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Abstract

In order to differentiate from competitors in terms of customer service, warehouses accept late orders while

providing delivery in a quick and timely way. This trend leads to a reduced time to pick an order. The main

objectives of this research are to determine which order picking planning problems are related, to explain why and

how individual planning problems are related, and to identify excellent performing policy combinations in several

practical situations. Previous research shows contradictory findings on which planning problems are related. This

paper is the first that explicitly analyzes and statistically proves the relations between storage, batching, zoning,

and routing by a full factorial ANOVA. The value of combining the four main order picking planning problems is

shown with a real-life case study as well as for multiple generalized warehouse designs. The results of the study

clearly indicate that warehouses can achieve significant benefits by considering storage, batching, zone picking, and

routing policies simultaneously. Awareness of the influence of an individual planning problem on the overall order

picking performance is required to manage warehouse operations, resulting in a reduced order pick time.

Keywords: order picking; storage; order batching; zone picking; routing; warehouse policies interactions

1 Introduction

As customer markets globalize, supply chains increasingly depend on efficient and effective logistical systems to dis-

tribute products across a large geographical area. Warehouses are important parts of supply chains, and therefore

warehouse operations need to work efficiently. A warehouse can be defined as a facility where activities of receiving,

storage, order picking, and shipping are performed (Gu et al., 2007).



Currently, literature mainly focuses on warehouse design (Dallari et al., 2009; Baker and Canessa, 2009; Marchet

et al., 2015; Sprock et al., 2016) and individual warehouse planning problems, such as order batching or routing

(Davarzani and Norrman, 2015; De Koster et al., 2007; Gu et al., 2007; Gong and De Koster, 2011), while concluding

that these planning problems seem to be interdependent (Van Gils et al., 2017). This study focuses on planning

problems related to order picking operations (i.e., the retrieval of stock keeping units from the warehouse in order to

satisfy customer orders), more specifically on manual order picking processes, as these order picking systems account

for 80% of all order picking systems in Western Europe (De Koster et al., 2007). Whether order picking is performed

manually or automatically, high costs are related to this process (Marchet et al., 2015).

Order picking management, in particular organizing efficient and flexible order picking systems, has been identified

as an important and complex planning operation (Marchet et al., 2015). In order to differentiate from competitors

in terms of customer service, warehouses accept late orders from customers while providing delivery in a quick and

timely way. By accepting late orders, the remaining time to pick an order is reduced. Furthermore, the order behavior

of customers has changed from ordering few and large orders to many orders consisting of only a limited number of

order lines. The changed order behavior can be ascribed to upcoming e-commerce markets and forces warehouses to

handle a larger number of orders, while the time available for order picking has shortened (Van Gils et al., 2017).

Four operational planning problems can be distinguished with respect to order picking: storage location assignment,

order batching, zone picking, and picker routing (Yu and De Koster, 2009). In this paper several policies (i.e., solution

methods) for each planning problem are considered and potential interactions among these planning problems are

investigated in order to manage order picking operations more efficiently. While the number of publications dealing

with one specific order picking planning problem is extensive, only a limited number of researchers examine different

planning problems simultaneously, even though the efficiency of different order picking planning problems seems to

be interdependent (Van Gils et al., 2017; Davarzani and Norrman, 2015). The effect of zoning in combination with

other order picking planning problems, such as storage, routing and batching, has received especially little research

attention (Van Gils et al., 2017).

This paper investigates combinations of the four main operational order picking planning problems with the aim of

fulfilling three research objectives. First, based on a simulation study, we aim to determine which planning problems

are statistically significantly related and, consequently, which planning problems should be considered simultaneously.

Second, if a relation is significant, this study analyzes why and how the individual planning problems of storage,

batching, zoning and routing are related. Third, by analyzing combinations of storage, batching, zoning and routing,

we aim to identify excellent performing policy combinations in several practical situations in order to improve overall

order picking performance. Results of the study provide insights in how combining the four main order picking planning

problems support new market developments (i.e., short time windows and a large number of small orders).
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To the best of our knowledge, this paper is the first that explicitly analyzes and statistically proves the relations

between storage location assignment, order batching, zone picking and picker routing. Simulation experiments show

the impact of combining order picking planning problems in a real-life warehouse as well as for more generic warehouse

designs. Insights into the interactions between the four main order picking planning problems are provided by per-

forming a full factorial analysis of variance (ANOVA). Furthermore, the study contributes to both practitioners and

academia by explaining how the planning problems are related and formulating guidelines on which planning problem

policies to combine in order to improve order picking activities.

The remainder of the paper is organized as follows. Section 2 is devoted to presenting the current state-of-the-art

and formulating research hypotheses on how order picking planning problems are expected to be related. Section

3 introduces the experimental design and the assumptions linked to the case. The first two research objectives are

fulfilled in Section 4 that provides the empirical results. Section 5 discusses the managerial implications of this study

and summarizes excellent performing policy combinations that help to improve the overall order picking performance

in several practical situations. Finally, Section 6 is devoted to the concluding remarks and future research directions.

2 Literature Review

This section introduces literature on combining storage, batching, zoning, and routing in a manual order picking

warehouses. The four main order picking planning problems are discussed in Section 2.1. Section 2.2 is devoted to

literature combining multiple order picking planning problems and formulating research hypotheses on the relation

between these order picking planning problems.

2.1 Order Picking Planning Problems

Order picking as a warehouse function arises because goods are received in large volumes and customers order small

volumes of different products. Each customer order is composed of one or more order lines, with every order line

representing a single stock keeping unit (SKU) (De Koster et al., 2007). In order to manage order picking opera-

tions, warehouse managers are confronted with four order picking planning problems, in particular storage location

assignment (i.e., determining the physical location at which incoming products are stored), order batching (i.e., rules

defining which orders to combine in each pick tour), zone picking (i.e., dividing the order picking area into smaller

zones and allowing order pickers to retrieve items of a single zone), and routing (i.e., sequencing the items on the pick

list) (De Koster et al., 2007). Table 1 discusses multiple policies for each planning problem to organize operations in

a manual (picker-to-part) order picking system.

The majority of studies improving order picking operations focus on either storage (e.g., Guo et al. (2016); Manzini
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Table 1: Overview of policies of the four main order picking planning problems

Description of order picking policies

Storage (Guo et al., 2016; Yu et al., 2015)

Random Storage locations for each SKU are selected randomly from all eligible empty locations.
Within-aisle SKUs in a single pick aisle belong to the same turnover based storage class.
Across-aisle Each storage class is located across several pick aisles.
Diagonal Storage classes are located with respect to the distance to the depot.
Perimeter Storage classes are located around the periphery of the warehouse.

Batching (De Koster et al., 1999; Henn et al., 2012)

Priority rule based Orders are prioritized and assigned to pick lists based on their priority (e.g., first-come-first-served
(FCFS)).

Seed based Generation of batches is done by selecting an initial seed order (e.g., select the smallest order), after
which unassigned customer orders are added to the seed order according to an order congruency rule
(e.g., add an order such that the number of additional pick locations is minimal).

Savings based Pick lists are composed based on the distance savings that can be obtained by combining two or more
customer order into a single route.

Metaheuristic A set of guidelines to develop heuristic optimization algorithms for batching of orders.
Exact algorithm The order batching problem is solved to optimality using for example branch-and-bound.

Zoning (Jane and Laih, 2005; Petersen, 2002)

Product properties
assignment

Products are assigned to zones based on physical properties of products, such as size and weight.

Demand properties
assignment

Products are assigned to zones based on product demand properties, such as customer type and order
frequency.

Routing (Roodbergen and De Koster, 2001; Theys et al., 2010; Scholz et al., 2016)

Aisle-by-aisle Each order picker visits every pick aisle containing at least one pick location through the entire length.
Traversal Each order picker traverses every subaisle (i.e., the part of a pick aisle that is within one warehouse

block) containing at least one pick location through the entire length.
Return Each order picker enters and leaves each pick aisle containing at least one pick location form the same

end.
Midpoint Each order picker enters a pick aisle only as far as the midpoint of an aisle and returns to leave the

pick aisle from the same end.
Largest gap Each order picker enters a pick aisle only as far as the start of the largest gap within an aisle and

returns to leave the pick aisle from the same end. The largest gap is defined as the maximum distance
between any two adjacent pick locations within a single aisle, or the maximum distance between an
aisle end and a pick location.

Metaheuristic A set of guidelines to develop heuristic optimization algorithms for routing order pickers.
Exact algorithm The order picker routing problem is solved to optimality using for example branch-and-bound.
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et al. (2015); Yu et al. (2015)), batching (e.g., Gademann and Van de Velde (2005); Muter and Öncan (2015)), zoning

(e.g., Ho and Lin (2017); Jane and Laih (2005); Petersen (2002)), or routing (e.g., Elbert et al. (2017); Scholz et al.

(2016); Theys et al. (2010)), assuming all other decisions being given. The reader is referred to De Koster et al. (2007)

and Gu et al. (2007) for an extensive overview of publications optimizing a single order picking planning problem.

2.2 Combining Storage, Batching, Zoning, and Routing Planning Problems

This section focuses on studies analyzing interactions among operational order picking planning problems (i.e., stor-

age, batching, zoning, and routing), with the aim of summarizing which planning problem combinations have been

investigated in literature and why certain interactions among planning problems are found to be significantly related.

Interactions are defined as the joint effect that two or more planning problems have on a performance goal, which can

be investigated by considering multiple policies (i.e., solution methods or techniques for organizing a planning prob-

lem) for each planning problem and analyzing the effect of these policies on the order picking performance (Van Gils

et al., 2017). Table 2 gives an overview of studies analyzing combinations of order picking planning problems. Based

on the findings of the literature, we formulate research hypotheses on the expected relation among the four main order

picking planning problems.

