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IDEAL CLASSES OF THE WEYL ALGEBRA

AND NONCOMMUTATIVE PROJECTIVE GEOMETRY

(WITH AN APPENDIX BY MICHEL VAN DEN BERGH)

YURI BEREST AND GEORGE WILSON

Abstract. Let R be the set of isomorphism classes of right ideals in the
Weyl algebra A = A1(C) , and let C be the set of isomorphism classes of
triples (V ; X, Y) , where V is a finite-dimensional (complex) vector space,
and X, Y are endomorphisms of V such that [X, Y]+ I has rank 1 . Following
a suggestion of L. Le Bruyn, we define a map θ : R → C by appropriately
extending an ideal of A to a sheaf over a quantum projective plane, and then
using standard methods of homological algebra. We prove that θ is inverse to
a bijection ω : C → R constructed in [BW] by a completely different method.
The main step in the proof is to show that θ is equivariant with respect to
natural actions of the group G = Aut(A) on R and C : for that we have to
study also the extensions of an ideal to certain weighted quantum projective
planes. Along the way, we find an elementary description of θ .

1. Introduction

This is a sequel to our earlier paper [BW]; however, it can, and probably should,
be read independently of that work. We first recall the main results of [BW].

Let A be the complex Weyl algebra; that is, A is the associative algebra over
C generated by two elements x and y subject to the relation [x, y] = 1 . Let R

be the set of isomorphism classes of finitely generated torsion-free rank one right
A-modules. Since A is Noetherian, each right ideal of A is a module of this kind;
conversely, because A has a quotient (skew) field, it is easy to see that each such
module M is isomorphic to a right ideal of A . For short, we shall often refer
to a module M as an “ideal”, even when we do not have in mind any particular
embedding of M in A . Let G be the automorphism group of A ; there is a natural
action of G on R . Finally, for each n ≥ 0 , let Cn be the space of equivalence
classes (modulo simultaneous conjugation) of pairs (X,Y) of n × n matrices over
C such that1

[X,Y] + I has rank 1 .(1.1)

For brevity, we shall often refer to a point of Cn simply as a “pair of matrices”.
There is a natural action of G on each space Cn ; it is obtained, roughly speaking,
by thinking of the pairs (X,Y) as points dual to the coordinate functions x and y
that generate A (see Section 7 below for the precise definition). In [BW] we showed
that this action is transitive. Let C be the (disjoint) union of the spaces Cn . The
main result of [BW] was the following

Research supported in part by NSF grant DMS 00-71792.
1In [BW] we worked with the space of pairs such that [X, Y] − I has rank 1 ; here we identify

these spaces via the map (X, Y) ↔ (Xt, Yt) . When n = 0 , the space Cn is supposed to be a
point: as in (1.1), we shall sometimes disregard this case.
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2 YURI BEREST AND GEORGE WILSON

Theorem 1.1. There is a bijective map ω : C → R which is equivariant with
respect to the action of G .

Part of the significance of this Theorem becomes clear if we think of the Weyl
algebra as a noncommutative deformation of the polynomial ring C[x, y] . In this
case the analogue of Theorem 1.1 is elementary, because each isomorphism class
of ideals has a unique representative as an ideal of finite codimension; thus in the
commutative case, the analogue of our space R is the disjoint union of the point
Hilbert schemes Hilbn(A2) of the affine plane. As is well known (and almost
tautological), Hilbn(A2) can be identified with the space of (equivalence classes
of) pairs (X,Y) of commuting n × n matrices possessing a cyclic vector: to an
ideal I of finite codimension we assign the pair (X,Y) of maps on the quotient
C[x, y]/I induced by multiplication by x and y . According to Nakajima (see
[N]), our space Cn can be obtained from Hilbn(A2) by a deformation of complex
structure. In commutative algebraic geometry it is a basic principle that a (flat)
deformation of varieties should give rise to a deformation of any reasonable moduli
space of bundles (or coherent sheaves); Theorem 1.1 suggests that this principle
should extend also to noncommutative deformations. However, at the present time
even the expression “moduli space” seems not to have any precise meaning in the
noncommutative case; our space R , for example, does not to our knowledge possess
any intrinsic algebraic structure, which is why we referred to it above simply as a
set.

The description of the map ω : C → R given in [BW] is not direct, but passes

through a third space, the adelic Grassmannian Grad that parametrizes rational
solutions of a certain integrable system (the KP hierarchy). Indeed, in [BW] we

defined ω to be the composition of a bijection β : C → Grad constructed in [W1]

and a bijection α : Grad → R constructed by Cannings and Holland in [CH].
Theorem 1.1 was then proved by following through what happens to the natural
action of G on R under the bijections α and β , a tricky process, since the action
of G on Grad is difficult to describe. In any case, although Grad is an interesting
object in its own right, it is hard not to feel that it is de trop in the question
of classifying ideals of A . Another imperfection in [BW] is that there we gave
no explicit description of the inverse map to ω (Cannings and Holland do indeed
explain what is the inverse of their bijection α , but no description was known for
the inverse of the map β ). For these (and other) reasons, we wish to rederive

Theorem 1.1 in a way that makes no reference to Grad .
To that end, we take up an idea of L. Le Bruyn [L]. If we think of A as the ring of

functions on a “quantum affine plane” A2
q , then an A-module M (in particular, an

ideal) is to be thought of as a vector bundle (or coherent sheaf) over A
2
q . Le Bruyn’s

idea is to extend M to a sheaf M over the quantum projective plane P2
q , and then

use a noncommutative version of Barth’s classification [Bar] of bundles over P2 to
obtain algebraic invariants of M . Here P2

q is taken in the sense of M. Artin [A]:
following Serre’s classic paper [S], Artin suggests to define a (noncommutative)
projective variety via its homogeneous coordinate ring A , so that a sheaf over
such a variety is represented by a graded A-module (modulo finite-dimensional
modules). We give a quick sketch of this theory in Section 2 below: readers who
are not familiar with it may understand the rest of this Introduction by analogy
with the commutative case. The homogeneous coordinate ring of P2

q is the graded
ring of “noncommutative polynomials” A = C[X,Y, Z] , where the generatorsX,Y
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and Z all have degree 1 , Z commutes with X and Y , and [X,Y ] = Z2 . As for the
classification of bundles over P2

q , Le Bruyn suggests to use the version of Beilinson
[B], which goes very smoothly in the noncommutative case (cf. [Bo]). The following
consequence of that theory is all that will concern us in this paper. Suppose we
have a sheaf F over P2

q satisfying the vanishing conditions

Hi(P2
q,F(−2)) = Hi(P2

q,F(−1)) = Hi(P2
q,F) = 0 for all i 6= 1 .(1.2)

Then F is determined by the representation

H1(P2
q,F(−2))

−→
−→
−→

H1(P2
q,F(−1))

−→
−→
−→

H1(P2
q,F)(1.3)

of the indicated quiver with 3 vertices and 6 arrows (and relations reflecting the
commutation relations of the algebra A). In (1.3) it is understood that each set
of 3 arrows is given by multiplication by the generators X , Y and Z of A . It
turns out that any2 ideal of A has extensions M that satisfy (1.2); in particular,
we shall see that the (unique) extension whose restriction to the line at infin-
ity in P2

q is trivial always satisfies (1.2). From now on, M will denote this ex-
tension (it is just at this point that we part company from L. Le Bruyn, who
chooses a different extension). Then the three vector spaces H1(P2

q,M(−2)) ,

H1(P2
q,M(−1)) and H1(P2

q,M) have dimensions (n, n, n − 1) for some n ≥ 1 .

Furthermore, multiplication by Z gives a surjection H1(P2
q,M(−1))։H1(P2

q ,M)

and an isomorphism H1(P2
q,M(−2))

∼
→ H1(P2

q,M(−1)) . If we now identify

H1(P2
q,M(−2)) ∼= H1(P2

q,M(−1)) ∼= V (say) via this isomorphism, then X and
Y become endomorphisms of V , and it is easy to see that they satisfy the relation
(1.1). In this way, Le Bruyn’s (modified) construction gives us a map θ : R → C .
Our aim is to prove

Theorem 1.2. The map θ is inverse to the map ω defined in [BW].

In the present paper we shall not attempt a direct proof of this Theorem; indeed,
the machinery involved in the definitions of ω and θ is so different that this appears
(at first sight) impossible. Instead, we focus on the equivariance property of ω
stated in Theorem 1.1. Because the action of G on each space Cn is transitive,
the map ω−1 is uniquely determined by equivariance once we know its effect on
one point in each orbit ω(Cn) . Now, there is (at least) one point M in each orbit
for which it is possible to check directly that ω−1(M) = θ(M) ; granting that,
Theorem 1.2 is equivalent to

Theorem 1.3. The map θ described above is G-equivariant.

One might think at first that Theorem 1.3 should follow easily from simple
considerations of functoriality: however, the difficulty arises that an automorphism
of the affine plane does not (in general) extend to a regular automorphism of the
projective plane, but only to a birational automorphism. In algebraic terms, this
means that an automorphism of the Weyl algebra does not naturally induce any
map on the graded ring A , which is the only object we have to work with in the
noncommutative case. Our idea for dealing with this problem rests on a theorem

2We disregard the case of the free A-module of rank 1 , which corresponds to n = 0 below.
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of Dixmier (see [Di]), which states that the group G is generated by the special
automorphisms Ψr,λ and Φs,µ defined by

Ψr,λ(x) = x , Ψr,λ(y) = y + λxr ;

Φs,µ(x) = x+ µys , Φs,µ(y) = y .
(1.4)

Clearly, it is enough to prove that θ commutes with the action of these genera-
tors. We observe that Ψr,λ and Φs,µ will be homogeneous if we assign to x and
y the weights (1, r) and (s, 1) (respectively); in geometrical language, this means
that these automorphisms extend to (biregular) automorphisms of an appropriate
weighted projective space. Slightly more generally, we shall work with the weighted
projective spaces P2

q(w) for any weight vector w = (w1, w2) , where w1 and w2

are positive integers (it does not simplify what follows to assume that one of them
is equal to 1). By definition, the homogeneous coordinate ring of P2

q(w) is the
graded algebra A(w) = C[X,Y, Z] , where (X,Y, Z) have degrees (w1, w2, 1) , Z
commutes with X and Y , and we have the commutation relation [X,Y ] = Z |w|

(we set |w| := w1 + w2). It is not difficult to repeat all of Le Bruyn’s consid-
erations for any weight w , the only difference being that the quiver that arises
is more complicated than the one we saw in (1.3). Thus, each ideal M extends
to a sheaf Mw over P2

q(w) , and we obtain a pair of matrices, say (X(w),Y(w)) ,

acting on the vector space V (w) := H1(P2
q(w), Mw(−1)) . If we take w = (1, r)

(or w = (s, 1)), then the automorphisms Ψr,λ (or Φs,µ) extend to automorphisms
of the graded ring A(w) , so we can follow their action on the corresponding pair
of matrices (X(w),Y(w)) by simple functorial considerations. Theorem 1.3 will
therefore follow at once from the next theorem, which is perhaps to be considered
the main result of this paper.

Theorem 1.4 (Comparison theorem). The pair of matrices (X(w),Y(w)) ∈ C

corresponding to a given ideal of A is independent of the choice of w .

The proof of Theorem 1.4 that we shall present here does not compare different
weights directly, but instead compares each pair (X(w),Y(w)) with yet another
pair of matrices (X,Y) which we shall extract from an ideal M in an elementary way
(that is, without the use of homological algebra). The construction imitates the
elementary treatment in the commutative case, using the representative of finite
codimension for an ideal. The Weyl algebra has no (non-trivial) ideals of finite
codimension. However, in Section 5 below we shall construct for each M two
fractional ideals Mx and My (both isomorphic to M), together with embeddings
rx and ry of Mx and My as linear subspaces of finite codimension in A . Of
course, in that case rx and ry cannot be A-module homomorphisms, but rx will
be C[y]-linear and ry will be C[x]-linear. On the quotient spaces Vx := A/rx(Mx)
and Vy := A/ry(My) we therefore have endomorphisms Y and X (respectively)
induced by multiplication by y and x . Furthermore, we shall construct a canonical
isomorphism φ : Vx → Vy . Identifying Vx and Vy via φ , we thus get a pair of
matrices (X,Y) (as usual, defined only up to simultaneous conjugation).

Theorem 1.5. Let M be an ideal of A , and for each positive weight vector w

let (X(w),Y(w)) be the corresponding pair of endomorphisms of the vector space
V (w) = H1(P2

q(w), Mw(−1)) described earlier. Then there are isomorphisms αx :
V (w) → Vx and αy : V (w) → Vy taking Y(w) to Y and X(w) to X respectively,
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and making the diagram

V (w)
αx−−−−→ Vx

∥

∥

∥





y
φ

V (w)
αy

−−−−→ Vy

commutative.

In other words, the various pairs of matrices (X(w),Y(w)) and (X,Y) that we
have assigned to an ideal M all coincide. Theorem 1.4 is now clear, since the
elementary construction of the pair (X,Y) does not involve any choice of weights.

