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Chapter 1

Introduction and research

methodology

1.1 The use of process mining in operational excel-

lence

Companies nowadays are comprised of a large set of business processes that are some-

times deeply intertwined with each other, making it hard to get a decent overview of

the different flows of data, activities and resources. Besides, as new technologies and

customer expectations grow faster than ever, companies strive to modify and improve

their processes and ways of working continuously. To keep up with changing envi-

ronments, business processes should be monitored at a constant rate and companies

should implement process analysis methods and improvement teams. The concept

of continuous improvement has been found by Bigelow [18] and Drohomeretski et al.

[46] to be related to concepts such as lean manufacturing, Six Sigma, Business Pro-

cess Improvement (BPI) and business re-engineering in the Total Quality movement.

Because these individual programmes are sometimes insufficient for companies, ac-

cording to van Assen [154], operational excellence can be reached by the combination

of different elements. First, the production and delivery system should be analysed

based on the reduction of lead time and the management of variability. Next to this,

concepts such as lean management and Six Sigma can be used for business (process)

improvement and optimisation matters. Moreover, resources such as people and ma-

chines should be handled in a clever way to enable continuous improvement. And

1
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finally, strong leadership and a good change management system should be in place.

Lean management is mainly focused on the reduction of waste which can be for-

malised as, among others, over-production, waiting time, excess processing, delays or

batch processing [35, 110, 154]. Waste reduction can be operationalised by identify-

ing and analysing the value flow of a business process, implying that only activities

and tasks that add value to the customer should be executed. Six Sigma, on the

other hand, focuses more on the quality of business processes and aims for the min-

imisation of defects and errors in the process, in order to eliminate variation and

improve the overall quality of the company [6, 8, 93]. The most well-known improve-

ment method in the field of Six Sigma is the DMAIC-cycle, which stands for define,

measure, analyse, improve, and control [6, 84, 154]. Next to lean management and

Six Sigma, another improvement methodology that has been recognised is the theory

of constraints (TOC), which is more focused on detecting and removing constraints

or bottlenecks in business processes [110]. Although these methods and techniques

have been employed for many years in industry, they are defined to be less useful

in volatile or fast changing environments in which service companies are operating.

Many of these operational excellence techniques are also still based on rather qual-

itative and ”paper-and-pencil”-based approaches implying that the results of these

methods and the decisions taken based on these results may be rather subjective and

dependent on the person or team that has been performing the analyses.

Moreover, most studies found in literature focus on the application of lean manage-

ment and Six Sigma in manufacturing environments. Even though all executed work

can be seen as part of a process that possibly includes variability, and each process

produces data that can possibly explain this variability, service-oriented companies

are until now less convinced of the use of these techniques within their organisation,

mostly because of the more volatile and fast-changing environment.

In this light, process mining is recognised to be a potential supporting tool in the

field of operational excellence as it focuses on the analysis of business processes in order

to get an insight into the processes and to improve them accordingly. Process mining

refers to the retrieval of knowledge from process execution data, which is stored in so-

called event logs. It mainly entails three types, which are (i) the discovery of process

models from event logs, (ii) compliance checking of these discovered models with the

underlying event log, and (iii) enhancing the processes accordingly [155]. Event logs

are the starting point for a process mining project, as they are composed of data

from process-aware information systems (PAIS). An event represents “something”

that happens within the process and is captured by a PAIS. It can, for example, refer

to the moment at which a clerk starts handling a specific file or to the moment at
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which a specific task is completed for a customer. A wide range of algorithms has been

presented to discover process models from event logs, with the alpha-algorithm as the

one that was introduced first [155]. However, these algorithms are mostly based on

parameters and assumptions that should be chosen by the process analyst to simplify

the process model discovery. As the models that are discovered with these algorithms

can therefore become too precise or too generic to reflect the actual behaviour in the

business process, our definition of process mining also covers the retrieval of knowledge

from event logs without first discovering a process model.

Given the potential of process mining in the field of operational excellence and

its recognition as a key challenge for process mining research in the Process Mining

Manifesto [160], further research is required on this topic. Existing research efforts

seem to be limited and it is not always clear from literature how existing techniques

are used to support the process of business process performance measurement and

improvement.

1.2 Research objective

A significant research gap exists on the interplay between operational excellence and

process mining, implying the need for additional research efforts. Existing operational

excellence techniques require more data-based analyses in order to be more objective

and therefore more effective. Process mining is a promising field to support these

operational techniques, but focuses too often on model-based analyses. Therefore,

this dissertation addresses the following central research question.

How can process mining be applied to business processes in order to com-

plement existing operational excellence approaches?

The first research objective of this dissertation is therefore the investigation

of the problem in order to create an overview of the requirements of the artifact

that is needed to solve the problem at hand. To do this, first a literature review

on both operational excellence and the interplay between operational excellence and

process mining is performed. This way, the problem context will be outlined. The

findings from this literature review are then complemented with the findings from a

list of interviews that are conducted with three business experts to make sure that the

requirements and needs are confirmed by practitioners. Based on this comparison and

the analysis of the findings from literature and business experts, the requirements of

the artifacts that should be developed to solve the solution can be outlined precisely.
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Once the requirements of the artifact are outlined, the second research objec-

tive of this dissertation entails the identification and development of the artifact(s)

that fulfil these requirements. From the problem investigation and requirement anal-

ysis it will be clear that the required artifacts use unbiased event log knowledge

to support operational excellence techniques. In contrast to most process mining

research that is concerned with the alignment between the behaviour that can be

observed in the discovered process model and the behaviour in the underlying event

log, the artifacts that are required to solve the shortcomings focus on the objective

measures that can be directly learned from the event log. In order to investigate the

value of the developed artifacts, different evaluation methods will be administered,

as the artifacts will be applied to both artificial and real-life cases, and they will be

discussed in an iterative manner with business experts during the development and

evaluation stages.

1.3 Outline of the thesis

Given the limited existing work on the use of event log knowledge in the light of

operational excellence, the first part of this dissertation (Chapters 2-3) contains a

literature overview of existing techniques in the field of operational excellence and on

the interplay of operational excellence and process mining. From this foundation, the

second part of the dissertation (Chapters 4-7) focuses on the development of methods

that retrieve event log insights to support specific operational excellence concepts.

Throughout this dissertation, the focus will be on service companies, in which the

resources mainly concern people. In Figure 1.1 an overview of the outline of the

thesis is provided.

Chapter 2 starts with an introduction to the evolution of quality management

and the emergence of different methodologies in the field of operational excellence.

Improvement concepts such as lean management, Six Sigma and the theory of con-

straints will be elaborated and compared. As it is not intended to provide an exhaus-

tive overview of all existing philosophies, this chapter will provide an identification of

the underlying principles of the operational excellence field, in order to analyse where

process mining, which is discussed in Chapter 3, can be useful. From this analysis, it

can be concluded that not one single strategy or roadmap exists for companies to fol-

low in order to improve their processes, and a combination of multiple methods and

tools should be incorporated. Moreover, the existing analysis techniques are often

rather qualitative and based on paper-and-pencil approaches with a lack of support
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of data-based analyses [118]. This also implies that the operational excellence ap-

proaches are rather subjective and depending on the person performing the analyses

and the team involved in the process.

Chapter 3 supplements these findings with an introduction to the field of busi-

ness process management and process mining, and an outline of the match between

process mining and the philosophies and principles of operational excellence discussed

in Chapter 2. Here we find claims that specific guidelines for business process optimi-

sation are limited in literature and that it is not always clear how existing techniques

are used to support the process of business process improvement. Next to this, most

of the research on process mining is focused on discovering process models from event

logs and checking the conformance between these two. These models are learned

from event logs with certain algorithms, based on parameters and assumptions, and

are often manually manipulated with sliders and filters, implying that unobserved

behaviour possibly appears in the model. Conclusions taken based on these models

can therefore be less reliable or even incorrect as they possibly contain unobserved

behaviour or they do not contain all information of the business process under anal-

ysis.

In order to address this shortcoming, this dissertation will introduce the concept

of parameter-free log-based process metrics that present objective measures that are

directly learned from the event log. The requirements for these metrics are identified

in Chapter 4. Firstly, both from the findings in literature and from interviews

conducted with business people, an exact overlap was found between the different

categories of process performance measures that should be focused on in a business

process improvement project. These categories, which are often referred to as the

Devil’s Quadrangle [47], are (i) time, (ii) cost, (iii) quality, and (iv) structuredness.

Secondly, the measurements should also be executed on different levels of analysis in

order to provide a realistic view on the underlying process. Therefore, the levels of

analysis that arose from the interviews range from the complete end-to-end process

to the specific combination of a resource executing a specific activity. Moreover,

the developed measures should contain clear descriptions of the measure itself, the

requirements for event data, and the underlying calculation, as this is often missing in

existing performance measures. And finally, the artifacts that are created in order to

overcome the lack should be understandable for business people. This can be realised

by adding suitable visual representations and a translation of technical concepts to

concepts that are interpretable by the process owners.

The goal of Chapter 5 is to introduce the concept of log-based process metrics,

which provide a picture of the present process behaviour that is not biased by a model,
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Figure 1.1: Outline of the thesis.

and can be used to compare different event logs in an objective manner. The presented

metrics are structured along two dimensions, which are time and structuredness, and

are calculated on one of the analysis levels: log-, case-, trace-, activity-, resource-

or resource-activity level. Moreover, they are applied to a running example and the

results are discussed. Finally, a dashboard that has been created to visualise all

metrics is provided.

One of the operational excellence concepts that was stated to be an indication of

waste in a business process is batch processing. Batch processing influences process

performance as it can, for instance, lead to longer waiting times for certain cases when

multiple cases are gathered before processing starts [184]. Consequently, it should be

taken into account when modeling and evaluating business processes. To this end,

insights in batching behaviour should be generated, which is the topic of Chapter 6.

Firstly, the concept of batch processing is elaborated upon and three types of batch

processing are distinguished and formally defined. Secondly, a resource-activity cen-

tered approach is presented to identify these batch processing types from an event log.
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Finally, batch processing metrics are defined to gain insight in the characteristics of

the identified batches and the implications of batch processing on process execution.

Given these contributions, the Batch Organisation of Work Identification algorithm

(BOWI) is presented in order to provide useful insights in the batch organisation of

work and its influence on process execution.

To demonstrate the applicability of the presented log-based process metrics in

Chapter 5, and their added value in the light of operational excellence, they are

applied to a real-life event log of a Belgian utilities company in Chapter 7. The

process under analysis presents the total flow from the request made by a customer

to the aftercare which includes the invoicing. From this application, it can be stated

that the presented metrics represent the business process behaviour in an objective

way, without any influences from underlying algorithms or assumptions. Moreover,

different groups of event logs can be more easily and correctly compared and analysed,

both over time and based on certain case attributes such as region or building.

The final chapter of this thesis, Chapter 8, summarises key conclusions from the

various chapters and highlights interesting directions for future research.

1.4 Research methodology

1.4.1 Introduction to design science research

This dissertation will be conducted following the principles and steps of the design

science research (DSR) methodology. The origins of design science research are often

traced back to Simon [142]’s The Sciences of the Artificial [14, 101]. Johannesson

and Perjons [78] define design science as “the scientific study and creation of artifacts

as they are developed and used by people with the goal of solving practical problems

of general interest”. In other words, design science is a research methodology that is

used to develop an artifact that acts as a solution for a practical problem in reality.

Therefore, in contrast to natural or behavioural science, design science is not only

focusing on understanding and explaining a specific situation in the world [3, 112, 115],

but also on changing and improving this situation. However, despite the outlined

differences between natural science and design science, Niehaves [112] states that

both are not mutually exclusive, but complementary.

In the past years, there has been some discussion on the exact terminology of

design science research. According to Iivari [71], the concepts design science and

design research are used interchangeably in literature. However, Alturki et al. [4] and

Johannesson and Perjons [78] declare that design science can be seen as a special kind
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of design research. According to Winter [181] “design research is aimed at creating

solutions to specific classes of relevant problems by using a rigorous construction and

evaluation process, and design science reflects the design research process and aims at

creating standards for its rigour”. This distinction is based on the difference between

the science of design, which is artifact construction and evaluation at a generic level,

and design science, the construction and evaluation of specific artifacts, defined by

Cross [31]. In this sense, it is not the finality of design science research to solve a

specific problem in a specific context, but to develop an artifact and its associated

knowledge that enables solving a class of problems [173]. From the previous, it follows

that design science research should not focus on one specific case. It has to generate

generalisable knowledge and principles that can be applied to a particular class of

problems.

According to Alturki et al. [4], there is no agreement on the definition of an artifact.

Mettler et al. [104] refer to the definition provided by Simon [142], which is “The term

artifact is used to describe something that is artificial, or constructed by humans, in

contrast to something that occurs naturally”. Johannesson and Perjons [78] add to

this definition that an artifact is created “with the intention that it be used to address

a practical problem”. They also state that artifacts are always embedded in a larger

context. As was already stated by McKay and Marshall [101], two important aspects

of artifacts are thus that they are (i) created by humans and (ii) have utility.

Venable et al. [174] distinguish between two categorisations of artifacts. On the one

hand, a distinction is made between product and process artifacts. While the former

is used by stakeholders to perform an activity, the latter describes how an activity

can be performed. On the other hand, technical and socio-technical artifacts are

distinguished, depending on the necessity of human stakeholders to actively interact

with the artifact to achieve its potential [174]. Gregor and Hevner [61] state that

design science research in the field of information systems involves the development

of socio-technical artifacts. March and Smith [94] identified four types of artifacts

which have been adopted by many other researchers afterwards [13, 19, 49, 68, 78, 95,

104, 115, 171, 181]. These types are constructs, models, methods, and instantiations,

where the latter can be seen as the aggregations of the previous types of artifacts in

specific problem situations. Goldkuhl and Lind [58] separate an instantiation from

the other artifact types as the former can be seen as the demonstration of knowledge,

while constructs, methods, and models are considered as meta-artifacts. According to

Venable [171] and Winter [181], Rossi and Sein [130] add better theories and testable

design process hypotheses as additional artifacts. Also Peffers et al. [116] add two

extra artifact types to this list, which are algorithms and frameworks.
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Although the design science research field is growing steadily, no commonly

accepted framework of definitions, methods, and methodological considerations is

present [4, 181]. Braun et al. [19] also state that there still is no agreement on design

science methods, techniques, and procedures.

1.4.2 Design science research framework

Besides the potential of DSR to develop artifacts to solve problems and contribute

to the knowledge base, several issues can be detrimental for the project’s success.

Baskerville [14] identifies a series of these risks such as an inadequate problem specifi-

cation and an insufficient analysis of the existing knowledge base. As a consequence,

following a structured and systematic approach towards DSR can support a researcher

to avoid these risks to materialise.

In literature, several methodological frameworks have been proposed to outline

the key activities that need to be conducted when performing design science research.

Illustrations of such frameworks can be found in [4, 5, 15, 16, 19, 20, 27, 68, 56,

78, 94, 101, 105, 114, 117, 141, 153, 171, 172, 180, 181]. These provide guidance to

researchers wishing to apply the design science principles [171, 173] and presents an

effort to standardise the creation of knowledge [112]. Even though these frameworks

tend to have common grounds, Alturki et al. [5] and Mettler et al. [104] state that

no consensus is reached as the activities they prescribe can differ. Braun et al. [19]

also make note that methods and procedures to conduct design science research with

broad support are still lacking.

Despite the wide range of design science activity frameworks and the apparent

lack of consensus between them [5, 104], an analysis of the aforementioned DSR

frameworks shows that they all have common grounds. Differences mainly stem from

the fact that, on the one hand, different frameworks emphasise different activities

when conducting design science research and, on the other hand, differences in the

scope of the framework, i.e., to which extent factors surrounding the DSR project are

taken into account.

Given the previous observations, this dissertation will use a synthesis framework,

which is visualised in Figure 1.2. This synthesis framework combines the strengths of

several existing frameworks, while preserving its clarity in order to support researchers

aiming to conduct design science research. This framework strikes a balance between

simplicity and clarity on the one hand and completeness on the other hand.

The developed synthesis framework consists of three components: the problem

context, the knowledge base, and the DSR-project. The DSR-project is comprised
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Figure 1.2: Design science research synthesis framework (research in progress)

of five steps: problem identification, requirement specification, artifact design and

development, artifact evaluation, and result communication. Moreover, a central

position is attributed to the feedback mechanism of the DSR-project. After the

design science project has been completed, the artifact and the knowledge about this

artifact are communicated to the different stakeholders, which are positioned within

the problem context. Interaction with the knowledge base is necessary in order to

build on existing knowledge and contribute the design science project findings to

the knowledge base for further research. The remainder of this section will briefly

discuss the steps in a DSR-project, mainly focusing on how they are applied in this

dissertation.

1.4.3 Problem identification

As indicated in the introduction of this section, a DSR-project is instigated by a

particular problem originating from a problem context [19, 58, 78, 173]. A wide

variety of problems can be tackled, ranging from vague symptoms of an implicit

problem to explicitly articulated problems. During the problem identification step in

a DSR-project, the researcher has to gain a clear and precise understanding of the

problem at hand [171]. The problem domain in this thesis is therefore firstly explored

by conducting a literature review of operational excellence which aims to highlight

its strengths and weaknesses.

Chapter 2 contains an overview of the evolution of quality management and some

well-known improvement concepts such as lean management, Six Sigma and the the-

ory of constraints. From the observations in this literature review it can be seen that
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many existing techniques are based on qualitative and paper-and-pencil approaches,

implying that the actual problems and details are often ignored. Moreover, the re-

quirements for the data that is used for the analyses are often not clear and the

principles of lean management are also found to be less useful in volatile or fast

changing environments. Six Sigma tools, which are more statistically underpinned,

are still experienced to be rather subjective as they are often based on interviews and

human opinions.

Next to this, the use of process mining in the field of operational excellence is

explored. As process mining is related to the business process management field

which focuses on business process improvement, the link with operational excellence,

which is focused on optimising the operational ability of companies, is straightforward.

However, from the literature overview it was found that specific guidelines for business

process optimisation are limited in literature and that some authors in literature claim

that it is not always clear how existing techniques are used to support the process of

business process improvement. Next to this, most of the research on process mining is

focused on discovering process models from event logs and checking the conformance

between these two, while process models can be biased representations of the business

process as they are based on algorithms and assumptions. Based on these findings,

the next step in the design science research approach is to define the requirements for

a suitable solution to solve the problem at hand.

1.4.4 Requirement specification

In the requirement specification step, an artifact that could address the problem is

identified and described [78]. Moreover, requirements which have to be taken into

account when this artifact is designed and developed are outlined [78, 117]. In DSR

literature, several types of artifacts are distinguished. A commonly used typology is

proposed in March and Smith [94], where a distinction is made between constructs,

models, methods, and instantiations [13, 49, 78, 104, 115].

Constructs represent terminology, definitions, and concepts that are required to

express the problem and its potential solutions. By interconnecting these constructs,

models are used to represent a solution for the problem at hand. Taking both con-

structs and models as an input, methods prescribe a series of steps through which

a solution to the problem can be created. An instantiation is the operationalisation

of constructs, models and methods within a particular environment, resulting in an

operational system [78, 94].

Chapter 4 identifies the requirements that emerged from literature, which is out-
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lined in Chapter 2 and Chapter 3, and the interviews that have been conducted with

people from industry in order to better understand the shortcomings in practice.

Given the potential of process mining in the field of operational excellence and the

recognition as a key challenge for process mining research in the Process Mining Man-

ifesto [160], further research is required on this topic. Existing research efforts seem

to be limited and it is not always clear from literature how existing techniques are

used to support the process of business process performance measurement.

1.4.5 Artifact design and development

Using the artifact outline from the requirement specification phase, an artifact is actu-

ally designed and developed in this step, taking into account the defined requirements

[78]. The necessary design and development efforts can range from small adjustments

to existing artifacts to establishing a completely new artifact [171].

In this thesis, significant design and development efforts are required as the arti-

facts do not have an incremental nature, i.e., they are not merely minor modifications

to existing artifacts. Chapter 5 presents an overview of useful, log-based process met-

rics that provide an unbiased picture of the present process behaviour. Additionally,

these metrics can be used to compare different event logs in an objective manner.

Next to the definitions and statements explaining the metrics, a visualisation of the

metrics, presented as a dashboard, is also provided in order to fulfil the requirement

of understandability and interpretability for business people.

Chapter 6, thereafter, presents a list of metrics concerning the concept of batch

processing, which was defined as one of the indications of waste in a business process.

Next to the list of batch processing metrics, a batch organisation of work identification

(BOWI) algorithm is developed, to discover different types of batch processing from

an event log.

1.4.6 Artifact evaluation

The following step in a DSR-project is the evaluation of the artifact. Johannesson

and Perjons [78] make an explicit distinction between artifact demonstration and

evaluation. While the former aims to demonstrate that the artifact can be applied by

using it in a particular case, the latter determines the ability of the artifact to tackle

the problem at hand and the degree to which the specified requirements are fulfilled.

The synthesis framework in Figure 1.2 combines all evaluative actions in a single step,

as is the case in the frameworks proposed by Hevner et al. [68], Sein et al. [141], and

Venable [171, 172].
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Several evaluation methods can be distinguished. For instance: Peffers et al. [116]

consider eight ways of evaluating artifacts, i.e., a logical argument, expert evaluation,

a technical experiment, a subject-based experiment, action research, a prototype, a

case study, and an illustrative scenario.

From these evaluation methods, this thesis mainly uses expert evaluations and

illustrative scenarios. Expert evaluation involves artifacts being judged by one or

more experts in a particular field [116]. This is used to evaluate the usefulness of the

log-based process metrics in Chapter 5. Moreover, papers on this work have been

submitted to the peer review system of different conferences. Illustrative scenarios

require the application of an artifact to artificial or real-life situations to show its

usefulness [116]. In this dissertation, the introduced metrics in Chapter 5 are applied

to both artificial event logs, within the same chapter, and to a real-life event log in

Chapter 7. The former is also included in the evaluation framework of Hevner et al.

[68] and is referred to as simulation evaluation, i.e., the application of an artifact on

artificial data. The dashboard that is presented in Chapter 5 is evaluated by expert

evaluations on different international conferences and in a real-life business process.

The batch processing metrics and the BOWI algorithm to discover batch processing

from event logs, which can be found in Chapter 6, are applied to both an artificial

event log and to real-life event logs.

1.4.7 Result communication

The final step of a DSR-project involves the communication of the artifact and knowl-

edge about this artifact [78]. Communication should also frame the problem at hand

and stress its relevance [117]. The importance of spreading the results of a DSR-

project is also emphasised by Hevner et al. [68] in one of their seven DSR guidelines.

Besides the current thesis, formal communication to an academic audience is per-

formed by means of presentations at national and international conferences and pub-

lications in peer-reviewed conference proceedings [77, 98, 148, 149]. Moreover, the

research output presented in Chapter 6 is published in a scientific journal [99].

At an informal level, the research results are communicated at conferences and

events where people from industry are present. All results of the evaluation that

has been applied to the real-life case study in Chapter 7 have also been discussed in

detail with two process experts and some other employees of the organisation who

are all involved in the process under analysis. The importance of the latter, i.e.,

communication towards a non-academic audience, is stressed by both Hevner et al.

[68] and Peffers et al. [117].



14 Chapter 1

1.4.8 Feedback mechanism

Until now, DSR is presented as a linear process, starting from identifying the problem,

followed by defining an artifact and its requirements, designing and developing the

artifact, evaluating it, and communicating the key results. However, throughout the

study, it might be required to return to a prior stage, as recognised by, amongst others,

Peffers [117] and Venable [171, 172]. Such a feedback mechanism is integrated in the

synthesis framework in Figure 1.2 indicating the need for continuous assessment.

Continuous assessment implies that during each step, project responsibles should

remain aware of the outcome of prior steps and determine whether it is required to

revisit a particular step to revise its output. Some decisions that seemed appropriate

at a particular point in time, for instance related to the requirements, might not be

valid when the artifact is being developed. Suppose that during artifact development,

the project staff concludes that the implementation of particular features requires

significantly more efforts than anticipated. When the budget is fixed, this conclusion

might require to return to a prior step to adjust the project’s scope. Braun et al.

[19] provide another example by stating that requirements can be adjusted during

the project, anticipating upon new insights gathered along the way. Continuous

assessment is not modelled as an autonomous activity as it can be better characterised

as an attitude that is required throughout the project. The latter explains its different

shape in Figure 1.2.

Within this thesis, continuous assessment mainly gave rise to a return from artifact

evaluation to the design and development step. These steps are closely intertwined

when, for instance, the application of a developed method to an artificial dataset

leads to the conclusion that particular aspects within the method need to be revised.

Another illustration is the addition of artifact requirements during its development,

as suggested by Braun et al. [19]. During the development of the metrics presented

in Chapter 5, a first evaluation step was already done by applying the metrics to an

artificial event log, which provides direct indicators for the need for extra levels of

analysis or applications that could be useful in other, related metrics. The need to

make the results and analyses visual and interpretable for the process owners also

arose after presenting the results of the developed and applied metrics to the business

people. Also other smaller changes to the requirements arose during these discussions,

implying a return to the requirement specification step.
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1.5 Conclusion

This thesis focuses on the use of event log knowledge, i.e., process mining, to support

business process improvement in the light of operational excellence. Despite the

potential of process mining to support operational excellence concepts such as lean

management and Six Sigma, literature on the systematic use of event log knowledge

within this context is limited. In order to overcome this research gap, two research

objectives are covered with this dissertation. On the one hand, an analysis of existing

techniques and uses in the field of operational excellence is provided. Given this

foundation, the existing work is supplemented with novel methods that retrieve event

log insights to support specific operational excellence concepts. The artifacts that are

created are parameter-free log-based process metrics.
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Operational excellence

2.1 Introduction

Customer expectations, new technologies and growing global competition drive com-

panies to continuously modify and improve their business processes. These processes

are therefore dynamic by nature and constantly changing. Different methodologies

and philosophies are developed to implement these business changes. Nowadays,

companies require world-class operating systems and processes which include decent

control and planning, good information systems that execute the company processes

in an efficient and effective way, and a culture of continuous improvement to become

operationally excellent [154]. Following the operational excellence cycle presented by

Bigelow [18], which is shown in Figure 2.1, clear requirements should be established,

effectively communicated, and continuously assessed. Different internal and external

sources such as customers, suppliers, corporate policies, or qualification and validation

protocols, provide these requirements. After defining the necessary requirements, all

people involved should be informed and trained in order to be familiarised with the

requirements. Finally, compliance to the established requirements should be main-

tained by continuous assessment and auditing. This can only be achieved with a

management committed to total compliance, quality, and continuous improvement.

The concept of continuous improvement has been identified by Bigelow [18] and

Drohomeretski et al. [46] to be related to methodologies such as lean manufacturing,

Six Sigma, business process improvement (BPI), and business re-engineering, which

can be positioned in the Total Quality movement. Because these individual pro-

grammes are sometimes insufficient for companies, hybrid methods such as Lean Six

17
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Figure 2.1: The operational excellence cycle [18].

Sigma have been introduced. Also van Assen [154] states that operational excellence

can only be reached by an aggregation of different elements. First, the production

and delivery system should be analysed, optimised, and controlled by operations re-

search models that are based on the reduction of lead time and the management of

variability. Next to this, concepts such as lean management and Six Sigma can be

used for business (process) improvement and optimisation matters. Moreover, people

and machines should be handled in a clever way to enable continuous improvement.

And finally, strong leadership and a good change management system should be in

place.

The goal of this chapter (Figure 2.2) is threefold. Firstly, (i) an introduction to

the evolution of quality management and the emergence of different methodologies is

given. Secondly, (ii) improvement concepts such as lean management, Six Sigma, and

the theory of constraints will be discussed and compared. However, it is not intended

to provide an exhaustive overview of all existing philosophies, yet (iii) an identification

of the underlying principles will be presented, which is the third objective of this

chapter.

Section 2.2 contains an overview of the evolution of quality management, followed

by an introduction to the main concepts used throughout this text in Section 2.3.

Next, an introduction to the lean management philosophy is provided in Section 2.4,
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Figure 2.2: Outline of the thesis - Chapter 2.

including different tools and techniques that have been used in literature. Further-

more, Six Sigma and its position within the total quality management field is discussed

in Section 2.5. Also the concept of variability and the hybrid methodology Lean Six

Sigma are presented here. Finally, the theory of constraints is explained in Section 2.6.

After these methodologies have been introduced, their similarities and differences are

analysed in Section 2.7, followed by an overview of the underlying principles of these

methodologies in Section 2.8. Conclusions are drawn in Section 2.9.

2.2 Evolution of quality management

Quality control goes back in time until the beginning of the 20th century. Different

quality evolution frameworks exist to indicate the different periods over time. Ac-

cording to Garvin [55], four separate stages could be identified based on the time

in history: inspection, which can be located from 1900 until the pre-1930s; statisti-

cal quality control (SQC), from the 1930s onwards; quality assurance (QA) starting
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in the 1950s; and strategic quality management (SQM) which only started in the

1980s. In the inspection phase, specialists were employed to inspect the quality of the

products in order to pursue product uniformity, while the focus in the SQC phase is

on the manufacturing process instead of the final product. This way, the products

are standardised and manufactured according to the requirements of the customers.

Statistical tools and techniques were used, in comparison to the gauging and measure-

ment techniques in the inspection phase. In the QA stage, not only quality specialists

were involved, but the full workforce and the management are included to prevent

quality failures. In the SQM phase finally, the focus is completely on the needs of

the end customer and the market in order to gain a competitive advantage. Total

Quality Management (TQM) and Six Sigma only arose after Garvin [55]’s work, but

these two programmes can be considered to be equivalent to the SQM era [126]. In

1995, Tuckman [152] developed a framework focusing only on the late 20th century

quality developments or the SQM stage in Garvin [55]’s work. First, between the late

1970s to early 1980s, quality circles were developed. During the 1980s, the concern

of major companies shifted to the control of suppliers and sub-contractors. From the

mid-1980s customer satisfaction received more attention in the manufacturing and

service sectors. Finally, from the late 1980s, new areas such as public services be-

came more aware of quality. Some years later, Dooley [45] also expanded the work of

Garvin [55]. He predicted the next quality phase and established a link between Total

Quality Management (TQM) and the SQM stage in Garvin [55]’s work. The three

paradigms defined by Dooley [45] are caveat emptor (pre-industrial), quality control

(industrial) and TQM (post-industrial). In this last stage, Dooley [45] predicted that

organisational learning and participative management would become more important.

Finally, Dahlgaard [33] criticised Garvin [55]’s work for being too much focused on

Western companies and being too technical. Therefore, he analysed the Japanese

quality evolution and defined that the Japanese culture first imported and learned

from the West during the mid-1940s until the early 1960s. Later the imported ideas

were improved and implemented into the Japanese culture and from the early 1970s

until the early 1990s, the ideas were further mastered and exported to other countries.

The research concerning the TQM and Six Sigma concepts is never adequately men-

tioned in one of these frameworks. Therefore, Rajamanoharan et al. [126] developed

a flow structure which is given in Figure 2.3 based on all frameworks discussed here,

leading to the development of the Six Sigma and TQM concepts. The four stages

identified by Garvin [55] can be found in this top-to-bottom structure. The triangle

becomes wider at the bottom to illustrate the application of the frameworks and each

quality paradigm in the triangle is connected with a previous or next quality paradigm
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Figure 2.3: Flow structure of quality management [126].

to indicate the sequence between them.

In the remainder of this chapter, lean management (Section 2.4), Six Sigma and

its position within the broader concept of TQM (Section 2.5), and the theory of con-

straints (TOC) (Section 2.6) will be discussed, followed by a comparison of these

methodologies in Section 2.7. However, to make this overview of existing methodolo-

gies easier to understand, first some general concepts concerning the field of opera-

tional excellence are introduced in the next section.

2.3 Main concepts of operational excellence

Operational excellence can be defined as a management philosophy that focuses on

the excellence or superiority of an organisation based on its overall strategy. The

philosophy is mainly concerned with the continuous improvement of an organisation’s

processes and operations [18, 154]. It contains certain concepts that will be used

throughout this dissertation, which are defined in Table 2.1.

In order to measure and determine the level of operational excellence of an organ-

isation, analyses should be undertaken. Analyses are detailed examinations of the

elements or structure of something, such as a business process or a certain procedure.

These analyses can be undertaken with certain methods, which are the tools, tech-

niques, or processes that are used to perform analyses and calculations. An extensive

overview of tools and techniques used in the fields of the lean management and Six
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Table 2.1: Concepts of operational excellence.

OE concept Description

Analysis A detailed examination of the elements or structure of

something, such as a process.

Method A tool, technique, or process used to perform analyses and

calculations.

Tool An instrument to carry out a specific function.

Technique A manner to perform certain tasks or an ability to employ

certain skills.

Methodology A (research) strategy that outlines the way analyses are

undertaken and how methods are used for this.

Principle A fundamental truth or a collection of propositions that

serve as the foundation for a methodology.

Metric A quantifiable or verifiable measure that is used to track

and assess the status of a specific process.

KPI A measurable value that demonstrates how effectively a

company is achieving key business objectives.

Sigma will be provided in this chapter. Although these concepts are often used in-

terchangeably, tools can be defined as instruments to carry out a specific function,

and are therefore more narrow in focus, while techniques are manners or abilities to

perform certain tasks, which have a wider application and require specific skills or

training. Moreover, as was mentioned before, the philosophy of operational excellence

is based on some methodologies, which are defined as strategies that outline the way

analyses are undertaken and how methods are used for this. The methodology con-

cept is often used interchangeably with paradigm and philosophy. Methodologies in

the field of operational excellence that will be discussed in this dissertation are lean

management, Six Sigma, total quality management, and the theory of constraints.

These methodologies are based on certain beliefs and ideas, which will be defined as

principles in this dissertation. Principles are the fundamental truth or propositions

that serve as the foundation for the methodologies. Finally, to perform analyses with

certain methods, measures are required. These measures can be metrics, which are

quantifiable measures that are used to track and assess the status of a certain process.

An example of a metric is the total processing time of a certain activity within a cer-
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tain process. Other measures that are often used in the operational excellence field

are key performance indicators (KPIs), which are measurable values that demonstrate

how effectively an organisation is achieving key business objectives. An example can

be the number of new customers during the first quarter of the year. Based on these

underlying concepts, some of the most important methodologies in the operational ex-

cellence field are discussed next. An elaborate discussion of the concept of a business

process is provided in Chapter 3.

2.4 Lean management

The lean manufacturing system or Toyota Production System (TPS) was founded by

Toyota in Japan in the 1950s, but was only labelled as lean manufacturing in the

1990s by Womack and Jones [182]. The lean philosophy focusses on the reduction

of waste and elements not adding value to the process [6]. Lean manage-

ment emphasises small batch sizes and make-to-order production systems. Unlike the

traditional batch-and-queue production system, which results in large batch sizes,

excess inventory, and long queue times between production steps, the objective of

lean management is waste reduction through continuous improvement so only value

creating activities remain. This way, defects can be discovered faster and easier and

products are pulled by the customer, as they are only produced on customer demand,

resulting in higher quality [6, 12]. An overview of the five basic principles for reducing

waste that are generally acknowledged is shown in Figure 2.4 [35, 110, 154]. The five

principles are:

1. Understand the customer value. Find which products or services and fea-

tures of products and services add value and which can be identified as waste.

2. Identify and analyse the value stream. A value stream map is a process

flow of all activities that contribute value to the product or service, which has

been extended with data about speed, continuity of flow, and work in progress.

All non-value-adding and unnecessary activities are removed from the process.

3. Improve the value flow. By reducing work in queue, batch processing, and

transportation, the products or services can move through the system without

interruptions.

4. Let the customer pull value from the producer. Products or services not

demanded by customers should be avoided because they take up time, money,

and resources at the wrong moment.
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Figure 2.4: The five lean management principles of waste [154].

5. Pursue perfection and continuous improvement. Find ways to ensure

that the efforts to remove waste can be repeated.

Improvements or benefits owing to the use of lean management are operational

such as reduced lead times and inventory, and higher productivity and capacity;

administrative such as less errors and more streamlined customer service; and strategic

such as lower costs and higher customer satisfaction [6].

2.4.1 Definition of waste

Dahlgaard et al. [35] define waste as everything that increases cost without adding

value for the customer. Two types of muda or waste can be distinguished according

to van Assen [154]. The first type of muda should not be eliminated completely

because it refers to non-value-adding activities that are essential to maintain company

actions. An example can be a task that is added to the process to assure that the

final product complies with all safety standards. The second type of muda is not

only non-value-adding but it even destroys company value, such as errors or mistakes

that occur throughout the production process. Moreover, van Assen [154] defines

mura and muri as two other types of waste, which can be seen as drivers of the

first type of waste. Mura is related to excessive variation and unevenness, which for

example happens when the production process should rush at the end of the month

to meet the targets, using up resources that are not actually required. Muri has

to do with excessive loading of resources, causing them to have unnecessary stress,

by, for example, providing them unclear instructions or a lack of proper equipment.

The most common elements that can be classified as waste concerning to Pepper and

Spedding [118] and Hines and Rich [69] are:

1. Over-production. This can lead to excessive lead and storage times which
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cause defects that cannot be detected early, products that deteriorate, and pres-

sure on the work rate.

2. Waiting. This refers to goods laying in the company or people doing nothing.

Waiting time for workers may be used for training, maintenance or kaizen activ-

ities and should not result in overproduction. van Assen [154] adds the notion

of the psychology of waiting, in which is stated that the actual waiting time is

smaller than the perceived waiting time. For example, occupied time feels ac-

tually shorter than unoccupied time, just like in-process waits feel shorter than

pre-process waits.

3. Excess processing. This refers to complex solutions that are implemented to

solve simple problems.

4. Delays. This can be deliveries after due date or activities taking up more time

than planned.

5. Excessive transportation. This may be double handling or excessive move-

ments.

6. Unnecessary inventory. This leads to higher lead times and problems that

are hidden in the abundance of inventory.

7. Defects. This is one of the most fundamental types of waste, as it is a primary

cause of costs.

8. Movement or unnecessary motion. This refers to goods and people making

more movements than necessary. Similar to excess processing this should be

avoided.

Tsironis and Psychogios [151] summarise that the types of waste are composed of

resources, which can be machines or people executing tasks, time, or money. Possible

methods that are used for the elimination of waste are [6, 154]:

� Value stream analysis. A mapping tool to outline the production flow. Value

stream mapping is further explained in Section 2.4.2.

� Total productive maintenance (TPM). An approach in which the resources such

as machines or employees working on the equipment are also held responsible for

the maintenance of the equipment. More up-time and less defects are a result

of an improved environment.
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� Kaizen (continuous improvement). A method to incrementally improve the

process by combining the talents of the organisation.

� Document management. Best practices should be documented in the process in

order to continuously work further on current improvement steps.

� Single Minute Exchange of Die (SMED). Different techniques that can be ap-

plied to lower set-up times, the number of set-up steps and unnecessary opera-

tions.

� Kanban (pull systems). Kanban cards were used as a signalling system before

digital systems became available. The cards were put at different places in the

production system to indicate that, e.g., the product or the raw materials were

ready to be transferred to the next stage in a production process [183].

� Poka-yoke (error-proofing). Installing different points of error and defect de-

tection in the process in order to prevent defects occurring at later (and more

expensive) stages of the process.

� Visual control. Visualisations of the different steps and condition of different

steps throughout the process will result in improved communication.

� 5S. A tool that is used to better organise a working area by using five S’s: sort,

set in order, shine, standardise, and sustain.

� Just-in-time (JIT) pull systems. In a just-in time production system, “all pro-

cesses produce the necessary parts at the necessary time and have on hand only

the minimum stock necessary to hold the processes together”. This way the num-

ber of products in stock and the throughput time of the process are brought to

a minimum [145]. Related to the just-in-time theory is the DRIFT-principle,

which is defined by Crosby [30]. According to this principle, quality is defined

by the concept of “doing it right the first time”. Each time an activity has to

be executed more than once in the process, this can be defined as waste for the

company.

As value stream mapping is one of the most widely known lean management

methods, this approach will be introduced in the next section.

2.4.2 Value stream mapping (VSM)

Other than a supply chain which includes all activities executed in the company and

its partners, a value stream only shows the activities or steps that add value to the
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end product or service of the company [69]. Seven categories of value stream mapping

tools that are identified by Hines and Rich [69] are:

1. Process activity mapping. These tools eliminate activities that are unnecessary,

simplifies or combines others, and seeks sequence changes that will reduce waste.

2. Supply chain response matrix. These tools provide an overview of critical lead

time constraints for a particular process. Each of the individual lead times and

inventory amounts can be targeted for improvement activity.

3. Production variety funnel. These tools help to decide where to target inventory

reduction and making changes.

4. Quality filter mapping. These tools help identifying where defects are occurring

and hence in identifying problems, inefficiencies, and wasted effort.

5. Demand amplification mapping. These tools map a product along its distribu-

tion and is used to show how demand changes along the supply chain in varying

time buckets.

6. Decision point analysis. A decision point is the point at which products stop

being produced according to the actual demand, and instead are made against

forecasts only.

7. Physical structure mapping. The physical structure of the industry can be

divided into a volume structure (number of companies) and a cost structure

(where is value added?).

However, while the tools presented above have been proposed by different authors

to be solutions on its own, Hines and Rich [69] state that a combination of tools

should be implemented to be efficient. Therefore, in the VALSAT approach, which

stands for value stream analysis tool, each tool and each type of waste gets a weight

depending on its importance. Based on this classification, the most appropriate tool

or combination of tools can be identified for each specific situation [69].

Next to the value stream mapping tools presented above, McManus and Millard

[102] investigated value stream mapping more specifically in product development

contexts. Based on this investigation, they provided the following overview of tools

that are used when mapping the value stream:

� Gantt chart. A planning tool to define the sequence and dependency between

tasks that should be executed.
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� Ward/LEI map. Named after Alan Ward, this tool shows the resources that are

necessary to execute all tasks over time.

� Process flow map. An actual flow between objects is depicted by arrows that

connect different symbols. These process maps are then used to plot waste and

non-value-adding aspects.

� Learning to see. A method introduced by Rother and Shook [131] that implies

that companies should pick up a nature of detecting sources of waste.

� System dynamics. Similar to the previous tool, companies should learn to see

the dynamics of the process structure and the underlying system instead of only

looking at the individual components within the process.

� Design structure matrix (DSM). In this tool, a matrix is created to depict the

flow between the tasks in a process. With this matrix, the company can minimise

the number of repetitions in the process and can define the tasks that can

possibly be executed in parallel.

However, similar to the value stream mapping tools presented by Hines and Rich

[69], also here the conclusion was made that not one “best practice” exists and a

combination of multiple tools, tailored to the specific circumstances of the case at

hand, should be implemented.

Moreover, although value stream mapping combines different tools and techniques

of the lean philosophy, its paper-and-pencil approach has been criticised for

not collecting enough detail and ignoring the actual system [118]. Data and

information that is used to create the value stream map, or that is used as input for

one of the other tools that are presented above, is almost always manually collected

from one, some, or maybe all employees involved in the process. It is therefore very

subjective and prone to errors due to aspects such as unawareness or forgetfulness.

