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Yadira Garćıa-Socarrás4, Koen Vanhoof2, and Rafael Bello3

1 Universidad de Camagüey
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Abstract. A pivotal difference between Artificial Neural Networks and
Fuzzy Cognitive Maps (FCMs) is that the latter allow modeling a phys-
ical system in terms of concepts and causal relations, thus equipping the
network with interpretability features. However, such components are
normally described by quantitative terms, which may be difficult to han-
dle by domain experts. In this paper, we explore a reasoning mechanism
for FCMs based on the Computing with Words paradigm where numeri-
cal concepts and relations are replaced with linguistic terms. More explic-
itly, we include triangular fuzzy numbers into the qualitative reasoning
process attached to our model, thus proving further interpretability and
transparency. The simulations show the potential behind the symbolic
reasoning mechanism proposed in this study.

Keywords: Fuzzy cognitive maps, Computing with words, triangular
fuzzy number, chondromalacia

1 Introduction

The reasoning mechanism behind Fuzzy Cognitive Maps (FCMs)[12] combines el-
ements of fuzzy logic, neural networks and causal modeling. Fuzzy cognitive map-
ping allows modeling a real world system as a collection of concepts and causal
relations [2]. One of the most attractive features attached to these knowledge-
based networks lies in their graphical nature, their transparency and adaptability
and their ability to perform WHAT-IF simulations.



These advantages have motivated the scientific community to use fuzzy cog-
nitive mapping in a wide spectrum of application domains including: social and
political sciences, engineering, information technology, robotics, expert systems,
education, prediction, environment, medicine, etc. Most of these solutions have
a strong social and interdisciplinary scientific value as the study carried out by
Nápoles et al. [15], who proposed an FCM-based representation of proteins for
modeling the resistance of HIV mutations to existing drugs.

In an FCM, the knowledge is usually expressed by means of numerical values.
However, in day-to-day activities, there are situations with imprecise information
comprising qualitative aspects that are difficult to evaluate by the use of exact
values [11]. Therefore, aiming at expanding the action field of fuzzy cognitive
mapping, we combine its graphical nature with natural language techniques to
describe both the concepts’ activation values and the causal relations between
them. In that way, we obtain a qualitative reasoning model.

In the FCM literature, some attempts to accomplish that can be found. For
example, in [20] the authors proposed an FCM-model based on Computing with
Words (CWW)[25] to improve the interpretability of diagnostic models of car-
diovascular diseases. Gónzalez et al. [10] employed a representation model based
on linguistic 2-tuple for modeling project portfolio interdependencies. Likewise,
Rickard et al. [17] introduced another symbolic model based on interval type-2
fuzzy membership functions and the weighted power mean operator, [8, 9, 18,
19], while Dodurka et al. [6] analyzed the causal effect for fuzzy cognitive maps
designed with non-singleton fuzzy numbers.

The use of linguistics terms to describe the whole network moves beyond the
knowledge representation; preserving the semantics during the neural inference
rule is pivotal towards developing an accurate linguistic model. In this paper, we
further explore the hybridization between FCMs and the CWW paradigm where
the activation vectors and the weight matrix are described using words. More
precisely, we use triangular fuzzy numbers to describe the linguist terms. The
numerical simulations using two case studies evidence the potentialities attached
to our proposal when operating in qualitative scenarios.

The paper is organized as follows. Section 2 goes over some important con-
cepts concerning to fuzzy cognitive mapping. In the Section 3, we provide a brief
introduction to Computing with Words, whereas Section 4 describes the reason-
ing model for linguistic FCMs. The simulations are presented in the Section 5,
while Section 6 provides concluding remarks.

2 Fuzzy Cognitive Maps

Fuzzy Cognitive Maps (FCMa) are a kind of recurrent artificial neural networks
introduced by B. Kosko in 1986 [12]. These knowledge-based networks combine
elements of fuzzy logic in their representation scheme and elements of neural
networks to perform the inference process. Unlike classic neural networks that
often operate like black-boxes, both concepts and relations in an FCM network
have a precise meaning for the problem being modeled.



The relationship between two concepts are characterized by a signed weight
wij ∈ [−1, 1] that encloses a causal relationship [13]. The sign of wij indicates
whether the relationship between two concepts Ci and Cj is direct or inverse.
These relationships have three possible states: i) if wij > 0 then there is a positive
causal relationship, thus suggesting that the first concept positively causes the
second one; ii) if wij < 0 then there is a negative causal relationship, which
means that the first concept negatively causes the second one; and iii) if wij = 0
then there is no causal relation between such concepts.