The proof of Theorem 1.5 consists of a calculation of H1(P2
q(w), Mw(−1))

using the Čech cohomology developed in [Ve], [VW1], [VW2]. A key point is that
the quantum “planes” P2

q(w) have schematic dimension (in the sense of [W]) equal

to 1 , not 2 ; this means (in geometrical language) that P2
q(w) can be covered by

just two affine open sets, analogous to the (X,Z)-plane and the (Y, Z)-plane in the
commutative case. Of course, in that case these two affine open sets fail to catch the
point (0 : 0 : 1) ; but apparently the quantum planes do not have “points” to cause
that kind of trouble. It turns out that our pair (Mx,My) of special representatives

of an ideal is well adapted to calculating the Čech cohomology of this 2-set covering
of P2

q(w) . For details we refer to Section 6 below.
After this article appeared as a preprint, M. Van den Bergh succeeded in finding

direct homological proofs of our main results: these proofs are presented in the
Appendix. In particular, Van den Bergh proves directly that our map θ is bijective,
whereas in the main body of the paper we see that only after identifying θ with
ω−1: this proof of bijectivity thus still depends on the arguments from the theory
of integrable systems used in [BW]. It is interesting that methods from integrable
systems and from the theory of derived categories appear here as alternatives to
each other (cf. the question raised in the first sentence of [Be]).

The paper is organized as follows. In Section 2 we give a brief introduction to
noncommutative projective geometry, and summarize the results we need from the
literature on that subject. In Section 3 we introduce the main characters in our
story, the Weyl algebra, its various “homogenizations” and the associated projective
planes P2

q(w) . Then in Section 4 we show (for arbitrary weights) how to extract
from a given ideal of A the pairs of matrices (X(w),Y(w)) ∈ C . The next section
explains the elementary construction of the pair of matrices (X,Y), using the two
special representatives of an ideal of A . Then Section 6 gives the calculation of
Čech cohomology which identifies (X(w),Y(w)) with (X,Y) , and hence proves
Theorems 1.5 and 1.4. Section 7 then deduces our other main results, filling in
some details left vague in the sketch above. Section 8 establishes Beilinson’s derived
equivalence for the spaces P2

q(w) : although, strictly speaking, this equivalence is

not used in the main part of the paper3, it is scarcely possible to understand the
motivation for our construction without at least a cursory reading of this section.
Finally, section 9 discusses briefly the relationship of our construction to the original
one of Le Bruyn, while Section 10 explains how it fits in with the classification of
bundles over P2

q given in the recent paper [KKO].

3However, it is used in an essential way in the Appendix.
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2. Noncommutative Projective Geometry

As we mentioned in the Introduction, the starting point for noncommutative
projective geometry is the following result of Serre (see [S]): the category of coher-
ent sheaves over a (commutative) projective variety X is equivalent to a quotient
of the category of finitely generated graded modules over the coordinate ring A of
X . This latter category makes sense also for a noncommutative graded ring A .
In this section we give a brief overview of the theory of noncommutative projective
schemes and their cohomology: we introduce the notation, recall definitions and col-
lect some fundamental results needed for understanding the main part of the paper.
Our basic reference is [AZ]. More details on graded algebras and modules can be
found in [NV], on abelian categories (including Serre quotients) in [G] and [GM], on
(Artin-Schelter) regular algebras in [AS], [ATV] and [Ste]. The “schematic” struc-
ture on graded algebras and the noncommutative Čech cohomology are introduced
and discussed in [Ve], [VW1], [VW2]. For a general overview of the subject we
recommend the articles [A], [Sm] and [VW].

2.1. Graded Algebras and Modules. We recall that an associative algebra4 A

over a field k is called graded (more precisely, Z-graded) if A =
⊕

i∈Z
Ai as a

k-vector space and AiAj ⊆ Ai+j for all i, j ∈ Z . We shall assume that A is (both
left and right) Noetherian. If Ai = 0 for all i < 0 and A0 = k we say that A

is connected. It is easy to see that any graded connected Noetherian k-algebra is
locally finite, that is, dimk Ai <∞ for all i .

A (right) A-module M is graded if it has a vector space decomposition M =
⊕

i∈Z
Mi compatible with the Z-grading on A , that is, MiAj ⊆Mi+j for all i, j .

The category of all right graded modules over A will be denoted by GrMod(A): the
morphisms in GrMod(A) are graded homomorphisms of degree zero.

For each n ∈ Z we introduce two functorial operations on graded modules

shift in grading: M =
⊕

i∈Z
Mi 7→ M(n) :=

⊕

i∈Z
Mi+n ;

(left) truncation: M =
⊕

i∈Z
Mi 7→ M≥n :=

⊕

i≥nMi .

We say that a graded module M is left (respectively, right) bounded if M≥n = M

(respectively, M≥n = 0) for some n ∈ Z .
Finitely generated graded modules form a full subcategory in GrMod(A) ; it is

denoted by grmod(A). The shift and truncation functors on GrMod(A) preserve
this subcategory. Moreover, if A is left bounded (for example, connected), so are
all finitely generated graded modules over A. Further, if A is locally finite, then
every object in grmod(A) is locally finite as well.

A few words on homological properties of graded modules. First of all, GrMod(A)
is an abelian k-linear category with enough projective and injective objects, so for

4Throughout the paper we shall denote graded objects (algebras, modules, . . . ) by (capital)
boldface letters (A, M, . . . ) distiguishing them from ungraded ones (A, M, . . . ) .
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each n ≥ 1 we may define the functors ExtnA(M ,—) on GrMod(A) as the right
derived of HomA(M ,—) ≡ HomGrMod(M ,—) . Next, it is convenient to have
some notation for graded Ext-groups. Thus, we set

ExtnA(M ,N) :=
⊕

d∈Z

Extn
A(M ,N (d)) ;

then ExtnA(M ,—) for n ≥ 1 are the right derived functors of Ext0A(M ,—) :=
HomA(M ,—) . To clarify this definition observe (see [NV], Corollary I.2.12) that

Extn
A(M ,N ) = ExtnMod(A)(M ,N) for all n ≥ 0 ,(2.1)

at least when M is finitely generated. (On the right hand side of (2.1) M and N

are regarded as objects in the category Mod(A) of ungraded A-modules.)
Finally, we mention the following natural isomorphisms (of graded vector spaces):

Extn
A(M ,N(d)) ∼= Extn

A(M (−d),N ) ∼= ExtnA(M ,N)(d)

valid for all d ∈ Z and for all M ,N ∈ GrMod(A) .

2.2. Projective Schemes. Let A be a Noetherian connected graded k-algebra,
and let M be a graded right module over A . We say that m ∈ M is a τorsion
element of M if mAn = 0 for n ≫ 0 . The τorsion elements form a (graded)
submodule in M ; we denote it by τM . Equivalently, τM is the sum of all finite
dimensional (over k) submodules of M . In particular, if M is finitely generated,
so is τM (since we assume A to be Noetherian), and hence dimk τM <∞ in that
case.

A module M is called a τorsion module if τM = M , and τorsion-free if τM =
0 . The full subcategory of GrMod(A) consisting of all τorsion modules will be
denoted by Tors(A) . Similarly, we shall write tors(A) for the full subcategory of
grmod(A) consisting of finitely generated τorsion modules. As we observed above,
the latter are precisely the graded modules which have finite dimension as vector
spaces over k.

Since both Tors(A) and tors(A) are dense subcategories (that is, in any short
exact sequence 0 → M ′ → M → M ′′ → 0 the module M is τorsion if and only if
M ′ and M ′′ are τorsion), we may introduce the quotient categories

Tails(A) := GrMod(A)/Tors(A) , tails(A) := grmod(A)/tors(A) .

These are both abelian categories (see [G], pp. 367–369), the second being a full
subcategory of the first; they are equipped with the exact projection functor π :
GrMod(A) → Tails(A) which sends all the τorsion objects in GrMod(A) to zero and
is universal (among additive functors) with respect to this property. Throughout
the paper we shall denote quotient objects by script letters; for example, if M ∈
GrMod(A) , we write M := πM for the corresponding object in Tails(A) . The
shift in grading M 7→ M(1) preserves τorsion modules, hence carries over as an
operation on quotient objects. The induced functor M 7→ M(1) on Tails(A) (or on
tails(A)) is called the twist functor.

In general, the description of the morphisms in Tails(A) is somewhat compli-
cated. However, if M is finitely generated, we have simply

HomTails(A) (M,N ) ∼= lim
−→

HomA(M≥n,N) ,(2.2)
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where the system {HomA(M≥n,N)} is directed by restriction of graded homomor-
phisms. It is easy to deduce from (2.2) when two objects in tails(A) are isomorphic,
namely

M ∼= N in tails(A) ⇐⇒ M≥n
∼= N≥n in grmod(A) for some n .(2.3)

This perhaps explains the use of the word “tails”.
If the algebra A is commutative and generated by elements of degree one, then

Serre’s result tells us that the categories Tails(A) and tails(A) are equivalent
to the categories of quasicoherent and coherent sheaves on the projective scheme
X = proj(A) . For psychological reasons, it is very helpful to use similar language
also in the noncommutative case, even though in that case we shall not attempt to
give any independent meaning to “proj(A)”. In what follows we shall refer to the
objects of tails(A) (respectively, Tails(A)) as coherent (respectively, quasicoherent)
sheaves on X = proj(A) , even when A is not commutative, and we shall use the
notation OX := πA , coh(X) := tails(A), Qcoh(X) := Tails(A) .

2.3. Cohomology. In this section we outline the cohomology theory of coherent
sheaves over noncommutative schemes, confining ourselves to results that will be
used in the main body of the paper. We keep the assumption that A is a graded
connected Noetherian k-algebra.

For each M ∈ Tails(A) the functor HomTails(M,—) is left exact; since Tails(A)
has enough injectives (see [AZ]), the right derived functors Extn(M,—) are well
defined. As in the case of graded modules, we introduce the notation

Extn(M,N ) :=
⊕

d∈Z

Extn(M,N (d)) .

Definition 2.1. Let M ∈ Qcoh(X) ≡ Tails(A) be a quasicoherent sheaf over
X = proj(A) . For each n ≥ 0 we define the cohomology groups of M by

Hn(X,M) := Extn(OX ,M) ,(2.4)

where OX := πA ∈ Qcoh(X) .

The cohomological dimension of X is then defined by

cdim(X) := max{n ∈ N : Hn(X,M) 6= 0 for some M ∈ Qcoh(X) } .

Since Tails(A) is a k-linear category, all the groups (2.4) are vector spaces over
k. The graded objects

Hn(X,M) :=
⊕

d∈Z

Hn(X,M(d))

are naturally graded right modules over A ; we refer to them as the full cohomology
modules of M . By (2.2), if M = πM , we have

H0(X, M) ∼= lim
−→

HomA(A≥n,M) .

From this it is easy to see that the functor ω := H0(X, — ) is right adjoint to
the projection functor π : GrMod(A) → Tails(A) . For any object M ∈ Tails(A) ,
the adjunction map M → πωM is an isomorphism; the other adjunction map
M → ωπM ∼= H0(X,M) is the restriction

M ∼= HomA(A,M) → lim
−→

HomA(A≥n,M) ∼= H0(X,M) .(2.5)
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Clearly, the kernel of this map is τM ; more generally (see [AZ], Prop. 7.2), there
is an exact sequence of graded modules

0 → τM → M → H0(X,M) → lim
−→

Ext1A(A/A≥n,M ) → 0 .(2.6)

We shall need noncommutative versions of the basic theorems of Serre (finite-
ness and vanishing of cohomology, and duality). For this we have to impose some
additional conditions on our algebra A . The least restrictive condition used in the
literature is the so-called χ-condition (see [AZ]): dimk Extn

A(kA,M) < ∞ for all
M ∈ grmod(A) and for all n ≥ 0 . (Here kA := A/A≥1 denotes the “trivial”
(right) module over A .) The algebras occurring in the present paper satisfy a much
stronger condition: they are Artin-Schelter algebras. We shall concentrate on that
case. The definition is as follows (see [AS]).

Definition 2.2. A graded connected algebra A is called Artin-Schelter (or Artin-
Schelter regular) if A has

(i) finite global dimension, say gl.dim(A) = d ;
(ii) polynomial growth, that is, dimk Am ≤ γmp for some positive p ∈ Z, γ ∈ R,

and for all m ≥ 0 ;
(iii) the (graded) Gorenstein property : Exti

A(kA,A) = 0 for all i 6= d and

ExtdA(kA,A) ∼= kA(l) for some integer l (called the Gorenstein parameter of A ).

If A is commutative, then the condition (i) in definition 2.2 already implies that
A is isomorphic to a polynomial ring k[x0, x1, . . . , xn] with some positive grading
(see [SZ]). Thus the only commutative Artin-Schelter algebras are polynomial al-
gebras. However, in the noncommutative case there are many interesting examples
(see [AS], [ATV], [Ste] and references therein). The projective schemes associ-
ated with regular noncommutative algebras are referred to as “quantum projective
spaces”. The next theorem provides further justification for this terminology.

Theorem 2.3 ([AZ], Theorem 8.1). Let A be a Noetherian Artin-Schelter algebra
of global dimension d = n+ 1, and let X = proj(A) . Then cdim(X) = n , and the
full cohomology modules of OX := πA are given by

Hi(X,OX) ∼=







A if i = 0
0 if i 6= 0, n

A∗(l) if i = n
,

where l is the Gorenstein parameter of A , and A∗ denotes the graded dual of A

with components A∗
i := Homk(A−i, k) .

Now we are in position to state the version of Serre’s theorems that we shall use.