The artifacts presented in this dissertation aim to compensate these shortcoming

because the focus will be on more quantitative analyses. Other elements of criticism

of the lean management principles are summarised below.

2.4.3 Criticism of lean management

First, the approaches and principles presented above are not applicable when customer

demand is volatile or unknown [6]. Lean always focuses on perfection in a particular

situation at a specific moment, which makes it difficult to implement it in dynamic

or changing situations, or in job-shop companies with high variety and low volume,
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because of the low flexibility and the inability to standardise the production approach

[6, 118]. Other criticism can be attributed to a lack of understanding, direction, or

commitment from the management. It should be mentioned that managers should

view lean as a philosophy that entails a change in the entire company culture, and

not concentrate on teaching their employees new tools and practices.

Moreover, as can be noted, the tools presented above are rather qualitative,

as they are often based on data collected via interviews, question rounds, or estimates

made by process owners. More objective input data and more qualitative analyses

could be insightful enhancements to these. Also, instead of choosing one of these

approaches, a mix of lean tools should be applied according to Pepper and

Spedding [118]. And finally, according to Worley and Doolen [183], management

support and communication play an important role in the implementation of lean

management in companies.

In the next section, another philosophy, Six Sigma, is presented. Next to the fact

that this methodology is more statistically underpinned than the principles and tools

of lean management, it also takes into account more quantitative analyses.

2.5 Six Sigma

Six Sigma was founded by Motorola Corporation in the 1980s and focuses on the

elimination of variation to minimise defects and errors [93]. It has evolved

from a quality measure to a strategy to improve an entire business [8].

Six Sigma focuses on the reduction of variation by continuously and drastically

improving everyday business activities so customer satisfaction is increased and waste

and resources are reduced. The objective of Six Sigma is to only have 3.4 defects per

million opportunities (DPMO) [6]. Defects can include anything, from missing or

dysfunctioning components, to malfunctioning programming code, or numbers that

have been wrongly entered by administrative workers [65]. Antony [8] states that

instead of focusing on the defects in processes, Six Sigma tries to eliminate causes of

problems before they transform into defects by focusing on the number of opportuni-

ties that can possibly lead to defects. For example, the waiting time before a service

agent answers the phone or the way in which the agent talks to the customer are

opportunities that might lead to defects and subsequently to unsatisfied customers in

a service environment such as a call center [8]. An extended overview of literature on

Six Sigma can be found in Fursule et al. [54].

Two similar improvement methods can be identified in Six Sigma. The first one,
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DMAIC, which is used for improving existing company processes, includes the five

phases given in Figure 2.5 [6, 84, 154].

1. Define. In this step the process or product is identified and a cost-benefit

analysis is created. After acceptance, a responsible is designated and the next

steps can be performed.

2. Measure. Here the necessary data is extracted and collected. The problem

is divided into different characteristics of the product or process critical to the

customer’s satisfaction and requirements.

3. Analyse. A diagnosis about the current product or process is made to define

potential sources of variation for specific parameters.

4. Improve. The characteristics that should be improved are designated and

changes or improvements are implemented.

5. Control. To maintain the improvements, the new conditions are documented

and monitored via different control systems. Possibly, one or more of the pre-

ceding steps should be repeated.

Figure 2.5: The five phases in the Six Sigma cycle [154].

The second method, Design for Six Sigma (DFSS), is used for the creation of

new processes in case existing processes do not satisfy the customer needs. It can

also be divided into five steps except for the replacement of the improve and control

steps by design and verify (DMADV), respectively [1, 6]. Both the DMAIC-cycle and

DMADV-cycle are grounded in the original “Plan, Do, Check, Act”-cycle which was

introduced by Deming [43] [185].
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Six Sigma employees use different practical methods and skills, defined as Six

Sigma tools and techniques to improve the company’s performance. Six Sigma tools

such as pareto analysis, root cause analysis, process mapping or process flow chart,

gantt chart, affinity diagrams, run charts, histograms, quality function deployment

(QFD), kano model, or brainstorming. are narrow in focus and have a specific role. Six

Sigma techniques have a wider application and require specific skills, creativity and

training. Examples are statistical process control (SPC), process capability analysis,

suppliers-input-process-output-customer (SIPOC), SERVQUAL, or benchmarking. A

Six Sigma technique can use or can be supported by various tools [1, 8, 62]. Useful

analytical tools are [72]:

� Flowcharts. Different types of flowcharts exist.

� Run charts. These tools depict trends in data over time and help to assess the

importance of a problem.

� Pareto charts. These tools are based on the notion that a small percentage of

causes results in a large percentage of problems.

� Check sheets or forms. These tools are mostly used for standardised data col-

lection.

� Cause-and-effect diagrams or fishbone diagrams. These tools try to classify the

elements that are causing the issues [47].

� Opportunity flow diagrams. These tools are used to distinguish between value-

adding and non-value-adding activities.

� Process control charts. In these tools, plotted values are compared to an average

and some control limits.

Failure mode and effect analysis (FMEA) and Design of experiments (DOE) are

other techniques that are frequently used in Six Sigma projects. FMEA identifies,

estimates, prioritises and evaluates risks of possible failures in the different phases

of a process. DOE or multivariate testing determines the relationship between cause

and effect variables [72]. An overview of which techniques and tools can be used in

each step in the Six Sigma cycle is given by Yang [185] in Table 2.2.

It can be observed that some of the tools and techniques used in the steps of the Six

Sigma cycle are also used in the value stream mapping method of lean management,

such as the Gantt chart. Common tools for Six Sigma and lean management will also

be discussed in Section 2.5.4 on Lean Six Sigma.
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Table 2.2: Techniques and tools used in the Six Sigma cycle [185].

Step Specific tasks Tools and techniques employed

Define Identify improvement issues Customer complaint analysis

Organise project teams Cost of poor quality (COPQ)

Set-up improvement goal Brainstorming

Estimate financial benefit Run charts, control charts

Benchmarking

Measure Map process and identify inputs and

outputs

Process map (SIPOC)

Establish measurement system for

inputs and outputs

Cause and effect matrix

Understand the existing capability of

process

Gauge R&R

Control charts

Process capability analysis

Failure models and effects analysis

(FMEA)

Analyse Identify sources of variation in

process

Cause-and-effect diagram

Identify potential critical inputs Pareto diagram

Determine tools used in the

improvement step

Scatter diagram

Brainstorming

Analysis of variance (ANOVA)

Improve Conduct improvement actions Design of experiment (DOE)

Use experiments Quality function deployment (QFD)

Optimise critical inputs Process capability analysis

Control charts

Control Standardise the process Standard operation procedure

Maintain critical inputs in the

optimal area

Process capability analysis

Verify long-term capability Fool-proofing (Poka Yoke)

Evaluate the results of improvement

projects

Run charts
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Antony [8] defines a list of measures or KPIs that are used in Six Sigma across ser-

vice companies. These measures can be, among others, cost of poor quality (COPQ),

defects per million opportunities (DPMO), process capability, time to respond to

customer complaints, processing time, delivery time or speed of delivery, time to re-

store customer complaints, waiting time to obtain the service, service reliability, or

accuracy of information provided to customers.

Comparable to lean management, which is a rather qualitative methodology and

influenced greatly by elements such as the company culture, organisation of work,

and management commitment, Six Sigma also makes use of qualitative techniques.

Six Sigma is based on training programs, in which different levels of belts can be

earned per training level, and it is stated that the training programs are also based

on qualitative techniques. However, next to this, Six Sigma is merely a statistical

methodology, in which companies strive to have less than 3.4 defects per million

opportunities. Therefore, it is more data-driven and makes use of more advanced data

analysis tools than other operational excellence initiatives such as lean management

and TQM [87], which will be explained in Section 2.5.3. First, a discussion of the

concept variability is provided in the next section.

2.5.1 Variability

van Assen [154] defined variability in the context of operational excellence as “any-

thing that causes a production and delivery system to deviate from its regular be-

haviour.” Product variety, breakdowns, set-ups, product recycle, material shortages,

unavailability of resources, and rework can be seen as possible sources of variability

or variation in a production company. Service companies on the other hand, also

encounter customer-introduced variability, such as arrival variability which is caused

by customers that prefer to receive a service at different times or at times that are

inconvenient for the company; request variability which refers to the extensiveness

of products that customers ask for in a service context; capability variability which

is mostly important if customers with different amounts of knowledge, abilities, and

skills need to participate actively in the business process of the company; effort vari-

ability which depends on the amount of effort that customers want to spend in a

service process; and subjective preference variability which refers to the varying im-

pressions of customers concerning the service they receive from a company [53].

However, not all variability is undesirable. That is why Suri [146] stated that

two types of variability can be distinguished: functional variability and dysfunctional

variability. Dysfunctional variability, which should be eliminated completely, is caused
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by errors, ineffective systems, and poor organisation. Functional variability on the

other hand, is used by companies to maintain a competitive edge in the market. If

dysfunctional variability cannot be reduced or adapted, long cycle times, high work-

in-progress levels, wasted capacity, lost throughput, and unsatisfied customers can be

identified as consequences [154].

2.5.2 Six Sigma in service companies

According to Tsironis and Psychogios [151], most studies found in literature focus on

the application of lean management and six sigma in manufacturing environments.

Even though all executed work can be seen as part of a process that possibly includes

variability, and each process produces data that can possibly explain this variability,

service-oriented companies are not yet convinced of the use of Six Sigma within their

organisation [8]. Therefore, Tsironis and Psychogios [151] focus on the results and

success of applications of these methodologies in service companies. In this disser-

tation, the focus will also be on service environments, which are much more volatile

and influenced by factors such as human interaction and company culture [151].

Antony [8] stated that most projects in service-oriented companies are selected

based on subjective judgement. Six Sigma can import a more objective measure to

service companies provided that different weights are assigned to different defects

based on their risk and consequences. A structured overview of literature concerning

the application of Six Sigma in services is provided by Antony [8] and Johannsen et al.

[79]. Similar to manufacturing contexts, commonly used indicators for Six Sigma

are, among others, processing time, delivery time or speed, waiting time, defects per

million opportunities, cost of poor quality, and service reliability [8]. An overview

of critical success factors that need to be in order for Six Sigma to be successful in

service companies can be found in Johannsen et al. [79]. In addition to this, they

investigated the most common problems in the application of Six Sigma in service

companies and identified the stages in the Six Sigma implementation cycle to which

these problems could be assigned. This was done based on a literature review and

expert interviews. They found that most problems are identified in the define and

measure phases.

First, it was found that processes are usually not well documented. Another

problem appearing in the measure phase is the lack of process orientation and data of

high quality [1]. 79 % of the experts contacted by Johannsen et al. [79] states that the

process orientation is mostly of inferior quality. However, no problems with process

modelling are reported by the experts in the define phase, what might indicate that



Operational excellence 35

these problems are ignored until the measure phase. Therefore, it can be stated that

proper process modelling should start in the define step to avoid difficulties in

defining key performance indicators. Furthermore, as different types of problems with

data collection and data quality where reported in the measure phase, this was given

the most attention in the analysis of Johannsen et al. [79] as the quality of all process

performance analyses depend on the quality of the data. Flow charts, for

example, are created by collecting input manually from all employees involved in the

process. Or in the FMEA tool, the different steps, together with possible failures and

their degree of severity, are collected based on human estimates and experiences via

techniques such as interviews. It can therefore be stated that both the data collection

phase and the measure phase in which these data are used should be enhanced with

more data-driven techniques and adequate measurement systems [79].

2.5.3 Six Sigma within Total Quality Management (TQM)

Klefsjö et al. [83] position Six Sigma as a methodology within the larger framework

Total Quality Management (TQM). TQM, mostly known for its improvement cycle

(plan-do-check or study-act), is a continuously evolving management system charac-

terised by increased customer satisfaction in which all employees participate. Näslund

[109] found that differences other than the period in time between TQM and Six Sigma

are difficult to find. TQM was popular in the late 1980s and early 1990s, whereas

literature about Six Sigma started to grow rapidly in the late 1990s. However, Aboel-

maged [1] and Schroeder et al. [140] identify Six Sigma as having some advantages

over TQM, such as focus on financial and business results, use of a structured method

for process improvement or new product introduction, use of specific metrics such as

DPMO, and a significant number of full-time improvement specialists. Also Antony

[7] describes the differences between Six Sigma and older existing quality programmes.

Firstly, he states that the focus in Six Sigma on bottom-line results is not present in

previous quality methodologies. Secondly, Six Sigma places importance on repeata-

bility and reproducibility of the systems to measure the business excellence. Thirdly,

previous quality initiatives placed little emphasis on leadership and management sup-

port, as well as human elements such as teamwork, cultural change and leadership

skills. Finally, Six Sigma uses a unique system of belts and utilises tools and tech-

niques in a sequential and systematic manner. Aside from the fact that Six Sigma

finds its roots in TQM, also similarities with the just-in-time (JIT) and the total pro-

ductive maintenance (TPM) approaches from the lean management methodology can

be found in literature, according to Cua et al. [32], who provide a discussion on the
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relationship between these approaches. The authors argue that the approaches are

often used in a combined way in practice and have the same goal and many common

practices. Organisations can therefore benefit from the joint use of these approaches,

instead of implementing them separately. The most well-known example of a combi-

nation of multiple methodologies is Lean Six Sigma, which is discussed in the next

section.

2.5.4 Lean Six Sigma (LSS)

By combining the strengths of the two improvement methodologies lean management

and Six Sigma, Lean Six Sigma has been introduced, as companies should not only sell

high quality goods but should also provide a high quality of service. By implementing

Lean Six Sigma, the company focusses on what is really important to the customer

and the reduction of errors.

Six Sigma companies can thus gain from lean management by reducing set-up

times and mapping the value stream. Otherwise, the improvements made will start

to lose influence after a while because no time is spent on altering the underlying

operating systems to reduce activities that create waste. Vice versa, lean management

companies should use more methods that promote quality in a more scientific way

to benefit from continuous improvement [12]. One argues that lean and Six Sigma

complement each other; lean eliminates waste and reduces cycle time in processes by

eliminating non-value-adding time and increasing value-adding time while Six Sigma

reduces variation and improves processes by applying a problem solving approach

using statistical tools [1, 154].

In Figure 2.6 some common tools for lean management and Six Sigma have been

identified based on the findings of Drohomeretski et al. [46] and Kumar et al. [86]

[9, 118, 136]. A LSS company profits from 3 lean management elements. These are:

1. an overarching philosophy that enhances the value-adding function of all oper-

ations,

2. a continuous evaluation system to ensure global instead of local optimisation,

and

3. a decision process that takes into account the relative impact on each customer.

Next to this, a LSS company profits from 3 Six Sigma elements [12], which are:

1. scientifically supported decisions,

2. a variation-minimising methodology, and

3. a company-wide education and training system.
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Figure 2.6: Common tools for Six Sigma and lean management [46, 86].

The scope of the two approaches can thus be defined as different. While Six

Sigma is more concentrated on a specific project or process inside the organisation,

lean focusses on the value chain of the whole organisation [1].

Koning et al. [84] state that an integrated LSS framework requires a structured ap-

proach, a project-based deployment, a dedicated workforce of project leaders, clearly

defined procedures, and strategic objectives used as a basis for project selection. Be-

cause of this multiplicity of requirements, most of the Lean Six Sigma initiatives have

not been successfully realised [118]. Another reason for this is defined by Näslund

[109] who states that most companies try to change or improve their processes in a

functional, operational, or ad hoc manner, while what is actually required is funda-

mental organisational change and improvement, which can only be accomplished by

a more process oriented approach.

Despite the benefits of using Six Sigma tools in combination with lean manage-

ment, a comprehensive framework or a clear understanding concerning the usage of

tools is missing. Pepper and Spedding [118] suggest a framework in which lean phi-

losophy provides the strategic foundation for improvement. From this, key areas for

improvement can be identified and anticipated by a Six Sigma methodology. It can

thus be stated that lean contributes the strategy or structure and Six Sigma pro-

vides the tools to leverage an improvement [46, 118]. The improvement objectives of

Lean Six Sigma are summarised in Figure 2.7. An application of Lean Six Sigma on

different case studies in service companies is given by Tsironis and Psychogios [151].
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Figure 2.7: LSS improvement objectives [46].

A final philosophy that can be found in literature to be related to operational

excellence is the theory of constraints (TOC), which will be explained in the next

section.

2.6 Theory of constraints (TOC)

In 1984, Goldratt and Cox [60] introduced the theory of constraints, a management

philosophy which focuses on system improvement by eliminating weak links or con-

straints from the processes in a system because “a process is only as strong as its

weakest link”. By doing this, waste and variation can be reduced resulting in im-

proved throughput, throughput times, and quality. Five steps can be identified in

TOC [110]:

1. Identify the constraint. Possible methods can indicate the amount of queue

or batch processes.

2. Exploit the constraint. The process should be enhanced or corrected without

major adjustments.

3. Subordinate other processes to the constraint. Other processes that are

subordinate to the process are usually found ahead of the constraint in the value

stream. Their speed or capacity should be paced to the constraint.

4. Elevate the constraint. Changes to the constraint can be necessary if the

output of the system is not sufficient. This can be reorganisations, expenditures
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of time or money, or capital improvements to eliminate the constraint as much

as possible.

5. Repeat the cycle. Another constraint will appear after eliminating the first

constraint. A re-evaluation of the system is necessary to identify and exploit

the new constraint followed by subordination and elevation.

Based on the theory of constraints is the drum-buffer-rope (DBR) methodology,

which is also developed by Goldratt and Cox [60]. In a manufacturing context, the

drum, which is the constraint or the bottleneck in the process, determines the pace of

the products that move through the system. The buffer represents the time between

the faster moving products in front and the constraint or slowest product. This buffer

is used to protect the constraint and the system from disruptions such as breakdowns.

The rope makes sure that all products move through the system at the pace of the

drum [137, 139].

Based on an analysis of over 80 applications of TOC found in literature, Mabin and

Balderstone [92] conclude that over half of the organisations in the analysis noticed

improvements in revenues or profits, and even more than 80 % of the organisations

reported improvements in key performance indicators such as lead time and inven-

tory. However, similar to the methodologies of lean management and six sigma, also

the tools and techniques of TOC are almost always fuelled with manually collected

data, based on experiences and subjective interpretations of reality. The lack of data

analysis is therefore stated as a point of criticism on the TOC methodology by Nave

[110].

2.7 Similarities and differences between lean man-

agement, Six Sigma, TQM and TOC

Lean management, Six Sigma and TQM originated all from the quality evolution in

Japan, but developed differently. TQM became popular in the 1990s but did not

originate from a company like lean and Six Sigma did. TQM also has elements of

accomplishing no defects (such as Six Sigma) and eliminating waste (such as Lean),

so Lean and Six Sigma should be seen as methodologies within the larger framework

of TQM.

The five phases of Six Sigma seem easier to implement than the principles of lean

production [35]. Moreover, in comparison to the Six Sigma DMAIC-phases, the lean

principles are not cyclical [6].
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Unlike TQM, which stresses the involvement of all employees, project groups are

usually committed to perform improvements in the Lean or Six Sigma discipline [6].

The goal of lean management is reducing the lead time and increasing the customer

satisfaction. This leads to increased productivity and inventory reduction. Six Sigma

projects however, are selected in the context of the overall organisational objectives,

which means that the customer satisfaction is not always improved. Furthermore,

because a Six Sigma project is mostly undertaken by only a part of the organisation,

other departments can experience deterioration. Finally, Andersson et al. [6] state

that lean is mostly applicable to manufacturing areas, whereas Six Sigma also applies

to service industries. However, Arnheiter and Maleyeff [12] believe that lean man-

agement can be practised in all kinds of businesses that try to satisfy customers. An

overview of the most important differences between Lean management, Six Sigma,

TQM and TOC is created in Table 2.3, which is based on the comparison made by

Nave [110] who compared lean thinking, Six Sigma and the theory of constraints.

Table 2.3: Comparison of lean management, Six Sigma, TQM, and TOC.

Lean

management

Six Sigma TQM TOC

Theory Remove waste Reduce variation Focus on

customers

Manage

constraints

Focus Flow focused Problem focused Customer focus System

constraints

Methods 1. Identify value 1. Define 1. Plan 1. Identify

constraint

2. Identify value

stream

2. Measure 2. Do 2. Exploit

constraint

3. Flow 3. Analyse 3. Check 3. Subordinate

processes

4. Pull 4. Improve 4. Act 4. Elevate

constraint

5. Perfection 5. Control 5. Repeat Cycle

Primary

effects

Reduced flow

time

Uniform process

output/save

money

Increased

customer

satisfaction

Fast throughput

Table continued on the next page
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Table 2.3: Comparison of lean management, Six Sigma, TQM, and TOC

(continued).

Lean

management

Six Sigma TQM TOC

Secondary

effects

Less variation Less waste Customer loyalty Less

inventory/waste

Uniform output Fast throughput Improved

performance

Throughput cost

accounting

Less inventory Less inventory Throughput-

performance

measurement

system

New accounting

system

Fluctuation-

performance

measure for

managers

Improved quality

Low-performance

measure for

managers

Improved quality

Improved quality

Criticism Statistical or

system analysis

not valued

System

interaction not

considered

No tangible

improvements

Minimal worker

input

Not applicable in

all industries

Does not involve

everybody

Resource

demanding

Data analysis not

valued

Reduced

flexibility

Processes

improved

independently

Data input Interviews,

human-based

experiences and

opinions, paper

and pencil

Interviews,

human-based

experiences and

opinions, paper

and pencil,

statistics, manual

and automatic

data collection

Interviews,

human-based

experiences and

opinions, paper

and pencil,

manual and

automatic data

collection

paper and pencil,

manual and

automatic data

collection
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For the data that is used as input for the analyses performed within the different

methodologies, a joint conclusion on all methodologies can be made. It is clear from

literature that many techniques and tools that have been presented above are based

too often on human-based experiences and opinions, which are collected by interviews,

interrogations, and discussions, implying a high risk of subjectivity and incomplete-

ness. Moreover, analyses that are performed are too often based on paper-and-pencil

approaches such as the manual mapping of a value stream or the unsubstantiated

estimation of the error and defects impact in Six Sigma. Although more recently

more data-driven approaches are employed, to improve the quality and correctness of

the input values of the methods, little or no existing research mentions the specific

requirements or characteristics of the data which are required to perform the analyses,

or the steps that should be undertaken to collect and interpret these data.

2.8 Underlying principles of operational excellence

Based on the presented overview and comparison between the different philosophies,

the main principles found in the field of operational excellence can be summarised as

follows. Firstly, lean management is focused on identifying the activities in a process

that create value for the end customer and the removal of all activities that

can be defined as waste. This way, the flow of the process is converted to a

make-to-order production system with small batch sizes and continuous improvement

is pursued. Secondly, Six Sigma is a philosophy that focuses on the avoidance and

reduction of (some sorts of) variation or variability in the process flow by

defining and removing the elements that could cause problems. It is also more based

on statistics than the lean management philosophy. While Six Sigma can be seen

as related to the philosophy of total quality management, the latter is much more

focused on customer value and customer satisfaction. Theory of constraints, finally,

focuses on the constraints and weak links that hamper or slow down the

process flow.

Based on these philosophies, there is not one single strategy or roadmap that

companies should follow in order to improve their processes. Depending on the focus

they want to put on their process improvement, they should pursue different things

or they should try to incorporate multiple methodologies. If customer value and cus-

tomer satisfaction are the highest priority, the principles of TQM should be pursued.

However, the question can be asked if the company wants to serve their customers as

fast or as cheap as possible, which can be an indication that the tools of lean man-
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agement should be used. Or if the company wants to serve their customers with as

less defects and errors as possible, in which case, the principles and tools of Six Sigma

should be used. The TOC methodology focuses, comparable to lean management,

on the constraints and activities hampering the optimal flow of the activities in the

process. Combinations of these methodologies, such as Lean Six Sigma have already

been researched and found to be effective.

2.9 Conclusion

This chapter provides an introduction to the evolution of quality management and

some well-known improvement concepts such as lean management, Six Sigma, the

theory of constraints, and total quality management. Based on a comparison between

these philosophies, some conclusions can be drawn based on the underlying principles

of operational excellence. First, existing methods such as value stream mapping make

use of lean management techniques that are often based on qualitative paper-and-

pencil approaches. This has been argued to be ignoring the actual system and not

collecting enough detail. The principles of lean management are also identified to be

less useful in volatile or fast changing environments. Six Sigma tools, which are more

statistically underpinned, are in some cases based on quantitative data, while others

are also based on qualitative methods such as interviews. The results of these methods

and the decisions taken based on these results may therefore be very subjective and

dependent on the person or team that has been performing the analyses. It can

therefore be stated that not one single strategy or roadmap exists for companies to

follow in order to improve their processes. A combination of multiple methodologies

should be incorporated and a need for more objective and data-based analyses to gain

more insights in the operational excellence in companies can be identified.
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The use of process mining in

operational excellence

3.1 Introduction

As was shown in Chapter 2, waste and other activities not adding value to the cus-

tomer of a process should be removed. However, removing these undesirable elements

can only be done if one has insight in the business process and all related aspects.

Business process management (BPM) is a discipline that focuses on how work is per-

formed in an organisation by managing the organisation’s processes. It inherits from

the total quality management stream, which was introduced in Chapter 2, in order

to optimally align an organisation’s processes with its performance objectives. In

contrast to these mainly model-based improvement disciplines, process mining refers

to the retrieval of knowledge from process execution data, which is stored in so-called

event logs. The process mining field originated at the end of the previous century in

response to the digitalisation, which implies that more and more data is available to

get insights into the performance and operational excellence of business processes. As

process mining is a rather new concept within the field of business process manage-

ment, its approach can be an additional application in operational excellence, to find

the different forms of waste of lean management or to implement the different steps

in the DMAIC-cycle of Six Sigma.

This chapter (Figure 3.1) provides a short introduction to the fields of business

process management and process mining and an outline of the match between process

mining and the philosophies and principles of operational excellence from Chapter 2.

45
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Figure 3.1: Outline of the thesis - Chapter 3.

Section 3.2 starts with an introduction to business process management, including

the ingredients of a business process, the relationship with the operational excellence

and process improvement concepts introduced in Chapter 2, and the BPM lifecycle.

Next, Section 3.3 introduces the field of process mining including the structure of

event logs and the different types of process mining. Moreover, the difference between

model-based and event log-based performance analysis is explained. Next, Section 3.4

elaborates upon the existing work in the interplay of process mining and operational

excellence including an overview of some existing process performance measures from

prior literature and a discussion of the added value of process mining in the field of

operational excellence. Finally, conclusions are drawn in Section 3.5.

3.2 Business process management (BPM)

Business process management (BPM) is concerned with a wide range of topics such as

operations management, business process intelligence and analysis, process automa-
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tion, and the organisation of work [156]. The main goals of BPM are the improvement

of business processes and the optimisation of customer value [28, 47]. As is clear from

these descriptions, the focal point of BPM are business processes. A business process

entails what companies actually do, which is delivering products or services to their

end customers. The quality of these products and services is therefore highly depen-

dent on the way processes are designed and managed [10, 47]. Before going deeper

into detail about the field of BPM, the general concepts of a business process are

presented in the next section.

3.2.1 Ingredients of a business process

As defined by Anupindi et al. [10], a business process is “a network of activities per-

formed by resources that transform inputs into outputs”. The transformation that

takes place depends on the process architecture, or structure, which includes some

elements that identify the business process. Firstly, a business process consists of

activities and events. Activities are the tasks or items of work that need to be per-

formed within the process, in a certain order. Each activity can take some time to

be completed, such as the inspection of a certain part of equipment or the prepa-

ration of an invoice for a customer. Events are the atomic things that happen for

an activity, which have no duration, such as the arrival of an equipment part or the

completion of an invoice. Secondly, a process also contains decision points, which

may influence the way the process is executed. This can, for example, be the deci-

sion that the information required to complete an invoice is insufficient and another

activity should be executed first to collect this missing information. Thirdly, actors

or resources that are involved in the process should also be considered, as the process

depends on these human factors or systems to be executed correctly. Next to these

resources, also other objects, both physical (materials, documents) and immaterial

(electronic documents or records) are involved. Fourthly, the result of the process

execution is the outcome of the process, which can be both positive (value-adding)

or negative (non-value-adding). And finally, the outcome of the process is intended

for the customer of the process, which can be an employee of another department

of the organisation or an external end-customer [47]. Anupindi et al. [10] adds to

these concepts the notion of an information structure as another element of a busi-

ness process. The information structure contains all information that is required to

take decisions or to execute activities within the process. Based on this overview of

the most important concepts of a business process, Dumas et al. [47] defines BPM as

“a body of methods, techniques, and tools to discover, analyse, redesign, execute, and
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monitor business processes”. From this definition, it can be concluded that BPM is

involved in multiple stages and tasks in the lifecycle of a business process, as will be

explained further on, where the BPM lifecycle is presented.

3.2.2 BPM in total quality management (TQM)

As is clear from the description of BPM in the previous section, the field of business

process management is strongly related to the other operational excellence concepts

such as lean management, Six Sigma and total quality management, which were

introduced in Chapter 2. BPM is, among others, concerned with the improvement

of the performance of organisations and their processes. The differences and relation

between BPM and the other operational excellence fields is also described by Dumas

et al. [47]. TQM, for example, also entails continuous improvement efforts, but the

focus of TQM is more on the products and services that are delivered to the end

customer, while BPM puts its emphasis on the improvement of the processes delivering

these products and services. BPM can be seen as a modern continuation of these fields

as it inherits from the principles and techniques of TQM, lean, and Six Sigma and

it enriches them with the capabilities of modern information technology. The goal of

BPM is to bring all processes of an organisation in line with its performance objectives,

in order to become operationally excellent [47].

3.2.3 Business process improvement (BPI)

One of the underlying approaches of BPM is business process improvement (BPI),

which is closely related to the operational excellence field as it is also concerned with

improving business processes. These improvements are based on changing the pro-

cesses to achieve a higher quality or to become cheaper, faster, or more flexible. BPI

can be distinguished from the earlier wave business process redesign (BPR) depending

on the degree of improvement; while BPI is synonymous to incremental improvement,

BPR focuses on more radical changes. Moreover, BPR was only concerned with the

planning and organisation of a process, while BPI and BPM in its whole provide a

total package of tools, concepts, and techniques that cover all aspects of managing a

process, from planning, organising, monitoring, and controlling, to the actual execu-

tion of the process. This comprehensive view is made clear by Dumas et al. [47] in

Figure 3.2, in which the different aspects of BPM are shown. A structured overview of

BPI literature is provided by Zellner [186] together with an evaluation of his findings.

Adesola and Baines [2] developed a seven-step procedural approach that can be

used as a guide for both process improvement and re-engineering initiatives. They
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Figure 3.2: BPM: an all encompassing discipline [47].

used older frameworks as a basis for their model-based and integrated process im-

provement (MIPI) methodology. It will be shown that this methodology is very

similar to the BPM lifecycle that will be presented in the next section. The method,

which is shown in Figure 3.3, addresses what should be done in each step to improve

a process, and how to do it. Firstly, the business need should be analysed by devel-

oping a vision, strategic objectives, and an organisational model based on the current

practices. An analysis of the competition can be performed and objectives should be

prioritised. Furthermore, measurable targets should be established and the process

objectives should be developed and benchmarked. Next, the process should be clear

for everyone involved, by capturing the as-is process information and identifying the

process architecture. The scope and definition of the process can be concretised by

modelling the process. Next, the process should be analysed by verifying and validat-

ing the model and measuring the existing process performance. After that, the process

can be benchmarked to identify performance criteria for redesigning the process. A

new to-be process model can be developed and validated and the performance of the

redesigned process should be estimated. Next, a plan can be presented to implement

the new process. A change management plan should be developed which includes

the communication of the change and the training of the staff. The process should

be made operational and the changes can be rolled out. In the sixth step, process

deployments and performance data reflections can be conducted to assess the new

process and methodology. And finally, the strategic view of the business should be
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developed and process targets and performance analyses can be set to review the new

process. A plan to meet these process targets can be developed and implemented.

Figure 3.3: The model-based and integrated process improvement (MIPI) methodol-

ogy, developed by Adesola and Baines [2].

Griesberger et al. [62] analysed 487 existing techniques that aid in the different

steps of business process improvement. After filtering less relevant techniques, 36

techniques that actually support the act of improvement are analysed. However, they

found that for none of the existing techniques it is clear how they support the act

of improvement. Also Zellner [186] states that most approaches lack specific

guidelines for actual optimisation of business processes.

Based on his literature overview on BPI, Zellner [186] also states that there are

still some shortcomings to the existing BPI approaches. Firstly, the criteria of what

improvement exactly is and how it can be achieved is not specified in any of the

existing BPI approaches. Well-defined activities that should be executed to achieve

improvement are missing. Next to this, the results following from activities in BPI,

such as resulting documents and reports, should be modelled to be able to analyse

the relations to each other. Furthermore, an overview of all existing techniques sup-

porting BPI and a new encompassing method to support all steps in BPI should be

created. Next to these shortcomings, Satyal et al. [138] recently stated that BPI

initiatives do not always lead to actual improvements, and sometimes even result in

negative outcomes. This is mainly due to the fact that most information systems are

not able to evaluate and monitor the implemented changes for improvement. The
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authors therefore present a new technique that delivers immediate feedback on the

improvement results, based on AB testing, to compare the improved business process

with the original one [138].

3.2.4 The BPM lifecycle

The BPM lifecycle, which is shown in Figure 3.4, provides an overview of how business

processes can be managed in the light of the BPM discipline. The lifecycle starts with

the process identification, which can be a very short step if the company already has

a good notion of the processes at hand. Also the process performance measures, to

identify the quality of the processes, should be identified before starting the next step.

After this, five phases follow, of which the first one is the (i) process discovery, where

the details of the process are uncovered. When the as-is process model is clear, a

(ii) process analysis phase takes place to get an insight in what is going on in the

process concerning the weaknesses and their impact, such as the amount of rework

or the waiting time in the process. Based on these findings, possible alternatives

for solving these issues can be presented in the (iii) process redesign phase. Next,

the proposed to-be process model is used as a solution based on which the actual

(iv) process implementation follows, involving steps such as organisational change

management and process automation to put the changes into action. Finally, the

running process should be (v) monitored and controlled continuously in order to

keep up with changing expectations and situations [47]. Within the BPM lifecyle,

two different types of analysis can be defined, which are (i) model-based analysis,

based on the developed process model, and (ii) data-based analysis, based on the

underlying event data that has been tracked in the event log [156]. It can be stated

that traditionally almost all process management work was model-based, yet because

of the growing availability of data, the use of data-based analyses increases. In the

process discovery phase and the process analysis phase, for example, event log data

can be used to analyse the running processes, and to discover unusual elements such as

deviations and waste, which can be useful information for the process redesign phase.

Analyses can also occur based on process models, e.g., to simulate solutions for these

deviating elements. Also monitoring and controlling the process occurs mostly based

on process models. Although process mining is useful in each of the phases of the

BPM lifecycle, most work in the process mining field can be positioned within the

process discovery phase and the process monitoring and controlling phase [160], as

will be shown later on in this chapter. Regarding this BPM lifecycle, the research in

this dissertation can be positioned between the as-is situation and the to-be situation
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Figure 3.4: The BPM lifecycle as presented by Dumas et al. [47].

of a business process. Event log knowledge will be used to get insights into the current

circumstances and status of a business process in order to support the organisation

to become more operationally excellent.

3.3 Process mining

Concerning the well-known big data phenomenon, more and more process-related

data is recorded and tracked by companies, such as logs of production processes

or execution traces of business activities. To respond to this abundance of data, a

need for methods and techniques to analyse these data, to gain insight into business

processes, to properly track and store activities, and to introduce improvements to

the way people and companies are working has grown. With this aim, the process

mining field has originated at the end of the previous century to extract knowledge and

the control-flow from process-related datasets, or so-called event logs [155, 169]. In

contrast to the operational excellence techniques presented in Chapter 2 and the BPM

field presented above, which are mainly based on models, simplifying assumptions,

and human-based information, process mining puts more focus on the actual numbers

and data that are collected within the underlying event logs.

From these observations, it follows that event logs are fundamental to process

mining. An event log originates from a process-aware information system (PAIS),
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which is an information system that supports or controls a real-life business process.

Specific for a PAIS is that it supports an entire business process instead of a single

activity [48]. Examples of such systems are an enterprise resource planning system

or a customer relationship management system [160]. The information extraction

from these event logs can be done from various perspectives, such as control flow,

organisational structures, performance characteristics, or the case data perspective

[132, 169]. While process mining has grown much broader than control flow discovery,

the latter has dominated the domain for the past decade [37, 52, 57, 63, 164, 175].

Control flow discovery is one of the most mature research tracks within process mining

and the reader is referred to De Weerdt et al. [42] for an overview of existing process

discovery algorithms. Moreover, other types of process mining, such as conformance

checking, bottleneck analysis, or process enhancement become only possible after the

discovery of a process model [162].

Figure 3.5: Positioning of process mining by Munoz-Gama [106].

In Figure 3.5, a schematic overview of process mining in its bigger context is given.

Activities and decisions taken by companies and people are supported or controlled

by a variety of process-aware information systems and can be recorded in event logs.

From these event logs, process mining models can be discovered that can be used
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to model, analyse, and improve the process. Visualisation tools such as Disco1 or

the plug-in based framework ProM2 contain numerous functionalities to support the

different types of process mining which will be discussed further on.

The remainder of this section provides some background on the typical structure

of an event log (Section 3.3.1) and the different types of process mining that can be

distinguished (Section 3.3.2).

3.3.1 Event log

Ideally, process-aware information systems record data for each task that has been

executed within a process. The system checks each time when a task is completed,

and keeps this as a new entry in the log file. The data that is stored in such files

are called event logs, such as transaction logs or audit trails, which can be seen as

the starting point for performing a process mining task. Different kinds of event logs

can be used to apply process mining techniques to, but some requirements, which

distinguish a process-based event log from traditional flat datasets, should always be

present for the actual events or entries in the log [47]. vanden Broucke [169] states

that firstly, each entry or event in the log should be related to one process case, which

can be realised with a case identifier or an instance identifier. Secondly, all events

should be labelled with a suitable name that represents the activity, a well-defined

step in the process, that has been performed. These names or labels can then be used

to make the discovered model self-explanatory and readable for anyone at interest.

Finally, a timestamp should be present for each entry in order to discover and display

the sequence of events and instances. Also Dumas et al. [47] state that these are

three minimal requirements for events in an event log in order to perform certain

analyses. If timestamps are not available, the events can be ordered based on relative

ordering, for example with a sequence number. However, timestamps add a lot of

extra information and should be tracked as accurately as possible. Next to these

requirements, a wide range of additional attributes can become desirable, depending

on the goal that is set [47, 169]. An example of additional information is the person

or device executing or initiating the activity, which is referred to as the resource

throughout this dissertation. Other examples are event-related costs, or the system

being used. In Table 3.1, an example of an event log is provided. Each row in this

event log represents an event. For instance, resource Gert started the print job for

case 1 at 14:25 on the 26th of November, 2017, which is shown in the fifth row. The

1https://fluxicon.com/disco/
2http://www.promtools.org
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sixth row shows that he finished this activity an hour later.

The event log in Table 3.1 is presented in a tabular format which holds a list of

events with its attributes. In order to promote the usage of event logs, the IEEE Task

Force on Process Mining recommends the use of the eXtensible Event Stream (XES)

format, in which each XES-file contains an event log that fulfils certain requirements

[64]. This way, the adoption of process mining tools capable of analysing event logs

can be leveraged. Different existing process mining tools contain the feature to convert

event data such as the example in Table 3.1 easily to an XES-file.

Table 3.1: Example of an event log.

Case id Event id Timestamp Activity Transaction type Resource

... ... ... ... ... ...

1 325603 25/11/2017 14:25 Set up print job start Hanne

1 325603 25/11/2017 15:25 Set up print job complete Hanne

1 325604 26/11/2017 12:35 Check print job start Toon

1 325604 26/11/2017 12:45 Check print job complete Toon

1 325605 26/11/2017 12:45 Printing start Gert

1 325605 26/11/2017 13:45 Printing complete Gert

2 325609 28/11/2017 9:30 Set up print job start Hanne

2 325609 28/11/2017 9:42 Set up print job complete Hanne

2 325612 29/11/2017 10:10 Printing start Gert

2 325612 29/11/2017 14:49 Printing complete Gert

1 325606 5/12/2017 17:30 Packaging start Niels

1 325606 5/12/2017 18:22 Packaging complete Niels

1 325607 6/12/2017 15:24 Delivery start Jeroen

1 325607 6/12/2017 18:42 Delivery complete Jeroen

2 325613 10/12/2017 16:36 Packaging start Jeroen

2 325613 10/12/2017 17:02 Packaging complete Jeroen

2 325614 11/12/2017 8:32 Delivery start Niels

2 325614 11/12/2017 8:59 Delivery complete Niels

... ... ... ... ... ...
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3.3.2 Types of process mining

As displayed in Figure 3.5, three types or classes of process mining techniques can be

distinguished, which are process discovery, conformance checking, and enhancement.

These will be shortly described in this section.

When performing a process discovery task on an event log, a process model is

extracted from the event log without using any additional information [162]. Most

discovery research focuses on control-flow discovery, where both the activities and the

relationships between the activities in a process are determined [158]. One of the first

control-flow discovery algorithms is the alpha algorithm presented by van der Aalst

et al. [166]. This algorithm analyses the executions recorded in an event log to build a

Petri net that represents the real process by finding basic process patterns. However,

the alpha algorithm has problems dealing with some constructs and has been claimed

to be sensitive to noise and incomplete event logs. Therefore, de Medeiros et al.

[38] and Wen et al. [177] presented the alpha+ and alpha++ algorithm respectively,

in order to address these deficiencies. Other well-known process mining discovery

algorithms are the HeuristicsMiner [176], the Fuzzy Miner [63], the Genetic Miner

[39], and the Inductive Miner [89]. An elaborate overview of these and other process

mining discovery algorithms is given by De Weerdt et al. [42] and vanden Broucke

[169]. Despite the fact that many algorithms have been presented, no algorithm can

be defined as the best over the other algorithms and each of them is based on a

different set of assumptions and parameters [129].

Secondly, in conformance checking, the discovered process model and the under-

lying event log are compared with each other in order to discover deviations between

the model and reality. Some existing conformance checking methods are alignment

techniques [36, 161] and token-based replay [135]. A comprehensive overview of exist-

ing conformance checking algorithms and metrics per dimension is given by vanden

Broucke et al. [170]. Rozinat et al. [132] and van der Aalst [155] state that the con-

formance or the “goodness” of an event log can be expressed with four conformance

checking dimensions or quality criteria, which are fitness, precision, generalization,

and structure or simplicity. An overview of these dimensions is given in Figure 3.6.

The first criterion, replay fitness, specifies if all observed behaviour in the event

log “fits” the model, which means that the process model is able to correctly replay

the traces in the event log. Secondly, the precision or the appropriateness of a process

model measures how precise the model is for the event log under consideration. A

good process model should not allow for too much behaviour which means that it is

too general or underfitting the observed behaviour. On the other hand, the model
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should not be too precise and overfitting should be avoided. This is measured by the

generalization dimension. Generalization is defined by Buijs [22] as “the likelihood

of previously unseen but allowed behaviour being supported by the process model”.

