
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Using path decomposition enumeration to enhance route choice models

Peer-reviewed author version

KNAPEN, Luk; Hartman, Irith Ben-Arroyo & BELLEMANS, Tom (2020) Using path

decomposition enumeration to enhance route choice models. In: FUTURE

GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF

ESCIENCE, 107, p. 1077-1088..

DOI: 10.1016/j.future.2017.12.053

Handle: http://hdl.handle.net/1942/25602

Using path decomposition enumeration to enhance
route choice models

Luk Knapena,∗, Irith Ben-Arroyo Hartmanb, Tom Bellemansa

aHasselt University, Transportation Research Institute, Martelarenlaan 42 B3500 Hasselt,
Belgium

bUniversity of Haifa, Caesarea Rothschild Institute, Haifa 3498838, Israel

Abstract

Prediction of realistic routes is essential in travel behaviour research that evalu-

ates the effects of infrastructure design alternatives. Most proposed route choice

models are based on additive link attributes. This paper investigates the decom-

position of a given path in a graph into least cost components. This corresponds

to finding the smallest number of intermediate destinations between which the

traveler moved using the most efficient path. Minimum path decompositions

are not unique and hence a single given path may result in multiple sets of

intermediate destinations. This paper presents a technique to enumerate all

possible decompositions of revealed paths and shows how to determine which

road network nodes are preferentially used as intermediate destinations.

This paper explains the decomposition enumeration process and focuses on a

new algorithm to enumerate efficiently all path decompositions. We implement

the algorithms on 500k predicted bikers routes in Amsterdam.

Keywords: Graph Theory, Route Choice, Simulation, GPS Traces

1. Introduction

Traveler preferences can be extracted from routes recorded by GPS traces.

Map-matching such traces leads to link sequences in a road network; these can

∗Corresponding author
Email addresses: luk.knapen@uhasselt.be (Luk Knapen), irith.hartman@gmail.com

(Irith Ben-Arroyo Hartman)

Preprint submitted to Future Generation Computer Systems January 8, 2018

be analyzed using graph theoretical concepts. The research reported in this

paper focuses on utilitarian trips i.e. movements executed in order to perform5

an activity at a given location (as opposed to fun trips that often consist of a

closed walk in a graph). Hence, the trips considered in this paper are the ones

that lead to paths in a graph.

Map matching GPS traces results in sequences of road network links crossed

by the travellers. Paths extracted from collections of GPS traces provide re-10

vealed preference information about the individuals’ route choice. This revealed

preference is analyzed in order to find out how people construct their routes

by concatenating least cost (shortest) paths. This is equivalent to choosing a

sequence of intermediate destinations and moving between them using short-

est paths. From this analysis one can find out whether particular nodes in15

the network appear to act as intermediate destinations more frequently than

other ones. If sufficient traces are available for each traveler, it is possible

to determine whether such attraction is caused by network properties or by

personal preferences. As a consequence, the analysis results are relevant to sim-

ulation in mobility science. Whenever travel demand is known as a set of tuples20

〈startT ime,mode, origin, destination〉 the researcher is interested how the in-

dividuals will move in the network. Such simulations aim to quantify the effects

of changes in the network infrastructure on travel patterns. Hence they support

investment analysis.

In Knapen et al. [1] it was claimed that when a traveller considers a choice25

of route between an origin and a destination, he/she does not necessarily choose

the quickest/fastest/cheapest route, but a route which is a concatenation of

small number of shortest/cheapest routes. A decomposition of a path into least

cost paths that has the smallest possible number of intermediate destinations

is a minimum path decomposition and the minimum number of such least cost30

subpaths is called the complexity of the path. The distribution of path com-

plexities, extracted from GPS traces [1], can be used to enhance the quality of

route choice models.

In this paper, the terms network, node, link and route are used when trans-

2

portation concepts are discussed. The terms graph, vertex, edge, path and walk35

are used when discussing graph theoretical concepts.

2. Research Context

In this overview we discuss path based models, recursive link based models

and research that focuses on a hierarchical method.

2.1. Path based methods40

Path based methods define discrete choice models to select a path from an

origin location LO to a destination location LD from a set of alternatives. The

choice set needs to be established and the parameters for the choice model need

to be estimated.

2.1.1. Basic concepts and comparative research45

Bovy [2] presents a framework to describe the route choice problem. The

author emphasizes the importance of both the choice set generation and the

choice process per se. It presents excellent insight into the basic concepts of

path based route choice.

Prato [3] presents an overview of the state of the art in route choice modeling50

by showing details about the available techniques for choice set formation and

for the discrete choice process.

Prato [4] compares several techniques using numerical experiments. Subjec-

tive choice sets are generated using 6 path generation techniques (k-shortest

paths, link penalties, branch-and-bound, stochastic link impedance, doubly55

stochastic model and random walk) and 5 parameter sets for each generator

(hence 30 cases). Then PSC Path Size Correction logit (Bovy) is postulated to be

used in reality and it is applied to all subjective sets using length, speedBumps,

leftTurns and PSC: this is used to create synthetic data (postulated subjec-

tive selected routes). In a second stage objective choice sets are generated from60

the synthetic data using the same parameters and techniques. This results in

3

30[subj]*30[obj]=900 cases which are used to compare the postulated selected

routes with the predicted ones.

2.1.2. Particular techniques

Prato and Bekhor [5] present a branch and bound based algorithm to gen-65

erate the route choice set. Routes are selected using the deterministic shortest

path criterion in a network with randomized link properties. Generated routes

are evaluated using several constraints (number of left turns, travel time, etc)

to decide about their addition to the choice set.

Prato and Bekhor [6] focuses on the effects of choice set composition. Dif-70

ferent generation techniques are compared. Prediction accuracy is investigated

and the branch and bound technique is found to outperform other ones. The

paper concludes that parameter estimation is more robust for non-nested choice

models (C-logit and path size logit).

Frejinger [7] proposes a stochastic path generation algorithm to populate75

the choice set by using a random walk generator starting at the origin and

constrained to head towards the destination. The paper provides a sampling

technique based on the Path Size attribute (Commonality Factor) that takes

into account the correlation structure caused by overlapping paths. It is argued

that the Path Size attribute needs to be evaluated over the set of all paths,80

which is infeasible, and the paper determines a minimum set required to obtain

unbiased results. The technique was applied to a synthetic network and for

real networks it is reported by Rieser-Schüssler et al. [8] and Vacca et al. [9]

to be slow. Rieser-Schüssler et al. [8] also reports it to be very sensitive to

selected input parameters that severely affect the distribution for the lengths85

ratio actual/shortest of the generated routes.

Kaplan and Prato [10] define the sets used by the researcher (universalSet ⊃

masterSet ⊃ considerationSet) and the sets used by the traveler (universalSet ⊃

awarenessSet ⊃ viableSet). A masterSet is generated using a simulation tech-

nique by finding the shortest path after sampling link travel times form a gamma90

distribution. The considerationSet then is derived from the masterSet using a

4

conjunctive heuristic semi-compensatory model : the probability to find consid-

erationSet Cn is given by the probability that respondent n uses a specific set

of thresholds for the independent variables in the utility maximizing discrete

choice process. If an independent variable is out of range w.r.t. a threshold, the95

corresponding route is not considered. The thresholds are unknown in advance

and they are estimated using a maximum likelihood method. Path size cor-

rection logit (PSCL) is used for route selection from the considerationSet. The

likelihood of the conjunctive model is expressed and maximized using simula-

tion. Hence the method jointly estimates the thresholds for consideration set100

generation and the beta coefficient for the PSCL.

