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Abstract

Two anisotropic stress-based gradient-enhanced damage models are proposed to address the issue
of spurious damage growth typical of continuous standard gradient-enhanced damage models.
Both models are based on a decreasing interaction length upon decreasing stresses and do not
require additional model parameters or extra degrees of freedom when compared to standard
gradient-enhanced models. It is observed that with the proposed models damage spreading is
significantly reduced due to the occurrence of non-physical oscillations in the nonlocal strain
field near the strain localization band. Model improvements to eliminate these strain oscillations
upon vanishing length scale values are proposed. The capability of the models and their patched
versions to correctly simulate damage initiation and propagation is investigated by means of
mode-I failure, shear band and four-point bending tests.

Keywords: gradient-enhanced damage, anisotropic damage, quasi-brittle failure, transient
length scale

1. Introduction

Using a nonlocal model for modeling damage in quasi-brittle materials, either in its original
integral form [1] or its differential, gradient-enhanced form [2], solves the well-known mesh-
dependency issue of local damage models where strains tend to localize in the smallest element
of the discretization [3]. However, it has been reported that these nonlocal models may introduce
other issues such as an initiation of damage at a wrong location and the artificial spreading
of damage [4, 5]. In this paper, we present a class of gradient-enhanced damage models that
addresses these unwanted phenomena by employing an anisotropic, stress-dependent nonlocal
interaction kernel.

The key feature of the proposed models lies in the use of a transient length scale and thus a
decreasing nonlocal activity when stresses decrease. The idea of using a transient length scale
or, equivalently, a transient gradient activity parameter in gradient-enhanced damage models was
already proposed by Geers et al. [4] who employed a strain-based formulation requiring an addi-
tional set of degrees of freedom compared to the standard model (their model was reformulated

∗Corresponding author.
E-mail address: bram.vandoren@uhasselt.be (Bram Vandoren).
Preprint submitted to Computer Methods in Applied Mechanics and Engineering December 31, 2017



by Saroukhani et al. [6] to avoid the extra set of degrees of freedom). Geers et al. [7] also inves-
tigated the use of a damage-based length scale, a proposition that was picked up very recently by
Poh and Sun [8], who developed a phenomenological model motivated by the micromorphic the-
ory. The idea of incorporating a transient length scale in integral nonlocal models was proposed
by Pijaudier-Cabot et al. [9] and, more recently, by Nguyen [10] with a mixed local-nonlocal
formulation. All these transient nonlocal damage models use an isotropic nonlocal interaction
domain.

Bažant [11] proposed an integral nonlocal model with an anisotropic interaction kernel with
constant length scale in which the principal stress directions govern the shape of the nonlocal
averaging domain. Bažant’s model, physically motivated by the fact that nonlocal microcrack in-
teractions occur according to the direction of the dominant microcrack, was subsequently refined
by Giry et al. [12] by including a transient length scale, allowing for nonlocal interactions to
cancel when stresses decrease. A gradient-enhanced variant of this principal stress-based model,
presented in Section 3, shares the same properties as the integral version, as demonstrated by
the numerical examples in Section 5: damage initiates at the correct location and its artificial
spreading is significantly reduced; unphysical oscillations may however arise when the length
scale in one ore more directions becomes too small with respect to the size of the discretization.
As investigated in their article, Giry et al. [12] indicated that this phenomenon can be mitigated
by means of a lower bound for the length scale to keep nonlocal interaction at a minimum (this
is actually done by adopting a minimum value of the length scale related to the discretization).

For the transient gradient-enhanced damage models, the use and definition of such a mini-
mum length scale (or its maximum value to avoid nonlocal interactions) or, more specifically, its
relation with the finite element discretization, has received little to no attention. Only Saroukhani
et al. [6] mentioned that to avoid nonlocal interactions in the isotropic strain-based model at the
beginning of a simulation it was empirically found that a gradient parameter smaller than the
square of the distance between any two integration points should be used. In Section 4 of this
work, we address the use of such a residual length scale in more detail and derive element size-
specific lower bounds that correspond to an exact ‘local mode’ of the gradient-enhanced damage
model. It will be shown that adopting values below these lower bounds will, analogously to the
nonlocal integral model, result in mesh-dependent solution field oscillations that, although of un-
physical nature, may help in delaying spurious damage growth by ‘diking’ the main localization
band. However, even when adopting this numerical lower bound on the length scale, the principal
stress-based model still suffers from tortuous force-displacement responses for shear-dominant
failure problems, an issue also observed in the nonlocal integral version of the model [12]. An
improved anisotropic stress-based gradient-enhanced model is therefore proposed here to solve
this issue: an equivalent stress-based model in which the degree of nonlocal interaction does not
depend on the magnitude of the principal stresses but depends on an equivalent stress measure
linked to the employed material model.

In both anisotropic stress-based gradient models, anisotropy is incorporated by means of a
tensorial gradient activity parameter instead of a scalar parameter, an idea also exploited by Wu et
al. [13] who employed an anisotropic but constant definition of the interaction kernel to account
for the underlying microstructure of composites. For the sake of readability, the mathematical
formulation and algorithmic treatment (finite element discretization and consistent linearization)
of both models are reported in the appendix.
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2. Local and isotropic gradient-enhanced damage models

2.1. Local damage models
The concept of damage mechanics provides a phenomenological description of stiffness

degradation in softening materials through the constitutive relation

σ = Cs : ε (1)

between stresses σ and strains ε, where Cs is a secant stiffness tensor that depends on one or
more scalar damage variables ranging between zero (no damage) and one (full damage). The
simplest damage-based constitutive relation,

σ = (1 − ω) Ce : ε (2)

where Ce is the elastic stiffness tensor, involves only one damage variable ω and represents the
isotropic case. More complex tensorial damage models, such as anisotropic models characterized
by a directional dependence of damage evolution in which, e.g., the shear stiffness degrades less
rapidly than the normal stiffness, may involve multiple damage variables ωi.

In essence, most damage models are characterized by two main ingredients: a scalar measure
for the strain state (i.e., an equivalent strain εeq) and a damage evolution law that governs the
decay rate of the load-carrying capacity of the material. In this work, the equivalent strain is
described by the modified von Mises model

εeq =
k − 1

2k (1 − 2ν)
I1,ε +

1
2k

√(
k − 1

1 − 2ν
I1,ε

)2

+
12k

(1 + ν)2 J2,ε (3)

in which the first strain invariant I1,ε is calculated according to

I1,ε = εxx + εyy + εzz , (4)

and the second deviatoric strain invariant J2,ε is expressed as

J2,ε =
1
6

((
εxx − εyy

)2
+

(
εyy − εzz

)2
+

(
εzz − εxx

)2
)
+ ε2

xy + ε
2
yz + ε

2
zx (5)

where εxy = γxy/2, εyz = γyz/2, and εzx = γzx/2. It is noted that for plane stress conditions
εzz = −ν

(
εxx + εyy

)
/ (1 − ν). In (3), ν is the Poisson’s ratio and the parameter k = fc/ ft is

defined as the ratio between the compressive strength fc and tensile strength ft of the material.
Damage growth is described by an evolution law that, in this contribution, takes the form of the
exponential law

ω = 1 − κ0
κ

(
1 − α + αe−β(κ−κ0)

)
(6)

in which the history parameter κ stores the largest value of the local equivalent strain εeq the
material (i.e., an integration point) has ever experienced. The material parameters α and β in (6)
are calibrated by experimental tests and define, respectively, the residual stress of the softening
branch of the stress-strain curve and the fracture toughness. Damage initiates as soon as the
threshold strain value κ0 has been exceeded and grows according to the Kuhn–Tucker conditions

f ≤ 0 , κ̇ ≥ 0 , f κ̇ = 0 , (7)
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where the damage loading function
f = εeq − κ (8)

verifies if the material undergoes loading ( f > 0) or unloading ( f < 0). In the numerical
examples in this contribution, the damage threshold

κ0 =
ft
E
, (9)

where E is the Young’s modulus of the material.

2.2. Isotropic gradient-enhanced damage models with a constant length scale

From the formulation of the constitutive model described in the previous section, it is obvious
that this model acts locally, i.e., at integration point level and without any interaction among
neighboring integration points. Nonlocal averaging techniques can be used to avoid the well-
known dependence of the numerical solution from the spatial discretization [3]. The gradient-
enhanced damage model proposed by Peerlings et al. [2] can be considered as an approximated
differential formulation of the nonlocal damage model by Pijaudier-Cabot and Bažant [1]. This
differential formulation regularizes the solution field by defining a nonlocal equivalent strain in
the implicit expression

ε̃eq − c∇2ε̃eq = εeq (10)

in which the gradient parameter c = 1
2 l2, function of the internal length scale l, governs the size

of the isotropic, spherical averaging (or interaction) zone, and ∇2 is the Laplacian operator. The
nonlocal equivalent strain ε̃eq now acts as the damage-driving parameter and thus replaces the
local equivalent strain εeq in the damage loading function (8):

f = ε̃eq − κ . (11)

Nonlocal interaction—in fact: diffusion but the former term will also be used in this paper when
referring to diffusion—takes place at the global (structural) level, in which the diffusion equa-
tion (10) and equilibrium equation (neglecting body forces)

∇ · σ = 0 , (12)

with ∇· denoting the divergence vector operator, are simultaneously solved [2]. This model will
be referred to as the ‘standard model’ in the remainder of this paper.

2.3. Isotropic gradient-enhanced damage models with a transient length scale

It was observed that gradient-enhanced damage formulations with a constant gradient param-
eter c exhibit spurious damage growth in the final stages of failure [4, 5]. To alleviate this issue,
Geers et al. [4] proposed the use of the transient gradient parameter

ζ
(
εeq

)
=


c
(
εeq

εeq,ζ

)nζ
if εeq ≤ εeq,ζ

c if εeq > εeq,ζ

, (13)

that replaces c in the diffusion equation (10). In (13), εeq,ζ and nζ are model parameters. Since
this strain-based transient-gradient damage model requires an additional continuity equation, and
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consequently an extra degree of freedom per node, Saroukhani et al. [6] proposed a simplified
implementation of the model by dividing the transient diffusion equation by ζ , 0, resulting in

ε̃eq

ζ
− ∇2ε̃eq =

εeq

ζ
. (14)

As an alternative to strain-based models, the degree of nonlocality can also be related to
the stress level, as will be investigated in the next section, or the amount of damage ω, either
directly [7] or using a damage-based parameter inspired by micromorphics [8]. In the latter
model, the second term in (10) is multiplied by the scaling parameter

s =
(1 − R) exp(−ηω) + R − exp(−η)

1 − exp(−η) , (15)

where η is a model parameter and R allows for residual nonlocal interaction when the damage pa-
rameter approaches unity. In these transient models, the averaging (i.e., gradient) term becomes
less important upon damage accumulation, similar to the more recent phase-field models for co-
hesive fracture [14], leading to physically more acceptable damage profiles when compared to
models with a constant length scale.