Theorem 2.4. Let A be a Noetherian Artin-Schelter algebra of global dimension
d = n+ 1 and Gorenstein parameter l . Let X = proj(A) . Then if M ∈ coh(X) ,
we have

(a) (Finiteness) dimk H
i(X,M) <∞ for all i ≥ 0 ;

(b) (Vanishing) if i ≥ 1 , then Hi(X,M(k)) = 0 for all k ≫ 0 ;
(c) (Grothendieck-Serre Duality) there are natural isomorphisms

Exti(M,OX(−l)) ∼= Hn−i(X,M)∗ ,

for i = 0, 1, 2, . . . , n .
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The Finiteness and Vanishing theorems have been proved by Artin and Zhang
(see [AZ], Theorem 7.4) for any connected Noetherian algebra satisfying the χ-
condition. For the Duality theorem we refer to [YZ] (see also [J]): we shall use this
Theorem only in Section 10.

2.4. Čech Cohomology. In the classical case when A is commutative and gen-
erated by elements of degree 1 , we can calculate sheaf cohomology of the projective
scheme X = proj(A) using the Čech complex of any affine open covering of X .
Restricting a (quasicoherent) sheaf to an affine open set corresponds under Serre’s
equivalence to (graded) localization of the associated A-module. A natural non-
commutative generalization of this construction has been suggested recently in [Ve],
[VW1], [VW2]. Since in the noncommutative case one can define localization only
with respect to Ore sets, the existence of “sufficiently many” (homogeneous) Ore
sets is a necessary condition to be imposed on the corresponding graded algebras.
The class of such algebras (called schematic) is fairly rich and contains many inter-
esting examples (see [VW3]). Translating the definition of a covering into algebraic
language, we arrive at the following

Definition 2.5 (see [VW1]). A Noetherian graded connected k-algebra A is called
schematic if there exists a finite number of (two-sided) homogeneous Ore sets
U1, U2, . . . , Us in A such that

(i) each Ui contains 1 , and all Ui ∩ A≥1 are non-empty;
(ii) for any collection of elements (u1, u2, . . . , us) ∈ U1 × U2 × . . . × Us , there

is an m ∈ N such that

A≥m ⊆
s

∑

i=1

uiA .(2.7)

A collection of Ore sets satisfying the conditions above is called a covering of A .

If A is schematic, let N denote the least possible number of Ore sets covering
A . Following [W], we define the schematic dimension of A by sdim(A) := N − 1 .
If A is commutative, sdim(A) coincides with the usual (Krull or cohomological)
dimension of the scheme X = proj(A) . However, in the noncommutative case
the schematic dimension may happen to be smaller than cdim(X) , even for Artin-
Schelter algebras (see [W] and Lemma 3.1 below).

The Čech complex of a covering of A is constructed in more or less the usual
way, except that an “intersection of open sets” now depends on the order in which
the sets intersect. Fix a (finite) covering of A , say U = {U1, U2, . . . , Us} . Given
M ∈ GrMod(A) and a (p + 1)-tuple (i0, i1, . . . , ip) of indices, each ik being in
{1, 2, . . . , s}, we write

M i0i1...ip
:= M⊗

A
AUi0

⊗
A
. . .⊗

A
AUip

,(2.8)

where AUik
:= A[U−1

ik
] is the (graded) localization of A at Uik

. Now, for each
p = 0, 1, 2, . . . , set

Cp(U,M) :=
⊕

(i0,i1,... ,ip)

M i0i1...ip
∈ GrMod(A) .

Then Cp(U,M) form a complex of graded A-modules

C•(U,M) : 0 → C0(U,M)
d 0

−→ C1(U,M)
d 1

−→ . . .(2.9)
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with coboundary maps d p : Cp(U,M) → Cp+1(U,M) defined in the usual way.
For example,

d 0 :
s

⊕

i=1

M i →
s

⊕

i,j=1

M ij

is given by the formula

d 0(m1 ⊗ u−1
1 , . . . ,ms ⊗ u−1

s )ij = mi ⊗ u−1
i ⊗ 1 −mj ⊗ 1 ⊗ u−1

j

in M ij = M⊗
A

AUi
⊗

A
AUj

.

The cohomology of the complex (2.9)

Ȟp(U,M) := hp[C•(U,M)] , p = 0, 1, 2, . . .

is called the (full) Čech cohomology of the sheaf M relative to the covering U . As
in the commutative case, we have the following general result.

Theorem 2.6. For all quasicoherent sheaves M = πM ∈ Qcoh(X) , and for any
covering U of A, there are natural isomorphisms of graded modules

Hp(X,M) ∼= Ȟp(U,M) , p = 0, 1, 2, . . . .

For the proof we refer the reader to [VW2]. We shall use Theorem 2.6 only for
p = 0 , in which case it is an elementary exercise. The isomorphism H0(X,M) →
Ȟ0(U,M) is defined as follows. Recall that an element of H0(X,M) is repre-
sented by a homomorphism f : A≥n → M (for some n). Condition (i) in
Definition 2.5 implies that (A≥n)Ui

∼= AUi
for any n ; so after localization f de-

fines a homomorphism fi : AUi
→ MUi

for each i . Assigning to f the element
(f1(1), f2(1), . . . , fs(1)) ∈ C0(U,M) defines the desired isomorphism. Combining
this with (2.5) we get

Proposition 2.7. Let M be a graded A-module, M = πM the associated sheaf.
Then the natural map M → H0(X,M) → Ȟ0(U,M) is given by

m 7→ (m⊗ 1, . . . ,m⊗ 1) ∈ C0(U,M) = MU1 ⊕ . . .⊕ MUs
.

We shall denote the d-th graded component of Ȟp(U,M) by Ȟp(U,M(d)) . We
then have

Ȟp(U,M) =
⊕

d∈Z

Ȟp(U,M(d)) ,

in conformity with our usual notation.

3. The Weyl Algebra and its Homogenizations

From now on, we set k = C . Let A = C〈x, y〉/([x, y] − 1) be the first Weyl
algebra over C . Unlike the commutative algebra C[x, y] , the Weyl algebra admits
no natural grading; however, it has many natural filtrations.

3.1. Filtered Rings and Modules. We recall that a filtration on an algebra A
is an increasing sequence of linear subspaces

. . . ⊆ Ak−1 ⊆ Ak ⊆ Ak+1 . . . ,(3.1)

indexed by the integers, such that 1 ∈ A0 ,
⋃

k∈Z
Ak = A and AjAk ⊆ Aj+k

for all j, k ∈ Z . A filtration is called positive if Ak = 0 for all k < 0 . If A is a
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filtered algebra, then a (right) A-module M is called a filtered A-module if there is
an increasing sequence of linear subspaces

. . . ⊆Mk−1 ⊆Mk ⊆Mk+1 ⊆ . . . ,(3.2)

such that
⋃

k∈Z
Mk = M and MkAj ⊆ Mk+j for all k, j ∈ Z . We shall assume

the filtration (3.2) to be separated, meaning that
⋂

k∈Z
Mk = 0 .

Attached naturally to a filtered algebra are the following two graded algebras:

A :=
⊕

k∈Z

Ak , GA :=
⊕

k∈Z

Ak/Ak−1 .

The algebra A is called the Rees algebra of A with respect to the filtration (3.1). It
can be identified with a subring of the ring of Laurent polynomials (in one variable
t) with coefficients in A. To be precise, we have

A ∼=
⊕

k∈Z

Akt
k →֒ A[t, t−1] ,(3.3)

where the grading on A[t, t−1] is defined by deg(t) = 1 and deg(a) = 0 for all
elements a ∈ A . The algebra GA is called the associated graded ring of A . Under
the identification (3.3) there is a natural isomorphism of graded algebras

GA ∼= A/〈t〉 ,(3.4)

where 〈t〉 denotes the two-sided ideal of A generated by the central element t .
Similarly, if M is a filtered A-module then we have the Rees module

M :=
⊕

k∈Z

Mk ∈ GrMod(A) ,(3.5)

and the associated graded module

GM :=
⊕

k∈Z

Mk/Mk−1 ∈ GrMod(GA) .

Identifying A with a ring of A-valued Laurent polynomials (see (3.3)), we have

M ∼=
⊕

k∈Z

Mkt
k →֒ M [t, t−1] , where M [t, t−1] := M ⊗A A[t, t−1] , and hence, in

view of (3.4), the following isomorphisms of graded GA-modules

GM ∼= M/M t ∼= M ⊗A A/〈t〉 ∼= M ⊗A GA .(3.6)

When A is commutative, the above constructions have a simple geometrical
meaning: X := proj(A) is a projective scheme containing the affine scheme Spec(A)

as an open subset, and the sheaf M := πM is an extension to X of the sheaf M̃
on Spec(A) corresponding to M . Thus, from an algebraic point of view, the pro-
jective compactification X is determined by the choice of filtration on A , and the
extension of M̃ to X is then determined by the choice of filtration on M . Further-
more, proj(GA) is the “hypersurface at infinity” (in our case it will be a line) in
X , and πGM is the restriction of M to this hypersurface. We shall use similar
language also in the noncommutative case.
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3.2. Weight Filtrations. We now introduce the class of filtrations on the Weyl
algebra A which we shall use in the present paper. Given a pair of positive integers
w := (w1, w2) , we set

Ak(w) := spanC{ x
αyβ |w1α+ w2β ≤ k } ⊂ A(3.7)

for each k ∈ Z . Then {A•(w)} is a positive locally finite filtration on A with
A0(w) = C . We call (3.7) the filtration of weight w . In particular, if w = (1, 1),
this is the standard Bernstein filtration on A .

To describe the Rees algebra associated with (3.7) we use the identification (3.3).
Setting X := x · tw1 , Y := y · tw2 and Z := 1 · t , we observe that A is isomorphic
to the graded algebra generated (over C) by 3 elements X,Y and Z (in degrees w1,
w2 and 1 respectively) subject to the defining relations

XZ − ZX = 0 ,

Y Z − ZY = 0 ,(3.8)

XY − Y X = Z |w| ,

where |w| := w1 +w2 . We call this algebra the homogenized Weyl algebra of weight
w and denote it by A(w) (or simply by A when there is no danger of confusion).

The following two propositions collect some basic properties of A(w).

Proposition 3.1. For every positive weight vector, the algebras GA(w) and A(w)
are Noetherian Artin-Schelter algebras of global dimensions 2 and 3 respectively.
The corresponding Gorenstein parameters are |w| and |w| + 1 .

Proof. We have

GA(w) ∼= A(w)/〈Z〉 ∼= S(w) ,(3.9)

where S(w) := C[x̄, ȳ] is the graded commutative polynomial ring in two variables
of weight w (the first isomorphism in (3.9) is just (3.4), while the second follows
immediately from the defining relations (3.8).) Hence GA(w) has the properties
stated in the lemma. Since GA(w) is Noetherian and has global dimension 2,
A(w) is also Noetherian and has global dimension 3 (see [Lev], Proposition 3.5
and [LO], Theorem II.8.2 respectively). That A is Artin-Schelter follows from
[Lev], Theorem 5.10 and Theorem 6.3. According to [ATV], Proposition 2.14, the
Gorenstein parameter l is equal to the degree of the inverse of the Poincaré series
PA(s) :=

∑

k≥0 dimC Ak(w) sk . Since A is isomorphic (as a graded vector space)

to the commutative polynomial ring in three variables of weights (w1, w2, 1) , we
have

PA(s) =
1

(1 − sw1)(1 − sw2)(1 − s)
,

and therefore the Gorenstein parameter is w1 + w2 + 1 .

Proposition 3.2. For every positive weight vector, A(w) is a schematic algebra
of schematic dimension 1 .

Proof. This is proved in [W] in the case w = (1, 1) ; more precisely, it is shown in
[W] that A can be covered by the two Ore sets consisting of the powers of X and
of Y . The proof in general is similar, but we shall work with a “finer” covering,
that is, with larger Ore sets. This covering will be needed in Section 6.
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For an element q(x, y) ∈ A we denote by q(X,Y, Z) ∈ A its homogenization
in A, that is, we set q(X,Y, Z) = Zdq(X/Zw1 , Y/Zw2) , where d = degw(q) . Now
define

U1 := { q1(X,Z) ∈ A | q1(x) ∈ C[x] \ {0} } ,

U2 := { q2(Y, Z) ∈ A | q2(y) ∈ C[y] \ {0} } .
(3.10)

We claim that U := {U1, U2} is a covering of A . Clearly, U1 and U2 are mul-
tiplicatively closed subsets of A ; and they satisfy the Ore condition (on both
sides) because they consist of (homogeneous) locally ad-nilpotent elements in A .
On the other hand, for any (nonzero) polynomials q1(x) and q2(y), the ideal
q1(x)A+q2(y)A has finite codimension in A and hence coincides with A . It follows
that 1 = q1(x)a + q2(y)b for some a, b ∈ A , and therefore Zr ∈ q1A + q2A for
some r > 0. If either q1 ∈ C or q2 ∈ C , the condition (2.7) holds trivially. So we
may assume that q1 and q2 both have positive degree, say degw(q1) = w1d1 > 0
and degw(q2) = w2d2 > 0 . Then q1(X,Z)−Xd1 ∈ ZA and q2(Y, Z)−Y d2 ∈ ZA ,
hence Xkd1 ∈ q1A+ZkA and Y kd2 ∈ q2A +ZkA for any k ≥ 1 . Taking k = r ,
we find that there is an m such that

A≥m ⊆ Xrd1A + Y rd2A + ZrA ⊆ q1A + q2A ,

which shows that the pair of Ore sets {U1, U2} covers the algebra A , as required.

