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Chapter 1
Introduction

This dissertation consists of three main parts; The first part is dedicated for mod-

eling Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome

(AIDS) patients under Antiretroviral Therapy (ART) in Northwest Ethiopia. The sec-

ond part is focused on modeling Visceral Leishmaniasis (VL) and HIV co-infection in

Northwest Ethiopia, and the third part presents publicly available software developed

for the analysis of standardized ART databases.

1.1 HIV/AIDS in Low Income Countries

It has been almost 35 years since the world have been introduced to the term HIV, the

virus that can lead to AIDS (Richard and Tim, 2014). Transmission of HIV can occur

when HIV-infected blood, semen or vaginal secretions enter to the body (Richard and

Tim, 2014). The virus is known to affect the immune system and progressively weaken

the body’s ability to fight infections (Blattner et al., 1988). The virus reduced cluster

of differentiation 4 (CD4) cell counts, increased plasma HIV-Ribonucleic Acid (RNA)

levels and, in the most severe phase of HIV-infection, can lead to an AIDS-defining

complication (Kestens, 2013).

It is estimated that, since the start of the epidemic, more than 78 million people

have been infected and about 35 million people have died of AIDS (WHO, 2015). In

2016, a total of 36.7 million people are living with HIV from which 95% are living

in lower and middle income countries (UNAIDS, 2017a). Sub-Saharan Africa carried

the highest burden of the diseases (Murray et al., 2014) having 25.5 million infected

individuals (70% of the total number of people living with HIV in 2016 (UNAIDS,

1



2 CHAPTER 1. INTRODUCTION

2016a)). Ten countries in Africa carry 80% of the HIV burden: Ethiopia, Kenya,

Malawi, Mozambique, Nigeria, South Africa, Uganda, the United Republic of Tan-

zania, Zambia and Zimbabwe (Roche, 2017). The first case of HIV in Ethiopia was

identified in 1986 (Hladik et al., 2006) and since then 19.35 millions people were re-

ported to be infected by HIV (UNAIDS, 2016b) at the end of 2016. It is estimated

that currently 0.73 million people in Ethiopia are living with HIV and it has been one

of the top three diseases which cause morbidity and mortality in the country (EPHI,

2017). Not all individuals infected with the virus know their status. It is estimated

that only 54% of people living with HIV know that they have the virus.

Despite the drawbacks in the development of effective cure for HIV, the devel-

opment of effective Antiretroviral Therapy (ART) drugs combinations has increased

survival and reduced HIV-associated morbidities and mortality in HIV-infected in-

dividuals (De La Hoz et al., 2014; Quinn, 2008). In addition, studies revealed that

the drug combination significantly reduce the transmission of the virus to uninfected

sexual partner (Cohen et al., 2011; Group et al., 2015a,b). Nearly 76% of those be-

ing treated achieve viral suppression. Cohen et al. (2011) has confirmed that if an

HIV-positive person enrols and adheres to an effective ART regimen, the risk of virus’

transmission to their uninfected sexual partner can be reduced by 96%. Furthermore,

life expectancy of HIV patients under ART treatment increase and a study in the US

and Canada revealed that, a person in his/her 20s who contracts HIV can expect to

live into the 70s if initiated ART early after being infected (Samji et al., 2013).

The long-term outcomes of treatment is monitored by different characteristics of

HIV-infected individual who initiated ART. Keiser et al. (2011) and Roberts et al.

(2012) have shown that viral load measurement is the best marker to (1) monitor

the health in the HIV-infection, (2) guide treatment choices, and (3) monitor how

the treatment is affected an HIV-infected individuals over time. Although measuring

viral load is a standard practice in high-income countries, it is not the case in resource

poor setting due to high costs and technical constraints. Instead, CD4 cell count

has been used as a main marker of treatment response for HIV-infected individuals.

Understanding the rate at which CD4 cell counts increases in response to ART in

HIV patients is an important challenge. It is not fully explicated whether patients

who receive ART can maintain continued CD4 cell count increases. Although several

studies have quantified the gains in CD4 cell counts over the first 2 years after ART

initiation at the population level (Mpondo et al., 2015; Rajasekaran et al., 2009),

the long-term CD4 cell count response to ART remains largely uncharacterised at

the individual level. As such there is a need to develop statistical models for the

change of CD4 cell count over time under ART treatment. Currently, the guidelines
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recommended the routine measurement of viral load for resource poor countries as

well (Calmy et al., 2007).