3. Anisotropic stress-based gradient-enhanced models

As an alternative to a strain-based transient gradient-enhanced damage approach, a stress-
based model can be formulated in line with the stress-based nonlocal damage model proposed
by Giry et al. [12]. In contrast with the models mentioned in the previous section, the spatial
diffusive behavior is no longer isotropic but governed by an anisotropic interaction kernel that
depends on the stress state at a given material point. Anisotropy is introduced in the gradient-
enhanced damage model by means of the anisotropic generalization of the original diffusion
equation (10) (modified Helmholtz’s equation):

ε̃eq − ∇ ·
(
c∇ε̃eq

)
= εeq . (16)

The original scalar gradient parameter c is thus replaced by a second order tensor c that is, in a
two-dimensional framework, represented by the symmetric anisotropic gradient matrix

c =
[
cxx cxy

cxy cxy

]
. (17)

Nonlocal averaging is no longer performed over an isotropic, circular area but according to an
ellipse with size, shape, and orientation governed by the components of c. This can be demon-
strated by examining the nonlocal equivalent strain fields ε̃eq of the radially-loaded perforated
disc in Figure 1. Under the same loading conditions, a change of the gradient parameters leads to
an anisotropic localization behavior of the nonlocal equivalent strains. When using the modified
diffusion equation (16), the isotropic case can be retrieved by setting

c = cc =

[
c 0
0 c

]
. (18)

In this contribution, two anisotropic models, based on principal stresses and nonlocal equivalent
stress, are proposed. Other definitions of the anisotropic length scale tensor c can also be devised,
e.g., based on the microstructure of the material [15].
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cxx = cyy ; cxy = 0 cxx = 2cyy ; cxy = 0

cxy = 1
3 cxx = 1

3 cyy cxy = − 1
3 cxx = − 1

3 cyy

u

ε̃eq,min ε̃eq,max

Figure 1: Qualitative representation of the influence of the components of the gradient matrix c on the
nonlocal equivalent strains in a radially-loaded disc. The inner edge of the disc has been constrained
whereas a radial displacement u has been applied to the outer edge.
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3.1. Anisotropic model based on principal stresses

In this model, which can be regarded as the differential nonlocal counterpart of the integral
nonlocal anisotropic model proposed by Giry et al. [12], the anisotropic gradient matrix c is
expressed as

c = cσ = R
[
c1 0
0 c2

]
RT (19)

in which

c1 = c
(
σ1

ft

)2

and c2 = c
(
σ2

ft

)2

(20)

are function of the principal stresses

σ1,2 =
σxx + σyy

2
±

√(σxx − σyy

2

)2
+ τxy

2 . (21)

The rotation matrix

R =
[
cos θp − sin θp
sin θp cos θp

]
, (22)

and the principal angle

θp =
1
2

tan−1
(

2τxy

σxx − σyy

)
. (23)

The components of c can thus be expressed as

cxx = c1 cos2 θp + c2 sin2 θp , (24)

cyy = c1 sin2 θp + c2 cos2 θp , (25)

and
cxy = cyx = (c1 − c2) cos θp sin θp . (26)

To avoid algorithmic difficulties when calculating principal angles close to 90◦, these expressions
are rewritten as

cxx =
c

ft2
(
σ2

xx + τ
2
xy

)
, (27)

cyy =
c
ft2

(
σ2

yy + τ
2
xy

)
, (28)

and
cxy =

c
ft2
τxy

(
σxx + σyy

)
(29)

as demonstrated in Appendix A.
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3.2. Anisotropic model based on equivalent stress
A characteristic of the anisotropic model presented in the previous section is that the size of

the averaging volume is independent of whether there are tensile or compressive stresses acting
at a certain material point. For example, cxx = c and cyy = cxy = 0 mm2 for these two uniaxial
stress states: {σxx, σyy, τxy} = { ft, 0, 0} N/mm2 and {σxx, σyy, τxy} = {− ft, 0, 0} N/mm2. This
implies that, even if the material model (3) does penalize tensile states more than compressive
states via the factor k, the diffusion behavior makes no distinction between compressive and
tensile stresses. Therefore, a new definition of the anisotropic gradient matrix

c = cσ̃ = s c cσ,norm (30)

is proposed in which s = σ̃eq/ ft is a scaling factor ranging between zero and one that takes
into account the employed material model through the equivalent stress measure σ̃eq, defined
next, and cσ,norm is the normalized cσ from the principal stress-based model (Equation (19)). The
largest singular value norm has been employed for the evaluation of cσ,norm, i.e., each component
is divided by the largest eigenvalue of cσ, which is in this case the product of the square of the
largest principal stress and c/ f 2

t , resulting in

cσ,norm =

[
cxx,norm cxy,norm
cxy,norm cyy,norm

]
(31)

with

cxx,norm =
σ2

xx + τ
2
xy

max
(
σ1

2, σ2
2) , (32)

cyy,norm =
σ2

yy + τ
2
xy

max
(
σ1

2, σ2
2) , (33)

and

cxy,norm =
τxy

(
σxx + σyy

)

max
(
σ1

2, σ2
2) . (34)

When comparing the definitions of cσ and cσ̃, it can be noticed that both tensors (and the stress
tensor σ) are coaxial, and cσ and cσ̃ are a scalar multiple of each other through the relation

cσ̃ =
σ̃eq ft

max
(
σ1

2, σ2
2)cσ . (35)

The meaning of the definition of cσ̃ (30) can be described as follows: in this model the anisotropy,
i.e., the shape of the interaction kernel, is governed by the stress state through cσ,norm, whereas
the size of the interaction kernel is governed by the ratio between nonlocal equivalent stress and
tensile strength through s. The matrix cσ,norm can thus be considered as a ‘unit ellipse’ that is
scaled by s = σ̃eq/ ft in which the nonlocal equivalent stress

σ̃eq = (1 − ω) Eε̃eq (36)

is energetically conjugate to the nonlocal equivalent strain ε̃eq. Due to the nature of the consti-
tutive behavior (7), σ̃eq in (36) will never exceed the tensile strength ft. Indeed, by recalling the
definition of the damage threshold (9), the scalar s can also be rewritten as

s = (1 − ω)
ε̃eq

κ0
. (37)
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cmin
cσ̃

cc
s · cc

Figure 2: Graphical representation of the anisotropic nonlocal equivalent stress-based damage model. The
outer circle (in red, denoted by cc) represents the isotropic interaction kernel of the standard model, ex-
pressed by (18). This averaging volume is subsequently scaled by the factor s (circle in gray). Finally,
anisotropy is introduced by incorporating the stress state (Equation (30)), resulting in the interaction vol-
ume denoted by cσ̃ (in green). The ellipse in blue (cmin) represents the lower bound of the averaging volume
that guarantees non-oscillatory nonlocal behavior for a given triangular element (with integration points
marked by red asterisks) as discussed in Section 4.

in which the product (1 − ω) ε̃eq will never be larger than the damage threshold κ0.
Figure 2 provides a graphical representation of this model, where cc denotes the isotropic

interaction volume governed by the gradient parameter c in Equation (18) that is subsequently
scaled by the scaling factor s in Equation(37) (gray circle) upon a decreasing nonlocal equivalent
stress. The inscribed green ellipse, tagged by cσ̃, represents the final, anisotropic averaging
volume, calculated according to (30). The ellipse tagged by cmin indicates the lower bound of
the interaction volume that guarantees nonlocal behavior for a given triangular finite element, as
will be further discussed in Section 4.

The proposed definition of the gradient matrix (30) offers a more general framework to in-
corporate anisotropy in existing transient isotropic gradient-enhanced damage models. Indeed,
the scaling factor s can also be related to other quantities, such as a damage parameter derived
from micromorphics [8] (Equation (15)) or other phenomenological approaches [7], as discussed
in Section 2.3. Note however that a damage evolution law with residual stress, such as the ex-
ponential law (6) with α < 1, necessitates a dedicated evolution law for the scaling factor s
to completely cancel nonlocal interactions upon strain localization. As it can be observed when
combining Equations (6) and (37), s will approach 1−α when strains localize, still allowing non-
local interactions since the gradient matrix c does not vanish from the diffusion equation (16).
To overcome this issue in a simple way, the scalar damage parameter ω in (37) can be replaced
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Figure 3: Shear band test: Geometry and boundary conditions. The weak zone contains elements with a
reduced damage threshold.

by an alternative scalar ωs that obeys its separate evolution law

ωs = 1 − κ0
κ

e−βs(κ−κ0) , (38)

obtained by setting α = 1 in the damage evolution law (6). The parameter βs governs the decay
rate of the amount of nonlocal interactions.

Both stress-based models are discretized and linearized using standard techniques as shown
in Appendix B.

3.3. Model performance: Shear band problem
The performance of the stress-based models is evaluated through the simulation of a rect-

angular plate subjected to a compressive load (Figure 3). The plate is discretized using three
structured meshes containing 7200, 11,400 and 16,200 triangular elements (only the top half is
modeled). The nonlocal equivalent strain and displacement fields are interpolated using linear
(T3) and quadratic (T6) interpolants, respectively, to avoid stress oscillations caused by using the
same interpolation order for both fields. Plane strain conditions are assumed, Young’s modulus
E = 20,000 N/mm2, Poisson’s ratio ν = 0.2, and a gradient parameter c = 2 mm2 have been
adopted. The softening behavior is governed by the exponential damage evolution law (6) with
parameters α = 0.99 and β = 100. Damage initiates after the von Mises equivalent strain, with
k = 1 in Equation (3), exceeds the threshold κ0 = 0.0001. As indicated in Figure 3, a weak
zone (κ0 = 0.00005) is inserted to introduce damage on the left-hand side. The loading response
may be characterized by snap-backs and is therefore traced using an energy-release control algo-
rithm [16].

