplings (July, September, January, May) were
conducted at two sites, Mornos and Acheron (sites 4 and 5, hosting V. robertae and V. letourneuxi
respectively, Table 1). All sampling sites were located at lowland semi-lotic streams or canals

(elevation range 0-6 m), associated with springs, while distance from sea ranged from 0.4 to 13.5
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km. Site depth ranged between 0.9 and 1.7 m and site width between 4 and 13 m. All sites were
thickly vegetated (surface aquatic vegetation ranged between 40 and 95%). Salinity varied between
0.1 and 6.5 ppt and temperature between 14.5 and 25 °C.

This study was conducted within the frame of a wide scope research programme during 2005-2009,
targeting V. letourneuxi (V. robertae had not yet been described as a separate species at the time).
This research included dietary studies, studies on the effect of G. holbrooki Girard, 1859 on V.
letourneuxi and genetic studies. Fish were collected with a D-shaped net (2 mm mesh) from the
stream banks at the six sites described above (Fig.1 and Table 1). In five of the six sites sampled
(sites 1, 2, 3, 5, 6, Table 1), representatives of Valencia are found in association with the introduced
G. holbrooki (Kalogianni et al., 2010a). After identification, a total of 296 specimens of Valencia
were anesthetized with quinaldine and preserved in 4% formaldehyde for further laboratory
analyses. In the laboratory, for each fish total and standard length (TL and SL, nearest 0.1 mm)
were measured, total and net host weight, before and after evisceration respectively (HW and NW,
nearest 0.01 mg) as well as liver and gonad weight (LW and GW, nearest 0.01 mg after blotting
dry) were also recorded. External surfaces, viscera and musculature of the fish were examined
under a Olympus SZX7 stereo microscope for parasitic infection. Parasites were removed, blotted
dry and their weight was recorded (PW, nearest 0.01 mg, weighed for all metacercariae of one host
specimen together).

Parasite prevalence (number of infected fish per total fish examined) was calculated for all
metacercariae together (i.e. no species-level morphological identification of the digeneans could be
made and these prevalence values are hence not parasite species-specific). Differences in parasite
prevalence between sexes and 2 mm size classes (larval size range < 13 mm, juvenile range > 13
and < 17 mm and adults > 17 mm, see Barbieri et al. 2000 and Kalogianni et al. 2010b) were
examined pooling data from all the autumn samples. The effect of host sex on the prevalence of

parasites was tested by applying chi-square test. Differences in mean standard length between
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infected and metacercariae-free specimens were examined using a t-test. The relationship between
total PW and HW was examined with Pearson’s correlation.

Finally, ANCOVA was used to investigate potential effects of parasitation on the condition and
reproduction of the female and male fish hosts, after calculation of the relative condition (NW/SL),
the hepatosomatic (LW/NW) and the gonadosomatic (GW/NW) indices of infected and
metacercariae-free specimens. Fish standard length was used as a covariate to account for possible
size effects. Prior to statistical analysis, values of the above indices were logl0 transformed.

ANCOVA was conducted with PASW 17 software.

Parasite identification

Parasite identification was done using combined morphological and molecular methods. The
digenean metacercariae, excysted when necessary, were stained using paracarmine, dehydrated
through a series of alcohols and cleared in beechwood creosote. They were mounted in Canada
balsam on glass microscope slides and examined under a Olympus BH2 high-power microscope
with interference phase.

Additional samples, used for the genetic characterization of the parasites, were collected from the
Acheron site (site 5) in June 2008. We extracted DNA from individual (artificially or naturally)
excysted metacercariae found in the abdominal cavity with the DNeasy Blood and Tissue Kit
(Qiagen) according to the manufacturer’s instructions. Polymerase Chain Reaction was performed
using a GeneAmp PCR system 9700 thermocycler (Applied Biosystems) and Illustra PuReTaq
Ready-To-Go PCR Beads (GE Healthcare), adding 1 uL of each primer (20 uM) (Sigma Aldrich), 2
pL of template DNA and 21 pL of double distilled, autoclaved and filter sterilized water, for a total
reaction volume of 25 pL. We amplified fragments of the mitochondrial cytochrome ¢ oxidase
subunit I (COI) gene, and of the nuclear rDNA region (ITS-1, 5.8, ITS-2). Primer combinations
were  MplatCOX1dF  (5-TGTAAAACGACGGCCAGTTTWCITTRGATCATAAG-3’) and