Remark. Unlike global or Gel’fand-Kirillov dimension, the schematic dimension
distinguishes A from the commutative polynomial algebra C[X,Y, Z] .

3.3. Weighted Projective Planes. Given a weight vector w , we write

P
2
q(w) := projA(w) , P

1(w) := projGA(w)

for the (hypothetical) projective schemes associated to A and GA . The identifi-
cation GA ∼= A/〈Z〉 provides a natural epimorphism of graded algebras

i : A → GA .(3.11)

As usual, we have the functors i∗ and i∗ of restriction and extension of scalars
(if M is a (right graded) GA-module, then i∗M is the same vector space M

with A-module structure defined via (3.11), while if M is an A-module, i∗M is
the GA-module M⊗

A
GA ). These functors both preserve the classes of finitely

generated and of τorsion modules, and hence descend to functors i∗ and i∗ on the
categories of coherent (or quasicoherent) sheaves over P2

q and P1 . We shall call P1

the line at infinity in P2
q and sometimes denote it by l∞ . If M is a coherent sheaf

over P2
q , we call i∗M the restriction of M to the line at infinity.

For future use we record the simple

Lemma 3.3. For any M ∈ coh(P2
q) there is an exact sequence

M(−1) → M → i∗i
∗M → 0 ,

where the first map is induced by multiplication by Z ∈ A(w) .

Proof. If M is a graded A-module with M = πM , it follows at once from (3.6)
that the graded quotient M/MZ is canonically isomorphic to i∗i

∗M . Applying
the (exact) functor π to

M(−1)
·Z
−→ M → i∗i

∗M → 0

we get the lemma.
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Remark. Nearly all the results in this paper remain true if we replace A(w)
by the commutative graded algebra A0 := C[X,Y, Z] with weights (w1, w2, 1) .
However, except when w1 = w2 = 1 , we do not have a Serre equivalence between
the category of coherent sheaves (in the usual sense) over proj(A0) and the category
tails(A0) . Our results would refer to the latter category, and so (probably) would
not give much information about the usual “weighted projective spaces” studied
in (for example) [D], [Do] and [BR]. For a similar reason, our P2

q(w) are different
from the quantum weighted projective planes introduced recently in [Ste1].

4. The Linear Data Associated to an Ideal

Let M be a finitely generated torsion-free rank one right module over the Weyl
algebra A . We fix a (positive) filtration of weight w on A . We also fix, temporarily,
an embedding of M as an ideal in A ; then we have the induced filtration Mk =
M ∩ Ak on M . It is easy to see that, up to an overall shift, the filtration is
independent of the choice of embedding: our first task is to normalize this overall
shift. Since M ⊆ A , the corresponding Rees module M (see (3.5)) is a graded
ideal in A ≡ A(w) . Let M = πM be the associated sheaf over P2

q(w) .

Lemma 4.1. There is a unique a ∈ Z such that the restriction of M(a) to the
line at infinity in P2

q is trivial.

Proof. We have i∗M = GM (see (3.6)). The embedding of M in A induces
an embedding of GM in GA as a homogeneous ideal. Now, GA is just a
commutative polynomial algebra in two variables; hence if f is the greatest common
divisor of the elements of GM , then f−1GM is a (homogeneous) ideal of finite
codimension in GA . Denoting by a the degree of f in GA , we therefore have an
exact sequence of graded GA-modules

0 → GM(a) → GA → GA/GM(a) → 0(4.1)

with finite-dimensional quotient term. The quotient functor π annihilates finite-
dimensional modules, so applying π to (4.1), we get the desired isomorphism

i∗M(a) ∼= OP1 in coh()P 1 .

The uniqueness of a follows from the fact that OP1(k) ∼= OP1 in coh(P1) only if
k = 0 . Indeed, assuming the contrary, by (2.3) we have GA(k)≥N

∼= GA≥N for
some N , and therefore dimC GAn+k = dimC GAn for all n ≥ N . This implies
that the sequence of numbers (dimC GAn) is bounded, which is obviously not the
case.

Lemma 4.2. Let δ be the minimum filtration degree of elements of M . Then
δ ≥ a ; if M is not cyclic then δ > a .

Proof. As in the proof of the preceding Lemma, we identify GM with an ideal in
the polynomial ring GA ; then δ is the minimum degree of elements in GM , and
hence δ ≥ a . If δ = a , then GM is cyclic (generated by the greatest common
divisor f above), and hence M is also cyclic.

Proposition 4.3. The natural map M → H0(P2
q , M) in (2.6) is bijective.
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Proof. It is obvious that τM = 0 , so we have only to prove that the Ext term in
(2.6) is zero. Let N := A/M . We show first that

lim
−→

Ext1A(A/A≥n,M) ∼= τN .(4.2)

For brevity, set A<n := A/A≥n . Applying the functor HomA(A<n, —) to 0 →
M → A → N → 0 , we get the exact sequence

HomA(A<n,A) → HomA(A<n,N) → Ext1A(A<n,M) → Ext1A(A<n,A) .

The first term in this sequence is obviously zero; and the Gorenstein property (see
Definition 2.2) of A implies that the last term is also zero, because A<n has finite
length. Thus HomA(A<n,N) ∼= Ext1A(A<n,M) for all n . Passing to the limit
as n → ∞ , we get (4.2). Hence Proposition 4.3 follows if we show that τN = 0 .
Suppose that a ∈ Ak represents a τorsion element in N . This means that for
some n ≥ 0 we have aA≥n ⊂ M , and hence aAn ⊂Mn+k . Since 1 ∈ An , we find
that a ∈Mn+k∩Ak = Mk , and hence a represents zero in N . Thus τN = 0 .

We use Lemma 4.1 to fix the ambiguous shift in the induced filtration. If M is an
(embedded) ideal, then the uniqueness of the number a in Lemma 4.1 shows that
the filtration M◦

k := Mk+a on M is independent of the choice of embedding. We
shall call this filtration the normalized induced filtration on M . From Lemma 4.2,
we get

Lemma 4.4. Let M be an ideal of A with the normalized induced filtration, and
let d be the minimum filtration degree of elements of M . Then d ≥ 0 , and if M
is not cyclic, then d > 0 .

From now on, changing notation, M will always denote the extension of M to
P2

q(w) determined by the normalized induced filtration (so that M|l∞ is trivial).
We call M the canonical extension of M . The next Theorem gathers together the
information we need about the cohomology of M .

Theorem 4.5. Let M be the canonical extension of an ideal of A . Then

(i) The map H1(P2
q,M(k − 1)) → H1(P2

q ,M(k)) induced by multiplication by
Z is injective for k < 0 and surjective for k > −|w| .

(ii) We have

H0(P2
q ,M(k)) = 0 for k < 0 ,

H2(P2
q ,M(k)) = 0 for k ≥ −|w| .

(iii) Furthermore, if M is not cyclic, we have also H0(P2
q,M) = 0 , and

dimC H
1(P2

q ,M) = dimCH
1(P2

q ,M(−1)) − 1 .

Proof. The map of sheaves M(k − 1) → M(k) induced by multiplication by Z
is clearly injective (for any k ∈ Z). Using Lemma 3.3 and bearing in mind that
i∗M ∼= OP1 we get the short exact sequence

0 → M(k − 1) → M(k) → i∗OP1(k) → 0 .(4.3)

By Theorem 8.3 of [AZ], we have

Hi(P2
q , i∗OP1(k)) ∼= Hi(P1, OP1(k)) for all i ≥ 0 .
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On the other hand, by Theorem 2.3 and Proposition 3.1, we have

Hi(P1, OP1(k)) =











Sk when i = 0

(S−k−|w|)
∗ when i = 1

0 when i > 1

(4.4)

where Sk is the k-th graded component of the commutative polynomial algebra
S(w) = C[x̄, ȳ] of weight w . Therefore the first and last terms of the exact
sequence

H0(P2
q , i∗OP1(k)) → H1(P2

q ,M(k − 1)) → H1(P2
q,M(k)) → H1(P2

q, i∗OP1(k))

coming from (4.3) are isomorphic to Sk and (S−k−|w|)
∗ respectively. Since the

grading on S(w) is positive, part (i) of the Theorem follows.
The assertion about H0 in part (ii) is immediate in view of Proposition 4.3 and

Lemma 4.4. To prove the assertion about H2 we observe (again looking at the
long cohomology exact sequence of (4.3)) that the map

H2(P2
q ,M(k − 1)) → H2(P2

q,M(k))

is an isomorphism for k−1 ≥ −|w| . By the Vanishing Theorem 2.4(b), H2(P2
q,M(k))

is zero for k ≫ 0 , hence it is zero for all k ≥ −|w| .
It remains to prove part (iii) of the Theorem. The fact that H0(P2

q,M) = 0
again follows from Lemma 4.4 and Proposition 4.3. From (4.3) (with k = 0) we
get the exact sequence

0 = H0(P2
q,M) → C → H1(P2

q,M(−1)) → H1(P2
q,M) → 0 ,

whence the last statement in the Theorem.

Now, as in the Introduction, let V (w) := H1(P2
q , M(−1)) . It follows from Theo-

rem 4.5 that multiplication by Z defines isomorphisms

H1(P2
q , M(−w)) ∼= H1(P2

q , M(−w + 1)) ∼= . . . ∼= H1(P2
q, M(−2)) ∼= V (w) .

We identify these spaces, and let X and Y be the endomorphisms of V (w) induced
by (right) multiplication by X and Y . More precisely, if v ∈ V (w) , we define

X(v) := v · Z−w1X , Y(v) := v · Z−w2Y .

Let n := dimC V (w) . By Theorem 4.5, we have n = 0 if and only if M is cyclic.

Proposition 4.6. The pair (X,Y) defines a point in the space Cn .

Proof. The Proposition is trivial if n = 0 . In general, we calculate:

XY(v) · Z = v · Z−w2Y Z−w1XZ = v · Z−|w|+1Y X

(we used the facts that Z commutes with X and Y , and that Z−|w|+1 is still
well defined on V (w) ). Similarly, YX(v) · Z = v · Z−|w|+1XY . So

([X,Y] + I) v · Z = v · Z−|w|+1(Y X −XY + Z |w|) = 0 .

Thus the image of [X,Y]+I is contained in the kernel of ·Z : V (w) → H1(P2
q, M) .

By Theorem 4.5, this map is surjective with one-dimensional kernel. Therefore
[X,Y] + I has rank 1 , as required.
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5. Elementary Constructions

5.1. Distinguished Representatives. As usual, let M be a finitely generated
rank one torsion-free right A-module. We are going to construct two distinguished
realizations of M as fractional ideals of A (that is, submodules of the quotient field
Q of A ). First, according to [St], Lemma 4.2, we can choose an embedding of M
as an ideal which has nonzero intersection with C[x] ⊂ A . If an element of A (or,
later, of the larger algebra C(x)[y]) is written in the form a =

∑n
i=0 ai(x)y

i (with
an 6= 0 ), we call an(x) the leading coefficient of a . The leading coefficients of all
the elements of M form an ideal in C[x] ; let p(x) be the (monic) generator of this
ideal, and set Mx := p(x)−1M . By construction, the fractional ideal Mx has the
following properties:

1. Mx ⊂ C(x)[y] ⊂ Q and Mx ∩ C[x] 6= {0} ;
2. all leading coefficients of elements of Mx belong to C[x] ;
3. Mx contains an element with constant leading coefficient.

It is easy to see that these properties characterize Mx . More precisely, we have

Lemma 5.1. Let Mx and M ′
x be two fractional ideals of A , both isomorphic to

M , and satisfying (1)-(3) above. Let q be an element of Q such that M ′
x = qMx .

Then q is a constant (and hence Mx = M ′
x ).

We denote by ̺x : C(x)[y] → A the map that deletes the “negative part” of the
coefficients ai(x) . More precisely, if a(x) is rational function of x , let a = a++a− ,
where a+ is a polynomial and a− vanishes at infinity; then we define

̺x

(

∑

ai(x)y
i
)

:=
∑

ai(x)+ y
i .

We denote by rx the restriction of ̺x to Mx . Then rx is injective, and rx(Mx)
is a linear subspace of finite codimension in A . Let Vx := A/rx(Mx) . The map
̺x commutes with right multiplication by y (though not with right multiplication
by x); thus ·y induces an endomorphism of Vx . We denote it by Y .