This problem is often considered to highlight a major flaw of the standard gradient-enhanced
damage model: the shear band is not stationary. This is clearly an artifact of the model as
experimental evidence (see, e.g., References [17, 18] and references therein) indicates that shear
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Figure 4: Shear band test: Force-displacement curves for the original (standard), principal stress-based
(σ1,2), and nonlocal equivalent stress-based (σ̃eq) model (7200 elements).

bands are stationary: once a shear band forms, the deformation increases in a delimited and
stationary band.

Figure 4 shows that the use of the stress-based models results in a more brittle response when
compared to the standard model. Since these results are obtained using the same model param-
eters (α, β, c) and they influence the fracture properties, their recalibration, which is beyond the
scope of this work, is deemed necessary when the same structural response is desired. The prin-
cipal stress-based model gives also rise to a very tortuous force-displacement curve, as evident
from Figure 5. This phenomenon was also observed in the stress-based integral nonlocal dam-
age model by Giry et al. [12] (Figure 13 (a) in their manuscript): the larger the mesh size, the
smoother the force-displacement curve. As can be noticed from Figure 6, this behavior is absent
in case of the nonlocal equivalent stress-based model.

When comparing the evolution of the damage fields in Figure 7, both stress-based models do
not suffer from damage spreading, even at high deformations levels (imposed top displacement of
1 mm). The standard model, on the other hand, suffers from unphysical spreading of the damage
field, after a shear band has been formed (left column of snapshots in Figure 7). At first sight, the
stress-based models thus seem to solve the damage spreading issue encountered with the standard
model. However, when inspecting the (normalized) nonlocal equivalent strain fields in Figure 8,
which is the quantity that drives damage evolution through the loading function (11), it can be
noticed that these fields suffer from unphysical oscillations at higher deformation levels and even
include negative values, as can be seen from a slice plot in Figure 9. These negative values
will prevent damage from spreading, at least initially, since the damage loading function (11)
becomes negative. Damage spreading is thus limited in an artificial way: the oscillations ‘dike’
the main localization band, reducing the spurious spreading of damage.

The occurrence of this oscillatory behavior, investigated in more detail in the next section,
is caused by a vanishing gradient (length scale) parameter. This can also be observed by setting
c = 0 mm2 in the standard model (10): the nonlocal equivalent strain fields in Figure 10 suffer
from severe oscillations, suggesting that a lower bound has to be defined for the gradient pa-
rameter to avoid these unphysical artifacts. The oscillations and corresponding diking effect are
thus not only an intrinsic issue of stress-based models: any transient gradient-enhanced model

11
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Figure 5: Shear band test using the principal stress-based model: Force-displacement curves for various
mesh sizes.
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Figure 6: Shear band test using the nonlocal equivalent stress-based model: Force-displacement curves for
various mesh sizes.
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ω0 1

standard model σ1,2-based model σ̃eq-based model

u = 0.01 mm

u = 0.05 mm

u = 1.0 mm

Figure 7: Shear band test: Evolution of the damage fields for the original and stress-based models (7200
elements; the first snapshot displays the employed mesh).
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u = 0.05 mm
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Figure 8: Shear band test: Evolution of the normalized nonlocal equivalent strain fields for the original and
stress-based models (7200 elements). Figure 9 shows the normalized nonlocal equivalent strain along the
dashed line.
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Figure 9: Shear band test using the principal stress-based model (top-displacement of u = 0.1 mm): Nor-
malized nonlocal equivalent strains along the vertical center line of the specimen.
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Figure 10: Shear band test using the standard model with c = 0 mm2: Evolution of the damage (left
column) and normalized nonlocal equivalent strain fields (right column). The specimen is modeled using
7200 triangular elements.
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with a vanishing length scale may also suffer from this behavior, although the severity of the
oscillations depends on the chosen model parameters and, evidently, the chosen mesh size. The
transient model by Poh and Sun [8], for instance, which can be expressed by (30) with cσ,norm = I
and a scaling parameter s given by (15), also suffers from this artificial diking effect if the pa-
rameters R, which governs the amount of residual nonlocal interaction, c and the mesh resolution
are chosen inappropriately. With R = 0.005, c = 2 mm2 and a Cartesian mesh consisting of
14,400 quadrilateral elements, the model leads to oscillations but only minor damage spreading,
as depicted by Figure 11 and the slice plot in Figure 14. If the gradient parameter is changed
to c = 9 mm2, implying a residual gradient parameter c R = 0.045 mm2, the oscillations are
absent but spreading of damage is more pronounced as can be noticed from Figure 11. On the
other hand, when c = 9 mm2 and R = 0.001 (residual gradient parameter equal to 0.009 mm2),
Figures 13 and 14 indicate that oscillations are present again, yet spreading of damage is less pro-
nounced. The force-displacement curves in Figure 15 show the influence of the chosen model
parameters on the structural response: when using a gradient parameter c = 9 mm2, a lower resid-
ual R results in a more brittle behavior. On the other hand, when the same residual R = 0.005 is
used, a lower c will, as expected, lead to a more brittle response since damage and consequently
the amount of dissipated energy is confined to a smaller volume (this can also be observed when
comparing the width of the damage fields in Figures 11 and 12.)

From these observations, it is clear that there exists a relation between the minimum length
scale, the employed mesh size and the potential occurrence of oscillations. In the next section,
a finite element-size specific lower bound of the gradient parameter is derived that sets the limit
between oscillatory and nonlocal smoothing behavior.

4. Oscillation-free stress-based gradient-enhanced damage models

As observed in the previous section, the use of a transient length scale in gradient-enhanced
damage models may result in numerical issues when this quantity becomes too small with respect
to the mesh size. For nonlocal integral models, this issue was also noted by Giry et al. in their
stress-based model [12], as they proposed the use of a minimum length scale equal to the square
root of the finite element area to avoid spurious oscillations in the solution fields. To the best
of the authors’ knowledge, an exact element size-dependent limit on the length scale, which
leads to either oscillatory, nonlocal or local behavior, has not been established yet for gradient-
enhanced damage models. Only Saroukhani et al. [6] found empirically that, for the strain-based
gradient-enhanced model by Geers et al. [4], the gradient parameter should remain larger than
the square of the distance between any two integration points to avoid nonlocal interactions at
the beginning of a simulation. Next, values for c (for one-dimensional problems) and c (for
two-dimensional problems) are derived that can be considered as a lower bound below which
unphysical oscillations take place.

4.1. One-dimensional case

The influence of the choice of the value of c with respect to the mesh size is investigated by
observing the localization behavior of a truss loaded by a tensile load (Figure 16). To this end, a
rather coarse mesh is used: eight 1.25 mm-long elements in the central part with a reduced cross-
section area of 9 mm2, and 72 elements of equal length elsewhere (cross-section area 10 mm2).
The displacement field is approximated using quadratic shape functions (three nodes per ele-
ment), whereas the nonlocal equivalent strain field is approximated using linear shape functions

16



ω ε̃eq/κ00 1 0 1

u = 0.1 mm

u = 1.0 mm

Figure 11: Shear band test using the micromorphics-based model by Poh and Sun [8] using model parame-
ters c = 2 mm2 and R = 0.005: Evolution of the damage (left column) and normalized nonlocal equivalent
strain fields (right column). Figure 14 shows the values along the dashed line. The specimen is modeled
using 14,400 quadrilateral elements.
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ω ε̃eq/κ00 1 0 1

u = 0.1 mm

u = 1.0 mm

Figure 12: Shear band test using the micromorphics-based model by Poh and Sun [8] using model parame-
ters c = 9 mm2 and R = 0.005: Evolution of the damage (left column) and normalized nonlocal equivalent
strain fields (right column). Figure 14 shows the values along the dashed line. The specimen is modeled
using 14,400 quadrilateral elements.
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ω ε̃eq/κ00 1 0 1

u = 0.1 mm

u = 1.0 mm

Figure 13: Shear band test using the micromorphics-based model by Poh and Sun [8] using model parame-
ters c = 9 mm2 and R = 0.001: Evolution of the damage (left column) and normalized nonlocal equivalent
strain fields (right column). Figure 14 shows the values along the dashed line. The specimen is modeled
using 14,400 quadrilateral elements.
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Figure 14: Shear band test using the micromorphics-based model by Poh and Sun [8] (top-displacement of
u = 0.1 mm): Normalized nonlocal equivalent strains along the vertical center line of the specimen.
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Figure 15: Shear band test using the micromorphics-based model by Poh and Sun [8]: Force-displacement
curves for three sets of model parameters (14,400 elements).
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Figure 16: One-dimensional localization test: Geometry and boundary conditions.
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Figure 17: One-dimensional localization test (end-displacement of u = 0.0005 mm): Overshooting behavior
of the nonlocal equivalent strain field when c = 1 mm2.

(two nodes per element). When the nonlocal equivalent strain exceeds the damage threshold
κ0 = 0.0001, the softening behavior is governed by the linear damage evolution law

ω = 1 − κ0
κ

κc − κ
κc − κ0 (39)

in which κc = 0.0125 denotes the critical value of the nonlocal equivalent strain at which ω = 1.
The gradient parameter c = 1 mm2 is scaled according to the one-dimensional version of the
principal stress-based model presented in Section 3.1 so that the scaling factor

s =
(
σ

ft

)2

, (40)

where the tensile strength ft = Eκ0 and σ represents the normal stress in the truss, with the
Young’s modulus E = 20,000 N/mm2.