MplatCOX1dR (5’-CAGGAAACAGCTATGACTGAAAYAAYAIIGGATCICCACC-3’)
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(Moszczynska et al. 2009) for COI and the combinations of D1 (5°-
AGGAATTCCTGGTAAGTGCAAG-3’) with D2 (5’-CGTTACTGAGGGAATCCTGG-3") (Hillis
and Dixon 1991) and 81 f (5’- GTAACAAGGTTTCCGTAGGTGAA-3’) (Gustinelli et al. 2010)
with ITS2.S r (5’- CCTGGTTAGTTTCTTTTCCTCCGC-3") (Cribb et al. 1998) for rDNA. These
regions (ITS-1, 5.8 and ITS-2) are commonly used for species identification in flatworms (Vanhove
et al. 2013; Stoyanov et al. 2017). After an initial denaturation of 2 min at 94 °C, samples were
subjected to 35 cycles (40 for 81f — ITS2sr) of 30 s at 94 °C, 30 s (40 s for 81f — ITS2sr) at 50 °C
and 60 s (90s for 81f — ITS2sr) at 72 °C. After a final elongation of 10 min (5 min for 81f — ITS2sr)
at 72 °C, samples were cooled to 4 °C. PCR products were purified using the QIAquick PCR
Purification Kit (Qiagen) following the manufacturer’s protocol. Sequencing of both strands was
carried out using the same primers as above with an Applied Biosystems 3730 DNA analyser and
BigDye version 1.1. Sequences were deposited in NCBI GenBank under accession numbers
KY320571-3. Voucher specimens for the genetically characterized parasite population were
deposited in the Natural History Museum (London, United Kingdom) (NHMUK 2015.12.2.1)
(parasite) and the Natural History Museum Rijeka (Croatia) (PMR VP 3140-2) (host). Sequences
were visually corrected and aligned in MEGA v6 (Tamura et al. 2013) with the MUSCLE algorithm
and UPGMB clustering method (Edgar 2004) under default conditions. The best fitting substitution
model describing molecular evolution of the sequences was selected by TOPALi v2.5 (Milne et al.
2009) based on the Bayesian information criterion. The GTR model (Rodriguez et al. 1990) was
used for the rDNA region. Pairwise deletion was used to construct a distance matrix. The
phylogenetic position of the collected parasite haplotypes within Diplostomidae (GenBank
accession numbers in Table 2, representatives of available diplostomid genera were selected) was
inferred based on the IDNA combining the results of a maximum likelihood tree search performed
in RAXxML 8.7.4. (Stamatakis 2014) with bootstrap values calculated using 1,000 replicates and
Bayesian interference performed in MrBayes 3.2 (Ronquist et al. 2011). Posterior probabilities were

approximated for 10,000,000 generations, sampled at each 1,000th generation and with a burn-in of



190

27
A94

95
31

197

49

902
48
49
203
51

204
53

56

206
58

61
62
63
64
65

10% in two separate runs. Chain stationarity and parameter convergence were checked in Tracer 1.6
(Rambaut et al. 2014). Because of its position in a different but related digenean family
(Clinostomidae), Clinostomum complanatum (Rudoplhi, 1814) collected from Barbus barbus (L.)
was used as an outgroup. File conversion was carried out using ALTER (Glez-Pena et al. 2010).
Phylogenetic trees were rendered by FigTree 1.4.2 (Rambaut and Drummond 2009) and edited in

Adobe Photoshop CS6.

Results

Parasite identification

Digenean metacercariae were found in the abdominal cavity of V. letourneuxi and V. robertae,
while isolated cysts were also found in some fishes beneath the lens of the eye. Parasites were
identified as members of Diplostomidae, subfamily Crassiphialinaec. This was based on the
morphological characters of the ‘neascus’ (a characteristic type of diplostomid metacercariae, see
Niewiadomska 2002), such as the presence of a bipartite body, with a reserve bladder consisting of
a ramified median and two lateral canals forming a net-like structure in the forebody, and a
developed hindbody with unconnected excretory canals. Since only immature gonads were present,
further identification to genus or species level was not possible, because the classification is based
on the size of testes and the absence/presence of an ejaculatory pouch (Niewiadomska 2002).