Schüssler et al. [11] cover route choice set generation and validate the results

using GPS recorded traces. The BFS-LE (Breadth-first-search Link-elimination)

technique is presented. BFS refers to the fact that a tree of networks is con-

sidered and in each network a shortest path is determined using the A* algo-105

rithm. The tree is constructed by consecutively eliminating each element from

the shortest path such that each generated network differs in exactly one edge

from the original one (the parent network). This is done recursively. The SCSG

(Stochastic Choice Set Generation) is implemented and evaluated. The methods

are compared w.r.t computational efficiency, coverage (reproduction of observed110

recorded OD path), path-size (Ben-Akiva, Bierlaire) value distribution to esti-

mate heterogeneity and hierarchical sequence (road-type sequences). Both SCSG

and BFS-LE are reported to produce similar results but BFS-LE is reported to

be faster (about 300 times).

Halldórsdóttir et al. [12] focuses on bikers routes. The author evaluates115

the BFS-LE (Breadth-First-Search, link elimination technique), DSGF (Double

Stochasting Generation Function (Fiorenzo-Catalano) random link attribute se-

lection and random preference threshold) and B&B (Branch-and-Bound using

detourFactor, timeExcessFactor, a directional constraint and a similarity con-

straint in the evaluation). The B&B technique which is reported to perform well120

on reduced complexity car networks, shows the lowest performance in this re-

search. This could be an indication that B&B is quite sensitive to the constraints

5

used.

2.2. Recursive link based methods

Recursive logit models construct a route from the origin LO to destination125

LD by defining and estimating discrete choice models to select the next link from

a node Li after having constructed the partial route LO → Li. The expected

maximal utility generated by the selection of each of the outgoing links needs

to be computed. The final route is determined by the dynamic programming

technique.130

Fosgerau et al. [13] use a discrete choice model to decide at each node about

the next link to follow. Dynamic programming is used to find a path. At each

node the utility for the partial path from the origin is known by accumulation.

The expected utility for the remaining needs to be determined for inclusion in

the Bellman value function. It is determined by random utility maximization.135

The authors prove that this process is equivalent to a path based multinomial

logit (MNL) with an infinite number of alternatives. The proposed procedure

does not require prior generation of a choice set.

Mai et al. [14] extend the research by Fosgerau et al. [13] by allowing the

random terms in the utility functions to be correlated. This is done by multi-140

plying the i.i.d. extreme value type I random variable with a link specific scale

factor.

Recursive link based methods require link additive attributes to be used

in the utility function. Hence, route complexity cannot be used. However,

collections of predicted routes can be validated by comparing the distribution145

of the complexity to the one found for recorded traces.

2.3. Route prediction based on traveler mental models

Kazagli and Bierlaire [15] and Kazagli et al. [16] use Mental Representation

Items (MRIs) : the authors aim to model the simplifications made by the trav-

elers when representing a route. The set of MRI includes geographical spans150

(zones that may cover a subnetwork) but also representative geocoded points

6

identified by a toponym. The authors consider both discrete choice models to

select a particular MRI and models to select sequences of MRI in order to con-

struct a route. In Kazagli et al. [16] the authors suggest to use surveys or GPS

traces as sources to identify MRIs and state: ”In the same way that the clas-155

sical path-based models require some map-matching procedures, we need in the

case of such a data source to relate the MRI alternatives with the reported loca-

tions or the GPS data.” This is where the importance values determined from

route decomposition proposed in this paper comes into play because automatic

detection of MRI is required to make the method feasible in practice.160

2.4. Discussion

Recording of GPS traces for travelers and the availability of open map data

allow for revealed trips to be map-matched. As a consequence, revealed trips

can be expressed as link sequences in transportation networks (or as paths in a

graph) for which structural properties can be analyzed.165

The results of route choice algorithms used in traffic simulators must expose

properties that are statistically similar to the properties of recorded evidence.

Classic methods ensure this by considering the numbers of left turns, traffic

lights etc in the choice model. However, structural path properties that can be

derived from graph theoretic concepts have not been considered until recently;170

they can be used to enhance the quality of route choice sets. We use new

graph-theoretic techniques, here, which have not been used in transportation

engineering papers, except for in Knapen [17] and Hartman Ben-Arroyo et al.

[18], which contribute to the theory of route choice modelling. Furthermore,

analysis of these properties allows for automatic extraction of usage patterns175

that can be used to enhance new methods like the MRI based method (Kazagli

et al. [16]).

2.5. Contributions

This paper extends results about route decomposition that have been re-

ported before. Knapen et al. [1] discuss an algorithm to split paths in a graph180

7

into a minimum number of min-cost paths, or basic path components (BPC)

(see definition 3.2 in section 3.1). The authors also determine the path com-

plexity and show the distribution of the resulting values observed in several sets

of observed GPS traces. Sets of routes predicted by any of the route choice

techniques mentioned above should take into consideration the path complexity185

distribution in order to reflect reality.

Hartman Ben-Arroyo et al. [18] show how to enumerate all possible minimum

path decompositions. Knapen [17] introduces the concept of vertex importance

as the relative occurrence frequency of a node as an intermediate destination in

a set of minimum decompositions.190

This paper contributes to the research by providing (i) an algorithm to

find all minimal shortcuts to a given path in a graph, (ii) an efficient mini-

mum sequential clique cover enumerator (which will be defined in section 3.1)

for proper interval graphs (required for minimum decompositions enumeration)

(iii) a method that generates all possible minimum decompositions of a given195

path and (iv) a method to determine, for each vertex in a given path P , the

relative frequency of use as an intermediate destination in the set of minimum

decompositions of P (vertex importance).

The proposed techniques are applied to a set of predicted bikers routes for

the city of Amsterdam and results are reported.200

3. Method and Algorithms

3.1. Definitions and Basics

We begin with some basic standard definitions from graph-theory. We use

definitions and notations for path,walk, clique, independent set as in Bondy and

Murty [19], see also Hartman Ben-Arroyo et al. [18]. We will then continue to205

new definitions related to the applications in transportation networks.

Let G = (V,E) be a directed graph with vertex set V and edge set E. The

vertices correspond to nodes in a road network, and the edges correspond to

links in the network. Each edge e has a non-negative cost c(e) which is the

8

effort (e.g. time or money) required to traverse the link in the network. We210

denote by N(v) the set of neighbours of vertex v, i.e. the set of vertices adjacent

to v. We denote by deg(v) the degree of a vertex v, i.e. |N(v)|, the number

of neighbours it has. A path is a walk where all its vertices are distinct. For

a path P = (v0, v1, . . . , vl), any subsequence of vertices vi, vi+1, . . . , vj , where

0 ≤ i ≤ j ≤ l is a subpath of P , and is denoted by P (vi, vj). The length of a215

path, is the number of edges in it (i.e. l), the size of a path, denoted by |P |, is

the number of vertices in it (i.e. l+1), and the cost of a path, denoted by c(P)

is the sum of the costs of its edges. A path P (v0, vl) is a least cost path between

v0 and vl, if there exists no other path connecting v0 and vl of lower cost.