The bar is loaded using a displacement-controlled incremental-iterative scheme (step size
u = 0.0005 mm) that switches to energy release control [16] (tolerated dissipated energy per
increment Etol = 0.002 Nmm) after encountering a snap-back point along the force-displacement
curve. The first increment (with end-displacement u = 0.0005 mm) corresponds to a normal
stress of σ = 0.1099 N/mm2 in the part with reduced cross-section and σ = 0.0989 N/mm2

elsewhere. Using the definition of the scaling factor s (40), the corresponding scaled gradient
parameters cs are equal to 0.0030 mm2 and 0.0024 mm2, respectively. These values appear to
be too small for the current discretization since, even though the material is still in its elastic
phase, the discontinuous character of the local equivalent strain in combination with a low stress
value will lead to an oscillatory overshooting behavior in the nonlocal equivalent strain field as
shown in Figure 17. When the same model is used with a gradient parameter c = 1000 mm2,
the respective scaled gradient parameters are 3.0 mm2 and 2.4 mm2, canceling the oscillations
in the nonlocal equivalent strain field as shown in Figure 18. This value of c seems unphysically
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Figure 18: One-dimensional localization test (end-displacement of u = 0.0005 mm): Correct smoothing
behavior of the nonlocal equivalent strain field when c = 1000 mm2.

large since it corresponds to a length scale of 44 mm, almost half the length of the specimen.
However, since the scaling factor depends on the square of the normal stress, which is very small
in the first load step, the scaled gradient parameter cs = s c will be small as well.

From a mathematical point of view, the crucial difference between both values of c appears
to be in the occurrence of positive off-diagonal terms in the element stiffness matrix

Kεε =
∫

Ω

(
NT
εNε + BT

εcsBε
)

dΩ (41)

that governs the diffusion behavior in which Nε is a matrix containing the finite element shape
functions that interpolate the nodal values of the nonlocal equivalent strains, and Bε = ∇Nε
with ∇ the gradient operator (the reader is referred to Appendix B for the derivation of this ma-
trix). As long as these off-diagonal terms are negative, nonlocal smoothing is preserved whereas
positive off-diagonal terms lead to oscillations in the solution field of ε̃eq. The turning point
between smoothing and oscillatory behavior is thus determined by a value of cs that leads to
zero off-diagonal terms in Kεε, yielding therefore a diagonalized or lumped matrix. From a
physical point of view, using a diagonalized Kεε implies that there no longer exists a direct in-
teraction between the nonlocal equivalent strain degrees of freedom (i.e., the element follows a
local behavior). This fact illustrates one of the key differences between integral nonlocal and
implicit gradient-enhanced damage models discretized using finite elements: in the former type
of models, nonlocal interaction occurs at the integration point level of the finite elements through
nonlocal integral averaging whereas in gradient-enhanced models the nonlocal interaction takes
place at the nodal (degree of freedom) level through a diffusion equation. It should thus be
emphasized that this oscillatory behavior is not a flaw of the model itself but rather a spurious
feature caused by the discretization technique.

When inspecting the expression of Kεε in (41), it can be noticed that the only term that can
cause positive off-diagonal entries is NT

εNε. More specifically, for a two-node finite element,
the shape function matrix Nε = [0.5(1 − r) 0.5(1 + r)] with the local element coordinate r ∈
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{−1, 1}, resulting in

NT
εNε = 0.25

[
(1 − r)2 1 − r2

1 − r2 (1 + r)2

]
. (42)

This matrix can be considered as a pseudo-mass matrix [19, 20]. Since r2 will be always smaller
than one (unless a nodal integration scheme is employed), the off-diagonal terms remain positive.
The other term in Kεε, the diffusivity matrix

BT
ε csBε = cs

[
lel
−2 −lel

−2

−lel
−2 lel

−2

]
, (43)

with lel the finite element length, will always contain negative off-diagonal terms. To suppress the
off-diagonal terms in Kεε, thus canceling nonlocal or nodal interaction from a numerical point of
view, an exact value of the gradient parameter cs can be derived that compensates for the positive
off-diagonal term in NT

εNε:

cmin =
1
6

lel
2 , (44)

in which a two-point Gauss quadrature is assumed (r = ±1/
√

3). Taking into account that c =
1
2 l2 [2], this minimum value of the gradient parameter corresponds to a minimum (or residual)
length scale

lmin =
1√
3

lel (45)

that is, coincidentally, equal to the distance between the integration points. It can be concluded
that, although the strong form of the implicit gradient-enhanced damage model (10) indicates
that local behavior is retrieved when the gradient parameter equals zero, local behavior of the
discretized weak form is only recovered with a non-null value of cs. Using cs = 0 will indeed
cancel the diffusivity matrix BT

ε csBε but not the pseudo-mass matrix NT
εNε, resulting in positive

off-diagonal terms in Kεε, causing oscillations in the solution field of ε̃eq. Furthermore, when
cs = 0, the equality ε̃eq = εeq is only satisfied in a weak sense (see Equation (B.2)).

It should be noted that a diagonalized system matrix Kεε can also be obtained by using a
reduced two-point nodal integration scheme for the two-node truss elements. This scheme will
generate a diagonal pseudo-mass matrix NT

εNε (42) since r equals either 1 or −1. Alternatively,
this matrix can be replaced by its diagonally lumped version diag (0.5(1 − r) 0.5(1 + r)). This
corresponds to using piecewise constant shape functions that are however no longer consistent
with those used to generate Bε in the diffusivity term (43). The use of such an inconsistent
pseudo-mass matrix is not preferred here since it may result in a lower rate of convergence with
respect to mesh refinement as shown by the blue force-displacement curves in Figure 19: the
standard model with a lumped pseudo-mass matrix yields a ‘higher’ force-displacement curve
than the model with consistent pseudo-mass matrix with the same number of elements.

Figure 20 shows the local and nonlocal equivalent strain fields at the first load increment
when the lower bound of cs is limited to cmin in (44). Both fields coincide but at the discontinuity
in the cross-section where ε̃eq is C0 continuous since it is interpolated using C0-continuous finite
elements. The local strain field is discontinuous because of the C0 continuity of the displace-
ments, allowing for jumps in the strain field. In other words, when cs is set to cmin, smoothing or
nonlocal averaging does no longer take place at the global level but is restricted to a neighboring-
element level: a jump of the local equivalent strain between two adjacent elements will result in
an averaged value of the nonlocal equivalent strain field at the element boundary, as indicated

23



0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

u (mm)

F
(N

)

standard model
standard model (lumped pseudo-mass matrix)
no lower bound on c
lower bound on c

Figure 19: One-dimensional localization test using 80 elements: Force-displacement curves for the standard
model with consistent (solid blue) and lumped (dashed blue) pseudo-mass matrix, and the stress-based
model with (red) and without (black) a lower bound on cs. The circles refer to the nonlocal equivalent strain
fields displayed in Figures 23 and 24.
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Figure 20: One-dimensional localization test (end-displacement u = 0.0005 mm): Local behavior of the
nonlocal equivalent strain field when the gradient parameter equals cmin.

by ε̃eq,nodal in the close-up in Figure 21. Since cmin is an element-specific value, this phenonenon
also holds for non-uniform meshes as demonstrated in Figure 22, in which the number of ele-
ments in the part with the reduced cross-section has been doubled. This inherent property of the
piecewise continuous nonlocal equivalent strain field may still lead to spreading of damage, even
when nonlocal interaction is fully canceled, since a situation may occur where the interpolated
value of the nonlocal equivalent strain (indicated by ε̃eq,IP in Figure 21), which drives the dam-
age through the loading function (11), becomes higher than the damage threshold κ0, whereas the
local equivalent strain (εeq,IP in Figure 21) would not lead to damage since εeq,IP < κ0 < ε̃eq,IP.
Indeed, when setting cs = cmin (or cs = 0, as argued above), ε̃eq,IP will never match its local
counterpart in the elements surrounding a local strain field discontinuity because of the differ-
ence in continuity order of both fields, leading to damage initiation in a neighboring element
when εeq,IP < κ0 < ε̃eq,IP, This leads to a lower element stiffness in that element, in turn result-
ing into a higher local equivalent strain and ultimately leading to a higher nonlocal equivalent
strain and, again, to the increase of damage. In this way, the element next to a local strain
discontinuity ‘infects’ its neighbor, leading to the spreading of damage, even when nonlocal in-
teraction is canceled. A clear distinction should thus be made between this ‘continuity spreading’
phenomenon, which is related to the discretization (and interpolation) technique, and ‘diffusion
spreading’, caused by a nonzero value of the gradient parameter c. In a finite element method
context, continuity spreading can be postponed by making use of finer meshes or completely
canceled by introducing a discontinuity in the nonlocal strain field or in both problem fields as
proposed by Simone et al. [21]. The phenomenon is further investigated in a numerical example
in Section 4.3.

When no lower bound on cs is used, the nonlocal equivalent strain artifacts just discussed
also arise in the final stages of the inelastic regime, when damage accumulates and the stresses
tend to zero, leading to a vanishing scaling factor s and scaled gradient parameter cs. This is
illustrated in Figure 23 that depicts the nonlocal equivalent strain fields of the final time steps
indicated in the force-displacement curve in Figure 19 (in black). When cs is limited to cmin, no
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Figure 21: One-dimensional localization test (end-displacement u = 0.0005 mm): Local behavior of the
nonlocal equivalent strain field when the gradient parameter equals cmin (close-up at the strain discontinuity
on the left-hand side). The position of the integration points is marked by an asterisk. The vertical gray
lines represent element boundaries.
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Figure 22: One-dimensional localization test using a non-uniform mesh (end-displacement u =

0.0005 mm): Local behavior of the nonlocal equivalent strain field when the gradient parameter equals
cmin (close-up at the strain discontinuity on the left-hand side). The position of the integration points is
marked by an asterisk. The vertical gray lines represent element boundaries.
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Figure 23: One-dimensional localization test: Nonlocal equivalent strain fields in the final stages of the
simulation where cs is not limited.

oscillations are present as can be observed from Figure 24, yet leading to a less brittle response
as can be noticed from the red force-displacement curve in Figure 19.

Finally, it is worth noting that the use of a lumped system matrix to avoid oscillations in
the solution is a common technique in other fields where transient and dynamic phenomena
are modeled, such as water [22, 23] and heat [24, 25] flow. If a consistent non-diagonalized
mass matrix is used for modeling these dynamic processes, positive off-diagonal terms and thus
oscillations appear when the so-called discrete maximum principle is violated [26, 27]. This
principle imposes a minimum time step size in the dynamic analysis that is apparently analogous
to the use of a minimum length scale in the transient gradient-enhanced damage model.