For the genetic identification of the parasites, sequences from nine metacercariae (only specimens
from the abdominal cavity were available for molecular work) were obtained and two different
rDNA haplotypes were recorded, with a length of 1159 base pairs and a pairwise difference of
4.8%. These haplotypes did not correspond with the distinction between encysted and excysted
metacercariae. Only one corresponding COI haplotype was recorded with a length of 531 base
pairs, due to low amplification success. The pairwise distances in the entire dataset ranged from
0.5-37.8 % in the rDNA regions and from 0.5-33.2 % in the COI region (pairwise deletion).

Phylogenetic analyses of rDNA did not cluster the two haplotypes of metacercariae infecting Greek
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killifishes together. Genetic distances between both haplotypes surpassed those between other
sequences considered to belong to different species. This indicates the presence of two parasite
species. They clustered with representatives of Posthodiplostomum Dubois, 1936 and
Ornithodiplostomum Dubois, 1936 placed among other basal lineages of this clade. Both methods
produced the same tree topology for rDNA (Fig. 2). The analyses confirmed the previously

observed polyphyly of Posthodiplostomum.

Host-parasite ecology

Metacercariae occurred in two forms (encysted and excysted, Fig. 3), the encysted form usually in
groups attached to the anterior end of the gonad, adjacent to the mesentery and at the area between
the liver and the digestive tract, with parasites varying in size. Of a total of 296 fishes, 219 were
found to be parasitized, corresponding to a high overall metacercaria prevalence of 73.99% (not
separated between parasite forms).

Parasite prevalence, in the six Valencia populations studied, varied in autumn from 18.18% to
100% (Table 1; maximum prevalence was 100% for both V. robertae and V. letourneuxi). Seasonal
prevalence remained high throughout the year at the two sites sampled quadannualy (Table 1)
ranging between 74.3% and 100% (Fig. 4). In these two sites, prevalence peaked in autumn with all
fish being parasitized (100%) and then decreased in the winter to 82.3%, due to the appearance of a
group of metacercariae-free fish, ranging in size from 13 to 36 mm SL (juveniles and adults, see
Kalogianni et al. 2010b). In the spring, prevalence further decreased to 74.3%, reaching its lowest
value. Parasite prevalence in function of the host’s sex (ratio 5:4 in favor of females), was 52.88%
and 63.15% in host females (n=52) and males (n=42) respectively, but this difference was not
statistically significant (y° = 0.792; df = 1; P = 0.374).

Parasite prevalence increased gradually with host size (SL, Fig. 5), from a prevalence of 0% for the
larval length classes 6-8 and 8-10 mm to a maximum prevalence value of 100% in the 22-24 mm

adult length class (larval size range < 13 mm, juvenile range > 13 and < 17 mm and adults > 17
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mm, see Barbieri et al. 2000 and Kalogianni et al. 2010b). For fish lengths > 24 mm these
prevalence values remained stable, with one exception for the adult length class 24-26 mm
(prevalence 75%, Fig. 5). Mean SL values for infected and metacercariae-free fish differed, i.e.
mean SL of infected fish was 19.70 = 0.92 S.E. (n = 58); mean SL of metacercariae-free fish was
13.64 £ 0.55 S.E. (n = 36); this difference was statistically significant (t = -4.846, P < 0.0001).
Mean parasite:host weight ratio was 0.0064 + 0.0010 S.E., with parasite weight averaging 0.64% of
the host weight. Parasite weight and host weight were positively correlated (n = 9, rho correlation =
0.882, P =0.002, see Fig. 6) for fish < 600 mg, with a mean parasite:host weight ratio of 0.0076 +
0.0009 S.E. and percentage mean 0.76%; however, there was no correlation for the larger
specimens (mean + S.E. parasite:host weight ratio of 0.0009 + 0.0007 and percentage mean 0.09%,
n=2).

The study of the condition, gonadosomatic and hepatosomatic indices showed no statistically
significant differences between infected and metacercariae-free specimens, in either males or

females (p > 0.05).