We remark that if c(e) = 1 for all e ∈ E then the cost of a path coincides220

with its size. We assume that the vertex traversal cost is zero. A single edge

(u, v), being a path connecting between u and v, may be least cost, or not.

If it is not a least cost path connecting between u and v, then it is called a

non-least-cost edge.

It is easy to see that if P is a least cost path, then any subpath of P is also225

a least cost path.

The converse of this statement is false since it is possible that all the subpaths

of P (v0, . . . , vl) (except P itself) are least cost paths, but P is not a least cost

path connecting v0 and vl and there is another least cost path Q connecting v0

and vl. This fact motivated the following definition, as in Knapen et al. [1].230

Definition 3.1 (P - shortcut, minimal shortcut, fork and join vertices, bypassed

vertex set). Let P = (v0, v1, . . . , vl) be a given path. A P (vi, vj)-shortcut (or

for brevity, P - shortcut, or shortcut), is a path Q(vi, vj), internally- disjoint

from P , where vi, vj ∈ V (P), such that c(Q(vi, vj)) < c(P (vi, vj)). The vertices

vi and vj are called fork and join of the shortcut, respectively, and the internal235

vertices of P between the fork and the join (i.e. vi+1, . . . , vj−1) are called Q-

bypassed vertex set, or bypassed vertex set and denoted by B(Q). A shortcut

Q is minimal if B(Q) does not properly contain B(Q′) where Q′ is another

shortcut to P (See Figure 1).

9

We emphasize that B(Q) contains consecutive vertices on P . Therefore, it240

can be marked by the fork and join of a shortcut Q, which are the vertices

preceding, and following the set B(Q), respectively.

10

0v

lv

B(Q)

Fork)vertex

Join)vertex

Edges)of)P

Shortcuts)to)P

Q’)

Q)vi

v j

(a) A path P with a minimal P (vi, vj)-shortcut Q. Q′ is a non-

minimal shortcut. Vertices vi and vj are fork and join vertices of Q,

respectively, and the dark vertices are the bypassed vertex set B(Q).

(b) A path in the road network. The dashed lines represent shortcuts

(red:minimal, blue:non-minimal).

Figure 1: (a) Shortcut concepts and (b) Shortcuts in a real path.

Clearly, a least cost path cannot have any shortcuts.

Definition 3.2 (Basic Path Component (BPC), path splitting, splitVertex).

11

Given a path P , a subpath of P is called a Basic Path Component, or for short,245

a BPC, if it is either a least cost path connecting its endpoints, or P is a single

non-least-cost edge. A path splitting of P is a partition of P into subpaths each

of which is a basic path component. A splitVertex is a vertex separating two

consecutive BPC in a path splitting.

We remark that there may be many ways to split a path, for example, the250

trivial partition into single edges (v0, v1), (v1, v2), . . . , (vl−1, vl) is an example of

such a partition. We are interested in finding a path splitting with a minimum

number of basic path components. Such a path splitting is called minimum path

splitting. Each non-shortest-edge is a part in each minimum path splitting since

it constitutes a BPC, the vertices of a non-shortest-edge are splitVertices. If we255

remove the set of non-shortest-edges in a path (each of which is a BPC), we are

left with a set of disjoint paths, each of which contains no non-shortest-edges.

In Knapen et al. [1] we addressed the problem of finding efficiently a mini-

mum path splitting of a given path. Since a minimum path splitting will contain

a minimum number of splitVertices, an equivalent formulation of the problem260

above is to find a minimum number of splitVertices in the path, such that any

subpath connecting consecutive splitVertices will be least cost. The following

lemma was proved in Hartman Ben-Arroyo et al. [18] :

Lemma 3.3. If P is not least cost (and not a non-least-cost edge) with a short-

cut Q, then any path splitting of P will contain at least one vertex in B(Q), the265

Q-bypassed vertex set, as a splitVertex.

From lemma 3.3 it immediately follows that a minimum path splitting of P

is obtained by a minimum set of splitVertices which intersects every bypassed

vertex set, B(Q), for all minimal shortcuts Q to P .

3.2. Technique Overview270

An overview of the technique is summarized in Figure 2. (A) shows a path

P in the transportation graph representing the road network along with some

minimal shortcuts to the path. Each minimal shortcut bypasses some vertices

12

on the given path (for example vx and vy in the graph GT). In the top part

of (B), the vertices in P are represented by integer points on the horizontal275

axis (which are not marked here). Each sequential set of vertices bypassed by a

minimal shortcut constitutes an interval represented by a line segment (labeled

a, b, c, . . .). For simplicity, we marked only the endpoints of the intervals. The

corresponding interval intersection graph is shown in the bottom part. (C) shows

some of the minimum sequential clique covers for the interval intersection graph.280

(A) Transportation graph GT (B) Interval graph GI

Qa

Qb

Qc

Qd

Qe
Qf

Qg

v0 = S

vl = T

v2
v1

vx

vw

vy

vz

a

b

c

d

e

f

g

a

b

c

d

e

g

f

(C) Incomplete set of minimum sequential clique covers: 4 out of 15 cases

a

b

c

d

e

g

f

a

b

c

d

e

g

f

a

b

c

d

e

g

f

a

b

c

d

e

g

f

Figure 2: Overview of graphs used to enumerate minimum path decompositions.

The algorithmic steps used to extract path properties and vertex importance

for a path P are as follows:

1. Finding all non-least-cost edges, and all maximal subpaths of P which

do not contain any non-least-cost edges using the algorithm described in

13

Knapen et al. [1].285

2. Finding all minimal shortcuts in each of the subpaths found above. Each

minimal shortcut defines a sequence of bypassed path vertices. Each by-

passed vertex set is mapped to an interval. (See section 3.3).

3. Defining the intersection graph of the intervals defined above. This leads

to a proper interval graph (indifference graph) since none of the bypassed290

vertex sets is included in another. (See section 3.4).

4. Defining the proper interval graph GI , and sequential clique covers, (or

s-clique covers, for short). (See section 3.4).

5. Enumeration of minimum s-clique covers for each connected component,

(see section 3.5).295

6. Enumerating all path decompositions (see sections 3.6 and 3.7).

7. Computation of vertex importance values. (See section 3.8)

The non-trivial steps are detailed in the following subsections.

3.3. Finding all minimal shortcuts and non-least-cost edges

In the first stage we find all minimal shortcuts to P , as was described in300

Hartman Ben-Arroyo et al. [18]. We repeat the algorithm for the sake of com-

pleteness. We do not need the shortcut paths to P , but rather their endpoints,

the fork and join vertices of each shortcut. The output is a list of pairs< vf , vj >

corresponding to the fork and join vertices of all minimal shortcuts, or of non-

least-cost edges.305

Assume a traveler moves from point v0 to point vl along a path P =

(v0, v1, . . . , vl). Dijkstra’s [20] shortest path algorithm is used to find the first

vertex on P , (if it exists), say vj , for which P (v0, vj) is not the shortest path

connecting v0 and vj . If such a vertex does not exist, the given path is a shortest

path. Otherwise, we mark vj as a join vertex, and continue by finding the last310

vertex in the subpath P (v0, vj), say vf for which P (vf , vj) is not a least-cost

14

path. We output the shortcut < vf , vj > and continue with the subpath of P

beginning with vf+1 . The pseudo code is given in algorithm 3.1.