For the last three decades, enormous number of researches involving HIV/AIDS

related problems has been conducted with different approach in order to answer re-

spective research questions. Being a life long diseases, data for HIV patients are

accumulated from the date of test for an HIV-infected individual (Young, 2015). In

Ethiopia, free national ART program was started in 2005 and government health or-

ganizations involved in ART provision since then. During the same year the service

was limited to government hospitals, but currently health centers provide the ser-

vices as well (Assefa et al., 2017). Initially, the information of the patient had been

recorded on the chart (paper based). However, starting from 2009 both chart and

electronic recording system was implemented. As a result, large amount of data are

accumulated routinely in all hospitals and treatment centers in Ethiopia.

1.1.1 Modeling Treatment Progress for HIV-Infected Patients

Often data collected about HIV/AIDS are event-history and longitudinal outcomes

(Sudell et al., 2016). Failure to take appropriate statistical models that can take into

account this phenomenon can lead to biased estimation of model parameters (Sweeting

and Thompson, 2011). In the first part of this dissertation, we focus on two type of

endpoints that represent the response of a HIV patient under ART to the treatment:

the time to composite outcome and longitudinal CD4 cell counts. Time to composite

outcome is a time to event endpoint and it is defined as the occurrence of either

NNRTI substitution, discontinuation, lost to follow up or death (Sarfo et al., 2013).

The data analysed in the first part of the dissertation, was obtained from Gondar

University Hospital database of HIV patients under ART. Our aim is to model the

change in CD4 cell counts in order to asses and monitor the progress of HIV patients in

the treatment center and to provide a subject-specific predictive models for treatment

failures. These sets of models will be discussed in the first part of this dissertation.

The general structure of the dissertation is shown in Figure 1.1.

Chapter 2 gives brief introduction about HIV/AIDS treatment in Ethiopia and

presents a systematic review and meta-analysis done to determine the effect of choice

of initial ART regimen on the long-term treatment outcomes of HIV-infected indi-

viduals in sub-Saharan Africa. Patients who initiated HIV treatment are expected

to stay on the first regimen as long as possible as it is the treatment with different

options which can combat morbidity, progression, and early mortality. However due

to reasons related to drug toxicity, co-morbidity, pregnancy or treatment failure, orig-
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Figure 1.1. Dissertation structure and publication strategy.
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inal treatment need to be modified to other alternatives. Knowing the most effective

treatment combination at initiation can help the clinicians to consider the combina-

tion during modification which has optimal benefit for the patient. In Chapter 3, we

present models for the outcome of first line ART and the rate of CD4 cell count change

among a cohort of HIV/AIDS patients in Gondar University Hospital, Ethiopia. Two

main statistical models are used to answer two research questions: (1) a survival anal-

ysis model for the time to first treatment change and (2) a semi-parametric random

effect model for the change of CD4 cell counts over time. The first derivative of the

semi-parametric model is used to describe the rate of change in CD4 cell count over

time. In Chapter 4, using a flexible parametric modeling approach, we conducted

a model based prediction to estimate the time it takes to reach a pre-specified CD4

threshold and to predict a subject specific probability of an individual to have CD4

cell count above a threshold. Since the model is developed for prediction, data are

divided into two parts: an estimation period in which the unknown parameters of

the model are estimated and a prediction period in which a model based prediction

is made. The modeling procedure is illustrated in Figure 1.2. In Chapter 5, a joint

model for longitudinal CD4 cell counts and time to event process, i.e., time to first

treatment change, death, lost to follow up is used to determine the effect of longitudi-

nal process of CD4 cell count on time to composite outcomes and to obtain a subject

specific prediction for the probability of composite outcome and death.

1.1.2 VL and HIV Co-infection in Ethiopia

The second part of the dissertation is devoted to modeling of VL and HIV co-infection

in Northwest Ethiopia. VL is an endemic and potentially life-threatening disease in

the tropics, subtropics, and Mediterranean basin (Pavlia and Maltezoub, 2010). More

than 90% of global burden of VL cases occur in just six countries: India, Bangladesh,

Sudan, South Sudan, Brazil and Ethiopia (Bern et al., 2008; Georgiadou et al., 2015).