4.2. Generalization to two dimensions

From the one-dimensional case in the previous section it was found that oscillations and
nonlocal smoothing can be prevented by setting the off-diagonal terms in Kεε to zero. In the
same way, for two-dimensional analyses, exact minimum values of cxx, cyy and cxy can be derived
for three-node triangular (T3) elements since

Kεε =


k1,1 sym.
k2,1 k2,2

k3,1 k3,2 k3,3

 (46)

contains only three different off-diagonal terms. When a three-point Gauss integration quadrature
rule is used and cmin is kept equal for all the integration points, the following non-zero values for
cxx, cyy and cxy yield zero off-diagonal terms:

cxx,min =
1
6

(
x1

2 + x2
2 + x3

2 − x1x2 − x2x3 − x3x1

)
(47)

cyy,min =
1
6

(
y1

2 + y2
2 + y3

2 − y1y2 − y2y3 − y3y1

)
(48)
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Figure 24: One-dimensional localization test: Nonlocal equivalent strain fields in the final stages of the
simulation where cs is limited to cmin.

and

cxy,min =
1
6

(x1y1 + x2y2 + x3y3) − 1
12

(x1y2 + x1y3 + x2y1 + x2y3 + x3y1 + x3y2) (49)

in which (xi,yi) are the global coordinates of the finite element nodes. The meaning of these
terms can be illustrated graphically: as mentioned in Section 3, these terms correspond to the
shape and orientation of an ellipse with equation

(x − xm)2
(
A1 cos2 θe + A2 sin2 θe

)
+ (y − ym)2

(
A1 sin2 θe + A2 cos2 θe

)

+ 2 (x − xm) (y − ym) cos θe sin θe (A1 − A2) = 1 (50)

where the principal angle, which governs the orientation of the ellipse, is calculated according to

θe =
1
2

tan−1
(

2cxy,min

cxx,min − cyy,min

)
, (51)

xm and ym are the center of the ellipse, and the two factors

A1 =
1

l1,min
2 and A2 =

1
l2,min

2 (52)

are defined by the principal axes lengths l1,min =
√

2c1,min and l2,min =
√

2c2,min, where c1,min and
c2,min are the eigenvalues of cmin. Figure 25 provides a graphical interpretation of this minimum
interaction ellipse cmin for various triangular finite element geometries, where the ellipses are
centered at the finite element centroids. If the ellipse is centered at the integration points, as
in Figure 26, all three ellipses pass through the other integration points of the element; this is
analogous to what was observed in the one-dimensional case in the previous section (lmin was
exactly the distance between the integration points).
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Figure 25: Graphical representation of cmin for various finite element shapes. The ellipses are centered at
the finite element centroids.

Figure 26: Graphical representation of cmin, where the ellipses are centered at the three Gauss integration
points.
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Although the value of cmin given by Equations (47)-(49) will result in zero off-diagonal en-
tries in the element stiffness matrix Kεε, it will not lead to vanishing off-diagonal entries in the
individual integration point stiffness matrices Kεε,IP1, Kεε,IP2, and Kεε,IP3 as only the weighted
sum of the off-diagonal terms will be zero. Appendix C reports the expressions of cmin,IP that
satisfy the vanishing off-diagonal term condition for each integration point individually.

In general, the off-diagonal terms do not become positive simultaneously during an analysis,
leading to the question when an integration point (or finite element) should switch to a ‘local’
cmin. Numerical experience indicated that if c is set to cmin when only one off-diagonal term be-
comes positive, nonlocal interaction is canceled too soon, leading to classical issues encountered
with local damage models such as mesh-dependency of strain localization. On the other hand, if
c is set to cmin when only all three unique off-diagonal terms become positive, oscillations in the
solution fields still take place. Therefore, a modified c′min is constructed that only turns positive
off-diagonal terms to 0 (or a small negative residual ρ as explained later), while the other off-
diagonal keep their original, negative value. More specifically, when evaluating the signs of the
off-diagonal terms ki, j of an integration point stiffness matrix, which has the format expressed
by (46), it can be observed that eight combinations exist for the sign of the three off-diagonal
terms ki, j (all ki, j negative, all ki, j positive, k2,1 positive whereas k3,1 and k3,2 negative, etc. ),
leading to eight unique corresponding values of c′min. For example, when during an analysis a
certain value of c (calculated according to (19) or (30)) leads to a positive k3,2 and a negative k2,1

and k3,1, unique values for c′xx,min, c′yy,min and c′xy,min can be found that ensure k′3,2 = 0, k′2,1 = k2,1

and k′3,2 = k3,2, where a prime symbol indicates the modified or ‘filtered’ value. The inequality

ki, j = pi, jcxx + qi, jcyy + ri, jcxy + si, j ≤ ρ , (53)

is checked for each off-diagonal term in every integration point and during every Newton-Raphson
iteration. The factors are listed in Appendix D, and the residual ρ allows for a minimal nonlocal
interaction between the nonlocal equivalent strain degrees of freedom at nodes i and j. Setting
ρ = 0 will completely cancel nonlocal interaction but may lead to tortuous loading behavior in
case of the principal stress-based model, as demonstrated in the example below. Indeed, even
though oscillations in the nonlocal equivalent strain field are avoided by keeping the off-diagonal
terms negative or zero, it has been observed that elements go into ‘local mode’ too early, lead-
ing to bifurcation behavior when damage grows, manifested by a saw-tooth force-displacement
curve.

When ρ = 0 and all three unique off-diagonal terms are positive, c′min will be equal to cmin,
therefore setting all three terms to zero. It can be understood that this specific value of cmin

effectively result in a fully lumped matrix Kεε where no coupling terms and consequently no
interaction exists between the nonlocal equivalent strain degrees of freedom. In the case of, e.g.,
four-node quadrilateral elements, no combination of cxx,min, cyy,min and cxy,min exists that can-
cels all six unique off-diagonal terms in Kεε. Therefore, a diagonalized matrix can directly be
computed using, for instance, a diagonally compensated reduction of positive off-diagonal en-
tries [28]. When a positive off-diagonal term is detected in Kee,IP, this term is collapsed, i.e., set
to zero and added to the corresponding diagonal entry. Unfortunately, this ‘direct’ manipulation
of the stiffness matrix does not allow for a consistent linearization that is necessary to main-
tain quadratic convergence of the Newton-Raphson solution algorithm. However, the procedure
described above leads to the filtered matrix

K′εε =
∫

Ω

(
NT
εNε + BT

εc
′
minBε

)
dΩ (54)
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Figure 27: Shear band test: Evolution of the damage (left column) and normalized nonlocal equivalent
strain fields (central column) for the patched principal stress-based model with ρ = 0 (7200 elements).
When comparing the normalized nonlocal equivalent strain fields with those from the unpatched model
(right column), all field oscillations are canceled.

for T3 elements; the matrix contains no positive off-diagonal terms and can be easily linearized
since an exact value of c′min and its dependency on the solution fields u and ε̃eq exists, allowing

for the evaluation of the derivative terms ∂c
′
min
∂u and ∂c

′
min
∂ε̃eq

(see Appendix B).

4.3. Model performance: Shear band problem

The patched models, developed in the previous section, are again applied to the shear band
problem introduced in Section 3.3. The same meshes and material parameters are employed.
When using the patched stress-based model with residual parameter ρ = 0 (thus canceling all off-
diagonal terms when the length scale becomes too small), it can be seen from the central column
of the snapshots in Figure 27 that the nonlocal strain field does not show any oscillations when
compared with the unpatched version of the model (right column). Oscillations are thus canceled,
while still reducing the spreading of the damage band, as can be noticed from the damage fields
in the left column of the figure. The force-displacement curves in Figure 28, however, still
suffers from a tortuous character when using finer meshes, indicating that the solution fields lack
sufficient smoothness. It appears that, using a principal stress-based definition of the transient
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Figure 28: Shear band test using the patched principal stress-based model with ρ = 0: Force-displacement
curves for various mesh sizes.

gradient parameter (Equation (19)), nonlocal interaction is canceled too early, causing typical
bifurcation phenomena where the algorithm has difficulties in choosing in which finite element
strain localization should occur. This tortuous behavior can be mitigated either by using a non-
zero residual interaction parameter ρ, allowing for residual nonlocal interaction, or by resorting
to the nonlocal equivalent stress-based model, where the transient gradient parameter is more
at pace with the damage-driving parameter. Indeed, for shear-dominant failure, the principal-
stress based model cancels nonlocal interaction too soon with respect to the damage-driving
parameter ε̃eq that depends on the definition of the equivalent strain. This can be demonstrated
when comparing the evolutions of the damage, expressed by (6), and the gradient parameters,
defined by Equations (27)-(29). Figure 29 indicates that for a pure shear state (εxx = εyy = 0,
εxy , 0) and using the material parameters k = 1, κ0 = 0.0001, and ν = 0, the diffusive behavior,
reflected by the ratio cxx/c = cyy/c (cxy equals zero), is much smaller than in case of a pure tensile
state (εxy = εyy = 0, εxx , 0). On the other hand, the nonlocal equivalent stress-based model
will always lead to the same scaling parameter s = cxx/c = cyy/c for a given damage value,
regardless of the strain (or stress) state. This observation speaks in favour of using the nonlocal
equivalent stress-based model, since it goes hand-in-hand with the employed definition of the
equivalent strain. Figure 30 shows that the patched version of this model does not show any
oscillations when compared with the unpatched version, and significant damage spreading does
not take place at higher deformation levels (top displacement of 1.0 mm). In contrast with the
principal stress-based model, the force-displacement curve (Figure 31) has no tortuous character
and shows proper convergence upon mesh refinement. When using the principal stress-based
model with residual interactions, a fully smooth force-displacement curve is obtained when the
residual parameter ρ = −0.1, as depicted in Figure 32, but at the expense of more damage
spreading at the final stages of the simulation (Figure 32). Intermediate values of ρ still lead to
some degree of tortuous response, as indicated by Figures 34 and 35.