Algorithm 3.1 Minimum shortcut and non-least-cost edge finder

Require: graph G, path P in G

1: function findFirstJoin(P, from). Search first join following vertex from

2: join← succ(P, from)

3: while (join 6= nil) ∧ (shortPath(P, from, join)) do

4: join← succ(P, join)

5: end while

6: return join

7: end function

8: function findlastFork(P, from) . Search first fork preceding vertex

from

9: fork← pred(P, from)

10: while (fork 6= nil) ∧ (shortPath(P, fork, from)) do

11: fork← pred(P, fork)

12: end while

13: return fork

14: end function

Line 27 is used to minimize the work. At that point it is known that no

minimal shortcut forks in a vertex v ∈ [dsucc(start), vj].315

3.4. Defining the intervals, the proper interval graph GI , and sequential clique

covers

The proper interval graph is defined as in Hartman Ben-Arroyo et al. [18].

We repeat the definition for the sake of completeness. We assume for now that

P is a path containing no non-least-cost edges. We may assume that since any320

15

15: start← v0

16: while start 6= nil do

17: vj ← findFirstJoin(P, start)

18: if vj = nil then

19: start← nil . Path exhausted

20: else if vj = succ(P, start) then . Non-least-cost edge detected

21: output(′nonLeastCostEdge′, 〈start, vj〉)

22: start← vj . Skip over non-least-cost edge

23: else

24: vf ← findLastFork(P, vj) . Regular shortest

25: if vf = pred(P, vj) then . Non-least-cost edge detected

26: output(′nonLeastCostEdge′, 〈vf , vj〉)

27: start← vj . Skip over non-least-cost edge

28: else

29: output(′minShortCut′, 〈vf , vj〉)

30: start← succ(P, vf) . start 6= vj

31: end if

32: end if

33: end while

16

path, by removing the non-least-cost edges, breaks down to subpaths which

contain no non-least-cost edges. Once we know all minimal shortcuts to P , we

use the corresponding bypassed vertex sets to define a set of intervals and a cor-

responding interval graph. Since the vertices of P are labeled v0, v1, v2, . . . , vl,

every shortcut Q with fork and join vertices vf , vj , respectively has a consecu-325

tive set of bypassed vertices B(Q) = {vf+1, vf+2, . . . , vj−1}. We construct an

interval on the real line corresponding to each bypassed vertex set in the follow-

ing way: IQ = [f + 1, j − 1] (see Figure 2 (B)). Note that the integral points on

the interval [f + 1, j − 1] (i.e. the points f + 1, f + 2, . . . , j − 1) correspond to

the vertices vf+1, vf+2, . . . , vj−1 on P . Since the shortcuts found in Stage 1 are330

minimal shortcuts, no two intervals contain each other. The intersection graph

of such a set of intervals, where no two intervals contain each other, is called a

proper interval graph, or equivalently, unit interval graph, or indifference graph

(see Golumbic [21]). We denote it by GI = (V I , EI), where each v ∈ V I corre-

sponds to B(Q) of some shortcut Q, and two vertices are adjacent if and only335

if the corresponding intervals intersect.

We note that if we order all the intervals representing V I by their left hand

endpoint, in increasing order, then, being a proper interval graph, their right

hand endpoints will also be in increasing order (otherwise one interval will con-

tain another). A clique in a graph is a subset of vertices all of which are adjacent340

to each other, i.e. a complete subgraph. A clique cover is a set of cliques which

cover all the vertices in the graph. A minimum clique cover is a clique cover

which contains a minimum number of cliques. For any point on the real line,

the set of intervals which contain that point, mutually intersect each other, and

therefore correspond to a clique in GI . A minimum set of points which meet345

all the intervals will correspond to a minimum clique cover of GI . In order

to enumerate all minimum decompositions of P , we need to enumerate all the

minimum sets of integer points which cover all the intervals. Note that given

the ordered set of intervals representing V I , any integer point - corresponding

to a vertex of P - is contained in a consecutive set of intervals which mutually350

intersect each other. We call such a clique a sequential clique, or for short,

17

s-clique. The s-cliques are naturally ordered so that each interval belongs to

consecutive cliques , and each s-clique consists of consecutive intervals. For ex-

ample, the clique (abc) in Figure 2 is an s-clique, and the cliques (ac) or (bce)

are not s-cliques.355

3.5. Finding all minimum s-clique covers for proper interval graphs

Assume the intervals are given and they are labelled by 1, 2, ..., n, where

the order is by the left hand endpoints of the intervals. The corresponding

vertices of the graph are also labeled 1, 2, ..., n. (We remind the reader that

each interval corresponds to the bypassed vertex set of a shortcut.) We assume360

the all shortcuts are minimal under inclusion, in other words no interval contains

another. For any consecutive subset of intervals S ⊆ V we define a function f(S)

which computes the clique covering number of the graph G[S], i.e. the minimum

number of cliques required to cover S. We compute this function recursively. We

use the function f in another recursive function GenMCC(V) which generates365

all minimum s-clique covers with respect to the intervals 1, 2, ..., n.

Algorithm 3.2 Compute the clique covering number of proper interval graph

G[V].

1: function f(V) . The vertices are ordered by their left hand endpoints

2: if V = ∅ then

3: return 0

4: else

5: Let v be the first vertex in V

6: return 1 + f(V \ {v} \N(v))

7: end if

8: end function

Claim 3.4. The function in 3.2 finds the clique covering number of the graph

G[V].

Proof. We assume the vertices in V are ordered by the left hand endpoints

of the intervals representing them. If the intervals are not given, we can find370

18

a perfect elimination ordering of G, which will correspond to the left hand

endpoint ordering of the intervals. Algorithm 3.2 finds a maximal clique that

contains the first vertex, (consisting of v and all its neighbours), removes it, and

continues recursively for the rest of the graph. Assume the function returns the

number c. Then in each call of the function the set {v} ∪N(v) is a clique and375

all c cliques form a clique partition of G[V]. Note also that the set of all first

vertices in all the calls form an independent set of the same size c. This proves

that the clique partition is minimum.

The following recursive function generates all minimum s-clique covers, and

replaces Stage 3 in the algorithm described in Hartman Ben-Arroyo et al. [18] .380

Algorithm 3.3 Generate all minimum s-clique covers of proper interval graph

G[V].

1: function GenMCC(V) . The vertices are ordered by their left hand

endpoints

2: Let 1 be the first vertex in V , let d = deg(1) in G[V]

3: if d+ 1 = |V | then . Graph consists of a unique clique

4: return {V }

5: end if

6: for all x ∈ {2, ..., d+ 2} do

7: if f(V \ {1, ..., x− 1}) = f(V)− 1 then

8: for all x− 1 ≤ j ≤ d+ 1 do

9: return {{1, 2, ..., j}}∪ GenMCC(V \ {1, ..., x− 1})

10: end for

11: end if

12: end for

13: end function

Theorem 3.5. Algorithm 3.3 generates all minimum s-clique covers of the

graph G[V].