Table 2: Previous research combining operational order picking planning problems

Significant relation No significant relation

Storage–batching Ho and Tseng (2006); Ho et al. (2008); Hsieh and
Tsai (2006); Petersen and Aase (2004); Ruben
and Jacobs (1999)

Chackelson et al. (2013)

Storage–routing Manzini et al. (2007); Petersen and Schmenner
(1999); Petersen and Aase (2004); Shqair et al.
(2014); Theys et al. (2010)

Chackelson et al. (2013); Ho and Tseng (2006);
Ho et al. (2008); Quader and Castillo-Villar
(2017)

Batching–routing Chen et al. (2015); Cheng et al. (2015); Chack-
elson et al. (2013); Kulak et al. (2012); Petersen
and Aase (2004); Won and Olafsson (2005)

Ho and Tseng (2006); Ho et al. (2008)

Storage–zoning Petersen (2002) De Koster et al. (2012)
Batching–zoning Petersen (2000); Yu and De Koster (2009) -
Routing–zoning - -

Articles analyzing the combination of storage location assignment and order batching are rather consistent about

the statistical significance of the storage and batching relation (Ho and Tseng, 2006; Ho et al., 2008; Hsieh and Tsai,

2006; Petersen and Aase, 2004). The storage location assignment policy defines rules for assigning items to locations in

the order picking area. The batching policy should take these item location rules into account while creating batches

in order to efficiently manage the batching planning problem (Ruben and Jacobs, 1999). Therefore, Hypothesis 1

states that storage location assignment and order batching are related as the use of item location information while

batching orders is expected to result in significant performance benefits.

Hypothesis 1 The joint effect of storage location assignment and order batching on order picking performance is
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significant.

In contrast to the storage–batching interaction, publications investigating the relation between storage location

assignment and routing are less consistent about the significance of the storage location assignment and routing

relation. In a limited factorial setting, in particular a limited number of analyzed policies, storage location assignment

and routing are found to be unrelated (Chackelson et al., 2013; Ho and Tseng, 2006; Ho et al., 2008). However, other

articles do find a statistically significant interaction between the storage and routing planning problems, both in single

block warehouses (Manzini et al., 2007; Petersen and Schmenner, 1999), and in multiple block warehouses (Shqair

et al., 2014; Theys et al., 2010). These studies take information about the location of fast moving products into

account while composing order picker routes. Therefore, the efficiency of routing policies is expected to be strongly

depending on the applied storage location assignment policy as indicated by Hypothesis 2.

Hypothesis 2 The joint effect of storage location assignment and picker routing on order picking performance is

significant.

A large number of articles analyzing the combination of batching and routing policies reveal that these planning

problems are unrelated (Ho and Tseng, 2006; Ho et al., 2008), while other studies do find significant performance

benefits by combining batching and routing (Chackelson et al., 2013). Moreover, integrating the construction of

routes while creating batches results in considerable performance benefits compared to solving the planning problems

sequentially (Chen et al., 2015; Cheng et al., 2015; Kulak et al., 2012; Won and Olafsson, 2005). This can be

explained by the fact that the performance of the created batch is mainly defined by the length of the constructed

route. Therefore, Hypothesis 3 states that a significant interaction exists between the batching and routing planning

problems.

Hypothesis 3 The joint effect of order batching and picker routing on order picking performance is significant.

Zone picking operations in combination with other order picking planning problems have received little research

attention yet (Van Gils et al., 2017), despite of its importance in order picking system performance (Petersen, 2002).

The relation between zone size and storage location assignment planning problems has been investigated, but studies

show contradicting results about the significance of the relation between zone size and storage location assignment

(De Koster et al., 2012; Petersen, 2002). As the size of the zone defines the number of aisles within each order picking

zone, the zone size is expected to significantly influence the efficiency of the storage location assignment. Furthermore,

the joint effect of zone assignment and storage location assignment has not been analyzed so far. Both zone assignment

policies and storage location assignment policies impact the pick densities in the order picking area. Consequently, the
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zone picking planning problem and the storage location assignment planning problem are expected to be significantly

related (Hypothesis 4).

Hypothesis 4 The joint effect of storage location assignment and zone picking on order picking performance is

significant.

Just as the storage location assignment and zoning relation, research analyzing the relation between order batching

and zoning is limited. By only comparing whether or not to batch (FCFS batching) and varying the number of zones,

the batching and zoning problem are found to be interrelated (Petersen, 2000; Yu and De Koster, 2009). In case more

sophisticated batching policies are used, the effect of zoning on the order picking performance is expected to reduce

as these batching rules help order pickers to avoid traveling throughout the entire order picking area. Furthermore,

storage zone assignment as well as batching impact the density of picking activities and, consequently, we expect the

zone picking and batching planning problem to be strongly interrelated as stated in Hypothesis 5.

Hypothesis 5 The joint effect of order batching and zone picking on order picking performance is significant.

Finally, the joint effect of the zone picking and routing planning problems is currently unknown (Van Gils et al.,

2017). As zoning decisions have substantial impact on the distribution of pick density across the order picking area,

and the efficiency of routing policies is determined by the distribution of pick densities, we hypothesize that both

planning problems will be significantly related (Hypothesis 6).

Hypothesis 6 The joint effect of zone picking and picker routing on order picking performance is significant.

In summary, several articles have analyzed a storage-batching, storage-routing and batching-routing. Whether

interactions among these three planning problems exist or not, depends on the number of analyzed policies for each

planning problem, as well as which policies have been evaluated. Most articles of Table 2 are limited to analyzing two

or three policies for each planning problem. Furthermore, research evaluating the effect of zone picking on other order

picking planning problems is scarce. To the best of our knowledge, this study is the first to analyze the interaction

between the four main operational order picking planning problems. In order to evaluate the contradicting findings, a

wide range of policies for each planning problem are included in the simulation experiments. Additionally, the effect

of the number of zones and the storage zone assignment in relation with storage location assignment, order batching,

and routing on the order picking efficiency is analyzed for the first time.

3 Experimental Design

The main objective of this research is to analyze and evaluate if, how and why order picking planning problems are

related and which policy combinations result in the best overall order picking performance. Simultaneously analyzing

7



storage location assignment, order batching, zone picking, and routing policies using a factorial design provides insights

into the impact of each operational order picking planning problem on the overall performance, as well as into the

relation among the order picking planning problems. The description and assumptions of the real-life case as well as

the factor setting of the simulation experiments in the real-life warehouse are discussed in Section 3.1. In order to

validate and generalize the results of the case study, Section 3.2 describes a second experimental factor setting that

is used in addition to the experiments of the real-life case. Finally, Section 3.3 introduces the performance measures

used to evaluate the joint effect of order picking planning problems.

3.1 Experimental Design of Real-life Case Study

In order to analyze the effect of combining storage, batching, zoning, and routing, real-life data are used. We use the

case study of Van Gils et al. (2016) that is based on a large warehouse located in Belgium to show the practical relevance

of integrating storage, batching, zone picking, and routing policy decisions. The warehouse stores approximately 90,000

SKUs on a surface of 30,000 square meter. All stored SKUs are rather homogeneous with respect to volume and weight,

implicating that the sequence in which SKUs are retrieved from the storage locations is not restricted and all storage

locations are equally sized. The warehouse delivers four customer types: each SKU belongs to a single customer type

and orders consists of SKUs of a single customer type.

The warehouse under consideration is shown in Figure 1. The traditional multiple-block warehouse layout is

frequently used in practice (Roodbergen, 2012), making results of the study easily transferable to other warehouses.

Furthermore, cross aisles have proven to result in significantly efficiency benefits (Roodbergen and De Koster, 2001).

The order picking area is divided into two warehouse blocks, each consisting of 16 pick aisles. The pick aisles are

two-sided and wide enough for two-way travel. However, crossing the aisle is required in order to pick items from

both sides of the same aisle, as the aisle width is 2.7 m. The dimensions of the aisles, as well as the warehouse block

configuration and the zone configuration (in case zone picking is applied) are shown on Figure 1.

The warehouse is fully manually operated in which strict order picking is currently applied. Products are assigned

randomly to the storage locations. Customer orders are transformed into pick lists according to the FCFS rule. A

sort-while-pick strategy is used, maintaining order integrity, so that no downstream sorting is required. The picking

vehicle is able to sort 26 orders during a pick tour. Order pickers follow the aisle-by-aisle routing policy to retrieve

all items on the pick list. Each picking tour starts and ends at the decentralized depot. The depot is marked as

D in the bottom left corner of Figure 1. The policy combination of random storage, FCFS order batching, strict

order picking, and aisle-by-aisle routing is used as benchmark in order to evaluate other storage, batching, zoning, and

routing policies. Choosing the optimal combination of different order picking policies is crucial for warehouse managers
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Figure 1: Warehouse layout.

in order to improve the overall order picking performance and consequently improving the service to customers.

In the experiments of this paper, a wide range of policies are evaluated: five different storage location assignment

policies, three order batching policies, five zone picking policies, as well as five routing policies are analyzed. The four

factors and their associated factor levels of the real-life case are summarized in Table 3. The baseline scenario of this

experiment, indicated in italic in Table 3, corresponds to the current operation of the warehouse. In the simulation

studies, policies that are widely used in practice (e.g., FCFS batching, traversal routing), as well as policies that have

often been considered in academic literature (e.g., savings batching algorithms, largest gap and optimal routing) are

tested and evaluated. Due to technological or practical constraints, such as the effects of maverick picking (Glock et al.,

2016), warehouses are not able to apply the complex policies provided by academics (Chen et al., 2010). Section 5

returns to this point by providing policy combinations that are able to improve the overall picking performance under

different technological and practical constraints.

Besides randomly assigning SKUs to storage locations, four turnover based storage location assignment policies

are simulated, in particular across-aisle assignment, within-aisle assignment, diagonal assignment and assigning SKUs

across the perimeter of the order picking area. The turnover based policies consists of three product classes: class A

stores the fast moving SKUs, class B represents the moderate ordered SKUs and class C stores slow moving SKUs.
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Table 3: Experimental factor setting of the real-life case

Factor # levels Factor levels

Storage location assignment policy 5 Random; within-aisle; across-aisle; diagonal; perimeter
Order batching policy 3 FCFS ; seed; savings
Zone picking policy 5 Strict; 2 zones (CT); 2 zones (PF); 4 zones (CT); 4 zones (PF)
Routing policy 5 Aisle-by-aisle; traversal; return; largest gap; optimal

CT = storage zone assignment based on customer type;
PF = storage zone assignment based on pick frequency.