Finally, process models should be as simple as possible in order to be comprehensible

for humans. This last dimension, the structure or simplicity of the process model, is

closely related to the modelling language and the semantics that are used to represent

the different elements in the process. Simplicity reflects the lack of process complexity

and thereby serves as the “Occam's razor” principle, stating that “one should not

increase beyond what is necessary”. These four quality dimensions are competing

which means that a balance between them should be found when discovering process

models from event logs [157]. For each of these dimensions, several metrics have been

developed and implemented, of which an overview is given by vanden Broucke et al.

[170].

Figure 3.6: The four quality criteria of process models [155].

The distinction between these dimensions was also discussed by vanden Broucke

et al. [170], who define fitness, precision, and generalization as accuracy metrics and

simplicity and structuredness are seen as two different dimensions that are defined as

comprehensibility metrics. Fitness and precision have been given the most attention

in recent years, for the obvious reason that both the model and log are known. In

contrast, generalization has been more difficult to capture, since the behaviour of the

underlying business process is generally unknown. Only a few measures currently ex-

ist for this quality dimension. Therefore, CoBeFra was presented by vanden Broucke

et al. [170]. This comprehensive benchmarking framework can be used to determine

different metrics to measure and analyse the conformance of a process model. How-

ever, the effectiveness of existing measures and metrics of these four quality dimensions

is questioned by Janssenswillen et al. [76].

Finally, as in the case of conformance checking, for enhancement also both an

event log and a process model are required to enhance the process model. However,
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instead of checking whether reality conforms to the model and vice versa, this type

of process mining has the objective to modify or improve the a-priori model [155].

Different types of process enhancement are changing the process model, in order to

better reflect reality, or extending the process model with more information such as

activity duration [161, 165] or decision logic [133, 134].

In contrast to these three types of process mining, which all require by some means

the discovery or development of a process model, process mining is in this dissertation

defined in a broader form, as it also entails the retrieval of knowledge from event data

without the need for a process model. In this respect, the next section focuses on the

distinction between model-based and event log-based performance analysis.

3.3.3 Model-based vs event log-based performance analysis

As stated above in the paragraph about conformance checking, the quality of discov-

ered process models is determined by measuring the fitness, precision, generalization,

and simplicity of the process model. Although the simplicity dimension only concerns

the process model and not the underlying event log that is used to discover it, the

other quality dimensions concern the interplay between three different groups. These

are the behaviour that can be observed in the discovered process model (M), the

event log (L), and the behaviour that is allowed by the organisation or the context

of the process, which is referred to as the “system” (S) [22]. As can be seen in Fig-

ure 3.7, the observed behaviour is not exclusive for each of the three elements, so

an overlap is present. The behaviour in the system is not easy to be captured and

described, because of uncertainty and instability in reality. Buijs [22] presents some

metrics to compare the behaviour recorded in the different elements and states that

“the traditional goal of process mining is to find a process model that describes the

system as accurately as possible, using nothing more than the observed behaviour in

the log.” van der Aalst [157] also investigated the quality dimensions in order to find

the “right” process that describes reality as correct as possible.

However, Janssenswillen et al. [76] state that most existing metrics measure the

quality of a process model with respect to the event log from which it was discovered

and not the underlying system, ignoring the fact that event logs only contain a portion

of the complete reality. Therefore, the authors present alternative quality dimensions

to measure the distance between the event log and the discovered model, and between

the process model and the underlying system. The presented quality dimensions are

log-fitness, log-precision, system-fitness, and system-precision, which can be seen as

replacements of the existing measures fitness, precision, and generalization [76].
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Figure 3.7: The interplay between the behaviour of the process model, the event log,

and the system [22]

It can thus be concluded that most process mining research is concerned with

the alignment between the process model and the event log [41]. However, as these

models are learned from the event logs with certain algorithms based on parame-

ters and assumptions, and are often manually manipulated with sliders and filters

in visualisation tools, it may be possible that unobserved behaviour appears in the

model. Conclusions taken based on these models can therefore be less reliable or even

incorrect as they possibly contain unobserved behaviour or they do not contain all

information of the business process under analysis.

In this respect, it can be useful to have a look at the difference between the two

types of analysis that were distinguished in the BPM lifecycle in Figure 3.4. These

two types are (i) model-based analysis, based on the process model that has been dis-

covered, and (ii) data-based analysis, based on the underlying event data extracted

from the system [156]. Analyses that are purely based on a process model can be

divided into two types, which are verification (checking the accuracy of the process

model) and performance analysis (improving the process regarding the time, cost, or

quality of the process). The latter can be defined as more interesting for business peo-
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ple as the former is more focused on the soundness (a minimum correctness criterion

that a process model should fulfil) of process models. However, to be able to perform

model-based performance analyses, process models of high quality are required as

analyses about the reality are only useful in case the model represents the reality as

accurately as possible. van der Aalst [156] states that process mining can be seen

as a solution for this shortcoming as it uses event data to create process models or

to check the conformance of process models. However, after a comprehensive survey

of 289 BPM-related papers performed by van der Aalst [156], in which the actual

use of process mining was analysed, it was found that monitoring and analysing the

performance of processes based on event data occurred in only very few papers, while

the largest share could be attributed to process model discovery and process model

enactment.

Next to this, Günther and van der Aalst [63] stated that real-life processes are

much more unstructured than is expected by people, resulting in what they call

“spaghetti models”. Too often, process mining experts make assumptions about the

event log and about the process models discovered from these event logs, resulting

in incorrect interpretations. To overcome this problem, the authors introduced the

Fuzzy Mining approach, which supports the ability to simplify the process model dis-

covered from a process. This approach can be compared with classical road maps,

which aggregate and abstract information, which emphasise the most important in-

formation, and which are customised for specific purposes. Following these analogies,

different log-based process metrics are introduced to improve the simplification and

visualisation of process models, based on significance, i.e., the relative importance of

behaviour, and on correlation, i.e., the congruence between events. Behaviour that is

defined as “uninteresting” will be hidden or even completely removed from the sim-

plified model. However, although the resulting models will be more understandable,

they are still based on human-chosen parameters and other settings.

Based on these findings, we can state that the analyses performed on process mod-

els that are discovered from event logs can be subjective and prone to errors. Business

people should therefore be careful when using process models as the only measure to

base their improvement decisions on. In response to this, this dissertation will intro-

duce measures that are based solely on the event log data of a business process in

order to provide business people with more objective insights in their processes, with-

out the need of a process model. The requirements of these measures will be identified

in Chapter 4. However, first an overview of existing work on the interplay between

process mining and operational excellence, and existing performance measures are

presented in Section 3.4.
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3.4 Process mining in operational excellence

3.4.1 Related work

The link between process mining and operational excellence was already shown in

the Process Mining Manifesto [160], by van der Aalst [155], and by Dumas et al.

[47]. Process mining is claimed to be a supporting technology for approaches such as

Six Sigma, business process improvement (BPI), corporate performance management

(CPM), and total quality management (TQM), in order to strive for operational

excellence.

van der Aalst et al. [161] built on this for their model-log comparison in order to

check conformance and to analyse process performance. They stated that a ‘good’

alignment between the discovered process model and the underlying event log makes

it possible to replay the events in the log on the process model and to subsequently

identify bottlenecks or perform other performance analyses.

In a case study performed at a Dutch bank, it was shown that the DMAIC-cycle

of Six Sigma could be substantially accelerated by applying process mining as an

additional technique in each of the phases [167]. They enumerate some difficulties of

the use of the Six Sigma cycle that can be reduced by the use of process mining, such as

the dependency on relevant and qualitative data, the expensive and time-consuming

data analyses, and the translation to practical use cases. Based on an analysis of

the relevance of process mining throughout their research, some recommendations

for the different steps in the DMAIC-cycle are presented. With or without process

mining, starting with an accurate definition of the objective and scope of the analysis

will pay off in the following stages. Most problems that occur in the measure step

deal with the collection and quality of the collected data. With process mining, the

data can be retrieved from existing information systems, after some requirements are

met, in order to lower the disagreements and problems concerning the data and in

order to make the analysis repeatable. In the analyse phase, the authors used the

tools RapidMiner3 and Disco4 to create benchmarks for their analyses and to find

bottlenecks in the process. Root causes for these bottlenecks can also be found via

the visualisation tool. Also involving the people working in the process from an early

stage and including them in the analysis is easier when the process is visualised and

will result in more accurate conclusions. The root causes can then be translated to

measures and concrete actions to improve the process. Conclusions can be drawn

3http://rapid-i.com
4https:// fluxicon.com/disco/
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much faster from the visualisations which will also improve the practical use. In the

final step, the control phase, process mining can be used to support more analyses as

data collection can be easily repeated. Based on these operations of process mining,

the authors could conclude that the Six Sigma cycle was accelerated from 9-12 weeks

to 4-6 weeks [167].

Other examples of use cases in operational excellence for which process mining

can be useful are:

� Companies should have an understanding of their as-is situation before improv-

ing their business processes using lean management and Six Sigma. This picture

of the as-is situation can be accomplished by visualising the process.

� Customers often prefer customised options. Process mining can be applied to

find out how frequent a certain process variant is and what the costs will be for

deviating from the “happy flow”.

� Lean management is all about the flow that adds value for customers and re-

moving waste from this flow. Process mining can be used to identify the points

that cause variability in this flow.

� Constraints or bottlenecks in the process should be removed too, which can be

visualised with the animation function in the tool Disco.

� “Doing things right the first time” implies that rework is reduced, resources are

deployed optimally, and loops are detected in the process model.

� Companies that should comply with legal aspects also need an insight in where

deviations occur.

� And finally, based on different process mining analyses and techniques, predic-

tions for future process behaviour can be indicated.

On the other hand, instead of looking at how process mining can be used to

implement operational excellence, Six Sigma was also presented to cover techniques

that can be useful to perform business process management [28]. By applying methods

such as cause-and-effect diagrams, check sheets, pareto diagrams, and root cause

analysis to a helpdesk process, Conger [28] found that these techniques can all be

useful. However, many of them are required together to uncover all aspects of a

problem in a business process and it is not clear which combination of techniques

should be used in which situation. Next to this, each technique has its own method

of presentation which can result in time-consuming interpretations.
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Based on this overview of existing applications at the overlap between process

mining and business process management on the one hand, and operational excel-

lence techniques on the other hand, we can state that the work that has been done

at this interplay is rather limited given the overlap between both fields. It can be

concluded that the opportunity to use process mining as a useful supporting method

for operational excellence should be played out more.

3.4.2 Existing process performance measures

This chapter shows that, despite the potential of process mining to support oper-

ational excellence, significant research challenges are still ahead to integrate both

fields. As was presented in Chapter 2, companies should continuously measure the

performance of their processes and are therefore forced to look for the “right” process

performance criteria. Heckl and Moormann [66] outline different process performance

measurement techniques in order to help process owners to manage their processes

in accordance with their performance. However, the authors found that there is no

single process performance measurement system that can be recommended to process

owners as companies should rely on custom-built approaches that are adapted to its

specific objectives and company strategy. Some examples of existing performance

measurement techniques can be positioned within a model containing two variables

of performance, which are focus and scope. Process performance measurement sys-

tems can be defined to be concerned with performance in a broad sense, investigating

both efficiency and effectiveness of company processes, in contrast to performance

measurement techniques such as activity-based costing, work-flow based monitoring,

or statistical process control, which all focus mainly on the efficiency. Process per-

formance measurement systems also focus on single business processes in contrast to

techniques such as balanced scorecards and self-assessment, which are usually con-

cerned with the entire company. The analysis of the performance of a process should

thus entail both qualitative and quantitative measurements and should not only fo-

cus on the efficiency of the process in order to reduce costs, but also on the process

effectiveness in the interest of more profit-enhancing matters [66].

In order to perform the measurements in practice, Heckl and Moormann [66]

defined three categories of process performance concepts, which are (i) performance

indicators, or classes of performance measurement, (ii) performance measures, which

are the actual calculations to make the performance indicators operative, and (iii)

performance figures, such as the benchmarks against which the performance measures

are to be compared to interpret the objectives of the company. The different classes of
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performance measurement that are presented by Heckl and Moormann [66], based on

an elaborate literature review, are (i) quality, (ii) time, (iii) cost, and (iv) flexibility.

These four classes of performance measurement are also discussed by others, such

as Dumas et al. [47], who refers to them as the Devil’s Quadrangle since improvement

or redesign of a business process ideally decreases the throughput time, increases the

quality of the delivered product or service, lowers the execution cost, and improves

the way the business process handles process variation. Improving or focusing on

one of the performance measurement dimensions automatically influences the other

dimensions in a negative way. Several other authors refer to the same dimensions of

performance measurement, such as Reijers and Mansar [128] who use these categories

to evaluate different best practices for business process redesign, and Kis et al. [82]

who recently presented a framework of process performance measures based on the

Devil’s Quadrangle. The latter presents a measure for each of the four dimensions,

time, costs, quality, and flexibility, based solely on event log data, which is also the

focus of this dissertation. In contrast to other work in which it is not clear how the

measures are calculated, Kis et al. [82] clearly define the requirements of the event log

data that is used as input for the calculations. However, currently the authors try to

capture each dimension of the Devil’s Quadrangle within a single measure by combin-

ing multiple measures, implying the risk that certain results of individual measures

are ignored. Moreover, also in the field of operations and production management,

the four aspects of the Devil’s Quadrangle are used to categorise measures of perfor-

mance. An overview is given by Bhagwat and Sharma [17], De Toni and Tonchia [40],

and Neely et al. [111]. However, as the focus of these performance measurement sys-

tems and approaches is mainly on manufacturing and operations, they are excluded

from this dissertation. Finally, as was already stated earlier, many metrics have been

proposed to measure the compliance of discovered models with their underlying event

log in the field of process mining, yet the number of measures applicable solely to

event log data is limited.

An overview of existing measures provided by Anupindi et al. [10], Dumas et al.

[47], and Kis et al. [82] is presented in Table 3.2, categorised based on the performance

measurement dimensions of the Devil’s Quadrangle.

Note that this table is not exhaustive, as many performance measures and metrics

are not formally defined or mentioned in literature, and an exhaustive overview of

which metrics to use in which situation, is missing. Moreover, the input requirements

or calculation methods of most measures are not explicitly defined, as well as the

level of analysis that is used, which makes it hard to evaluate and compare them.

Finally, performance measures defined in other fields such as, among others, opera-
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Table 3.2: Existing process performance measures, categorised based on the Devil’s

Quadrangle [10, 47, 82].

Time Quality

cycle time/throughput time/flow time/lead

time

internal quality, such as level of variability

or level of control

waiting time external quality, such as client satisfaction

processing time/service time product quality

synchronisation time number of repetitions

outcome quality (was the planned path

followed?)

technical quality (did any incidents occur?)

Cost Flexibility

cost of production number of distinct executions

cost of delivery level of concurrency

cost of (human) resources number of decision points (in the model)

fixed costs vs. variable costs resource specialisation

overhead costs resource capacity

operational costs run-time vs. build-time flexibility

inventory ability to handle multiple cases

flow rate
ability to change the structure of the

process

volume flexibility (constant handling of

cases)

technical flexibility (time spent on

incidents)

tions management, queuing theory, and simulation, are excluded from this overview.

Nevertheless, the overview provides a first insight in existing process performance

metrics which can be used as a basis for the artifacts that will be created in this

dissertation, to overcome the shortcomings in the interplay between process mining

and operational excellence.
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3.4.3 The added value of process mining

From Chapter 2 it was concluded that existing operational excellence techniques are

mostly based on paper-and-pencil methods which are not able to respond quickly to

changing conditions or environments. Most lean management and even Six Sigma

techniques are therefore rather qualitative as they are often not based on event data.

This results too often in decisions that are taken based on subjective interpretations

or that depend on the person or team executing the process or performing the analy-

ses. Moreover, these approaches are considerably time-consuming and not repeatable.

Next to this, there is also no overview of which techniques or which combination of

methods is prefered in which situation.

Based on these conclusions drawn from Chapter 2, together with the findings in the

chapter at hand, we can state that there are some shortcomings in the operational

excellence field that can be resolved by using process mining techniques and tools

that have been presented during the last decades. Therefore, an insight is provided

in the link between the most common principles and methods from the operational

excellence methodologies presented in Chapter 2 and how event log data can be useful

to support or enhance these methodologies. This link is presented in Figure 3.8, where

some common principles and methods of lean management, Six Sigma, and theory of

constraints are complemented with specific analysis requirements which were found

in literature. Next, the link between these analysis requirements and how event log

knowledge can be useful to support these requirements is provided.

Firstly, the analysis of the general insights gained from an event log, such as the

identification of activities, resources, cases, and patterns (or traces), is straightfor-

ward and therefore omitted from the overview in Figure 3.8. These general event log

knowledge aspects are not specifically related to one or some of the analysis require-

ments from the operational excellence field as they are basic measurements that are

used to retrieve and calculate the event log knowledge concepts provided in Figure 3.8.

Secondly, it can be noted from Figure 3.8 that multiple operational excellence prin-

ciples and methods are related to the same event log knowledge concept, confirming

again the overlap and joint nature of the three methodologies.

Based on this overview, it can be stated that the application of process mining

and the use of event log knowledge in the field of operational excellence can be bene-

ficial. First, the use of event log data as a source for the concepts of process discovery

and knowledge retrieval can be a response to the shortcoming that most operational

excellence techniques are based on qualitative, paper-and-pencil techniques, and on

human opinions and decisions. With more quantitative and objective measures, the
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analyses that are performed are more easily repeatable and reproducible, and trends

in measurements over time can be analysed, which is also noted as an important un-

derlying principle of Six Sigma and total quality management. Furthermore, insights

from event log data can support initiatives which aim to reduce waste and non-value-

adding activities in a process and it can support the DMAIC-cycle of Six Sigma as

was explained above. Moreover, constraints, bottlenecks, and batch processing can be

detected rather easily and predictions for future process behaviour can be suggested.

Process mining can thus be defined as an additional approach to analyse the as-is

situation of a business process in order to get insights in the current state of the

process including its weaknesses, and to lay a foundation for process redesign.

Secondly, by making use of event logs instead of qualitative and interview-based

data that can be rather static and subjective, process mining can be used to transform

objective and more correct data to knowledge about the different aspects of a business

process. However, in order to improve business processes and their performance, the

decisions and subsequent actions taken should be as correct as possible, and therefore

based on reliable and trustworthy data. As was found in this chapter, the field of

process mining focuses mainly on the discovery of process models from event logs.

This aspect can be categorised under the ’identify process flow’ element in Figure 3.8,

which is shown to be an important and useful aspect for the analysis requirements

of operational excellence. However, these models often lack the ability to provide

an accurate picture of reality as they are discovered based on discovery algorithms

containing assumptions and parameters that should be chosen upfront. In the visu-

alisation tool Disco, for instance, process owners can visualise their business process

with filters and sliders, determining the level of analysis and precision as desired. As

these models and visualisations are presenting only parts of reality, or a simplified

version of reality, the actions and conclusions concerning process performance and

process optimisation taken based on these insufficient or even incorrect sources may

be misleading or unreliable. Companies therefore run the risk to take actions and

make changes, and subsequently incur costs, with the wrong intention. The field of

process discovery can thus be broadened with the retrieval of knowledge from event

logs without the use of an intermediate process model.

Building on these findings, some interviews were conducted to further analyse

the needs of business process experts, in order to introduce artifacts that solve the

shortcomings in the interplay between both fields defined above. The characteristics

and findings from these interviews will be elaborated upon in Chapter 4 in order to

create an overview of all requirements for the artifacts, based on the interconnection

between the results of the interviews and the findings from literature.
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Figure 3.8: Useful insights from event log knowledge in operational excellence.
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3.5 Conclusion

This chapter presented an overview of process mining and the work that has been

done at the interplay of process mining and operational excellence.

From Chapter 2 it is clear that continuous performance measurement of busi-

ness processes has been hard to accomplish as no clear overview has been presented

of which guidelines and techniques should be used by companies. Many existing

techniques are qualitative and based on paper-and-pencil approaches with a lack of

support of data-based analyses. This also implies that the operational excellence ap-

proaches are rather subjective and depending on the person performing the analyses

and the team involved in the process. Therefore, the need for more objective, data-

based techniques has been identified. In the field of business process improvement,

some authors claim that specific guidelines for business process optimisation are miss-

ing in literature and that it is not always clear from literature how existing techniques

are used to support the process of business process improvement. Process mining was

therefore introduced, as it shows to be promising in the field of knowledge retrieval

based on process data that is collected from process aware information systems in

companies. However, most research on process mining focuses on the discovery of

process models from event logs and the compliance of these models compared to the

event log. These models are learned from event logs with certain algorithms, based

on parameters and assumptions, and often manually manipulated with sliders and

filters. This may result in less reliable conclusions and improvement measures that

are possibly based on incorrect or incomplete process models that contain unobserved

behaviour or that do not contain all information of the business process under anal-

ysis. We can thus conclude this chapter by stating that there is a gap that we want

to bridge between operational excellence and process mining and that there is a need

for an artifact that uses the knowledge from event logs to support business process

improvement in the light of operational excellence. This artifact should focus on one

or more of the performance measurement categories that have been identified in lit-

erature, which are time, structuredness, cost, and quality. Although existing process

performance metrics have been presented, these metrics lack specific input require-

ments, clear calculation guidelines and methods, and level of analysis, which makes

them hard to compare and evaluate.
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Artifact requirements

4.1 Introduction

Chapter 2 outlined the key concepts of operational excellence within the evolution

of quality management and some well-known process improvement methodologies. It

was noted that existing process improvement techniques are rather subjective and

often based on paper-and-pencil approaches. Chapter 3 added a high-level overview

of the process mining field and existing applications of process mining in the light

of operational excellence to this. The field of process mining focusses mainly on the

discovery of process models from event logs that contain activities performed in the

underlying business process, and the performance of a process is mostly measured by

means of these discovered process models. However, these discovered process models

do not always represent reality perfectly as they are discovered from the event logs

based on algorithms containing assumptions and parameters that should be chosen

upfront, implying that unobserved behaviour can possibly appear in the model. This

results in a risk when conclusions and decisions are taken based on these models.

In order to acknowledge the shortcomings that were listed in the problem in-

vestigation step of the design science research framework, this chapter (Figure 4.1)

investigates the specifications of the artifact that will be introduced in this disserta-

tion to overcome these problems. This investigation will be accomplished by analysing

the requirements that should be taken into account when this artifact is designed and

developed. Johannesson and Perjons [78] define a requirement as “an artifact that

is deemed as desirable by stakeholders in practice and that is to be used for guiding

the design and development of the artifact”. A multitude of requirement engineering

71
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Figure 4.1: Outline of the thesis - Chapter 4.

methods have been developed, of which an overview is presented by Wieringa [179].

For this requirements analysis, the literature review that was provided in Chapter 2

and Chapter 3 and the interviews that are described in the chapter at hand are taken

as a starting point. Firstly, the required artifact is introduced in Section 4.2. Secondly,

to verify if the findings from literature hold in practical environments, interviews have

been conducted with business process analysis people. Section 4.3 gives an overview

of the interviews with three business process experts from service companies that

have been questioned about the topics that were found in literature. Next to a short

overview of the three different respondents, a description of how the interviews were

conducted and the insights that were found in the interviews are provided. The results

from these interviews are then compared to the findings in literature in order to define

the artifact requirements in Section 4.4. Finally, conclusions are drawn in Section 4.5.
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4.2 The need for an artifact

Based on the shortcomings described in the previous chapters, it can be stated that

there is a need for an artifact that uses unbiased event log knowledge to support op-

erational excellence techniques. As was seen in Chapter 3, in process mining research

the discovered model is usually built based on different assumptions and parameters,

and in contrast to most process mining research that is concerned with the alignment

between the process model and the event log [41], the artifact that is required here

to solve the shortcomings focuses on the objective measures that can be directly read

from the event log.

Therefore we propose that a list of event log-based metrics is created, which will

provide a process owner with unbiased, algorithm-agnostic information of the event

log, as a starting point for a process analysis. An overview of existing performance

measures was provided in Chapter 3, as well as a visual overview of the link between

the operational excellence methodologies that were presented in Chapter 2 and the

usefulness of event log knowledge in some of the most important underlying principles

and methods of these methodologies. From this overview and the overview of existing

performance measures it could be stated that many metrics already exist to support

the operational excellence field. However, some drawbacks of these metrics were

already mentioned in Chapter 3, which will be repeated here. Firstly, many of the

existing metrics are based on models, which are discovered or built on experience,

or on qualitative and subjective data such as human experiences and interpretations.

Moreover, the collected data is often only a sample or a subset of the entire process

data. Secondly, existing measures lack specific guidelines for data collection and for

calculations, making it hard for the process analyst to decide which actions to take.

Finally, existing measures are presented by different authors, in different fields, such

as operations management, business process management, and operational excellence.

As a result, their procedures and tasks are all different and hard to compare and

evaluate.

It can therefore be stated that the developed metrics should be based on event log

knowledge, for which the requirements should be clear. Moreover, the metrics should

be concerned with one of the four different categories of process performance measures

that should be focused on in a business process improvement project, as was seen in

the previous chapter. These are the four aspects of the Devil’s Quadrangle: time,

structuredness or flexibility, cost, and quality. The measurements should also involve

one or more of the aspects of operational excellence that were defined in Chapter 3.

These are, among others, batch processing, waste, rework, and non-value-adding ac-
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tivities. In this respect, an overview of required measures was already provided in

Chapter 3, where the usefulness of event log knowledge to support operational ex-

cellence was defined. Finally, the artifacts that are created should be applicable on

different levels of analysis and they should serve as a means to objectively compare

different event logs in terms of the different aspects of process performance.

4.3 Business process expert interviews

To get further insights in the requirements that should be taken into account when

this artifact is designed and developed, the findings from literature are complemented

with the results from business process expert interviews that have been conducted

during this research1. The interviews are taken from three business process experts

from two different service companies who are all responsible for the analysis and/or

optimisation of the business processes within their organisational unit. The two com-

panies both are large utility providers in Belgium. The interviews that are conducted

can be defined as semi-structured, which means that they consist of a set of predefined

questions that do not require a response from a predefined list, but can be answered

with an open answer by the respondents [78]. This type of interviews was chosen to

be able to ask more information in case an interesting topic would come up, which

is not possible with structured interviews. The interviews took place in March 2016

and for the selection of the respondents, the theoretical sampling technique was ap-

plied, since the aim is to generalise analytically, not statistically [24, 50]. In contrast

with statistical sampling in which a random sample from a population is chosen for

analysis, here the respondents are chosen very specifically, as they are all working on

process improvement in service companies. Moreover, respondent one and two oper-

ate at the tactical level and are mainly responsible for the continuous improvement

of the business process, while respondent three is involved in the strategic improve-

ment of multiple business processes within her company. Finally, a fourth person,

who has a consultancy function in the field of process optimisation, was excluded

from the interview round as he was involved in each step of the design cycle that is

used throughout this dissertation. While he was found to be too engaged for these

interviews, his input throughout the dissertation funds both the requirement analysis

and practical applicability of the developed artifacts.

1For privacy reasons, the full transcription of the interviews as well as the identity of the respon-

dents will not be provided in this dissertation. The interview questions can be found in Appendix A.
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4.3.1 Interview respondents

Before analysing how the interviews were taken, a short overview of the three respon-

dents is given in this section.

Respondent one has been working as a business process analyst for more than

two years, which means she is responsible for the continuous optimisation of differ-

ent processes within the utility company she is working for. This includes solving

small problems within the process as well as more structural changes throughout the

complete process. One of the main processes that respondent one is involved with

can be divided into two types; a business-to-customer (B2C) process, which is mainly

automated, and a business-to-business (B2B) process, which is handled manually for

most of the parts of the process. The latter is much more unstructured and contains

more exceptions than the former, which therefore represents better the “happy flow”

of the process.

Respondent two, also a business process analyst at another utility provider, is

responsible for developing the business processes, maintenance, process optimisation,

and improvements on the supporting IT systems such as SAP and mobile systems.

Next to this, he also collects data and controls different key performance indicators

and process indicators that have been defined for the processes in order to report the

results to other departments and identify the causes of certain problems. The process

he mainly works on is the process concerning customers requesting a connection,

which will also be used in the case study in Chapter 7. Most of this process has

been automated. However, a lot of manual checks still occur, mostly to customise

the process for each customer. Routine tasks have mainly been automated, but in

order to automate more, the company should standardise its service, implying that

the range of services offered to customers needs to be reduced.

Respondent three finally, is the head of the process optimisation department

in the same company as respondent two. She is mainly responsible for supervising

the actual optimisation of the processes which also includes the training of employees

working on the process and providing them coaching and education courses in order

to optimise their techniques and procedures. They also try to provide documentation

for all processes, including instructions (how to perform an activity), guidelines, and

documents containing knowledge about each subprocess.

4.3.2 Interview design and results

As the goal of the interviews is to analyse the problems and shortcomings with process

performance optimisation in practice, different topics are discussed with the respon-
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dents. Firstly, their own experience with business processes is discussed, together

with an overview of the business process(es) they are working with.

Secondly, in order to get a notion of the shortcomings of process optimisation in

practice, the funnel technique was applied. A first set of broad questions was provided

to the respondents to start the interviews. In a next step, more specific questions are

asked about the different classes of process-oriented performance measures which were

presented earlier; time, cost, quality, and structuredness.

An overview of the different topics that were covered during the interviews together

with the responses of the three respondents is given next. Firstly, the concept of

an efficient business process is discussed, followed by some more specific questions

and answers about the different categories of performance measures. Finally, some

problems with business processes and other remarks on process performance are dealt

with. The interview insights will be summarised in Section 4.3.3.

4.3.2.1 Efficient business processes

Firstly, the respondents were asked for their impression or opinion on the concept

of an efficient business process and how efficient the processes in their company are.

Respondent one defines efficient processes as having little business incidents and little

eruptions or failures within the process. Processes should also be automated in order

to reduce the risk of (human) errors. An indication of the performance of a process

can be measured by the number of calls by customers, as they mainly call for problems

or complaints which cost a lot of time and money to solve them. This respondent does

not have a perfect overview of the performance of the company processes, although

different performance indicators exist to measure certain aspects of it. One example

of a performance indicator is the throughput time of a customer request. However,

this indicator is hard to measure correctly as the system implementation does not

support the identification of different customer tickets to be connected to the same

customer in case this occurs, resulting in an incorrect view on the total throughput

time of a customer. Another difficulty is the decision when to contact customers as

this is very time consuming, but in some cases inevitable.

Respondent two and three define an efficient process in a rather similar way which

will therefore be described together. Firstly, only (or mostly) activities that add value

to the end customer of the process should be in the process, unless it concerns activities

that are unavoidable (e.g., because of governmental compliance rules). An efficient

process also contains an end-to-end flow without delays or eruptions. An example

given by respondent two of a process delay is customer information that is incomplete
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when it arrives at the company. The information that is required to execute the

process should also be captured and stored in a correct and efficient manner, which

is especially important for the analyses afterwards. Moreover, constraints should

be avoided as much as possible in order to prevent inventories to pile up and all

preconditions in order to keep the process running should be satisfied. Finally, the

process should be executed within certain throughput time boundaries (which can be

implied by an external regulator) and with minimal waiting times.

The respondents also lack a good notion of how “well” the process is running,

as the measurements that exist mainly concern subparts of the processes. Moreover,

only the aspects that are regulated by the government are monitored, such as the

service time for the customers. However, next to these measures, different levels of

key performance indicators have been defined throughout the company. But for now,

too few measures exist to be able to evaluate the business processes in an end-to-

end way. An interesting additional metric, according to one of the respondents, is a

measurement of the quantity of inefficiencies in the process, which can be presented

by the number of iterations of a certain step. This would be an indication of the

amount of waste in the process.

4.3.2.2 Categories of performance measures

The categories or classes of performance measures that are given by the three re-

spondents are very similar to the four classes that where found in literature, which

are time, structuredness, quality, and cost [66]. Respondent two listed these classes

exactly as they were found in literature. He mentioned timeliness of the execution

of the process in order to deliver on-time to the customer what he requests, and the

throughput time of the end-to-end process, as two categories which are very impor-

tant in the service industry. However, he states that the end-to-end throughput time

should be evaluated with care as for many steps in the process the company depends

on the speed and the reaction time of the customer or other external stakeholders.

The waiting time is therefore another measure that was mentioned in this context,

implying that the distinction between actual service time, waiting time, and through-

put time should be taken into account. These measures can be classified under the

time dimension. Respondents one and three also defined the throughput time of the

process as one of the most important aspects in measuring the performance of their

processes. All three respondents testify that different measures to assess the perfor-

mance of a process concerning the time aspect are already employed in the processes

in their companies, as the timeliness of a process is generally linked to governmental



78 Chapter 4

requirements.

Concerning the cost aspect of a business process, respondent two mentioned that

the amount of waste, the actual processing time of the different activities in the

process, and the number of iterations all have an impact on the costs. However,

this category is broader than only the process aspects, as other factors that are not

included in the process, e.g., the materials that are used, also influence the costs. Also

the other two respondents indicate that the cost of the process, i.e., how much does it

cost to service one customer, is a very important classifier of the process performance,

which includes many different aspects and which is linked to the other categories of

performance measurement. However, all three respondents regret that currently no

indicators to measure the costs of the business processes are implemented in their

companies.

The quality of the processes was also mentioned as an important measure. Re-

spondent two mainly discussed the quality of the data that was tracked and used for

analysis purposes. The more correct the measurements and recordings are done in

the different steps in the process, the more correct the results of the analyses will be.

Next to the correctness of the data tracking, respondent one also focused on the com-

pleteness of the different steps in the process. The example of an invoice was given,

in which a lot of elements should be filled in and should not be overseen. Respondent

three finally, states that the quality of the process depends on the added value for the

customer in the end. The more activities that do not add value are removed from the

process, the higher the value will be for the customer, and consequently the higher

the process quality will be.

Finally, respondent two and three also indicated that the amount of variation

within the process should be seen as an indicator of the process performance. Re-

spondent three clarified the concept of variation by referring to the complexity of the

process; the less complex the process is for people to be executed, the more “pleasant”

it is to execute it. This means, according to respondent three, that the number of

activities should be minimised, and especially rework, waiting time, non-value-adding

steps, and overprocessing should be avoided. Based on these cases, this category of

measurements can be defined as the flexibility or structuredness of the process. All

three respondents agree that the degree of flexibility or structuredness of a process is

a very interesting aspect of processes to be measured, as it influences both the cost of

the process and the quality. However, until now none of the respondents’ companies

are capable of measuring the structuredness of their processes, as metrics for this

category of performance measurement have not been defined yet.

According to all three respondents, the importance of the different performance
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measures depends on the type of the process. It is therefore not possible to define

one of the categories as more important or having a higher weight than the other

categories. However, performance measures concerning the time dimension are easier

to calculate and easier to apply than the other categories. As a result, these measure-

ments are more commonly executed in practice than others. Next to this, it can also

be noticed that the different categories of performance measures are not independent

from each other as the cost is mainly defined by the timeliness of the process, and the

quality depends on both the structuredness and timeliness of the process.

4.3.2.3 Problems and other remarks on process performance

Next to the different categories of process performance, the respondents also men-

tioned that the performance of processes should be measured at different levels of

analysis. Mainly, the existing measures are calculated on parts of the process, as an

overview of the complete end-to-end process is often missing. However, the inter-

views show that measurements on the level of specific activities and specific teams

executing the activities can be an added value in measuring the process performance

and improving the process at the most valuable places. Insights into which person

executes all instances of an activity that does not add value to the end customer,

and which employee contains all knowledge about a specific topic are two examples

of resource-level measurements that can be of interest for companies.

The respondents also mentioned that the information systems operating the pro-

cesses and collecting the data are not optimised in order to perform analyses and

measurements concerning the performance of the processes. Calculations that are

performed are therefore very elementary and still too often based on human inter-

pretations and statements, making them not sufficient for thorough decision making.

Moreover, measurements become difficult very fast as business people are not edu-

cated to perform and interpret advanced process mining analyses.

4.3.3 Interview insights

Based on the answers of the three respondents, the following conclusions can be stated.

An efficient business process is a process that contains only (or as many as)

possible steps that add value to the end customer of the process, which can be internal

or external, and which can not be avoided because of regulations. Also bottlenecks,

delays, and eruptions should be eliminated in order to optimise the process and to

minimise the idle time within the process, and all data should be captured and stored
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in a correct and automated manner, if possible. This all should be done while taking

into account all external requirements that impact the process.

Concerning the different categories of process performance, the interviews

show that the four categories that are referred to as the Devil’s Quadrangle in

literature are also present in practice. Some examples of specific measures that are

used in the organisations of the interview respondents are:

Time

� Timeliness of the execution, which is often related to regulations.

� Throughput time on different levels of analysis (activity, end-to-end, parts of the

process). Here the interaction with the customer should be taken into account,

which results in actions taking up time that the company has no influence on.

� Waiting time, both the one that the company has no influence on, as the one

that is induced by internal causes.

Cost

� The cost related to waste, such as iterations that occur for steps not being

executed correctly from the first time.

� The cost of the throughput time of the different steps.

� The cost of the number of iterations of a certain step.

� The cost that is linked to external elements, such as the materials that are used

or the underlying information systems.

� The cost of personnel and people working on the process.

Quality

� The quality of the execution of the process, especially the data quality.

� The added value for the customer.

� The completeness of the process execution.

� The number of complaints or calls that are made by the customer. This is

related to the first-time-right principle, which should be pursued as much as

possible.
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Structuredness

� The number of activities executed in the process and the number of iterations

for each of the activities.

� The number of activities that are not adding value to the customer.

� Rework and overprocessing.

� The sequence of activities in the happy flow and the percentage of cases that

follow this happy flow.

Finally, it can be concluded from the interviews that the following characteristics

concerning the measurement of process performance are identified as missing elements

in practice:

� Different levels of analysis should be taken into account, such as the activity

level, the end-to-end process level, and subparts of the process.

� A clear and straightforward definition of the different categories of process per-

formance in a business context should be provided.

� Especially indicators for structuredness and process complexity are missing.

� The findings should be easy to interpret for business people, and made visually

in order to increase the understandability.

� Related to the previous, the concepts that are used in the analyses and in

reporting the findings to the business people should be understandable to them.

A translation of the rather technical concepts to more business-wise concepts

will improve the interpretation by the right people.

� Techniques to identify bottlenecks, delays, and obstacles should be presented.

� The link between the different measures and between the different categories of

measures should be taken into account.

� Human-based findings and results should be dismissed as much as possible as

they can contain mistakes and can be very subjective. The human input should

therefore be complemented with objective data collected by the system in order

to perform more correct analyses.
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4.4 Overview of the artifact requirements

Starting from the gaps that have been found in literature between operational excel-

lence on the one hand and process mining on the other hand, supplemented with the

findings in the business process expert interviews, the requirements for a solution to

overcome this divergence can be defined. The artifact that will be created to solve

the described problems needs to meet a number of requirements [78]. Before defining

these requirements, the choice of the artifact will be explained.

4.4.1 The artifact

As was already stated in Chapter 3, in most existing process mining research event

logs are used for the discovery of process models, from which subsequently conclusions

and improvement measures are taken. However, this implies a risk that the discovered

models, as they are based on algorithms and assumptions, contain information that

did not occur in the event log or of which one cannot be sure that it actually happened

in reality. This indicates the need for objective measures that are directly learned from

the event data, without the need for an intermediate model.

Moreover, in the field of business process improvement (BPI), some authors claim

that it is not always clear from literature how existing techniques are used to support

the process of business process improvement. Therefore, it was stated in Section 4.2

that, to tackle this gap, a set of suitable metrics should be introduced to gain insights

from event logs in an objective and parameter-free procedure. As was explained in

Chapter 1, four types of artifacts have been presented in design science literature

[94]. Here, the first type, which are the constructs, will be employed to develop the

artifact, as it represents a newly defined language and terminology with definitions

to express the problem and its potential solutions.

The next subsection will summarise all artifact requirements that can be identified

from the literature review and from the business process expert interviews that were

analysed above.

4.4.2 The requirements

Johannesson and Perjons [78] state that two types of requirements exist, which are

functional and non-functional requirements. Functional requirements specify the func-

tions that the artifact should fulfil, e.g., the reservation system of a library should be

able to tell if a book is available, if it is with a reader, or if it is reserved for someone.

Non-functional requirements define the structure and capabilities of the artifact, e.g.,
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the reservation system of the library should be able to respond to each information

request within three seconds. Van Vliet [168] adds two other types of requirements,

which are global conditions, that concern the end product, and project issues, that

concern the entire project. Examples of these two types are the requirement that the

reservation system will be used by all staff members and visitors of the library, and

the requirement that the project that involves the creation of the entire reservation

system should be finished on the 1st of May 2018, respectively.

These requirement types can be associated with the field of requirements engi-

neering, which entails different activities in the definition, documentation, and main-

tenance of requirements for a newly designed product or artifact, and which finds

its roots in the field of software engineering [179]. Requirements engineering can

be defined as a method to define the requirement specifications that represent the

needs of different stakeholders [19]. Many authors define the activities within re-

quirements engineering in a different way. However, they mostly include eliciting,

modelling and analysing, communicating, agreeing, and evolving requirements [113].

A detailed overview of the methods and techniques of requirement engineering can be

found in, among others, Kotonya and Sommerville [85], Van Vliet [168], and Wieringa

[179]. From the literature overview provided by these authors, it can be stated that

requirement specifications for an artifact should be correct, unambiguous, complete,

consistent, ranked for importance or stability, verifiable, modifiable, and traceable.

Multiple standards exist to document requirements, however, more important is it to

adhere to these constraints when a structure is chosen [168].

Based on these constraints, the requirements of the event log-based metrics that

are developed in this dissertation can be described as follows.

Requirement 1 (functional). The event log-based metrics should measure both the

general aspects of an event log and the more specific measures concerning the oper-

ational excellence field, which were stated to be useful event log knowledge insights

in the analysis requirements of the operational excellence methodologies presented in

Chapter 3. Both from literature and in practice it was found that different indicators

for measuring the level of performance of a business process already exist. However,

most of these existing measures are model-based, yet some are event data-based. An

overview of the existing metrics in literature was provided in Chapter 3. To structure

the list of metrics, four categories of process performance measures, which are often

referred to as the Devil’s Quadrangle, were identified in literature. These are time,

cost, quality, and flexibility or structuredness. These findings from literature are fully

supported by the findings from practice.
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In this research, we will focus on the dimensions time and structuredness, as these

are both shown to be direct indicators of different types of waste and other indicators

of operational excellence in Chapter 2. Moreover, all measures that were found to

be useful applications of event log knowledge in operational excellence are concerned

with the time or structuredness dimension. The concept structuredness is chosen

above flexibility, because we want to measure how structured -and not how flexible-

the behaviour in the event log is. However, this is mainly a matter of terminology

as the content of these two concepts is used interchangeably in literature and in

practice. One could argue that structuredness refers to the amount of variation that

is allowed in a negative way, as variation should be removed from a process, while

flexibility shows the amount of variation within a process in a positive way, as the

process allows many different forms of behaviour to, e.g., customise the end product.