Transmission occurs during a blood meal of female sand-fly of the genus Phleboto-

mus (Bates, 2007). One third of all HIV patients worldwide live in regions where

leishmaniasis is endemic. Consequently co-infection with HIV and VL is very com-

mon. Globally, Ethiopia carried the highest burden of VL-HIV co-infection (Hurissa

et al., 2010; Mengistu and Ayele, 2007). The north-west lowland areas bordering

Sudan account for 60% of the VL burden in the country (Argaw et al., 2013). As a

consequence of VL-HIV co-infection, a high rate of treatment failure, and frequent

relapses were reported (Burza et al., 2014; Diro et al., 2014; Rachel et al., 2008). In
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Figure 1.2. Estimation and prediction periods for early prediction diseases
progression of HIV patients under ART based on CD4 cell counts. The longitudinal
measurements are divided into two parts. The first part of the longitudinal sequence
is used for estimation of the unknown model parameters (the estimation period)
while the second part of the data, the prediction period, is used for prediction of the
probability to be above a pre-specified CD4 threshold.

Chapter 6, we briefly introduce VL and HIV Co-infection in Ethiopia and present a

summary of two research projects about VL conducted in Gondar University hospital

and surroundings. In Chapter 7, we present a joint model for longitudinal labora-

tory biomarkers and time to relapse in order to predict relapse in VL-HIV co-infected

patients.

1.1.3 Software Tools for the Analysis of HIV/ART Databases

Modern data analysis requires accessibility to software to conduct the analysis. In

the third part of the dissertation, we present a new, R based, software tool, for a

routine analysis of hospitals HIV patients databases in Ethiopia. Due to an increase

in technological capacity, Ethiopian hospitals are accumulating data on their HIV

patients in treatment centers rapidly and health professionals require data analysis

tools in order to obtain information for better decision about the patients treatment

and to monitoring the performance of patients in the treatment center. We present



1.2. OBJECTIVES OF THE DISSERTATION 7

a new R shiny package, the ETART shiny App, which can be used, either on-line or

off-line, to conduct a basic analysis of HIV patients using a standardized database and

to visualize the current situation in the treatment center with respect to effectiveness

of different treatment. The ETART Shiny App is presented in Chapter 8.

1.2 Objectives of the Dissertation

The main objective of the research conducted within the PhD project reported in

this dissertation is to develop flexible statistical models for long-term treatment out-

comes in HIV-infected and VL co-infected patients, Northwest Ethiopia. The specific

objectives are

1. To determine the effect of the choice of initial regimen on long-term outcomes

in HIV-infected patients in sub-Saharan Africa.

2. To determine the long-term response of first line antiretroviral therapy and rate

of CD4 cell count change in HIV-infected individuals in Ethiopia.

3. To model the evolution of CD4 cell counts over time and use this model for an

early prediction of subject-specific time to cross a pre-specified CD4 threshold

4. To assess the association of long-term treatment outcomes and CD4 cell count

evolution among a cohort of HIV/AIDS patients on ART in Ethiopia.

5. To identify the best biomarkers which predicts relapse in VL-HIV co-infected

patients who have been taking pentamidine for the purpose of preventing relapse

in Northwest Ethiopia.

6. To close the gap in local data analysis capacity by providing, a free, on-line

based, user friendly, data analysis tool for the analysis of a standardised ART

database.

1.3 Case Studies

Two datasets are used to illustrate the methods, models and applications presented

in the dissertation.
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1.3.1 HIV Database in Gondar University Hospital

Data for the first part of the dissertation were obtained from an ART clinic database

which had been collected from HIV patients who initiated ART from January 2009

to December 2013 in Gondar University Hospital. It is a 570-bed university hospital,

which acts as the referral center for four district hospitals in the area. It has a range

of specialities including paediatrics, surgery, gynaecology, psychiatry, HIV care and

treatment center. The HIV care and treatment center has voluntary counselling and

testing clinics where both self-referred individuals and physician referred patients are

tested for HIV and received care and support. In this hospital, free ART service was

started in 2005. The most common criteria the clinician use to assign the patients to

the specific regimen are laboratory results, history of drug allergy, adherence history

for previous treatment and mental status. For the data analysed in this dissertation,

the following inclusion criteria were applied; having at least two visits and one CD4

cell count measurements, initiated ART within the study period, initiated with either

NNRTI (NVP or EFV) treatment groups, and initiated with either of the three (AZT,

d4t or TDF) NRTIs backbones.