Within each product class each SKU is randomly assigned to a single storage location. The location of the product

classes, as well as the dimension of each class as percent of the total number of storage locations are shown on Figure

2.

(a) Within-aisle. (b) Across-aisle.

(c) Diagonal. (d) Perimeter.

Figure 2: Location of storage classes.

The currently used FCFS batching policy actually results in a random creation of pick lists in terms of travel

distance, as FCFS batching does not take the location of SKUs in the order picking area into account. A seed order

batching algorithm is used as an alternative to create batches. The order that requires the smallest number of subaisles

to visit, is selected as seed order. Next, the order that minimizes the number of additional subaisles to visit in the
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route is added to the pick list. This algorithm is repeated until the batch contains 26 orders. Subsequently, a new

seed order is selected. The cumulative variant of the seed selection rule is simulated, where the number of subaisles

that should be visited in a batch is renewed every time an order has been added to a batch. The combination of

this seed order selection rule and this accompanying order selection rule has yielded good results for different storage

location assignment and routing policies in previous research (De Koster et al., 1999; Ho and Tseng, 2006; Ho et al.,

2008). Both FCFS and the seed algorithm are often used in practice because of their simplicity. Additionally, a more

sophisticated savings algorithm is tested to compose batches. Savings algorithms are based on the algorithm of Clarke

and Wright (1964) for the vehicle routing problem. Pick orders are composed based on the distance saving that can be

obtained by combining two or more customer orders into a single pick round. Due to computing time limitations, the

basic variant of Clarke-and-Wright (i.e., the savings matrix is calculated only once), denoted by C&W(i), is analyzed

in the simulation experiments. Other Clarke-and-Wright algorithms result in strong increasing computing times and

only minor improvements (De Koster et al., 1999).

Strict order picking is compared to four zone picking policies. Both the number of zones as well as the storage

zone assignment policy should be determined in case of zone picking. In the simulation experiments, the warehouse is

divided into either two or four order picking zones, and SKUs are assigned to order picking zones based on customer

type (CT) or pick frequency (PF). This setting results in four additional zone picking policies. The location of the

zones is shown on Figure 1. In case the number of zones is equal to two, pick zone PZ1 and pick zone PZ2 are

combined, as well as pick zone PZ3 and pick zone PZ4. In case multiple zones are combined with a turnover based

storage location assignment policy, the location of storage classes in each pick zone is similar to the location of storage

classes in a single pick zone as shown on Figure 2.

In addition to the aisle-by-aisle routing heuristic, the travel distance for return, traversal, largest gap, and the

optimal route is computed. Examples of the four dedicated routing heuristics are shown on Figure 3. As the routing

problem cannot be solved to optimality for a multiple-block warehouse in reasonable computing times, the Lin-

Kernighan-Helsgaun (LKH) heuristic for the traveling salesman problem (TSP) is used to approximate the optimal

route (Helsgaun, 2000). The LKH heuristic has shown to provide excellent results, both in a general TSP context,

and in the context of routing order pickers in a warehouse. Theys et al. (2010) reported an average optimality gap of

0.1 % for different warehouse settings.

To sum up, the simulation experiment consists of 375 possible combinations of policies (i.e., five storage location

assignment policies × three order batching policies × five zone picking policies × five routing policies). The factorial

setting results in a 5×3×5×5 full factorial design. To reduce the stochastic effect from order generation, 30 replications

per policy combination are performed, resulting in 11,250 observations. During each replication, all combinations of

storage, batching, zoning and routing are tested on the same 1,690 randomly generated orders (i.e., 65 pick lists × 26
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(a) Aisle-by-aisle. (b) Traversal. (c) Return. (d) Largest gap.

Figure 3: Dedicated routing heuristics.

orders in each batch). The order size and composition of these 1,690 orders is based on the historical composition of

more than 15,000 orders. Order sizes are exponentially distributed with a mean of 2.65 order lines and more frequently

ordered SKUs have a higher probability to be generated as order line.

3.2 Generalized Experimental Design

In order to validate the conclusions of the case study, the simulation experiment of the real-life warehouse is enlarged

to other warehouse settings. As the real-life case study is dedicated to a single warehouse setting, findings should be

validated to generalize the conclusions of this study to other warehouse settings. Validation is performed by testing

and analyzing the research hypotheses for more generic warehouse designs. In this way, findings and explanations

on the relations among order picking planning problems can be used to identify generally well performing policy

combinations and formulate general conclusions. Three additional factors that are frequently used in literature to

validate new solution methods, will be used to generalize the conclusions of the real-life case: a varying warehouse

layout (Petersen, 2002; Theys et al., 2010), a varying order size (De Koster et al., 2012; Petersen, 2002; Theys et al.,

2010), and a varying batch capacity (Manzini et al., 2007; Yu and De Koster, 2009). Each of the additional factors

consists of three factor levels. Other factors and assumptions formulated in the previous section are similar to the

case study.

Compared to the case study (i.e., 16 pick aisles), the warehouse is enlarged to 32 pick aisles and 48 pick aisles.

Additionally a more general order picking layout is simulated: the two unequal warehouse blocks are replaced by
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two equal warehouse blocks in correspondence with the traditional warehouse layouts used in academic literature

(Roodbergen and De Koster, 2001; Roodbergen, 2012; Shqair et al., 2014; Theys et al., 2010). Furthermore, order

sizes are exponentially distributed with a mean of one, three, and five order lines. Finally, the batch capacity factor is

set to 10 orders, 25 orders, and 40 orders. Table 4 summarizes the experimental factor setting of the generalized case.

Table 4: Experimental factor setting of the generalized case

Factor # levels Factor levels

Storage location assignment policy 5 Random; within-aisle; across-aisle; diagonal; perimeter
Order batching policy 3 FCFS; seed; savings
Zone picking policy 5 Strict; 2 zones (CT); 2 zones (PF); 4 zones (CT); 4 zones (PF)
Routing policy 5 Aisle-by-aisle; traversal; return; largest gap; optimal
Warehouse layout 3 16 aisles; 32 aisles; 48 aisles
Order size 3 1 order lines; 3 order lines; 5 order lines
Batch capacity 3 10 orders; 25 orders; 40 orders

CT = storage zone assignment based on customer type;
PF = storage zone assignment based on pick frequency.

To sum up, the simulation experiment of the generalized case consists of 10,125 possible combinations of policies

(i.e., five storage location assignment policies × three order batching policies × five zone picking policies × five routing

policies × three warehouse layout levels × three order size levels × three batch capacity levels). The factorial setting

results in a 5×3×5×5×3×3×3 full factorial design. The performance of the combination of the four planning problems

is evaluated using the same randomly generated order lists for each combination of warehouse layout, order size and

batch capacity. By varying the warehouse layout, mean order size, and batch capacity, the results may be easily

generalized to other warehouses.

3.3 Performance Measures

In order to handle the large number of orders in short time intervals, the efficiency of order picking operations need

to be improved. Manual order picking is characterized by the large number of time consuming activities: setup time,

search time, pick time, and traveling to, from, and between pick locations. These four time components account

for 95% of the total order pick time (Tompkins et al., 2010). The simulated order picking policies are evaluated

with respect to the setup activity, the search activity, as well as traveling of order pickers. Traveling is the most

substantial time consuming activity (50%). Searching and setup account for 20% and 10% of the total order pick time,

respectively. The time spent on picking items (15%) at storage locations is assumed to be independent of the applied

storage, batching, zoning, and routing policy.

Minimizing total order pick time is a convenient way for evaluating a non-dynamic order pick system in which orders

are assumed to be known at the beginning of the planning period (Petersen and Aase, 2004; Quader and Castillo-Villar,

2017). In a dynamic order pick system, order throughput time is more convenient to evaluate performances. As in our

case a non-dynamic order pick system is assumed and both performance measures are highly correlated, total order
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pick time is minimized in this study as this mostly results in the smallest order throughput time as well (Giannikas

et al., 2017).

The setup activity refers to the time consumed by administrative and setup tasks at the beginning and end of each

pick round. The setup time is assumed to be proportional to the number of pick rounds. Searching is defined as the

time to identify the storage locations and identification of SKUs. The search time is approximated by evaluating the

number of locations that should be visited to retrieve all orders. Finally, the average travel speed in both cross aisles

and pick aisles is assumed to be equal. Given a constant travel velocity, minimizing the distance traveled by order

pickers is equivalent to minimizing the average travel time of order pickers. Order pickers are assumed to be able to

traverse aisles in both directions and to be able to change direction within aisles. Pick aisles are assumed to be wide

enough to allow order pickers to pass each other within aisles, preventing wait times as a result of aisle congestion.

4 Empirical Results

In order to get a first insight into the results of the simulation experiments, the performance measures of the different

factor combinations are analyzed by a full factorial repeated measures ANOVA on average travel distance, average

number of pick rounds and average number of visited locations. The assumptions under which the ANOVA F statistic is

reliable, are independent observations, homogeneity of variance, as well as normally distributed observations. For each

replication, all combinations of storage, batching, routing and zoning are simulated on the same randomly generated

orders in order to stress the effects of policy decisions. Consequently, the 11,250 observations are not independent

and a repeated measures ANOVA with storage, batching, routing, and zoning as within-subjects factors is required

to analyze the main and interaction effects of the planning problems (Cohen et al., 2011). Due to the large number

of tested factor combinations, Mauchly’s test of homogeneous variances rejected most hypotheses that the variances

of the differences between conditions are equal. Since the homogeneity assumption is violated, the F -test Type I

error rate increases. The Greenhouse-Geisser (G-G) correction of the degrees of freedom is used to compensate for

the increased F -test type I error rate. The G-G adjustment is the most conservative correction to compensate for

the violation of sphericity (Geisser and Greenhouse, 1958; Cohen et al., 2011). In order to ensure the last ANOVA

assumption (i.e., normality), the experimental design is balanced. The F statistic is quite robust to violations of

normality when group sizes are equal (Cohen et al., 2011).