Although structuredness has been defined by vanden Broucke [169] as a quality metric

to measure the ease of interpretation of a process model, we will define structuredness

as the level of variation in the event log, which should be reduced according to the

principles of operational excellence. For the other two categories of performance

measurement, no metrics will be presented in this research. Quality is a category

which is hard to measure as it is based on the outcome of the process, not the event

log data of the process itself. And the cost of a process can not be defined as objective

data as it depends on the costing model of the business process under consideration,

which is even not always present and also not always granular enough. Moreover, it

was stated before that quality and cost depend on the other two dimensions, time

and structuredness.

Finally, an overview of the required measures which was found in Chapter 3, and

which is supported by the findings from the interviews, is repeated here. The event

log-based metrics should be able to identify:

� general aspects of the event log, such as

– activities,

– resources,

– cases,

– and patterns (or traces),

� and more specific measures concerning the operational excellence field, such as

– process flow,

– throughput time and service time,

– waiting time,
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– bottleneck activities and resources,

– frequency of activities,

– frequency of patterns,

– number of patterns,

– activities executed in batch and batch sizes,

– rework,

– and resource variation.

Requirement 2 (functional). The event log-based metrics should measure only one

dimension or level of analysis, in order to remain comprehensible. Therefore, each of

the measures should be defined on different levels of analysis in order to get insights

into the different degrees of granularity of a business process. From the interviews

it was found that not just one level of analysis should be considered to get a notion

of the performance of a business process. Most analyses executed today are based

on parts of a business process, which is mainly the part which the business process

analyst or the person who asks for the analysis is working on, ignoring the rest of

the process. Therefore, different levels of analysis were found to be interesting in a

performance measurement exercise. These are:

� the complete end-to-end process,

� the level of specific and separate activities people are working on,

� the different paths the process can follow, which are the process patterns or

traces,

� the case for which the process is executed, such as the order of a specific cus-

tomer,

� the resources executing the process activities, such as the employees or the

machines,

� and a combination of the aforementioned levels of analysis.

Requirement 3 (non-functional). The event log-based metrics should contain clear

descriptions of the measure itself, the requirements for event data, and the underlying

calculation. Both from literature and from the interviews described above it could

be concluded that existing measures often lack specific descriptions on how the

metrics are calculated and which data format or data preparation steps are required

before the metrics can be applied. In order to be straightforward and objectively
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interpretable, the event log-based metrics developed here should be as specific as

possible in terms of data input and calculation method.

Requirement 4 (non-functional). The event log-based metrics should be com-

plemented with a suitable visual representation. Introducing more objective and

parameter-free performance measures on different levels of analysis to improve the

operational excellence of a business process would not be sufficient according to the

observations that were done. For business people to understand the business processes

in their company and to understand the results from the measures applied to the pro-

cesses, the measures should be created on a rather low and understandable level, and

visually accessible. Therefore, the metrics that are introduced should be enriched

with suitable visualisations. Further, the used terminology should be adapted to the

correct level of interpretation in order for business people to understand.

4.5 Conclusion

This chapter provides an overview of the requirements that emerged from the litera-

ture review that was provided in Chapter 2 and Chapter 3 and from the interviews

that were described in the chapter at hand. Given the potential of process mining in

the field of operational excellence and its recognition as a key challenge for process

mining research in the Process Mining Manifesto [160], further research is required

on this topic. Existing research efforts seem to be limited and it is not clear from

literature how existing techniques are used to support the process of business process

performance measurement.

In order to acknowledge this lack, this dissertation will introduce the concept of

log-based process metrics for which the requirements are analysed in this chapter.

Both from literature and practice an exact overlap was found between the different

categories of process performance measures that should be focused on in a business

process improvement project. These categories are (i) time, (ii) cost, (iii) quality,

and (iv) structuredness. Moreover, the aspects of a process that have been recognised

to cause waste in a process are, among others, rework, iterations, batch processing,

waiting, delays, and non-value-adding activities. The measurements should also be

executed on different levels of analysis in order to provide a realistic view on the

underlying process. Therefore, the levels of analysis that arose from the interviews

range from the complete end-to-end process to the specific combination of a resource

executing a specific activity. Moreover, the developed metrics should contain clear
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descriptions of the measure itself, the required data, and the calculation method that

is used in the metric. Finally, the artifacts that are created in order to overcome the

lack should be understandable for business people. This can be realised by adding

suitable visual representations and by adding a translation of technical concepts to

concepts that are interpretable by business people.
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Log-based process metrics

5.1 Introduction

Process mining is intended to detect strategic insights from business processes by

extracting valuable information from event logs [155], as was shown in Chapter 3.

Next to this, it has also been suggested that process mining can be used to support

operational excellence in companies [155, 160, 161].

However, process mining literature is primarily focused on the discovery of com-

prehensible process models that best capture the underlying behaviour in event logs.

Many discovery algorithms have been introduced [42, 169] and each has its specific

assumptions. Consequently, the resulting models a) aggregate information, based on

algorithm-specific assumptions, and b) transform information into a simplified rep-

resentation. Both characteristics, which are valuable in certain, different contexts,

suffer from the inability to describe the behaviour that is inherent to the event log

objectively and in a detailed fashion.

The goal of this chapter1 (Figure 5.1) is to develop an artifact that fulfils the re-

quirements which were presented in the previous chapter, to extract useful knowledge

insights from event log data to support operational excellence techniques. An overview

of useful event log-based metrics that provide unbiased and algorithm-agnostic infor-

mation of the present process behaviour, without the need to first discover a model,

1This chapter is based on Swennen, M., Janssenswillen, G., Jans, M., Depaire, B., Vanhoof,

K., 2015. Capturing process behavior with log-based process metrics. CEUR Workshop Proceedings

1527, 141-144 [148] and Swennen, M., Martin, N., Janssenswillen, G., Jans, M., Depaire, B.,

Caris, A., Vanhoof, K., 2016. Capturing resource behaviour from event logs. CEUR Workshop

Proceedings 1757, 130-134. [149].
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Figure 5.1: Outline of the thesis - Chapter 5.

is therefore presented. This can be a starting point of the process analysis and pro-

cess redesign, as presented in the BPM-lifecycle in Chapter 3 [47]. Additionally, the

constructed metrics also serve as a means to objectively compare different event logs

in terms of time-related and variance aspects.

This chapter starts with a short overview of related work in Section 5.2. Next,

the event log requirements for the developed metrics to be effective are presented in

Section 5.3. In Section 5.4, a running example is presented, followed by an overview

and description of the different event log-based metrics in Section 5.5. A dashboard

that visualises the metric results is introduced in Section 5.7 and all characteristics of

the newly developed artifact are discussed in Section 5.8. Finally, Section 5.9 presents

the conclusions and future work.
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5.2 Related work

An overview of existing performance measures defined by Anupindi et al. [10], Dumas

et al. [47], and Kis et al. [82] was presented in Chapter 3, where they are categorised

based on the four performance measurement dimensions of the Devil’s Quadrangle:

time, cost, quality, and flexibility or structuredness. Also other research fields such as

operations and productions management use this categorisation to define and classify

performance measurement indicators. An overview of existing performance measures

in the field op operations management can be found in Bhagwat and Sharma [17],

De Toni and Tonchia [40], and Neely et al. [111]. Although many metrics already exist,

only few authors specifically clarify or describe how these measures are calculated and

which data conditions are required.

Moreover, as was already discussed in Chapter 3, existing metrics in the field of

process mining are primarily comparing the behaviour in an event log with a process

model. An overview of existing model-log metrics is presented by De Weerdt et al.

[41]. These metrics are divided into four categories which are recall, specificity, preci-

sion, and generality. Although these categories resemble the well-known conformance

checking dimensions fitness, precision, generalization, and simplicity [132], they are

not completely the same. A similar distinction is also presented by vanden Broucke

[169], who defines fitness, precision, and generalization as accuracy metrics, and sim-

plicity and structuredness as comprehensibility metrics. Based on the distinction

between the event log, the discovered model, and the underlying system presented

by Buijs [22], more attention goes to the fact that the underlying system should not

be ignored. Janssenswillen et al. [76] state that most existing metrics measure the

quality of a process model with respect to the event log it was discovered from and

not the underlying system, ignoring the fact that event logs only contain a portion of

the complete reality. Therefore, the authors present alternative quality dimensions to

measure the distance between the event log and the discovered model, and between

the process model and the underlying system. However, no metrics have been defined

for analysing the event log behaviour.

The concept of log-based metrics was introduced in the fuzzy mining algorithm by

Günther and van der Aalst [63]. Next to this, Ribeiro et al. [129] define a framework

to determine which is the best process discovery algorithm. To that end, features are

defined as numerical characteristics of event logs to capture the distance or diversity

between two event logs. Also measures are presented, which are used to evaluate

the performance and quality of discovery techniques. The categories in which the

measures can be divided are again simplicity, fitness, precision, generalization, and
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an extra category that is added to these four, which is performance. In comparison

to these findings, in our approach, we present log-based process metrics that are in-

dependent from the process discovery algorithms or process models discovered with

these discovery algorithms. Finally, existing metrics that extract knowledge from

event logs about resources are presented by Pika et al. [119], who focus on the be-

haviour of resources within a process, together with the changes of their behaviour

over time. These metrics concern different dimensions of the behaviour of resources,

such as how employees work together, how productive they are, which activities they

prefer doing, which activities they are able to perform, and which activities they are

actually executing. Before introducing the developed metrics, the requirements for

the underlying event logs are described in the next section.

5.3 Event log requirements

The metrics introduced in this chapter require an event log, which is composed of

events related to a particular case and activity. An event log describes one specific

process, which consists of a set of activities. An instantiation of the process is called a

case and consists of one or more instantiations of activities, which are called activity

instances. An activity instance in turn consists of one or more events, which are

atomic registrations of actions. Preferably, each activity instance contains a start

and an end event, which are both performed by the same resource, and which both

contain a timestamp.

Building on the notation used by van der Aalst [159], the event log characteristics

that are required to use the log-based process metrics presented in this chapter can

be outlined as follows (Figure 5.2):

Definition 1 (Activity). An activity A is a logical unit of work that is carried out

as a single whole. We define A as the set of all activities within the process.

Definition 2 (Activity lifecycle). Each activity has a lifecycle which can be defined as

L = (S, T ) such that S represents the set of all possible states s and T ⊂ S×S, where

T represents the set of allowed state transitions. Note that by definition each activity

can have a different lifecycle model. For example, some activities may be completed

or aborted once started and do not have a state ’suspended’ in their lifecycle. In

this dissertation, we assume that all activities have a very basic lifecycle such that

S = {start, complete} and T = {(start, complete)}.

Definition 3 (Resource). A resource r is responsible/required for the execution of an

activity. We define R as the set of all resources involved in the process.
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Definition 4 (Event). An event e = (A, t, s, r) represents an atomic moment in

time t ∈ R representing a specific action which changes the state of an instance of

activity A to state s by resource r. Let E be the universe of events, then #a : E → A,

#t : E → R, #s : E → S, #r : E → R represent functions that map the event into its

corresponding activity, timestamp, updated state, and resource.

Definition 5 (Activity instance). An activity instance a = {A,Ea} is the actual

execution of an activity A within a process comprising a set of all related events Ea
which change the life cycle state of the activity instance. Let A represent the universe

of all activity instances and #′a : A→ A a function that maps each activity instance

into its corresponding activity, then we know that if ei, ej ∈ Ea ⇒ #a(ei) = #a(ej) =

#′a(a). Note that this only holds in one direction, as events related to the same activity

can belong to different activity instances if the activity is executed multiple times in a

process execution.

Definition 6 (Case). A case c ⊂ A refers to a set of activity instances which represent

the work performed for a specific process execution (process instance), with C denoting

the universe of cases. It is common to define a partial ordering relation which allows

the case to be written as a sequence 〈a1, . . . , an〉 of activity instances. The most

common partial ordering relation ≤start= {(ai, aj) ∈ c× c|ei ∈ Eai , ej ∈ Eaj ,#s(ei) =

#s(ej) = start,#t(ei) ≤ #t(ej)} orders activity instances based on the timestamp of

their starting event.

Definition 7 (Event log). An event log L ⊂ C is a set of cases, which were all

generated by the same process. We will denote the number of cases in an event log by

|L|C and the number of activities in an event log by |L|A.

Definition 8 (Trace). A trace T ∈ A∗ is a finite sequence of activities, with A∗

denoting the set of all finite sequences over A. A trace T = 〈A1, . . . , An〉 is typically

the result of applying the function tρ : L → A∗ on a specific case c ∈ L given a

specified partial ordering relation ρ. This function tρ maps each case c into a T =

#′a(〈a1, . . . , an〉) = 〈#′a(a1), . . . ,#′a(an)〉 where 〈a1, . . . , an〉 is the activity sequence

instance of c defined by partial order ρ. Note that different cases can have the same

trace.

Based on these definitions, we state that each row in the event log should contain

at least five different pieces of information, which are a case identifier, an activity

label, a timestamp, a resource identifier, and a transactional lifecycle identifier which

indicates the status of the event (e.g., start, complete,...). Additionally, each row may



94 Chapter 5

Figure 5.2: Conceptual representation of an event log.

be complemented with any other custom event attribute such as costs. As the data

that is stored by organisations is nowadays still lacking many of these attributes, data

transformations and manual actions may be required before the event log is ready to

be used for the analyses.

5.4 Running example

Throughout this chapter, a running example will be used for illustrative purposes. The

running example, which is shown in Figure 5.3, consists of an event log containing 76

activities distributed over 12 cases, C1 to C12, which can be seen as customers. Six

different resources, R1 to R6, are employed to execute for each customer a series of

activities, consisting of six possible activities, A, B, C, D, E, and F, over a period of

almost a month. For each executed activity instance, a start and an end event are

recorded. In Table 5.1 this information is summarised. Table 5.2 provides a sample

of ten lines in the running example event log, for which the representation is slightly

transformed for readability.

5.5 Log-based process metrics

In this section, the process metrics to identify and quantify the behaviour of a process

are provided. As was stated in the first artifact requirement defined in Chapter 4,

we will focus on the dimensions time and structuredness, as these are both shown to
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Figure 5.3: The running example event log, which consists of 12 cases.
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Table 5.1: Summary of the running example event log.

Number of events 152

Number of activities 6

Number of resources 6

Number of cases 12

Number of traces 9

Average trace length 12.67 events

Start timestamp 2015-01-01 01:23:45

End timestamp 2015-01-28 01:23:45

Table 5.2: Sample from the running example event log.

case

ID

activity

ID

start date start time-

stamp

complete

date

complete

timestamp

resource

C1 A 1/01/2015 1:23:45 3/01/2015 1:23:45 R1

C1 B 3/01/2015 1:23:45 4/01/2015 1:23:45 R4

C1 C 5/01/2015 1:23:45 7/01/2015 1:23:45 R4

C1 D 6/01/2015 1:23:45 7/01/2015 1:23:45 R6

C1 E 7/01/2015 1:23:45 9/01/2015 1:23:45 R3

C2 A 1/01/2015 1:23:45 3/01/2015 1:23:45 R3

C2 A 3/01/2015 1:23:45 4/01/2015 1:23:45 R3

C2 B 4/01/2015 1:23:45 5/01/2015 1:23:45 R4

C2 C 5/01/2015 1:23:45 6/01/2015 1:23:45 R4

C2 D 5/01/2015 1:23:45 7/01/2015 1:23:45 R6

... ... ... ... ... ... ...

be indicators of different types of waste and other aspects of operational excellence.

Structuredness is defined here as the level of variation in the event log. Next to metrics

depicting the variance in a process, also metrics concerning rework and resources,

which are the people or machines executing activities in the process, will be presented

for the structuredness dimension. Concerning the resource metrics, which represent

the organisational aspect of a business process, we will elaborate in Chapter 6 on the

concept of batch processing, in which resources execute activities of two or more cases

at the same or almost the same time.
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Figure 5.4: Overview of the developed log-based process metrics.

Figure 5.4 provides a visual overview of all metrics that have been developed with

their accompanying levels of analysis. An elaborate list of all metrics is included

in Table B.1 and Table B.2 in Appendix B. The developed metrics cover the list of

required measures that was presented in the first artifact requirement in Chapter 4.

According to the second artifact requirement that was presented, and following the

study on model-log evaluation metrics presented by De Weerdt et al. [42], only one

dimension or level of analysis should be measured by each metric in order to remain

comprehensible. Building on the different feature scopes presented by Ribeiro et al.

[129], we will assign each metric to one of the following levels of analysis: (i) the log

level, which represents the entire event log, (ii) the trace level, representing charac-

teristics of sequences of activities, (iii) the case level, in which all characteristics for

a certain process execution are considered, (iv) the activity level, representing char-

acteristics of the activity types, aggregated over the entire log, (v) the resource level,

which represents characteristics of the resources executing the activities, and (vi)
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the resource-activity level, in which all resource-activity combinations are considered.

Note that not all metrics are measurable on each of these levels, as not all combina-

tions are logical or insightful. Other possible analysis levels, that are out of the scope

of this research, are multiple traces (characteristics on dependencies between traces)

and multiple activities (characteristics on dependencies between activities within a

trace). All metrics have been defined based on the findings from literature and based

on the interviews with people from industry which are described in Chapter 4.

For each of the metrics, three subjects can be described. Firstly, a definition of

the metric will be given in order to avoid misinterpretation between different groups

of people. The definitions will be clear and simple, containing terminology that is

also understandable for business people. Secondly, the metric will be applied to

the running example that was presented in Section 5.4. Thirdly and finally, some

metrics will require some extra information about items one should pay attention to

when applying the metric, or about shortcomings of the metrics that are not dealt

with within this dissertation. Next to their application to an artificial event log, all

metrics will be evaluated by applying them to a real-life event log of a Belgian utilities

company, which will be described in Chapter 7.

5.5.1 Time metrics

5.5.1.1 Duration

Metrics measuring the duration provide summary statistics concerning the through-

put time of cases. The throughput time of a case is defined as the time between the

start of the first activity and the completion of the last activity executed in the case.

These metrics can be performed on the level of the log as well as the level of specific

cases and traces, and was defined as one of the required measures to identify concepts

such as critical lead times and bottlenecks in the field of operational excellence. For

comprehensibility, the metric will first be explained at the case level, followed by the

log and the trace level. For the running example, which was presented in Section 5.4,

all durations are expressed in hours. However, other time expressions such as days or

weeks, which can also be calculated with the following metrics, can be of interest.

� Throughput time - case level. The throughput time of a case is the total duration

of the case, or the difference between the timestamp of the end event of the last

activity and the timestamp of the start event of the first activity in the case.

Possible waiting time is therefore also included in this calculation. In Table 5.3,

a list of all cases from the running example presented in Figure 5.3, with their
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accompanying throughput time, is provided. For example, case C4 has the

longest throughput time, which is 336 hours (or 28 days).

Table 5.3: Throughput time, processing time and waiting time (case level) applied to

the running example. The cases are sorted on their throughput time.

case throughput time processing time waiting time

(in hours) (in hours) (in hours)

C4 336 288 48

C11 312 240 96

C5 288 240 48

C3 264 264 24

C9 264 264 48

C10 264 192 72

C12 240 240 24

C6 240 192 48

C1 192 192 24

C2 168 216 0

C8 168 144 24

C7 96 96 0

An interesting additional measure that can be calculated related to the through-

put time of the cases in an event log is the number of pending cases. Pending

cases are cases that did not finish properly at the time the analysis is performed

or at the time the data is extracted from the information system. However,

this is very process-specific as the process analyst should know which activities

define the end of a case as this can differ throughout the process. For example,

case C1 and C2 in the running example end with activity E, while case C3 and

C4 end with activity F. As we are assuming for the running example that all

cases ended properly, this metric concerning pending cases will not provide any

added value for this example. However, in real-life event logs it will be more

common to find cases that end with activities that do not imply the end of a

process, or cases that are pending after only certain activities have been exe-

cuted. This could be an indication for companies to analyse these cases more

thoroughly, as they probably include one or more bottleneck activities, which
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may prevent a case from proper completion.

� Throughput time - log level. Providing the throughput time or duration only on

a case level would possibly not increase the process owner’s understanding of the

underlying behaviour. Therefore, the summary statistics of these throughput

times are presented as a metric, to describe the throughput time of a case

in an aggregated fashion. The summary statistics that will be calculated for

this and other metrics are the minimum, first quartile, median, mean, third

quartile, maximum, standard deviation, interquartile range (iqr), and the total.

The average throughput time of all cases in the running example is 236 hours

(9.83 days), the standard deviation is 68.522, and the median 252 hours. The

shortest throughput time is 96 hours (case 7) and the longest is 336 hours (case

4). Table 5.4 shows the results of this metric applied to the running example.

Table 5.4: Throughput time (log level) applied to the running example.

min q1 median mean q3 max st.dev. iqr tot

96 186 252 236 270 336 68.522 84 2832

� Throughput time - trace level. Instead of looking at all cases in the log, it

can be interesting to analyse the different process variants or traces in the log.

Dividing an event log in homogeneous subsets of traces was presented by Song

et al. [143] to overcome the difficulty of analysing large, unstructured processes.

The number of traces in the log will be explained further on as a metric of

structuredness. As a time-related metric we propose the throughput time which

can be calculated for each trace. One example of a trace in the example event

log is A,A,B,C,D,E, which is executed in 3 cases, i.e., C2, C10, and C12, with

individual throughput times of 168, 264, and 240 hours, respectively. This

corresponds to an average throughput time for this trace of 224 hours (9.33

days), a standard deviation of 49.96, and a median of 240. Table 5.5 shows the

summary statistics of the throughput time of all traces in the running example.

In reality, event logs mostly contain hundreds or even thousands of traces. If

this is the case, the metric will, by default, show the top 10 most frequent traces.

5.5.1.2 Processing time

In contrast to the throughput time of the cases in an event log, the metrics concerning

the active time or the actual processing time provide summary statistics on the pro-
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Table 5.5: Throughput time (trace level) applied to the running example. The traces

are sorted on their relative frequency.

trace relative

frequency

min q1 median mean q3 max st.dev. iqr tot

A,A,B,C,D,E 0.250 168 204 240 224 252 264 49.960 48 672

A,B,C,D,E,F,F 0.167 264 276 288 288 300 312 33.941 24 576

A,B,B,B,C,D,E,F,F 0.083 288 288 288 288 288 288 NA 0 288

A,B,B,C,D,D,E,F,F 0.083 336 336 336 336 336 336 NA 0 336

A,B,C,D,E 0.083 192 192 192 192 192 192 NA 0 192

A,B,C,D,E,F 0.083 240 240 240 240 240 240 NA 0 240

A,B,D,C,E,F,F 0.083 264 264 264 264 264 264 NA 0 264

B,D,E 0.083 96 96 96 96 96 96 NA 0 96

B,E,D,E,E 0.083 168 168 168 168 168 168 NA 0 168

cessing time of activities. This metric is developed on the level of the entire event log,

the specific cases and traces, the activities, and the resource-activity combinations.

Next to insights into the distribution of the processing time of each task, this infor-

mation can also be used for predicting execution times of running process instances,

which is helpful for process monitoring.

� Processing time - case level. The actual processing time in a case is the sum

of the processing time of all activities that are executed within this case. in

Table 5.3, a list of all cases with their accompanying processing time, next to

their throughput time, is provided. For example, case C4 has a throughput time

of 336 hours, and a processing time of 288 hours. Cases C5, C11, and C12 all

three have an actual processing time of 240 hours (10 days). In some cases, no

difference between throughput time and processing time is found, while in other

cases no activity is tracked for more than a quarter of the throughput time.

� Processing time - log level. Next to this, the actual processing time of the

entire event log is the sum of the actual processing time of all activities that are

executed in the event log. However, it is not useful to add all processing times

of different activities executed for different cases (e.g., customers). Therefore,

this metric calculates the summary statistics of the actual processing time per

case, summarised over the entire event log. Table 5.6 shows that the average
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processing time of the cases in the running example is 214 hours (8.9 days) with

a standard deviation of 54.593. Compared to the average throughput time of

all cases in the event log, this is 22 hours or almost one day less, indicating that

on average for almost 10 % of the complete throughput time of a case nothing

is happening (or nothing is being logged by the system).

Table 5.6: Processing time (log level) applied to the running example.

min q1 median mean q3 max st.dev. iqr tot

96 192 228 214 246 288 54.593 54 2568

� Processing time - trace level. On the level of the traces, the summary statistics

as provided above can be calculated for each possible sequence of activities that

appears in the event log. Table 5.7 shows the results of this metric for each

trace appearing in the running example.

Table 5.7: Processing time (trace level) applied to the running example. The traces

are sorted on their relative frequency.

trace relative

frequency

min q1 median mean q3 max st.dev. iqr tot

A,A,B,C,D,E 0.250 192 204 216 216 228 240 24.000 24 648

A,B,C,D,E,F,F 0.167 240 246 252 252 258 264 16.971 12 504

A,B,B,B,C,D,E,F,F 0.083 240 240 240 240 240 240 NA 0 240

A,B,B,C,D,D,E,F,F 0.083 288 288 288 288 288 288 NA 0 288

A,B,C,D,E 0.083 192 192 192 192 192 192 NA 0 192

A,B,C,D,E,F 0.083 192 192 192 192 192 192 NA 0 192

A,B,D,C,E,F,F 0.083 264 264 264 264 264 264 NA 0 264

B,D,E 0.083 96 96 96 96 96 96 NA 0 96

B,E,D,E,E 0.083 144 144 144 144 144 144 NA 0 144

� Processing time - activity level. Next, if both a start and end timestamp are

provided for each activity instance, the duration can also be calculated on the

level of each activity. For each activity, an overview of the average processing

time, or the service time, of this activity can be of interest. For example,

concerning all 13 occurrences of activity A in our event log, the average duration
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is 44.308 hours (1.85 days). Table 5.8 provides an overview of the summary

statistics per activity, sorted on their relative frequency in the event log.

Table 5.8: Processing time (activity level) applied to the running example. The

activities are sorted on their average processing time.

activity relative

frequency

min q1 median mean q3 max st.dev. iqr tot

A 0.171 24 48 48 44.308 48 72 13.313 0 576

E 0.184 24 30 48 41.143 48 48 11.251 18 576

C 0.132 24 24 24 38.400 48 72 20.239 24 384

D 0.171 24 24 24 31.385 24 72 15.130 0 408

B 0.197 24 24 24 24.000 24 24 0 0 360

F 0.145 24 24 24 24.000 24 24 0 0 264

Building from this, and based on the findings in literature, a bottleneck indicator

would be a useful metric to measure waste. In a process, a bottleneck is an ac-

tivity that obstructs other activities to be executed properly and determines the

continuation of the entire process [103]. According to the theory of constraints,

introduced in Chapter 2, weak links or constraints should be eliminated from a

process [60]. Based on this theory is the drum-buffer-rope method, which is also

explained in Chapter 2. A bottleneck indicator could be identified by searching

for the activity in the process that has the longest duration compared to the

other activities in the process. In case C3, for example, activity C takes more

time to be executed than all other activity executions.

� Processing time - resource level. We can also look at the processing time per case

on the level of each separate resource. This way, a company gets an overview of

the amount of time each resource spends on a case and which resources spend

more time on cases than others. Table 5.9 provides an overview of the summary

statistics of the processing time per resource, sorted on the average processing

time spent per case. Resource R2 spends on average the longest on a case, which

is 44 hours.

� Processing time - resource-activity level. On the resource-activity level, finally,

we can have a look at the efficiency of resources by looking at the combination

of each resource with each activity. This can be more insightful when we want
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Table 5.9: Processing time (resource level) applied to the running example. The

resources are sorted on their average processing time per case.

resource min q1 median mean q3 max st.dev. iqr tot

R2 0 0 36 44 78 120 45.575 78 528

R4 0 0 36 42 54 144 44.754 54 504

R3 0 0 48 40 48 120 38.744 48 480

R5 0 0 24 32 72 72 32.897 72 384

R1 0 24 24 30 30 96 25.327 6 360

R6 0 0 24 26 48 72 23.909 48 312

to compare different resources or different activities with each other. Mostly,

activities are so diverse that comparing them over the entire event log is not

helpful. The same is true for resources. This metric provides an overview of

the summary statistics of the processing time per resource-activity combination

that occurs in the entire event log. As an example, in Table 5.10 the overview of

the summary statistics of the processing time per resource-activity combination

for resource R1 is given. As can be seen, R1 is only responsible for activities A

and B in the running example event log. Similarly, the summary statistics for

all other resource-activity combinations can be calculated and analysed.

Table 5.10: Processing time (resource-activity level) applied to the running example.

Only resource-activity combinations with resource R1 are shown.

resource activity min q1 median mean q3 max st.dev. iqr tot

R1 A 0 0 0 14 12 72 26.007 12 168

R1 B 0 0 24 16 24 24 11.817 24 192

R1 C 0 0 0 0 0 0 0 0 0

R1 D 0 0 0 0 0 0 0 0 0

R1 E 0 0 0 0 0 0 0 0 0

R1 F 0 0 0 0 0 0 0 0 0
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5.5.1.3 Waiting time

In contrast to the actual processing time, the waiting time in an event log can be seen

as a direct indicator of waste according to the principles of lean management [182].

Moreover, it has been shown to be a required metric within each of the operational

excellence methodologies analysed in Chapter 2 and Chapter 3. The waiting time of

a certain activity is here defined as the time that this task is waiting for a resource to

start the task, because the resource is possibly still occupied with other tasks. The

total waiting time in a case is calculated by taking the sum of all time in the case

that is not being used. We already depicted the difference between the processing

time and the throughput time of cases in the previous metrics. However, for these

metrics concerning the waiting time, we should take into account that waiting time

can also happen before the start of the first activity in a case, which is probably never

captured in an event log.

� Waiting time - case level. Firstly, on the level of the specific cases in the event

log, this metric provides an overview of the total waiting time per case. For

example, the total waiting time for case C1 in the running example is 1 day or

24 hours (see Table 5.3).

� Waiting time - log level. Aggregated on the level of the entire event log, the

waiting time metric provides an overview of summary statistics of the waiting

time per case, aggregated over the entire event log. In Table 5.11 we can see

that a case in the running example contains on average 45.6 hours or almost 2

days of waiting time, with a minimum of 24 hours and a maximum of 96 hours.

Table 5.11: Waiting time (log level) applied to the running example.

min q1 median mean q3 max st.dev. iqr

24 24 48 45.6 48 96 23.87 24

� Waiting time - trace level. On the level of the different traces that occur in the

event log, the waiting time metric provides an overview of the summary statistics

of the waiting time for each trace in the event log. Trace A,B,C,D,E,F,F, for

example, which appears in case C3 and case C6 in the running example, has an

average waiting time of 60 hours and a standard deviation of 50.912.

� Waiting time - resource level. Finally, the metric can also be of interest on

the level of the resources, to get an insight in the “idle time” of each resource
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within a business process. For example, resource R1 has a total waiting time of

144 hours (6 days) as this is the amount of time he or she is not active within

the event log. Probably the resource is working on another project which is not

included in this process or the resource can be taking a break during lunch time,

for example. The total waiting time of each resource in the running example

can be found in Table 5.12. Organisations could use these values as an input

for the evaluation of their resources. Or they could have a look at these values

to find out if the waiting time is much higher for one of the resources, or if it is

similar for all resources, implying the cause is external to the resources.

Table 5.12: Waiting time (resource level) applied to the running example. The re-

sources are sorted on their waiting time.

Resource waiting time

R6 240

R4 168

R2 168

R1 144

R3 120

R5 96

Instead of looking at the total waiting time within a trace or case, it can also be

interesting to narrow down to the waiting time of a specific activity, which is the

time between the arrival of the activity in the case and the start of the execution

of this activity. However, as Leemans et al. [88] state, performance measures

such as waiting times for specific activities cannot be measured correctly without

the presence of a process model. If we, for example, want to calculate the waiting

time of activity D in case C9, it is not clear from the event log if this activity

instance could start after the end of activity A or after the end of activity B.

Information on the concurrency of activities is required to calculate this metric

[88], which will be covered as future research.

5.5.2 Structuredness metrics

As was stated earlier, next to the performance aspect of time, variability or structured-

ness could also be seen as one of the categories of process performance measurement.

In the literature review on operational excellence in Chapter 2, we found that vari-
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ability was one of the key sources of waste within a business process, as it is causing a

process to deviate from its desired behaviour. However, as variability or structured-

ness should not always be eliminated, it is important for a company to learn the type

of structuredness that is occurring within the process under analysis. In order to get

more insights in this, different classes of metrics concerning the structuredness of a

process are developed and presented here. Next to measures identifying the variance

within a process, also the notion of rework is analysed, as rework was found to be

one of the most significant causes of waste within a process. Finally, also metrics

concerning the resources executing the activities within a process are presented.

5.5.2.1 Variance metrics

� Number of traces. A first notion of the structuredness or variance in an event

log is the number of process variants, or distinct traces, that are recorded in

the event log. This metric provides two values, which are the absolute and

the relative number of traces that occur in the event log. In order to have a

comprehensive metric, the relative number is stated as an average coverage. In

the running example event log, nine traces can be observed. These traces were

already shown in Table 5.5 where the throughput time was calculated for each

distinct trace. The relative number shows that a trace appears on average in

1.33 (of the in total 12) cases in the event log, indicating a rather low level of

structuredness (the lower the ratio, the lower the structuredness).

� Trace length - case level. This metric provides an overview of the number of

activities that occur in each trace. In this metric, instances of an activity, as

opposed to the actual activities, are calculated. That way, the number of actual

transactions in a trace are calculated. This metric, together with the previous

one, can provide the process owner with an indication of the number of process

variants within an event log, which was stated to be one of the required event log

knowledge concepts in requirement 1 in Chapter 4. Table 5.13 shows the trace

length, which is actually the number of activity instances executed in a case, for

each case in the running example event log. However, this metric does not add

any value other than providing information. Summarising this information on

the level of the entire event log or on the level of traces can be of more interest.

� Trace length - log level. On the log level, the number of actual activity executions

in each trace is calculated and aggregated over the entire event log. This metric

shows for the running example that on average 6.33 activities occur per trace
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with a minimum of 3 and a maximum of 9 activities per trace, as is shown in

Table 5.14.

Table 5.13: Trace length (case level) applied to the running example. The cases are

sorted on their trace length.

case trace length

C4 9

C5 9

C3 7

C9 7

C11 7

C2 6

C6 6

C10 6

C12 6

C1 5

C8 5

C7 3

Table 5.14: Trace length (log level) applied to the running example.

min q1 median mean q3 max st.dev. iqr

3 5.75 6 6.333 7 9 1.670 1.25

� Trace length - trace level. Because the trace length on case level is not very useful

in large event logs, this metric shows the number of activity instances executed

in each trace. Similar to the trace length on the level of the cases and the entire

event log, calculations are done for the occurrences of activities, as opposed to

the number of distinct activity types in the trace. In the running example event

log, trace A,B,B,C,D,D,E,F,F contains nine activity occurrences of six distinct

activities. To make this number relative, an interesting denominator can be

the average trace length of the traces that cover a certain percentage of the

log, for example 80 %. Because it is not in every log straightforward which

traces exactly cover 80 %, the metric should be calculated on a percentage of
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the traces that can be identified unambiguously (and deviates from 80 % if

necessary). Applied to the running example, shown in Table 5.15, the trace

length can either be compared to the average trace length of the top 41.67 %

of the event log (traces A,A,B,C,D,E and A,B,C,D,E,F,F), or to the average

trace length of the entire event log (since we cannot distinguish unambiguously

which traces with a trace frequency of 0.083 are included in the 80 %, and

which traces are not). This results in a relative number of 1.406 or 1.421 for

trace A,B,B,C,D,D,E,F,F, suggesting that this trace is rather long.

Table 5.15: Trace length (trace level) applied to the running example. The traces are

sorted on their relative trace frequency.

trace relative

frequency

absolute

frequency

relative to

top 41.67

relative to

top 100

A,A,B,C,D,E 0.250 6 0.938 0.947

A,B,C,D,E,F,F 0.167 7 1.094 1.105

A,B,B,B,C,D,E,F,F 0.083 9 1.406 1.421

A,B,B,C,D,D,E,F,F 0.083 9 1.406 1.421

A,B,C,D,E 0.083 5 0.781 0.789

A,B,C,D,E,F 0.083 6 0.938 0.947

A,B,D,C,E,F,F 0.083 7 1.094 1.105

B,D,E 0.083 3 0.469 0.474

B,E,D,E,E 0.083 5 0.781 0.789

� Trace coverage - log level. This metric presents the minimum number of traces

that is required to cover a certain percentage, by default 80 %, of the cases.

Only the required number of traces, not which traces, is stated, since this is not

always straightforward. So in this metric on the level of the entire event log, the

number of traces to cover a certain percentage of a log is computed, together

with the percentage of traces that is covered. If a tie exists, the two nearest

points are returned, which is the case for the running example. In Table 5.15,

the traces in the running example are sorted based on their relative frequency.

To cover 80 % of the 12 cases in the event log (9.6 cases, rounded to 10), at least

7 traces are required: 1 trace with a relative frequency of 25 %, 1 trace with

a relative frequency of 16.7 % and 5 traces with a relative frequency of 8.3 %.
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The output of the metric contains therefore two lines. The two most frequent

traces together cover 41.7 % of the event log, while all 9 of them cover 100 %

of the event log.

� Trace coverage - case level. On the case level, for each case the coverage of

the corresponding trace can be of interest. This metric therefore provides the

absolute and relative trace coverage for each case in the event log under con-

sideration. Table 5.16 shows that the trace that is the most frequent in the

running example event log appears in the cases C2, C10, and C12.

Table 5.16: Trace coverage (case level) applied to the running example. The cases

are sorted on their absolute trace coverage.

case trace absolute trace relative trace

coverage coverage

C2 A,A,B,C,D,E 3 0.250

C10 A,A,B,C,D,E 3 0.250

C12 A,A,B,C,D,E 3 0.250

C3 A,B,C,D,E,F,F 2 0.167

C11 A,B,C,D,E,F,F 2 0.167

C1 A,B,C,D,E 1 0.083

C4 A,B,B,C,D,D,E,F,F 1 0.083

C5 A,B,B,B,C,D,E,F,F 1 0.083

C6 A,B,C,D,E,F 1 0.083

C7 B,D,E 1 0.083

C8 B,E,D,E,E 1 0.083

C9 A,B,D,C,E,F,F 1 0.083

� Trace coverage - trace level. Finally, on the level of the traces, the absolute and

relative frequency of each trace is returned. For the running example, this is

shown in Table 5.17. However, as it is not clear which traces should be assumed

to be required to cover 80 % of the event log, the order of the traces with an

absolute frequency of 1 should be ignored as it can be in any other order than

the one that is shown here.

� Activity presence. Another indication of variance can be the presence of the
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Table 5.17: Trace coverage (trace level) applied to the running example. The traces

are sorted on their absolute frequency.

trace absolute frequency relative frequency cumulative sum

A,A,B,C,D,E 3 0.250 0.250

A,B,C,D,E,F,F 2 0.167 0.417

A,B,C,D,E 1 0.083 0.500

A,B,B,C,D,D,E,F,F 1 0.083 0.583

A,B,B,B,C,D,E,F,F 1 0.083 0.667

A,B,C,D,E,F 1 0.083 0.750

B,D,E 1 0.083 0.833

B,E,D,E,E 1 0.083 0.917

A,B,D,C,E,F,F 1 0.083 1.000

activities in the different cases. This metric shows for each activity the absolute

number of cases in which each activity occurs together with its relative presence.

In the running example, activities B, D, and E are executed for all customers,

while activity F only occurs in half of the cases. This is shown in Table 5.18. This

may indicate that activity F is only necessary for a certain type of customers,

which could be investigated by including other case attributes in the analysis.

Table 5.18: Activity presence applied to the running example. The activities are

sorted on their absolute presence.

activity absolute presence relative presence

B 12 1

D 12 1

E 12 1

A 10 0.833

C 10 0.833

F 6 0.500

� Start activities - case level. For companies, it can also be of interest to have a
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clue of which activity is the first that is executed for each customer. On the

level of the specific cases in the event log, this metric provides an overview of

the start activity of each case. The second column in Table 5.19 shows which

are the start activities in the different cases in the running example.

Table 5.19: Start activities and end activities (case level) applied to the running

example.

case start activity end activity

C1 A E

C2 A E

C3 A F

C4 A F

C5 A F

C6 A F

C7 B E

C8 B E

C9 A F

C10 A E

C11 A F

C12 A E

� Start activities - log level. Aggregated on the log level, this metric computes

how many distinct activities occur as the first activity in a case, both in an

absolute and relative number. The first activity in a case is the one which

started the first (oldest start timestamp). In the running example, two out of

the six distinct activities, or 33.33 %, are performed as a start activity in the

example event log.

� Start activities - activity level. This metric calculates for each activity the

absolute and relative number of cases that start with an activity instance of

this activity. The relative number is calculated as a portion of the number of

cases, being the number of “opportunities” that an activity could be the start

activity. The cumulative sum is added for an insight in the number of activities

required to cover a certain part of the total. For the running example event



Log-based process metrics 113

log, shown in Table 5.20, we find that activity A is a start activity in 10 cases,

representing a relative presence of 83.33 % (=10/12). Activity B is the start

activity in the remaining 2 cases, which counts for a relative presence of 16.67 %.

These two cases are case C7 and case C8, as was shown at the case level.

Table 5.20: Start activities (activity level) applied to the running example.

activity absolute frequency relative frequency cumulative sum

A 10 0.833 0.833

B 2 0.167 1.000

� Start activities - resource level. On the level of the distinct resources, an

overview of which resources execute the start activity per case can be of in-

terest for a company. This metric calculates for each resource the absolute and

relative number of cases that start with an activity instance executed by this

resource. Probably this person plays an important role in the communication

with the customer as he or she is the initiator of the process instance. Table 5.21

shows that four resources are responsible for executing the start activities of the

12 cases in the running example.

Table 5.21: Start activities (resource level) applied to the running example. The

resources are sorted on their relative frequency as a start resource.

resource absolute frequency relative frequency cumulative sum

R1 4 0.333 0.333

R2 4 0.333 0.667

R3 3 0.250 0.917

R4 1 0.083 1.000

� Start activities - resource-activity level. Finally, on the resource-activity level,

this metric shows for each occurring resource-activity combination in the event

log the absolute and relative number of times this resource executes this activity

as a start activity in a case. For the running example event log, the results of this

metric are given in Table 5.22. The output is sorted on the relative frequency

and the resource-activity combinations that do not occur as the first activity in

the log are omitted from the table.
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Table 5.22: Start activities (resource-activity level) applied to the running example.

The resource-activity combinations are sorted on the relative frequency that they

include the first activity in a case.

resource activity absolute frequency relative frequency cumulative sum

R2 A 4 0.333 0.333

R1 A 3 0.250 0.583

R3 A 3 0.250 0.833

R1 B 1 0.083 0.917

R4 B 1 0.083 1.000

� End activities - case level. Similar to the metrics concerning start activities,

on the level of the specific cases, this metric provides an overview of the end

activity of each case. Table 5.19 presented all cases together with its start and

end activities.