19

Proof. We will first show that every minimum s-clique cover is generated by the

algorithm. We will then show that every minimum s-clique cover is generated

exactly once.385

We consider the first (leftmost) interval, labeled 1. Any clique cover must

cover it. If interval 1 and its neighbours consists of the whole graph then the

function returns one clique cover which consists of that clique V , as in line 4.

Otherwise, d+2 denotes the first interval which is not in N(1). Every minimum

s-clique cover of size q contains a clique C1 = {1, 2, ..., j} for some j ≤ d + 1390

and q− 1 cliques which cover x, x+ 1, . . . , |V | for some 2 ≤ x ≤ d+ 2. In line 7

we verify that the clique covering number of G[x, x+ 1, . . . , |V |] is indeed q− 1,

and in line 8 we guarantee that C1 covers at least the vertices 1, 2, . . . , x− 1, so

that every vertex is covered by the clique covering.

To show that every minimum s-clique covering is generated exactly once,395

note that for any ordered pair (j, x) such that x− 1 ≤ j ≤ d+ 1 and

f(V \ {1, ..., x− 1}) = f(V)− 1 defines a unique minimum s-clique cover.

We note that this algorithm is highly efficient, in fact it is a polynomial

delay algorithm. To see this, note that whenever the condition in line 7 is met,

a family of solutions is generated for each x − 1 ≤ j ≤ d + 1, and in order to400

satisfy this condition only a linear time search is employed, as seen in line 6.

3.6. Path decomposition enumerator

In this section we enumerate the number of ways of breaking a path into basic

path components, by considering the bypassed vertex sets. We assume that GI

is connected, otherwise we apply the algorithm for each connected component.405

3.6.1. Definitions: Clique core and Core collection

In order to define the split vertex selection procedure, the core of a clique

concept is introduced.

Let Ci,j denote the clique containing intervals Ii, Ii+1, . . . , Ij .

Definition 3.6 (Clique core). The core of a clique or clique core, denoted by410

K(Ci,j), is the set of integer points of the real line contained in those intervals

20

only, and in no other intervals. In other words, the core of a clique corresponds

to the set of bypassed vertices associated with the clique Ci,j and to no other

bypassed vertex sets.

The example shown in Figure 3 applies to the path shown in Figure 2. K(ef)415

contains the integer w corresponding to the bypassed vertex vw, K(efg) contains

x which corresponds to the bypassed vertex vx and K(fg) contains the points

which correspond to vy and vz.

Definition 3.7 (Core collection). We denote an s-clique cover by C and the

collection of clique cores in C by K(C) = {K(Ci,j)} with Ci,j ∈ C. We call it420

core collection of C.

3.6.2. Enumeration procedure for subpaths containing no non-least-cost edges.

For a given path P in the transportation network, enumeration of all mini-

mum path decompositions is done by (i) considering all minimum s-clique cover-

ings C of the corresponding interval graphGI , (ii) determining the corresponding

core collection K(C) for each C and (iii) determining a minimum decomposition

of P by taking precisely one vertex from each core in K(C) as a splitVertex

(see Lemma 3.3). The splitvVertices in each set selected by this procedure

partition P into BPC because at least one bypassed vertex is chosen for each

minimal shortcut. Furthermore, the path decompositions are minimum because

minimum clique coverings are used. It is easy to verify that the path decompo-

sitions are unique as well, i.e. different minimum clique coverings have different

core collections. For a given clique cover, since the choice of every core vertex

is independent of the choice of other core vertices, hence the number of possible

path splittings for a given path is,

∑
C∈C

(∏
Ci∈C

|K(Ci)|

)
(1)

where C denotes the set of all minimum s-clique covers in GI , C denotes a specific

clique cover, and each Ci ∈ C represents a sequential clique, i.e. s-clique.

21

a
ab

abc
bc

bcd

ef

cde
de

e

1 2 3 4 5 6 7 8 9

bcde

efg
fg

g

a

b

c

d

e

f

g

10 11 12 13

vzvw vx vy

Figure 3: Some of the cores for the path shown in Figure 2

3.7. Path decomposition enumeration425

Sections 3.3 to 3.6 apply to paths which do not contain any non-least-cost

edges. In the final step, we prepare to generate all minimum decompositions for

the complete path. First we remind that each vertex belonging to a non-least-

cost edge is a split vertex in a minimum decomposition unless it is the first or

the last vertex in the path.430

Second, we consider bypassed vertex sets. All core collections for a given path

have the same size since they are associated with minimum s-clique coverings.

However, in some specific cases, the core of a clique in a minimum s-clique

cover may be empty; (this occurs when a clique consists of a single vertex which

corresponds to an interval of length one. In this case the interval contains no435

integer points except for its endpoints. An example is shown in Figure 4). In

this case we ignore the s-clique cover.

22

1 2 3 4 1211105 6 7 8 9

a b

c

d

e e

d

c

b

a

α β

γ

a b c d eGI

α β γ

Figure 4: Top: bypassed vertex sets (corresponding to intervals a, b, c, d, e). Bottom: the

corresponding intersection graph GI and one of its minimum clique coverings. Clique β = {c}

has an empty core: K(β) = ∅. The clique covering {α, β, γ} does not generate any minimum

decomposition.

Consider a path P in the transportation graph. Let E′ denote the set of non-

least-cost edges in P , and denote by W the set of vertices of E′, not including

the endpoints of the path P . If we remove E′ from P we get a collection of vertex440

disjoint subpaths P1, P2, . . . , Pl. Each such subpath Pk, if it contains shortcuts,

produces an interval graph GI and a corresponding family of minimum s-clique

covers Ck. In order to find all minimum decompositions of P , we consider all

combinations of s-clique covers of every subpath Pk, in addition to the set W

which needs to be covered by singleton vertices. Every such clique cover is445

called a Minimum Decomposition Generator (MDG). Recall that every clique

Ci ∈ C ∈ C corresponds to a core, and any vertex from the core is a splitVertex

in some minimum path decomposition, hence every clique cover may produce

a large number of minimum path decompositions. See Figures 6, 7 and 8 for

MDG’s which are denoted by orange intervals.450

3.8. Vertex importance

We assume that the higher the frequency of use of a vertex as a splitVertex

in a decomposition, the higher the probability that it carries a meaning (as an

intermediate destination) relevant to the traveler. This assumption is similar to

23

what is done in the trajectory annotation process (i.e. the process that tries to455

assign a meaning to each stop detected in a GPS trace). In that process, the

visit frequency and the total time spent at a given location are quantities used

while trying to discover the intention of a stop.

In a similar way, in the case of route splitting, we try to find the probability

for a vertex to be the splitVertex that the user had in mind.460

Definition 3.8. The path based importance ip(v, P) of a vertex v in a path

P is the relative occurrence frequency of v as a splitVertex in the set of all

minimum decompositions of P .

Let D(P) denote the set of all minimum decompositions of P . Let Dv(P)

denote the set of all minimum decompositions of path P containing splitVertex v.