The results of the ANOVA are presented in the next sections as follows: first, Section 4.1 fulfills the first two research

objectives of this study: results of the real-life warehouse simulation are analyzed to test the research hypotheses and

to explain why and how the individual planning problems of storage, batching, zoning and routing are related. The

conclusions of the real-life case study are validated and generalized to other warehouses by analyzing the simulation
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results of the generalized case in Section 4.2.

Table 5: 5×3×5×5 full factorial repeated measures ANOVA on average travel dis-
tance

Sum of squares df Mean square F p-value

Main effects

Storage 28,565,916,920 3.00 9,528,113,270 19,512.62 0.000
Batching 421,484,570,256 1.81 232,630,801,415 502,015.57 0.000
Zoning 303,589,976,898 2.40 126,491,824,693 51,642.26 0.000
Routing 52,259,090,330 3.14 14,663,524,503 94,142.19 0.000

Two-way interaction

Storage × batching 2,115,987,384 6.16 343,569,720 2,357.78 0.000
Storage × zoning 17,292,769,630 7.76 2,228,256,294 3,812.92 0.000
Storage × routing 9,970,923,340 6.92 1,440,588,668 8,359.33 0.000
Batching × zoning 50,034,223,170 5.25 9,529,532,547 23,747.10 0.000
Batching × routing 6,756,931,911 3.27 2,065,561,184 13,980.56 0.000
Zoning × routing 7,651,407,057 4.14 1,848,894,174 5,230.31 0.000

Residuals

Between subjects 1,652,597 29.00 56,986
Within storage 42,455,169 86.94 488,305
Within batching 24,347,955 52.54 463,394
Within zoning 146,767,923 72.54 2,023,312
Within routing 16,098,134 91.03 176,850
Within storage × batching 26,026,054 178.61 145,718
Within storage × zoning 137,355,065 219.48 625,831
Within storage × routing 34,590,906 200.72 172,333
Within batching × zoning 61,101,886 152.26 401,293
Within batching × routing 14,015,963 94.87 147,745
Within zoning × routing 42,424,016 120.01 353,496

Total 900,342,164,257 1,338.72

Table 6: 5×3×5×5 full factorial repeated measures ANOVA on average number
of pick rounds

Sum of squares df Mean square F p-value

Main effects

Storage 2.51 3.40 0.74 26.95 0.000
Batching 28.87 1.00 28.87 201.96 0.000
Zoning 1,367,788.93 2.56 533,355.21 13,804.38 0.000
Routing 6.7 2.96 2.26 53.87 0.000

Two-way interaction

Storage × batching 5.02 3.40 1.47 26.95 0.000
Storage × zoning 1.85 8.70 0.21 4.64 0.000
Storage × routing 5.77 7.84 0.74 14.26 0.000
Batching × zoning 14.26 2.14 6.65 21.48 0.000
Batching × routing 13.40 2.96 4.53 53.87 0.000
Zoning × routing 7.05 5.90 1.19 13.72 0.000

Residuals

Between subjects 2,305 29.00 0.08
Within storage 2.70 98.70 0.03
Within batching 4.15 29.00 0.14
Within zoning 2,873.43 74.37 38.64
Within routing 3.61 85.83 0.04
Within storage × batching 5.40 98.70 0.05
Within storage × zoning 11.60 252.33 0.05
Within storage × routing 11.74 227.34 0.05
Within batching × zoning 19.25 62.16 0.31
Within batching × routing 7.21 85.83 0.08
Within zoning × routing 14.91 171.19 0.09

Total 1,373,133.36 1,255.32

15



Table 7: 5×3×5×5 full factorial repeated measures ANOVA on average number
of visited locations

Sum of squares df Mean square F p-value

Main effects

Storage 19,857,165 3.44 5,774,199 2,801.40 0.000
Batching 1,606,293,435 1.21 1,322,451,977 50,892.63 0.000
Zoning 538,617,997 2.82 190,785,132 14,516.94 0.000
Routing 2,556,886 3.22 794,644 4,689.53 0.000

Two-way interaction

Storage × batching 16,008,512 5.31 3,013,365 1,803.96 0.000
Storage × zoning 3,731,458 9.12 409,260 121.47 0.000
Storage × routing 140,542 10.08 13,945 57.63 0.000
Batching × zoning 68,883,249 4.69 14,672,337 2,622.27 0.000
Batching × routing 5,113,772 3.22 1,589,288 4,689.53 0.000
Zoning × routing 446,489 9.96 44,835 202.84 0.000

Residuals

Between subjects 80,942 29.00 2,791
Within storage 205,561 99.73 2,061
Within batching 915,309 35.22 25.985
Within zoning 1,075,979 74.10 14,520
Within routing 15,812 93.31 169
Within storage × batching 257,349 154.06 1,670
Within storage × zoning 890,827 264.41 3,369
Within storage × routing 70,719 292.27 242
Within batching × zoning 761,788 136.15 5,595
Within batching × routing 31,624 93.31 339
Within zoning × routing 63,836 288.79 221

Total 2,266,019,250 1,613.17

4.1 Results of Real-life Case Study

In the simulation experiments of the real-life warehouse, a balanced 5×3×5×5 full factorial repeated measures ANOVA,

with storage, batching, zoning, and routing as the within-subjects factors, is used to prove the value of combining

the four order picking planning problems. The results of the repeated measures ANOVA on average travel distance,

number of pick rounds, and number of visited locations are shown in Tables 5, 6, and 7, respectively. The first three

columns show the sum of squares, the G-G degrees of freedom and the resulting mean square for the main and

interactions effects, as well as for the residuals. The last two columns are devoted to the F statistic and the p-value

for testing the statistical significance of storage, batching, zoning, and routing, as well as the interactions among the

four operational planning problems.

Tables 5, 6, and 7 indicate that the main effects of storage location assignment, order batching, zoning and routing

are statistically significant with respect to the three performance measures. This means that there is a significant

difference between the five storage location policies, the three order batching policies, the five zoning policies, as well

as the five different routing policies on the average distance traveled by order pickers, the average number of pick

rounds, and the number of visited storage locations. The decision on which storage, which batching, which zoning,

and which routing policy to use does influence the order picking performance.

Furthermore, Tables 5, 6, and 7 show that all factors in the simulation experiment are significantly interacting with
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each other with respect to each of the three performance measures. As three out of the four factors in the experiment

contain five levels, the 30 replications give rise to a large number of observations. Null hypotheses are much easier

rejected with a large number of factor levels and a large number of observations because of a greater probability that

one of the factor levels is interacting with another factor level (Field, 2013). However, the ANOVA shows strong

statistically significant effects, at least with respect to the travel distance, and for some interactions regarding the

number of visited locations (e.g., storage-batching, batching-zoning, and batching-routing).

The next six sections (Sections 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.5, and 4.1.6) are devoted to explaining and discussing

why planning problems are related. As ANOVA results show that interaction terms are most strong in terms of travel

distance and traveling is the most time consuming activity, each combination of planning problems is discussed with

respect to the distance traveled by order pickers. As differences in number of pick rounds are too small to be relevant

in practice, this performance measure does not contribute to the discussion on why planning problems are related. For

example, the maximum difference in number of pick rounds between the combinations of storage and batching policies

is only 0.16 pick rounds. Consequently, the number of pick rounds is not discussed throughout the next sections. The

performance measure ’number of visited locations’ is discussed only for combinations that show substantial differences

(i.e., storage-batching, batching-zoning, and batching-routing).

4.1.1 Storage Location Assignment and Order Batching

The first hypothesis states that the joint effect of storage location assignment and order batching significantly impacts

order picking performance (Hypothesis 1). The ANOVA results of Tables 5, 6 and 7 support the hypothesis of the

relation between storage and batching. The two-way interaction of storage and batching is statistically significant with

respect to the distance traveled, the number of pick rounds, and the number of visited locations. However, differences

in number of pick rounds are too small to be relevant in practice.

Table 8: Post hoc multiple t-test for storage policies by batching policies using Dunnett’s method (familywise error
rate = 0.01)

Random Within-aisle Across-aisle Diagonal Perimeter

Travel distance (in meters)

B2 20,339 B2 17,699 B2 19,492 B2 17,987 B2 20,486
B3 22,817 B3 18,143 B3 21,184 B3 18,599 B3 22,697
B1 35,158 B1 30,926 B1 32,177 B1 31,458 B1 34,604

#visited locations

B3 2,780 B3 2,853 B3 2,829 B3 2,858 B3 2,779
B2 2,832 B2 3,025 B2 2,829 B2 3,006 B2 2,828
B1 3,656 B1 3,656 B1 3,656 B1 3,656 B1 3,656

B1 = FCFS; B2 = seed; B3 = savings

In order to analyze why the relation between storage and batching planning problems is important, the statistical
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Figure 4: Average travel distance (in meters) for each combination of storage and batching policy.

significance of all levels of the batching factor is analyzed for each storage factor level using Dunnett’s method. Table 8

summarizes the test results of a post hoc test. Dunnett’s pairwise test procedure is a robust technique in terms of power

and control of the Type I error rate for evaluating multiple hypotheses in case of unequal variances (Field, 2013). If

two order picking policies are listed in the same subset in Table 8, differences fail to be statistically significant. Minor

differences exists in the composition of subsets between different storage location assignment policies. In terms of

travel distance, all batching policies are located in a separate subset except for the combination with within-aisle

storage classes. Results of the post hoc tests indicate that the route length difference between the seed and savings

batching policies is not statistically significant in combination with within-aisle storage classes, while in combination

with other storage policies, the seed batching outperforms other batching policies. FCFS batching is situated in the

last subset for each storage assignment policy.

No differences in the composition of subsets can be observed with respect to the number of visited locations.

However, the seed algorithm shows strong differences among storage location assignment policies. A decreased number

of visited locations can be observed in combination with random, across-aisle and perimeter storage classes. This can

be explained as follows: fast moving items are located in all pick aisles in case of random, across-aisle and perimeter

storage and the considered seed batching policy minimizes the number of aisles to visit. Consequently, if a particular

aisle should be visited in a pick tour, the limited number of A-locations in the aisle are most likely to be visited, while

aisles of within-aisle and diagonal storage classes consist of a large number of A-locations with equal probability of

being visited.

