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1. Introduction1

Pattern classification [1] is one of the most popular field within Artificial2

Intelligence as a result of its link with real-world problems. In short, it may3

be defined as the process of identifying the right category (among those in4

a predefined set) to which an observation belongs. The ease with which we5

recognize our beloved black cat from hundreds similar to it or read hand-6

written characters belies the astoundingly complex processes that underlie7

these scenarios. That is why researchers have been focused on developing a8

wide spectrum of classification algorithms called classifiers with the goal of9

solving these problems with the best possible accuracy.10

The literature on classification models [2] is vast and offers a myriad of11

techniques that approach the classification problem from multiple angles. Re-12

grettably, some of the most accurate classifiers do not provide any mechanism13

to explain how they arrived at each conclusion and behave like black boxes.14

This means that their reasoning mechanism is not transparent, therefore15

negatively affecting their practical usability in scenarios where understand-16

ing the decision process is required. According to the terminology discussed17

in [3], transparency can be understood as the classifier’s ability to explain its18

reasoning mechanism, whereas interpretability refers to the classifier’s ability19

to explain the problem domain at the attribute level.20

Recently, Nápoles and his collaborators [4] introduced the Rough Cogni-21

tive Networks (RCNs) in an attempt to develop an accurate, transparent clas-22

sifier. Such granular neural networks augment the reasoning scheme present23

in Fuzzy Cognitive Maps (FCMs) [5] with information granules coming from24

Rough Set Theory (RST) [6]. Although RCNs can be considered as recurrent25

neural systems that fit the McCulloch-Pitts’ scheme [7], there are important26

differences with regards to other neural models.27

Classical neural networks regularly perform like black boxes, where nei-28

ther neurons nor connections have any clear specific meaning for the problem29

itself [8]. However, all the neurons and connections in an RCN have a precise30

meaning at a granular level, therefore making it possible to understand the31

underlying decision process at a granular (symbolic) level. The absence of32

hidden neurons and the lazy learning approach are other distinctive features33

attached to these granular, recurrent neural systems.34

While RCNs have shown promise in solving different pattern classification35

problems [4] [9], their performance is still very sensitive to an input parameter36

denoting the similarity threshold upon which the rough information granules37
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are built. The proper estimation of this parameter is essential in presence of38

numerical attributes since it defines whether two objects are deemed similar39

or not. Aiming at overcoming this drawback, Nápoles et. al. [4] proposed an40

optimization-based hyperparameter learning scheme to estimate the value of41

this parameter from a hold-out test set. However, this strategy may become42

impractical for large datasets since it requires rebuilding the information43

granules for each parameter value to be evaluated.44

In [10] the authors proposed a granular ensemble named Rough Cognitive45

Ensembles (RCEs) to deal with the parametric requirements of RCN-based46

classifiers. This classification model employs a collection of RCNs, each oper-47

ating at a different granularity degree. While this approach involves a more48

elaborated solution, the ensemble architecture and the bagging strategy used49

to improved the diversity among the base classifiers irremediably harm the50

transparency of RCNs, thus becoming another black-box.51

In this paper, we cast the RCN approach within the framework of Fuzzy52

Rough Set Theory (FRST) [11] [12] [13] [14] in an attempt to eliminate the53

need for a user-specified similarity threshold while retaining the model’s dis-54

criminatory power. Fuzzy rough sets are an extension of classical rough sets55

in which fuzzy sets are used to characterize the degree to which an object56

belongs to each information granule. The inclusion of the fuzzy approach57

into the RCN model allows coping with both the vagueness (fuzzy sets) and58

inconsistency (rough sets) of the information typically found in pattern clas-59

sification environments. Besides, it allows designing a more elegant solution60

for the parametric issues of RCN-based classifiers.61

Numerical simulations using 140 datasets reveal that the proposed model,62

referred to as Fuzzy-Rough Cognitive Networks (FRCNs), is capable of out-63

performing the standard RCNs using a fixed, reasonable similarity threshold64

value. The results also suggest that FRCNs remain competitive with regards65

to RCEs and other black-box classifiers adopted for comparison purposes.66

More importantly, the challenging process of estimating a precise value for67

the similarity threshold parameter is no longer a concern.68

The rest of this paper is organized as follows. Section 2 briefly describes69

the RCN algorithm and the motivation behind our proposal. The fuzzy RCN70

classifier is unveiled in Section 3, whereas Section 4 introduces the numerical71

simulations and their ensuing discussion. Towards the end, Section 5 outlines72

some concluding remarks and future work directions.73
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2. Rough Cognitive Mapping74