During the reasoning stage, an FCM-based model uses a neural reasoning
rule to update the activation values of concepts given a certain activation vector.
Equation 1 shows a widely used reasoning rule, where N denotes the number of

concepts comprised into the causal network, A
(t)
j denotes the activation value of

the Cj concept at the current iteration step, wji is the causal weight to which
Cj causes Ci and f(.) is a transfer function that maps the inner product into
the activation interval e.g., f(x) = 1/(1 + e−λx).

A
(t+1)
i = f

 N∑
j=1

A
(t)
j wji

 , i 6= j (1)

The above reasoning rule is repeated until either the network converges to
a fixed-point attractor or a maximal number of cycles is reached. The former
scenario implies that a hidden pattern was discovered [14] whereas the latter
suggests that the system outputs are cyclic or chaotic. This iterative reasoning
process allows performing WHAT-IF simulations through the modification of
the activation values of meaningful processing entities.

3 Computing with Words

The introduction of the linguistic variable notion in 1973 by L. Zadeh opened new
research horizons in the field of symbolic reasoning. This notion allows computing
words instead of numbers [25] as an alternative to quantitative reasoning models.
In general terms, the concept of linguistic variable is used to describe situations
that are complex or are not clearly defined in quantitative terms. Moreover, the
linguistic variables allow translating natural language into logical or numerical
statements that can be effectively computed.

Long story short, Computing with Words (CWW) refers to the paradigm de-
voted to operating words or linguistic terms in order to build reasoning modules
with high interpretability. The flexibility of CWW for modeling decision-making
situations has boosted the emergence of several linguistic computational models.
Some of these models are briefly described next.

– Linguistic Computational Model based on membership functions. The linguis-
tic terms are expressed by fuzzy numbers, which are usually described by
membership functions. This computational model makes the computations



directly on the membership functions of the linguistic terms by using the
Extension Principle [7].

Sn
F̃→ F (R)

app1(.)−→ S

where Sn symbolizes the n-Cartesian Product, F̃ is an aggregation operator
based on the extension principle, F (R) is the set of fuzzy sets over the set of
real numbers and app1(.) is an approximation function that returns a label
from the linguistic term set S.

– Linguistic Computational Symbolic Model [5]. This model performs the com-
putation of indexes attached to linguistic terms. Usually, it imposes a linear
order to the set of linguistic terms S = {S0, . . . , Sg} where Si < Sj if and
only if i < j. Formally, it can be expressed as:

Sn
R→ [0, g]

app2(.)−→ {0, . . . , g} → S

where R is a symbolic linguistic aggregation operator, app2(.) is an approx-
imation function used to obtain an index {0, . . . , g} associated to a term in
S = {S0, . . . , Sg} from a value in the [0, g] interval.

– The 2-tuple Fuzzy Linguistic Representation Model [11]. The above models
perform simple operations with high transparency, but they have a common
drawback: the loss of information caused by the need of expressing results
in a discrete domain. The 2-tuple model is based on the notion of symbolic
translation that allows expressing a domain of linguistic expressions as a
continuous universe. This can be formalized as follows:

S
∆→ (Si, ai)

app3(.)−→ (Si, αi)
∆−1

→ S

where Si ∈ S and αi ∈ [−0.5, 0.5), app3(.) is the aggregation operator for
2-tuples, whereas the functions ∆ and ∆−1 transform numerical values into
a 2-tuples and vice-versa, without losing information.

4 FCM reasoning using Triangular Fuzzy Numbers

In this section, we propose a linguistic FCM model that replaces the numerical
components of the FCM reasoning (i.e., the concepts’ activation values and the
causal weights) with linguistic terms. In order to develop an effective linguistic
FCM model, two key problems arise: (i) how to multiply two linguistic terms or
words, and (ii) how to add the result of this product.

Let us consider the following set of linguistic terms: S = {V L/ − V L (Very
Low), L/−L (Low), ML/−ML (Moderate Low), M/−M (Moderate), MH/−
MH (Moderate High), H/ − H (High), V H/ − V H (Very High), NA (No
Activated)}. The negative terms in S will be used only to describe a negative
causal weights wij between two concepts since we are assuming that concept’s
activation values C = {C1, C2, . . . , CN} are always positive. Figure 1 illustrates
the membership functions associated with these terms.



Fig. 1. Linguistic terms and their membership functions.

Let us consider a set of linguistic terms S attached to Ci and wji. Aiming

at mapping the product A
(t)
j wji into the CWW model, we consider the opera-

tor described in Equation 2, where τ(wji) and τ(A
(t)
j ) are the triangular fuzzy

numbers (TFN) [23] for wij and A
(t)
i , respectively.