Then

Dv(P) = {d ∈ D(P) | v is a splitVertex in d} (2)

ip(v, P) =
|Dv(P)|
|D(P)|

(3)

For example, the vertices incident to a non-least-cost edge have path impor-

tance 1 since every minimum decomposition into BPC’s includes them as a

splitVertex. If v is not a vertex of P then ip(v, P) = 0. It may be relevant to

consider indicator quantities relative to particular sets of paths e.g., all paths

emerging from a particular region. For a family of paths P, we denote by V [P]

the set of vertices covered by P. We define the normalized path family impor-

tance of a vertex v in a family of paths P, denoted by if (v,P), by summing

the path based importance values for each vertex covered by paths in P and

dividing by the maximum of these sums taken over all v ∈ V [P].

if (v,P) =
∑
P∈P

ip(v, P)/M (4)

where

M = max
v∈V [P]

{ ∑
P∈P

ip(v, P)
}

(5)

24

Note that if (v,P) does not directly depend on the number of paths in the family

P and is normalized to the interval [0, 1]. This is done because the importance465

indicator for a vertex v should not be affected by the mere presence of paths

in P not containing vertex v.

Interesting importance values can be calculated by restricting the family P

of paths considered (e.g. the paths for a given individual, the paths having a

given destination, the paths that connect two given areas, the paths for which470

the trip execution overlaps a given time window, etc).

3.9. Evaluation of ip(v, P), the path based importance of a vertex

Enumeration of all minimum path decompositions may be a costly operation

in practice. We observe that the contribution of an MDG to the path importance

is the same for all vertices in a core. The computation of path importance does475

not require the explicit enumeration of all possible decompositions of a path but

takes advantage of the structural properties of MDGs.

Consider an MDG and some s-clique in GI . This can be computed as follows:

let M(P) be the set of all MDG for path P and let µk denote the k-th MDG

inM(P). Let µk[j] denote the j-th core in the k-th MDG and | µk[j] | denotes

its cardinality. Remember that the number of cores in each MDG for path

P equals the complexity of P , which equals the clique covering number of the

interval graph GI corresponding to P . Similarly to Equation (1), the number

of minimum decompositions for P is given by

N =
∑

k∈| M(P) |

(∏
j=1,...,c(P)

| µk[j] |
)

(6)

where c(P) denotes the complexity of P . The contribution to the path based

importance for all vertices v in the m-th core of µk is the same and is given by∏
j=1,..,m−1,m+1,..,c(P)

| µk[j] |

N
(7)

We define a location function L(k, v) that gives the index in µk of the interval

25

which contains v, if any, and c(P) + 1 otherwise:

L(k, v) =

 i if ∃i ∈ [1, c(P)] | v ∈ µk[i]

c(P) + 1 otherwise
(8)

A two-dimensional |M(P)| × (c(P) + 1) contribution matrix K is defined as:

K(k,m) =


∏

j=1,..,m−1,m+1,..,c(P)

| µk[j] | if m ≤ c(P)

0 if m = c(P) + 1

(9)

Then, the path based importance can be written as

ip(v, P) =

∑
k∈|M(P)|

K[k, L(k, v)]

N
(10)

which allows for efficient computation of path importance of a vertex without

explicitly enumerating all decompositions.

4. Experiment480

The technique described in section 3 was implemented by the authors of this

paper. A fully operational software tool for path decomposition and importance

evaluation was created. Its application is described in the following subsections.

4.1. Data

1. The aim of this paper is to show the newly developed technique and to485

evaluate the computing performance. The intention was not yet to analyze

recorded GPS traces and draw conclusions about revealed behavior. A set

of origin-destination pairs for bikers routes in Amsterdam was available

but no routes extracted from GPS traces.

2. In order to produce test data, the POSDAP software described by Montini490

and Schüssler [22] was used to generate routes from the available origin-

destination pairs in order to demonstrate the technique described above.

More specifically, the bike route predictor from POSDAP was used to gen-

erate synthetic input data for the experiment. No other use of POSDAP

26

software was made in the experiment. Predictions are generated using the495

doubly stochastic choice set generator for bike routes. Both the link char-

acteristics and the cost function parameters are stochastically sampled in

successive trials to generate a new route. Then the least cost path for the

specified origin-destination pair is determined and added to the choice set

if it is a new one. The required size of the choice set is specified to POSDAP500

by a parameter. The choice set generator cannot guarantee that sufficient

different paths can be found for any particular origin-destination pair and

stops after a pre-specified effort. The original POSDAP software by ETHZ

was slightly adapted to stop the trials after a predefined number of trials

instead of by exceeding a predefined computing time in order to produce505

the same results for the same input on different machines.

3. Figure 5 shows the predictions for two origin destination pairs. The routes

for the respective choice sets are shown in wide lines in different colors.

The thin lines in the background show the street network in Amsterdam.

27

Orig-1

Orig-2

Dest-2

Dest-1

Figure 5: Choice sets for two origin destination pairs in Amsterdam generated by the POSDAP

doubly stochastic choice set generator for bike routes

4. The code is written in Java7. All machines ran identical code. The code510

is written in Java7. Four different computers were used to execute per-

formance evaluation experiments. These apply solely to the path decom-

position and importance evaluation techniques (the input data generation

using POSDAP was done in advance). The resulting values are shown in

table 1. The values comprise all steps in the process for each given path:515

(i) finding non-least-cost edges, (ii) determination of the size of the mini-

mum path decomposition, (iii) finding all minimal shortcuts to the path,

(iv) determination of the interval graphs, (v) determination of all mini-

mum s-clique covers, (vi) creation of minimum decomposition generators

and (vii) computing the importance for each split vertex. This takes be-520

tween 1.0 and 2.2 seconds per given path (depending on the machine used).

All machines ran identical code.

28

M
ac

h
in

e
P

ro
ce

ss
or

C
lo

ck
F

re
q

M
em

o
ry

O
S

n
T

h
re

a
d

s
n

R
o
u

te
s

R
u

n
ti

m
e

ro
u

te
s/

se
c

N
am

e
[G

H
z]

[G
B

]
-

-
[s

ec
]

[1
/
se

c]

im
ob

ca
lc

3
In

te
l(

R
)

X
eo

n
(R

)
C

P
U

X
5
5
7
0

2
.9

3
4
8

1
4
.0

4
.1

-U
b

u
n
tu

S
M

P
8

9
8
7
3
3

9
7
54

8
1
.0

1
2

im
ob

ca
lc

7
In

te
l(

R
)

X
eo

n
(R

)
C

P
U

E
5
-2

6
6
0

2
.0

0
1
2
8

S
M

P
D

eb
ia

n
(j

es
si

e)
8

9
9
0
9
0

6
0
38

4
1
.6

4
0

im
ob

ca
lc

8
In

te
l(

R
)

X
eo

n
(R

)
C

P
U

E
5
-2

6
3
0

2
.2

0
1
2
8

U
b

u
n
tu

S
M

P
8

9
8
3
0
4

4
5
95

9
2
.1

3
8

sd
-1

24
73

9
In

te
l(

R
)

X
eo

n
(R

)
C

P
U

D
-1

5
3
1

2
.2

0
3
2

S
M

P
D

eb
ia

n
(j

es
si

e)
8

9
9
1
4
7

8
8
40

4
1
.1

2
1

C
ol

u
m

n
s

sp
ec

ifi
ca

ti
on

n
T

h
re

ad
s

:
N

u
m

b
er

of
J
a
v
a

th
re

ad
s

u
se

d
.

n
R

ou
te

s
:

N
u

m
b

er
of

ro
u

te
s

p
ro

ce
ss

ed
.