This section discusses the technical background relevant to this study and75

explains the motivation behind the fuzzy approach.76

2.1. Theoretical Background77

Rough cognitive mapping is a recently introduced concept[4] that brings78

together RST and FCMs. RCNs are granular FCMs whose topology is defined79

by the abstract semantics of the three-way decision rules [15] [16]. The set80

of input neurons in an RCN represent the positive, boundary and negative81

regions of the decision classes in the problem under consideration. The output82

neurons describe the set of decision classes. The topology (both concepts and83

weights) is entirely computed from historical data, thus removing the need84

for expert intervention during the classifier’s construction.85

The first step in the RCN learning process is related to the input data86

granulation using RST. The positive, boundary and negative regions of each87

decision class according to a subset of attributes are computed using the88

training data set and a predefined similarity relation.89

The second step is concerned with topology design where a sigmoid FCM90

is automatically created from the discovered information granules by using91

a set of predefined rules; see [4] for more details. In principle, an RCN will92

be composed of at most 4|D| neurons and 3|D|(1 + |D|) causal relationships,93

with D = {D1, . . . , DK} being the set of decision classes.94

The last step refers to the network exploitation, which simply means com-95

puting the response vector Ax(D) = {Ax(D1), . . . , Ax(Dk), . . . , Ax(DK)} for96

some unlabeled object. The new object x is presented to the RCN as an input97

vector A(0) that activates input neurons. Each element in A(0) is computed98

on the basis of the inclusion degree of x to each rough granular region. After99

this, the input vector is propagated through the RCN using the McCulloch-100

Pitts reasoning model [7] and next the decision class with the highest value101

in the response vector is then assigned to the test object.102

2.2. Motivation for the FRCN Approach103

The notion of rough cognitive mapping opened up a new research avenue104

in the field of granular-neural classifiers. However, their performance is highly105

sensitive to the similarity threshold used to determine whether two instances106

can be gathered together into the same similarity class.107
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Nápoles et. al. [4] used a parameter tuning method based on the Harmony108

Search (HS) optimizer to estimate the similarity threshold. Nevertheless, the109

evaluation of every candidate solution requires recalculating the lower and110

upper approximations of each RST-based region for each decision class, which111

could be computationally prohibitive for large datasets.112

Let us assume that U1 ⊂ U is the training set and U2 ⊂ U is the hold-out113

test (validation) set such that U1 ∩ U2 = ∅. The computational complexity114

of building the lower and upper approximations is O(|Φ||U1|2), with Φ being115

the attribute set, whereas the complexity of building the network topology116

is O(|D|2), with D being the set of decision classes. Besides, the complexity117

of exploiting the granular network for |U2| instances is O(|U2||Φ||U1|2). This118

implies that the temporal complexity of evaluating a single parameter value is119

O(max{|Φ||U1|2, |D|2, |U2||Φ||U1|2}). Due to the fact that |U1| ≥ |U2| in most120

machine learning scenarios, we can conclude that the overall complexity of121

this parameter learning method is O(T |Φ||U1|3), where T is the number of122

learning cycles. Regrettably, this may negatively affect the practical usability123

of RCNs in solving real-world pattern classification problems.124

The key goal behind this research is to remove the estimation of the sim-125

ilarity threshold without affecting the overall RCN’s discriminatory power.126

Being more explicit, we aim to arrive at a parameterless classifier (and hence127

suppressing the need for a parameter tuning strategy) without degrading the128

RCN’s performance in classification problems.129

3. Fuzzy-Rough Cognitive Mapping130

This section presents the notion of fuzzy-rough cognitive mapping in order131

to remove the requirement of estimating the similarity threshold in an RCN.132

With this goal in mind, we first describe the mathematical foundations be-133

hind this approach. Afterwards, we explain how to construct an FRCN for134

solving pattern classification problems.135

3.1. Fuzzy-Rough Set Theory136

The hybridization between rough sets and fuzzy sets was originally in-137

vestigated by Dubois and Prade [11], and later extended and/or modified by138

several authors. In this paper, we adopt the approach proposed by Inuiguchi139

et al. [14] since it includes some mathematical properties that may be con-140

venient when designing our fuzzy-rough classifier.141
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Let us assume the universe U , a fuzzy set X ∈ U and a fuzzy binary142

relation P ∈ F(U × U), where µX(x) and µP (y, x) denote their respective143

membership functions. The function µX : U → [0, 1] computes the member-144

ship degree to which x ∈ U is a member of X, whereas µP : U × U → [0, 1]145

denotes the degree to which y is presumed to be a member of X from the146

fact that x is a member of the fuzzy set X. For the sake of simplicity, P (x)147

is defined by its membership function µP (x)(y) = µP (y, x).148

In order to define the lower and upper approximations of a set in fuzzy149

environments, we should consider the consistency degree of x being a member150

of X under the knowledge P . This degree can be measured by the truth value151

of the statement “y ∈ P (x) implies y ∈ X” under fuzzy sets P (x) and X.152

To do that, we use a necessity measure infy∈U I(µP (y, x), µXk
(y)) with an153

implication function I : [0, 1] × [0, 1] → [0, 1] such that I(0, 0) = I(0, 1) =154