Two data sources were used in order to ensure the data quality: (1) the electronic

database was accessed and data were extracted from the database according to the

inclusion criteria and (2) charts of the patients’ were accessed and extracted. Extrac-

tion tool was pretested and revision was made based on the feedback from the pretest

on the final extraction tool. Masters of public health students who have been work-

ing in HIV care and treatment centers were recruited and trained on the procedures

and tools. The extracted data were checked on daily bases by the supervisors. The

data extracted from the charts were entered in to the template developed by EPI-Info

software. The final dataset was obtained by amending the two datasets. This was

done in order to minimize the number of the missing values which would be observed

if only one of the two sources was used. A total of 2550 HIV/AIDS patients met the

inclusion criteria for this study. Information on baseline and follow-up variables were

recorded in the patients chart by health professional at enrolment and at each visit.

The variable include HIV test date, ART start date, age, sex, original regimen, WHO

stage, functional status, and weight as baseline variables. Follow up variables were

recorded at each visit and include, the visits date, CD4 cell counts, WHO stage and

regimen. Figure 1.3 shows the individual and average profile for log(CD4) cell counts

during the study period.

Patients’ follow up period ranges from 0 to 68 months. Figure 1.4 shows the

Kaplan-Meier curves for the time of composite outcome. Overall, 24.9% of the patients
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Figure 1.3. Log(CD4) cell counts over time. Panel a: Individual profiles of CD4
cell counts on log scale for selected patients. Panel B: all patients and (panel B).
The dark black line in panel B shows the observed average profile.

experience the event (with median time of follow up equals to 24.9 months). An

elaborate description of the data is given in Section 3.2.

Ethical Clearance

A human subject research approval for this study was received from Institutional

Review Board (IRB) of the University of Gondar. As the study was retrospective,

the IRB waived that the research could be done based on record review without

contacting the patients. Support letter was obtained from the medical director office

of the hospital for retrieving retrospective data from the database and records. All

the information was kept confidential, and no individual identifiers were collected.

1.3.2 PSP Clinical Trial Data

The data we analysed in the second part of the dissertation are outcome of a clin-

ical trial conducted in two Leishmaniasis Research and Treatment Centers (LRTC,

Gondar and Abderafi) located in Ethiopia . The centers provide free VL treatment
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Figure 1.4. Plot of Kaplan-Meier survival curve for time to composite outcome.

and care to all patients with leishmaniasis. Patients present to the center either spon-

taneously or are referred from other health institutes in the catchment area. The

Pentamidine as Secondary Prophylaxis (PSP) clinical trial was conducted to investi-

gate the effectiveness, safety and feasibility of monthly PSP in VL-HIV co-infected

patients that have documented parasite clearance after VL treatment when used for

prevention of VL relapse. The study was started in November 2011 and recruitment

of the participant taken place until August 2013. A total of 74 VL-HIV co-infected

patients were enrolled. The primary end point was time to relapse or death within

12 months of PSP initiation. As can be seen in Figure 1.5, at the end of the follow

up period, 20.27% of the patients relapsed (the primary endpoint of the trial). .

Pentavalent antimonials and liposomal forms of amphotericin B, and more recently

paromomycin, are the main drugs to treat VL. The combination regimen sodium
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Figure 1.5. The PSP study. Kaplan-Meier survival curve for time to relapse.

stibogluconate (SSG) and paromomycin was applied as first line therapy for non-

HIV/VL cases at the treatment site since September 2012. The monthly infusion of

pentamidine isethionate was continued until the primary endpoints. In the second

part of the dissertation, our aim is to identify a lab biomarkers that can be use

for early prediction of release of VL-HIV co-infected patients. In addition to time

to relapse monthly full blood count, Haemoglobin (Hgb), white blood cell (WBC),

creatinine, liver function tests and blood glucose, CD4 cell count (every six months)

were monitored. Figure 1.6 shows the individual profile of patients for log(WBC)

(left panel) and Hgb (right panel). The red lines are corresponding for patients

who experienced relapse, whereas the black line represents for patients who did not

experience relapse. An elaborate discussion on the PSP data is given in Section 7.2.