Next, the analysis is performed for the special case when c is fixed to cmin during the anal-
ysis. As expected, the model behaves in a local manner and the force-displacement curves in
Figure 36 do not converge upon mesh refinement because less energy is dissipated when using
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Figure 29: Evolution of the damage parameter ω and the amount of nonlocal interaction for pure shear
and pure tensile states, represented by the ratios cxx/c = cyy/c for the principal stress-based model and the
parameter s for the nonlocal equivalent stress-based model.

finer meshes; this is also reflected in the damage profiles in Figure 37: damage remains contained
in a narrower shear band for the finest discretizations. Remarkably, setting c = cmin still leads to
spreading of the damage band at high deformation levels, as can be noticed from the bottom row
of damage fields in Figure 37. Since no direct interaction is possible between nonlocal strains
due to the absence of coupling terms in Kεε, the widening of the damage band is purely caused
by the (piecewise) continuous character of the nonlocal equivalent strain field, as discussed in
Section 4.1: elements exhibiting high strain and thus damage levels can ‘infect’ neighboring el-
ements because the damage-driving, nonlocal equivalent strain levels are averaged between two
adjacent elements. The damage spreading phenomenon can thus not fully be resolved by setting
c to cmin: the inherent continuous character of the nonlocal equivalent strain field will eventually
result in spreading, albeit less significant.

Finally, when using the nonlocal equivalent stress-based model in conjunction with a dedi-
cated evolution law for the nonlocal interaction behavior (38), a very thin damage band can be
achieved, analogous to the transient model by Poh and Sun [8], as was observed in Figures 11-
13. Indeed, by using a very high βs parameter in (38), which differs from the β parameter of the
damage evolution law (6), nonlocal interaction is canceled very rapidly after damage initiates,
as is also the case when using the micromorphics-based scaling parameter expressed by (15).
Figure 40 illustrates this behavior for βs = 10,000 and c = 9 mm2, using the finest discretization
(16,200 elements): the width of the total damage band is comparable to the stress-based models
without a dedicated evolution law for the nonlocal interaction but the region of highly damaged
material is much more concentrated along the shear band. Again, at very large deformation levels
(u = 1 mm, right snapshot in Figure 40), this narrow damage band tends to spread. Moreover,
because the degree of nonlocal interaction is reduced very quickly, the patched model switches
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Figure 30: Shear band test: Evolution of the damage (left column) and normalized nonlocal equivalent
strain fields (central column) for the patched nonlocal equivalent stress-based model with ρ = 0 (7200
elements). When comparing the normalized nonlocal equivalent strain fields with those from the unpatched
model (right column), all field oscillations are canceled.
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Figure 31: Shear band test using the patched nonlocal equivalent stress-based model with ρ = 0: force-
displacement curves for various mesh sizes.

to its ‘local mode’ (c = cmin) in an early stage, resulting in no proper convergence upon mesh
refinement of the force-displacement curves in Figure 38, comparable to what was observed
when setting c = cmin throughout the entire simulation. In case of the unpatched model, the
convergence behavior is improved, as can be noticed from the loading behavior in Figure 39.

5. Further analyses of damage initiation and propagation

5.1. Analysis of damage initiation: Tensile test

In this example, the issue of wrong damage initiation reported by Simone et al. [5] is rein-
vestigated using the stress-based models. The test setup, depicted by Figure 41, consists of a
notched rectangular specimen under tensile loading (elongation of 0.002 mm). The domain is
meshed using 6282 triangular elements with Young’s modulus E = 1000 N/mm2 and Poisson’s
ratio ν = 0. The gradient parameter c = 0.02 mm2 and the modified von Mises material model (3)
is used with k = 10 and κ0 = 0.2. As shown in Figure 42, the standard gradient-enhanced damage
model gives rise to a profile of the nonlocal equivalent strain that does not attain its maximum
at the notch tip even if the local equivalent strain is there unbounded according to linear elastic
fracture mechanics (a similar result [5] is obtained with the integro-differential nonlocal damage
model [1]). Since experimental evidence indicates that in notched specimens made of a quasi-
brittle material a crack initiates at the notch tip [29], this observation about the location of the
maximum of the field driving damage initiation implies that classical nonlocal models, in ei-
ther integro-differential or differential form, lead to physically inconsistent results. In contrast
to the standard gradient-enhanced model, for both stress-based models the peak of the nonlocal
equivalent strain is located at the crack tip, leading to an initiation of damage at the correct lo-
cation. This example also shows the importance of using a lower bound on c: when no lower
bound is used, oscillations and even unphysical negative values arise in the profile of the nonlocal
equivalent strain as shown in Figure 43.
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Figure 32: Shear band test: Evolution of the damage (left column) and normalized nonlocal equivalent
strain fields (central column) for the patched principal stress-based model with ρ = −0.1 (7200 elements).
When comparing the normalized nonlocal equivalent strain fields with those from the unpatched model
(right column), all field oscillations are canceled.
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Figure 33: Shear band test using the patched principal stress-based model with ρ = −0.1: Force-
displacement curves for various mesh sizes.
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Figure 34: Shear band test using the patched principal stress-based model with ρ = −0.01: Force-
displacement curves for various mesh sizes.
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Figure 35: Shear band test using the patched principal stress-based model with ρ = −0.001: Force-
displacement curves for various mesh sizes.
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Figure 36: Shear band test using c = cmin in all elements: Force-displacement curves for various mesh sizes.
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Figure 37: Shear band test using c = cmin in all elements: Damage fields at imposed displacement levels
(0.05 mm and 1.0 mm), for meshes containing 7200 (left column), 11,400 (central column) and 16,200
elements (right column).
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Figure 38: Shear band test using the patched nonlocal equivalent stress-based model with a dedicated
evolution law for the diffusivity activity: Force-displacement curves for various mesh sizes.
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Figure 39: Shear band test using the unpatched nonlocal equivalent stress-based model with a dedicated
evolution law for the diffusivity activity: Force-displacement curves for various mesh sizes.
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Figure 40: Shear band test using the patched nonlocal equivalent stress-based model with a dedicated
evolution law for the diffusivity activity: Evolution of the damage field.
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Figure 41: Compact tension test: Geometry and boundary conditions.
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Figure 42: Compact tension test: Local and nonlocal equivalent strain fields along the horizontal symmetry
line of the specimen.

41



0.4 0.5 0.6
−0.002

0.000

0.002

0.004

0.006

0.008

0.010

x (mm)

ε̃ e
q

(-
)

σ1,2-based model (patched)
σ1,2-based model (unpatched)

Figure 43: Compact tension test using the unpatched and patched principal stress-based model: Nonlocal
equivalent strain fields along the horizontal symmetry line of the specimen. Note that the displayed spatial
range is limited to an interval of 0.2 mm.
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Figure 44: Four-point bending test: Geometry and boundary conditions.

5.2. Analysis of damage propagation: Four-point bending test

As a final example, the stress-based models are used to model a concrete beam under four-
point bending. As depicted in Figure 44, damage is initiated at the midspan of the beam using
a 10 mm notch. Plane stress conditions are assumed with Young’s modulus E = 40,000 N/mm2

and Poisson’s ratio ν = 0.2. A gradient activity parameter c = 4 mm2 has been employed and
the nonlinear material behavior is governed by the modified von Mises damage model presented
in Section 2.1 (κ0 = 0.000075, k = 10, α = 0.92, and β = 300). The model is discretized
using 39,202 triangular elements in which the displacements and nonlocal equivalent strains are
interpolated using quadratic and linear shape functions, respectively. When applying the standard
model to this problem, unphysical damage spreading takes place near the bottom of the specimen,
as can be noticed from Figure 45.

The resulting force-displacement curves in Figure 46 confirm the more brittle behavior of the
proposed models already observed in the previous examples. The curves also show that the load-
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Figure 45: Four-point bending test: Evolution of the damage (left column) and normalized nonlocal equiv-
alent strain fields (right column) for the standard model.

ing behavior of the patched stress-based models does not differ significantly from the unpatched
versions, although the patched versions effectively cancel the nonlocal equivalent strain field
oscillations present in the unpatched versions. In case of the principal stress-based model, for
instance, the nonlocal strain fields in Figure 47 suffer again from oscillations near the localiza-
tion band, whereas these oscillations are not present in case of the unpatched model (Figure 48).
In contrast with the shear band problem in Section 4.3, no residual interaction parameter ρ is
necessary to obtain smooth force-displacement curves; this evidences the conclusion that the
principal stress-based model works better in case of mode-I failure problems, i.e., the transition
to local behavior does not happen prematurely with respect to damage, contrary to the case of
mode-II-dominant failure highlighted in Figure 29. From the evolution of the damage fields in
Figures 47 and 48, it can be concluded that the unpatched principal stress-based model does
not lead to any significant spreading of damage thanks to the aforementioned ‘diking effect’ of
the nonlocal strain field oscillations. On the other hand, the oscillation-free model does show
some minor spreading at high values of the imposed top displacement (bottom left snapshot in
Figure 48).

Finally, in case of the nonlocal equivalent stress-based model, the dedicated evolution law (38)
with βs = β is used for the scaling factor s since the relatively low value of α (= 0.92) would result
in residual nonlocal interactions and thus increase the amount of unphysical damage spreading,
as discussed in Section 3.2. As can be noted from the evolution of s in the right column of the
snapshots in Figure 49, nonlocal interaction (or diffusivity) takes the form of an upward moving
crescent and gets close to one near the crack tip while evolves to zero along a band of localized
strains. Unfortunately, s grows near the bottom of the specimen too, although this does not lead
to any significant spreading of damage as can be noticed from the bottom left snapshot. When
compared with the loading behavior of a model that uses the same evolution law for damage
and nonlocal interaction, the force-displacement curves in Figure 50 indicate that there is little
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Figure 46: Four-point bending test: Force-displacement curves.
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Figure 47: Four-point bending test: Evolution of the damage (left column) and normalized nonlocal equiv-
alent strain fields (right column) for the unpatched principal stress-based model.
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Figure 48: Four-point bending test: Evolution of the damage (left column) and normalized nonlocal equiv-
alent strain fields (right column) for the patched principal stress-based model.

difference between both models.

6. Summary and concluding remarks

The objective representation of strain localization is an essentiality when modeling failure in
quasi-brittle solids. The gradient-enhanced damage model by Peerlings et al. [2] has excellent
regularization properties when modeling strain localization but suffers from some issues such
as unphysical spreading of damage and wrong location of damage initiation. In this paper, two
stress-based transient gradient-enhanced damage models were introduced to alleviate these prob-
lems: a model based on the principal stresses, which was directly inspired by the stress-based
integral nonlocal model by Giry et al. [12], and a nonlocal equivalent stress-based model that
uses a scaling factor related to the adopted nonlocal equivalent strain measure. Both anisotropic
models rely on the reduction of the gradient parameter and thus the amount of nonlocality when
stresses decrease.