I(1, 0) = I(1, 1) = 0, where I(., a) decreases and I(a, .) increases, ∀a ∈ [0, 1].155

In this formulation, Xk is the set comprising all objects labeled with the k-th156

decision class. Equation (1) displays the membership function for the lower157

approximation P∗(X) associated with the fuzzy set X.158

µP∗(Xk)(x) = min

{
µXk

(x), inf
y∈U
I(µP (y, x), µXk

(y))

}
(1)

Analogously to the lower approximation, we can derive the membership159

function for the upper approximation assuming that X is a fuzzy set and P160

is a fuzzy binary relation. By doing so, we should measure the truth value161

of the statement “∃y ∈ U such that x ∈ P (y)” under fuzzy sets P (x) and X.162

The true value of this statement can be obtained by a possibility measure163

supy∈U T (µP (x, y), µXk
(y)) with a conjunction function T : [0, 1] × [0, 1] →164

[0, 1] such that T (0, 0) = T (0, 1) = T (1, 0) = T (1, 1) = 0, where both T (., a)165

and T (a, .) increase, ∀a ∈ [0, 1]. Equation (2) shows the membership function166

for the upper approximation P ∗(X) associated with X.167

µP ∗(Xk)(x) = max

{
µXk

(x), sup
y∈U
T (µP (x, y), µXk

(y))

}
(2)

It should be remarked that the intersection of two fuzzy sets X and Y168

is regularly defined as µX∩Y = min{µX(x), µY (x)},∀x ∈ U , whereas their169

union takes the form µX∪Y = max{µX(x), µY (x)},∀x ∈ U . However, some170

researchers replace the min operator with a t-norm and the max operator171

with a t-conorm [14]. On the other hand, note that Inuiguchi’s model does172
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not assume that µP (x, x) = 1, ∀x ∈ U . Instead, we compute the minimum be-173

tween µX(x) and infy∈U I(µP (y, x), µXk
(y)) when computing µP∗(Xk)(x), and174

the maximum between µX(x) and supy∈U T (µP (x, y), µXk
(y)) when comput-175

ing µP ∗(Xk)(x). This feature allows preserving the inclusiveness of P∗(X) in176

the fuzzy set X and the inclusiveness of X in P ∗(X).177

Based on the above elements, one can define the three fuzzy-rough regions178

that comprise the core of the granulation stage. Equation (3), (4) and (5)179

display the membership functions associated with the fuzzy-rough positive,180

negative and boundary regions, respectively.181

µPOS(Xk)(x) = µP∗(Xk)(x) (3)

µNEG(Xk)(x) = 1− µP∗(Xk)(x) (4)

µBND(Xk)(x) = µP ∗(Xk)(x)− µP∗(Xk)(x) (5)

These memberships functions allow computing more flexible information182

granules. As such, abrupt transitions between classes are replaced with grad-183

ual ones, therefore allowing an element to belong to more than one class with184

varying degrees. Next, we explain how to exploit these fuzzy-rough informa-185

tion granules by using a cognitive neural network.186

3.2. Fuzzy-Rough Cognitive Networks187

The proposed FRCN model transforms the attribute space into a fuzzy-188

rough one, which is exploited by a recurrent neural network. Under these189

fuzzy conditions, objects are categorized into information granules with soft190

boundaries, and therefore, a strict similarity threshold is no longer required.191

This suggests that the first step when constructing an FRCN is related with192

the fuzzy granulation of the available information.193

Let X = {X1, . . . , Xk, . . . , XM} be a partition of U according to the values194

of the decision attribute such that the subset Xk comprises those objects195

labeled as Dk. Based on this partition, we can define the membership degree196

of x ∈ U to a subset Xk (see Equation 6). We assume that all objects labeled197

as Dk have maximum membership degree to the k-th subset; however, more198

sophisticated variants can be formalized as well.199

µXk
(x) =

{
1 , y ∈ Xk

0 , y /∈ Xk

(6)
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Another pivotal element to be defined is the membership function µP (y, x)200

associated with the fuzzy binary relation. Equation (7) shows the function201

adopted in this paper, which depends on the membership degree of object202

x to X, and the similarity degree between x and y. The similarity degree203

ϕ(x, y) denotes the complement of the normalized distance δ(x, y) between204

two instances x and y. Section 4.2 describes some heterogeneous distance205

functions explored in this study that allow comparing instances comprising206

both numerical and nominal attributes.207

µP (y, x) = µXk
(x)ϕ(x, y) = µXk

(x)(1− δ(x, y)) (7)