Reversing the roles of x and y in the above construction, we obtain another
distinguished representative My ⊂ C(y)[x] ⊂ Q for our ideal M , and another
finite-dimensional vector space Vy := A/ry(My) , together with an endomorphism
X of Vy coming from right multiplication by x . Since Mx and My are both
isomorphic to M , we have My = κMx for some κ ∈ Q ; by Lemma 5.1, κ is
uniquely determined up to a constant factor. Note that the properties of Mx and
My imply

κ ∈ C(y)(x) and κ−1 ∈ C(x)(y) .(5.1)

Here C(x)(y) (for example) denotes the space of all elements of Q that have the
form

∑

fi(x) gi(y) for some rational functions fi(x) , gi(y) .
Next, we describe the linear isomorphism φ : Vx → Vy mentioned in the Intro-

duction. In the next section we shall see how this isomorphism arises naturally from
a calculation of Čech cohomology. Let Φ : rx(Mx) → ry(My) be the isomorphism
defined by

Φ(m) := ry
(

κ · r−1
x (m)

)

(the dot denotes multiplication in Q). We shall extend Φ to a linear isomorphism
(also denoted by Φ) from A to itself: φ will then be the induced map on the
quotient spaces. The extension of Φ to A is defined as follows. Note first that for
any a ∈ A there are polynomials g(y) such that a g(y) ∈ rx(Mx) (for example,



IDEAL CLASSES OF THE WEYL ALGEBRA 19

we can take g to be the characteristic polynomial of the map Y above). For each
a ∈ A , we choose such a polynomial g(y) , and set

Φ(a) := ̺y

(

κ · r−1
x [ a g(y) ] · g(y)−1

)

.(5.2)

Using the C[y]-linearity of the map ̺x , it is easy to check that Φ(a) is independent
of the choice of g ; in particular, if a ∈ rx(Mx) we can choose g = 1 , so Φ is indeed
an extension of the map that we started with. The reader may like to prove at this
point that Φ and φ are isomorphisms (with inverses defined in a similar way,
interchanging x and y). This will follow from the results of the next section, so
we omit the proof here.

5.2. An Example. For n ≥ 1 , let M = xn+1A+(xy+n)A . In this case the spaces
Vx and Vy have dimension n , and (with suitable choice of basis) the matrices X

and Y are

X =

















0 0 0 . . . 0
1 0 0 . . . 0

0 1 0
. . .

...
...

...
. . .

. . . 0
0 0 . . . 1 0

















, Y =

















0 1 − n 0 . . . 0
0 0 2 − n . . . 0

0 0 0
. . .

...
...

...
. . .

. . . −1
0 0 . . . 0 0

















.

Although very elementary, the calculation is not short enough to reproduce in full
here. We just indicate the main steps, leaving some details for the reader. First,
we have Mx = x−1M ; as a basis for Vx we can take the residue classes (modulo
rx(Mx)) of the elements 1, x, . . . , xn−1 . Since xky + (n − k)xk−1 ∈ rx(Mx) for
1 ≤ k ≤ n − 1 , and y ∈ rx(Mx) , it follows that the matrix Y is as above. The
calculation of X is a little harder; however, using formula (5.2), it is straightforward
to check that Φ(xk) = xk for 0 ≤ k ≤ n− 1 . So we can again choose the residue
classes of 1, x, . . . , xn−1 (now modulo ry(My)) as a basis for Vy , and the matrix
of φ is then the identity. Since xn ∈ ry(My) , it follows that the matrix X is as
above. In this example we have

κ = (xy)−ny (xy + 1) (xy + 2) . . . (xy + n− 1)x and κ−1 = 1 + nx−1y−1 .

5.3. The Associated Graded Ideals. Our last goal in this section is to establish
an important property of the element κ which we shall need later, namely, that
multiplication by κ preserves the w-filtration on A for every weight vector w =
(w1, w2) . Slightly more generally than in Section 3.2, we shall allow w1 and w2

to be any non-negative integers5 that are not both zero. We denote by vw the
valuation on A corresponding to w , that is, if a 6= 0 then vw(a) is the least
integer k such that a ∈ Ak(w) (and vw(0) := −∞ ). We extend vw to Q by
setting

vw(ab−1) = vw(a) − vw(b) ,

and let Qk(w) := { q ∈ Q | vw(q) ≤ k } . Then {Q•(w)} is a separated filtration
on Q extending the original filtration on A . Changing notation slightly from
Section 3.2, we denote the associated graded algebra by GwQ and write

σw : Q→ GwQ

5That is, we now allow one of wi to be zero. More generally still, we could work with non-
integer (real) “weights” as in [Di], [LM].
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for the symbol map : if vw(q) = k , then σw(q) is the class of q in Qk(w)/Qk−1(w) .
As usual, we identify GwA ≡ GA(w) with the polynomial algebra C[x̄, ȳ] , where
x̄ := σw(x) and ȳ := σw(y) ; then GwQ is identified with the subalgebra of
C(x̄, ȳ) spanned by quotients of homogeneous polynomials.

For short, we write σy and Gy instead of σ(0,1) and G(0,1) . Property (2)

of Mx = p(x)−1M says that GyMx ⊆ C[x̄, ȳ] (even though Mx 6⊂ A). More
precisely, if an(x) is the leading coefficient of a ∈ M then σy(a) = an(x̄)ȳn . It
follows that p(x̄) is the greatest common divisor of the elements of GyM so that
GyMx = p(x̄)−1GyM is an ideal of finite codimension6 in C[x̄, ȳ] . More generally,
we have

Proposition 5.2. Let w be any weight vector (as specified above). Then
(i) GwMx and GwMy are ideals of finite codimension in C[x̄, ȳ] ;
(ii) GwMx = GwMy in C[x̄, ȳ] ;
(iii) the symbol σw(κ) is constant.

Proof. An argument of Letzter and Makar-Limanov (see [LM], Lemma 2.1) shows
that GwMx is contained in C[x̄, ȳ] . Proposition 2.4′ of [LM] then shows that
it has finite codimension (and also that this codimension is independent of w ).
Interchanging the roles of x and y , we obtain the same result for GwMy .

Since Mx and My are both isomorphic to M , the ideals GwMx and GwMy

are isomorphic. An ideal class of C[x̄, ȳ] has a unique representative of finite
codimension, so (ii) follows from (i).

Since My = κMx , we have GwMy = σw(κ)GwMx (the symbol map is multi-
plicative). So (iii) follows from (ii).

Corollary 5.3. For any positive weight vector w , the filtration induced on Mx

(or My ) by the w-filtration on Q coincides with the normalized induced filtration
of Section 4.

Proof. This is a reformulation of Proposition 5.2(i) (cf. the proof of Lemma 4.1
above).

Remark. If we compare the formula My = κMx with Proposition 6.2 in [BW],
we see that κ can be identified with the formal integral operator K that plays a
basic role in the theory of integrable systems; more precisely, if W is the point of
Grad that corresponds to the ideal M then κ = Kb(W ) , where b is the bispectral

involution on Grad . We shall not make any use of this remark in the present paper;
however, it points the way to a more direct proof of Theorem 1.2.

6. The Comparison Theorem

As usual, let M be the canonical extension of a noncyclic idealM of A . Our aim
in this section is to calculate the groups H1(P2

q(w), M(k)) (for −|w| ≤ k ≤ −1)

using the Čech complex of the covering U introduced in Section 3.2: this will enable
us to identify these groups with the spaces Vx and Vy in Section 5. Although it

would, of course, be possible to calculate Ȟ1(U, M) directly from the complex
(2.9), this does not appear to yield the answer in the form we want. Instead, we
choose a large integer p (eventually we shall let p → ∞), and denote by Np the

6equal to the codimension of rx(Mx) in A .
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restriction of M to the p-th infinitesimal neighbourhood of the line at infinity in
P2

q ; that is, Np is the quotient term in the exact sequence

0 → M
·Zp

−→ M(p) → Np → 0 .(6.1)

In what follows we shall mostly omit the subscript p , writing N ≡ Np . We shall
assume that p is chosen so that

H1(P2
q, M(p+ k)) = 0 for all k ≥ −|w|(6.2)

(this is possible by the Vanishing Theorem 2.4(b)). From (6.1), we then get the
exact sequence

0 → H0(P2
q , M(p+ k)) → H0(P2

q, N (k)) → H1(P2
q , M(k)) → 0(6.3)

for any k in the range −|w| ≤ k ≤ −1 . We are going to calculate H0(P2
q, N (k))

via a Čech complex, and then obtain H1(P2
q , M(k)) as the quotient term in (6.3).

We first record the following fact.

Lemma 6.1. For any k ≥ −|w| , we have

dimC H
0(P2

q, N (k)) = dimC Ap+k − dimC Ak .

Proof. From (6.1) we easily find (using (6.2) and Theorem 4.5) that

H1(P2
q, N (k)) = H2(P2

q, N (k)) = 0 for all k ≥ −|w| ,

so dimC H
0(P2

q, N (k)) = χ(P2
q , N (k)) (where χ denotes the Euler characteristic).

From (6.1) again, we then get

dimC H
0(P2

q, N (k)) = χ(P2
q, M(p+ k)) − χ(P2

q, M(k)) .(6.4)

On the other hand, by (4.3) the Euler characteristics of the sheaves M(r) satisfy

χ(P2
q, M(r)) = χ(P2

q, M(r − 1)) + χ(P1, OP1(r)) ;

and by (4.4), χ(P1, OP1(r)) = dimC Sr = dimC Ar − dimC Ar−1 for all r > −|w| .
By Theorem 4.5, we have χ(P2

q, M(−|w|)) = −n , so by induction

χ(P2
q, M(r)) = dimC Ar − n for all r ≥ −|w| .(6.5)

Combining (6.4) and (6.5) yields the Lemma.

For a while now we shall work with the special representative Mx for the class
of M (see Section 5); to simplify the notation we drop the suffix x and denote
Mx simply by M . We have the (normalized) filtration on M induced by the
w-filtration on Q (see Corollary 5.3). As usual, let M =

⊕

k∈Z
Mk be the corre-

sponding homogenization of M , and let N denote the quotient term in the exact
sequence

0 → M
·Zp

−→ M(p) → N → 0 ,(6.6)

so that πN = N . Let U = (U1, U2) be the covering of A defined by (3.10). We
identify the localizations AU1 and AU2 with subalgebras of the homogenization
Q of the Weyl quotient field Q : specifically, we have

AU1 =
⊕

k∈Z

C(x)[y]k and AU2 =
⊕

k∈Z

C(y)[x]k

(here and below, the subscript k refers to the filtration induced from Q ). In a
similar way, the embedding of M in Q allows us to identify the localizations of
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M with subspaces of Q (the tensor products in Definition 2.8 then become mul-
tiplication in Q). First, the conditions M ∩ C[x] 6= {0} , M ⊂ C(x)[y] imply that
MU1 = AU1 . To calculate MU2 , we use the other distinguished representative
My = κM . For the corresponding homogenizations, we have My = κM . As
above, the localization of M y with respect to U2 is just AU2 ; and by Proposi-
tion 5.2(iii), multiplication by κ preserves the w-filtration on Q , that is κ ∈ Q0 .
We therefore have

MU1 =
⊕

k∈Z

C(x)[y]k and MU2 =
⊕

k∈Z

κ−1
C(y)[x]k .

Finally, because localization is an exact functor, we can calculate NU1 and NU2

by localizing the exact sequence (6.6). The result is

NU1 =
⊕

k∈Z

C(x)[y]p+k/C(x)[y]k , NU2 =
⊕

k∈Z

κ−1
C(y)[x]p+k/κ

−1
C(y)[x]k .

The repeated localizations NUiUj
similarly get identified with certain (easily spec-

ified) subspaces of
⊕

k∈Z
Qp+k/Qk . In what follows we shall denote elements

of degree k in NU1 and NU2 by n̄1 and n̄2 , where it is understood that
n1 ∈ C(x)[y]p+k , n2 ∈ κ−1C(y)[x]p+k , and that the bars denote residue classes
modulo elements in Qk .

Proposition 6.2. With the identifications explained above, Ȟ0(U,N (k)) is the
subspace of (NU1)k ⊕ (NU2)k consisting of all pairs (n̄1, n̄2) such that n1 − n2 ∈
Qk . Furthermore, the map Mp+k

∼= Ȟ0(U,M(p+k)) → Ȟ0(U,N (k)) coming from
(6.1) sends m to (m̄, m̄) .

Proof. The first statement is obvious, because the coboundary map

d 0 : NU1 ⊕ NU2 → NU1U1 ⊕ NU1U2 ⊕ NU2U1 ⊕ NU2U2

takes (n̄1, n̄2) to (0, n̄1−n̄2, n̄2−n̄1, 0) . The second statement follows from Propo-
sition 2.7.

Now, for each k ∈ Z , define a map

γk : Ȟ0(U,N (k)) → Ap+k/Ak(6.7)

by setting γk(n̄1, n̄2) := ̺x(n1) , where ̺x : C(x)[y] → A is as in Section 5.

Proposition 6.3. The map γk is an isomorphism for all k ≥ −|w| .

Proof. By Lemma 6.1, the two spaces in (6.7) have the same (finite) dimension
if k ≥ −|w| , so it is enough to prove that γk is injective if k ≥ −|w| . In
fact, γk is injective for all k ∈ Z . To see that, let (n̄1, n̄2) ∈ Ȟ0(U,N (k)) and
suppose γk(n̄1, n̄2) = 0 ; we have to show that n̄1 = n̄2 = 0 . Equivalently, by
Proposition 6.2, we are given n1 ∈ C(x)[y]p+k and n2 ∈ κ−1C(y)[x]p+k such that
n1 − n2 ∈ Qk and ̺x(n1) ∈ Qk ; we have to show that n1 and n2 are in Qk .
Clearly, it is enough to show that n2 ∈ Qk . We extend ̺x to a map from C(x)(y)
to C[x](y) = C(y)[x] by setting (as in Section 5)

̺x

(

∑

fi(x)gi(y)
)

:=
∑

fi(x)+ gi(y) .