Discussion

Parasite identification

This study is the first record of valenciids as second intermediate hosts for diplostomid parasites,
being heavily infected by their metarcercariae. No other endoparasites were found in this study.
(Dactylogyridean monogenean gill parasites were also found — at very low prevalence and infection
intensity — but fall outside of the scope of this study.) Dominance of (immature) endoparasites in
general, and of trematode metacercariae in particular, in killifishes has been previously observed. It
was suggested to demonstrate the importance of these fishes as intermediate or paratenic hosts
(Nezhybova et al. 2017). Pairwise uncorrected genetic distances between the retrieved rDNA

haplotypes (4.8%) suggest the existence of two different diplostomid species (Georgieva et al.

10
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2013; Stoyanov et al. 2017). Unfortunately, the metacercarial lifestage does not allow morphology-
based species-level distinction. Therefore, parasite haplotypes could not be linked with specific
phenotypic characters; neither was there a link with being encysted or not. The collected parasite
species are considered as representatives of Posthodiplostomum or Ornithodiplostomum based on
the results of phylogenetic analysis (Fig. 2). Interestingly, haplotype 1 takes a basal position within
the Posthodiplostomum-Ornithodiplostomum clade and most likely represents a hitherto
unsequenced phylogenetic lineage. Low maximum likelihood bootstrap values of deeper nodes
compared to the Bayesian inference posterior probabilities highlight the unresolved position of
several diplostomid genera and an insufficient number of already published sequences. Moreover,
the tree also indicates that Posthodiplostomum is not monophyletic and in need of revision (Locke
et al. 2010b; Athokpam and Tandon 2014; Garcia-Varela et al. 2016). However, according to
Stoyanov et al. (2017) the uncertain phylogenetic positions of Posthodiplostomum species is often
the result of incorrect morphological identification due to low quality of specimens, creating
confusion even in available molecular data. Although previous studies based on barcoding
approaches reported cryptic diversity in the family (Locke et al. 2010a, b; Georgieva et al. 2013),
complicated morphological identification and the lack of information about adult stages makes
formal species description challenging as it depends on high quality stained material. Four species
of Posthodiplostomum (P. brevicaudatum (von Nordmann, 1832); P. centrarchi Hoffman, 1958; P.
cuticola (von Nordmann, 1832); P. minimum (MacCallum, 1921)) and one of Ornithodiplostomum
(O. scardinii (Schulman in Dubinin, 1952)) respectively, have been reported from more than 70
freshwater fish hosts, mostly cyprinids and cobitids, in Europe (Sonin 1986; Stoyanov ef al. 2017).
To the best of our knowledge this is the first report of a freshwater species native to Greece found
infected by either of both abovementioned diplostomid genera (see e.g. Stoyanov et al., 2017). Our
results enrich the list of the known digenean fauna in Greece, following the record of Diplostomum
spathaceum (Rudolphi, 1819) from ten different fish host species in Lakes Volvi and Vistonis

(Kalfa-Papaioannou and Sinis 1985).

11
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Host-parasite ecology

Within the framework of this study, differences were found in the prevalence of the reported
diplostomid infection of fish between the various Valencia populations studied. These cannot
probably be attributed to variation in habitat features, such as temperature, salinity or surface
vegetation cover, as all the habitats of the target species are spring-fed streams and wetlands that are
rather stable both hydrologically and thermally; nor to a variation of fish population densities,
evident from data published elsewhere (Kalogianni et al. 2010a). Therefore, we assume that this
spatial variation in the parasite prevalence could be related to a spatial variation of the primary host
(gastropod) densities, as well as of that of the definitive host. Parasite prevalence also remained
high throughout the year, a range similar to that reported elsewhere for Posthodiplostomum cuticula
(Ondrackova et al. 2004a) or other digeneans (Mbokane et al. 2015; Kondo et al. 2016). Maximum
prevalence (100%) was observed in autumn, and then prevalence decreased in winter, due to the
presence of both juvenile and adult metacercariae-free fish. This trend, common to both species of
Valencia, is thought to be attributed to water temperature as an important factor for the emergence
of cercariae from the snail, corresponding to the highest propagation of second intermediate hosts
(Chubb 1979; Ondrackova et al. 2004b). Alternatively, the metacercariae-free juvenile fish in the
winter samples could be the product of late recruitment at the end of autumn (the reproductive
period of both target species extends to late October, see Barbieri et al. 2000; Kalogianni et al.
2010a) not yet parasitized due to limited exposure time. The presence of metacercariae-free mature
adults (over 30 mm) in the winter samples of both species, on the other hand, could be attributed to
parasite mortality induced by an adaptive immune response of the fish host (for a review of immune
responses induced in teleost fish by digenean metacercariae see Alvarez-Pellitero 2008). Parasite
prevalence may also be related to gastropod availability that is at its lowest in winter and spring, as
it has been shown in a seasonal dietary study on V. letourneuxi that also included benthic data

(Kalogianni et al. 2010b).