T
h

e
ro

u
te

s
w

er
e

n
ea

rl
y

ev
en

ly
d

is
tr

ib
u

te
d

ov
er

th
e

m
a
ch

in
es

.

R
u

n
ti

m
e

:
D

iff
er

en
ce

in
sy

st
em

ti
m

es
re

co
rd

er
a
t

st
a
rt

a
n

d
te

rm
in

a
ti

o
n

ro
u

te
s/

se
c

:
N

u
m

b
er

of
ro

u
te

s
p

ro
gr

a
m

m
ed

p
er

se
co

n
d

T
a
b

le
1
:

M
a
ch

in
e

sp
ec

ifi
ca

ti
o
n

s
a
n

d
p

er
fo

rm
a
n

ce
in

d
ic

a
to

rs

29

4.2. Results

For three typical paths the bypassed vertex sets and minimum decomposition

generators (MDG) are shown in diagrams (Figures 6, 7 and 8). The integer525

numbers on the horizontal horizontal axis correspond to the offsets of the vertices

in the path (first vertex has offset zero). Components in the diagram are drawn

at layers labeled by an integer number on the vertical axis (the values near both

axes are to be interpreted as labels, not as quantities).Each block (point) at

layer 0 represents a vertex of the given path. Endpoints of non-shortest edges530

are represented by green blocks, the other vertices by red blocks.

The blue line segments represent bypassed vertex sets. All vertices at layer 0

that are covered by a blue segment belong to the same bypassed vertex set. For

clarity the line segments have been drawn at different layers in order to avoid

overlap so that it is easy to see for each vertex by which minimal shortcuts it is535

bypassed.

Each layer with a negative label corresponds to one MDG. An orange line

segment represents a core (containing all vertices at layer 0 covered by the line

segment). In each case, only the first seven MDG are shown in the diagrams (to

avoid clutter). Exactly one vertex is to be chosen from each core at a particular540

layer. Note that each orange layer has the same number of cores. The number of

decompositions generated by the MDG represented by a particular layer equals

the product of the number of vertices in the cores identified by line segments in

that layer.

A black filled circle at horizontal position i and at the vertical position be-545

tween layers labeled 0 and -1 represents a vertex in the path; the diameter

measured along the horizontal axis equals the normalized path family impor-

tance for vi in the set of all paths (some are very small).

The meaning for the headers in the table below is as follows:

• Largest Clique Covering Number: size of the largest minimum s-550

clique cover found among all connected components of the bypassed vertex

sets intersection graph (definition: see section 3.5)

30

• Clique Number: the size of the largest clique of GI . This corresponds to

the maximum number of minimal shortcuts a vertex in the transportation

graph GT is bypassed by.555

• #non-least-cost edges: the number of non-least-cost edges.

• #MDG: the number of minimum decomposition generators that collec-

tively enumerate all minimum decompositions for the path.

Figure Largest Clique Clique #non-least-cost #MDG

Covering Number Number edges

6 2 4 1 10

7 3 2 0 5 (all shown)

8 2 6 0 63
560

The Figures 6, 7 and 8 show patterns that do occur frequently. About 60% of

the cases are simpler then the ones shown.

Figure 6 shows a case containing a non-least-cost edge (between vertex offsets

11 and 12).

The case in Figure 7 shows a small clique number. It has only 5 minimum565

decomposition generators all of which are shown.

The pattern in 8 has a moderate number of bypassed vertex intervals but

a large clique number. It has 63 MDGs which is among the largest values

that have been observed. This leads to small importance values and hence the

representing circles are nearly invisible.570

31

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40

M
in

D
e
co

m
p
G

e
n
e
ra

to
r

-
S
h
o
rt

cu
t

Le
v
e
l

Vertex offset

Route 241683_1_13 -- 7/10 MinDecompGenerators

Figure 6: Legend: (A) Each block at layer 0 corresponds to a vertex in the path (green: vertex

from non-least-cost edge, red: other vertices). The vertex offset in the path can be read from

the values near the horizontal axis. (B) Each (blue, orange) line segment identifies a set of

consecutive vertices on the path. That set contains exactly each vertex at layer 0 covered

by the line segment. (C) Blue line segments represent bypassed vertex sets. They are drawn

non-overlapping and using a minimum number of layers in order to clearly show by which

minimal shortcuts each vertex is bypassed. (D) Orange line segments represents cores. The

cores at a given layer together constitute a single MDG. (E) The radius of the black circles

shown between layers 0 and -1 is proportional to the importance of the vertex shown right

above the circle. Normalized path family importance is shown. Some of the circles are very

small.

For this case the orange layers represent 7 out of the 10 MDG found. The clique number = 4.

32

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0 10 20 30 40 50 60

M
in

D
e
co

m
p
G

e
n
e
ra

to
r

-
S
h
o
rt

cu
t

Le
v
e
l

Vertex offset

Route 241615_1_3 -- 5/5 MinDecompGenerators

Figure 7: The legend is explained in the caption of Figure 6. Clique number = 2. The orange

layers represent the complete set of MDG.

-8
-7
-6
-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

 0 20 40 60 80 100

M
in

D
e
co

m
p
G

e
n
e
ra

to
r

-
S
h
o
rt

cu
t

Le
v
e
l

Vertex offset

Route 241597_1_15 -- 7/63 MinDecompGenerators

Figure 8: The legend is explained in the caption of Figure 6. Clique number = 6. The orange

layers represent 7 out of 63 MDG

Figure 9 shows the normalized path family importance determined over the

33

set of the 99147 routes processed by the machine sd-124739. The diameter of the

circle at each network node is proportional to the normalized path family impor-

tance value. It is clear that vertices in the network can easily be distinguished

using their importance value.575

Figure 9: Normalized path family based importance for network nodes. The diameter of the

circle at the node is proportional to the path family based importance value.

5. Discussion - Conclusion

A new technique to enumerate all decompositions of a given path in a graph

is developed. It consists of several steps. For one of these steps, a novel efficient

algorithm is presented to enumerate all minimum sequential clique covers of an

indifference graph.580

The concept of vertex importance is defined as relative occurrence frequency

of a vertex as a split vertex in minimum path decompositions. An efficient

technique is provided to compute vertex importance without brute force enu-

meration of minimum path decompositions.

34

The proposed techniques were implemented and applied to 500k predicted585

bikers routes for Amsterdam. The experiment shows that large datasets can be

processed in (between 1 and 2 routes per second) and that normalized impor-

tance values clearly identify network nodes as intermediate destinations.

6. Future Research

Currently ongoing research focuses on the validation and enhancement of590

route choice sets using the distribution for path complexity. A high quality

dataset to accomplish this came recently available.

The same dataset is sufficiently large to focus on the interpretation of vertex

importance values in terms of land use and road network properties. We would

like to validate our formulas for path based importance of a vertex, as well as595

normalized path family importance of a vertex on real data.

Acknowledgement

The authors thank Lara Montini (ETH Zürich - D-BAUG - IVT) for the

support related to operating the POSDAP software.

This research did not receive any specific grant from funding agencies in the600

public, commercial, or not-for-profit sectors.

References

[1] Knapen L, Hartman IBA, Schulz D, Bellemans T, Janssens D,

Wets G. Determining structural route components from GPS

traces. Transportation Research Part B: Methodological 2016;90:156605

–71. URL: http://www.sciencedirect.com/science/article/pii/

S0191261516302296. doi:10.1016/j.trb.2016.04.019.