It is easy to see that ̺x is well defined and respects the w-filtration for any w .
Note that κ−1C(y)[x] ⊂ C(x)(y) by (5.1), so n2 ∈ C(x)(y) . We have n1−n2 ∈ Qk ,
hence ̺x(n1)−̺x(n2) ∈ Qk ; since we are given ̺x(n1) ∈ Qk , we get ̺x(n2) ∈ Qk .
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But we claim that if n ∈ κ−1C(y)[x] then vw(n) = vw(̺x(n)) , hence n2 ∈ Qk ,
as required. To prove the last claim, write n = κ−1q with q ∈ C(y)[x] . By
Proposition 5.2(iii), we may normalize κ so that σw(κ) = 1 . We then have
n = q + q′ , where vw(q′) < vw(q) ; hence vw(n) = vw(q) . Since q ∈ C(y)[x] ⇒
̺x(q) = q , we have ̺x(n) = q + ̺x(q′) , and vw(̺x(q′)) ≤ vw(q′) < vw(q) . Hence
vw(̺x(n)) = vw(q) = vw(n) , as claimed above.

Combining the maps γk for all k ∈ Z , we now get an (injective) map

γ : Ȟ0(U,Np) →
⊕

k∈Z

Ap+k/Ak .(6.8)

The C[y]-linearity of the map ̺x implies that γ is a homomorphism of graded
C[Y, Z]-modules, where on the right Y acts as right multiplication by y and Z
acts by embedding successive filtration components.

We now focus our attention on the degrees k in the range −|w| ≤ k ≤ −1 . In
this case Ak = 0 , so γk is simply an isomorphism Ȟ0(U,N (k)) → Ap+k . Looking
back at the exact sequence (6.3) and using the last statement in Proposition 6.2,
we see that γk induces isomorphisms

H1(P2
q, M(k))

∼
−→ Ap+k/rx(Mp+k) for − |w| ≤ k ≤ −1(6.9)

(recall that rx denotes the restriction of ̺x to M). We can now let p→ ∞ . It is
easy to check that the map Ȟ0(U,Np) → Ȟ0(U,Np+1) induced by multiplication
by Z is compatible with embedding of components Ap+k/Ak →֒ Ap+k+1/Ak on
the right of (6.8). It follows that the isomorphisms (6.9) are compatible with the
embeddings Ap+k/rx(Mp+k) →֒ Ap+k+1/rx(Mp+k+1) ; hence, letting p → ∞ in
(6.9), we get isomorphisms

αk : H1(P2
q, M(k)) → Vx , −|w| ≤ k ≤ −1 ,(6.10)

where (as in Section 5) Vx := A/rx(M) . Further, the C[Y, Z]-linearity of γ implies
that the isomorphisms αk take multiplication by Y and Z (when defined) on the
left of (6.10) to (right) multiplication by y and to the identity map (respectively)
on the right. It follows at once that the isomorphism

αx := α−1 : H1(P2
q, M(−1)) = V (w) → Vx

takes the map Y(w) of Section 4 to the map Y of Section 5, as claimed in Theo-
rem 1.5.

To obtain the other isomorphism αy in Theorem 1.5, we have only to repeat
all the above, starting from the representative My rather than Mx . We sketch a
few details to fix the notation for the last calculation below. To avoid confusion,
we continue to denote Mx by M , so that My = κM . Further, we continue to

identify Ȟ0(U,N (k)) with the space described in Proposition 6.2, so that in the
new argument we work with the realization κ Ȟ0(U, N (k)) . The crucial map

γ′k : κ Ȟ0(U, N (k)) → Ap+k/Ak

is then defined by γ′k(κ n̄1, κ n̄2) := ̺y(κn2) . Passing to a quotient and letting
p→ ∞ , we get the required isomorphism αy : V (w) → Vy exactly as before.

To complete the proof of Theorem 1.5, it remains to show that the isomorphism
αy α

−1
x : Vx → Vy coincides with the map φ in Section 5. To do that, we return
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temporarily to the case of finite p ≫ 0 and (for −|w| ≤ k ≤ −1) let Φk be the
map that makes the diagram

Mp+k −−−−→ Ȟ0(U,N (k))
γk−−−−→ Ap+k





y





y





y
Φk

κMp+k −−−−→ κ Ȟ0(U,N (k))
γ′

k−−−−→ Ap+k

commutative. In this diagram the first two vertical arrows are just multiplications
by κ ; the horizontal maps Mp+k → Ap+k and κMp+k → Ap+k are rx and
ry , respectively. Let a ∈ Ap+k , and (as in Section 5) choose a polynomial g(y)
so that a g(y) ∈ rx(M) , say a g(y) = rx(m) : so here m ∈ Mp+k+N , where

N is the (weighted) degree of g . Let γ−1
k (a) = (n̄1 , n̄2) ; then γ−1

k (a g(y)) =

(n1 g(y) , n2 g(y)) . On the other hand (by the last assertion in Proposition 6.2)
γ−1

k (a g(y)) = (m̄ , m̄) , hence n2 g(y) − m ∈ Qk+N . Multiplying on the left by
κ ∈ Q0 and on the right by g(y)−1 ∈ Q−N , we get

κn2 − κmg(y)−1 ∈ Qk .(6.11)

Note that both terms in (6.11) belong to C(y)[x] . Now we can calculate:

Φk(a) = γ′k(κ γ−1
k (a))

= γ′k (κ n̄1 , κ n̄2)

= ̺y(κn2)

= ̺y

(

κmg(y)−1
)

( by (6.11) )

= ̺y

(

κ r−1
x [ a g(y) ] g(y)−1

)

.

Letting p→ ∞ we get the isomorphism Φ : A→ A already defined in Section 5 (cf.
formula (5.2)). It follows at once that αy α

−1
x = φ , because these are both derived

from Φ by passing to the quotients. That completes the proof of Theorem 1.5; as
explained in the Introduction, the Comparison Theorem 1.4 follows immediately.

7. Proof of Theorem 1.3 and Theorem 1.2

The natural action of G = Aut(A) on R can be defined in two (equivalent)
ways. First, if M ⊆ A is an embedded ideal, we can make σ ∈ G act on M
pointwise: σ(M) = { σ(m) | m ∈ M } . This leads to a well defined (left) action
of G on the space of isomorphism classes R , and is the definition used in [BW].
Alternatively, we have simply σ(M) ∼= ρ∗M , where ρ = σ−1 is the automorphism
inverse to σ .

Now suppose that σ preserves the w-filtration on A for some weight vector w .
Then ρ extends to a graded automorphism ρ of A = A(w) , and the functor
ρ∗ : grmod(A) → grmod(A) descends to a functor ρ∗ on the quotient category
coh(P2

q(w)) . In general, there will be no w-filtration preserved by σ: however, that

is the case if σ is one of the generators of G in (1.4). Slightly more generally7, let
σ be an automorphism of A of the form

σ(x) = x , σ(y) = y + f(x) ,

7We need this generality to deal with the case when r or s in (1.4) is 0.
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where f(x) =
∑r

0 aix
i is a polynomial in x of degree r. Let w = (1, N) , where

N ≥ r . Then σ preserves the w-filtration, and the extension of ρ = σ−1 to A is
defined on generators by the formulas

ρ(X) = X , ρ(Y ) = Y −
r

∑

i=0

aiX
iZN−i , ρ(Z) = Z .

If M is an ideal of A and M is its canonical extension, then it is easy to see that
the canonical extension of σ(M) = ρ∗M is ρ∗M . Now, for any F ∈ coh(P2

q(w))
there are natural isomorphisms of graded A-modules

Hi(P2
q , ρ∗F) ∼= ρ∗H

i(P2
q, F)

(cf. [AZ], p. 283). Thus we may identify H1(P2
q, ρ∗M) with H1(P2

q, M) as a

graded vector space, but multiplication by X, Y, Z on H1(P2
q, M) is then replaced

by multiplication by ρ(X), ρ(Y ), ρ(Z) . It follows at once that if (X, Y) is the
pair of matrices associated to M by the construction of Section 4, then the pair
associated to σ(M) is (X, Y− f(X)) . A similar argument (interchanging the roles
of x and y) shows that if σ is an automorphism of the form

σ(x) = x+ g(y) , σ(y) = y ,

then σ sends (X, Y) to (X−g(Y), Y) . These are exactly the formulas that defined
the action of G on C in [BW], so the proof of Theorem 1.3 is complete.

Remark. This action of G on C perhaps deserves comment, since it is not im-
mediately obvious that it is well defined. Indeed, if σ ∈ G we are proposing to
define σ(X, Y) by writing σ as a product of generators Ψr,λ and Φs,µ ; since the
matrices (X, Y) do not satisfy the defining relation of the algebra A , it is not a
priori clear that the result is independent of the choice of the representation for σ .
The best way out of this difficulty is to appeal to a theorem of Makar-Limanov [M]
which implies that the relations satisfied by Ψr,λ and Φs,µ in G are the same as
the relations satisfied by the corresponding automorphisms of the free associative
algebra C〈x, y〉 . In [BW] this problem did not arise, because we knew in advance
that the map ω : C → R was bijective, so we had only to transfer to C the natural
action of G on R .

. As explained in the Introduction, to prove Theorem 1.2 we have now only to
check that the maps θ and ω−1 agree for one point in each G-orbit ω(Cn) ⊂ R .
A suitable point is (the class of) the ideal I = yn+1A + (yx − n)A ; this is the
formal Fourier transform of the ideal M in Section 5.2. As in [BW], we identify
A with the ring C[z, ∂/∂z] of differential operators with polynomial coefficients by
x ↔ ∂/∂z , y ↔ z . Then I ∩ C[z] 6= {0} , so we can calculate that the Cannings-
Holland map sends I to the point

W = z−1
{

f ∈ C[z] | f (n)(0) = 0
}

∈ Grad .

The (reduced stationary) Baker function of this point is

ψ̃W (x, z) = 1 − nx−1z−1 .

If Xn , Yn are the two matrices found in the example of Section 5.2, then we have

ψ̃W (x, z) = det
{

I − (xI − Yn)−1(zI + Xn)−1
}

,
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which means that the map ω−1 sends I to the pair of matrices (Yn, −Xn) . The
Fourier transform on R corresponds to the map (X, Y) 7→ (−Y, X) on matrices,
hence indeed ω−1 sends the ideal M to (Xn, Yn) = θ(M) .

8. The Beilinson Equivalence

For each i ∈ {0, 1, . . . , |w|} , we set Ei := OP2
q(w)(i) , and E :=

⊕|w|
i=0 Ei . Let

B := Hom(E , E) =

|w|
⊕

i,j=0

Hom(Ei, Ej)

be the algebra of endomorphisms of E . We consider the (left exact) functor
Hom(E ,—) , which takes (quasi)coherent sheaves over P2

q(w) to right B-modules.

Using the fact that P2
q(w) has finite cohomological dimension and the Finiteness

Theorem 2.4(a), we see that Hom(E , — ) extends to a functor on bounded derived
categories

RHom(E , — ) : Db(cohP
2
q) → Db(modB) ,(8.1)

where mod(B) denotes the category of finite-dimensional right B-modules. The
following statement is the analogue for P

2
q(w) of a theorem of Beilinson (see [B])

for the usual projective spaces Pn .

Theorem 8.1. The functor (8.1) is an equivalence of categories.

Proof. According to [Bo], Theorem 6.2, it is enough to check that the sequence of
sheaves (E0, E1, . . . , E|w|) (regarded as 0-complexes in Db(cohP2

q)) is a complete
strongly exceptional collection. Here “complete” means that these objects generate
Db(cohP2

q) as a triangulated category, while “strongly exceptional” means that

(a) Hom(Ei, Ej) = 0 if i > j ,

(b) Extk(Ei, Ej) = 0 for all i, j ∈ {0, 1, . . . , |w|} and k 6= 0 .

Property (a) is trivial, since

Hom(Ei, Ej) ∼= Hom(OP2
q
(i),OP2

q
(j)) ∼= H0(P2

q(w), OP2
q
(j − i)) ∼= Aj−i(w) .

Similarly, Extk(Ei, Ej) ∼= Hk(P2
q(w), OP2

q
(j − i)) . By Theorem 2.3 and Proposi-

tion 3.1 we have H1(P2
q, OP2

q
(r)) = 0 and H2(P2

q, OP2
q
(r)) ∼= (Ar−|w|−1)

∗ for all

r . If i, j ∈ {0, 1, . . . , |w|} then j− i ≤ |w| , hence (j − i)− |w| − 1 < 0 . Property
(b) above follows.

It remains to show that the collection (E0, E1, . . . , E|w|) is complete. Denote by

E the smallest strictly full triangulated subcategory of Db(coh P2
q) containing the

objects OP2
q
,OP2

q
(1), . . . ,OP2

q
(|w|) . We must show that E = Db(coh P2

q) . Since

any derived category is generated by its abelian core, it suffices to prove that the
0-complexes ( · · · → 0 → M → 0 → · · · ) are in E for all M ∈ coh(P2

q) . We
know that A has finite global dimension, so every M ∈ grmod(A) has a finite
projective resolution. Moreover, every graded projective A-module is a finite direct
sum of shifts of A (see [CE], Theorem 6.1). Therefore every M ∈ coh(P2

q) has
a finite resolution by finite direct sums of sheaves OP2

q
(m) . Such a resolution

gives a complex isomorphic to M in the derived category, and hence (see [GM],
Chapter III, § 5, Exercise 4(b)), we need only to show that OP2

q
(m) belongs to E

for any m ∈ Z .
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X0 X1 Xw2

Y0 Y1 Yw1

Z0 Z1 Zw1
Zw2

Z|w|-1

Figure 1.