The interaction plots of Figure 4 further illustrate why storage location assignment and order batching are related

with respect to travel distance. The savings algorithm shows strong performance improvements in combination with

within-aisle and diagonal storage location assignment policies, compared to the other storage policies. The savings

algorithm is able to approximate the average travel distance of the cumulative seed batching algorithm in case of
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within-aisle or diagonal storage classes. These storage policies locate classes over the entire subaisle and storage

locations within each subaisle have an equal probability of being visited. As seed batching only aims to minimize the

number of visited subaisles in a pick round and the savings algorithm additionally takes the travel distance within a

pick aisle into account while creating batches, the efficiency benefits resulting from within-aisle and diagonal storage

are much larger in combination with savings batching. In case the number of A-locations is small in each subaisle,

seed batching results in shorter route lengths.

4.1.2 Storage Location Assignment and Picker Routing

Simulation results support the second hypothesis (Hypothesis 2): Tables 5, 6 and 7 show that storage location

assignment and order picker routing are statistically significantly related with respect to the travel distance, the

number of pick rounds, and the number of visited locations. Differences in number of pick rounds and number of

visited locations are negligible small.

Table 9: Post hoc multiple t-test for storage policies by routing policies using Dunnett’s method (familywise error rate
= 0.01)

Random Within-aisle Across-aisle Diagonal Perimeter

Travel distance (in meters)

R5 22,360 R5 18,882 R5 20,193 R5 19,293 R5 21,004
R2 25,441 R2 21,977 R3 23,066 R2 22,470 R4 24,340
R4 26,825 R4 22,823 R4 24,412 R4 23,305 R2 25,899
R3 27,693 R3 23,207 R2 25,770 R3 23,779 R1 28,899
R1 28,204 R1 24,392 R1 27,981 R1 24,559 R3 29,503

R1 = aisle-by-aisle; R2 = traversal; R3 = return; R4 = largest gap; R5 = optimal

(a) (b)

Figure 5: Average travel distance in meter for each combination of storage and routing policy.

The statistical significance of all levels of the storage factor, decomposed in routing policies, is analyzed using

Dunnett’s method for pairwise comparisons in order to explain why both planning problems are related. Table 9

presents the results of the post hoc test. The strong statistically significant interaction between storage and routing

19



planning problems gives rise to the creation of varying subsets for each storage location assignment policy. Over all

storage levels, the optimal routing policy outperforms the other routing policies that are often used in practice with

respect to the average travel distance. The composition of the other subsets strongly differs across the different storage

location assignment policies.

When randomly assigning SKUs to storage locations, only minor differences exist in the performance of the ded-

icated routing heuristics. All pick aisles and all storage locations have an equal probability of being visited in a

pick tour. In other words, as pick densities are equally distributed across aisles as well as within each pick aisle,

random storage does not clearly favor any of the dedicated routing heuristics. No clear subsets of routing policies in

combination with random storage have been formed by the post hoc test.

Including information about the location of fast moving products while composing order picker routes favors certain

routing heuristics. From Figure 5, the combination of perimeter storage policy and largest gap routing policy is an

example of a well performing combination. Since fast moving SKUs are stored along the periphery of the warehouse

blocks and the largest gap routes tend to follow the periphery of the warehouse, this policy combination outperforms

aisle-by-aisle and return routing in combination with perimeter storage location assignment. Other routing policies

show a strong increase in travel distance in combination with the perimeter storage compared to other storage location

assignment policies. Furthermore, return routes are preferred in combination with across-aisle storage classes: return

routes aim to reduce the travel distance within aisles and across-aisle storage location assignment increases pick

densities in the front of each pick aisle. Equivalent to the perimeter-largest gap combination, routing methods show

increasing route lengths in combination with across-aisle storage, except for return routing. Finally, the traversal

routing is preferred in combination with within-aisle and diagonal storage classes as the aim is to increase the pick

density within an aisle (i.e., within-aisle and diagonal) and reduce the number of visiting aisles in a pick tour (i.e.,

traversal). However, this difference is not found to be statistically significant by the post hoc tests.

In summary, the statistically significant interaction between storage location assignment and order picker routing

originates from the fact that some combinations of storage and routing policies yield excellent performances, while

other combinations result in large average travel distances. Fast moving items should be assigned to storage locations

that could be accessed most easily, which strongly depends on the routing policy.

4.1.3 Order Batching and Picker Routing

Hypothesis 3 states that a significant interaction exists between the batching and routing planning problems. The

two-way interaction between order batching and picker routing is found to be statistically significant with respect to

all three performance measures. ANOVA results approve Hypothesis 3: the efficiency of order batching is significantly

influenced by the applied routing method. With respect to the number of pick rounds, differences between policy
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combinations of batching and routing are too small to discuss them meaningfully.

In order to analyze why the batching and routing planning problems are related, the simulation results are analyzed

using Dunnett’s post hoc test (see Table 10). Additionally, the results are illustrated on the interaction plots of Figure

6.

Table 10: Post hoc multiple t-test for batching policies by routing policies using Dunnett’s method (familywise error
rate = 0.01)

FCFS Seed Savings

Travel distance (in meters)

R5 27,406 R5 16,423 R5 17,211
R4 32,450 R2 18,924 R4 20,885
R2 32,734 R3 19,471 R2 21,278
R3 35,549 R4 19,689 R3 21,328
R1 36,184 R1 21,497 R1 22,740

#visited locations

R1 3,656 R1 2,904 R3 2,749
R2 3,656 R2 2,904 R5 2,781
R3 3,656 R3 2,904 R4 2,826
R4 3,656 R4 2,904 R2 2,826
R5 3,656 R5 2,904 R1 2,882

R1 = aisle-by-aisle; R2 = traversal; R3 = return; R4 = largest gap; R5 = optimal

(a) (b)

Figure 6: Average travel distance in meter for each combination of batching and routing policy.

Combinations of more straightforward routing policies (i.e., aisle-by-aisle and return) with FCFS batching appear

to be inefficient in terms of travel distance (see Figure 6). The post hoc test shows that aisle-by-aisle and return routing

form the last subset in combination with FCFS batching. FCFS batching, which in fact results in a random creation

of batches, generates pick lists with SKUs located in a large number of aisles and SKUs are diffused within each aisle.

Aisle-by-aisle routes can work efficiently only if the number of aisles to be visited is minimized, while return routes

aim to minimize the travel distance within a pick aisle. This results in a large travel distance when combining FCFS

batching with either the aisle-by-aisle or return routing policy. The average route length difference between FCFS

batching and seed or savings batching is much larger when combined with aisle-by-aisle and return routing compared
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to other routing policies. Moreover, the efficiency of the return routing policy strongly increases in combination with

the seed batching policy and the savings batching policy. Especially, when integrating the routing policy while creating

batches (i.e., savings batching), the importance of the decision which routing policy to use substantially reduces. As

the savings algorithm is based on the travel distance reduction of combining orders, the route length of combinations

of orders, depending on the applied routing policy, is calculated before batches are composed. As a result traversal,

return and largest gap routing policies form a single subset in case of savings batching.

Minor differences exist in the number of visited locations between the combinations of batching and routing

(see Table 10). In case of FCFS batching and seed batching, the number of visited locations is insensitive to the

routing policy. As the savings algorithm takes the routing policy into account while calculating the savings between

combinations of orders, the composition of batches differ between the routing policies. Consequently, the number of

visited locations varies for different routing policies in combination with the savings batching policy. However, the

statistically significant differences between the routing policies are rather small: the number of visited locations vary

only 4.8 % in case of savings batching.

4.1.4 Storage Location Assignment and Zone Picking

The order picking system performance is expected to be significantly influenced by the combined effect of storage

location assignment and zone picking. Table 5 shows that the two-way interaction is statistically significant with

respect to the travel distance of order pickers. In the context of the two other performance measures, the joint effect

of storage location assignment and zone picking on order picking performance is statistically significant as well. So,

Hypothesis 4 is supported by the ANOVA results. However, variations are practically irrelevant with respect to the

number of pick rounds and the number of visited locations. This subsection focuses on explaining why the interaction

between storage location assignment and zone picking is statistically significant with respect to the travel distance.

Table 11: Post hoc multiple t-test for zoning policies by storage policies using Dunnett’s method (familywise error
rate = 0.01)

Strict 2 zones (CT) 2 zones (PF) 4 zones (CT) 4 zones (PF)

Travel distance (in meters)

S2 27,942 S2 21,273 S2 25,419 S2 16,212 S2 20,436
S4 29,096 S4 21,758 S4 25,647 S4 16,398 S4 20,508
S3 33,140 S3 23,696 S3 26,242 S3 17,449 S3 20,895
S5 36,534 S5 25,853 S5 27,018 S1 18,601 S1 21,326
S1 37,471 S1 26,107 S1 27,019 S5 18,722 S5 21,517

S1 = random; S2 = within-aisle; S3 = across-aisle; S4 = diagonal; S5 = perimeter

Results of the post hoc tests, shown in Table 11, explain why storage location assignment and zone picking are

strongly related. In case of assigning SKUs to order picking zones based on the pick frequency, the applied storage
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Figure 7: Average travel distance in meter for each combination of storage and zoning policy.

location assignment policy seems to be irrelevant. A single subset containing all storage policies is created in case

of pick frequency assignment of SKUs to order picking zones, indicating that the travel distance is not statistically

significantly different for each of the five storage policies. Products assigned to each order picking zone are characterized

by a similar demand. If demand is distributed uniformly, turnover based storage location assignment policies are not

able to reduce order picker traveling compared to randomly assigning products to storage locations. This effect is

illustrated on Figure 7(b) by the rather flat line for 2 zones (PF) and 4 zones (PF).