I(wji, A
(t)
j ) = τ(wji)τ(A

(t)
j ) (2)

A triangular fuzzy number may be expressed as follows. Let â = [aL, aM , aU ],
where aL ≤ aM ≤ aU , then â is called a TFN, where aL and aU stand for the
lower and upper values of â, and aM is the modal value. There are many papers
retaled to the fuzzy number arithmetic (e.g., [23, 24, 1, 22]). In this paper, we
adopted the notation introduced by [23] that defines the multiplication between

two TFNs â = [aL, aM , aU ] and b̂ = [bL, bM , bU ] as follows: â × b̂ = [min(aL ×
bL, aL×bU , aU ×bL, aU ×bU ), aM ×bM ,max(aL×bL, aL×bU , aU ×bL, aU ×bU )].
Equation 3 displays the aggregation of the Ni linguistic terms impacting the ith
concept, which produces a TFN codifying a linguistic term.

τ(C
(t+1)
i ) =

Ni∑
j=1

Ij(wji, A
(t)
j ) (3)

The next step of the proposed symbolic reasoning model for linguistic FCM-

based systems is devoted to recovering the linguistic term attached to τ(C
(t+1)
i ).

With this goal in mind, we use the deviation between two TFNs as a distance
function [4], which can be defined as follows:

δ(â, b̂) =

√
1

3

[
(aL − bL)

2
+ (aM − bM )

2
+ (aU − bU )

2
]

(4)



Equation 5 displays the reasoning rule for this configuration, which computes
the corresponding linguistic term for the ith linguistic concept. This function
determines the linguistic term reporting the minimal distance between its TFN
and the one resulting from Equation 3. However, the linguistic term computed
in this steps could be defined by a TFN comprising negative values, which is not
allowed in our activation model. Aiming at overcoming this issue, we rely on a
transfer function for symbolic domains.

A
(t+1)
i = arg min

Sk∈S
{δ(τ(C

(t+1)
i ), τ(Sk))} (5)

Figure 2 shows the transfer function adopted in this paper, which is inspired
on the sigmoid function. It should be highlighted that this function ensures
computing positive linguistic values for concepts, while causal relations could be
described using either positive or negative terms.

Fig. 2. Transfer function for symbolic domains

In order to show how the model operates, let us consider the FCM displayed in
Figure 3. The activation values of concepts are fixed as follows: C1 ← High(H),
C2 ← High(H), C3 ←Medium(M), C4 ← Low(L). The goal of this example is
to compute the linguistic activation term for the C5 concept.

Once the concepts have been activated, we can perform the reasoning process
as explained above. This implies computing the linguistic activation value A5 as
the result of aggregating the linguistic activation terms attached to concepts C1−
C4 and their corresponding linguistic weights. Next we illustrate the operations
related to one iteration in the symbolic reasoning process:

I1 = τ(H)τ(−H) = [0.66, 0.82, 1] ∗ [−1,−0.82,−0.66] = [−1,−0.67,−0.44]

I2 = τ(H)τ(M) = [0.66, 0.82, 1] ∗ [0.33, 0.5, 0.67] = [0.22, 0.42, 0.66]



Fig. 3. Linguistic FCM-based system.

I3 = τ(M)τ(−M) = [0.33, 0.5, 0.67]∗[−0.66,−0.5,−0.33] = [−0.44,−0.25,−0.11]

I4 = τ(L)τ(L) = [0.01, 0.16, 0.33] ∗ [0.01, 0.16, 0.33] = [0.0001, 0.03, 0.003]

then,

τ(C5) = (I1 + I2 + I3 + I4) = (−1,−0.48, 0.11)

δ(τ(C5), S1) =

√
1

3

[
(−1 + 1)

2
+ (−0.48 + 1)

2
+ (0.11 + 0.82)

2
]

= 0.62

...

δ(τ(C5), S4) =

√
1

3

[
(−1 + 0.66)

2
+ (−0.48 + 0.5)

2
+ (0.11 + 0.33)

2
]

= 0.32

...



δ(τ(C5), S15) =

√
1

3

[
(−1 + 0.82)

2
+ (−0.48 + 1)

2
+ (0.11 + 1)

2
]

= 1.45

A5 = min{0.62, 0.49, 0.38, 0.32, 0.34, 0.56, 0.64, 0.64, 0.65,

0.70, 0.85, 1.01, 1.16, 1.32, 1.45} = 0.32

A5 = arg min
Sk∈S

{δ(τ(C
(t+1)
i , τ(Sk))} = S4 = f(−M) = ML.