Let us assume that the universe of discourse U is composed of those208

objects comprised into the training dataset and Θ : U → D is a function209

that returns the decision class attached to each training instance, such that210

D = {D1, . . . , DK}. Algorithm 1 summarizes the steps for granulating the211

information space under the fuzzy settings described above.212

Algorithm 1. Fuzzy-rough information granulation.213

FOREACH x ∈ U DO214

IF Θ(x) = Dk THEN215

Xk ← Xk ∪ {x}216

END IF217

Compute µXk
(x) according to Equation 6218

END219

FOREACH x ∈ U DO220

FOREACH subset Xk DO221

Compute µPOS(Xk)(x) according to Equation 3222

Compute µNEG(Xk)(x) according to Equation 4223

Compute µBND(Xk)(x) according to Equation 5224

END225

END226

227

After granulating the information space, the resultant fuzzy-rough con-228

structs are used to build a neural network. Similarly to RCN models, input229

neurons denote positive or negative fuzzy-rough regions, whereas output neu-230

rons comprise the decision classes for the problem at hand. During prelimi-231

nary simulations we noticed that including the fuzzy-rough boundary regions232

into the modeling did not significantly increase the classifier’s discriminatory233
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ability. This behavior is not surprising because in crisp-rough environments234

the hesitant evidence is more conclusive when compared to the evidence com-235

ing from fuzzy-rough granules. Therefore, the neural network topology can236

be constructed by using the following rules:237

• (R∗1) IF Ci = P ∗k AND Cj = Dk THEN wij = 1.0238

• (R∗2) IF Ci = N∗k AND Cj = Dk THEN wij = −1.0239

• (R∗2) IF Ci = P ∗k AND Cj = Dv 6=k THEN wij = −1.0240

• (R∗4) IF Ci = P ∗k AND Cj = Pv 6=k THEN wij = −1.0241

where Ci is the i-th neural processing entity, Dk represents k-th decision242

class, while P ∗k and N∗k are neurons denoting the positive and negative fuzzy-243

rough region associated to the k-th decision class.244

Figure 1 shows the network topology of FRCNs for binary classification245

problems. Without loss of generality, any FRCN comprises 2|D| input neu-246

rons, |D| output neurons and |D|(4 + |D|) causal weights. Observe that the247

number of neurons in the causal network is not determined by the number248

of features but by the number of decision classes.249

Figure 1: Fuzzy-Rough Cognitive Network for binary classification problems.

Algorithm 2 shows the steps required to build the topology of the granular250

neural network from discovered information granules.251

9



Algorithm 2. Network construction procedure.252

FOREACH subset Xk DO253

Add a neuron Pk as the kth positive region254

Add a neuron Nk as the kth positive region255

Add a neuron Bk as the kth positive region256

END257

FOREACH decision Dk DO258

Add a neuron Dk as the kth decision259

END260

FOREACH neuron Ci DO261

FOREACH neuron Cj DO262

Configure wij according to rules R∗1 −R∗4263

END264

END265

266

Once the network has been constructed, we can perform the classification267

for new (unlabeled) instances by activating the input-type neurons and per-268

forming the reasoning process. In order to activate these neurons, we use the269

similarity degree between the object y and x ∈ U as well as the membership270

degree of x to each fuzzy-rough granular region.271

Figure 2 and 3 illustrate the semantics behind this activation mechanism272

for the k-th positive and negative region, respectively. More explicitly, such273

figures show the degree to which y belongs to the fuzzy intersection defined274

from the membership functions µPOS(Xk)(x) (or µNEG(Xk)(x)), and the fuzzy275

similarity relation between the new instance y and x ∈ X. As a further step,276

we calculate the inclusion degree of the fuzzy intersection set into the k-th277

fuzzy-rough region. This procedure produces a normalized value that will be278

used to activate the input neurons in the causal network.279

Equation (8) formalizes a generalized measure to compute the activation280

value of the k-th positive neuron, where T2 denotes a t-norm, ϕ(x, y) is281

the similarity degree between x and y whereas µPOS(Xk)(x) represents the282

membership grade of x to the k-th fuzzy-rough positive region. A t-norm is a283

conjunction function T2 : [0, 1]×[0, 1]→ [0, 1] that fulfills three conditions: (i)284

∀a ∈ [0, 1], T2(a, 1) = T2(1, a) = a, (ii) ∀a, b ∈ [0, 1], T2(a, b) = T2(b, a), and285

(iii) ∀a, b, c ∈ [0, 1], T2(a, T2(b, c)) = T2(T2(a, b), c). Similarly, we can activate286

neurons denoting fuzzy-rough negative regions. Only output neurons remain287

inactive at the outset of the neural reasoning process.288
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Figure 2: Inclusion degree of y into the k-th positive region.

Figure 3: Inclusion degree of y into the k-th negative region.