The strict order picking policy, as well as the customer type assignment of SKUs to zones (2 zones (CT) and 4

zones (CT)) result in the same composition of subsets. Within-aisle storage and diagonal storage outperform other

storage assignment policies with respect to travel distance. The example shown on Figure 7 further illustrates why the

statistically significant interaction exists: the effect of different storage location assignment policies is not consistent

over all levels of zoning. By dividing the warehouse into order picking zones, the effect of shifting to a more efficient

storage policy on the route length is reduced compared to the strict order picking policy. The reason for this significant

interaction term can be found in the smaller area that is crossed by order pickers to retrieve all items on the pick list

in case of two or four order picking zones, as well as in case of turnover based storage location assignment. Zoning

policies as well as storage policies aim to increase the density of SKUs retrieved in each aisle. Consequently, the

performance impact resulting from changing the storage policy is far greater in combination with strict order picking,

compared to other zone picking policies. Thus, decreasing the zone size by increasing the number of zones diminishes

the efficiency benefits resulting from turnover based storage as order pickers are limited to a small pick area. Dividing

the order picking area into more than four zones may adversely affect the order picking efficiency in the case study. If

the number of zones exceeds the number of customer types, sorting operations increase and more order picking routes

are composed. Order pickers are operating at less than full capacity, especially for unpopular zones. Since orders

should be picked before due dates, pick lists are released before the capacity has been reached.
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4.1.5 Order Batching and Zone Picking

ANOVA results of Tables 5, 6 and 7 support Hypothesis 5 that order batching and zone picking planning problems are

strongly related. The joint effect on the number of pick rounds is not discussed due to the lack of practical significance

of the observed differences between the policy combinations. Especially with respect to the distance traveled by order

pickers to retrieve all items, Table 5 shows a strong two-way interaction between order batching and zone picking.

Table 12: Post hoc multiple t-test for zoning policies by batching policies using Dunnett’s method (familywise error
rate = 0.01)

Strict 2 zones (CT) 2 zones (PF) 4 zones (CT) 4 zones (PF)

Travel distance (in meters)

B2 25,261 B2 19,132 B2 19,771 B2 15,198 B2 16,641
B3 27,700 B3 20,768 B3 22,118 B3 15,723 B3 17,132
B1 45,549 B1 31,312 B1 36,918 B1 21,508 B1 29,036

#visited locations

B3 3,077 B3 2,876 B3 2,952 B3 2,514 B3 2,645
B2 3,135 B2 2,906 B2 3,028 B2 2,553 B2 2,897
B1 3,893 B1 3,592 B1 3,868 B1 3,126 B1 3,801

B1 = FCFS; B2 = seed; B3 = savings

The post hoc test, shown in Table 12, creates three identical subsets for each zone picking policy. All five zone

picking policies result in the same composition of subsets. The three batching policies result in statistically significantly

different performances, both in terms of travel distance and in number of visited locations. The seed batching policy

yields the shortest routes, while the C&W(i) savings algorithm scores better on ’number of visited locations’ by

combining more orders that should visit identical storage locations on the created pick lists. Differences between the

seed and savings batching policy with respect to the number of visited locations are minor in practice, except for the

pick frequency assignment of SKUs to order picking zones (i.e., 2 zones (PF) and 4 zones (PF)). The number of visited

locations decreases in combination with the savings batching policy. Orders within each zone are smaller, because

the pick frequency zone assignment results in splitting orders across zones. So, within each order picking zone, the

small orders are more likely be identical in terms of visited locations. These orders are combined more likely by the

C&W batching algorithm. Therefore, the number of visited locations strongly decreases while combining the savings

batching algorithm with the pick frequency zone assignment.

Figure 8 further explains the relation between order batching and zone picking. Lines on the graph strongly converge

when changing from a straightforward FCFS batching policy to more complex batching policies. The efficiency benefits

resulting from zoning decrease in combination with smart batching algorithms compared to FCFS batching. SKUs on

the pick list are diffused over the entire order picking area in case of strict order picking and FCFS batching. Batching

policies resulting in short travel distances reduce the effect of zoning (e.g., varying zone picking policies show small
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route length differences in combination with seed batching). Moreover, increasing the number of zones, resulting in

a smaller order picking area, reduces the effect of batching algorithms (e.g., the savings algorithm approximates the

seed batching travel distance in combination with four zones). This can be explained by the fact that both batching

and zoning aim to reduce the pick area during each pick round by combining equivalent orders and splitting the pick

area, respectively.

(a) (b)

Figure 8: Average travel distance in meter for each combination of batching and zoning policy.

4.1.6 Zone Picking and Picker Routing

Finally, this section analyzes the currently unknown effect of combining the zone picking and routing planning problems.

Hypothesis 6, that expects the joint effect of zoning and routing to be related, is tested using the full factorial repeated

measures ANOVA on mean travel distance, the average number of pick rounds and the average number of visited

locations. Based on the results shown in Tables 5, 6, and 7, the hypothesis is statistically supported: the joint effect

of zone picking and picker routing on order picking performance is found to be statistically significant. Practical

relevance lacks with respect to differences in number of pick rounds and number of visited locations.

Table 13: Post hoc multiple t-test for zoning policies by routing policies using Dunnett’s method (familywise error
rate = 0.01)

Strict 2 zones (CT) 2 zones (PF) 4 zones (CT) 4 zones (PF)

Travel distance (in meters)

R5 26,507 R5 19,880 R5 22,330 R5 14,932 R5 18,083
R4 32,495 R4 23,674 R2 25,869 R4 17,467 R2 20,904
R2 33,208 R2 23,916 R4 26,801 R2 17,663 R4 21,269
R3 34,375 R3 24,939 R3 27,957 R3 18,107 R3 21,869
R1 37,597 R1 26,278 R1 28,389 R1 19,213 R1 22,558

R1 = aisle-by-aisle; R2 = traversal; R3 = return; R4 = largest gap; R5 = optimal

The results of the post hoc test decomposed in zone picking policies are summarized in Table 13. The different

composition of subsets explains the statistical significance of the zone picking and picker routing planning problem.
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(a) (b)

Figure 9: Average travel distance in meter for each combination of routing and zoning policy.

Again, the optimal routing policy is found to outperform all dedicated routing heuristics in combination with all zone

picking policies. Since routing policies only determine the sequence of SKUs on the pick list, in other words, since

SKUs on the pick list are distributed over the order picking area in the same way for all routing policies, the average

route length differences between the routing policies increases as the pick area of a pick tour increases: decreasing the

number of zones, slightly increases the effects of the routing policies as shown on Figure 9.

4.2 Generalized Results

In order to validate and generalize the results and findings of case study to other warehouses, other warehouse properties

have been included in the second simulation experiment. The hypotheses formulated in Section 2.2 are tested and

analyzed using the generalized experimental design. A 5×3×5×5×3×3×3 full factorial mixed model ANOVA, with

storage, batching, zoning, and routing as within-subjects factors is used to test the hypotheses and validate the results

of the real-life case study. The ANOVA results are presented in Table A.1.

In accordance with the findings of the real-life case study, the results of the mixed model ANOVA show that the main

effects of storage location assignment, order batching, zoning and routing are statistically significant. Furthermore,

all six formulated hypotheses about the relations among the four order picking planning problems are statistically

proven with respect to the distance traveled in Table A.1 of Appendix A. In addition to the real-life warehouse, the

relations among storage, batching, zoning and routing are found to be statistically significantly related under varying

warehouse layout, varying order size and varying batch capacity: warehouse layout, order size and batch capacity

statistically significantly impact the joint effect of the order picking planning problems. Besides traveling, the six

hypotheses are supported with respect to the number of pick rounds and the number of visited locations as well, as

shown in Appendix A (Tables A.2 and A.3).

Results of the full factorial mixed model ANOVA on average travel distance indicate that the order picking layout,
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the order size and the batch capacity statistically significantly influence the relation between the order picking planning

problems. Two examples that demonstrate the most clear interaction are discussed. Figure 10 illustrates the impact

of order picking layout on the combination of zone picking and storage location assignment. The average travel

distance for each combination of zoning and storage policy is shown for the three layout factor levels. The three

interaction plots illustrate different patterns for each level of the order picking layout. The combined effect of zoning

and storage strongly increases as the number of aisles in the order picking area increases. In case of 16 aisles, the

pick frequency assignment of SKUs to order picking zones outperforms other zoning policies in combination with most

storage location assignment policies. Increasing the number of aisles results in an increased travel distance of the pick

frequency assignment compared to assigning SKUs to zones based on customer type in combination with all storage

location assignment policies. This effect may be explained by the larger distance for traveling from the depot to the

first storage location and returning to the depot at the end of a pick round. Assigning SKUs to order picking zones

based on pick frequency results in an increased number of pick round due to orders splitting. So, orders pickers should

travel more often to the depot compared to customer type zoning policies, and this travel distance has been increased

in the 32 aisles and 48 aisles layout.

(a) Layout: 16 aisles. (b) Layout: 32 aisles. (c) Layout: 48 aisles.

Figure 10: Average travel distance (in meters) for each combination of zoning and storage policy.

In a second example, Figure 11 illustrates the impact of the capacity of the picking vehicle on the joint effect

of batching and routing. The average travel distance resulting from the seed and savings algorithm under different

routing policies are of particular interest. In case of a small batch capacity the savings algorithm results in a smaller

route length in case of return, largest gap and optimal routing, whereas the route length differences are insignificant

in combination with aisle-by-aisle and traversal routing. This effect reverses as the batch capacity increases. The seed

algorithm outperforms the savings algorithm in combination with the aisle-based routing policies (i.e., aisle-by-aisle

and traversal), while the mean route lengths are at the same level in combination with the other three routing policies.

The seed selection and accompanying order selection rule under consideration aim to minimize the number of aisles to
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visit in a pick tour. Consequently, this seed algorithm favors the aisle-based routing policies. As the batch capacity

increases, the efficiency of the basic Clarke-and-Wright variant slightly decreases: orders are combined in a pick tour

based on large savings with a single order in the batch, but the combination with other orders that have already been

assigned to the batch may be small (savings between orders are calculated only at the start of the algorithm). This

effect is larger when a batch consist of a large number of orders. Consequently the savings algorithm is outperformed

by the seed batching policy, at least in combination with aisle-based routing policies.

(a) Batch capacity: 10 orders. (b) Batch capacity: 25 orders. (c) Batch capacity: 40 orders.