It was shown that a vanishing gradient parameter results in oscillations in the damage-driving,
nonlocal equivalent strain field. Although these artifacts may help in avoiding spreading of dam-
age, they are unphysical and mesh size-dependent. Therefore, patched versions of the discretized
stress-based models are developed to introduce a finite element size-dependent minimum value
of the gradient parameter c or gradient matrix c. It has been demonstrated that the patched prin-
cipal stress-based model does not perform well in case of shear-dominant failure and leads to
tortuous force-displacement curves since the degree of nonlocal interaction is too low with re-
spect to the damage level. A principal stress-based model with residual interactions has been
proposed to mitigate this phenomenon, yet it reintroduces the damage spreading issue. The non-
local equivalent stress-based model performs better since the evolution of diffusivity is linked
to the measure of the local equivalent strain that, through the diffusion equation, governs the
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Figure 49: Four-point bending test: Evolution of the damage (left column) and scaling parameter fields
(right column) for the patched nonlocal equivalent stress-based model with dedicated nonlocal interaction
law.
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Figure 50: Four-point bending test: Force-displacement curves for the nonlocal equivalent stress-based
models with and without dedicated nonlocal interaction law.
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damage. The nonlocal equivalent stress-based model, in its general form, can be considered as
a generic anisotropic gradient-enhanced model that can be equipped with a dedicated evolution
law for the nonlocal interaction scaling factor. This is necessary to completely cancel nonlocal
interactions when a damage evolution law that allows for residual stresses is used.

Through the simulation of a notched rectangular specimen loaded under tension, it was
demonstrated that the patched stress-based models lead to a correct location of damage initi-
ation, in contrast with the standard gradient-enhanced damage model where damage initiates
some distance away from the notch tip. The patched models also reduce the amount of unphysi-
cal damage spreading significantly, although spreading still takes place at high loading levels. It
was shown that this spreading is not caused by residual diffusion but by the inherent piecewise
continuous character of the damage-driving nonlocal equivalent strain field: a discrete jump in
the local equivalent strain field over an element border will lead to an averaged value of the non-
local equivalent strain field at that border, even when nodal nonlocal interaction and therefore
diffusion spreading is completely canceled by using a lumped system matrix. This continuity
spreading phenomenon is consequently caused by the employed discretization technique and is
not an inherent feature of the proposed models.
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Appendix A. Principal stress-based model: Simplified expressions for cxx, cyy, and cxy

For the principal stress-based gradient-enhanced damage model, the components of cσ,

cxx = c1 cos2 θp + c2 sin2 θp , (A.1)

cyy = c1 sin2 θp + c2 cos2 θp , (A.2)

and
cxy = cyx = (c1 − c2) cos θp sin θp , (A.3)

can be simplified by considering the trigonometric relations

cos2
(
α

2

)
=

1 + cosα
2

, (A.4)

sin2
(
α

2

)
=

1 − cosα
2

, (A.5)
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2

)
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2
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sinα
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, (A.6)

cos
(
tan−1 x

)
=

1√
1 + x2

, (A.7)

and
sin

(
tan−1 x

)
=

x√
1 + x2

. (A.8)

Combining Equations (A.4)-(A.6) and (A.7)-(A.8) and setting α = tan−1 x yield
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, (A.9)

sin2
(
tan−1 x

2

)
=

1 − 1√
1+x2

2
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and
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2
√

1 + x2
. (A.11)

Replacing x in Equations (A.9)-(A.11) by 2τxy

σxx−σyy
and referring to the expression of the principal

angle (23) result in

cos2 θp =
1
2
+
σxx − σyy

4R
, (A.12)

sin2 θp =
1
2
− σxx − σyy

4R
, (A.13)

and
cos θp sin θp =

τxy

2R
, (A.14)
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in which R =
√(
σxx−σyy

2

)2
+ τxy

2. Inserting Equations (21) and (A.12)-(A.14) into (A.1)-(A.2)
yields, after some algebraic manipulations, the following simplified expressions for the compo-
nents of c:
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2
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, (A.15)
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2
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)
, (A.16)

and
cxy =

c

ft2
τxy

(
σxx + σyy

)
. (A.17)

Appendix B. Finite element discretization and consistent linearization of the stress-based
models

Finite element discretization. The models presented in this work are discretized using a Galerkin
finite element approach. To this end, the strong forms of the equilibrium equation without body
forces (12) and diffusion equation (16) are converted in their respective weak forms,

∫

Ω

wu · (∇ · σ) dΩ = 0 , (B.1)

and ∫

Ω

wεε̃eqdΩ −
∫

Ω

wε
(
∇ ·

(
c∇ε̃eq

))
dΩ =

∫

Ω

wεεeqdΩ , (B.2)

where wu and wε are weight functions, in the domainΩ. Taking into account the identity

wu · (∇ · σ) = ∇ · (wuσ) − (∇wu) : σ (B.3)

and applying Green’s formula, the weak form of the equilibrium equation (B.1) can be restated
as ∫

Ω

(∇wu) : σ dΩ −
∫

Γt

wu · t̄ dΓ = 0 (B.4)

where t̄ = σ · n are the tractions acting on the domain boundary Γt oriented according to the
outward unit normal vector n. Using Green’s formula again, the second term of the left-hand
side in (B.2) can be reformulated as

∫

Ω

wε
(
∇ ·

(
c∇ε̃eq

))
dΩ = −

∫

Ω

(∇wε) ·
(
c∇ε̃eq

)
dΩ +

∫

Γ

wε
(
c∇ε̃eq

)
· ndΓ (B.5)

where Γ = Γu ∪ Γt is the domain boundary composed of a boundary part with imposed displace-
ments Γu and a boundary part with imposed tractions Γt. Combining Equations (B.2) and (B.5)
results in the reworked weak form of the diffusion equation

∫

Ω

wεε̃eqdΩ +
∫

Ω

(∇wε) ·
(
c∇ε̃eq

)
=

∫

Ω

wεεeqdΩ +
∫

Γ

wε
(
c∇ε̃eq

)
· ndΓ . (B.6)

In line with conventional isotropic gradient-enhanced damage models, the natural boundary con-
dition

(
c∇ε̃eq

)
· n = 0 is imposed on Γ so that the boundary integral cancels from the weak form

of the field equation (B.6), resulting in
∫

Ω

wεε̃eqdΩ +
∫

Ω

(∇wε) ·
(
c∇ε̃eq

)
=

∫

Ω

wεεeqdΩ . (B.7)
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This boundary conditions implies that there is no flux of nonlocal equivalent strain through the
boundary Γ.

The weak form of the equilibrium equation (B.4) can be discretized using finite elements by
considering the interpolated value of the displacements

u = Nuu∗ (B.8)

and the corresponding weight functions

wu = Nuw∗u (B.9)

where Nu is a shape function matrix that interpolates the nodal displacements u∗ and w∗u. The
resulting discretized weak form of the equilibrium equation reads, using matrix notation,

∫

Ω

(
w∗u

)T BT
uσdΩ −

∫

Γ

(
w∗u

)T NT
u tdΓ = 0 (B.10)

where Bu is a matrix containing the derivatives of the shape functions in Nu. Since (B.10) must
hold for any arbitrary weight function w∗u, the discretized equilibrium equation becomes

∫

Ω

BT
uσdΩ −

∫

Γ

NT
u tdΓ = 0 . (B.11)

The weak form of the diffusion equation is discretized analogously using the interpolated value
of the nonlocal equivalent strain

ε̃eq = Nεε̃∗eq (B.12)

and its corresponding set of weight functions

wε = Nεw∗ε (B.13)

in which Nε is a matrix containing the finite element shape functions that interpolate the nodal
values of the nonlocal equivalent strains ε̃∗eq and w∗ε. By defining Bε = ∇Nε, the weak form (B.7)
can be rewritten as

∫

Ω

((
w∗ε

)T NT
εNεε̃

∗
eq +

(
w∗ε

)T BT
εcBεε̃∗eq

)
dΩ =

∫

Ω

(
w∗ε

)T NT
ε εeqdΩ (B.14)

holding for any arbitrary weight function w∗ε and therefore yielding
∫

Ω

(
NT
εNεε̃

∗
eq + BT

εcBεε̃∗eq

)
dΩ =

∫

Ω

NT
ε εeqdΩ . (B.15)

Consistent linearization. To achieve a computational efficient and objective procedure for trac-
ing nonlinear material behavior, a consistent linearization should be considered by deriving
proper tangent moduli for the use of these models in incremental-iterative solution algorithms.
Moreover, since c is no longer a constant but depends on the stress field σ that, in turn, depends
on the unknown nodal fields u∗ and ε∗eq, the degree of nonlinearity becomes more complex, mo-
tivating even more the use of proper tangential stiffness matrices. From an implementation point
of view, one might be tempted to simply replace the scalar c in conventional isotropic gradient-
enhanced damage algorithms by the 2 × 2 gradient matrix c and keeping it constant during an
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increment, as done in the M.Sc. thesis of Guido Bongers supervised by the second author and
later reproduced in the isogeometric setting by Thai et al. [30, equation (59)]. This approach
however may lead to step-size dependent analysis results. As examined in the previous section,
there are two coupled field equations that should be simultaneously satisfied:

f = fint − fext =

∫

Ω

BT
uσdΩ −

∫

Γ

NT
u tdΓ = 0 , (B.16)

with σ = CsBuu, and

g =
∫

Ω

(
NT
εNεε̃eq + BT

εcBεε̃eq − NT
εεeq

)
dΩ = 0 . (B.17)

In both equations, the superscript ∗ that refers to nodal quantities has been dropped for clarity. In
a nonlinear material context, displacements u and nonlocal equivalent strains ε̃eq are linearized
at iteration i according to

ui = ui−1 + ∆ui (B.18)

and
ε̃i

eq = ε̃
i−1
eq + ∆ε̃

i
eq (B.19)

in which the corrections ∆ui and ∆ε̃i
eq are the solutions of the coupled system of equations