Ethics Statement and Regulatory Aspects

The protocol of the study was approved by the Ethiopian Regulatory Authority (Food,

Medicine, Health Care Administration and Control Authority (FMHACA)), the Na-

tional Research Ethics Review Committee (NRERC) and the Institutional Review

Board of University of Gondar (UoG) in Ethiopia. Additionally, it was also approved

by the Ethics Review Board of Medecins Sans Frontires, and the Ethics Committee of



12 CHAPTER 1. INTRODUCTION

7

8

9

10

11

0 100 200 300

Day

lo
g(

W
B

C
) Relaps

Not relaps

relaps

A

5

10

15

20

0 100 200 300

Day

ha
em

og
lo

bi
n

Relaps

Not relaps

relaps

B

Figure 1.6. The PSP Study. Individual profile for WBC (left panel) and Hgb
(right panel). The red and black lines represent patients who experienced the event
and for those did not, respectively.

the Antwerp University Hospital, Belgium. All subjects were included in to the study

after a written informed consent was signed. Free treatment was provided. Patients

were compensated for transport and food during their visits to the study sites. All

study documents were kept confidential and were accessible for the study team, mon-

itors and inspectors. Trained clinical trial monitors carried out two pre-study visits,

one initiation visit and 6 monitoring visits according to the WHO and good clinical

practices standards. Regulatory inspection was carried out by FMHACA at both

study sites during the study period. The independent Data and Safety Monitoring

Board met five times during the study and assessed the progress of the study when

every quarter of total sample recruitment was achieved. The protocol was registered

in ClinTrials.gov (code NCT01360762).
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Chapter 2
HIV/AIDS in Ethiopia: Current Status and Treatment
Policy

One of the most important problems after initiation of ART is a change in first

line treatment. This chapter is devoted to a systematic review and meta-analysis

of published studies in order to investigate if first line treatment failure and NNRTI

substitution are different between initial regimen of NVP and EFV. In Section 2.1 we

briefly review the current situation of HIV/ADIS in Sub-Saharan Africa and Ethiopia,

while in Section 2.2 we discussed treatment strategies and ART implementation poli-

cies in low income countries. In section 2.3 we describe the systematic review and

meta-analysis conducted by Ayele et al. (2017) to compare between NVP and EFV

in first line ART regimens. The results are presented in Section 2.4 and discussed in

Section 2.5.

2.1 HIV/AIDS in Sub-Saharan Africa and Ethiopia

Despite recent declines, HIV/AIDS still ranks in the top five global causes of disability-

adjusted life years (Ortblad et al., 2013). The vast majority of infected individuals live

in low and middle income countries. Sub-Saharan Africa, accounted for about 12%

of the worlds population, carried the highest burden of the diseases which accounted

70% of the global total (Murray et al., 2014). Swaziland, Botswana, and Lesotho,

located in the Sub-Saharan region, are the top three countries where 27.73%, 25.16%,

and 23.39% of the population lives with HIV, respectively (UNICEF, 2017). Western

pacific region has the lowest burden of the epidemic as can be seen from Figure 2.1.

Ethiopia is Africa’s second most populous country, with 98 million people (Geck,

15
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Figure 2.1. Adult HIV prevalence in 2016. Source: Kaiser Family foundation
based on UNAIDS and AIDSinfo, Accessed October 2017. The figure is taken from
www.kff.org/global-health-policy/fact-sheet/the-global-hivaids-epidemic.

2016). Currently, with an estimated 0.73 million people living with HIV, the country

has one of the largest HIV-infected population in the world (UNAIDS, 2016b). The

adult prevalence rate is estimated to be 1.2% which is one of the lowest in Sub-Saharan

Africa. However, according to the globally accepted consensus, if the total number of

HIV infected people in a given country exceeds 1% of the population, that country

is considered to be under category of outbreak of the virus. Amhara region has high

HIV/AIDS prevalence in Ethiopia with an average adult prevalence of 1.36% (CSA,

2012).