Figure 11: Average travel distance (in meters) for each combination of batching and routing policy.

5 Managerial Implications

The results of the simulation experiments show the importance of combining storage, batching, zoning, and routing

decisions in order to manage order picking activities efficiently. This section discusses the practical implications of

this research for warehouse managers and provides policy combinations that help to improve the overall order picking

performance in several practical situations.

Compared to the benchmark of the real-life warehouse (i.e., strict order picking in combination with random

storage assignment, FCFS batching, and aisle-by-aisle routing), all proposed combinations perform better, except for

the benchmark including perimeter instead of random storage. Over the 30 replications, the benchmark results in

an average travel distance of 57, 406 meter. The order picking process can be performed 79.3 % more efficiently by

dividing the warehouse into four order picking zones in combination with customer type zone assignment, within-aisle

storage location assignment, savings batching, and optimal routing. This combination results in a mean route length of

11, 886 meter. Note that the savings batching policy outperforms the seed batching policy in this specific combination

in contrast to the previous discussed results.

Similar traveling savings (77.9 %) can be observed when evaluating the best performing combination (i.e., within-

aisle storage, savings batching, 4 zones (CT), and optimal routing) and the benchmark policy combination in the
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context of the generalized case. Within-aisle storage, savings batching, 4 zones (CT), and optimal routing yields to a

mean of 94.9 pick rounds and 3, 268.6 visited locations, which is only 1.7 % and 4.7 % larger than the best performing

policy combination in terms of ’number of pick rounds’ and ’number of visited locations’, respectively. In the discussion

below, the overall best performing combination refers to the policy combination that yields the shortest mean route

length: within-aisle storage, savings batching, 4 zones (CT), and optimal routing. As the simulation experiments have

focused on operational order picking planning problems only, the proposed combinations are rather easy to implement

and result in large performance benefits.

The applicability of the best performing combination is subject to several practical constraints that will be discussed

below with respect to the simulation results of the generalized experiment. First, maintaining order integrity can not

be generalized to all warehouses as not all warehouses can divide their orders across customer types. When SKUs

are assigned to zones based on pick frequency (i.e., within-aisle storage, savings batching, 4 zones (PF), and optimal

routing), the average route length increases by 18.8 % compared to the best performing combination. Additionally, this

combination of within-aisle storage, savings batching, 4 zones (PF) zoning and optimal routing, may result in sorting

activities in case of parallel zone picking, an increased number of visited locations (6.4 %) and a strong increasing

number of pick rounds (39.4 %) as orders are split across zones.

Second, the use of complex algorithms to solve the batching and routing planning problems have not been widely

used in practice as calculating optimal batches and routes for each pick tour may require long computing times. In the

context of the factor levels in this simulation study, the savings batching algorithm and LKH-routing heuristic (i.e.,

optimal) have a substantial impact on computing times compared to other batching and routing policies. Especially,

the combination of savings batching and optimal routing requires a large amount of computing time. Furthermore,

the effects of maverick picking prevent warehouses from using optimal routes to visit storage locations. Ignoring the

savings and LKH-heuristic, the best performing policy combination includes within-aisle storage location assignment,

seed batching, 4 zones (CT) zoning and traversal routing. This combination yields an increased route length of 15.0 %

and an increased number of visited locations of 5.4 % compared to the overall best policy combination. The number

of pick rounds remains similar.

Finally, the experiments under consideration assume a wide-aisle warehouse, disregarding aisle congestion. Narrow-

aisle picking systems are designed to increase storage capacity, but multiple order pickers may require to enter the

same aisle which results in blocking of order pickers. The within-aisle and diagonal storage location assignment policy

strongly concentrates picking activities in a small number of aisles, increasing the probability of picker blocking in

aisles that mainly consist of class A locations. The probability of aisle congestion in narrow-aisle warehouses will be

substantially smaller in combination with other storage policies as class A locations are diffused across pick aisles.

An increased route length of only 9.6 % compared to the overall best policy combination, can reduce efficiency losses
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due to aisle congestion. Moreover, the search time, in terms of number of visited locations, reduces with 2.7 % and

the setup time, in terms of number of pick rounds, is similar compared to the overall best policy combination. So, in

narrow-aisle warehouses, the combination of across-aisle storage, savings batching, 4 zones (CT) and optimal routing

can improve the overall order picking performance as within-aisle and diagonal storage are expected to result in aisle

congestion.

In addition, the simulation results provide insights into the relations among storage, batching, zone picking, and

routing. In contrast to previous studies (see Table 2), all main effects as well as all interaction effects have been proven

to be statistically significant. Warehouse managers should take these interactions among order picking planning

problems into account to design efficient order picking systems. For example, zone picking increases pick efficiency

substantially, but reduces potential efficiency benefits resulting from optimizing other order picking planning problems.

Furthermore, policies for each planning problem need to aim at increasing the pick density in the same area of the

warehouse to reduce traveling: examples are the combination of the cumulative seed batching algorithm and traversal

routing, seed batching in combination with within-aisle storage classes, and return routes combined with across-aisle

storage. Warehouse managers should be aware of the strong relations among order picking planning problems in order

to optimize the overall warehouse performance.

6 Conclusions

Serving e-commerce markets forces warehouses to handle a growing number of orders in shorter time windows. Aware-

ness of the influence of an individual warehouse operation on the overall warehouse performance is required to manage

warehouse operations more efficiently, resulting in enhanced customer service.

In this paper, the relations among the storage, batching, zone picking, and routing planning problems are analyzed

and explained for the first time. The simulation results of our study contribute to both practitioners and the scientific

community. The results of the study clearly indicate that warehouses can achieve significant benefits by considering

storage, batching, zone picking, and routing decisions simultaneously. The simulation results and statistical analysis

provides policy combinations that help practitioners to improve the overall order picking performance in several prac-

tical situations. The simulated order picking policies can be easily implemented and immediately result in significant

performance benefits. Furthermore, this paper is able to statistically prove that all relations among the four main

order picking planning problems are statistically significant. Additionally, by evaluating an extensive range of policies

for each order picking planning problem, the relations among the planning problems are explained.

Below we formulate several research opportunities that are highly relevant to practice, but largely unexplored in

academic literature. The results of this study show that future research should focus on combining planning problems,
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while providing new solution methods. A need remains to integrate more planning problems (e.g., workforce planning)

and additionally account for real-life characteristics, such as precedence constraints (i.e., requiring certain products

to be retrieved before other products due to weight restrictions, fragility, and shape), real time order arrival, and

assigning fast moving SKUs to multiple storage locations. Incorporating these real-life characteristics and constraints

while developing new efficient solution methods for a combined order picking planning problem will make academic

research more valuable to warehouses serving e-commerce customers.
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Table A.1: 5×3×5×5×3×3×3 full factorial mixed model ANOVA on average travel distance
Sum of squares df Mean square F p-value

Main effects

Storage 2,581,068,182,161 1.15 2,252,145,769,126 20,840.87 0.000
Batching 33,580,344,072,124 1.09 30,777,152,758,560 72,464.62 0.000
Zoning 19,861,136,109,911 1.14 17,471,263,744,616 17,310.27 0.000
Routing 5,238,742,190,582 1.16 4,523,368,614,508 7,933.50 0.000
Layout 74,889,003,015,144 2.00 37,444,501,507,572 1,369.28 0.000
Order size 39,478,612,491,554 2.00 19,738,306,245,777 721.83 0.000
Capacity 82,120,906,136,649 2.00 41,060,453,068,325 1,501.50 0.000

Two-way interaction

Storage × batching 90,300,439,821 2.72 33,163,221,224 7,782.71 0.000
Storage × zoning 1,127,150,536,133 2.85 395,129,511,299 21,247.75 0.000
Storage × routing 870,166,236,240 1.18 736,466,291,737 5,826.79 0.000
Storage × layout 310,780,615,930 2.29 135,587,903,902 1,254.70 0.000
Storage × order size 229,692,149,974 2.29 100,210,487,918 927.33 0.000
Storage × capacity 442,422,460,243 2.29 193,020,835,112 1,786.17 0.000
Batching × zoning 2,387,900,915,031 1.66 1,438,432,735,742 18,445.89 0.000
Batching × routing 899,200,878,940 1.82 493,131,569,186 7,926.60 0.000
Batching × layout 175,621,334,192 2.18 80,480,483,143 189.49 0.000
Batching × order size 1,608,240,071,395 2.18 736,994,389,388 1,735.25 0.000
Batching × capacity 4,287,191,394,336 2.18 1,964,654,444,357 4,625.77 0.000
Zoning × routing 601,576,392,051 1.70 354,441,334,759 3,827.88 0.000
Zoning × layout 5,536,682,301,049 2.27 2,435,229,188,715 2,412.79 0.000
Zoning × order size 1,195,409,824,188 2.27 525,783,626,015 520.94 0.000
Zoning × capacity 1,220,803,943,468 2.27 536,952,860,067 532.00 0.000
Routing × layout 960,958,655,058 2.32 414,867,735,612 727.63 0.000
Routing × order size 495,592,132,807 2.32 213,958,410,014 375.26 0.000
Routing × capacity 849,590,082,014 2.32 366,787,386,397 643.31 0.000

Three-way interaction

Storage × batching × layout 30,094,322,817 5.45 5,526,134,131 1,296.87 0.000
Storage × batching × order size 7,327,980,133 5.45 1,345,615,961 315.79 0.000
Storage × batching × capacity 8,078,527,577 5.45 1,483,436,834 348.13 0.000
Storage × zoning × layout 148,682,239,997 5.71 26,060,734,101 1,401.39 0.000
Storage × zoning × order size 72,210,421,440 5.71 12,656,902,347 680.61 0.000
Storage × zoning × capacity 136,145,313,898 5.71 23,863,286,057 1,283.23 0.000
Storage × routing × layout 217,727,481,050 2.36 92,136,964,122 728.97 0.000
Storage × routing × order size 99,862,577,377 2.36 42,259,409,169 334.35 0.000
Storage × routing × capacity 128,873,750,445 2.36 54,536,230,630 431.48 0.000
Batching × zoning × layout 319,921,189,170 3.32 96,357,664,689 1,235.65 0.000
Batching × zoning × order size 85,706,172,600 3.32 25,814,003,325 331.03 0.000
Batching × zoning × capacity 150,824,386,979 3.32 45,427,080,792 582.54 0.000
Batching × routing × layout 106,622,591,114 3.65 29,236,495,925 469.95 0.000
Batching × routing × order size 97,750,542,763 3.65 26,803,731,886 430.84 0.000
Batching × routing × capacity 283,493,086,062 3.65 77,735,350,163 1,249.52 0.000
Zoning × routing × layout 175,812,536,365 3.39 51,793,280,853 559.35 0.000
Zoning × routing × order size 72,975,231,492 3.39 21,498,049,787 232.17 0.000
Zoning × routing × capacity 101,062,411,459 3.39 29,772,358,494 321.53 0.000