[
Kuu Kuε

Kεu Kεε

] [
∆ui

∆ε̃i
eq

]
=

[
fext − fi−1

int
−gi−1

]
(B.20)

where the external forces acting on the surface Γ are calculated according to

fext =

∫

Γ

NT
u tdΓ , (B.21)

the internal out-of-balance forces equal

fi−1
int =

∫

Ω

BT
uσ

i−1dΩ , (B.22)

and the out-of-balance right-hand side term related to the equivalent strains, gi−1, is calculated
according to (B.17) using the local and nonlocal equivalent strains from the previous iteration
i − 1. The terms of the Jacobian in (B.20) are expressed as

Kuu =
∂fi−1

int

∂u
, (B.23)

Kuε =
∂fi−1

int

∂ε̃eq
, (B.24)

Kεu =
∂gi−1

∂u
, (B.25)

and

Kεε =
∂gi−1

∂ε̃eq
. (B.26)
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Using the chain rule, these terms are expressed as

Kuu =
∂fi−1

int

∂σ

∂σ

∂ε

∂ε

∂u
=

∫

Ω

BT
u (1 − ω) CBudΩ , (B.27)

Kuε =
∂fi−1

int

∂σ

∂σ

∂ω

∂ω

∂κ

∂κ

∂ε̃eq

∂ε̃eq

∂ε̃eq
= −

∫

Ω

BT
u Cε
∂ω

∂κ

∂κ

∂ε̃eq
NεdΩ , (B.28)

Kεu =
∂gi−1

∂εeq

∂εeq

∂ε

∂ε

∂u
+
∂gi−1

∂c
∂c
∂u
= −

∫

Ω

NT
ε

∂εeq

∂ε
BudΩ +

∫

Ω

BT
ε

∂c
∂u

Bεε̃eqdΩ , (B.29)

and
Kεε =

∫

Ω

(
NT
εNε + BT

ε cBε
)

dΩ +
∫

Ω

BT
ε

∂c
∂ε̃eq

Bεε̃eqdΩ , (B.30)

where it is noted that the second integral terms in the latter two expressions vanish in case of a
constant gradient matrix c. When c is not constant, the partial derivative ∂c

∂u in (B.29) is calculated
as

∂c
∂u
=
∂c
∂σ

∂σ

∂ε

∂ε

∂u
=
∂c
∂σ

(1 − ω) CBu (B.31)

where ∂c
∂σ depends on the definition of the gradient matrix c, i.e., (19) and (30). The term ∂c

∂ε̃eq

in (B.30) is expanded as

∂cσ
∂ε̃eq

=
∂cσ
∂σ

∂σ

∂ω

∂ω

∂κ

∂κ

∂ε̃eq

∂ε̃eq

∂ε̃eq
=
∂cσ
∂σ

(
−Cε
∂ω

∂κ

∂κ

∂ε̃eq
Nε

)
(B.32)

and

∂cσ̃
∂ε̃eq

= cs
∂cσ,norm

∂σ

∂σ

∂ω

∂ω

∂κ

∂κ

∂ε̃eq

∂ε̃eq

∂ε̃eq
+ ccσ,norm

∂s
∂ε̃eq

= cs
∂cσ,norm

∂σ

(
−Cε
∂ω

∂κ

∂κ

∂ε̃eq
Nε

)
+ ccσ,norm

1
κ0

(
(1 − ω) Nε − ∂ω

∂κ

∂κ

∂ε̃eq
Nεε̃eq

) (B.33)

for the principal stress-based and nonlocal equivalent stress-based model, respectively. Due to
their lengthy expressions, the expanded derivatives ∂c

∂σ in (B.31) and (B.32) and ∂cσ,norm

∂σ in (B.33)
are not given here but can be easily computed using a symbolic algebraic software. As discussed
in Section 4, c can be replaced by its filtered value c′min to prevent the appearance of positive
off-diagonal terms in Kεε. In that case, ∂c∂σ is replaced by

∂c′min

∂c
∂c
∂σ

(B.34)

in the expressions above.

Appendix C. Minimum values of cmin,IP for T3 elements integrated using a three-point
Gauss scheme

To cancel the off-diagonal terms in the integration point stiffness matrices Kεε,IP, a unique set
of terms cxx,min,IP, cyy,min,IP, and cxy,min,IP can be derived for a three-node triangular element that
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is numerically integrated using a three-point Gauss quadrature scheme. For the integration point
closest to node (x1, y1) these terms are

cxx,min,IP1 =
1

36

(
8x1

2 + 5x2
2 + 5x3

2 − 8x1x2 − 2x2x3 − 8x3x1

)
, (C.1)

cyy,min,IP1 =
1

36

(
8y1

2 + 5y2
2 + 5y3

2 − 8y1y2 − 2y2y3 − 8y3y1

)
, (C.2)

and

cxy,min,IP1 =
1
36

(8x1y1 + 5x2y2 + 5x3y3 − 4x1y2 − 4x2y1 − x2y3 − x3y2 − 4x1y3 − 4x3y1) , (C.3)

whereas for the integration point closest to the node (x2, y2) the terms of cmin are given by

cxx,min,IP2 =
1

36

(
5x1

2 + 8x2
2 + 5x3

2 − 8x1x2 − 8x2x3 − 2x3x1

)
, (C.4)

cyy,min,IP2 =
1

36

(
5y1

2 + 8y2
2 + 5y3

2 − 8y1y2 − 8y2y3 − 2y3y1

)
, (C.5)

and

cxy,min,IP2 =
1
36

(5x1y1 + 8x2y2 + 5x3y3 − 4x1y2 − 4x2y1 − 4x2y3 − 4x3y2 − x1y3 − x3y1) , (C.6)

and, finally, for the integration point closest to the node (x3, y3) the terms read

cxx,min,IP3 =
1

36

(
5x1

2 + 5x2
2 + 8x3

2 − 2x1x2 − 8x2x3 − 8x3x1

)
, (C.7)

cyy,min,IP3 =
1

36

(
5y1

2 + 5y2
2 + 8y3

2 − 2y1y2 − 8y2y3 − 8y3y1

)
, (C.8)

and

cxy,min,IP3 =
1
36

(5x1y1 + 5x2y2 + 8x3y3 − x1y2 − x2y1 − 4x2y3 − 4x3y2 − 4x1y3 − 4x3y1) . (C.9)

Appendix D. Inequality constants for T3 elements integrated using a three-point Gauss
scheme

At integration point level, the sign evaluation of the three unique off-diagonal terms in the
symmetric element matrix Kεε, expressed by (46), can be considered as a verification of three
inequalities of the form

p2,1cxx + q2,1cyy + r2,1cxy + s2,1 ≤ ρ , (D.1)

p3,1cxx + q3,1cyy + r3,1cxy + s3,1 ≤ ρ , (D.2)

and
p3,2cxx + q3,2cyy + r3,2cxy + s3,2 ≤ ρ , (D.3)

in which the constants pi, j, qi, j, ri, j, and si, j follow from the (integration point dependent) value
of the respective terms of the shape function matrix Nεε and the matrix containing the partial
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derivatives of the shape functions Bεε. For the integration point closest to node (x1, y1) these
terms are:

p2,1 = −(y1 − y3)(y2 − y3) , (D.4)

q2,1 = −(x1 − x3)(x2 − x3) , (D.5)

r2,1 = x1y2 + x2y1 − x1y3 − x3y1 − x2y3 − x3y2 + 2x3y3 , (D.6)

s2,1 =
1
9

(x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2)2 , (D.7)

p3,1 = (y1 − y2)(y2 − y3) , (D.8)

q3,1 = (x1 − x2)(x2 − x3) , (D.9)

r3,1 = x1y3 − x2y1 − x1y2 + 2x2y2 + x3y1 − x2y3 − x3y2 , (D.10)

s3,1 =
1
9

(x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2)2 , (D.11)

p3,2 = −(y1 − y2)(y1 − y3) , (D.12)

q3,2 = −(x1 − x2)(x1 − x3) , (D.13)

r3,2 = 2x1y1 − x1y2 − x1y3 + x2y3 − x3y1 − x2y1 + x3y2 , (D.14)

and
s3,2 =

1
36

(x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2)2 . (D.15)

For the integration point closest to node (x2, y2) the corresponding terms equal

p2,1 = −(y1 − y3)(y2 − y3) , (D.16)

q2,1 = −(x1 − x3)(x2 − x3) , (D.17)

r2,1 = x1y2 + x2y1 − x1y3 − x3y1 − x2y3 − x3y2 + 2x3y3 , (D.18)

s2,1 =
1
9

(x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2)2 , (D.19)

p3,1 = (y1 − y2)(y2 − y3) , (D.20)

q3,1 = (x1 − x2)(x2 − x3) , (D.21)

r3,1 = x1y3 − x2y1 − x1y2 + 2x2y2 + x3y1 − x2y3 − x3y2 , (D.22)

s3,1 =
1

36
(x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2)2 , (D.23)

p3,2 = −(y1 − y2)(y1 − y3) , (D.24)

q3,2 = −(x1 − x2)(x1 − x3) , (D.25)

r3,2 = 2x1y1 − x1y2 − x1y3 + x2y3 − x3y1 − x2y1 + x3y2 , (D.26)

and
s3,2 =

1
9

(x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2)2 , (D.27)
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whereas for the Gauss point closest to node (x3, y3) the constants read

p2,1 = −(y1 − y3)(y2 − y3) , (D.28)

q2,1 = −(x1 − x3)(x2 − x3) , (D.29)

r2,1 = x1y2 + x2y1 − x1y3 − x3y1 − x2y3 − x3y2 + 2x3y3 , (D.30)

s2,1 =
1

36
(x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2)2 , (D.31)

p3,1 = (y1 − y2)(y2 − y3) , (D.32)

q3,1 = (x1 − x2)(x2 − x3) , (D.33)

r3,1 = x1y3 − x2y1 − x1y2 + 2x2y2 + x3y1 − x2y3 − x3y2 , (D.34)

s3,1 =
1
9

(x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2)2 , (D.35)

p3,2 = −(y1 − y2)(y1 − y3) , (D.36)

q3,2 = −(x1 − x2)(x1 − x3) , (D.37)

r3,2 = 2x1y1 − x1y2 − x1y3 + x2y3 − x3y1 − x2y1 + x3y2 , (D.38)

and
s3,2 =

1
9

(x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2)2 . (D.39)
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