� End activities - log level. Aggregated on the level of the entire event log, this

metric shows the absolute and relative number of activities that are the last

activity in one or more of the cases. In the running example, two out of the six

distinct activities, or 33.33 %, are in one or more of the cases the final activity.

� End activities - activity level. This metric calculates for each activity the abso-

lute and relative number of cases that end with this activity type. Similar to

the start activities metric, the relative number is calculated as a portion of the

number of cases, being the number of “opportunities” that an activity could be

the end activity. The cumulative sum is added to have an insight in the number

of activities that is required to cover a certain part of the total. Half of the cases

in the example event log end with activity E, the other half ends with activity

F. So for both activities, the metric will hold the values 6 (absolute frequency)

and 50 % (relative frequency), as shown in Table 5.23.

Table 5.23: End activities (activity level) applied to the running example.

activity absolute frequency relative frequency cumulative sum

E 6 0.500 0.500

F 6 0.500 1.000
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� End activities - resource level. On the level of the distinct resources, an overview

of which resources execute the last activity per case can be of interest for a

company. Probably this person is also responsible for the correct communication

to the customer. Table 5.24 shows that five distinct resources are responsible

for executing the end activities of the 12 cases in the running example. Only

resource R1 never closes a case.

Table 5.24: End activities (resource level) applied to the running example. The

resources are sorted on their relative frequency as an end resource.

Resource absolute frequency relative frequency cumulative sum

R4 5 0.417 0.417

R3 4 0.333 0.750

R2 1 0.083 0.833

R5 1 0.083 0.917

R6 1 0.083 1.000

� End activities - resource-activity level. Finally, on the resource-activity level,

this metric shows for each occurring resource-activity combination the absolute

and relative number of times this resource executes this activity as an end

activity in a case. Table 5.25 shows these absolute and relative numbers for the

running example event log. The output is sorted on the relative frequency and

the resource-activity combinations that do not occur as the last activity in the

log are omitted from the table.

Table 5.25: End activities (resource-activity level) applied to the running example.

The resource-activity combinations are sorted on the relative frequency that they

include the end activity in a case.

Resource activity absolute frequency relative frequency cumulative sum

R4 F 5 0.417 0.417

R3 E 4 0.333 0.750

R2 E 1 0.083 0.833

R5 E 1 0.083 0.917

R6 F 1 0.083 1.000
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5.5.2.2 Rework metrics

The key goal of lean management is waste reduction and avoiding non-value-adding

activities [182]. As was stated in Chapter 2, activities that need to be performed

more than once within a case can be defined as waste. The identification of waste

within a business process has therefore been mentioned as one of the prime event log

knowledge concepts in requirement 1 in Chapter 4. A first metric to measure the

amount of rework within a process can be the frequency of the different activities in

the entire event log or in a specific case or trace. Next to this, activities appearing

more than once in a case, such as repetitions or self-loops, can also be indications

of waste. It should be noted that rework can be inevitable within a process, as was

illustrated by Dumas et al. [47].

� Activity frequency - case level. First of all, on the level of the specific cases, this

metric shows the absolute and relative number of times the different activity

types occur in each case. The absolute number shows the number of distinct

activity types that occur in each of the cases. The relative number is calculated

based on the total activity executions in the case. For the running example, this

is shown in Table 5.26. For example, in case C2 five distinct activities occur,

while six activity executions are recorded for this case. Therefore, the relative

activity frequency for case C2 is 0.833. However, this metric does not show

which activities are occurring more than the others in the case, resulting in a

biased view. Therefore, it can be helpful to have a look at the results of this

metric on the level of traces and on the level of the distinct activities. However,

first of all, an aggregation on the level of the complete event log is provided.

� Activity frequency - log level. Next to the complete list of cases with their

activity frequency, which can become very long, it can be interesting to have a

look at the distribution of the distinct activities in the entire event log. This

metric shows the summary statistics of the frequency of activities within a case,

aggregated over the entire event log. Table 5.27 shows that a distinct activity

appears on average 5.17 times per case with a standard deviation of 1.11.

� Activity frequency - trace level. This metric presents the absolute and rela-

tive number of times a specific activity type occurs in each trace. In trace

A,B,B,C,D,D,E,F,F for example, six distinct activity types appear, while in

total nine activities are executed. The relative activity frequency is therefore

0.667. The results of this metric applied to the running example are provided

in Table 5.28.
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Table 5.26: Activity frequency (case level) applied to the running example. The cases

are sorted on their relative frequency.

case
absolute activity

frequency

relative activity

frequency

C6 6 1.000

C1 5 1.000

C7 3 1.000

C3 6 0.857

C9 6 0.857

C11 6 0.857

C10 5 0.833

C12 5 0.833

C2 5 0.833

C4 6 0.667

C5 6 0.667

C8 3 0.600

Table 5.27: Activity frequency (log level) applied to the running example.

min q1 median mean q3 max st.dev. iqr

3 5 5.5 5.17 6 6 1.11 1

� Activity frequency - activity level. On the level of the activities, this metric

provides the absolute and relative frequency of a specific activity in the entire

event log. In our running example event log, in total 15 occurrences of activity

B are found, which accounts for 19.7 % of the complete log (=15/76). This is

shown in Table 5.29.

Self-loops. Activity instances of the same activity type that are executed more than

once immediately after each other by the same resource are in a self-loop (length-1-

loop). This was also stated to be an indication of not adding value to the process

in Chapter 4. If an activity instance of the same activity type is executed 3 times

after each other by the same resource, this is defined as a size 2 self-loop. An activity
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Table 5.28: Activity frequency (trace level) applied to the running example. The

traces are sorted on their relative activity frequency.

trace relative

trace

frequency

absolute

activity

frequency

relative

activity

frequency

A,A,B,C,D,E 0.250 5 0.8333

A,B,C,D,E,F,F 0.167 6 0.857

A,B,B,B,C,D,E,F,F 0.083 6 0.667

A,B,B,C,D,D,E,F,F 0.083 6 0.667

A,B,C,D,E 0.083 5 1.000

A,B,C,D,E,F 0.083 6 1.000

A,B,D,C,E,F,F 0.083 6 0.857

B,D,E 0.083 3 1.000

B,E,D,E,E 0.083 3 0.600

Table 5.29: Activity frequency (activity level) applied to the running example. The

activities are sorted on their relative frequency.

activity absolute

activity

frequency

relative

activity

frequency

B 15 0.197

E 14 0.184

A 13 0.171

D 13 0.171

F 11 0.145

C 10 0.131

instance not followed by an activity instance of the same activity type, is a size 0 self-

loop (no loop). For now, other patterns, such as length-n-loops or frequent episodes

[89], are excluded from this research.

The metrics presenting self-loops, together with the metrics concerning the repeti-

tions which will be introduced later, should take into account if the activity is redone
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Immediately following

Same Resource
Repeat self-loop Redo self-loop

Different resource
Repeat repetition Redo repetition

Not immediately following

Figure 5.5: Dimensions of the rework metrics.

by the same resource or by another one. Therefore, these metrics are created accord-

ing to four concepts, which are presented in Figure 5.5. Two types of self-loops are

presented here, which are repeat self-loops and redo self-loops. Repeat self-loops are

activity executions of the same activity type that are executed immediately follow-

ing each other by the same resource. Redo self-loops are activity executions of the

same activity type that are executed immediately following each other by a different

resource. Repeat and redo repetitions are explained further on.

These metrics are presented on five different levels of analysis, which are the

entire event log, cases, activities, resources and resource-activity combinations. On

the trace level, no summary statistics are provided as each different occurrence of a

trace is exactly the same concerning the sequence of activities within the trace.

� Number of self-loops - case level. A first interesting metric is the number of

self-loops. This metric on the level of cases provides an overview of the absolute

and relative number of repeat and redo self-loops in each case. This can be

interesting for companies to find which cases are the ones with the self-loops.

To calculate the relative number, each (repeat or redo) self-loop is counted as

1 occurrence (a self-loop dummy), and the other activity instances are also

counted as 1. Case C4 and case C5 contain the highest number of repeat self-

loops in the example, which is two or 22.22 % of all nine occurrences in the case.

This metric for both the repeat and redo self-loops on the case level is shown

in Table 5.30.

� Number of self-loops - log level. Aggregated on the level of the entire event log,

the summary statistics of the number of self-loops within a case can give an

insight in the amount of waste in an event log. In the running example, case C5

contains two repeat self-loops: one for activity B and one for activity F, both

executed by resource R4. On average, each case in the example contains 0.833

repeat self-loops. This is shown in Table 5.31. The standard deviation is 0.718.

Not all cases contain a repeat self-loop, so the minimum number is zero and the
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Table 5.30: Number of repeat and redo self-loops (case level) applied to the running

example.

case

absolute

number of

repeat self-loops

relative number

of repeat

self-loops

absolute

number of redo

self-loops

relative number

of redo

self-loops

C1 0 0 0 0

C2 1 0.167 0 0

C3 1 0.143 0 0

C4 2 0.222 1 0.111

C5 2 0.222 0 0

C6 0 0 0 0

C7 0 0 0 0

C8 1 0.200 0 0

C9 1 0.143 0 0

C10 1 0.167 0 0

C11 1 0.143 0 0

C12 0 0 1 0.167

maximum number of repeat self-loops within one case is two. In total 10 repeat

self-loops occur in the event log. The number of redo self-loops on the level of

the entire event log is shown in Table 5.32. Only two redo self-loops occur in

the running example, one in case C4 and one in case C12, resulting in rather

meaningless results on the log level.

Table 5.31: Number of repeat self-loops (log level) applied to the running example.

min q1 median mean q3 max st.dev. iqr

0 0 1 0.833 1 2 0.718 1

� Number of self-loops - activity level. Furthermore, on the level of the distinct

activities in the event log, the absolute and relative number of self-loops per

activity can be an indication for the company which activities are causing the

most waste in the process. Table 5.33 shows the absolute and relative number
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Table 5.32: Number of redo self-loops (log level) applied to the running example.

min q1 median mean q3 max st.dev. iqr

0 0 0 0.167 0 1 0.389 0

of both repeat and redo self-loops within the running example. It is remarkable

that activity F is in a repeat self-loop five times, which was not clear on the log

or case level.

Table 5.33: Number of repeat and redo self-loops (activity level) applied to the run-

ning example.

activity

absolute

number of

repeat self-loops

relative number

of repeat

self-loops

absolute

number of redo

self-loops

relative number

of redo

self-loops

A 2 0.154 1 0.077

B 1 0.067 1 0.067

C 0 0 0 0

D 1 0.067 0 0

E 1 0.071 0 0

F 5 0.455 0 0

� Number of self-loops - resource level. Similar to the metric on the level of the

activities, the number of self-loops on the level of the resources executing the

activities can give a company insights in which employee needs to repeat his or

her work most often within a case, or for which employee the work he or she

did should be redone by another employee within the same case. This metric

shows the absolute and relative number of both repeat and redo self-loops for

each resource in the event log. Applied to the running example, this results

in the finding that are shown in Table 5.34. It can be stated that resource R4

should be paid attention to, because he or she repeats five times an activity

immediately after each other, while all other resources only appear in zero, one,

or two repeat self-loops.

� Number of self-loops - resource-activity level. Finally, the metric can be applied

to the level of the specific resource-activity combinations, in order to get an
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Table 5.34: Number of repeat and redo self-loops (resource level) applied to the

running example.

resource

absolute

number of

repeat self-loops

relative number

of repeat

self-loops

absolute

number of redo

self-loops

relative number

of redo

self-loops

R1 1 0.083 1 0.083

R2 0 0 0 0

R3 2 0.167 1 0.083

R4 5 0.250 0 0

R5 0 0 0 0

R6 2 0.182 0 0

insight in which activities are the most crucial for which resources. This metric

shows the absolute and relative number of both repeat and redo self-loops for

each of the resource-activity combinations that occur in the event log. Two

different relative numbers are provided here, one from the resource perspective

and one from the activity perspective. At the resource perspective, the denom-

inator is the total number of executions by the resource under consideration.

At the activity perspective, the denominator is the total number of occurrences

of the activity under consideration. For the running example, especially the

resource-activity combination R4-F is remarkable, as it appears four times in a

repeat self-loop, while all other resource-activity combinations that occur in a

repeat or redo self-loop only do this once. The four repeat self-loops that are

recorded for resource R4 executing activity F have a relative number of 36.36

% of in total 11 executions of activity F in the entire event log. Relative to the

total number of executions by resource R4 in the entire event log, which is 20,

the four repeat self-loops of resource-activity combination R4-F count for 20 %

of the occurrences.

� Size of self-loops - case level. The size of a self-loop is based on the number

of activity executions of the same activity within a self-loop. A distinction

can again be made between repeat self-loops, which are executed by the same

resource, and redo self-loops, where the second, third and following self-loop

instances are executed by another resource than the first one.
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On the level of the different cases within the event log, this metric provides the

summary statistics of the size of repeat and redo self-loops, for each case (in

which a repeat or redo self-loop occurs, respectively). For the running example

event log, only one of the cases in the event log contains a repeat self-loop of

size 2 (which means that an activity is executed 3 times immediately after each

other within a case). This is the self-loop of activity B executed by resource R4

in case C5. All other repeat self-loops in the running example are of size of 1.

Showing the summary statistics for this metric applied to the running example

would therefore not add any value in this research. The two redo self-loops,

which occur in case C4 and case C12 both have size 1, making the summary

statistics per case unnecessary to be shown here.

� Size of self-loops - log level. On the level of the entire event log, this metric

provides summary statistics about the size of the self-loops that occur in the

entire event log, separated between repeat and redo self-loops. Next to this, an

overview is given of all self-loops showing in which case they occur, who executes

them and which activity is involved. However, this can become a very long list

in a real-life event log, which makes it less useful. For the redo self-loops, an

additional piece of information that is provided by this metric is which resource

executes the first occurrence in the self-loop, and which resource executes the

last occurrence in the self-loop. This can give a company an insight in which

resources are responsible for the first and last occurrence, giving an indication

of who started the activity and who solved it when the first resource was not

able to finish it correctly. However, this is very case-specific. As was shown on

the level of the specific cases, for the 10 repeat self-loops in total, only one has

a size 2. All other repeat self-loops in the running example are of size 1. This is

shown in Table 5.35. For the two redo self-loops in the running example event

log, the size is in both cases 1.

� Size of self-loops - activity level. The size of self-loops on the level of distinct

activities in the event log can provide insights in which activities are most prone

to be executed more than once before finishing them correctly, indicating that

they cause more waste within the process. This metric shows the summary

statistics of the size of the self-loops per activity together with the number of

self-loops each activity occurs in and the relative frequency of the activity in

order to get a notion of the extent of the problem. The metric is, similar to the

other self-loop metrics, calculated for both repeat and redo self-loops. Applied

to the running example event log, we find, for example, that activity B appears
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Table 5.35: Size of repeat self-loops (log level) applied to the running example.

min q1 median mean q3 max st.dev. iqr

1 1 1 1.1 1 2 0.316 0

repeat self-loop case activity resource size

1 C2 A R3 1

2 C3 F R6 1

3 C4 D R6 1

4 C4 F R4 1

5 C5 B R4 2

6 C5 F R4 1

7 C8 E R3 1

8 C9 F R4 1

9 C10 A R1 1

10 C11 F R4 1

once in a repeat self-loop, which has a size of two. The results of this metric for

repeat self-loops on the level of specific activities applied to the running example

event log are shown in Table 5.36. For the size of redo self-loops in the running

example, only two activities occur in a redo self-loop, which are A and B, who

both occur in a size 1 redo self-loop. These results are therefore not shown in a

table.

Table 5.36: Size of repeat self-loops (activity level) applied to the running example.

activity

relative

activity

frequency

number of

repeat

self-loops

min q1 mean median q3 max st. dev. iqr

A 0.171 2 1 1 1 1 1 1 0 0

B 0.197 1 2 2 2 2 2 2 NA 0

D 0.171 1 1 1 1 1 1 1 NA 0

E 0.184 1 1 1 1 1 1 1 NA 0

F 0.145 5 1 1 1 1 1 1 0 0
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� Size of self-loops - resource level. On the level of the resources executing the

activities in the event log, this metric shows the summary statistics of the size

of both repeat and redo self-loops for each of the resources in the event log.

Next to these summary statistics, also the relative resource frequency and the

number of repeat or redo self-loops for each of the resources occurring in a

repeat or redo self-loop is added to get an insight in the importance of the

resource in the process. For the size of the repeat self-loops, this metric can

show which resources need more than one try to execute an activity before it

is finished correctly for a certain case. For the size of the redo self-loops, this

metric provides insights in which resources execute an activity that is redone

by another resource immediately following the execution by the first resource.

Table 5.37 shows the results of the size of repeat self-loops metric in the running

example event log. Similar findings can be identified for the size of redo self-

loops on the resource level, where the results show that resources R1 and R3

are the only resources that execute an activity in the event log which is redone

immediately again by another resource.

Table 5.37: Size of repeat self-loops (resource level) applied to the running example.

resource

relative

resource

frequency

number of

repeat

self-loops

min q1 mean median q3 max st. dev. iqr

R1 0.158 1 1 1 1.0 1 1 1 NA 0

R3 0.158 2 1 1 1.0 1 1 1 0.000 0

R4 0.263 5 1 1 1.2 1 1 2 0.447 0

R6 0.145 2 1 1 1.0 1 1 1 0.000 0

� Size of self-loops - resource-activity level. Finally, on the level of the specific

resource-activity combinations that occur in the event log, the size of self-loops

metric shows the summary statistics of the size of both repeat and redo self-loops

for each of the resource-activity combinations that occur in a repeat or redo self-

loop in the event log. For the size of the repeat self-loops, this metric can show

which resources need more than one try to execute a specific activity before it is

finished correctly for a certain case. For the size of the redo self-loops, this metric

provides insights in which resources execute a specific activity which is redone

by another resource immediately following the activity execution. Applied to
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the running example, this metric shows for example that resource R4 occurs

four times in a self-loop that involves activity F, which are all of size 1.

Repetitions. Instead of only looking at activity instances that are executed immedi-

ately following each other, the notion of repetitions (hereby excluding self-loops) can

also be interesting in the context of process behaviour. A repetition is an execution

of an activity within a case while that activity has already been executed before, but

one or more other activities are executed in between. A repetition might also be

an indication of waste, however it should be possible to report on them separately

from self-loops. Similar to the self-loop metrics explained above, again a distinction

should be made between repeat and redo repetitions, as was shown in Figure 5.5.

Repeat repetitions are activity executions of the same activity type that are executed

not immediately following each other, but by the same resource. Redo repetitions

are activity executions of the same activity type that are executed not immediately

following each other and by a different resource than the first activity occurrence of

this activity type. In trace B,E,D,E,E in the running example event log, 1 repetition

is reported, next to 1 self-loop (both on activity E). Similar to the metrics concerning

self-loops, two types of metrics will be introduced here, the number of repetitions and

the size of repetitions.

� Number of repetitions - case level. First of all, on the level of the specific

cases, this metric provides the absolute and relative number of repetitions in

each case, for both repeat and redo repetitions. In the running example, one

repeat activity is found in case C8, where activity E is performed by resource

R3 followed by activity D performed by resource R2. Next, resource R3 repeats

activity E. As this is the only repeat repetition in the entire event log, and no

redo repetitions are recorded, this metric does not add any value in the case of

the running example.

� Number of repetitions - log level. Next to this, the number of repetitions within

a case can be aggregated on the level of the entire event log, which can provide

insights in the amount of waste in an event log. Each combination of two

occurrences of the same activity, executed not immediately following each other,

by the same resource is counted as one repeat repetition of this activity. In the

running example, only case C8 contains one repeat repetition.

� Number of repetitions - activity level. On the level of specific activities, this

metric shows which activities occur the most in a repetition, implying that the

company should analyse them in order to prevent these activities from causing
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waste. The absolute and relative number of both repeat and redo repetitions is

provided by this metric, giving an overview per activity. In the running example

event log, activity E appears once in a repeat repetition, which counts for 7.14

% of the total number of occurrences of activity E. None of the activities appear

in a redo repetition.

� Number of repetitions - resource level. When looking at the different resources

executing activities in the event log, it can be interesting to have an overview of

which resources need more than one chance to execute an activity in a case or

which resources need to have an activity redone later on in the case by another

resource. This metric provides the absolute and relative number of times each

resource appears in a repetition. In the running example, resource R3 is the

only resource that executes an activity more than once within the same case,

and not immediately following each other. This counts for 8.33 % of the total

executions resource R3 performs within the entire event log. No other resource

executes activities that need to be repeated or redone later on within the same

case.

� Number of repetitions - resource-activity level. Finally, the same metric can be

looked at on the level of specific resource-activity combinations, providing the

company with specific information about which activities and which resources

are involved in the repetitions. For this metric the absolute and relative number

of repeat and redo repetitions is provided. Again two different relative numbers

are provided, one relative to the total number of executions of the activity in the

entire event log, and one relative to the total number of executions performed

by the resource throughout the entire event log. For the repeat repetitions,

this metric provides one result for the running example event log, which is the

resource-activity combination R3-E which occurs once in a repeat repetition in

the entire event log, which accounts for 7.14 % of the total amount of executions

of activity E in the entire event log, and for 8.33 % of the total activity executions

by resource R3. No output comes from the metric for the number of redo

repetitions when it is applied to the running example event log.

� Size of repetitions - case level. Next to the number of repetitions that occur in

an event log, it can also be interesting to have a look at the amount of activity

executions that occur within the repetitions. On the level of the specific cases,

this metric provides the summary statistics of the size of both repeat and redo

repetitions for each case in the event log. In the running example event log,
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only one repetition occurs, which has size one. This repeat repetition occurs in

case C8, which has the following trace: B,E,D,E,E. Activity E is repeated after

activity D is executed in between. The last occurrence of activity E is not part

of the repetition as it is a self-loop of the same activity, which are strictly kept

separated in the metric calculations to prevent that double calculations occur.

� Size of repetitions - log level. On the level of the entire event log, this metric

provides the summary statistics of the size of repetitions throughout the entire

event log, both for repeat repetitions and redo repetitions. Next to this, also an

overview of all repetitions occurring in the entire event log is provided, showing

the case in which they occur, the activity that is repeated, the total length of

the trace, the resource executing the different occurrences of the activity in the

repetition and the total amount of activity occurrences within the repetition. As

the running example only contains one repetition, which is a repeat repetition

of size one, this metric does not provide any new insights for this event log.

� Size of repetitions - activity level. To get an insight into which activities are

repeated within a process, this metric can be calculated on the activity level.

This way, a company gets an overview of how many times the activity within a

repetition is repeated, which is possibly a notion of waste and not adding value

to the process. For both repeat and redo repetitions, this metric provides for

each activity that occurs in a repeat or redo repetition the summary statistics

of the amount of times this activity is repeated within the same case. For

the running example, this metric only identifies activity E to be in a repeat

repetition of size 1, providing no new insights.

� Size of repetitions - resource level. Next to the activity level, the size of repeat

and redo repetitions can also be calculated on the resource level, providing

for each resource the summary statistics of the amount of times activities are

repeated within a case. Companies can gather information on which resources

are possibly less efficient, what should be investigated more thoroughly. For the

running example, this metric provides the summary statistics for resource R3

as he or she executes an activity more than once within the same case with at

least one other activity in between. As this is the only repetition occurring, no

interesting findings can be drawn from this.

� Size of repetitions - resource-activity level. Finally, to get a better notion of

which resources and which activities are responsible for the repetitions within

an event log, the size of repetitions can be calculated for each resource-activity
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combination. Therefore, this metric provides an overview of the summary statis-

tics of the size of the repetitions that occur, both for repeat and redo repetitions.

However, also on this level no interesting conclusions can be drawn from the ap-

plication of this metric to the running example as only one resource-activity

combination occurs, which occurs in a size 1 repeat repetition.

5.5.2.3 Resource metrics

The importance of resources is already recognised in the metrics above, where re-

sources are seen as one of the levels of analysis for most of the metrics, stating some

interesting findings on the resource aspect in the field of operational excellence. A clas-

sification of resources in the domain of project management can be found in Jugdev

and Mathur [80]. However, this research focuses on resources that are defined as

process participants, software systems, or equipment in the field of BPM [47]. Com-

plementary to the findings above, resources can also be a source of process variability

and their behaviour is essential in the light of continuous process improvement as was

defined by van Assen [154]. Consequently, this dimension has been defined as one of

the crucial required measures in the field of operational excellence, as can be found in

Chapter 4. It should therefore be taken into account to convey a more comprehensive

picture on process behaviour to organisations. This is consistent with the research

recommendation of Recker and Mendling [127] as it targets the resource perspective

in process mining.

Given the need to include the resource perspective, this section presents some

more resource-related process insights. Within the context of quantifying the re-

source perspective using event logs, metrics that mainly focus on the relationship

between resources are proposed by Song and van der Aalst [144]. While the latter

specify metrics with the purpose of mining organisational models, Huang et al. [70]

and Pika et al. [119] focus on defining resource behaviour measures. The metrics pre-

sented here complement this as well as the recently introduced resource availability

metrics [96] and the work prioritisation patterns [147], which are also based on event

log data. Besides the general contribution of providing algorithm-agnostic resource

insights to organisations, these metrics can also support organisations in performing

knowledge management, for instance when creating a knowledge map [29], or project

management with applications such as resource levelling or resource allocation [81].

Resources are assigned to activities and typically carry these out on multiple cases

such as files or products. Getting insights in the behaviour of these resources and the

amount of “waste” they cause can be very interesting for companies who want to
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optimise their business processes. However, it should be stressed that resources can

possibly be involved in multiple processes within an organisation, while the metrics

presented here only concern a single process. Related to this concept of resources,

are the metrics concerning the concept of batch processing, which are presented in

Chapter 6. The metrics presented here, concerning resource frequency, resource in-

volvement, and resource specialisation, are also explained in Swennen et al. [149] where

they are applied to an artificial event log containing medical activities executed by

the staff members of a hospital.

� Resource frequency - case level. Comparable to the concept of the activity

frequency presented earlier, the frequency of resources in a business process

can also be very insightful for companies, e.g., during company restructuring.

Dumas et al. [47] already defined a similar measure as the “level of busyness

of resources”, and states that waiting time depends on this level of busyness,

i.e., the more active resources are, the higher the waiting times can become. To

get insights in the resource variance between the different cases, the summary

statistics of the frequency of resources can be calculated on the level of the cases.

This way, a company gets an insight in the resource variation by analysing the

number of different resources working on each case together with the number of

activities that a resource executes per case. In Table 5.38 we see, for example,

that the six activities in case C2 are executed by three different resources, which

gives an average of two activities per resource. At the trace level, this metric

is less informative because, even though the sequence of activities is the same,

the persons or machines executing the activities in the trace can be completely

different per trace occurrence. For example, trace A,A,B,C,D,E appears three

times in the event log, in case C2, C10, and C12. However, only activity D is

in the three cases executed by the same resource, while all other activities are

executed by two or even three different resources. Providing summary statistics

for each trace could thus be misleading.

� Resource frequency - log level. On the level of the entire event log, summary

statistics show the number of times a resource executes an activity in the entire

event log. For the running example event log, we see in Table 5.39 that a resource

executes on average 12.67 activities in the entire event log, with a standard

deviation of 3.983. It is clear that there is a lot of diversification between the

resources, because there is one resource only executing eight activities, while

another resource executes 20 activities in total.
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Table 5.38: Resource frequency (case level) applied to the running example. The

cases are sorted on the number of different resources in the case.

case
number of

resources
min q1 median mean q3 max

C9 6 1 1.00 1.0 1.667 1.00 2

C4 5 1 1.00 1.0 1.800 2.00 4

C12 5 1 1.00 1.0 1.200 1.00 2

C1 4 1 1.00 1.0 1.250 1.25 2

C3 4 1 1.00 1.5 1.750 2.25 3

C5 4 1 1.00 1.0 2.250 2.25 6

C6 4 1 1.00 1.0 1.500 1.50 3

C10 4 1 1.00 1.0 1.500 1.50 3

C11 4 1 1.00 1.5 1.750 2.25 3

C2 3 1 1.50 2.0 2.000 2.50 3

C8 3 1 1.00 1.0 1.667 2.00 3

C7 2 1 1.25 1.5 1.500 1.75 2

Table 5.39: Resource frequency (log level) applied to the running example.

min q1 median mean q3 max st.dev. iqr

8 11.250 12 12.67 12.75 20 3.983 1.5

� Resource frequency - activity level. On the level of the different activities, the

resource frequency states how many different resources are executing a specific

activity in the entire event log. For the running example event log, we find in

Table 5.40 that activity A is executed by three different resources throughout

the entire event log. Because the activity is executed 13 times in total, this is

an average of 4.333 executions of activity A per resource.

� Resource frequency - resource level. On the level of the distinct resources in the

event log, this metric shows the absolute and relative frequency of occurrences

of each resource in the entire event log. Resource R4 executes in total 20 activ-

ities in the running example event log, which accounts for 26.3 % of the total
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number of activities executed in the running example event log. This is shown

in Table 5.41.

Table 5.40: Resource frequency (activity level) applied to the running example.

activity
number of

resources
min q1 median mean q3 max

A 3 4 4.00 4.0 4.333 4.50 5

B 2 7 7.25 7.5 7.500 7.75 8

C 3 1 2.50 4.0 3.333 4.50 5

D 3 2 2.50 3.0 4.333 5.50 8

E 3 1 3.00 5.0 4.667 6.50 8

F 2 2 3.75 5.5 5.500 7.25 9

Table 5.41: Resource frequency (resource level) applied to the running example. The

resources are sorted on their absolute frequency.

resource absolute frequency relative frequency

R4 20 0.263

R2 13 0.171

R1 12 0.158

R3 12 0.158

R6 11 0.145

R5 8 0.105

� Resource frequency - resource-activity level. Finally, at the most specific level

of analysis, the absolute and relative number of times each resource-activity

level occurs in the entire event log can be calculated. Two different relative

numbers are provided here, one from the resource perspective and one from

the activity perspective. At the resource perspective, the denominator is the

total number of executions by the resource under consideration. At the activity

perspective, the denominator is the total number of occurrences of the activity

under consideration. Table 5.42 shows for example that resource R4 executes

activity F nine times in total, which counts for a relative frequency of 45 %
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of all 20 executions done by resource R4 and 81.8 % of all 11 occurrences of

activity F, throughout the entire event log. This information can be useful for

organisations to make changes within the resource allocation process.

Table 5.42: Resource frequency (resource-activity level) applied to the running exam-

ple. The resource-activity combinations are sorted on their absolute frequency.

resource activity
absolute

frequency

relative frequency

(resource)

relative frequency

(activity)

R4 F 9 0.450 0.818

R6 D 8 0.727 0.615

R1 B 8 0.667 0.533

R3 E 8 0.667 0.571

R4 B 7 0.350 0.467

R5 C 5 0.625 0.500

R2 A 5 0.385 0.384

R2 E 5 0.385 0.357

R1 A 4 0.333 0.308

R3 A 4 0.333 0.308

R4 C 4 0.200 0.400

R2 D 3 0.231 0.231

R5 D 2 0.250 0.154

R6 F 2 0.182 0.182

R5 E 1 0.125 0.071

R6 C 1 0.091 0.100

� Resource involvement - case level. Next to the resource frequency, the involve-

ment of resources in cases can be of interest to measure, e.g., how involved or

how “indispensable” they are. This metric is provided on three levels of analy-

sis, which are the cases, the resources, and the resource-activity combinations.

On the level of the specific cases, the absolute and relative number of distinct

resources executing activities in each case is calculated. This way a company

gets an overview of which cases are handled by a small amount of resources
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and which cases require more resources, indicating a higher level of variance in

the process. In Table 5.43, we see that in case C9 all six distinct resources, or

100 % of the resources, are involved, while case C7 could be executed by only

two distinct resources, which is only 33.3 % of the total number of resources in-

volved in the process. It can be interesting for the company to look into this by

checking if these two resources are involved in all of the cases or if the resources

differ over the distinct cases.

Table 5.43: Resource involvement (case level) applied to the running example. The

cases are sorted on the absolute number of distinct resources in the case.

case

absolute number

of distinct

resources

relative number

of distinct

resources

C9 6 1.000

C12 5 0.833

C4 5 0.833

C1 4 0.667

C10 4 0.667

C11 4 0.667

C3 4 0.667

C5 4 0.667

C6 4 0.667

C2 3 0.500

C8 3 0.500

C7 2 0.333

� Resource involvement - resource level. On the level of the distinct resources,

this metric provides the absolute and relative number of cases in which each

resource is involved, indicating which resources are more “necessary” within the

business process than the others. Table 5.44 shows that resource R1 is involved

in ten of the cases of the running example event log, which is 83.33 % of all 12

cases. There are no resources that are only involved in one or two cases, which

could be an indication for the company management that either these cases
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should be looked at, as they require resources that are usually not involved, or

that these resources should be checked because they could maybe spend their

time better elsewhere.

Table 5.44: Resource involvement (resource level) applied to the running example.

The resources are sorted on the number of cases they are involved in.

resource
absolute

number of cases

relative number

of cases

R1 10 0.833

R3 8 0.667

R4 8 0.667

R6 8 0.667

R2 7 0.583

R5 7 0.583

� Resource involvement - resource-activity level. On the level of the specific

resource-activity combinations, this metric provides a list of all resource-activity

combinations with the absolute and relative number of cases in which each

resource-activity combination is involved. Table 5.45 shows that resource R1

executes activities A and B in respectively three and eight cases in the run-

ning example event log. On the level of the distinct activities, this metric is

not developed as these values are accommodated in the resource specialisation

metric.

� Resource specialisation - case level. Finally, we can also have a look at the

specialisation level of the different resources in a company. This can give a

company an overview of which resources are performing certain activities more

than others, and which resources are responsible for containing all knowledge or

capabilities about one topic and can therefore be seen as bottlenecks. This in-

formation can be used to tackle challenges such as team selection or brain drain,

as presented by Creemers and Jans [29]. Based on these results, a company can

take decisions to make changes in team compositions throughout the process.

On the level of the cases, this metric provides the summary statistics of the dis-

tinct activities executed per resource in each case. For comparison reasons, the

number of distinct activities that are executed within each case is added, to gain
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Table 5.45: Resource involvement (resource-activity level) applied to the running

example. The resource-activity combinations are sorted on the number of cases they

are involved in.

resource activity
absolute

number of cases

relative number

of cases

R1 B 8 0.667

R6 D 7 0.583

R3 E 6 0.500

R2 A 5 0.417

R2 E 5 0.417

R4 B 5 0.417

R4 F 5 0.417

R5 C 5 0.417

R4 C 4 0.333

R1 A 3 0.250

R2 D 3 0.250

R3 A 3 0.250

R5 D 2 0.167

R5 E 1 0.083

R6 C 1 0.083

R6 F 1 0.083

insights in the importance of the results of this metric. Table 5.46 shows for the

running example event log that in case C1 five distinct activities are executed.

For the same case, we can see that a resource working on this case executes

at least one distinct activity and maximum two, i.e., resource R4 is the only

one who executes two distinct activities in this case, while all other resources

only execute one distinct activity. In the other cases, the maximum number of

distinct activities executed by one resource is at most three, while the number

of distinct activities is almost always five or six within a case, indicating that

the resources within this process are able to perform multiple activities, but
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no resource is able to perform all activities. This notion of specialisation per

activity and per resource will become more clear on the other levels of analysis.

Table 5.46: Resource specialisation (case level) applied to the running example.

case

number of

distinct

activities

min q1 median mean q3 max st. dev. iqr

C1 5 1 1.00 1.00 1.250 1.25 2 0.500 0.250

C2 5 1 1.50 2.00 1.667 2.00 2 0.577 0.500

C3 6 1 1.00 1.50 1.500 2.00 2 0.577 1.000

C4 6 1 1.00 1.00 1.400 1.00 3 0.894 0.000

C5 6 1 1.00 1.00 1.500 1.50 3 1.000 0.500

C6 6 1 1.00 1.00 1.500 1.50 3 1.000 0.500

C7 3 1 1.25 1.50 1.500 1.75 2 0.708 0.500

C8 3 1 1.00 1.00 1.000 1.00 1 0.000 0.000

C9 6 1 1.00 1.00 1.000 1.00 1 0.000 0.000

C10 5 1 1.00 1.00 1.250 1.25 2 0.500 0.250

C11 6 1 1.00 1.00 1.500 1.50 3 1.000 0.500

C12 5 1 1.00 1.00 1.200 1.00 2 0.447 0.000

� Resource specialisation - log level. On the level of the entire event log, this metric

provides summary statistics of the distinct activities executed per resource. For

the running example event log, we find in Table 5.47 that resources execute on

average 2.667 distinct activities within the process.

Table 5.47: Resource specialisation (log level) applied to the running example.

distinct

activities
min q1 median mean q3 max

6 2 2.250 3 2.667 3 3

� Resource specialisation - activity level. On the level of the distinct activities,



138 Chapter 5

this metric provides an overview of the absolute and relative number of different

resources executing this activity within the entire event log. This will give a

company insights in which activities resources are specialised in. Activity A, for

example, is being executed by three different resources throughout the running

example event log. Table 5.48 shows the calculations for each of the distinct

activities.

Table 5.48: Resource specialisation (activity level) applied to the running example.

The activities are sorted on the number of different resources executing them through-

out the event log.

activity absolute frequency relative frequency

A 3 0.500

C 3 0.500

D 3 0.500

E 3 0.500

B 2 0.333

F 2 0.333

� Resource specialisation - resource level. Finally, the resource specialisation can

also be calculated on the resource level, showing the absolute and relative num-

ber of distinct activities that each resource executes. In Table 5.49 we find that

resource R1 and resource R3 only work on two distinct activities throughout

the entire event log, which counts for 33.33 % of the total number of distinct

activities in the event log. All other resources are responsible for three different

activities.

5.6 R-package edeaR

All metrics presented above have been implemented as functions in the R-package

edeaR [74], which stands for exploratory and descriptive event-based data analysis in

R [77]. R is an open-source programming language which is used extensively for the

purpose of statistical analysis and data mining, and furthermore contains extensive

functionalities for data visualisation. EdeaR enables the handling and analysis of

event logs within R, and is fully compatible with the existing XES standard [64]. The
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Table 5.49: Resource specialisation (resource level) applied to the running exam-

ple. The resources are sorted on the number of distinct activity types they execute

throughout the event log.

Resource absolute frequency relative frequency

R2 3 0.500

R4 3 0.500

R5 3 0.500

R6 3 0.500

R1 2 0.333

R3 2 0.333

package is available through cran2, and comes with several vignettes, which provide

an illustrative walk-through. EdeaR is part of the overarching open-source suite

bupaR3 [73], which is developed by Janssenswillen et al. [75]. BupaR provides support

for different stages in process analysis, such as importing event data, calculating

descriptives, process monitoring, and process visualisation. Also the preparations of

an event log before the presented metrics can be applied can be easily done with the

functionalities of bupaR.

5.7 Metric dashboard

As was stated in Chapter 4, the last requirement that was defined in the requirement

analysis states that the results of the metrics should be easy to interpret for business

people and supported with suitable visual representations in order to increase the

understandability. Therefore, a dashboard was created with the R-package shiny4 [23]

in which the results of the metrics are visualised. The dashboard homepage provides

an overview of the dataset that is analysed by outlining some general descriptions

of it. Here, the number of cases, the number of activities, the number of traces, the

number of activity executions, the number of distinct resources, and the number of

events is provided. Moreover, it also shows the start and end date of the entire event

log, showing the time range in which the data was collected.

2https://cran.rstudio.com/web/packages/edeaR/
3http://bupar.net/
4https://cran.r-project.org/package=shiny
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Next, for each of the different categories of metrics presented above, a separate

page is provided in which the results of the metrics are shown with a clear and easy-

to-read visualisation in the form of a chart. An example of a metric visualisation is

given in Figure 5.6. As can be seen here, the time unit that is used in most of the

metrics can be changed easily in the lower left of the dashboard.

Another option within the metric dashboard are the filters, allowing people from

business to easily “play” with the data in order to get deeper insights in the different

aspects of the dataset. Here it is possible to choose between two types of filters, which

are case filters and event filters. All metric visualisations are updated at run-time

when filters are applied, adding much more value to the dashboard and the presented

metrics. To get a notion of the different filters that are available in the dashboard,

an overview is provided here. For the case filters, possibilities to filter the event log

are (i) activity presence, in which certain activities can be ignored in the analyses,

(ii) throughput time, which gives one the option to only include cases of a certain

length, and (iii) time intervals, making it possible to specify certain time ranges. The

event filters add to this the possibility to filter the event log on the level of events, by

activity, by resource, or by time interval.

These filters, combined with the metrics presented above, provide business analysts

with much more information than solely the output of each metric. When reference

values or process variants are present, for example, benchmarking analyses can be

performed in order to create an integrated view on the results and to get insights

into the quality of the business process. Comparing the throughput time of the

cases within the event log with a desired or modelled throughput time is much more

interesting than only looking at the calculated values, for instance. Next to this, the

metrics and their visualisations within the dashboard make it easier to analyse the

quality and performance of the business process over time, which can be insightful to

cover seasonal or time-bounded characteristics, or to just find out which periods to

focus on. Finally, the dashboard provides insights in which metrics can possibly be

calculated for a certain event log. This makes it easier for business people to focus

on their pains and gains first, and to not get lost in an overload of numbers that are

harder (and take more time) to interpret than visual representations.

As the running example dataset, which was presented in Section 5.4, is limited in

size, the dashboard visualisations will be presented in Chapter 7, where all metrics

that are introduced in this chapter are applied to a real-life dataset. The results are

complemented with some visualisations from the dashboard in which the data is anal-

ysed. Related to the previous, the fourth requirement that was defined in Chapter 4

also states that the concepts that are used in the analyses and in reporting the findings
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Figure 5.6: Example of the metrics dashboard including the visualisation of the num-

ber of self-loops metric.
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to the business people should be understandable to them. A translation of the rather

technical concepts to more business-wise items would improve the interpretation by

the right people. Therefore, the dashboard for the case study in Chapter 7 has been

slightly modified to include some more understandable concepts instead of the process

mining language that was used during the metric presentation in the chapter at hand.

5.8 Discussion

The presented metrics are developed in accordance with the four artifact requirements

that were defined in Chapter 4. Firstly, the metrics can be mapped onto the list

of required metrics that was composed in requirement 1 based on the findings

from literature in Chapter 2 and Chapter 3 and from the interviews described in

Chapter 4. The metrics that have been developed concern the throughput time,

the processing or service time, the waiting time, the process flow, the frequency of

activities, the frequency and number of patterns, rework, resource variation, and

bottleneck activities and resources. Two other categories of event log knowledge that

should be identified from event logs in order to support operational excellence are the

number of activities executed in batch and the size of these batches. The concept of

batch processing is elaborated upon in Chapter 6. Figure 5.7 shows how the developed

metrics fit into the required metrics that have been defined in requirement 1.

Secondly, according to requirement 2, the metrics should only measure one

dimension and should be measurable on a specific level of analysis. Therefore, different

levels of analysis should be taken into account. As could be seen in Figure 5.4, the

developed metrics are measurable on the following levels of analysis: log, case, trace,

activity, resource, and resource-activity. Not all metrics are measurable on each of

these levels, as not all combinations are logical or insightful.