A(P ∗k ) =

∫
T2(ϕ(x, y), µPOS(Xk)(x))dx∫

µPOS(Xk)(x)dx
(8)

However, due to the fact that the universe of discourse U is rather finite,289

the use of integrals may not be convenient. Rules (R∗5) and (R∗6) show a more290

practical mechanism to activate the granular classifier.291

• (R∗5) IF Ci = P ∗k THEN A
(0)
i =

∑
x∈U T2(ϕ(x,y),µPOS(Xk)(x))∑

x∈U µPOS(Xk)(x)292

• (R∗6) IF Ci = N∗k THEN A
(0)
i =

∑
x∈U T2(ϕ(x,y),µNEG(Xk)(x))∑

x∈U µNEG(Xk)(x)293

Once the initial activation vector A(0) associated with the object y has294

been computed, we perform the neural reasoning process until (i) a fixed-295

point attractor is discovered, or alternatively (ii) a maximal number of iter-296

ations is reached. At that point, the label of the output neuron having the297

highest activation value is assigned to the target object.298
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Algorithm 3a shows the first step towards exploiting the neural network,299

that is, the activation of input neurons for a new test instance x. Similarly,300

Algorithm 3b illustrates how to determine the decision class from outputs301

neurons once the input neurons have been activated.302

Algorithm 3a. Network activation procedure.303

FOREACH decision Dk DO304

Calculate A
(0)
x (Pk) according to rule R∗5305

Calculate A
(0)
x (Nk) according to rule R∗6306

END307

308

Algorithm 3b. Network reasoning procedure.309

FOR t = 0 TO T DO310

converged← TRUE311

FOREACH neuron Ci DO312

Compute A
(t+1)
i = f

(∑M
j=1wjiA

(t)
j

)
313

IF A
(t)
i 6= A

(t+1)
i THEN314

converged← FALSE315

END316

END317

IF converged THEN318

RETURN argmaxk{A(t+1)
x (Dk)}319

END320

END321

IF not converged THEN322

RETURN argmaxk{A(T )
x (Dk)}323

END324

325

It is worth mentioning that the FRCN algorithm can operate in either a326

lazy or inductive fashion. In a lazy setting, both the fuzzy-rough granules327

and the network topology can be constructed when the new instance arrives.328

This is however not efficient since the granules and the topology can be329

reused to classify new instances. In the inductive approach, the knowledge330

is stored into the discovered granules and the causal weight matrix, which is331

prescriptively determined by construction rules (R∗1) - (R∗4). Adjusting such332

causal weights using a supervised learning algorithm is a promising research333

direction to be explored as a future work.334
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4. Numerical Simulations335

In this section, we conduct several simulations to evaluate the predictive336

capability of the proposed fuzzy-rough neural network. As a first experiment,337

we investigate the impact of using different fuzzy operators and distance338

functions across 140 pattern classification data sets. Afterward, we compare339

the prediction capability of the best-performing fuzzy-rough model against340

17 well-established state-of-the-art classifiers.341

4.1. Dataset Characterization342

We leaned upon 140 classification datasets taken from the KEEL [17] and343

UCI ML [18] repositories. These problems comprise different characteristics344

and allow evaluating the predictive power of both state-of-the-art and the345

granular classifiers under consideration.346

In the adopted datasets 1, the number of attributes ranges from 2 to 262,347

the number of decision classes from 2 to 100, and the number of instances348

from 14 to 12,906. They involve 13 noisy and 47 imbalanced datasets, with349

the imbalance ratio fluctuating between 5:1 and 2160:1. To avoid the out-of-350

range issues, the numerical attributes have been normalized. Furthermore,351

we replaced missing values with the mean or the mode depending on whether352

the attribute was numerical or nominal, respectively.353

As a final element, each dataset has been partitioned using a standard354

10-fold cross-validation procedure, i.e., each problem has been split into 10355

folds, each containing 10% of the instances.356

4.2. Heterogeneous Distance Functions357

The distance function plays a pivotal role when designing instance-based358

classifiers. Next, we briefly describe three distance functions [19] [10] used in359

our experiments that allow comparing heterogeneous instances, i.e., objects360

comprising both numerical and nominal attributes.361

• Heterogeneous Euclidean-Overlap Metric (HEOM). This distance func-362

tion computes the normalized Euclidean distance between numerical363

attributes and an overlap metric for nominal attributes.364

1The reader can find a complete characterization of such datasets in [10]
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• Heterogeneous Manhattan-Overlap Metric (HMOM). This heterogeneous365

variant is similar to the HEOM function but it replaces the Euclidean366

distance with the Manhattan distance when computing the dissimilar-367

ity between two numerical values.368

• Heterogeneous Value Difference Metric (HVDM). This function involves369

a stronger strategy for quantifying the dissimilarity between nominal370

attributes. Instead of using a matching approach, it measures the cor-371

relation between attributes and the decision classes.372

4.3. Determining the Best-Performing Fuzzy Model373

The first experiment is oriented to determining the combination of fuzzy374

operators leading to the best prediction rates. The FRCN algorithm requires375

the specification of a fuzzy implicator and two t-norms. The I implicator is376

used to compute the membership degree of an object to the lower approxima-377

tions, the T1 t-norm is used to compute the membership degree of an object378

to the upper approximations whereas the T2 t-norm is used to activate the379

neural processing entities. For the sake of simplicity, we use the same t-norm380

to compute the membership degree to the upper approximations as well as381

to exploit the neural network. Tables 1 and 2 display the t-norms and fuzzy382

implicators included in this first simulation.383

Table 1: T-norms explored in this paper.