It is worth mentioning that our symbolic FCM-based model preserves its re-
current nature. This implies that the FCM will produce a state vector comprised
of linguistic terms at each iteration-step until either a fixed-point is discovered
or a maximal number of iterations is reached.

5 Numerical simulations

In this section, we present two case studies in order to asses the reliability of the
proposed symbolic model for FCM-based systems.

5.1 Crime and punishment

Figure 4 displays the “crime and punishment” case study employed by Cavalho
in [3] and Rickard in [17]. This FCM model attempts simulating the effects of var-
ious coupled social attributes on the prevalence of theft in a community. Aiming
at illustrating how our model works for this case study, we need to transform the
numerical weights into linguistic terms. Figure 1 portrays the triangular mem-
bership functions associated with the seven linguistic terms defined in S. These
functions are regularly used in fuzzy cognitive modeling.

The experiments are oriented to calculating the linguistic activation values of
each concept according to the proposed model using three simulation scenarios.
These simulation scenarios are described as follow:

1. The concepts Community Intervention and Police Presence are set to V H,
while the others are set to V L. For this scenario, the symbolic FCM model
converges in three iterations to the state vector:

A = [M,M,ML,M,M,L,MH]

whereas the linguistic FCM model proposed by Rickard in [17] converges in
six iterations to a final state given by:

B = [V H,MH,ML, V H,M, V H, V H].



Fig. 4. Crime and punishment FCM model.

2. The concept Police Presence is set to V H, whereas the other map concepts
are set to V L. For this second simulation scenario, the proposed linguistic
FCM converges in three iteration-steps as well:

A = [M,M,ML,M,M,L,MH]

whereas Rickard’s model converges in four iterations to the state:

B = [H,M,MH,V L,H, V L, V H].

Notice that vectors are similar for key concepts. For example, the proposed
linguistic FCM approach frequently converges to states where the activation
value of Theft is lower than the activation value of Police Presence.

5.2 Chondromalacia presence

The second case study refers to a medical problem that analyzes the effects of
different variables (i.e., concepts) leading to the presence of Chondromalacia in a
patient. Chondromalacia patellae is a medical condition that affects the articular
cartilage of the patella. It encompasses a spectrum of clinical severity, ranging
from mild fissuring of the articular cartilage to complete cartilage loss and erosion
of the underlying subchondral bone. Chondromalacia patellae can be considered
a medical condition contained within the patellofemoral pain syndrome [16].
This medical condition has become an active reasearch field for practitioners.
For example, Santiago-Santos et al. [21] evaluated the efficacy of hylan GF 20
administered immediately after arthroscopy.



Using the opinion of three experts, we establish the causal relations between
variables. Furthermore, we use two scenarios to analyze the activation values of
concepts and validate the incidence of a concept to another. Figure 5 shows the
linguistic FCM resulting from the experts’ consensus.

Fig. 5. Chondromalacia FCM model.

1. The concepts Extracellular matrix and Weight are set to M , while Chondro-
malacia is MH, Cell is L and Physical exercises is H. For this scenario, the
linguistic FCM converges to the following state vector:

A = [M,L,L,H,L]

2. The concept Chondromalacia is set to M , whereas the other concepts are
set to H. For this second simulation scenario, the proposed linguistic model
converges to the following state vector:

A = [M,L,L,H,L]

The results obtained are compatible with the observations made by experts
who indicate that patients with low fissure of the articular cartilage, the presence
of chondromalacia is medium. The criterion of experts referred to the need to
carry out the study separately of each variable, was corroborated.

We have illustrated the practical advantages of using symbolic expressions
to describe the FCM components and its reasoning mechanism, specially when
performing WATH-IF simulations. As a result, we obtained a symbolic inference
model with improved interpretability features, which is appreciated by users with
no background in Mathematics or Computer Science.



6 Conclusions

In this paper, we presented a symbolic reasoning mechanism for linguistic FCM
models. In such systems, both the concepts’ activation values and the causal
weights are described by linguistic terms. In the proposed model, we referred to
these terms as the linguistic activation values and the linguistic causal weights.
Aiming at implementing this symbolic approach, we explored the use of trian-
gular fuzzy numbers because of their simple interpretation.

The simulations have shown that our approach is able to computing consis-
tent results. In spite of that, we observed differences on results when compared
with the model proposed by Rickard et al [17]. We could conjecture that these
differences may be a result of losing relevant information when processing in-
formation on such qualitative models. The lack of flexibility on the definition
of triangular fuzzy numbers may also affect the model’s accuracy. These issues,
however, become a strong motivation towards exploring other alternatives to
improve the performance of our model as a future research work.
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