Thirdly, the requirements of the underlying event log data are described within

this chapter, together with the event log-based metrics that have been developed. A

clear definition and an example of how the metrics should be calculated is provided,

which fulfils requirement 3. Next to the transparency provided in this chapter,

all metrics are also implemented in the R-package edeaR, for which the underlying

programming code is openly available through cran, including several vignettes which

provide an illustrative walk-trough for each of the developed metrics.

Finally, requirement 4 states that the metrics should be supported with suit-

able visual representations and made understandable for business people. To fulfil

this requirement, a metric dashboard was created and presented, which includes vi-
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Figure 5.7: The developed log-based metrics mapped onto the required metrics in

operational excellence.

sual representations and aggregations of the results of the presented metrics. The

dashboard is developed for the running example presented in the chapter at hand,

and is easily transformable for other processes. This has been done for the real-life

case study that will be analysed in Chapter 7, in which the terminology is slightly

changed for comprehensibility.

5.9 Conclusion

From literature we can infer that plenty of metrics exist for checking the confor-

mance of process models with reality or for measuring the performance of discovery

algorithms. However, choosing the right process discovery technique and its specific

assumptions can be cumbersome for companies that have dynamic and rapidly chang-

ing processes. Moreover, the resulting process models are not suitable for or aimed
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at describing objectively the behaviour that is inherent to the event log. Therefore,

log-based process metrics are presented in this chapter, which give a company an

objective indication of the behaviour in the event log. The presented metrics are

structured along two dimensions, which are time and structuredness, and are calcu-

lated on one of the following levels of analysis: log, case, trace, activity, resource, or

resource-activity. These metrics provide business people with an objective start to

look at their processes and are all implemented in the R-package edeaR, making them

easy to apply to any event log. Moreover, to make the results of the metrics more ac-

cessible and understandable for business people, a dashboard including visualisations

of each metric has been developed.

Although the metrics comply with the artifact requirements, some challenges and

different perspectives can provide an even better indication of the process behaviour

observed in an event log. For example, indicators or metrics should not be considered

to be independent from each other and the results of one metric can be the input

of or complement other metrics as stated by Heckl and Moormann [66]. This is an

interesting recommendation for future research.
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Batch organisation of work

metrics

6.1 Introduction

The reseach on this topic aims to gain insights in batching behaviour of resources

in business processes from event logs. Resource behaviour was already introduced in

the metrics concerning resources in Chapter 5. Resources, such as process partici-

pants, software systems, or equipment [47], are assigned to activities and typically

carry these out on multiple cases such as files or customers. Assuming that arriving

cases are handled immediately when the resource becomes available can be an undue

simplification of reality. Employees might deem it more efficient to accumulate files

and treat the entire stack later or machines can process multiple products at the same

time. This type of resource behaviour is referred to as batch processing.

Batch processing influences the performance of a process as it can, for instance,

lead to longer waiting times for certain cases when multiple cases are gathered before

processing starts [184]. It has therefore been mentioned as one of the useful event log

knowledge insights in the requirements of the operational excellence methodologies,

as was discussed in Chapter 4. Consequently, it should be taken into account when

modeling and evaluating business processes, as was also illustrated by van der Aalst

et al. [163]. To this end, insights in batching behaviour should be generated, which

is the topic of this chapter.

While the occurrence of batch processing might be readily observable for passive

resources such as machines, it is typically less straightforward to determine how hu-

145
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man resources, which are active resources according to Dumas et al. [47], organise

their work. Direct observation of staff members’ behaviour has limitations as it is both

time-consuming and the Hawthorne effect can cause observed behaviour to deviate

from real behaviour when humans know they are being observed [100]. Consequently,

investigating the use of more readily available information sources, such as event logs

created by process-aware information systems, is valuable.

Figure 6.1: Outline of the thesis - Chapter 6.

This chapter1 (Figure 6.1) focuses on retrieving event log insights on batch pro-

cessing, which is marked as a research gap by Martin et al. [97]. More specifically,

the key contributions of this research on batch processing are threefold. Firstly, the

1This chapter is based on Martin, N., Swennen, M., Depaire, B., Jans, M., Caris, A., Vanhoof,

K. 2015. Batch processing: definition and event log identification. CEUR Workshop Proceedings

1527, 137-140 [98] and Martin, N., Swennen, M., Depaire, B., Jans, M., Caris, A., Vanhoof, K.

2017. Retrieving batch organisation of work insights from event logs. Decision Support Systems

100, 119-128. [99].
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concept of batch processing is elaborated upon and three types of batch processing are

distinguished and formally defined. Secondly, a resource-activity centered approach

is presented to identify these batch processing types from an event log and the Batch

Organisation of Work Identification algorithm (BOWI) is presented. This algorithm

provides useful insights in the batch organisation of work and its influence on process

execution. Finally, based on the previous steps, a list of batch processing metrics are

defined to gain insights in the characteristics of the identified batches and the im-

plications of batch processing on process execution. These metrics enable companies

to, amongst others, investigate the phenomenon of batch processing in their processes

and judge its desirability. As has been done for the complete dissertation, the research

in this chapter has been conducted following the principles of design science research

[78], which was already elaborated upon in Chapter 1.

The chapter is structured as follows. Section 6.2 starts with related work that has

been found in literature. Next to this, a running example is presented in Section 6.3

and the three types of batch processing are outlined in Section 6.4. After that, the

BOWI-algorithm is outlined in Section 6.5 followed by a presentation of the developed

batch processing metrics in Section 6.6. The presented algorithm and metrics are

evaluated on both artificial and real life data in Section 6.7. Finally, limitations of

the BOWI-algorithm are given in Section 6.8 and conclusions and future research

challenges are included in Section 6.9.

6.2 Related work

The batch processing metrics that are presented in this chapter are based on a three-

fold definition of batch processing as a distinction is made between simultaneous,

concurrent, and sequential batch processing. While Wu [184] and Pufahl and Weske

[124] distinguish between the parallel and sequential execution of activities, other re-

searchers only consider simultaneous batch processing [121, 178]. Consequently, this

chapter presents a more versatile perspective on batch processing. As will be declared

in Section 6.4, the threefold specification of batch processing also presents richer in-

formation than the more generic definition commonly used in operations management

literature, as insights are conveyed on how batches are processed.

Batch processing is studied in several domains, but mainly within the field of oper-

ations management, with a key focus on topics such as order batching [67], scheduling

[21, 120] and operational excellence. In the operational excellence field, the principles

of lean management indicate that batch processing should be avoided. In contrast to
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single-piece flow, batch processing will lead to excess inventory and long queue times

between production steps, which can be seen as forms of waste [12, 34]. While batch

processing is mainly beneficial for the producer, single-piece flow focuses on the added

value for the customer [51]. Moreover, even when single-piece flow fits the goals of

the company, the appropriate batch size is often greater than one as setup costs and

time needs to be taken into account [11, 59]. The trade-off between execution costs

on the one hand and waiting costs on the other hand is also explicitly recognised in

business process management literature [90, 121, 122, 123]. Finally, this trade-off is

also stressed by Dobson et al. [44], who optimise the timing and number of batches

for compounded sterile products in the health care industry.

Within the process modeling and execution domain, Pufahl and Weske [124] spec-

ify the concept of batch activities. Specification parameters such as the batch acti-

vation rule are identified. While Pufahl and Weske [124] focuses on a single batch

activity, Pufahl et al. [123] extends these concepts to batch regions. The latter are a

series of model constructs such as activities that handle cases in a batch. Recently,

batch processing is studied for activities that are included in different processes by

means of object life cycles [125]. As Pufahl and Weske [124], Pufahl et al. [123] and

Pufahl and Weske [125] primarily focus on the activity level, their works do not ex-

plicitly take into account that the organisation of work for a particular activity can

differ among resources. The work presented in this chapter includes this perspective

by considering the resource-activity level as the key level of analysis. This is consis-

tent with Liu and Hu [90], who recognise that batching strategies can differ among

resources. While the key focus of Pufahl et al. [123] and Pufalh and Weske [124, 125]

is on process modeling and the specification of the execution semantics of batch activ-

ities, Pufahl et al. [121] focuses on performance evaluation of batch activities. Solely

considering the simultaneous batch processing case, cost functions are defined for both

service and waiting costs and an analytical solution is proposed making use of queuing

theory. This way, the benefits of introducing simultaneous batch processing can be

quantified and a recommended batch size can be calculated. However, the suggested

approach using queuing theory focuses on a single activity which, moreover, must

fulfil the conditions of a particular queuing model [121]. As follows from the above

discussion, related work tends to focus on modelling batch processing at design time.

However, Pufahl et al. [122] suggest an approach to dynamically adjust the configu-

ration parameters of batch activities depending on, e.g., the planned maintenance of

a machine. This more flexible perspective on batching is also utilised by Pufahl and

Weske [125], where a set of cases that might be batched are proposed to the resource,

without the obligation to perform batch processing in practice.
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Besides Wen et al. [178] and Nakatumba [108] as notable exceptions, no research

attention is devoted to batch processing within the process mining field. Wen et al.

[178] consider the problem of mining the process control-flow when the process under

consideration contains activities where simultaneous batch processing occurs. For

these activities, the authors assume that, for a particular batch, events are only logged

for one of the cases in this batch. This is similar to Liu and Hu [90], who temporarily

merge batched cases and decompose them afterwards. In contrast, the work in this

chapter assumes that events are recorded for all individual cases in a batch. Wen

et al. [178] developed a method that aims to add the missing events of cases in a

batch, after which, e.g., existing control-flow discovery algorithms can be applied to

the complemented log. The latter can also be used to apply the BOWI-algorithm

presented in this chapter.

Nakatumba [108] proposes a method to identify batch processing in which all

resource actions, i.e., executions of activities, are placed on a timeline and grouped in

so called chunks. A new chunk is started when the elapsed time between the end of

an action and the start of the following action exceeds one hour. When a period such

as a working day is composed of multiple chunks, Nakatumba [108] states that batch

processing occurs. This chapter extends the work of Nakatumba [108] in several

ways. Firstly, in contrast to Nakatumba [108], the work in this chapter does not

make abstraction from the difference between activities, reflecting the fact that some

activities might be more eligible for batch processing. Secondly, the arbitrary delay

of one hour between periods of activity is replaced by a formal definition of several

types of batch processing. Finally, this chapter complements the work of Nakatumba

[108] by distinguishing between batch processing and regular queue handling.

6.3 Running example

Throughout this chapter, a running example, other than the one that is used in

Chapter 5, will be used for illustrative purposes. The process model, annotated

with all assumed parameters, is visualised in Figure 6.2. Case interarrival times are

assumed to follow an exponential distribution and activity durations are expressed in

minutes and follow a triangular distribution.
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Figure 6.2: Process model of the running example.

6.4 Three types of batch processing

Batch processing is defined as a type of work organisation in which a resource executes

a particular activity on multiple cases simultaneously or concurrently, or intention-

ally defers activity execution to handle multiple cases (quasi-)sequentially. Consistent

with Martin et al. [98], a distinction is made between three types of batch processing:

simultaneous, concurrent, and sequential batch processing. To exemplify the differ-

ence between these types, Figure 6.3 depicts the activities executed for two cases.

Note that an activity will always be executed by the same resource for both cases.

This section defines the three batch processing types as follows;

� Sequential batch processing. Activity instances are in a sequential batch

when a resource intentionally defers the execution of this activity on distinct

cases, after which they are handled (almost) immediately after each other. Con-

sequently, all cases included in a batch need to be present at the activity un-

der consideration before the resource starts processing the batch’s first case.

The latter distinguishes sequential batch processing from mere queue handling,

stressing its intentional nature. For instance, employees can reply to e-mails

twice a day, treating all available e-mails sequentially. In case both instances of

activity A in Figure 6.3 were present before t0, they are a sequential batch as

the start time of the second case corresponds to the completion time of the first

case.

� Simultaneous batch processing. Activity instances are in a simultaneous

batch when they are executed by the same resource for distinct cases at exactly

the same time. For example, several car parts that need to be painted in the

same color can be placed in a spray booth together. In Figure 6.3, the two

instances of activity B form a simultaneous batch as both start and completion



Batch organisation of work metrics 151

times correspond across the two instances.

� Concurrent batch processing. Activity instances are in a concurrent batch

when they are executed by the same resource for distinct cases partially over-

lapping in time. For example: a clerk can start booking a second invoice when

additional information is required to finalise the first one. In Figure 6.3, in-

stances of activities C, D, E, F, and G illustrate different types of concurrent

batch processing.

The above batch processing types are largely consistent with the work of Wu

[184], where simultaneous and sequential batch processing correspond to the concepts

of parallel and serial process batches, respectively. Concurrent batch processing is

not included in the work of Wu [184]. In operations management literature, batch

processing is commonly referred to as the intermittent production of a particular

type of product [107, 150], where production volumes are situated between a job shop

setting with small volumes and mass production [107].

Figure 6.3: Conceptual representation of two cases (A: sequential batch, B: simulta-

neous batch, C-G: different types of concurrent batches).

6.5 Batch organisation of work identification algo-

rithm

This section proposes the Batch Organisation of Work Identification algorithm

(BOWI). The algorithm aims to generate purposeful insights from an event log re-

garding the batch organisation of work in a business process. A general overview

is presented in Section 6.5.1. Afterwards, the algorithm is presented in more detail

by respectively detailing the event log requirements (Section 6.5.2), the activity log

creation (Section 6.5.3), the resource-activity matrix structure (Section 6.5.4), and

the batching matrix structure (Section 6.5.5). Based on this, the batch organisation

of work metrics can be identified in Section 6.6.
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6.5.1 General overview

As shown in Figure 6.4, which presents an overview of BOWI, the input for the al-

gorithm is an event log. This event log, consisting of atomic events, is converted

to an activity log by mapping start events to their accompanying complete events.

The activity log is restructured in a resource-activity matrix (RAM), in which each

cell contains activity instance information of a particular resource-activity combina-

tion. Using the RAM as an input, a batching matrix (BM) is created for each batch

processing type specified in Section 6.4. A BM mimics the structure of the RAM,

but groups activity instances in the corresponding RAM cell based on the definition

of the batch processing type under consideration. Activity instances that fulfil the

conditions of this batch processing type are combined in a set, represented as a set

of cases. Using this information, batch processing metrics such as the frequency of

batch processing and the batch size can be calculated.

Figure 6.4: Overview of BOWI.

6.5.2 Event log requirements

BOWI requires an event log, composed of ordered events related to a particular case

and activity, as input. For each event, the timestamp, executing resource, and trans-

action type needs to be recorded. Two transaction types have to be registered for

BOWI: start and complete, both transitions of the XES lifecycle extension [64]. More-

over, each start event should have an accompanying complete event with the same

resource being associated to both events. Note the requirement of matching start and

complete events is in accordance with the notion of consistent traces, presented by

Leemans et al. [88].

Building on the notation used by van der Aalst [155], the event log characteristics
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that are required to use BOWI can be outlined as follows:

Definition 9 (BOWI event log characteristics). Let E be the set of all events included

in event log E. Moreover, let ∀e ∈ E :

� #case(e) represents the case associated to event e

� #activity(e) represents the activity associated to event e

� #resource(e) represents the resource associated to event e

� #time(e) represents the timestamp associated to event e

� #trans(e) represents the transaction type associated to event e

Then, in this chapter, ∀e ∈ E : #case(e) 6=⊥ ∧#activity(e) 6=⊥ ∧#resource(e) 6=⊥
∧#time(e) 6=⊥ ∧#trans(e) ∈ {start, complete}, where ⊥ represents a null value.

Moreover, every start event should have an accompanying complete event, i.e., ∀e1 ∈
E ,∃e2 ∈ E : #case(e1) = #case(e2) ∧ #activity(e1) = #activity(e2) ∧ #resource(e1) =

#resource(e2) ∧#time(e1) ≤ #time(e2) ∧#trans(e1) = start∧#trans(e2) = complete.

When |e2| > 1, it is required that |e1| = |e2|.

When considering the running example introduced in Section 6.3, Table 6.1 illus-

trates the event log structure. Each line in the event log represents a particular event

in the process.

Table 6.1: Illustration of the event log structure.

case id timestamp activity transaction type resource

... ... ... ... ...

22 03/01/2016 11:14:41 E start r5

22 03/01/2016 11:22:37 E complete r5

25 03/01/2016 11:22:37 E start r5

34 03/01/2016 11:22:54 C start r3

42 03/01/2016 11:25:17 A start r1

34 03/01/2016 11:28:02 C complete r3

42 03/01/2016 11:31:58 A complete r1

25 03/01/2016 11:32:18 E complete r5

... ... ... ... ...
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6.5.3 Activity log creation

The event log, fulfilling the requirements of Definition 9, is composed of atomic events.

To retrieve batch processing insights, the event log is converted to an activity log

containing information on activity instances, i.e., information on the execution of a

particular activity by a particular resource on a particular case. To this end, each

start event is mapped on its corresponding complete event, i.e., the complete event

that is associated to the same case, activity, and resource in the event log. When

multiple start and complete event are present for a particular case, activity, and

resource combination, the first occurring unmapped start event will iteratively be

mapped to the first occurring unmapped complete event. The activity log obtained

from the event log excerpt in Table 6.1 is shown in Table 6.2.

Definition 10 (Activity log). Let L be an activity log based on event log E. Then A

is composed of a set of activity instances A . Each activity instance i ∈ A depicts the

execution of an activity a by resource r on case c, started at time τstart and completed

at time τcomplete. Activity instance i is represented by ηi = (c, a, r, τstart, τcomplete),

where #n(i) represents the value of attribute n for activity instance i as suggested for

events in Definition 9. All activity instances in L are sorted according to τstart, i.e.,

∀ηi, ηi+1 ∈ L : ηi,τstart
≤ ηi+1,τstart.

Table 6.2: Illustration of an activity log.

case id activity resource τstart τcomplete

... ... ... ... ...

22 E r5 03/01/2016 11:14:41 03/01/2016 11:22:37

25 E r5 03/01/2016 11:22:37 03/01/2016 11:32:18

34 C r3 03/01/2016 11:22:54 03/01/2016 11:28:02

42 A r1 03/01/2016 11:25:17 03/01/2016 11:31:58

... ... ... ... ...

6.5.4 Resource-activity matrix

As the batch organisation of work reflects the way in which resources execute a

particular activity, the activity log is restructured into a resource-activity matrix

(RAM). Each cell in the RAM contains the activity instances associated to a particu-
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lar resource-activity combination. An excerpt of the r5-E RAM cell from the running

example is shown in Table 6.3.

Definition 11 (Resource-activity matrix). Let RAM represent the resource-activity

matrix and let RAM(a, r) be the cell of RAM related to activity a and resource r.

Then RAM(a, r) =
{
η ∈ L |#activity(η) = a ∧ #resource(η) = r

}
.

Table 6.3: Illustration of RAM cell r5-E.

case id τstart τcomplete

... ... ...

22 03/01/2016 11:14:41 03/01/2016 11:22:37

25 03/01/2016 11:22:37 03/01/2016 11:32:18

27 03/01/2016 11:52:03 03/01/2016 12:03:01

28 03/01/2016 12:03:01 03/01/2016 12:11:51

... ... ...

To prepare the RAM for the analysis, self-loops are removed. A self-loop, as

defined in Chapter 5, refers to the repeated execution of a particular activity by a

particular resource on the same case immediately or almost immediately after each

other. Consider for example that the activity instances in Table 6.4 are contained in

RAM cell r7-G. These instances immediately follow each other and are related to the

same case, i.e., case 63. When instances that do not immediately follow each other are

still considered to be in a self-loop, a value for the maximal time tolerance between

the instances (ω) should be specified. When such a tolerance is specified, it should

be checked that no resource action is recorded between the instances contained in a

self-loop.

Self-loops are not consistent with the definition of batch processing in general,

and sequential batch processing in particular as it focuses on activity execution on

distinct cases. Consequently, for the research in this chapter, they are removed by

replacing them by a single activity instance with τstart the start timestamp of the first

self-loop instance and τcomplete the complete timestamp of the last self-loop instance.

The self-loop in Table 6.4 is replaced by an instance with τstart set to ‘05/01/2016

14:22:09’and τcomplete to ‘05/01/2016 14:31:03’.

Definition 12 (Self-loop removal). Given the activity instances contained in

RAM(a, r), a self-loop S is a set of activity instances, such that ∀ηi, ηi+1 ∈ S, the

following conditions cumulatively hold:
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� #case(ηi) = #case(ηi+1)

�

(
#τstart

(ηi+1)−#τcomplete
(ηi)

)
∈ [0, ω]

� @ e ∈ E : #resource(e) = #resource(ηi) ∧ #τcomplete
(ηi) ≤ #time(e) ≤

#τstart
(ηi+1)

When n represents the number of activity instance in S and η1 is the

first activity instance in S, then S is replaced in RAM(a, r) by ηnew =(
#case(η1),#τstart(η1),#τcomplete

(ηn)
)
.

As indicated earlier, the ω value reflects the maximum tolerated time gap between

the instances in a self-loop. It is a parameter that can either be set based on domain

knowledge or derived from data using a procedure similar to the one outlined for a

similar parameter (γ) in Section 6.5.5.

Table 6.4: Illustration of a self-loop in RAM cell r7-G.

case id τstart τcomplete

... ... ...

63 05/01/2016 14:22:09 05/01/2016 14:25:41

63 05/01/2016 14:25:41 05/01/2016 14:29:17

63 05/01/2016 14:29:17 05/01/2016 14:31:03

... ... ...

6.5.5 Batching matrices

In general, a batch is a set of activity instances. As mentioned in Section 6.4, three

types of batch processing can be identified: simultaneous, concurrent and, sequential

batch processing. Consequently, using the RAM as input, the BOWI-algorithm cre-

ates a separate batching matrix (BM) for each batch processing type. The structure

of these BMs mimics the one of the RAM, i.e., it is specified at the resource-activity

level. Taking a RAM cell as input, activity instances are grouped in a set based

on the conditions of the batch processing type under consideration. These instance

sets are recorded in the corresponding cell of the BM. Hence, a BM is created by

parsing the RAM once and combining activity instances using the definition of the

batch processing type under consideration. Note that instances that do not satisfy

the definition are recorded as a singleton set.
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Definition 13 (Batch). A batch b is a set of activity instances η ∈ L, for which

∀ηi, ηj ∈ b : #activity(ηi) = #activty(ηj) ∧ #resource(ηi) = #resource(ηj), i.e., all

instances in b originate from a particular cell RAM(a, r) in the RAM .

The definitions of the three BMs can, consistent with Section 6.4, be formalised

as follows:

Definition 14 (Simultaneous batching matrix). Let BMsim represent the simulta-

neous batching matrix and let BMsim(a, r) be the cell of BMsim related to activity

a and resource r. Then BMsim(a, r) consists of a set of batches B. When b rep-

resents a batch in B, then ∀ηi, ηj ∈ b : #τstart
(ηi) = #τstart

(ηj) ∧ #τcomplete
(ηi) =

#τcomplete
(ηj) (∀b ∈ B). Moreover, ∀bi, bj ∈ B : bi ∪ bj /∈ B, i.e., any combination of

batches in BMsim(a, r) does not fulfil the aforementioned conditions.

Definition 15 (Concurrent batching matrix). Let BMconc represent the concurrent

batching matrix and let BMconc(a, r) be the cell of BMconc related to activity a and

resource r. Then BMconc(a, r) consists of a set of batches B. When b represents

a batch in B, then ∀ηi, ηi+1 ∈ b : #τstart(ηi) ≤ #τstart(ηi+1) < #τcomplete
(ηi) ∧(

#τstart(ηi) 6= #τstart(ηi+1) ∨ #τcomplete
(ηi) 6= #τcomplete

(ηi+1)
)

(∀b ∈ B). Moreover,

∀bi, bj ∈ B : bi ∪ bj /∈ B, i.e., any combination of batches in BMconc(a, r) does not

fulfil the aforementioned conditions.

While the formalisation of the simultaneous and concurrent BMs directly follows

from the definition of the respective batch processing type in Section 6.4, the spec-

ification of the sequential BM is subject to more restrictions. Firstly, the definition

indicates that the elapsed time between the complete timestamp of a case and start

timestamp of the next case in a batch should be lower than the parameter γ. The

minimum value of γ is zero, indicating that cases are only batched when they imme-

diately succeed each other. This value might be too rigid as, e.g., some set-up time

might be required to open a new file when the previous one is processed, requiring a

strictly positive value for γ. However, γ should be small to remain consistent with

the idea of batch processing. Moreover, no other resource activity can be recorded

between activity execution on cases in a sequential batch.

Secondly, to integrate the distinction between sequential batch processing and

regular queue handling, a function φ is introduced. This function returns the time at

which a particular case arrives at the activity under consideration. Case arrival can

be approximated by the end of the preceding activity, e.g., in the process visualised

in Figure 6.2, arrival at activity D can be proxied by the completion of activity C.

Consequently, the preceding activity needs to be known, which is a process notion
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that can be retrieved using domain knowledge or through the application of a control-

flow discovery algorithm on the event log. An overview of the latter is presented by

De Weerdt et al. [42] and van der Aalst [155]. Given the large body of research on

control-flow discovery, the operationalisation of φ is not treated in this work.

Thirdly, it is indicated that none of the cases can be included in a simultaneous

or concurrent batch for the activity under consideration. The latter avoids that

sequences of the latter two batch types are treated as a sequential batch.

Finally, if multiple cases arrive at the same time at the activity under consid-

eration, they can only form a sequential batch when the first case in this batch is

not processed (quasi-)immediately upon arrival. This situation can, for example, be

relevant when the activity preceding the activity under consideration is executed in

a simultaneous batch.

Definition 16 (Sequential batching matrix). Let BMseq represent the sequential

batching matrix and let BMseq(a, r) be the cell of BMseq related to activity a and

resource r. Then BMseq(a, r) consists of a set of batches B. When b represents a

batch in B, then ∀ηi, ηi+1 ∈ b, the following conditions cumulatively hold:

�

(
#τstart(ηi+1)−#τcomplete

(ηi)
)
∈ [0, γ], with γ ≥ 0

� @ e ∈ E : #resource(e) = #resource(ηi) ∧ #τcomplete
(ηi) ≤ #time(e) ≤

#τstart(ηi+1)

� φ(ηi) ≤ #τstart(η1) ∧ φ(ηi+1) ≤ #τstart(η1), where η1 represents the first pro-

cessed case in b and φ(ηx) is a function returning the arrival time of case

#case(ηx) at activity a

� ηi, ηi+1 /∈
{
b′ | (b′ ∈ BMsim ∨ b′ ∈ BMconc) ∧ |b′| > 1

}
, with |b′| expressing the

number of activity instances included in batch b′

� when φ(ηi) = φ(ηi+1) = φ(η1), then #τstart(η1) > φ(ηi) + γ, with γ ≥ 0

(∀b ∈ B). Moreover, ∀bi, bj ∈ B : bi ∪ bj /∈ B, i.e., any combination of batches in

BMseq(a, r) does not fulfil the aforementioned conditions.

Even though an appropriate value of γ will depend upon the process under con-

sideration, a log-based recommendation for each activity is useful. To this end, a

two-step approach is suggested. In a first step, a minimum and maximum potential

value for γ are specified. As already indicated, the lowest possible value equals zero.

The maximum value builds upon the intuition that the set-up time to start a new

case is likely to depend on the activity duration. Consequently, a percentage of the



Batch organisation of work metrics 159

median activity duration is considered as the highest possible value of γ. A default

value of 5% is proposed to keep γ small.

The second step involves selecting a recommendation from the obtained range.

For this purpose, additional insights from the event log are used. More specifi-

cally, the time differences between the complete and start timestamps of subsequent

non-overlapping activity instances are calculated for the activity under consideration.

From these time differences, only values that are lower than the upper bound specified

in the first step are maintained. The median value of the remaining time differences

is recommended as a γ value.

To illustrate the batch processing definitions, Definitions 14-16 are applied on the

activity instances in the RAM cell r5-E, depicted in Table 6.3, showing that two

sequential batches of size two are formed: one containing cases 22 and 25 and one

consisting of cases 27 and 28. Consequently, the instances in Table 6.3 will lead to

the following entries in the corresponding BM cells:

� BMsim,r5−E :
{
..., {c22}, {c25}, {c27}, {c28}, ...

}
� BMconc,r5−E :

{
..., {c22}, {c25}, {c27}, {c28}, ...

}
� BMseq,r5−E :

{
..., {c22, c25}, {c27, c28}, ...

}
The three batching matrices will form the basis for further analysis, as will be

shown in Section 6.6.

6.5.6 Implementation

BOWI is fully implemented using R2, a programming language for which a large set of

packages is available which can be used to create application-specific functions. The

key packages that are used are dplyr for data manipulations such as sorting and data

summarisations, lubridate to work with timestamps, and reshape for converting the

event log to an activity log.

The pseudocode for BOWI’s batch identification component is given in Ap-

pendix C. It directly follows from the formalisation introduced in this section and

shows that batches are identified from an activity log by parsing it once and com-

paring each line in the log with the prior one. In this way, the algorithm enriches

the activity log with batch information by adding two columns: (i) a batch number,

grouping activity instances that belong to the same batch, and (ii) the batch type,

indicating which of the three batching types prevails. This is all information required

2https://www.r-project.org/
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to create BMs and to calculate the metrics that are presented in the next section.

Each metric is implemented as a separate function, which makes the framework easily

extendable with additional metrics.

6.6 Batch organisation of work metrics

Using the information in the batching matrices as input, a list of batch processing

metrics can be defined. These metrics, consistent with the list of log-based process

metrics provided in Chapter 5, provide insight in the business value of batch process-

ing. The batch processing metrics, of which an overview is given in Table 6.5, will

be explained and illustrated in the remainder of this section. In accordance to the

RAM, all presented metrics are defined on the resource-activity level. From this level,

aggregations to other levels of analysis such as the activity level, the resource level,

and the level of the entire event log can be derived.

6.6.1 Frequency of batch processing

To gain insights in the prevalence of batch processing, the frequency of batch process-

ing can be considered. This metric presents an overview of the absolute and relative

number of occurrences of the different batch types in the event log. In the simple

example in Figure 6.3, the resource-activity level and the activity level correspond

as a single resource is responsible to execute a particular activity on all cases. For

instance, one simultaneous batch of activity B is performed by the same resource on

the resource-activity level, which accounts for 100 % of the occurrences of activity

B. Similarly, on the level of an activity, it can be of interest for a company to have

an insight in the number of batches that occur for each type of activity, stating that

invoices are more frequently processed together than phone calls, for example. At

the resource level, a particular employee can be found to process much more work in

batch than others, indicating that he has a tendency to wait until different jobs can

be processed together. On the level of the entire event log, this metric is not useful

for a company because activities in a process are usually too diverse to be compared

to each other.

6.6.2 Batch size

Besides knowing how frequently batch processing occurs, the size of batches is another

valuable metric. Building on the notion of the RAM, the batch sizes can be calculated
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Table 6.5: Batch organisation of work metrics.

Metric Description Levels of analysis

Frequency of batch

processing

The absolute and relative number of times

that a set of BMx(a, r) contains two or

more cases.

Resource-activity,

Activity, Resource

Batch size The summary statistics of the number of

activity instances in each set of BMx(a, r),

both including and excluding sets of size

one.

Resource-activity,

Activity

Number of cases

included in a batch

The absolute and relative number of cases

that appear in each set of BMx(a, r).

Resource-activity,

Activity, Resource

Duration of activity

instances in a batch

The summary statistics of the difference

between the duration of the activity

instances in each set of size two or more in

BMx(a, r) compared to the duration for

sets of size one.

Resource-activity,

Activity, Resource

Waiting time of

activity instances in

a batch

The summary statistics of the difference

between the waiting time of the activity

instances in each set of BMx(a, r)

compared to activity instances not in this

set.

Resource-activity,

Activity, Log

Overlap in

concurrent batches

The summary statistics of the amount of

time that the activities in a concurrent

batch are actually concurrent.

Resource-activity,

Activity, Resource,

Log

on the resource-activity level. For example, a particular employee always processes

five invoices in a sequential batch, while all other employees handle them as they

arrive. Batch sizes can be calculated for each batch processing type for each resource-

activity combination. As BMs also include sets of size one, indicating that a case

is not included in a batch of this type, summary statistics can be calculated both

including and excluding sets of size one. The latter can be useful as it states how large

batches tend to be when multiple cases are combined. In the example in Figure 6.3, a

simultaneous batch of size two for activity B is observed. The values on the resource-

activity level can easily be aggregated to the activity level, enabling the comparison

between activities. Because a resource can, e.g., handle phone calls in one activity

and documents in another activity, an aggregation of this metric to the resource or
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event log level might not be valuable. Calculating for example an aggregated size of

a batch of three phone calls and another batch of four invoices does not add value for

the company.

6.6.3 Number of cases included in a batch

This metric combines the insights from the two preceding metrics, by presenting an

overview of the number of cases that is included in each type of batch. Similarly, as

an activity is always executed by the same resource in the running example in Figure

6.3, 100 % of the cases is included in a simultaneous batch of activity B executed by

the same resource on the resource-activity level. At the level of a specific activity, it

can be interesting to have an overview of how many times this activity is executed

in batch. For example, of all invoices that the company processed during a certain

period, 40 % is executed in a batch. At the resource level, it can be interesting to

have an overview of which percentage of a certain employee’s work is executed in

a batch, e.g., a particular employee executes 60 % of his work in batch while other

employees only execute 20 % of their work in batch. On the level of the entire event

log, this metric is again not useful. An additional calculation derived from this metric

can be performed for concurrent batches as activities in this type of batch processing

are not all overlapping by definition. The number of cases actually overlapping in a

concurrent batch, can therefore be of interest.

6.6.4 Duration of activity instances in a batch

It can be valuable to quantify the effect of batch processing on the duration of ac-

tivities as resources might become more efficient when multiple cases can be dealt

with, e.g., sequentially. To calculate the effect, the duration of the activities executed

in batch is compared to the same activities performed by the same resource not in

a batch. On the resource-activity level, an employee might need, e.g., 50 minutes

to execute three invoices sequentially while he needs 20 minutes to execute one in-

voice separately. At the activity level, it can be interesting to have an overview of

the duration of all activities of this activity type executed in a batch. For example,

the average duration of an invoice processed in a batch is 40 minutes compared to

an average duration of 45 minutes for all invoices processed at arrival time. At the

resource level, it can be interesting to have an overview of how long it takes a certain

employee to perform his work.
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6.6.5 Waiting time of activity instances in a batch

While batch processing can improve the efficiency at a global level, individual cases

possibly have to wait longer when batches are formed compared to a situation where

batch processing is absent. The waiting time of an activity can be defined as the

elapsed time between case arrival at activity and the start of its execution. At the

resource-activity level, some employees may cause more waiting time when they inten-

tionally process certain activities in a batch compared to other employees not doing

this. Figure 6.3 illustrates that case 1 has to wait until t3 before the execution of B

starts, even though the execution of the prior activity ended at t1. At the level of a

specific activity, the waiting time when an activity type appears in a batch compared

to the waiting time of all appearances of this activity not in a batch can be provided.

Next to this, also the level of the entire event log can be interesting for a company.

This provides an overview of how long cases, for example customer requests, should

wait before they are handled in batch. A comparison with cases that are not han-

dled in batch can provide the company with interesting insights about their process

performance.

6.6.6 Overlap in concurrent batches

Another metric that can be of interest concerning the type of concurrent batch pro-

cessing is the amount of overlap that occurs in a concurrent batch. There is a major

difference if an employee only starts working on the next invoice 2 minutes before the

finish of the other one, or 2 minutes after its start. Also, not all activities in a concur-

rent batch are overlapping with each other and their duration can differ. Therefore,

the amount of overlap is calculated against the average duration of all activities in

the concurrent batch. In the running example, we find for example that for activity

G an overlap of 1 time unit against an average of 2.5 time units can be measured

which gives an overlap of 40 %. Over all concurrent batches for this resource-activity

combination, summary statistics such as the minimum, mean, median, and so on can

be of interest. Next to this resource-activity level, this metric can also be calculated

on the level of the resources and the activities. On the level of the entire event log,

this metric is again not useful.

6.7 Evaluation

A twofold approach is used to evaluate both the algorithm and the presented metrics:

Section 6.7.1 focuses on BOWI’s ability to correctly rediscover batches in artificial
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event logs and Section 6.7.2 discusses the application of the algorithm and metrics on

real-life logs.

6.7.1 Artificial event logs

6.7.1.1 Experimental design

BOWI’s performance is evaluated by investigating its ability to rediscover known

batches solely using an artificial event log. To this end, an artificial log is generated

based on a generalised version of the process model in Figure 6.2. For each of the

seven resource-activity combinations, it is randomly determined whether no, simul-

taneous, sequential or concurrent batching prevails with all options having the same

probability. In the latter three cases, an integer batch size is randomly drawn from

the set {2,3,4,5}. Given these inputs, the event log generator autonomously deter-

mines which cases are batched for each activity and generates a log considering 500

cases that enter the process. The data file also indicates which cases are grouped as

a batch of a particular type. This information is only used for evaluation purposes

and is removed from the event log that is provided to BOWI.

After executing BOWI on the event log, the algorithm’s output is compared to

the real batch composition. For a particular resource-activity combination, a case

is correctly classified by BOWI when it is (i) contained in its correct batch in the

BM of the batch type prevailing in reality, and (ii) included as a singleton in the

BMs of the other two batch types. Consequently, the evaluation centers around the

detection of errors, which are (i) cases that are included in a batch of the correct type

but in the wrong composition, and (ii) cases being included in a batch of a particular

type while they are not included in such a batch in reality. Using these conditions,

the number of errors is calculated for each resource-activity combination. The first

condition is defined rather rigorously as the composition of discovered batches has to

be completely correct. For instance, when BOWI rediscovers a batch for all but one

case, all cases in this batch are reported as errors because they are not part of the

exact same batch prevailing in reality.

The aforementioned constitutes one experiment. To determine the number of

experiments, an a priori power analysis for a one-sample Wilcoxon signed-rank test

is conducted. To achieve a power value (i.e., the probability of rejecting the null

hypothesis when it is false) of 0.80 [26] and given a family-wise significance level to

0.05 and effect size of 0.20 (the value proposed by Cohen [25] for the detection of small

effects), the power analysis shows that at least 185 event logs need to be generated.

Consequently, the number of artificial event logs is set to 200, which surpasses this
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lower bound.

6.7.1.2 Results

The application of the experimental design calculates, for each resource-activity com-

bination in an event log, the number of errors. These results are aggregated by group-

ing resource-activity combinations in 12 classes, expressing a combination of the real

batch type in the event log (no batching, simultaneous, concurrent, or sequential

batching) and BOWI’s output (simultaneous, concurrent, or sequential BMs). For

each of them, a decimal error proportion is calculated by dividing the number of errors

by the number of cases that are included in the real batches for that class.

Table 6.6 reports summary statistics on the error proportions detected for the 12

classes over all 200 event logs. With ‘seq - seq’ and ‘no batch - seq’ as an exception,

all classes show that BOWI’s output is free from errors. This confirms that BOWI

can rediscover existing batches solely using the event log. Moreover, the algorithm

does, e.g., not detect sequential batch processing when concurrent batch processing

prevails.

Table 6.6: Summary statistics on the error proportion of BOWI’s output.

Event log input - Error proportion

BOWI output mean sd median min max

seq - seq 0.08 0.15 0.01 0.00 1.00

no batch - seq 0.54 0.16 0.57 0.13 0.82

all 10 other classes 0.00 0.00 0.00 0.00 0.00

Regarding BOWI’s detection of sequential batch processing, errors are detected

when either sequential batch processing prevails in reality or no batch processing

takes place. For an event log in which sequential batch processing is introduced,

BOWI does not rediscover the exact composition of these batches for, on average,

7.62 % of batched cases, with a standard deviation of 15.41 % point. These errors are

fairly concentrated as an exact match, i.e., an error proportion of zero is present for

243 of the 352 observations (69.03 %). For the remaining 109 observations, several

explanations for the observed deviations can be identified. When sequential batch

processing is inserted in the event log for the first activity, no arrival proxy will be

available in the resulting event log as no prior activity is present. Consequently,

conditions related to the arrival proxy in Definition 16 cannot be checked, leading to

a less stringent definition. This can cause multiple batches of a particular size that
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are executed one after another to be included as a single batch in BOWI’s output.

The same holds when the activity under analysis is preceded by an activity where

simultaneous batch processing prevails with a higher batch size than the batch size

for the activity under analysis. When the arriving simultaneous batch is processed

immediately upon arrival, BOWI will detect, e.g., a batch of size four instead of two

batches of size two. Even though this will be included as an error in Table 6.6, BOWI’s

output is a valid representation of business intuition in this case.

When no batch processing is included for a resource-activity combination in the

event log, i.e., when all cases are expected to be included as a singleton in each of

the BMs, the error proportion of BOWI is higher. The mean error proportion equals

54.08 % with a standard deviation of 16.20 % point and a median of 56.77 %. Studying

the error proportion on the activity level for the ‘no batch - seq’ situation shows that

it is the highest for the start activity. This can, once again, be attributed to the less

strict definition due to the absence of an arrival proxy. For the other activities, errors

can be explained by the arrival of cases in, e.g., a simultaneous batch which is not

handled immediately upon arrival. Even though it is recorded as an error, it presents

a valid occurrence of sequential batch processing in a business context. Even when

cases arrive separately, sequential batch processing can also be detected when long

queues are formed. In this case, a subset of queueing cases fulfils the conditions of

Definition 16. Despite the fact that Definition 16 aims to distinguish between regular

queue handling and sequential batch processing, it should be noted that the definition

aims to strike a balance between accuracy and clarity. Instead of enumerating and

excluding all possible exceptions, leading to an incomprehensible definition, a limited

set of understandable conditions is specified.

6.7.2 Real-life event logs

To demonstrate that BOWI can generate insights in batching behaviour in a real world

business context, the algorithm is applied to real-life event logs from two different

contexts: a call center and a production company.

6.7.2.1 Event log of a call center

BOWI is applied to a real-life event log, based on data of a bank’s call center made

available by the Technion Service Enterprise Engineering Center3. Incoming calls are

directed to a voice response unit (VRU), where automated voice information guides

the caller. When the VRU does not enable callers to service themselves, they are

3http://ie.technion.ac.il/Labs/Serveng
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redirected to a queue, after which they are connected to an agent. After converting

the dataset to an event log format, 34 resource-activity combinations are included.

More specifically, the log contains the VRU - Handling by VRU combination and

the activity Handling by agent, which is executed by 33 distinct staff members. The

results reported in this section are based on an analysis of 169065 calls registered in

the first semester of 1999.

Within the analysis set, batching behaviour is detected for 31 resource-activity

combinations. For Handling by VRU, which is always handled by resource VRU,

both concurrent and simultaneous batching is detected, with respectively 26 % and

0.33 % of all calls being batched. The significant number of calls handled concurrently

is due to the VRU’s design to handle multiple calls concurrently on different lines.

Simultaneous batching is present to a far lesser extent as it requires that, by coinci-

dence, multiple calls arrive at exactly the same time and require the same processing

time.