[2] Bovy PHL. On Modelling Route Choice Sets in Transportation Net-

works: A Synthesis. Transport Reviews 2009;29(1):43–68,. doi:10.1080/

01441640802078673.610

35

http://www.sciencedirect.com/science/article/pii/S0191261516302296
http://www.sciencedirect.com/science/article/pii/S0191261516302296
http://www.sciencedirect.com/science/article/pii/S0191261516302296
http://dx.doi.org/10.1016/j.trb.2016.04.019
http://dx.doi.org/10.1080/01441640802078673
http://dx.doi.org/10.1080/01441640802078673
http://dx.doi.org/10.1080/01441640802078673

[3] Prato CG. Route choice modeling: past, present and future

research directions. Journal of Choice Modelling 2009;2(1):65 –

100. URL: http://www.sciencedirect.com/science/article/pii/

S1755534513700058. doi:10.1016/S1755-5345(13)70005-8.

[4] Prato CG. Meta-analysis of choice set generation effects on route choice615

model estimates and predictions. Transport 2012;27(3):286–98. doi:10.

3846/16484142.2012.719840.

[5] Prato CG, Bekhor S. Applying Branch-and-Bound Technique to Route

Choice Set Generation. Transportation Research Record 2006;(1985):19–

28. doi:10.3141/1985-03.620

[6] Prato CG, Bekhor S. Modeling Route Choice Behavior: How Relevant Is

the Composition of Choice Set? TRB Research Record 2007;2003:64–73.

doi:10.3141/2003-09.

[7] Frejinger E. Random sampling of alternatives in a route choice context.

Transport and Mobility Laboratory (TRANSP-OR), EPFL 2007;.625

[8] Rieser-Schüssler N, Balmer M, Axhausen KW. Route choice sets for very

high-resolution data. Working Paper ETH Zürich eth-5386; ETH Zürich;

Zürich; 2012.

[9] Vacca A, Prato CG, Meloni I. Estimating Route Choice Models from

Stochastically Generated Choice Sets on Large-Scale Networks. TRB Re-630

search Record 2015;2493:11–8. doi:10.3141/2493-02.

[10] Kaplan S, Prato CG. Joint modeling of constrained path enumeration and

path choice behavior: a semi-compensatory approach. In: Proceedings of

the European Transport Conference. Association for European Transport;

2010,.635

[11] Schüssler N, Balmer M, Axhausen KW. Route Choice Sets for Very High-

Resolution Data. In: TRB 2010 Annual Meeting. Washington, DC, USA:

TRB (Transportation Research Board); 2010, p. 16.

36

http://www.sciencedirect.com/science/article/pii/S1755534513700058
http://www.sciencedirect.com/science/article/pii/S1755534513700058
http://www.sciencedirect.com/science/article/pii/S1755534513700058
http://dx.doi.org/10.1016/S1755-5345(13)70005-8
http://dx.doi.org/10.3846/16484142.2012.719840
http://dx.doi.org/10.3846/16484142.2012.719840
http://dx.doi.org/10.3846/16484142.2012.719840
http://dx.doi.org/10.3141/1985-03
http://dx.doi.org/10.3141/2003-09
http://dx.doi.org/10.3141/2493-02

[12] Halldórsdóttir K, Rieser-Schüssler N, Axhausen KW, Nielsen OA, Prato

CG. Efficiency of choice set generation methods for bicycle routes.640

EJTIR European Journal of Transport and Infrastructure Research

2014;14(4):332–48.

[13] Fosgerau M, Frejinger E, Karlstrom A. A link based network route

choice model with unrestricted choice set. Transportation Research Part B

2013;56:70–80. doi:10.1016/j.trb.2013.07.012.645

[14] Mai T, Fosgerau M, Frejinger E. A nested recursive logit

model for route choice analysis. Transportation Research Part

B: Methodological 2015;75(Supplement C):100 –12. URL: http:

//www.sciencedirect.com/science/article/pii/S0191261515000582.

doi:10.1016/j.trb.2015.03.015.650

[15] Kazagli E, Bierlaire M. Revisiting Route Choice Modeling: A Multi-Level

Modeling Framework for Route Choice Behavior. In: STRC 2014. Ascona;

2014,.

[16] Kazagli E, Bierlaire M, Flötteröd G. Revisiting the route choice prob-

lem: A modeling framework based on mental representations. Journal of655

Choice Modelling 2016;19:1 – 23. URL: http://www.sciencedirect.com/

science/article/pii/S1755534515300518. doi:10.1016/j.jocm.2016.

06.001.

[17] Knapen L. Refined tools for micro-modeling in transportation research.

Doctoral Thesis; Hasselt University; Diepenbeek, Belgium; 2015. URL:660

http://hdl.handle.net/1942/19732.

[18] Hartman Ben-Arroyo I, Knapen L, Bellemans T. Enumerating

minimum path decompositions to support route choice set gener-

ation. Procedia Computer Science 2017;109(Supplement C):196 –

203. URL: http://www.sciencedirect.com/science/article/pii/665

S1877050917309894. doi:10.1016/j.procs.2017.05.325.

37

http://dx.doi.org/10.1016/j.trb.2013.07.012
http://www.sciencedirect.com/science/article/pii/S0191261515000582
http://www.sciencedirect.com/science/article/pii/S0191261515000582
http://www.sciencedirect.com/science/article/pii/S0191261515000582
http://dx.doi.org/10.1016/j.trb.2015.03.015
http://www.sciencedirect.com/science/article/pii/S1755534515300518
http://www.sciencedirect.com/science/article/pii/S1755534515300518
http://www.sciencedirect.com/science/article/pii/S1755534515300518
http://dx.doi.org/10.1016/j.jocm.2016.06.001
http://dx.doi.org/10.1016/j.jocm.2016.06.001
http://dx.doi.org/10.1016/j.jocm.2016.06.001
http://hdl.handle.net/1942/19732
http://www.sciencedirect.com/science/article/pii/S1877050917309894
http://www.sciencedirect.com/science/article/pii/S1877050917309894
http://www.sciencedirect.com/science/article/pii/S1877050917309894
http://dx.doi.org/10.1016/j.procs.2017.05.325

[19] Bondy J, Murty U. Graph Theory; vol. 244 of Graduate texts in Mathe-

matics. Springer; 2008. ISBN 978-1-84628-969-9. Doi:10.1007/978-1-84628-

970-5.

[20] Dijkstra E. A note on two problems in connexion with graphs. Nu-670

merische Mathematik 1959;1(1):269–71. URL: http://dx.doi.org/10.

1007/BF01386390. doi:10.1007/BF01386390.

[21] Golumbic MC. Algorithmic Graph Theory and Perfect Graphs (Annals of

Discrete Mathematics, Vol 57). Amsterdam, The Netherlands, The Nether-

lands: North-Holland Publishing Co.; 2004. ISBN 0444515305.675

[22] Montini L, Schüssler N. Position Data Processing. 2015. URL: https:

//sourceforge.net/projects/posdap/.

38

http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
https://sourceforge.net/projects/posdap/
https://sourceforge.net/projects/posdap/
https://sourceforge.net/projects/posdap/