According to [Ste] (combine Proposition 2.5(ii) and Corollary 2.6(ii)), the trivial
A-module A/A≥1

∼= C has a graded resolution of the form

0 → A(−|w| − 1) → A(−w2 − 1) ⊕ A(−w1 − 1) ⊕ A(−|w|) →(8.2)

→ A(−w1) ⊕ A(−w2) ⊕ A(−1) → A → C → 0 .

By shifting degrees in (8.2) and passing to the quotient category we get (for any
integer m) a Koszul-type exact sequence in coh(P2

q) :

0 → O(m) → O(m+ w1) ⊕O(m+ w2) ⊕O(m+ 1) →

→ O(m+ w2 + 1) ⊕O(m+ w1 + 1) ⊕O(m+ |w|) → O(m+ |w| + 1) → 0 .

Letting m = 0 above, we observe that O(|w|+1) is quasi-isomorphic to a complex
each term of which is in E ; therefore, O(|w| + 1) ∈ E . Similarly, for m = −1, it
follows that O(−1) ∈ E . Arguing in this way by induction (going both in negative
and positive directions), we conclude that O(m) ∈ E for all m ∈ Z . This finishes
the proof of the theorem.

We can now explain the significance of the vanishing conditions (1.2) (and their
generalization in Theorem 4.5). Given a coherent sheaf M over P

2
q , we may

regard it as a 0-complex in Db(cohP2
q) . By definition, the functor RHom(E , — )

then maps M to a complex of B-modules whose cohomology in degree −k is

Extk(E , M) ∼=

|w|
⊕

i=0

Extk(OP2
q
(i), M) ∼=

|w|
⊕

i=0

Hk(P2
q , M(−i)) .

In our case Theorem 4.5 tells us that this cohomology vanishes for all k 6= 1 . A
complex with cohomology only in one degree is isomorphic (in the derived category)
to its cohomology; thus, essentially, the Beilinson equivalence assigns to our sheaf

M the single B-module
⊕|w|

i=0H
1(P2

q, M(−i)) .
To make contact with the language of quivers used in the Introduction, we have

only to note that the algebra B is isomorphic to the path algebra of the quiver8

shown in Fig. 1, with the relations

8In the case w = (1, 1) , this is just the quiver indicated in (1.3).
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Zi+w1 Xi −Xi+1 Zi = 0 , i = 0, 1, . . . , w2 − 1 ;

Zj+w2 Yj − Yj+1 Zj = 0 , j = 0, 1, . . . , w1 − 1 ;

Xw2 Y0 − Yw1 X0 = Z|w|−1 Z|w|−2 . . . Z1Z0 .

(8.3)

That means that a (left) B-module can be identified with a representation of this
quiver with relations. Indeed, let ei denote the identity map in Hom(Ei, Ei) ⊂ B :
these are mutually orthogonal idempotents in B , and e0 + e1 + . . . + e|w| = 1B .
Hence any B-module V decomposes: V =

⊕

i Vi , where Vi := eiV . Further, each
element of Hom(Ei, Ej) ⊂ B maps Vi to Vj . As we have seen above, Hom(Ei, Ej)
is naturally isomorphic to Aj−i(w) ; hence the generators X, Y, and Z of A

determine maps Xα , Yα and Zα as indicated in Fig. 1 (the vertices in this diagram
represent the spaces Vi). The relations (8.3) follow from the defining relations (3.8)
of the algebra A(w) . In this way, each B-module determines a representation of
the above quiver with relations. The construction of a B-module from a quiver
representation is equally straightforward.

9. Le Bruyn’s Moduli Spaces

As we mentioned in the Introduction, our construction differs from that in Le
Bruyn’s paper [L] only in the different choice of extension of an A-module M
to a sheaf over P2

q . In this section we clarify the relationship between the two
constructions. We confine ourselves to the (basic) case w = (1, 1) .

As usual, let M be an ideal of A , with the normalized induced filtration, and let
d be the minimum filtration degree of elements of M . We recall (see Lemma 4.4)
that d ≥ 1 (unless M is cyclic: this case has to be excluded from some of the state-
ments below). It follows from Theorem 4.5 that the sheaf F = M(d− 1) satisfies
the vanishing conditions (1.2), so that M(d− 1) (and hence M) is determined by
the quiver representation

H1(P2
q ,M(d− 3))

−→
−→
−→

H1(P2
q,M(d− 2))

−→
−→
−→

H1(P2
q,M(d− 1)) .(9.1)

Le Bruyn uses a slightly more subtle fact (see [Ba], Corollary 7.2): because the
sheaf F = M(d− 2) also satisfies (1.2), M is determined by the left hand part

H1(P2
q,M(d− 3))

−→
−→
−→

H1(P2
q,M(d− 2))

of (9.1). For each pair of non-negative integers (r, s) , let M̃(r, s) be the space of
isomorphism classes of quintuples (V, W ; X1, X2, X3) , where V and W are vector
spaces of dimensions r and s (respectively) and Xi are linear maps from V to W .

Thus each ideal M of A determines (and is determined by) a point of M̃(r, s) ,
where r = dimC H

1(P2
q,M(d− 3)) and s = dimC H

1(P2
q ,M(d− 2)) . Denoting by

M(r, s) the subset of points of M̃(r, s) that arise in this way, we obtain the main
result of [L]: the space of ideals R decomposes as the disjoint union of the “moduli
spaces” M(r, s) (r, s ≥ 0).

The relationship of this to our decomposition of R becomes clear if we calculate
the dimensions r and s in terms of d and our invariant n . Because of (1.2), −r and
−s are equal to the Euler characteristics χ(P2

q, M(d − 3)) and χ(P2
q, M(d− 2))
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respectively. From (6.5) we get

χ(P2
q, M(k)) =

1

2
(k + 1)(k + 2) − n for k ≥ −2

(in fact, this formula is true for all k ∈ Z). In particular, we have

r = n−
1

2
(d− 2)(d− 1) , s = n−

1

2
d(d − 1) .(9.2)

From this we notice immediately that the space M(r, s) is empty if r < s , while
in general each point of M(r, s) determines an ideal M for which our parameters
are given by

n =
1

2

[

(r − s)2 + r + s
]

, d = r − s+ 1 .(9.3)

The map θ then gives us a point of Cn . We thus have

Proposition 9.1. Let Cn(d) be the subspace of Cn corresponding to ideals of min-
imum filtration degree d . Then the construction explained above defines a bijection
M(r, s) → Cn(d) , where the numbers (r, s) and (n, d) are related by (9.2) and (9.3).

The commutative analogue of this decomposition of Cn (into the subspaces
Cn(d) ) forms part of the much studied9 Brill-Noether theory : in that case Cn

is replaced by the point Hilbert scheme Hilbn(A2) and Cn(d) by the subvariety
Hilbn(d) (say) of n-tuples of points of A2 that lie on a curve of degree d , but not
on one of degree d − 1 . The detailed structure of this stratification of Hilbn(A2)
seems quite complicated (see, for example, [BH], [R]). However, using the fact that
there is a curve of degree d through any d(d+3)/2 points in the plane, it is easy to
see that (for n > 0) Hilbn(d) is non-empty if and only if we have 1 ≤ d ≤ D , where
D is the least integer such that n ≤ D(D + 3)/2 . Furthermore, the dimension of
Hilbn(d) is then given by

dimC Hilbn(D) = 2n , dimC Hilbn(d) = n+
1

2
d(d+ 3) if d < D .

We expect that the situation is the same in the noncommutative case. It might be
interesting to study this decomposition of Cn in more detail to see to what extent
it is simply a deformation of what we have in the commutative case.

10. Ideals and Bundles

In the case w = (1, 1) , the authors of [KKO] establish a bijection between C

and the space L of all line bundles (suitably defined) over P2
q that are trivial on the

line at infinity. This bijection is constructed using monads, following the original
approach of Barth to classifying bundles over projective spaces (see [Bar], [N]). Here
we shall check that the result of [KKO] is essentially equivalent to the bijectivity
of our map θ : R → C . Most of what follows is valid for any positive weight w .
The key step is the following lemma, which may be of independent interest.

Lemma 10.1. Let M be a finitely generated rank one torsion-free A-module, and
let {M•} be any filtration of M by finite-dimensional subspaces Mk . Suppose the
associated graded module GM is essentially torsion-free (meaning that GM≥N

is torsion-free for some N ). Then for any embedding of M in A there is an integer
k0 such that Mk = M ∩Ak−k0 for all k ≥ N . In other words, the given filtration
on M essentially coincides with an induced filtration.

9We thank A. Iarrobino for information on this subject.
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Proof. Let u denote the valuation on M corresponding to the given filtration, that
is, if m ∈M then u(m) is the smallest integer k such that m ∈Mk . Let v be the
valuation on A corresponding to the ring filtration we are using. Then

u(ma) ≤ u(m) + v(a) for all m ∈M and a ∈ A .(10.1)

The assumption on GM is equivalent to

u(ma) = u(m) + v(a) if u(m) ≥ N .(10.2)

Fix an embedding of M in A . Then M ⊗A Q = Q , hence every element q of the
Weyl quotient field Q can be written in the form q = ma−1 with m ∈ M and
a ∈ A . Moreover, we can choose m so that u(m) ≥ N . Indeed, for any b ∈ A we
have ma−1 = mb(ab)−1 , and we cannot have u(mb) < N for all b because MN is
finite-dimensional.

Now define a function F : Q → Z as follows: if q = ma−1 as above with
u(m) ≥ N , let F (q) := u(m) − v(a) . To show that F is well defined, suppose that
ma−1 = nb−1 are two such expressions for q. Since A is an Ore domain, we have
b−1a = pr−1 for some p, r ∈ A . So mr = np and ar = bp . Using (10.2) and the
similar fact for the filtration on A , we get

u(m) + v(r) = u(n) + v(p) and v(a) + v(r) = v(b) + v(p) .

Hence u(m) − v(a) = u(n) − v(b) , as desired.
Now, if u(m) ≥ N then F (1) = F (mm−1) = u(m) − v(m) . Thus, setting

k0 := F (1) , we have

v(m) = u(m) − k0 if u(m) ≥ N .(10.3)

Also, for any element m ∈ M , if we choose a ∈ A so that u(ma) ≥ N , we have
(using (10.1)) v(ma) = v(m) + v(a) = u(ma) − k0 ≤ u(m) + v(a) − k0 , so

v(m) ≤ u(m) − k0 for all m ∈M .(10.4)

Let {M ′
•} denote the induced filtration on M . By (10.4), we have

m ∈Mk ⇔ u(m) ≤ k ⇒ v(m) ≤ k − k0 ⇔ m ∈M ′
k−k0

,

that is,

Mk ⊆M ′
k−k0

for all k .(10.5)

Similarly, by (10.3), if k ≥ N , we have

m 6∈Mk ⇔ u(m) > k ⇒ u(m) ≥ N ⇒

⇒ v(m) = u(m) − k0 ⇒ v(m) > k − k0 ⇔ m 6∈M ′
k−k0

;

equivalently, m ∈M ′
k−k0

⇒ m ∈Mk , and hence

M ′
k−k0

⊆Mk for all k ≥ N .(10.6)

The lemma now follows at once from (10.5) and (10.6).

Lemma 10.2. Let M be an ideal of A , and let M be its canonical extension to
P2

q . Then M is a bundle in the sense of [KKO] (Definition 5.4).
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Proof. According to [KKO] (see Section 5.3), we have to show that

Exti(M,O(k)) = 0 for k ≫ 0 and i > 0 .

By Serre Duality (see Theorem 2.4(c)), it is equivalent to show that H0(P2
q , M(k))

and H1(P2
q , M(k)) vanish for k ≪ 0 . The vanishing of H0 is part of Theo-

rem 4.5(ii). The statement about H1 follows from Theorem 4.5 (i) by a useful
argument which would not be available in the commutative case. Because the
spaces H1(P2

q , M(k)) are finite-dimensional, Theorem 4.5 (i) implies that the

maps H1(P2
q , M(k − 1)) → H1(P2

q , M(k)) induced by multiplication by Z are
isomorphisms for k ≪ 0 . If we use these isomorphisms to identify the spaces
H1(P2

q , M(k)) for k ≪ 0 , the action of the generators X and Y gives us a finite-
dimensional representation of the Weyl algebra, which is impossible unless the
representation space is zero.

Proposition 10.3. Let µ : R → L be the map that sends an ideal class to its
canonical extension. Then µ is bijective.

Proof. The inverse map ν : L → R is constructed as follows. Let M be a line
bundle over P2

q , trivial over l∞ , and let M = ⊕Mk be a graded A-module with
πM = M . By (the proof of) Lemma 6.1 of [KKO], M can be embedded in a
direct sum of sheaves O(k) ; hence the A-module M is essentially torsion-free.

We set M := lim
−→

Mk , where the direct limit is taken over the maps ·Z : Mk−1 →

Mk . Then M is a rank one torsion-free A-module, filtered by (the images of) the
components Mk . Forgetting this filtration, we obtain a map ν : L → R . Since
M is trivial over l∞ , we have GM≥k

∼= GA≥k for k ≫ 0 , and therefore the
filtration on M coincides (in sufficiently high degrees) with the normalized induced
filtration (see Lemma 10.1). It follows easily that ν = µ−1 .