For 30 out of 33 agents performing Handling by agent, batching behaviour is

detected. Concurrent batching is present, but its prevalence is low as, on average,

only 1.85 % of the calls are included in a concurrent batch. Sequential batch processing

is also discovered, but to a far lesser extent with an average of 0.03 % of the calls

belonging to a sequential batch. When focusing on concurrent batching, Table 6.7

summarises some of BOWI’s metrics for the five agents handling calls concurrently

the most often.

Table 6.7: BOWI metrics calculated for concurrent batching by five resources for

activity Handling by agent in the call center event log.

agent frequency batch size # batched duration (mean)* time overlap

mean sd cases (rel.) batch no batch

SHARON 152 2.23 0.42 2.49 4.27 2.28 0.46

KAZAV 121 2.17 0.39 2.53 4.71 3.21 0.47

MORIAH 114 2.18 0.38 2.64 4.21 3.14 0.50

TOVA 107 2.16 0.39 2.54 4.32 2.84 0.47

STEREN 87 2.18 0.39 2.05 6.13 3.04 0.52

* expressed in minutes

Table 6.7 shows that, even for the agents for which concurrent batching is observed

the most, the proportion of batched calls is rather limited as it ranges between 2.05 %

and 2.53 %. The mean batch size varies between 2.16 and 2.23 calls. Hence, batching
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is not fundamentally integrated in the operations of a call center, which could be

anticipated given its characteristics. Concurrent batching can take place when an

agent already takes another call while the caller is looking for a particular document

or the agent is awaiting input from the bank. This is supported by the fact that the

mean duration tends to be longer for batched calls than for non-batched calls.

6.7.2.2 Event log of a production company

BOWI is also applied to a real-life event log of a production process, which is available

at the 4TU Data Center4. It contains process execution data for 225 cases undergoing

activities such as flat grinding and packing. In the log, 27 distinct activities and 31

unique resources are included.

Applying BOWI shows that batch processing is detected for 29 of the 57 resource-

activity combinations in the event log. More specifically, simultaneous, concurrent,

and sequential batching is present for respectively, 9, 25, and 17 resource-activity

combinations. This includes 14 resource-activity pairs for which both concurrent and

sequential batches are present and 7 resource-activity pairs for which all batch types

are detected.

Using the number of cases included in a batch metric, it is concluded that concur-

rent batch processing is the most prevalent. When considering all resource-activity

combination where concurrent batch processing occurs, on average 23.50 % of all cases

is batched. For simultaneous and sequential batching, this is 15.55 % and 11.31 %

respectively. Consequently, the remainder of this discussion focuses on concurrent

batching.

When concurrent batching occurs, an important part of the cases is batched.

This indicates that batching is fundamentally integrated in the organisation’s pro-

cess. Table 6.8 summarises some BOWI metric values for the five resource-activity

combinations for which the highest number of concurrent batches is detected. For

these resource-activity combinations, the proportion of cases being part of a concur-

rent batch ranges from 28 % to 77 %. The batch sizes are situated between 2.34 and

3.33, with standard deviations between 0.61 and 2.11. The influence of batch process-

ing on activity duration outlined in literature does not hold as batched cases tend to

take longer than non-batched cases. It might be the case that batching takes place

for a particular type of product, which requires less intensive processing. Concerning

the difference in waiting times between batched and non-batched cases, the results

are mixed depending on the resource-activity combination. From the time overlap

4http://data.4tu.nl/repository/uuid:68726926-5ac5-4fab-b873-ee76ea412399
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metric, it follows that there is a significant overlap between concurrently handled

cases. This indicates that genuine concurrent batch processing is detected, and not

sequential batch processing with inaccurate timestamp registration.

Table 6.8: BOWI metrics calculated for concurrent batching for five resource-activity

combinations from the production company event log.

res.-act. freq. batch # batched duration waiting time time

comb.* size cases (rel.) (mean) (mean) overlap

(mean) batch no batch batch no batch

1 121 3.33 0.77 2.23 1.27 22.92 48.11 0.86

2 118 2.83 0.66 1.74 1.27 18.83 17.54 0.79

3 61 2.36 0.39 2.31 1.45 45.90 58.37 0.65

4 34 2.47 0.34 6.07 5.88 7.15 3.35 0.51

5 29 2.34 0.28 6.45 5.11 5.77 9.09 0.50

* 1: Qual. Check 1 - Final Insp. Q.C., 2: Qual. Check 1 - Turn. & Mil. Q.C ,

3: Machine 1 - Lapping, 4: Machine 4 - Turn. & Mil., 5: Machine 6 - Turn. & Mil.

6.8 Limitations

Despite BOWI’s ability to mine and describe batching behaviour from an event log,

some limitations need to be recognised. Firstly, the log should contain both start and

complete events and resource information, which is often not the case in existing real-

life event logs. Moreover, the level of detail at which timestamps and resources are

recorded determines the granularity at which batching behaviour is identified. When,

e.g., only resource classes are recorded, no distinction can be made between specific

resources.

Secondly, BOWI does not explicitly consider the issue of noise in timestamp reg-

istration. Hence, it relies on accurate event registration for each case, which can

require that a process is backed by a system which automatically logs resource action

instead of relying on manual intervention to log events. Nevertheless, some features

of BOWI should be highlighted related to inaccurate timestamp registration. For

sequential batching, a time tolerance that is allowed between consecutive instances in

a sequential batch can be specified. When the start and complete timestamps of cases

in a simultaneous batch are not identical, BOWI will label it as a concurrent batch.
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However, the value of the time overlap metric will show a high overlap, indicating

that it might be an inaccurately recorded simultaneous batch.

Thirdly, the creation of an activity log requires mapping corresponding start and

complete events. When a case passes a resource-activity combination multiple times,

each start event is mapped to the first occurring unmapped complete event. When

this mapping does not correspond to reality, it will influence batch detection as the

activity log is its key input.

Finally, a case’s arrival time at an activity is needed to distinguish sequential

batching from regular queue handling. When this information is not included in the

event log, it can be proxied by the completion time of the prior activity. However,

this requires control-flow insights, i.e., the prior activity needs to be known, which

is not trivial for complex processes. However, the absence of such a proxy does not

impede BOWI from being applied, but renders the conditions to detect sequential

batching less strict.

6.9 Conclusion

This chapter focuses on the retrieval of event log insights on batch processing. To this

end, three types of batch processing, which are simultaneous, concurrent, and sequen-

tial batch processing, are defined (Section 6.4) and formalised (Section 6.5.5). Using

these definitions, the Batch Organisation of Work Identification algorithm (BOWI)

is developed to gather knowledge on batch processing from event logs (Section 6.5).

The algorithm groups cases when they fulfil the conditions associated to a particular

batch processing type. These case sets can be used as an input for the calculation of

batch processing metrics with business value (Section 6.6). The presented algorithm

is evaluated on artificial event logs (Section 6.7.1), showing that it can rediscover the

prevailing batch size under most circumstances. Only when batch processing is absent

for an activity in the artificial log or when sequential batch processing prevails, devia-

tions between the expected output and BOWI’s output are observed. However, these

differences can be partly attributed to the comparison basis that is used and to the

desire to maintain clarity in the operationalisation of the sequential batch processing

definition. Besides an evaluation on artificial event logs, the BOWI-algorithm is also

applied to real-life call center data and production company data as a proof-of-concept

(Section 6.7.2).

Future work can extend the BOWI-algorithm to retrieve even more versatile batch

processing insights from an event log. Firstly, while the BOWI-algorithm currently
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focuses on gathering batch processing knowledge on the level of a single activity, this

perspective can be broadened by considering multiple consecutive activities. This

phenomenon is recognised by Pufahl et al. [123], who model batch regions. Batch

processing over multiple activities is also considered as a potential batch processing

pattern by Liu and Hu [90] and Wen et al. [178]. Secondly, insights on the logic behind

batch formation can be added as an analysis dimension. While BOWI currently

aims to identify which cases are batched, it can be useful to identify the reasoning

behind batching behaviour through the identification of batch activation rules. Batch

formation can depend merely on the number of queueing cases or can be contingent

on, e.g., the time of day or case attributes. Note that grouping cases based on case

attributes is consistent with the research of Pufahl et al. [122, 123] and Pufahl and

Weske [125], where cases are batched which have identical values on a user-defined

set of attributes. Similarly, Liu and Hu [90] and Liu et al. [91] group cases based on

identical values for a pre-specified set of case characteristics.
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Evaluation on a real-life case

study

7.1 Introduction

To demonstrate the applicability of the presented log-based process metrics in Chap-

ter 5, and their added value in the light of operational excellence, they are applied to a

real-life case study of a Belgian utilities company. A first evaluation of the developed

artifacts was already performed in Chapter 5 and Chapter 6 by applying the metrics

to an artificial event log. As the process under consideration does not meet the re-

quirements to apply the batch organisation of work metrics which were introduced in

Chapter 6, these metrics will not be applied to the case study in this chapter. How-

ever, these metrics have already been applied to datasets from two different contexts

in the previous chapter.

Next to the application of the metrics to the dataset of the case study organisa-

tion, a dashboard is also created to visualise the metric results. All applied metrics

and accompanying visualisations are discussed with the case study organisation, and

small changes or additions to the metrics have been implemented in order to improve

the applicability of the artifacts, according to the feedback mechanism in the design

science research framework.

This chapter (Figure 7.1) is structured as follows. In Section 7.2, the company and

the business process under analysis are introduced together with their requirements

and the specifications of the dataset that will be analysed. Next, an overview of the

log-based process metrics that have been applied to the dataset is given in Section 7.3.

173
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Figure 7.1: Outline of the thesis - Chapter 7.

Each metric that has been applied is analysed and the results are shown in print

screens from the metric dashboard that was created for the company. Finally, the

findings are discussed in Section 7.4 and conclusions are drawn in Section 7.5.

7.2 Overview of the case study company

The case study company is a Belgian utilities company that is responsible for eight dif-

ferent activities, among which the construction and daily operation of the distribution

networks for different utilities, the creation of new connections and the adjustment of

existing connections, the monitoring of the distribution to repair breakdowns, defects

and leaks, and different social public service obligations.

The process under analysis presents the total flow from the request made by a

customer to the aftercare which includes the invoicing. The process, which is shown

in Figure 7.2, can be divided into six building blocks or subprocesses which are (i)

capturing the customer request, (ii) a possible study in case this is necessary, (iii) the
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draft of a proposal, (iv) the preparation of the job, (v) the actual execution of the

job, and (vi) the aftercare. Each of these building blocks or subprocesses contains

one or more activities.

Figure 7.2: Overview of the case study process under analysis.

7.2.1 Company requirements

After interviewing two business process experts from two different levels in the or-

ganisation, the process that is analysed here could be defined as rather unstructured

and full of exceptions. Moreover, different people working with and within the pro-

cess have different knowledge about the steps in the process as they are mostly only

concerned with their own part of the process. A lack of transparency and objectivity

was also added as an argument. From these findings, it could be concluded that a

link with the operational excellence principles is currently missing for this process.

Table 7.1: Translation of the process mining concepts within the case study.

Process mining concept Translation

Case Work request

Trace Process variant

Activity Activity execution

Resource Resource or Role
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Next to these conclusions, which could also be drawn from the interviews in Chap-

ter 4, another result from the interviews was that one of the requirements for the

developed metrics was a translation from process mining terminology to concepts

that are accessible in business contexts. Some of the process mining concepts, such as

traces, are therefore translated (e.g., to process variants) to be useful in the communi-

cation directed to the company. Table 7.1 shows the translation of the process mining

concepts used in this case study. Furthermore, metrics are complemented with more

business specific interpretations, if necessary. For example, the resource frequency

metric is referred to as giving insights into the workload, indicating how the work is

divided over the different resources.

7.2.2 Dataset

The data that was collected from the process contains information on six types of

work requests and concerns connections for several types of utilities. The original

dataset has a timespan of two years, from January 2014 until December 2015, and

contains around 70 000 work requests per year, including unfinished work requests.

Figure 7.3: General descriptions of the dataset used.

However, for this analysis a subset of the data will be looked at. All work requests

that started in April 2015 containing the “Register aftercare” activity are analysed

by applying the metrics presented in Chapter 5. The metrics concerning the batch

organisation of work, which was dealt with in Chapter 6 are not applied to this dataset

because the event log does not meet all requirements. As shown in Figure 7.3 the

dataset used contains 4 054 (finished) work requests (cases), 28 different activities,

and 7 different resources (roles) executing the activities. Divided over 1 113 different

process variants (traces), 42 091 activity executions have been performed, which is

equal to the number of events, indicating that each activity execution only contains
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one event, which refers to the“completion” of the activity. An overview of the 28

different activities and 7 different roles within the dataset is provided in Table 7.2.

Note that the resources executing the activities can be mapped one-on-one to the

activities, implying that each resource is actually just a role defined by the company

able to execute one or more specific activities.

7.3 Metrics applied to the dataset

Not all metrics presented in Chapter 5 are applicable to the dataset at hand. Fig-

ure 7.4 contains an overview of the metrics that have been applied and for which an

interpretation and visual representation will be shown below. All figures added in this

section are print screens taken from the dashboard that was presented in Chapter 5

and which was customised for the company.

Figure 7.4: Overview of the metrics that have been applied to the case study.
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Table 7.2: Activities used in the dataset, together with their executing role.

Activity Role

Creation Work request Work preparation

Gas request /

Project request Work preparation

Analyse customer request Work preparation

Request EAN Work preparation

Project info Work preparation

Project advice Technical customer advisor

Information customer Work preparation

Project study Team Net Development

Project visit Technical customer advisor

Offer sent Work preparation

Study Team Net Development

Technical visit Technical customer advisor

User agreement Work preparation

Phone /

Optimise file Work preparation

Customer ready Work preparation

Verification visit Technical customer advisor

Road admission Team Backoffice Nets and Studies

Net extension Team Net Development

Measurement group file sent MOTS

Mobility MOTS MOTS

Execution Work preparation

Measurement group file submitted MOTS

Register aftercare Aftercare

Physical document Aftercare

Execution confirmation Aftercare

Other /
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7.3.1 Time metrics

Because the dataset at hand only contains one timestamp for each activity, i.e., the

completion time, only the throughput time can be calculated from the time metrics.

In order to calculate the other time metrics, which are the waiting time and the

processing time, each activity requires at least a start and an end timestamp. All

durations are expressed in days for this case study.

� Throughput time. The throughput time of a work request is the total duration

of the work request, calculated from the timestamp of the first activity until

the timestamp of the last activity within the work request. Possible idle time

is therefore also included in this calculation and because we only have one

timestamp for each activity, some deviations should be taken into account. Most

work requests take 40 to 50 days, as can be seen in Figure 7.5, with an average

of 91 days and a standard deviation of 64 days. The longest work request

containing the “Register aftercare” activity, implying a proper termination, took

288 days.

Figure 7.5: Overview of the throughput time of all work requests in the event log.

Pending cases. Besides these rather long finished work requests, which should

be analysed more thoroughly by the company, the number of pending cases,
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which are in this case defined as work requests that are still open (not finished

properly) at the date of data extraction, can be calculated. Data extraction took

place at the 15th of January 2016, which is around nine months after the start

of the work requests in our data selection. From the 5 176 work requests that

are initiated in April 2015, 4 054 have been properly finished with the “Register

aftercare” activity, implying that 1 122 work requests can be defined as pending

cases. Table 7.3 contains a list of the most frequent process variants (traces)

that are pending, accompanied with their frequency. A visual representation of

the pending time of these work requests is given in Figure 7.6. This chart shows

how long the pending work requests are already awaiting without any registered

activity. In a large number of work requests there was no registered activity since

their start in April 2015, which is more than 200 days. It can also be noticed

that there is a large spread on the pending cases and that in most pending work

requests the influence of the customer is very big. As can be seen in Table 7.3,

the most frequent pending process variants end with an activity that requires

customer input such as “Information customer”, “Analyse customer request”,

“User agreement”, or “Offer sent”. This is presumably also the case for the

long work requests that actually did finish correctly. Based on these analyses

and findings, the company can conclude which types of work requests have the

longest lead time and contain therefore a lot of waste. Consequently, they can

define the value stream and improve the value flow, as was defined in the lean

management philosophy.

Because there is only one timestamp present for each registered activity in the

dataset, we are not able to calculate the processing time metric, or the actual

time that activities are being executed. As an example, Figure 7.7 visualises

the processing time of a fictional example on the resource-activity level. This

example gives an overview of the time that each resource actually worked on

each possible activity. By providing examples like this in a visual way, the

company could be convinced of the benefit of collecting data more precisely in

order to get a better insight in the activities and resources actually adding value

to the process. Also the waiting time metric, which is an indicator of delays

and thus waste according to the findings from literature [69, 118], can not be

calculated with the data at hand.
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Table 7.3: Process variants of the most frequent pending cases.

Pending cases process variant Frequency

Creation Work request, Analyse customer request, Information customer 18.63 %

Creation Work request, Analyse customer request 12.75 %

Creation Work request, Analyse customer request, Request EAN, Offer sent,

User agreement

5.53 %

Creation Work request, Analyse customer request, Offer sent, User agree-

ment

4.46 %

Creation Work request, Analyse customer request, Technical visit, Offer

sent, User agreement

4.01 %

Creation Work request, Analyse customer request, Technical visit, Offer sent 3.30 %

Creation Work request, Analyse customer request, Technical visit 2.94 %

Creation Work request, Analyse customer request, Information customer,

Analyse customer request

1.69 %

Creation Work request, Analyse customer request, Study, Information cus-

tomer

1.25 %

Creation Work request, Analyse customer request, Technical visit, Informa-

tion customer

1.16 %

7.3.2 Structuredness metrics

� Number of traces. The first metric that was presented in order to get a notion

of the variance in an event log is the number of traces or process variants.

As was already shown in the general descriptions in Figure 7.3, the dataset

at hand contains 4 054 (finished) work requests divided over 1 113 possible

sequences of activities. This is a high number of process variants, i.e., a specific

sequence of activities appears on average in 3.64 work requests in the event

log at hand, implying that the process is very unstructured. The top 5 most

common process variants is provided in Table 7.4. These process variants are

rather similar, except for the fifth one, which does not contain “User agreement”

and “Offer sent” which are two important activities in this process. However,

according to the business people, this sequence of activities contains a special

kind of work requests, implying it is not problematic that these two activities

are missing. Nonetheless it can be stated that there is a lot of variance in the

process, which can be further investigated with the other structuredness metrics,

to gain insights in the underlying source of this variance.
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Figure 7.6: Pending time of work requests that did not finish before 2016-01-15.

Figure 7.7: Processing time (resource-activity level) - fictional example.

� Activity presence. The activity presence metric shows the appearance of the
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Table 7.4: Top 5 most common process variants in the event log.

Process variant Absolute

frequency

Relative

frequency

Creation Work request, Analyse customer request, Request

EAN, Offer sent, User agreement, Optimise file, Customer

ready, Execution, Register aftercare, Physical document

601 14.82 %

Creation Work request, Analyse customer request, Offer

sent, User agreement, Optimise file, Customer ready, Exe-

cution, Register aftercare

328 8.09 %

Creation Work request, Analyse customer request, Request

EAN, Offer sent, User agreement, Optimise file, Customer

ready, Execution, Register aftercare

289 7.13 %

Creation Work request, Analyse customer request, Technical

visit, Offer sent, User agreement, Optimise file, Customer

ready, Execution, Register aftercare

177 4.37 %

Creation Work request, Analyse customer request, Optimise

file, Customer ready, Execution, Register aftercare

111 2.74 %

Figure 7.8: Overview of the activity presence in the event log.
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different activities in cases, answering the question: “Are there work requests in

which certain activities are skipped?”. In Figure 7.8 we can see that there are

work requests without the activities “User agreement” (7.82 %), “Offer sent”

(7.75 %), “Optimise file” (1.38 %), “Customer ready” (1.13 %), “Analyse cus-

tomer request” (0.91 %), and “Execution” (0.05 %), which are all activities that

definitely should be executed before the aftercare takes place. As we filtered

our dataset on work requests only including the activity “Register aftercare”,

these findings can be defined as certainly remarkable for the company. Espe-

cially work requests containing the activity “Net extension” should have a “User

agreement” according to the business people, but this is always the case in the

selection of data that was used. Work requests without the “Offer sent” activity

appear to be less hazardous.

� Start activities. The first activity in each work request in the dataset at hand is

“Creation Work request”, which was added manually during data preparation

to indicate the start of each work request. Figure 7.9 therefore shows one block

indicating the same start activity for each work request. This metrics is therefore

not adding any new insights for the case study company.

Figure 7.9: Overview of the start activities in the event log.



Evaluation on a real-life case study 185

Figure 7.10: Overview of the end activities in the event log.

� End activities. Similar to the previous metric, the last activity in each work

request can also be of interest to companies. The dataset at hand only contains

work requests including the “Register aftercare” activity, implying that the

end of most work requests is not surprising. The chart in Figure 7.10 shows

which is the last registered activity for this selection. In 52.61 % of the work

requests this is “Register aftercare” and in 46 % of the work requests this is

“Physical document”, which is another perfectly normal way to end the process.

Consequently, 55 of the work requests (1.36 %), end with an activity other

than “Register aftercare” or “Physical document”, such as “Net extension” or

“Phone”, which are indications for the company to analyse these work requests

more precisely, as they cause unwanted variance in the process. Because of the

exact mapping of resources to activities in the dataset, this metric does not have

any added value on the resource level or on the resource-activity level.

� Case Length. This metric shows the number of activities that have been exe-

cuted in each distinct work request. It does not concern the number of distinct

activities but the number of actual executions of activities. On average, ten

actions or activity executions take place in a work request, with a standard de-
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viation of 2. This is a rather normal length of a work request and does not alarm

the business people. The results of this metric at the level of the entire event

log are shown in Figure 7.11. The work request that has been dealt with the

most contains 24 activity executions, which is more exceptional and requires the

company’s attention as it is probably containing a lot of excess or unnecessary

processing, or waste.

Figure 7.11: Overview of the case length in the event log.

� Trace coverage. Another structuredness metric measuring the variance in an

event log is the trace coverage. This metric presents the minimum number of

traces, or process variants, that is required to cover a certain percentage of the

cases. For the dataset at hand, this metric provides the process variant coverage,

representing the ratio between the number of process variants required to cover

a part of, or the complete population. We can find here that 302 process variants

or sequences of activities are required to cover 80 % of the complete population

(event log), implying a high value of variance. Figure 7.12 shows the process

variant coverage with the relative number of process variants, indicating that a

high amount of process variants takes up most of the event log. To encompass

the entire event log, 1 113 process variants were required, as was already shown

in the general descriptions. Each process variant can be looked at individually
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on the trace level, together with its absolute and relative frequency. The most

common sequence of activities appears 601 times in the event log, which is only

14.82 % of the entire event log. Table 7.4 provided the top five most common

process variants in the event log, which do not differ a lot from each other.

Figure 7.12: The trace coverage showing the number of process variants to cover 80

% of the entire event log.

� Activity frequency. Looking at the distribution of the distinct activities over the

entire event log, the activity frequency metric can provide a company insights

into the frequency of specific activities throughout the process. On the level of

the entire event log, this metric shows that each distinct activity appears on

average 9.8 times per case with a standard deviation of 1.67. On the level of the

distinct cases, we can have a look at the activity frequency within each case.

The highest number of distinct activities within one case is 17, which occurs in

one case. The relative frequency for this case is 1, implying that each activity

occurs only once in the case. More interestingly, at the activity level we can find

which activities occur the most often in the entire event log. Table 7.5 provides

an overview of the 10 most frequently occurring activities in the event log.

� Self-loops. For the rework metrics concerning self-loops and repetitions, a dis-
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Table 7.5: Overview of the activity frequency for each activity in the event log.

activity absolute

activity

frequency

relative

activity

frequency

Analyse customer request 5356 12.72 %

Customer ready 4353 10.34 %

Execution 4302 10.22 %

Register aftercare 4057 9.64 %

Creation Work request 4054 9.63 %

Optimise file 4019 9.55 %

Offert sent 3769 8.95 %

User agreement 3741 8.89 %

Request EAN 2454 5.83 %

Fysical document 1906 4.53 %

tinction was made between two types of rework in Chapter 5, i.e., redo and

repeat rework. Redo stands for rework that is done for a second time by an-

other resource. Repeat means that the same resource executes the activity

again. Because the dataset at hand contains only roles of resources executing

the activities, indicating that each specific activity is always executed by the

same resource, redo metrics can be ignored here.

On the level of the event log, the number of self-loops metric shows how many

self-loops occur in each work request. This metric shows that 8.14 % of the total

number of work requests contain rework in the form of self-loops, and there are

347 self-loops in the total event log. Note that when for example two self-loops

occur in a work request, this can be two times a self-loop of the same activity

or two self-loops of two different activities. Figure 7.13 shows the number of

self-loops compared to the relative number of work requests. Here we can see

that 7.75 % of the total number of work requests contains only one self-loop,

which is the majority of the total number of work requests containing one or

more self-loops.

On the level of individual activities, the number of self-loops metric shows the

number of times an activity occurs in a self-loop compared to the number of
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Figure 7.13: Overview of the number of self-loops in the entire event log, relative to

the number of work requests within the event log.

Figure 7.14: Overview of the number of self-loops in the event log on the activity

level, relative to the total number of executions of each activity within the event log.
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times this activity occurs in the entire event log. Figure 7.14 shows for example

that in 2.22 % of the occurrences of the “Analyse customer request” activity,

the activity occurs more than once immediately after each other, which is again

an indication of waste and variability in the process. The activity “Phone” is

higher in the chart, as it has a higher relative number of self-loops, although it

occurs less often than the “Analyse customer request” activity. The category of

activities with the name “Other” are activities that have been logged without

a name, which can therefore be any other activity, explaining the high number

of self-loops compared to the number of occurrences of this activity.

On the level of the resources, this metric provides an insight in the number

of times a resource executes an activity multiple times immediately after each

other for the same work request, compared to the number of times this resource

executes an activity in the entire event log. However, because the dataset at

hand only contains information about the roles for each activity, we cannot

deduce information about activities that are executed by people or teams which

were not planned or foreseen. However, this can be an interesting additional

insight when the actual resources are added to the dataset. Figure 7.15 shows

that “Team Net Development” occurs the most often in a self-loop, relatively,

which is 1.84 % or 10 occurrences. “Work preparation” occurs 258 times in a

self-loop, which accounts for 0.88 % of their total executions.

Next to the number of self-loops that occur in the process, it can also be of

interest to have a look at the size of self-loops, which represents the number

of times an activity is redone immediately again within the same work request.

A self-loop which is executed three times after each other, has a size of two

(two extra executions). Figure 7.16 shows that most work requests contain no

self-loops and there are only three self-loops of size four, and one of size three.

On the level of a specific activity, this can for example be interesting to see how

often an activity that is in a self-loop is mostly repeated.

� Repetitions. Similar to the self-loops, the number and size of repetitions, i.e.,

activities that are repeated in the work request with at least one other activity

in between, can also be interesting to have a look at. Figure 7.17 shows the

number of repetitions compared to the relative number of work requests. In

36 % of the work requests an activity is repeated (not immediately after the

previous execution), with a total of 1 766 repetitions in the entire event log.

However, most work requests that contain a repetition, only contain one. Note

that if two repetitions occur in a work request, this can concern two different
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Figure 7.15: Overview of the number of self-loops in the event log on the resource

level, relative to the total number of executions of each resource within the event log.

Figure 7.16: Overview of the size of self-loops in the entire event log.

activities or two times the same activity.
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Figure 7.17: Overview of the number of repetitions in the entire event log.

Figure 7.18: Overview of the number of repetitions in the event log on the activity

level, relative to the total number of executions of each activity within the event log.

On the level of the individual activities, the number of repetitions metric shows
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how often an activity occurs in a repetition compared to the number of times

this activity is executed in the entire event log. We can observe in Figure 7.18

that 13.95 % of the occurrences of “Verification visit” (24 occurrences in total)

occurs more than once in one work request with at least one other activity in

between. Other activities that are repeated later on in a work request are for

example “Analyse customer request” (19.72 %), “Information customer” and

“Phone” (both 8.84 %), “Customer ready” (5.10 %), and “Execution” (4.29 %).

From the discussion with the business people we learned that some of these

activities can actually be defined as waste. However, the “Verification visit”

and “Analyse customer request” are absolutely required and cannot be ignored.

These activities take up a lot of time, so executing them more than once within

the same work request should be avoided in all cases.

Figure 7.19: Overview of the number of repetitions in the event log on the resource

level, relative to the total number of executions of each resource within the event log.

Next, on the level of the resources, this metric shows the number of times

each resource executes an activity multiple times per work request with at least

one other activity in between, compared to the number of times this resource

executes an activity in the entire event log. As can be seen in Figure 7.19, the

“Work preparation” team, for example, executes 1 621 times a repetition in a

work request, which counts for 5.55 % of all their executions. However, because
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the resources are mapped one-on-one with their activities, little new insights

will be found.

Finally, the size of the repetitions shows the number of times an activity is

repeated in a work request. An activity that is executed three times in a work

request, with other activities in between, has a size of two. Figure 7.20 shows

that there are two work requests in which an activity is repeated up to five times

(size 6). However, the vast majority of repetitions only contain one repetition

of a certain activity.

Figure 7.20: Overview of the size of repetitions in the event log.

7.3.2.1 Resource metrics

� Resource frequency - workload. This metrics answers the question “How many

tasks does a resource execute?”. The answer to this question provides us the

number of actions per resource in the entire event log. Because the resources in

the dataset at hand are roles that are mapped one-on-one with the activities,

there are no remarkable findings, as can be seen in Figure 7.21. The people

from “Work preparation” are responsible for 69 % of all actions in the event

log. “Aftercare” is only responsible for 14 %. “NA” is linked to activities that

have not been identified with a specific role in the dataset. In case the actual
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resources would be added to the dataset, also here process variation, waste, and

non-value added work can be discovered.

On the level of each resource-activity combination, we can find how essential a

resource is for the process or for a specific activity. The division of the resources

over the different activities can be seen in Figure 7.22. However, given the data

structure at hand, analysing this division is pointless because there is no overlap.

Figure 7.21: Overview of the resource frequency per resource in the entire event log.

� Resource involvement. This metric is a simple overview of which resources are

the most involved in the process. On the level of specific resources, we find

in Figure 7.23 that “Work preparation” and “Aftercare” are required in each

work request. “Technical customer advisor” is required in 1 396 work requests

(34 %), “Team Net development” in 405 (9.99 %), “Team Backoffice Nets and

Studies” in 53 (1 %), and “MOTS” in only 29 (0.72 %) of the work requests.

Similarly, this metric on the resource-activity level answers the question: “In

how many work requests is each specific resource-activity combination involved

the most?”. However, each activity is assigned to a specific resource in this

dataset, which can be seen in Figure 7.24. For example, in all work requests

the “Execution” is performed by people from the “Work preparation” team. It
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Figure 7.22: Overview of the resource frequency per resource-activity combination in

the entire event log.

Figure 7.23: Overview of the resource involvement in the entire event log.

would be interesting to find resources that are involved in all cases, what could

be very dangerous in case this person gets ill or leaves the company. On the

other side, resources that are only involved in very few cases could be a cause
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of longer lead times or variation because this resource is not familiar with the

activities in this process.

Figure 7.24: Overview of the resource involvement per resource-activity combination

in the entire event log.

Figure 7.25: Overview of the specialisation of resources on the resource-activity level

in the entire event log.� Resource specialisation. Similar to the resource involvement metric, the resource

specialisation metric shows which resources execute more different activities

than others, which can be interesting for business concepts such as brain drain

or team selection, and can again be an indication of longer lead times and

variation in case resources are working on all activities in the process instead of
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specialising in one or some of them. Figure 7.25 shows that “Work preparation”

executes different activities, while “Team Backoffice Nets and Studies” only

performs the “Road admission”. Of course, the interpretation of these findings

are left to the domain experts in the company who can subsequently take actions

in order to optimise the process.

7.4 Findings

Together with some useful filters that can be applied to the dataset in the dashboard

that was created and the set of metrics presented in Chapter 5, the findings from the

applied metrics were well received by the company.

Next to the application of the metrics to the event log, another request of the

company concerning the metrics has been analysed. One of the regulations that

the process under analysis needs to comply with is a criterion stating that the time

between the agreement of the customer and the execution should not be any longer

than 15 working days. To analyse if the company is meeting this criterion, and what

can possibly be the cause in work requests that do not meet this criterion, the dataset

was split up in two parts. All work requests containing both the activities “Customer

agreement” and “Execution”, which are 3 736 cases, are ordered based on the duration

in time between these two activities. There are 2 239 work requests that did not meet

the criterion, and 1 497 work requests that did. Figure 7.26 shows the throughput

time of the work requests in both parts, implying that work requests take considerably

more time when the criterion is not met, which is not surprising.

Next to this, the case length can also be of interest. Figure 7.27 shows that

when the criterion is not met, slightly more activities are executed per work request.

However, what can be of more interest to the company, is the sequence of the

activities in the work requests that do not meet the criterion. Therefore, Table 7.6

shows the most frequent process variants for both parts of the dataset, together with

their frequency in the dataset. It can be noticed that work requests that do not

meet the criterion contain the activities “Request EAN” and “Physical document”.

After presenting these findings to the company, the domain experts confirmed that

the work requests containing the activity “Request EAN” actually take much longer

because of this activity, but it can not be classified as non-value-adding for the

process so it is not waste that should be reduced.

Other findings based on the application of the metrics and the analyses above are:
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Figure 7.26: Overview of the throughput time (in days) for work requests meeting

the criterion (lower) and work requests not meeting the criterion (higher).

� Most work requests have a duration of 40 to 50 days, with an average of 91 days

and a standard deviation of 64 days, which is very high, implying a very high

variation in time.

� Pending cases are mostly work requests that get hindered by customer depen-

dent activities.

� As expected, every work request starts with the (artificially added) activity

“Create work request”.

� 55 work requests (1.36 %) end with an other activity than “Register aftercare”

or “Physical document”, which can be classified as variation.

� On average 10 activity executions take place in a work request, with a standard

deviation of 2. However, the most active work request contains 24 executions.

� There are work requests without the activities “User agreement” (7.82 %),

“Offer sent” (7.75 %), “Optimise file” (1.38 %), “Customer ready” (1.13 %),
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Figure 7.27: Overview of the case length for work requests meeting the criterion

(lower) and work requests not meeting the criterion (higher).

“Analyse customer request” (0.91 %), and “Execution” (0.05 %), which are all

activities that definitely should be executed before the aftercare takes place.

� There are 302 process variants or traces required to cover 80 % of the entire

event log.

� The most frequent process variant occurs 601 times. This is only 14.82 % of the

entire event log implying a high amount of variation in the process.

� 8.14 % of the work requests contain rework in the form of self-loops. There are

347 self-loops in the total event log.

� In 36 % of the work requests a repetition of an activity with at least one other

activity in between occurs. There are 1 766 repetitions in the entire event log.

� Rework in the form of self-loops or repetitions both mostly occur for the activ-

ities “Analyse customer request”, “Information customer”, “Customer ready”,

and “Execution”, which are all important and value-adding activities in the

process at hand.
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Table 7.6: Top 5 most common process variants for the criterion that has been met

or not.

Criterion met

Process variant Absolute

frequency

Create work request, Analyse customer request, Offer sent, User agreement,

Customer ready, Optimise File, Execution, Register Aftercare

43

Create work request, Offer sent, Analyse customer request, User agreement,

Customer ready, Optimise File, Execution, Register Aftercare

33

Create work request, Analyse customer request, Offer sent, User agreement,

Optimise File, Customer ready, Execution, Register Aftercare

25

Create work request, Offer sent, Analyse customer request, User agreement,

Optimise File, Customer ready, Execution, Register Aftercare

25

Create work request, Analyse customer request, Technical visit, Offer sent,

User agreement, Optimise File, Customer ready, Execution, Register After-

care

24

Criterion not met

Process variant Absolute

frequency

Create work request, Analyse customer request, Offer sent, Request EAN,

User agreement, Optimise File, Customer ready, Execution, Register After-

care, Physical document

35

Create work request, Analyse customer request, Request EAN, Offer sent,

User agreement, Optimise File, Customer ready, Execution, Register After-

care, Physical document

35

Create work request, Request EAN, Analyse customer request, Offer sent,

User agreement, Optimise File, Customer ready, Execution, Register After-

care, Physical document

35

Create work request, Analyse customer request, Request EAN, Offer sent,

User agreement, Optimise File, Customer ready, Execution, Register After-

care

31

Create work request, Offer sent, Analyse customer request, Request EAN,

User agreement, Optimise File, Customer ready, Execution, Register After-

care, Physical document

31
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� Because the dataset contains roles instead of actual resources, there are no

new insights on the level of resources. For example, in all work requests the

“Execution” activity is performed by the “Work preparation” team.

� The “Work preparation” team is responsible for 96 % of all executions in the

event log.

� The “Work preparation” team is required in each work request, while “MOTS”

is only required in 29 (0.72 %) work requests.

� “Work preparation” executes a lot of different activities, while “Team Backoffice

Nets and Studies” only executes the “Road admission” activity. This finding,

together with the previous two findings, can be indications of variation and

waste within the process. In case the actual resources are added instead of

the roles or the team executing the activities, this can be investigated more

thoroughly.

Finally, Table 7.7 gives an overview of some questions posed by the case study

company that were answered by applying the developed metrics. The metrics and

questions are structured according to the most important operational excellence prin-

ciples presented in Chapter 2 and Chapter 3.

7.5 Conclusion

To conclude, we can state that the presented metrics in Chapter 5 represent the

behaviour that is present in the event log without the use of a process model, and

thus without any influences from underlying algorithms or assumptions. Moreover,

different groups can be easily and correctly compared and analysed, both over time

or based on certain case attributes.

Besides that, this case shows that the applied metrics are supporting some im-

portant operational excellence principles as they are based on the reduction of waste

and non-value-adding activities and the management of variation and structuredness,

which were stated throughout this dissertation to be requirements to reach operational

excellence [154]. First, it can be stated that the five lean management principles of

waste, listed in Chapter 2, are supported by the presented metrics. For instance, met-

rics such as the throughput time and the ones concerning rework provide the company

with an overview of which steps in the process and which features of products and

services add value, and which can be identified as waste. Second, the value stream,
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Table 7.7: Some questions posed by the case study company that are answered with

the developed metrics.

Principles Metric and question

Reduction of waste and

removal of non-value-adding

activities

Throughput time: how long do work requests take?

Rework: How many repetitions or self-loops take place?

Rework: How many times are activities repeated?

Reduction of process variation Number of traces: How many process variants do we find

in the event log? Which ones are the most frequent?

Activity frequency: How often are certain activities exe-

cuted?

Trace length: how many actions are executed per work

request?

Start and end activities: Which activities are the start

and end activities of work requests?

Reduction of resource variation Workload: How many actions do resources perform in

the complete process or in each work request?

Resource involvement: In how many work requests are

resources involved?

Resource specialisation: How specialised are resources?

Which activities do they perform?

or the sequence of activities actually adding value to the process, can be defined by

the business people based on the findings from the metrics. Next to this, by removing

the non-value-adding activities, such as repetitions, work in queue, or batch process-

ing, interruptions in the process are reduced. Another lean management principle

that has been covered by the presented metrics is ‘pursue perfection and continuous

improvement’ as the application of the metrics is easily repeatable. The metrics also

cover different concepts that were defined as waste according to Pepper and Spedding

[118] and Hines and Rich [69], such as waiting, delays, or unnecessary motion. As

the lean management tools are rather qualitative, the presented metrics are a useful

quantitative and very objective addition to existing tools.

The metrics concerning the number of process variants, the rework metrics, and
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the activity presence are examples of metrics that support the Six Sigma philosophy,

which focuses on the reduction of variation in business processes in order to minimise

defects and errors [93]. But also the organisational metrics measuring the variation

in resources focus on optimisation of the workload and resource specialisation by

analysing where variation takes place. Looking at the DMAIC-cycle of Six Sigma,

which is also presented in Chapter 2, the metrics can be placed in different steps of this

cycle. We can, for example, identify improvement issues based on the findings from

the application of the metrics, which is a task in the define step. In the measure step,

an insight in the process is provided by the metrics, to get a notion of the as-is status.

However, the analysis step is the most crucial stage because here the actual source

of variation in the process should be sought and potential critical inputs should be

identified. This is also covered by the presented metrics. However, the metrics provide

an objective analysis of business processes and are not providing any interpretation for

the business people. These interpretations, and the resulting improvement steps that

should be taken to reduce variation and consequently improve the process, are steps

the business people should take based on the provided analyses. Next to this, both

lean management and Six Sigma place importance on repeatability and reproducibility

of the systems to measure the operational excellence of processes [7].

For future use, some recommendations can be done to the case study company

(and to other companies) to get even more benefit from the analyses. Firstly, the data

logging should be optimised in order to make fully use of the developed metrics. The

most important logging requirements are start and end timestamps for all activities in

order to calculate bottleneck activities, actual processing time for each work request

compared to inactivity, and waiting time. Next to this, actual resources should be

tracked in order to calculate the specialisation of resources, their (in)efficiency, and

the actual active time of resources compared to their inactivity. Secondly, the analysis

of the case study above could be improved by introducing benchmarks against which

the results can be evaluated. Thirdly, and related to the previous recommendation,

finding a link between the business’ key performance indicators (KPIs) and the pre-

sented metrics could be of interest, to analyse which metrics should be calculated to

cover which KPIs. These can be interesting topics for future research.
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Conclusions and future

recommendations

This dissertation focuses on the use of event log knowledge to support operational

excellence in businesses. Given the limited existing work on the use of event log

knowledge in the light of operational excellence, the first part of this dissertation

contains a literature overview of existing techniques in the field of operational ex-

cellence and the interplay of operational excellence and process mining. Chapter 2

provides an overview of the evolution of quality management and the emergence of

different methodologies in the field of operational excellence, while Chapter 3 sup-

plements these findings with an introduction to the field of process mining and an

outline of the match between process mining and operational excellence. From this

foundation, the second part of the dissertation focuses on the development of methods

that retrieve event log insights to support specific operational excellence concepts. In

order to address the lack between process mining and operational excellence, this dis-

sertation will introduce the concept of event log-based process metrics for which the

requirements are identified in Chapter 4. The developed metrics are then presented in

Chapter 5, which are developed on different levels of analysis. One of the operational

excellence concepts that was stated to be an indication of waste in a business process

is batch processing, which is further elaborated upon in Chapter 6. Next to this, the

presented metrics are applied to a real-life case study in Chapter 7. And finally, this

chapter summarises the main conclusions and provides recommendations for future

research, as shown in Figure 8.1.

Throughout this dissertation, the principles and steps of the design science re-

205



206 Chapter 8

Figure 8.1: Outline of the thesis - Chapter 8.

search framework have been followed and applied. Therefore, the following section is

structured according to these steps, which were discussed in Chapter 1.