T-norm Formulation

Standard intersection T (x, y) = min{x, y}
Algebraic product T (x, y) = xy

Lukasiewicz T (x, y) = max{0, x + y − 1}

Drastic product T (x, y) =


x , y = 1

y , x = 1

0 , otherwise

To measure the classifiers’ prediction capability, we computed the Kappa384

coefficient. Cohen’s Kappa coefficient [20] measures the inter-rater agreement385

for categorical items. It is usually deemed a more robust measure than the386

standard accuracy since this coefficient takes into account the agreement387

occurring by chance. Figure 4 shows the average Kappa coefficient achieved388

by each model for different combinations of fuzzy operators using the HMOM389

distance as the standard dissimilarity functional.390
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Table 2: Fuzzy implicators explored in this paper.

Implicator Formulation

Standard I(x, y) =

{
1 , x ≤ y

0 , x > y

Kleene-Dienes I(x, y) = max{1− x, y}
Lukasiewicz I(x, y) = min{1− x + y, 1}

Zadeh I(x, y) = max{1− x,min{x, y}}

Godel I(x, y) =

{
1 , x ≤ y

y , x > y

Larsen I(x, y) = xy

Mamdani I(x, y) = min{x, y}
Reichenbach I(x, y) = 1− x + xy

Yager I(x, y) =

{
1 , x = y = 0

yx , otherwise

Goguen I(x, y) =

{
1 , x ≤ y

y/x , otherwise

From the above results we can notice that the FRCN method computes391

the best prediction rates when the Lukasiewicz t-norm is used to activate the392

input neurons regardless of the fuzzy operator attached to the membership393

functions µP∗(Xk)(x) and µP ∗(Xk)(x). Consequently, we adopt the Lukasiewicz394

implicator and the Lukasiewicz t-norm as standard fuzzy operators in the rest395

of the simulations conducted in this paper.396

The following experiment is devoted to comparing the prediction capabil-397

ity of the proposed classifier with respect to the crisp variant (RCN) using a398

reasonably, fixed similarity threshold equal to 0.98. Figure 5 summarizes the399

average Kappa measure attained by each classifier for different distance func-400

tions. The simulations confirm that the FRCN models always report better401

prediction rates regardless of the underlying distance function, although the402

HMOM function seems to stand as the best choice.403

Aiming at conducting a more rigorous analysis, we compute the Friedman404

two-way analysis of variances by ranks [21]. The test advocates for the rejec-405

tion of the null hypothesis (p-value = 8.1268E − 10 < 0.05) for a confidence406

interval of 95%, hence we can conclude that there are significant differences407

between at least two models across datasets.408
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Figure 4: Average Kappa measure computed for the proposed fuzzy-rough classifier using
the HMOM distance function with different t-norm and fuzzy implicators.

Figure 5: Average Kappa measure for different distance functions.
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The next experiment is focused on determining whether the superiority409

of the FRCN-HMOM classifier is statistically significant or not. To that end,410

we resorted to the Wilcoxon signed rank test [22] and post-hoc procedures411

to adjust the p-values instead of using mean-ranks approaches, as recently412

suggested by Benavoli and collaborators [23].413

Table 3 reports the unadjusted p-value computed by the Wilcoxon signed414

rank test and the corrected p-values associated with each pairwise comparison415

using FRCN-HMOM as the control method. In this paper, we assume that416

a null hypothesis can be rejected if at least one of the post-hoc procedures417

advocates for the rejection. The statistical analysis confirms FRCN-HMOM’s418

superiority as all the null hypotheses were rejected.419

Table 3: Adjusted p-values according to different post-hoc procedures using the best-
performing rough classifier (FRCN-HMOM) as the control method.

Algorithm p-value Bonferroni Holm Holland Null Hypothesis
RCN-HEOM 2.15E-07 0.000001 0.000001 0.000001 Rejected
RCN-HMOM 2.50E-07 0.000001 0.000001 0.000001 Rejected
RCN-HVDM 0.000003 0.000015 0.000009 0.000009 Rejected

FRCN-HEOM 0.000076 0.000380 0.000152 0.000152 Rejected
FRCN-HVDM 0.007897 0.039485 0.007897 0.007897 Rejected

The above simulations suggest that the proposed FRCN algorithm, like420

the Rough Cognitive Ensembles [10], is capable of suppressing the parametric421

requirements of RCNs without harming their performance. But are they sim-422

ilar in performance? In order to answer this question we can use the Wilcoxon423

signed rank test for pairwise comparisons. The test suggests accepting the424

conservative hypothesis (p-value=0.7387 > 0.05) using a confidence interval425

of 95%. Therefore, we can conclude that both approaches perform similarly426

for the datasets adopted in the empirical comparison.427

However, the fuzzy approach proposed in this paper is preferred since it428

fits best the parsimony principle: the simpler the better. The bagging scheme429

and the ensemble model itself make the RCE algorithm less transparent430

than the fuzzy variant, thus notably reducing one of the main contributions431

attached to rough cognitive classifiers. In other words, we can achieve the432

same prediction rates by using a single fuzzy-rough classifier rather than an433

ensemble composed of several crisp models!434
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4.4. Comparison Against State-of-the-Art Classifiers435