12
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The linear correlation between parasite weight and host weight indicates that infection occurs early
in the life of the fish and then the parasites grow with the host and/or fish accumulate metacercariae
as they grow. The positive relation between the length of the host and the prevalence of the parasite
observed in the target species is most likely a result of temporal accumulation of parasitation, as
larger fish could be exposed repeatedly to infection for a longer time than younger fish (Saad-Fares
and Combes 1992; Paes et al. 2010). This is also supported by the presence of different stages of
digenean metacercariae in the target species, as suggested also in various cyprinids or cobitids
(Ondrackova et al. 2004a). Finally, there were no significant differences in the susceptibility of
infection between males and females, as reported also for other freshwater fish species infected with
diplostomid digeneans (Flores and Semenas 2002; Machado et al. 2005). Digenean metacercariae
have been also found, in various freshwater species, subcutaneously in the trunk region and head, in
fins, gills, the eyes and muscle tissue, as well as in viscera (Sonin 1986; Niewiadomska 2002). In
the two host species of this study, metacercariac were found mostly in the visceral cavity, in
association with the gonads and the digestive tract and liver, but also beneath the lens of the eye.
Hence, it seems a systemic infection. This distribution of the parasite therefore corresponds with
previous studies and it is correlated with the high infection level reported (Kvach et al. 2017).

Previous studies have shown that the natural definitive hosts of Posthodiplostomum and
Ornithodiplostomum are piscivorous birds, with planorbid or lymnaeid gastropods the most
common first intermediate hosts (Miller 1954; Niewiadomska 2002; Faltynkova et al. 2008;
Nguyen et al. 2012). Planorbids and lymnaeids were the only gastropods that were found at both
Louros, Mornos and Acheron Valencia habitats during a benthic faunal study conducted in summer
2009 (unpublished data). However, only planorbid availability reflected the variation of parasite
prevalence between these three populations, with the Louros habitat having both lower planorbid
availability and lower parasite prevalence. Furthermore, benthic macroinvertebrate data collected
seasonally at the Mornos habitat to assess food availability for a dietary study on V. robertae (then

V. letourneuxi) showed that planorbids were the only gastropod taxon available throughout the year
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(Kalogianni et al. 2010b). In addition, that study showed that the target species consumed only three
gastropod prey categories (Planorbidae, Valvatidae and Physidae), with Lymnaeidae being absent
from its diet and Planorbidae being the most frequent and abundant gastropod in the species diet.
Since the planorbids reflect variation in metacercariae prevalence and figure as preferable prey of
valenciid fishes, we assume high contact rates. We therefore suggest planorbids as the first

intermediate host of the collected digenean species.

Parasite effects on the host species and conservation implications

The results of the current study show that there was no correlation between the diplostomid
infection of the target species and the condition and reproduction of the hosts, as reported also
elsewhere (Paes et al. 2010; Gholami et al. 2011), though there are studies that have shown a
negative correlation between the abundance of Posthodiplostomum sp. and the relative condition
factor of its hosts (Lucky 1970).

The absence of any detectable differences on fish condition and reproduction between infected and
metacercariae-free Valencia specimens leads us to tentatively assume that this endoparasite is not
pathogenic to its host. Given the short lifespan of the target species (two or three years in the wild,
Barbieri et al. 2002b) and the fact that trematode species may live for more than a year in the fish
host and even for the whole lifespan of the host (Kalantan et al. 1987; Dias et al. 2006), it appears
that this host-parasite relationship bears the characteristics of a strategy in which the parasite does
not affect fish survival, fitness and reproduction. However, the observed eye infection by
diplostomid metacercariae could affect fish vision and thus increase its predation by birds, as
reported for other diplostomids (Seppélé et al. 2005).