8.1 Final conclusions

New technologies, fast changing customer expectations, and growing competition

drive companies to continuously modify and improve their business processes. These

processes are therefore constantly changing and different methodologies and philoso-

phies have been developed to implement these business changes. Nowadays, compa-

nies require high-end information systems that execute the company processes in an

efficient and effective way, processes which include decent control and planning pro-

cesses, good operating systems, and a culture of continuous improvement to become

operationally excellent. The concept of continuous improvement is related to oper-

ational excellence techniques such as lean management, Six Sigma, business process

improvement (BPI), and business re-engineering, which can be situated in the total
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quality management (TQM) field. A combination of these elements is often recom-

mended, as the individual programmes can be found to be insufficient for companies.

During the first step in a design science research project, which is the problem

identification step, the researcher has to gain a clear and precise understanding of the

problem at hand. The problem domain in this dissertation is therefore explored by

conducting a literature review of operational excellence which aims to highlight its

strengths and weaknesses. Based on a comparison analysis of the different philosophies

in operational excellence, it can be stated that existing methods in this field are

mainly based on qualitative paper-and-pencil approaches. It may be argued that

these techniques are ignoring the actual underlying system and not collecting enough

detail. Moreover, the principles of lean management are also found to be less useful

in the volatile or fast changing environments in which companies, especially service

companies, are operating nowadays. Six Sigma tools on the other hand, are in some

cases based on quantitative data, while others are also based on qualitative methods

such as interviews. The results of these methods and the decisions taken based on

these results may therefore be rather subjective and depending on the person or

team that has been performing the analyses. This leads to the fact that there is not

one single strategy or roadmap for companies to improve the performance of their

processes. A combination of multiple methodologies should be incorporated, and

there is a need for more objective and data-based analyses to gain more insights in

the operational excellence of companies. Moreover, literature on the application of

these operational excellence techniques within service-oriented companies is limited,

leading to these companies not yet being convinced of the use of operational excellence

techniques within their companies.

In the field of business process improvement, claims are found that specific guide-

lines for business process optimisation are limited in literature and that it is not always

clear how existing techniques are used to support the process of business process im-

provement. Process mining was therefore introduced, as it shows to be promising in

the field of knowledge retrieval based on process data that is collected from process

aware information systems in companies. However, it can be stated that most of

the research on process mining is focused on discovering process models from event

logs, and checking the conformance between the discovered model and the underlying

event log. These models are learned from event logs with certain algorithms, based on

parameters and assumptions, and are often manually manipulated with sliders and fil-

ters in visualisation tools. This may result in conclusions and improvement measures

that are less reliable as they are based on possibly incorrect or incomplete process

models that do not contain all information of the business process under analysis or
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that contain unobserved behaviour.

Based on these findings, a gap between operational excellence and process min-

ing was identified and the need for an artifact that uses the knowledge from event

logs to support business process improvement in the light of operational excellence

was identified. In the requirement specification step of a design science research, an

artifact that addresses the defined problem should be identified and described. The

requirements for the artifact in this dissertation are assembled based on the literature

review that was conducted on the principles of operational excellence and on the ex-

isting interplay of process mining and operational excellence on the one hand, and on

the results found in the interviews that were conducted with business process experts

on the other hand.

The requirements that have been created in this dissertation, based on the problem

identification, are fourfold and are both functional and non-functional. Firstly, event

log-based metrics should be developed, which provide an organisation insights into

event log knowledge without the use of intermediate models. The first requirement

that was developed states that the event log-based metrics should measure both the

general aspects of an event log and the more specific measures concerning the opera-

tional excellence field, which were identified to be useful event log knowledge insights

in operational excellence. Secondly, the metrics should measure only one dimension or

level of analysis, in order to remain comprehensible. Therefore, each of the measures

should be defined on different levels of analysis in order to get insights into the differ-

ent degrees of granularity of a business process. Thirdly, all metrics should contain

clear descriptions of the measure itself, the requirements for the event data, and the

underlying calculation, which are found to be missing regularly in existing research.

And finally, the metrics should be complemented with a suitable visual representation

and the used terminology should be adapted to the correct level of interpretation in

order to be understandable for business people.

Based on these requirements, event log-based process metrics are presented as an

artifact, which give a company insights in the behaviour in an event log. The pre-

sented metrics are structured along two categories of process performance measures

that should be focused on in a business process improvement project, which are time

and structuredness. These dimensions are both shown to be direct indicators of differ-

ent types of waste and other indicators of operational excellence in literature. For the

other two categories of performance measurement of the Devil’s Quadrangle, which

are cost and quality, no metrics have been presented in this research. Structured-

ness is defined as the level of variation within the event log and concerns the level of

variance in a process, the amount of rework, and the organisation of resources, which
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are the people or machines executing activities in the process. The presented metrics

are calculated on one of the following levels of analysis: log, case, trace, activity,

resource, or resource-activity, and also involve one or more of the aspects of opera-

tional excellence such as, among others, batch processing, waste reduction, rework,

iterations, and the removal of non-value-adding activities. Finally, the metrics that

are created in order to overcome the identified lack serve as a mean to objectively

compare different event logs in terms of the different aspects of process performance.

These metrics provide business people with a picture of the present process be-

haviour and are all implemented in the R-package edeaR, making them easy to apply

to any event log. Moreover, to make the results of the metrics more valuable and

accessible for business people, a dashboard including visualisations of each metric has

been developed and presented. Next to the visualisations, the dashboard contains

filters to get more insights into the quality and different aspects of the business pro-

cess. Comparisons with benchmarking values and analyses of the event data over time

are other possible advantages of the presented metrics and filters within the metric

dashboard.

The metrics concerning the time dimension measure the throughput time, the

actual processing time, and the waiting time on different levels of analysis to get an

insight in, for example, the duration of cases and activities. Based on these metrics,

supplementary operational excellence concepts such as the number of pending cases

and bottleneck indicators within a business process can be calculated.

Variability is defined as one of the key sources of waste within a business process, as

it is causing a process to deviate from its desired behaviour. However, as variability

or unstructured behaviour should not always be eliminated, it is important for a

company to learn the type of unstructured behaviour that is occurring within the

process under analysis. In order to get more insights in this, different classes of

metrics concerning the structuredness of a process are developed, which are variance

metrics, rework metrics, and organisational or resource-related metrics. The variance

metrics include measures calculating the number and length of traces, the presence

of start and end activities within the process, and the trace coverage of a business

process. Rework metrics look at the number of times activities are repeated within

a case, both immediately following each other, which are defined as self-loops, and

with other activity executions in between, which are defined as repetitions. Here, a

distinction is made between repeat and redo self-loops and repetitions, indicating the

difference between activities that are repeated by the same resource, and activities

that are redone by another resource. These rework metrics give companies an insight

in which activities are often executed more than once, which resources are involved
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in the rework and how many times the activities are repeated when they occur in a

self-loop or repetition. These are all possible indicators of waste within the process.

The resource metrics that have been presented within this dissertation concern the

different aspects of the process behaviour concerning the resources, which are defined

as process participants, software systems, or equipment, which execute activities in the

process. These metrics are related to the frequency of a resource executing activities,

the involvement of a resource in the process, and the specialisation of the resources.

Again, these metrics can be calculated on different levels of analysis and can support

organisations in performing knowledge management, for instance when creating a

knowledge map, or project management with applications such as resource levelling

and resource allocation.

Getting insights in the behaviour of resources and the amount of “waste” they

cause can be very interesting for companies who want to optimise their business pro-

cesses. Related to this, are the metrics concerning the concept of batch processing, in

which resources execute activities of two or more cases at the same or almost at the

same time. To this end, firstly, three types of batch processing are defined and for-

malised, which are simultaneous, sequential, and concurrent batch processing. Using

these definitions, the Batch Organisation of Work Identification algorithm (BOWI)

is developed to gather knowledge on batch processing from event logs. When certain

cases fulfil the conditions associated to a particular batch processing type, the algo-

rithm groups them in a case set. These case sets are then used to calculate batch

processing metrics such as the frequency of batches, the size of batches, and the dura-

tion and waiting time of activities in batches. These metrics and the BOWI-algorithm

are evaluated on both artificial event logs and on two real-life datasets.

After the development of the artifacts according to the artifact requirements, the

evaluation phase of the design science research framework includes the evaluation of

the artifacts concerning these requirements. From the list of possible evaluation tech-

niques in the field of design science, this thesis uses expert evaluation and illustrative

scenarios to demonstrate the applicability of the presented log-based process metrics

and their added value in the light of operational excellence. All metrics are applied

to both an artificial event log and a real-life event log of a Belgian utilities company.

From the application to the real-life case study, it can be concluded that the presented

metrics provide the case study company with a clear picture of the present process

behaviour, without any influences from underlying algorithms or assumptions. More-

over, it can be stated from this analysis that different groups of event logs can be

more easily and correctly compared and analysed, both over time and based on cer-

tain case attributes such as the geographical region or the building. Besides that, the
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case study shows that the applied metrics are supporting some important operational

excellence principles as they are based on the reduction of waste and non-value-adding

activities and the management of variation and structuredness, which were stated to

be requirements to reach operational excellence. Firstly, the different lean manage-

ment principles of waste are supported by the presented metrics. For instance, metrics

such as the throughput time and the ones concerning rework provide the company

with an overview of which steps in the process and which features of products and

services add value, and which can be identified as waste. Moreover, the value stream,

or the sequence of activities actually adding value to the process, can consequently

be defined by the business people, based on the findings from the metrics. Next to

this, by removing the non-value-adding activities, such as repetitions, work in queue,

or batch processing, interruptions in the process are reduced. Another lean manage-

ment principle that has been covered by the presented metrics is ‘pursue perfection

and continuous improvement’ as the application of the metrics is easily repeatable.

As most existing lean management tools are rather qualitative, the presented metrics

are a useful quantitative and objective addition to existing tools.

The metrics concerning the number of process variants, the rework metrics, and

the activity presence are examples of metrics that support the six sigma philosophy,

by focusing on the reduction of variability in business processes in order to minimise

defects and errors. But also the organisational metrics measuring the variation in re-

sources focus on optimisation of the workload and resource specialisation by analysing

where variation takes place. Also different steps within the DMAIC-cycle of Six Sigma

are covered by the presented metrics, with the most added value in the analysis step,

where the amount of variation and the underlying source of variation is analysed with

the different metrics.

However, the presented metrics are only methods to analyse the behaviour within

event logs. They provide an objective analysis of business processes and are not

providing any interpretation for the business people. These interpretations, and the

resulting improvement steps that should be taken to reduce variation and consequently

improve the process, are steps the business people should take based on the provided

analyses in this dissertation.

8.2 Future research

Throughout this dissertation, a number of recommendations for future research have

been made. An overview of the most important ones is provided here.
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With respect to one of the metrics of the time dimension, future work is required

to investigate the waiting time on the level of a specific activity. Waiting time is

identified as one of the most important causes of waste and variation within a business

process, and can be calculated with the presented metrics on the level of the entire

event log, the case, the trace, and the specific resources. In addition to this, it can

be interesting to narrow down to the waiting time of a specific activity, which is the

time between the arrival of the activity in the trace and the start of the execution of

this activity. However, current research states that information on the concurrency

of activities, and thus a process model, is required to calculate the waiting time on

the level of an activity, while this dissertation focuses on analyses without the need of

a process model. Future research on the calculation of the waiting time of activities

without the need of a process model is therefore recommended.

Another interesting metric that can be added to the provided list is a measure that

identifies the consensus sequence within an event log, which is the trace or process

variant from which other traces differ the least. Comparing other traces to this

consensus sequence would provide companies with better insights in their business

processes as it shows how much reality differs from the largest common denominator.

Regarding the process metrics that have been presented, some challenges and

different perspectives can provide an even better indication of the process behaviour

observed in an event log. For example, indicators or metrics should not be considered

to be independent from each other and the results of one metric can be the input of

or complement other metrics. Next to this, the analysis of the metrics and the results

of the metrics over time is not discussed in this dissertation. Specific guidelines or

a roadmap that should be taken to get insights in the evolution of certain aspects

over time can be interesting additions. Moreover, all developed metrics assume the

presence of both start and complete timestamps, and resource information for each

task that is executed within a process. However, this assumption does not always

hold in real-life event logs such as the case study that is analysed in Chapter 7,

where only one timestamp was present for each activity. In this respect, further

research on start time estimation is recommended, in order to calculate bottleneck

activities, actual processing time for each work request compared to inactivity, and

idle time between activities. Next to this, actual resources should be tracked in order

to calculate the specialisation of resources, their (in)efficiency, and the actual active

time of resources compared to their inactivity. Related to this matter, the process

mining community should continue to build partnerships with industry to influence

how process execution data is recorded. This way, more real-life event logs containing

both start and complete timestamps and accurate resource information might become
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available.

In relation to the metrics that have been developed concerning the concept of batch

processing, future work can extend the BOWI-algorithm to retrieve even more versa-

tile batch processing insights from an event log. Firstly, while the BOWI-algorithm

currently focuses on gathering batch processing knowledge on the level of a single

activity, this perspective can be broadened by considering multiple consecutive ac-

tivities. Secondly, insights on the logic behind batch formation can be added as an

analysis dimension. While BOWI currently aims to identify which cases are batched,

it can be useful to identify the reasoning behind batching behaviour through the

identification of batch activation rules.

Finally, based on the evaluation performed in Chapter 7 and the future research

ideas stated above, recommendations can be done to the case study company, and

consequently to other companies, to get even more benefit from the analyses that can

be done with the current set of log-based process metrics presented in this dissertation.

The added value of the presented metrics could be improved by introducing specific

benchmarks against which the results can be evaluated. And related to this, finding

a link between the business’ KPIs and the presented metrics could be of interest, to

analyse which metrics should be calculated to cover which KPIs.
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Interview questions

The goal of this interview is to analyse the problems and obstacles that one

encounters when visualising and optimising a business process. The insights that

arose from these interviews are presented in Chapter 4. The following questions are

asked to each interview respondent.

Start of the interview

� Is it ok if this interview is recorded?

Information about the respondent

� Name?

� Company?

� Function?

� How long do you have experience in this function?

The first set of questions will be rather broad, in order to let you tell your own story.

After that, more specific questions will be asked concerning different related topics.

Information about the business processes in your company

� To what extent are you involved in the execution of business processes? Can

you explain what your responsibility is towards the business processes in your

company?

215
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� Can you describe one or some of the processes that you work with? What is

the purpose of them?

� Is it possible to receive an overview of the process(es) that you work with? And

the documentation of the(se) process(es) (if it exists).

In case there is no specific process with which you work, the following questions can

be answered about other business processes in your company.

� Are the processes implemented or automated in an information system? Or are

they executed manually?

� Are the processes documented? Is there a process model or process design

present?

Information about the process

� What is, according to you, a good business process?

� Do you have a good notice of how good the process is running, based on the

information that is available in your company?

� Which information adds to this or is missing to answer this question? And on

which level of granularity is this information captured?

� Do you think there are categories in which the performance of a process can be

subdivided?

� Are you involved in the evaluation of the performance of the process? If yes, in

which categories of process performance?

� Are you actively improving the process? If yes, in which categories of process

performance?

� Do you think there are categories of process performance that are more impor-

tant than other categories?

� Do you think there are different levels of analysis on which the performance of

a process can be measured?

The following questions go deeper into the different categories of process performance.

Costs

� What do you think are indicators or measures to define the costs of a certain

process or a certain activity?
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� Are there people already involved in defining and analysing the costs of a process

or activity?

� Are you satisfied about the costs of the process or of certain activities in the

process? What would you do to decrease the costs of the process or of a certain

activity within the process?

Quality

� What do you think are indicators or measures to define the quality of a certain

process or a certain activity?

� Are there people already involved in defining and analysing the quality of a

process or activity?

� Are you satisfied about the quality of the process or of certain activities in the

process? What would you do to increase the quality of the process or of a certain

activity within the process?

Time

� What do you think are indicators or measures to define the time dimension of

a certain process or a certain activity?

� Are there people already involved in defining and analysing the time dimension

of a process or activity?

� Are you satisfied about the timing of the process or of certain activities in the

process? What would you do to improve the timing of the process or of a certain

activity within the process?

Structuredness

� What do you think are indicators or measures to define the structuredness of a

certain process or a certain activity?

� Are there people already involved in defining and analysing the structuredness

of a process or activity?

� Are you satisfied about the structuredness of the process or of certain activities

in the process? What would you do to improve the structuredness of the process

or of a certain activity within the process?

Value-adding activities
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� What do you think are indicators or measures to define if certain activities in a

process (do not) add value to the process?

� What would you do or what do you do with activities that do not add value to

the process?

� What is already being done to map or follow the process?

Problems with business processes

� Do you experience any problems with the business process or with a certain

part of the process?

� Would you change the implementation or the method of execution of the activ-

ities, if this is possible?

Finalisation

� Do you have any other remarks to add after this interview?

� Are there people in your company that are responsible for the optimisation of

the business process? Or do you know people that I can ask the same questions?

� If I would have any other question afterwards, or if something needs to be

clarified, can I contact you again via e-mail or phone?
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Overview of the log-based

process metrics

Table B.1: Log-based process metrics of the time dimension.

Metric Level of

analysis

Description

Metric class: Duration

Throughput time Log The summary statistics of the throughput

time of all cases in the entire event log.

Throughput time Case The total throughput time per case.

Throughput time Trace The summary statistics of the throughput

time per trace.

Metric class: Actual processing time or active time

Processing time Log The summary statistics of the actual process-

ing time of all cases in the entire event log.

Processing time Case The total processing time per case (the sum

of the processing time of all activities in the

case).

Processing time Trace The summary statistics of the actual process-

ing time of a specific trace.

Table continued on the next page
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Table B.1: Log-based process metrics of the time dimension (con-

tinued).

Metric Level of

analysis

Description

Processing time Activity The summary statistics of the duration of each

specific activity in the entire event log.

Processing time Resource The summary statistics of the processing time

per case for each specific resource in the entire

event log.

Processing time Resource-

activity

The summary statistics of the processing time

per case for each specific resource-activity

combination in the entire event log.

Metric class: Waiting time

Waiting time Log The summary statistics of the waiting time of

all cases in the entire event log.

Waiting time Case The total waiting time per case.

Waiting time Trace The summary statistics of the waiting time of

a specific trace.

Waiting time Resource The total amount of waiting time for each spe-

cific resource in the entire event log.

Table B.2: Log-based process metrics of the structuredness dimen-

sion.

Metric Level of

analysis

Description

Variance metrics

Number of traces Log The absolute number of traces in the log and

the average trace coverage of the log.

Trace length Log The summary statistics of the number of ac-

tivities in each trace.

Table continued on the next page
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Table B.2: Log-based process metrics of the structuredness dimen-

sion (continued).

Metric Level of

analysis

Description

Trace length Case The total number of activity executions per

case.

Trace length Trace The absolute and relative frequency of activi-

ties in a specific trace (compared to the aver-

age trace length of the top 80).

Trace coverage Log The absolute and relative number of traces

that cover a certain percentage (default: 80

%) of the log.

Trace coverage Case The absolute and relative number of the cov-

erage of the corresponding trace per case.

Trace coverage Trace The absolute and relative frequency of each

trace together with the cumulative sum.

Activity presence Activity The absolute and relative number of cases

where each specific activity is present.

Start activities Log The absolute and relative number of distinct

activities that are the first activity of a case.

Start activities Case The activity that occurs the first per case.

Start activities Activity The absolute and relative number of cases that

start with a specific activity.

Start activities Resource The absolute and relative number of times

that a resource executes the start activity of a

case.

Start activities Resource-

activity

The absolute and relative number of times

that each resource-activity combination in-

cludes the activity that is executed first in a

case.

End activities Log The absolute and relative number of distinct

activities that are the last activity of a case.

End activities Case The activity that occurs the last per case.

Table continued on the next page
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Table B.2: Log-based process metrics of the structuredness dimen-

sion (continued).

Metric Level of

analysis

Description

End activities Activity The absolute and relative number of cases that

end with a specific activity.

End activities Resource The absolute and relative number of times

that a resource executes the end activity of

a case.

End activities Resource-

activity

The absolute and relative number of times

that each resource-activity combination in-

cludes the last activity of a case.

Rework metrics

Activity frequency Log The summary statistics of the number of times

a distinct activity occurs in a case over the

entire event log.

Activity frequency Case The absolute and relative number of distinct

activities in each case.

Activity frequency Trace The absolute and relative number of distinct

activities in each specific trace.

Activity frequency Activity The absolute and relative number of times

each activity is performed in a case.

Number of

self-loops

Log The summary statistics of the number of re-

peat and redo self-loops within a trace.

Number of

self-loops

Case The absolute and relative number of repeat

and redo self-loops within each specific case.

Number of

self-loops

Activity The absolute and relative number of repeat

and redo self-loops for each specific activity.

Number of

self-loops

Resource The absolute and relative number of repeat

and redo self-loops executed by each resource

in the entire event log.

Table continued on the next page
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Table B.2: Log-based process metrics of the structuredness dimen-

sion (continued).

Metric Level of

analysis

Description

Number of

self-loops

Resource-

activity

The absolute and relative number of repeat

and redo self-loops executed by each resource-

activity combination in the entire event log.

Size of self-loops Log The summary statistics of the size of repeat

and redo self-loops in the entire event log (ex-

cluding activities without self-loops).

Size of self-loops Case The summary statistics of the size of repeat

and redo self-loops in a specific case (excluding

activities without self-loops).

Size of self-loops Activity The summary statistics of the size of self-loops

of a specific activity (excluding activities with-

out self-loops).

Size of self-loops Resource The summary statistics of the size of self-loops

executed by each resource in the entire event

log.

Size of self-loops Resource-

activity

The summary statistics of the size of self-loops

executed per resource-activity combination.

Number of

repetitions

Log The summary statistics of the number of re-

peat and redo repetitions of an activity in the

entire event log.

Number of

repetitions

Case The absolute and relative number of times an

activity is repeated or redone within each case.

Number of

repetitions

Activity The absolute and relative number of times a

specific activity is repeated or redone within a

case.

Number of

repetitions

Resource The absolute and relative number of times a

repeat or redo repetition of an activity occurs

per resource.

Table continued on the next page
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Table B.2: Log-based process metrics of the structuredness dimen-

sion (continued).

Metric Level of

analysis

Description

Number of

repetitions

Resource-

activity

The absolute and relative number of times a

repeat or redo repetition of an activity occurs

per resource-activity combination.

Size of repetitions Log The summary statistics of the size of repeat

and redo repetitions in the entire event log

(excluding activities within a self-loop).

Size of repetitions Case The summary statistics of the size of repeat

and redo repetitions in each specific case (ex-

cluding activities within a self-loop).

Size of repetitions Activity The summary statistics of the size of repeat

and redo repetitions of each specific activity

(excluding activities within a self-loop).

Size of repetitions Resource The summary statistics of the size of repeat

and redo repetitions executed by each resource

in the entire event log (excluding activities

within a self-loop).

Size of repetitions Resource-

activity

The summary statistics of the size of re-

peat and redo repetitions executed per

resource-activity combination (excluding ac-

tivities within a self-loop).

Resource metrics

Resource frequency Log The summary statistics of the number of times

a resource executes an activity in the entire

event log.

Resource frequency Case The summary statistics of the number of times

a resource executes an activity in each case.

Resource frequency Activity The summary statistics of the number of times

a resource executes each activity.

Table continued on the next page
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Table B.2: Log-based process metrics of the structuredness dimen-

sion (continued).

Metric Level of

analysis

Description

Resource frequency Resource The absolute and relative number of times

each resource executes an activity in the entire

event log.

Resource frequency Resource-

activity

The absolute and relative number of times

each resource-activity combination occurs in

the entire event log. Two different relative

numbers are provided, one from a resource

perspective and one from an activity perspec-

tive.

Resource

involvement

Case The absolute and relative number of distinct

resources executing activities in each case.

Resource

involvement

Resource The absolute and relative number of cases in

which each resource is involved.

Resource

involvement

Resource-

activity

The absolute and relative number of cases in

which each resource-activity combination is

involved.

Resource

specialisation

Log The summary statistics of the number of dis-

tinct activities executed per resource on the

level of the entire event log.

Resource

specialisation

Case The summary statistics of the number of dis-

tinct activities executed per resource on the

level of each case.

Resource

specialisation

Activity The absolute and relative number of distinct

resources that execute each activity in the en-

tire event log.

Resource

specialisation

Resource The absolute and relative number of distinct

activities that each resource executes in the

entire event log.
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Batch organisation of work

identification algorithm

Algorithm 1 BOWI-algorithm: pseudocode

Input: eventLog : an event log (list of complex objects representing events),

controlFlowNotion: knowledge on the prior activity that is executed for a case to sup-

port (when required) arrival event imputation, tolerances: time tolerances for sequential

batch processing

Output: a: activity log with batching information (list of complex objects representing

activity instances)

1: eventLog ← addArrivalEvents(eventLog , controlFlowNotion)

.imputes (when required) arrival events using knowledge on the prior activity executed

for a case

2: a ← convertToActivityLog(eventLog)

.creates activity instances by mapping corresponding events

3: a ← sortActivityLog(a)

.sort rows in activity log based on variables in following order: activity, resource, start

timestamp and complete timestamp

4: a ← removeImmediateRework(a)

.removes immediate rework from activity log

5: batchNumber ← 1

.initialise value - instances in a batch will have the same batchNumber
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6: a[1].batchNr ← batchNumber .initialise batchNumber value for first instance in activity

log

7: firstCaseStart ← a[1].start

.initialise value representing the start timestamp of the first case of a potential batch

8: tol ← getTolerance(tolerances, a[1].activity, a[1].resource)

.determines sequential batch proc.time tolerance for particular resource-activity combina-

tion

9: n ← numberOfRows(a) .number of rows in activity log

10: for i = 2 to n do

11: currentActivity ← a[i].activity .activity of instance under analysis

12: priorActivity ← a[i− 1].activity .activity of prior instance in a

13: currentResource ← a[i].resource

14: priorResource ← a[i− 1].resource

15: currentArrival ← a[i].arrival

16: currentStart ← a[i].start

17: priorStart ← a[i− 1].start

18: currentComplete ← a[i].complete

19: priorComplete ← a[i− 1].complete

20: priorBatchType ← a[i− 1].batchType .batch type to which the prior case belongs

21: if currentActivity == priorActivity and

22: currentResource == priorResource then

23: if currentStart == priorStart and .simultaneous batch processing

24: currentComplete == priorComplete and

25: priorBatchType is empty or simultaneous then

26: a[i].batchNumber ← batchNumber

27: a[i].batchType← simultaneous

28: if a[i− 1].batchType is empty then

29: a[i− 1].batchType← simultaneous

30: end if

31: else if currentStart ≥ priorStart and .concurrent batch processing

32: currentStart < priorComplete and

33: currentComplete 6= priorComplete and

34: priorBatchType is empty or concurrent then

35: a[i].batchNumber ← batchNumber

36: a[i].batchType← concurrent

37: if a[i− 1].batchType is empty then

38: a[i− 1].batchType← concurrent

39: end if



Appendix C 229

40: else if currentStart ≥ priorComplete and .sequential batch processing

41: currentStart ≤ priorComplete + tol and

42: currentArrival ≤ firstCaseStart and

43: !resourceActive(a, currentResource, priorComplete, currentStart) and

44: priorBatchType is empty or sequential then

45: a[i].batchNumber ← batchNumber

46: a[i].batchType← sequential

47: if a[i− 1].batchType is empty then

48: a[i− 1].batchType← sequential

49: end if

50: else .start a new batch

51: batchNumber ← batchNumber + 1

52: a[i].batchNumber ← batchNumber

53: firstCaseStart ← currentStart

54: end if

55: else .subsequent instances belong to different resource-activity combination

56: batchNumber ← batchNumber + 1

57: a[i].batchNumber ← batchNumber

58: firstCaseStart ← currentStart

59: tol ← getTolerance(tolerances, currentActivity , currentResource)

.adjust tolerance

60: end if

61: end for

62: return a .returns activity log enriched with batching information
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Samenvatting

Organisaties bestaan tegenwoordig uit een groot aantal processen die soms sterk

met elkaar verweven zijn. Hierdoor is het moeilijk om een goed overzicht te krijgen

van de verschillende gegevensstromen, activiteiten en actoren in het proces. Boven-

dien evolueren nieuwe technologieën en klantenverwachtingen sneller dan ooit, waar-

door bedrijven ernaar streven om hun processen en werkwijzen voortdurend aan te

passen en te verbeteren. Om mee te gaan met veranderende omgevingen en situaties

moeten bedrijfsprocessen continu gemonitord worden en moeten bedrijven proces-

analysemethoden en verbeterteams inzetten. Het concept van continue verbetering is

gerelateerd aan methodologieën zoals lean management, Six Sigma, business process

improvement (BPI) en total quality management (TQM).

Lean management is vooral gericht op vermindering van verspilling, waaronder

elemementen zoals overproductie, wachttijden, overbodige bewerkingen, vertragingen

of batchverwerking vallen. De vermindering van deze verspilling kan worden ge-

operationaliseerd door de identificatie en analyse van de waardenstroom van een

bedrijf, welke aangeeft dat enkel activiteiten uitgevoerd worden die werkelijk waarde

toevoegen voor de klant van het bedrijf. Six Sigma daarentegen is meer gericht op de

kwaliteit van de bedrijfsprocessen en heeft als doel het minimaliseren van het aantal

fouten en defecten in het proces, om zo variantie te voorkomen en de algehele kwaliteit

van de organisatie te verbeteren. De bekendste verbeteringsmethode binnen Six Sigma

is de DMAIC-cyclus, welke staat voor define, measure, analyse, improve en control.

Naast lean management en Six Sigma, is de theory of constraints een andere be-

kende verbeteringsmethodologie, die meer gericht is op het detecteren en verwijderen

van beperkingen of knelpunten in bedrijfsprocessen. Hoewel deze methoden en tech-

nieken al vele jaren worden toegepast in het bedrijfsleven, zijn ze minder bruikbaar in

de steeds sneller veranderende omgevingen waarin dienstenbedrijven actief zijn. Veel

van deze operational excellence-technieken zijn ook gebaseerd op voornamelijk kwali-

tatieve en “papier-en-pen”-benaderingen, wat impliceert dat de resultaten van deze
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methoden, en de beslissingen die genomen worden op basis van deze resultaten, sub-

jectief kunnen zijn en afhankelijk van de persoon die de analyses uitvoert. Bovendien

zijn de meeste studies in de literatuur gericht op de toepassing van methodologieën

zoals lean management en Six Sigma in productieomgevingen en zijn dienstgerichte

ondernemingen tot nu toe minder overtuigd van het gebruik van deze methodolo-

gieën binnen hun organisatie, meestal omwille van de meer veranderlijke omgeving en

omstandigheden.

Vanuit dit opzicht wordt process mining gezien als een potentieel hulpmiddel op

het gebied van operational excellence, omdat het zich richt op de analyse van bedrijfs-

processen om inzicht te krijgen in de activiteitenstromen van een bedrijf en deze

overeenkomstig te verbeteren. Process mining verwijst naar het vergaren van ken-

nis uit gegevens over de uitvoer van processen, die worden opgeslagen in zogenaamde

event logs. Het omvat hoofdzakelijk drie types, nl. (i) discovery, of het ontdekken van

procesmodellen uit event logs, (ii) compliance checking, of het opvolgen en vergelijken

van de ontdekte procesmodellen met de onderliggende event logs en (iii) enhance-

ment, of het verbeteren van de processen. Event logs zijn het startpunt van een

process mining-project en zijn samengesteld uit gegevens die verzameld worden door

informatiesystemen zoals enterprise resource planning systems. Elke rij in een event

log beschrijft een bepaalde gebeurtenis in het proces, zoals de start van het inboeken

van een bepaalde factuur door een bepaalde medewerker, of het moment waarop een

bepaalde taak wordt afgehandeld voor een specifieke klant. Een breed gamma aan al-

goritmes werd reeds ontwikkeld om procesmodellen te creëren op basis van event logs

maar deze algoritmes zijn meestal gebaseerd op parameters en veronderstellingen die

door de procesanalist gekozen worden om de analyse te vereenvoudigen. Aangezien

de modellen die gebouwd worden aan de hand van deze algoritmes daardoor mogelijk

te specifiek of te algemeen zijn om het werkelijke gedrag in een bedrijfsproces te weer-

spiegelen, omvat de definitie van process mining in dit proefschrift ook het ophalen

van kennis uit event logs zonder de nood aan een tussenliggend procesmodel.

Gezien het potentieel van process mining in het domein van operational excel-

lence is verder onderzoek rond dit topic vereist. Bestaande onderzoeksinspanningen

lijken bovendien beperkt en het is in de huidige literatuur ook niet altijd duidelijk hoe

bestaande technieken gebruikt worden om de analyse en optimalisatie van bedrijfs-

procesprestaties te ondersteunen.

Bestaande operational excellence-technieken vereisen dus meer data-gebaseerde

analyses om meer objectieve en effectieve beslissingen te kunnen nemen. Process

mining is een veelbelovend domein om deze technieken te ondersteunen, maar is nog

te vaak gericht op het creëren van procesmodellen. Daarom behandelt dit proef-
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schrift twee doelstellingen om na te gaan hoe process mining kan toegepast worden

op bedrijfsprocessen om bestaande operational excellence-technieken te ondersteunen.

De eerste doelstelling omvat het onderzoek van het huidige probleem om zo een

overzicht te creëren van de vereisten van het artefact dat nodig is om het probleem

op te lossen. Hiertoe wordt eerst een literatuurstudie uitgevoerd van zowel opera-

tional excellence als van bestaande onderzoeksinspanningen van process mining in

het domein van operational excellence. De bevindingen uit dit literatuuroverzicht

worden vervolgens aangevuld met de bevindingen uit een lijst van interviews met

bedrijfsexperten om na te gaan of de vereisten en behoeften bevestigd worden door

ervaringsdeskundigen.

Op basis van de vereisten van het gewenste artefact wordt de tweede doelstelling

van dit proefschrift uitgevoerd, waarin het gewenste artefact daadwerkelijk ontwikkeld

wordt. Uit het probleemonderzoek op basis van literatuur en bedrijfsexperten blijkt

dat er nood is aan een lijst van metrieken die rechtstreeks gebruik maken van de

gegevens in een event log, zonder tussenliggend procesmodel. De lijst van inzichten

die uit een event log geleerd kunnen worden, ter ondersteuning van het verbeteren

van de prestaties van een bedrijfsproces, omvat elementen zoals de identificatie van

verspilling, herhaling, batchverwerking, variantie en activiteiten die geen waarde toe-

voegen aan het proces. De metrieken die ontwikkeld worden in dit proefschrift spelen

in op deze elementen en geven bijgevolg inzicht in de prestaties van een bedrijfs-

proces. Bovendien blijkt uit het onderzoek dat de gewenste metrieken op verschillende

analyseniveaus nodig zijn, en dat niet enkel de metriek duidelijk en onbetwistbaar om-

schreven moet worden, maar ook de achterliggende berekeningen en de vereisten van

de onderliggende data. Ten slotte benadrukken de bedrijfsexperten dat een geschikte

visuele ondersteuning van de metrieken een meerwaarde zou betekenen voor de analyse

van de processen.

Vertrekkende van deze vereisten, wordt een lijst van op event log data-gebaseerde

metrieken voorgesteld, welke een bedrijf inzicht geven in het gedrag in een event

log. De voorgestelde metrieken zijn gestructureerd op basis van twee categorieën

van procesprestatiemaatstaven waarop gefocust moet worden in een bedrijfsproces-

verbeteringsproject. Deze categorieën zijn tijd en structuur. De metrieken kunnen

berekend worden op verschillende analyseniveaus, zoals het logniveau, caseniveau,

traceniveau, activiteitniveau, resourceniveau en op het niveau van specifieke resource-

activiteitcombinaties. Bovendien spelen ze in op verschillende aspecten van opera-

tional excellence zoals batchverwerking, vermindering van verspilling, herhaling en

het verwijderen van activiteiten die geen waarde toevoegen. Ten slotte kunnen de

voorgestelde metrieken ook op een objectieve manier ingezet worden om verschillende
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event logs met elkaar te vergelijken op vlak van verschillende aspecten van proces-

prestaties.

De metrieken bezorgen procesanalisten dus een beeld van het huidige proces-

gedrag en zijn bovendien allemaal gëımplementeerd in het R-pakket edeaR, waardoor

ze eenvoudig toepasbaar zijn op elke event log. Om de metrieken waardevoller en

toegankelijker te maken voor mensen uit het bedrijfsleven, is bovendien een dashboard

met visualisaties van elke metriek ontwikkeld en voorgesteld. Naast de visualisaties

bevat het dashboard ook filters om meer specifieke analyses uit te voeren en zo meer

inzicht te krijgen in verschillende aspecten van de bedrijfsprocessen.

De metrieken van de tijdsdimensie meten de doorlooptijd, de daadwerkelijke

verwerkingstijd en de wachttijd op verschillende analyseniveaus om inzicht te krijgen

in bijvoorbeeld de duur van de cases en activiteiten. Op basis van deze statistieken

kunnen aanvullende operational excellence-concepten zoals het aantal openstaande

cases en knelpunten in een bedrijfsproces worden berekend.

Variabiliteit is gedefinieerd als een van de belangrijkste oorzaken van verspilling

binnen een bedrijfsproces, aangezien het ervoor zorgt dat een proces afwijkt van

het gewenste gedrag. Aangezien variabiliteit of ongestructureerd gedrag echter niet

altijd geëlimineerd moet worden, is het belangrijk dat een organisatie leert welke

soorten van ongestructureerd gedrag voorkomen in het proces dat men analyseert. Om

hierin meer inzicht te krijgen, worden verschillende klassen van metrieken ontwikkeld

met betrekking tot de structuur van bedrijfsprocessen, nl. variantie-, herhalings-, en

organisatorische- of resourcegerelateerde metrieken. De metrieken omtrent variantie

omvatten metingen voor het berekenen van onder andere het aantal en de lengte

van traces, de aanwezigheid van start- en eindactiviteiten in het proces en de trace

coverage in een bedrijfsproces. Herhalingsmetrieken berekenen het aantal keer dat

bepaalde activiteiten herhaald worden binnen eenzelfde case, door dezelfde of door

een andere resource. Er wordt ook een onderscheid gemaakt tussen self-loops waarbij

de activiteiten die herhaald worden meteen op elkaar volgen, en repetitions, waar-

bij de uitvoering van een andere activiteit plaatsvindt tussen de voorkomens van de

activiteit die herhaald wordt binnen een case. Deze metrieken omtrent herhalingen

geven organisaties een inzicht in welke activiteiten herhaaldelijk worden uitgevoerd,

welke resources betrokken zijn bij deze herhalingen en hoe vaak de activiteiten her-

haald worden wanneer ze zich voordoen in een self-loop of repetition. De organi-

satorische metrieken die in dit proefschrift ontwikkeld worden, hebben betrekking

op de verschillende aspecten van het procesgedrag met betrekking tot de resources,

die worden gedefinieerd als de werknemers die in het proces werken, of de software-

systemen of machines die activiteiten uitvoeren. Deze metrieken berekenen de fre-
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quentie waarop resources activiteiten uitvoeren binnen het proces, de betrokkenheid

van de resources in het proces en de specialisatie van de resources. Opnieuw kunnen

deze metrieken op verschillende analyseniveaus uitgevoerd worden en kunnen ze or-

ganisaties ondersteunen om bijvoorbeeld een overzicht te krijgen van de kennisdeling

binnen het proces of voor het toewijzen van werknemers aan taken.

Inzicht krijgen in het gedrag van resources en de hoeveelheid tijd die ze “verspillen”

binnen een proces kan erg interessant zijn voor bedrijven die hun bedrijfsprocessen

wensen te optimaliseren. Gerelateerd hieraan zijn de metrieken omtrent batch-

verwerking, waarbij resources activiteiten uitvoeren van twee of meerdere cases op

hetzelfde of bijna hetzelfde moment. Hiertoe worden ten eerste drie types van batch-

verwerking gedefinieerd en geformaliseerd in dit proefschrift. Op basis van deze defini-

ties wordt vervolgens een algoritme ontwikkeld om kennis over batchverwerking te

verzamelen uit event logs. Indien bepaalde cases voldoen aan de voorwaarden van

een bepaald batchverwerkingstype, groepeert het algoritme ze in een set. Deze sets

van cases worden vervolgens gebruikt om de grootte van de batch te berekenen en om

batchverwerkingsmetrieken te berekenen, zoals de duur en de wachttijd van activi-

teiten in een batch. Deze metrieken en het algoritme worden geëvalueerd op zowel

artificiële als op event logs van reële bedrijfsprocessen.

Na het ontwikkelen van de metrieken volgens de vooropgestelde vereisten, omvat

de evaluatiefase de evaluatie van de metrieken met betrekking tot deze vereisten. Alle

metrieken worden toegepast op zowel een artificiële event log als op een event log van

een reëel bedrijfsproces van een Belgisch nutsbedrijf. Uit deze toepassing kan gecon-

cludeerd worden dat de voorgestelde metrieken een duidelijk beeld geven van het

huidige procesgedrag, zonder de nood aan of de invloed van onderliggende algoritmes

of assumpties. Bovendien kan uit deze analyse afgeleid worden dat verschillende

groepen van event logs gemakkelijker en correcter vergeleken en geanalyseerd kunnen

worden, zowel over de tijd heen als op basis van bepaalde caseattributen zoals de

regio of de vestiging van de organisatie. Daarnaast laat de case study ook zien dat

de toegepaste metrieken enkele belangrijke operational excellence-principes onder-

steunen. Eerst en vooral worden verschillende principes van lean management omtrent

verspillingvermindering ondersteund met de metrieken. Metrieken zoals de doorloop-

tijd of metrieken met betrekking tot herhaling geven de organisatie inzicht in welke

stappen in het proces en welke eigenschappen van producten of diensten waarde toe-

voegen, en welke gëıdentificeerd kunnen worden als verspilling. Daarnaast kunnen

onderbrekingen of knelpunten in het proces verminderd worden door de activiteiten

die geen waarde toevoegen, zoals herhalingen of batchverwerking, te verwijderen.

Een ander principe van lean management dat ondersteund wordt, is het streven naar
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perfectie en continue verbetering, aangezien de toepassing van de metrieken eenvoudig

herhaalbaar is door de organisatie. Omdat de meeste bestaande lean management-

technieken eerder kwalitatief zijn, zijn de gepresenteerde metrieken een waardevolle

kwantitatieve en objectieve aanvulling op de bestaande technieken.

De metrieken met betrekking tot het aantal procesvarianten of traces en de

herhalingsmetrieken zijn voorbeelden van metrieken die de Six Sigma-filosofie onder-

steunen, door de focus op de vermindering van variabiliteit in bedrijfsprocessen waar-

door gebreken en fouten geminimaliseerd worden. Ook de resourcemetrieken die de

variantie van resources meten, zijn gericht op de optimalisatie van de werklast en de

specialisatie van resources door te analyseren waar variantie plaatsvindt.

De voorgestelde metrieken zijn echter slechts methoden om het gedrag in event

logs te analyseren. Ze bieden een objectieve analyse van bedrijfsprocessen, maar ze

leveren niet de bijhorende interpretatie voor de procesanalisten. Deze interpretaties,

en de resulterende verbeterstappen die genomen kunnen worden om de variantie en

verspilling te verminderen en zodoende het proces te verbeteren, zijn stappen die de

organisaties zelf moeten nemen op basis van de geleverde analyses in dit proefschrift.