Residuals

Between subjects 21,959,012,878,673 803.00 27,346,217,782
Within storage 99,448,725,278 920.28 108,063,914
Within batching 372,112,852,007 876.14 424,719,717
Within zoning 921,331,257,435 912.84 1,009,300,509
Within routing 530,246,091,529 929.99 570160182
Within storage × batching 9,316,966,516 2,186.50 4,261,140
Within storage × zoning 42,597,531,064 2,290.65 18,596,295
Within storage × routing 119,919,087,590 948.78 126,393,115
Within batching × zoning 103,951,845,341 1,333.04 77,981,200
Within batching × routing 91,093,082,051 1,464.23 62,212,254
Within zoning × routing 126,196,678,465 1,362.89 92,594,663

Total 307,657,490,319,680 14,149.62
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Table A.2: 5×3×5×5×3×3×3 full factorial mixed model ANOVA on average number of pick rounds
Sum of squares df Mean square F p-value

Main effects

Storage 150.3 3.63 41.43 487.16 0.000
Batching 6,210.55 1.00 6,210.55 2,728.06 0.000
Zoning 67,629,631.93 1.01 67,142,707.71 4,228.23 0.000
Routing 746.94 1.33 560.85 520.18 0.000
Layout 17,551,278.69 2.00 8,775,639.34 1,145.66 0.000
Order size 2,369.04 2.00 1,184.52 0.15 0.857
Capacity 1,120,342,143.36 2.00 560,171,071.70 73,130.43 0.000

Two-way interaction

Storage × batching 300.59 3.63 82.86 487.16 0.000
Storage × zoning 12.31 14.49 0.85 11.75 0.000
Storage × routing 433.40 7.06 61.39 426.50 0.000
Storage × layout 92.21 7.26 12.71 149.44 0.000
Storage × order size 3.72 7.26 0.51 6.03 0.000
Storage × capacity 81.94 7.26 11.29 132.79 0.000
Batching × zoning 188.81 3.43 55.07 73.56 0.000
Batching × routing 1,493.88 1.33 1,121.71 520.18 0.000
Batching × layout 4,146.89 2.00 2,073.45 910.79 0.000
Batching × order size 0.69 2.00 0.35 0.15 0.859
Batching × capacity 3,965.90 2.00 1,982.95 871.03 0.000
Zoning × routing 140.40 9.60 14.62 130.69 0.000
Zoning × layout 36,910,024.70 2.01 18,322,138.75 1,153.81 0.000
Zoning × order size 4,090.18 2.01 2,030.37 0.13 0.881
Zoning × capacity 22,406,700.93 2.01 11,122,687.85 700.44 0.000
Routing × layout 764.01 2.66 286.83 266.03 0.000
Routing × order size 279.37 2.66 104.89 97.28 0.000
Routing × capacity 534.64 2.66 200.72 186.16 0.000

Three-way interaction

Storage × batching × layout 184.42 7.26 25.42 149.44 0.000
Storage × batching × order size 7.44 7.26 1.03 6.03 0.000
Storage × batching × capacity 163.87 7.26 22.59 132.79 0.000
Storage × zoning × layout 17.26 28.99 0.60 8.23 0.000
Storage × zoning × order size 6.81 28.99 0.23 3.25 0.000
Storage × zoning × capacity 15.83 28.99 0.55 7.55 0.000
Storage × routing × layout 431.97 14.12 30.59 212.55 0.000
Storage × routing × order size 16.37 14.12 1.16 8.05 0.000
Storage × routing × capacity 210.05 14.12 14.88 103.35 0.000
Batching × zoning × layout 162.89 6.86 23.75 31.73 0.000
Batching × zoning × order size 11.40 6.86 1.66 2.22 0.031
Batching × zoning × capacity 286.02 6.86 41.71 55.71 0.000
Batching × routing × layout 1,528.02 2.66 573.67 266.03 0.000
Batching × routing × order size 558.75 2.66 209.77 97.28 0.000
Batching × routing × capacity 1,069.27 2.66 401.44 186.16 0.000
Zoning × routing × layout 60.88 19.21 3.17 28.33 0.000
Zoning × routing × order size 47.77 19.21 2.49 22.23 0.000
Zoning × routing × capacity 130.41 19.21 6.79 60.70 0.000

Residuals

Between subjects 6,150,892.20 803.00 7,659.89
Within storage 247.74 2,913.18 0.09
Within batching 1,828.07 803.00 2.28
Within zoning 12,843,816.58 808.82 15,879.63
Within routing 1,153.05 1,069.43 1.08
Within storage × batching 495.47 2,913.18 0.17
Within storage × zoning 841.39 11,639.17 0.07
Within storage × routing 815.99 5,669.34 0.14
Within batching × zoning 2,061.14 2,753.16 0.75
Within batching × routing 2,306.10 1,069.43 2.16
Within zoning × routing 862.69 7,711.03 0.11

Total 1,283,876,015.20 38,484,33
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Table A.3: 5×3×5×5×3×3×3 full factorial mixed model ANOVA on average number of visited locations
Sum of squares df Mean square F p-value

Main effects

Storage 583,256,129 2.17 268,469,533 23,436.92 0.000
Batching 38,366,624,020 1.43 26,776,029,650 122,256.41 0.000
Zoning 13,301,802,850 1.09 12,240,001,150 10,408.60 0.000
Routing 87,602,723 2.19 40,090,608 14,842.89 0.000
Layout 1,356,917,368,476 2.00 678,458,684,200 1,145.66 0.000
Order size 27,903,628,050 2.00 13,951,814,030 396.90 0.000
Capacity 29,710,345,870 2.00 14,855,172,940 422.60 0.000

Two-way interaction

Storage × batching 379,340,557 4.52 83,890,741 13,865.63 0.000
Storage × zoning 125,139,890 13.17 9,498,546 2,798.71 0.000
Storage × routing 4,211,097 12.66 332,756 1,043.79 0.000
Storage × layout 9,184,924 4.35 2,113,884 184.54 0.000
Storage × order size 874,018 4.35 201,153 17,56 0.000
Storage × capacity 20,661,118 4.35 4,755,098 415.11 0.000
Batching × zoning 847,489,156 2.32 365,496,385 5,450.48 0.000
Batching × routing 175,205,446 2.19 80,181,216 14,842.89 0.000
Batching × layout 1,856,955,772 2.87 647,983,815 2,958.62 0.000
Batching × order size 775,399,337 2.87 270,575,222 1,235.42 0.000
Batching × capacity 549,133,249 2.87 191,619,781 874.91 0.000
Zoning × routing 8,395,813 5.37 1,563,276 1,476.54 0.000
Zoning × layout 8,808,436,813 2.17 4,052,656,544 3,446.28 0.000
Zoning × order size 446,264,356 2.17 205,320,899 174.60 0.000
Zoning × capacity 1,278,070,760 2.17 588,025,088 500.04 0.000
Routing × layout 25,184,737 4.37 5,762,786 2,133.58 0.000
Routing × order size 1,228,155 4.37 281,027 104.05 0.000
Routing × capacity 4,745,661 4.37 1,085,905 402.04 0.000

Three-way interaction

Storage × batching × layout 13,497,586 9.04 1,492,488 246.68 0.000
Storage × batching × order size 6,385,266 9.04 706,047 116.70 0.000
Storage × batching × capacity 12,946,125 9.04 1,431,511 236.60 0.000
Storage × zoning × layout 9,340,857 26.35 354,502 104.45 0.000
Storage × zoning × order size 4,051,851 26.35 153,775 45.31 0.000
Storage × zoning × capacity 3,874,850 26.35 147,057 43.33 0.000
Storage × routing × layout 50,369,473 4.37 11,525,571 2,133.58 0.000
Storage × routing × order size 2,456,310 4.37 562,054 104.05 0.000
Storage × routing × capacity 9,491,323 4.37 2,171,810 402.04 0.000
Batching × zoning × layout 498,429,683 4.64 107,478,807 1,602.78 0.000
Batching × zoning × order size 114,260,744 4.64 24,638,598 367.42 0.000
Batching × zoning × capacity 101,586,353 4.64 21,905,557 326.67 0.000
Batching × routing × layout 50,369,473 4.37 11,525,571 2,133.58 0.000
Batching × routing × order size 2,456,310 4.37 562,054 104.05 0.000
Batching × routing × capacity 9,491,323 4.37 2,171,810 402.04 0.000
Zoning × routing × layout 6,203,159 10.74 577,505 545.46 0.000
Zoning × routing × order size 1,811,831 10.74 168,679 159.32 0.000
Zoning × routing × capacity 316,780 10.74 29,492 27.86 0.000

Residuals

Between subjects 28,226,772,140 803.00 35,151,646
Within storage 19,983,628 1,744.54 11,455
Within batching 251,998,234 1,150.60 219,015
Within zoning 1,026,203,688 872.66 1,175,950
Within routing 4,739,306 1,754.65 2,701
Within storage × batching 21,968,749 3,631.04 6,050
Within storage × zoning 35,904,857 10,579.23 3,394
Within storage × routing 3,239,644 10,162.15 319
Within batching × zoning 124,857,632 1,861.94 67,058
Within batching × routing 9,478,611 1,754.65 5,402
Within zoning × routing 4,565,966 4,312.63 1,059

Total 1,512,756,826,184 38,962.81
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