Parasites are a potential risk factor in conservation initiatives targeting native species, such as
population enhancement, assisted migration or reintroduction actions. Digenean colonization of
non-native areas depends on the strategy of larval stages, highly productive asexual reproduction,

host specificity, level of virulence in intermediate hosts and measure of similarity of environmental
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conditions between source or recipient localities (see Bauer 1991; Kennedy 1993). Based on the
enemy release hypothesis, introduced endangered host species could profit of parasite loss (Genner
et al. 2008) or be affected by spill-back of parasites from alien hosts in an introduction locality
(McCallum and Dobson 1995; Daszak et al. 2000; Holt et al. 2003). On the other hand, a scenario
suggesting a greater pathogenetic effect of co-introduced parasites on native hosts was also
documented (naive host hypothesis) (Anderson and May 1992; McCallum and Dobson 1995;
Hudson et al. 1998). In this respect, translocations of endangered species to reestablish or to help
recover populations could introduce parasites, harmless to the reintroduced population, but
pathogenic to the already present naive conspecifics or other sympatric species (see Daszak et al.
2000; Britt et al. 2004). Therefore, even the seemingly harmless diplostomid digeneans reported
here should be considered carefully in the context of the conservation-related release or
translocation of Valencia populations. Finally, no specimens of the introduced mosquitofish G.
holbrooki, examined in two water systems where the species is sympatric with Valencia species
(Acheron and Louros, unpublished data), were found infected by the same diplostomid
metacercariae. This indicates that the parasites were not introduced locally through the mosquitofish
nor that it could pose a threat to the native species, acting as a reservoir for these parasites. A
similar absence of metacercariae of digenean parasites has been also reported in the only available
study on mosquitofish parasites in Europe, namely in G. holbrooki from eight Mediterranean river

mouths in Spain and France (Benejam et al. 2009).

Conclusion

This study showed no negative effect of metacercaria infection on Valencia species. Furthermore,
seasonal differences in digenean prevalence and parasite accumulation over fish age were
documented, with no differences in infection parameters between host sexes. It also confirmed the
need for a revision of the complicated taxonomy of diplostomids and their unresolved phylogenetic

classification. While we suggest planorbids to be potential first intermediate hosts, further
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investigations reconstructing the life cycle of the here reported parasites are required, in order to
understand the ecological parameters of infection of their secondary host, as well as to identify the
other host taxa. Such information is important to the understanding of parasite-host interactions, as
well as to the planning or implementation of appropriate conservation measures for the endangered

fish species, targeted in this study, as well as other vulnerable fish hosts of these parasites.
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Figure Captions

Figure 1 Location of sampling sites in Western Greece. Mornos hosts Valencia robertae, while
Vlychos, Arachthos, Louros, Kypseli and Acheron host V. lefourneuxi.

Figure 2 Phylogenetic tree based on rDNA fragments from 29 haplotypes of Diplostomatidae.
Posterior probabilities for Bayesian inference, (before slash) and bootstrap percentages for
maximum likelihood (behind slash) are shown. Clades that neither yield a support value higher than
80 nor of 50 under BI or ML, respectively, are collapsed. The haplotypes obtained in this study are
called Haplotype 1 and 2.

Figure 3 Encysted and excysted metacercariae of diplostomatid digenean from the abdominal
cavity of V. letourneuxi and V. robertae (Scale bar 250 um), OS — oral sucker; PS — pseudosuckers;
GP — genital pore; VS — ventral sucker.

Figure 4 Seasonal variation of the size frequency distribution of infected and metacercariae-free
specimens in Mornos and Acheron habitats that host V. robertae and V. letourneuxi respectively.
Number of specimens and parasite prevalence values (%) are also shown. The two groups of
metacercariae-free fish of the winter sample are marked with asterisks.

Figure 5 Size frequency distribution of metacercariae-free and infected V. robertae and V.
letourneuxi specimens of the autumn samplings (n = 94). Maximum parasite prevalence (100%)
was first observed at the 22-24 mm length class (marked with asterisk).

Figure 6 Parasite weight (PW) and host weight (HW, i.e. total fish host weight) positive

relationship for fish <600 mg.
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Figure4 Click here to download Figure Fig 4.tif =
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