In this section, we compare the prediction ability of the best-performing436

fuzzy model (FRCN-HMOM, hereinafter simply called FRCN) against the437

following well-known state-of-the-art classifiers:438

• Rule-based models439

– Decision Table (DT) [24]. The algorithm searches for matches in440

the body using a subset of attributes. If no instances are found,441

the majority class in the table is returned; otherwise, the majority442

class of all matching instances is returned.443

• Bayesian models444

– Näıve Bayes (NB) [25]. A probabilistic classification algorithm445

using estimator classes, where numeric estimator precision values446

are chosen based on the analysis of the training data.447

– Näıve Bayes Updateable (NBU) [25]. Implements an incremental448

NB classifier that learns one instance at a time. Instead of using449

normal density measures for numerical attributes, this algorithm450

employs a kernel estimator without discretization.451

• Function-based models452

– Simple Logistic (SL) [26]. A classifier building linear logistic re-453

gression models. LogitBoost with simple regression functions as454

base learners is used for fitting the logistic models.455

– Multilayer Perceptron (MLP) [27]. Neural network that uses the456

backpropagation algorithm to train the model.457

– Support Vector Machines (SMO). [28] Implements John Platt’s458

sequential minimal optimization algorithm for training a support459

vector classifier. In our research, we adopted a quadratic polyno-460

mial kernel to perform the numerical simulations.461

• Tree-based models462

– Decision Tree (J48) [29]. Induces classification rules in the form463

of a pruned/unpruned decision tree.464
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– Random Tree (RT) [30]. Decision tree without pruning that con-465

siders k randomly chosen attributes at each node.466

– Random Forest (RF) [31]. Bagging of random trees.467

– Fast Decision Tree (FDT) [32]. Builds a tree using information468

gain and prunes it using reduced-error pruning.469

– Best-first Decision Tree (BFT) [33]. Classification trees that use470

binary split for both nominal and numeric attributes.471

– Logistic Model Tree (LMT) [34]. Decision trees for classification472

that use logistic regression functions at the leaves.473

• Instance-based models474

– Nearest Neighbor (NN) [35]. Instance-based (lazy) classifier that475

simply chooses the closest instance to the test instance and returns476

its class.477

– k-Nearest Neighbors (kNN) [35]. Lazy learner that computes the478

predicted class based upon the classes of the k training instances479

that are most similar to the test instance, as determined by a480

similarity function.481

– K∗ classifier (K∗) [36]. Instance-based classifier similar to kNN482

that uses an entropy-based distance function.483

• Fuzzy-rough models484

– Fuzzy-Rough k-Nearest Neighbors (FRNN) [37]. Nearest neighbor485

model that utilizes the lower and upper approximations from fuzzy486

rough set theory to classify test instances.487

– Vaguely-quantified k-Nearest Neighbors (VQNN) [38]. Fuzzy-rough488

model that emulates the linguistic quantifiers some and most when489

performing the classification process.490

In our simulations, we retain the default parameter settings implemented491

in Weka v3.6.11 [39], therefore no classification algorithm explicitly performs492

parameter tuning. Despite the fact that a proper parametric setting often in-493

creases the algorithm’s performance over multiple data sources [40], a robust494

classifier should be able to produce good results even when its parameters495

might not have been optimized for a specific problem.496
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Analogously to the previous simulations, we utilized Cohen’s Kappa coef-497

ficient to quantify the algorithms’ performance. Figure 6 displays the average498

Kappa measure attained by each classification algorithm across the selected499

datasets. The results show that FRCN is the second-best ranked algorithm500

whereas LMT arises as the best-performing classifier.501

Figure 6: Average Kappa values reported by each classifier.

For this experiment, the Friedman test suggests rejecting the null hypoth-502

esis (p-value = 1.4396928E−10 < 0.1) for a confidence interval of 90%. This503

suggests that there are significant differences between at least two algorithms504

across the 140 datasets adopted for simulation.505

Table 4 summarizes the p-values reported by the Wilcoxon signed rank506

test and the corrected p-values according to several post-hoc procedures us-507

ing FRCNs as the control method. The results indicate that LMT is the508

best-performing classifier in our study, with no significant differences spot-509

ted between our proposal and MLP, RF, SMO and SL, as the null hypothesis510

was accepted in each of these pairwise comparisons.511

The superiority of LMT is quite interesting. This method allows inducing512

trees with linear-logistic regression models at the leaves. During the training513

process, it determines the appropriate number of boosting iterations by in-514

ternally cross-validating the model until the performance ceases to increase.515

This is somehow similar to the RCNs’ parameter tuning step that our fuzzy516

approach attempts suppressing, so one may question whether including the517

LMT algorithm in our simulations is fair at all.518
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Table 4: Adjusted p-values according to different post-hoc procedures using the proposed
fuzzy-rough classifier (FRCNs) as the control method.