We omit the proof that the bijection θ ν : L → C coincides10 with the map
constructed in [KKO]. Although we do not know a reference for this fact, it is
very unsurprising, since Beilinson’s equivalence is in essence a generalization of the
monad construction (cf. [B]).

Appendix A. Appendix by Michel Van den Bergh

In this appendix we give alternative proofs of Theorems 1.3 and 1.4. Our proof of
Theorem 1.4 does not rely on Čech cohomology. Furthermore our proof of Theorem
1.3 does not rely on the properties of weighted projective spaces with w 6= (1, 1).
So it is in fact independent of Theorem 1.4!

After the authors of this paper had proposed me to write this appendix they
succeeded in simplifying some of my original arguments and they have gracefully
allowed me to consult some of their private notes which contained similar ideas.
These contributions have allowed me to streamline the presentation below.

The main idea behind the new proofs is that while the map (a priori dependent
on w) which associates linear data to ideals seems hard to understand, the inverse
of that map is given by a simple formula (see (A.5) below) whose properties are
transparent.

We start with the proof of Theorem 1.4. First we introduce some notational
conventions. If Q is a quiver with relations then we will identify Q with a C-linear

10Actually, there is a difference of sign.
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additive category whose objects are the finite direct sums of vertices of Q. This
has the effect that we write paths from right to left. Under this formalism the path
algebra CQ of Q is given by the endomorphism ring of the sum of the vertices.
Note that C(Qopp) = (CQ)opp. A morphism of quivers is a functor between the
associated categories. Such a morphism induces a ring homomorphism between the
associated path algebras.

If Q is a quiver with relations then Mod(Q) is the category of C-linear contravari-
ant functors on Q with values in C-vector spaces. By Yoneda’s lemma we obtain
a full faithful functor Q→ Mod(Q) whose image consists of finitely generated pro-
jectives. Invoking Morita theory or directly one sees that Mod(Q) is equivalent to
Mod(kQ), the category of right kQ-modules.

We now use the notations from Section 8. We denote the quiver (with relations)
given in Figure 1 by ∆. If we view ∆ as a C-linear additive category then it is
equivalent to the full subcategory of cohP2

q whose objects are finite direct sums of
the OP2

q
(i)i=0,...|w| in such a way that the i’th vertex from the left (counting from

0) corresponds to OP2
q
(i). It follows that C∆ = End(⊕

|w|
i=0OP2

q
(i)) = End(E) = B.

As noted in Section 8, the functor RHomP2
w
(E ,−) defines an equivalence between

the triangulated categories Db
f (coh(P2

q)) and Db(mod(B)). The inverse functor is

given by −
L

⊗BE . It is clear that this equivalence restricts to an equivalence between
the following two subcategories

X1 = {M ∈ coh(P2
q) | ExtiP2

q
(E ,M) = 0 for i 6= 1}

and

Y1 = {M ∈ mod(B) | TorB
i (M, E) = 0 for i 6= 1}

The inverse equivalences between these categories are given by Ext1P2
q
(E ,−) and

TorB
1 (−, E).

As before we denote by P1 the line at infinity in P2
q. Note that P1 is a weighted

projective line in the sense of [GL]. The inclusion P1 → P2
q is denoted by i.

Let us denote by R the full subcategory of coh(P2
q) whose objects have the

property that M 6∼= OP2 and i∗(M) ∼= OP1 . Using the results in Section 4 one
shows that R ⊂ X1 and furthermore that the image of R under Ext1(E ,−) lies in
the following category

C1 = {M ∈ Mod(∆) |M(Zi) is an isomorphism for i = 1, . . . , |w| − 1,

M(Z0) is surjective with one dimensional kernel and all M(i)

are finite dimensional}

We define C2 as the category consisting of triples (W,X,Y) where W is a finite
dimensional vector space and X,Y are endomorphisms of W satisfying rk([Y,X] −
Id) = 1. Let M ∈ C1. Then up to a canonical isomorphism we may assume that
M(1) = · · · = M(|w|) and M(Z1) = · · · = M(Z|w|−1) = Id.
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Put W = M(|w|), X = M(X1), Y = M(Y1) and Z = M(Z0). Taking into
account that M is a contravariant functor we find

M(X1) = M(X2) = · · · = M(Xw2) = X

M(Y1) = M(Y2) = · · · = M(Yw1) = Y

M(X0) = ZX

M(Y0) = ZY

It follows that Z(YX−XY− Id) = 0 and hence (W,X,Y) ∈ C2. It is clear that this
procedure is reversible and defines an equivalence C2

∼= C1.
Let R be the category of non-trivial rank one projective right A-modules (with

maps given by isomorphisms). If N ∈ R then according to Section 4 there exists,
up to isomorphism, a unique extension M of N to P2

q which lies in R.
Summarizing we now have a composition of functors:

R
∼=
−→ R →֒ C1

∼= C2(A.1)

(that the first functor is an equivalence follows for example from the easily proved
fact that the objects in C2 are simple objects when considered as representations of
the two loop quiver).

Lemma A.1. (A.1) is an equivalence.

Proof. Note that we are not allowed deduce this result from Theorem 1.1 since the
proof of that theorem depends on Theorem 1.3!

Below we will construct a (left) inverse to (A.1) which is independent of w. This
means that in principle we have to prove the lemma only for one particular w. If
w = (1, 1) then the lemma can be deduced from the results in [BGK], [KKO], [L]
although the point of view in these papers is slightly different.

We will give a proof which works equally well for all w. Perhaps the method has
some independent interest.

Let M ∈ C1. We need to prove two things:

1. M ∈ Y1, i.e. M
L

⊗B E has its only non-vanishing cohomology in degree -1.
This has the effect that M is in the image of some object in X1.

2. M is actually in the image of R, i.e. i∗(H−1(M
L

⊗B E)) ∼= OP1 .

Now P2
q has the pleasant property that if 0 6= M ∈ coh(P2) then i∗(M) 6= 0. From

this we easily deduce that 1.,2. above are actually equivalent to the following single
statement:

3. Li∗(M
L

⊗B E) ∼= OP1 [1].

Let E∞ = ⊕
|w|−1
i=0 OP1(i) and B∞ = End(E∞). Then B∞ is the path algebra of the

quiver ∆∞

0 w1 − 1 w1 w2 − 1 w2 |w| − 1

X0
Xw2−1

Y0 Yw1−1



34 YURI BEREST AND GEORGE WILSON

Observing that RHom(E∞,−) defines an equivalence between Db(coh(P1)) and
Db

f(B∞) we want to understand the composition

Db
f(B)

−
L

⊗E
−−−→ Db(coh(P2

q))
Li∗

−−→ Db(coh(P1))
RHom(E∞,−)
−−−−−−−−−→ Db

f (B∞)(A.2)

Checking on projectives, and then on complexes of projectives we find that on
an object M in Mod(∆) the composition (A.2) is given by a length two complex
concentrated in degrees −1, 0 of the following form

degree 0: M(0) M(w1 − 1) M(w1) M(w2 − 1) M(w2) M(|w| − 1)

degree -1: M(1) M(w1) M(w1 + 1) M(w2) M(w2 + 1) M(|w|)

M(X0)
M(Xw2−1)

M(Y0)
M(Yw1−1)

M(X1) M(Xw2 )

M(Y1) M(Yw1 )

M(Z0) M(Zw1−1) M(Zw1 ) M(Zw2−1) M(Zw2 ) M(Z|w|−1)

It is now clear that if M ∈ C1 then the image of M under the composition (A.2)
is equal to S[1] where S is the simple object in Mod(∆∞) defined by dimS(i) = δi0.
Since S corresponds to OP1

w
we are done.

Now we continue with the proof of Theorem 1.4. Theorem 1.4 asserts that the
functor (A.1) is independent of w. We prove this by showing that the inverse of
(A.1) is independent of w.

Let W = (W,X,Y) ∈ C2. Then the associated object M of Mod(∆) looks like

W ′ W W W W W W W W

ZX X X

ZY Y Y

Z Id Id Id Id
(A.3)

where W ′ = W/im([Y,X] − Id) and Z : W →W ′ is the quotient map.
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Let E be the right A-module which is the restriction of E . Since E has a left B
structure it follows that E is a B − A-bimodule. As a Mod(∆opp) − A object it is
given by

A A A A A A A A A

x· x· x·

y· y· y·

Id Id Id Id Id

It is clear from the above discussion that the inverse to (A.1) is given by

(W,X,Y) 7→ TorB
1 (M,E)(A.4)

Let proj(B) be the category of finitely generated projective right B-modules and
let Σ be the collection of maps Z1, . . . , Z|w|−1. Let BΣ be the universal localization
of B at Σ.

Let us recall how BΣ is constructed [Sch]. We adjoin the inverses of the maps
in Σ to proj(B). Denote the resulting category by Σ−1 proj(B). Then BΣ =
EndΣ−1 proj(B)(B). Now in our case proj(B) ∼= ∆ and under this equivalence B

corresponds to the sum of the vertices. It is also clear that Σ−1 proj(B) is equivalent
to Σ−1∆ which is obtained from ∆ by adjoining inverses to the arrows in Σ. Then
BΣ is the endomorphism ring of the sum of the vertices in Σ−1∆, i.e. the path
algebra. Thus we obtain BΣ = C(Σ−1∆).

Now let ∆0 be the following quiver.

0 1
Z0

X1

Y1

with relation (X1Y1 − Y1X1 − Id)Z0 = 0. The obvious functor Σ−1∆ → ∆0 which
sends the arrows in Σ to the identity on the vertex 1 is an equivalence of categories.
So we find Mod(Σ−1∆) ∼= Mod(∆0). Below we put B0 = C(∆0).

Now we return to (A.4). It is clear from the quiver description (A.3) that M
may be viewed (necessarily in unique way) as an object in Mod(Σ−1∆). Hence M
is a right BΣ-module. In a similar way it follows that E is a BΣ − A-bimodule.
Then according to [Sch, Thm 4.8(c)] we have TorB

1 (M,E) = TorBΣ
1 (M,E).

Under the equivalence Mod(∆0) ∼= Mod(Σ−1∆) the right BΣ-module M corre-
sponds to M0 which is given by

M0 : W ′ W
Z

X

Y

Now TorBΣ
1 (−, E) is the first left derived functor of the functor − ⊗BΣ E :

Mod(Σ−1∆) → Mod(A). Checking on projectives we see that if we compose this
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functor with the equivalence Mod(∆0) ∼= Mod(Σ−1∆) then it is given by tensoring
with the B0 −A-module E0 which is defined as follows:

E0 : A A
Id

x·

y·

Thus we have shown that the inverse to (A.1) is given by the functor

(W,X,Y) 7→ TorB0

1 (M0, E0)(A.5)

It is clear that this inverse does not depend on w. This finishes the proof of Theorem
1.4.

We will now prove Theorem 1.3 by showing that (A.5) is compatible with the
Aut(A)-actions. Let us recall how these actions are defined. Aut(A) is generated
by the automorphisms Ψn,λ and Φm,µ defined in the introduction. As explained in
Section 7 there is an Aut(A) action on C2 which on the generators Ψn,λ and Φm,µ

is given by Ψn,λ(X,Y) = (X,Y − λXn) and Φm,µ(X,Y) = (X − µYm,Y).
We also define an action of Aut(A) on ∆0 (viewed as an additive category) by

Ψn,λ(X1) = X1 Φm,µ(X1) = X1 + µ(X1)m

Ψn,λ(Y 1) = Y 1 + λ(X1)n Φm,µ(Y 1) = Y 1

Ψn,λ(Z0) = Z0 Φm,µ(Z0) = Z0

This is well defined because of the Remark in Section 7. Thus we obtain an action
of Aut(A) on B0 in the obvious way. We obtain a corresponding action on C1 by
putting σ(M0) = M0

σ−1 where σ ∈ Aut(A) and M0
σ−1 is the right B0-module which

is equal to M0 as a set but whose right B0-action is twisted by σ−1. The action of
Aut(A) on R is defined similarly.

By checking on the generators Ψn,λ and Φm,µ it is easy to see that the actions
of Aut(A) on C1 and C2 are compatible. Hence to prove our claim it is sufficient to

prove that the functor M0 7→ TorB0

1 (M0, E) is compatible with the Aut(A)-actions.
To prove this we need that

σE ∼= Eσ−1(A.6)

asB0−A-bimodules, since if this is the case then TorB0

1 (M0
σ− , E) ∼= TorB0

1 (M0, σE) ∼=

TorB0

1 (M0, Eσ−1 ) ∼= TorB0

1 (M0, E)σ−1 .
To prove (A.6) we note that σE is the Mod(∆opp) − A object given by the top

quiver in the diagram below.

A A

A A

σ−1 σ−1

Id
σ(x)·

σ(y)·

x·

y·

Id
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It is clear that the map given by the dotted arrows is left B0-linear and that it
twists the right A-action by σ−1. This finishes the proof of Theorem 1.3.
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1993, pp. 1–36.

[BW] Yu. Berest and G. Wilson, Automorphisms and ideals of the Weyl algebra, Math. Ann.
318(1) (2000), 127–147.

[Bo] A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk
SSSR, Ser. Mat. 53 (1989), 25–44; English transl.: Math. USSR Izv. 34 (1990), 23–42.

[BH] J. Brun and A. Hirschowitz, Le problème de Brill-Noether pour les idéaux de P2 , Ann. Sci.
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