Algorithm p-value Bonferroni Holm Holland Null Hypothesis
RT 1.29E-11 2.34E-10 2.21E-10 2.21E-10 Rejected
DT 4.94E-11 8.91E-10 7.92E-10 7.91E-10 Rejected

NBU 3.79E-08 6.82E-07 5.68E-07 5.68E-07 Rejected
FDT 6.31E-07 1.13E-05 0.000008 8.83E-06 Rejected

FRNN 8.94E-07 0.000016 0.000011 1.16E-05 Rejected
NN 2.15E-06 0.000038 0.000025 2.57E-05 Rejected
NB 5.51E-06 0.000099 0.000060 6.06E-05 Rejected

BFT 3.20E-05 0.000576 0.000320 0.000319 Rejected
kNN 7.13E-05 0.001285 0.000642 0.000642 Rejected
K∗ 0.005752 0.103543 0.046019 0.045103 Rejected

LMT 0.006376 0.114778 0.046019 0.045103 Rejected
J48 0.010528 0.189511 0.063170 0.061531 Rejected

VQNN 0.010947 0.197052 0.063170 0.061531 Rejected
SL 0.109578 1.000000 0.438314 0.371388 Failed to reject

SMO 0.273587 1.000000 0.820761 0.616689 Failed to reject
RF 0.940694 1.000000 1.000000 0.996482 Failed to reject

MLP 1.000000 1.000000 1.000000 1.000000 Failed to reject

On the other hand, FRCN’s superiority upon other instance-based clas-519

sifiers such as kNN or K* is remarkable. We conjecture that this could be a520

direct result of using all the available evidence to infer the most likely deci-521

sion for a new instance, instead of only using the information contributed by522

the positive region (e.g., the k closest neighbors). Combining such evidence523

in a nonlinear manner as the FRCN neurons do is likely another key piece524

towards the attainment of high prediction rates.525

Equally important is the fact that our classification algorithm provides526

an introspection mechanism into its decision process, which stands as its527

chief advantage over comparably accurate black-box classifiers. It is fair to528

mention that the literature includes several neural models that provide such529

explanatory features. For example, the Evolving Fuzzy Neural Networks [41],530

the Dynamic Evolving Neural-Fuzzy Inference System [42] and the Evolv-531

ing Spiking Neural Networks [43] all rely on low-level fuzzy rules to extract532

knowledge from the problem domain. This cannot be naturally achieved with533

our high-level approach. However, in presence of high-dimensional problems,534

these algorithms induce a large number of fuzzy rules with many antecedents,535
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which are difficult to interpret in practice. The number of causal rules cod-536

ified into an FRCN does not depend on the number of attributes but on537

the number of decision classes in the problem at hand. This guarantees that538

the introspection mechanism attached to FRCNs remains fairly interpretable539

and unaffected by the problem dimensionality.540

5. Conclusions541

In this paper, we introduced the notion of fuzzy-rough cognitive mapping542

in an attempt to get rid of the parameter learning requirements of RCN-based543

models. In the FRCN algorithm, information granules have soft boundaries,544

thus leading to gradual transitions between the classes as opposed to abrupt545

transitions that regularly occur in crisp environments.546

The results have shown that the proposed fuzzy classifier is capable of out-547

performing the crisp RCN variant regardless of the adopted distance function.548

In spite of that, the Lukasiewicz operators and the HMOM distance function549

stand as the best choices. From the comparison between the best-performing550

fuzzy model and 17 state-of-the-art classifiers, we concluded that FRCNs are551

as accurate as the most successful black boxes. The main advantage of our552

granular neural network relies on its ability to elucidate its decision process553

using inclusion degrees and causal relations. It is worth mentioning that554

our classifier performs better than other instance-based learners across the555

datasets adopted for simulation purposes.556

More importantly, the results support the hypothesis behind our research:557

that the fuzzy-rough approach allows completely suppressing the parametric558

requirements behind rough cognitive mapping without either harming its559

performance or significantly increasing its computational complexity.560

Of course, the classifier presented in this paper is no panacea. While the561

foundations underpinning FRCNs seem quite intuitive for mathematicians,562

it may not be intuitive enough for experts with no background in Computer563

Science or related areas. Besides, computing a transparent decision model564

does not necessarily imply that we can understand the problem domain at565

a low level. As a future work, we will investigate other strategies to au-566

tomatically construct FCM-based classifiers from historical data. Deriving567

FCM-based models with lower abstraction levels leads to truly interpretable568

classifiers although their accuracy may be compromised.569
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