2.2 HIV Treatment

The introduction of ART changes HIV/AIDS from a diseases with a high mortal-

ity rate to manageable chronic diseases by decreasing the progression of AIDS and

reducing HIV related illness and deaths (Broder, 2010). It has improved steadily

since the advent of potent combination therapy in 1996. The scale-up of ART in

the last three decades has been one of the world’s greatest public health success sto-

ries (WHO, 2015). Researches revealed that an increase accessibility to ART lead

to decline in HIV related morbidity and mortality (Braitstein et al., 2006; Ortblad

et al., 2013; Peterson et al., 2011; Stover et al., 2008). It is estimated that nearly 7.8

million deaths averted globally during 2000-2014 due to the implementation of ART
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programmes (WHO, 2015). The goal of ART is to attain maximal and durable sup-

pression of the viral replication and prolong diseases free survival (AIDSinfo, 2014).

Globally, a total of 19.5 million people living with HIV enrol to ART for which global

coverage reached 46% at the end of 2016. The number of HIV patients under ART

increases steadily from less than a million in 2000 to 7.5 million in 2010 and 15.8

million in 2015 (UNAIDS, 2017b). Consequently the global coverage of ART reached

54% during the same year. In eastern and southern Africa, the most affected region

in the world, coverage increased from 24% in 2010 to 54% in 2016, reaching a total of

10.3 million people (WHO, 2016). South Africa alone has nearly 3.4 million HIV pa-

tients under treatment with a coverage rate of 56% (UNAIDS, 2016a). In Ethiopia an

estimated 386,123 adults living with HIV are receiving ART which make the coverage

to be 54% in 2015 (Wang et al., 2016).

Over the early periods ART has been administered mainly based on a patients

CD4 cell counts (WHO, 2006). A non-infected individual can have a CD4 cell counts

between 500 and 1900 cells/mm3 (Akinbo et al., 2015). Evidence suggested that

an HIV-infected individual with high CD4 cell count is healthy enough not to start

ART (Siegfried et al., 2010). However, the immune system for HIV infected individ-

uals with lower level of CD4 cell counts is severely weakened and ART is necessary.

Early guideline of World Health Organization (WHO) recommend to start the ART

when the CD4 cell counts are below 2000 (WHO, 2006). In 2010, the CD4 cell counts

threshold for initiation of ART was increased in the WHO guidelines to 350 (WHO,

2017). Currently, following the revision of available evidence in 2013, WHO issued a

new set of ART guidelines that recommended earlier initiation of ART at CD4 cell

counts of 500 cells/mm3 or less for all adults and children above five years (Maman

et al., 2012). A patient with advanced symptoms receives treatment regardless of

CD4 cell count.

First-line ART consists combinations of drugs:

1. Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), either Efavirenz

(EFV) or Neverapine (NVP).

2. Two Nucleotide Reverse Transcriptase Inhibitor (NRTI), one of which is either

Stavudine (d4t), Zidovudine (AZT), or Tenofovir (TDF).

The later are call the backbone (WHO, 2006). The revision of WHO guidelines in

2010 brought several changes to the management of HIV-infected patients (WHO,

2010). Since 2006, WHO has recommended to reduce the usage of the drug d4t due

to its long-term irreversible side effects, and instead to use either TDF or AZT as



18 CHAPTER 2. HIV INFECTION AND TREATMENT

NRTI backbone. The European Medicines Agency recommended that, in view of

its long-term toxicities, d4t be used for as short time as possible and only when no

appropriate alternatives exist (EMA, 2011).

Recently, randomized controlled trials (Group et al., 2015a,b) have shown modest

benefit for HIV-infected persons at an individual level and for reducing HIV trans-

mission following early ART initiation. Consequently, WHO has recently launched a

recommendation that ART should be started in all HIV infected individuals, regard-

less of WHO clinical stage or CD4 cell count (WHO, 2015). However, despite the

revision of recommendations at different times, getting access of the drug remained

as a challenge for low-income countries.

2.2.1 Guidelines in Averting HIV/AIDS

There has been different policies and strategies designed and implemented to combat

HIV/AIDS since the epidemic started. These include Millennium Development Goal

(MDG) 6 (McArthur, 2014), the 3 by 5 initiative WHO (2011), Joint United Na-

tions Programme on HIV/AIDS (UNAIDS) strategy for 2011-2015, and sustainable

development goals (SDGs) (Osborn et al., 2015). In 2000 the United Nation (UN)

set eight MDGs one of which was to combat HIV/AIDS, malaria and other diseases

by 2015 (UN, 2015). In 2003, UNAIDS and WHO launched the 3 by 5 initiative

was a global target to provide ART for 3 million people living with HIV in low and

middle-income countries by the end of 2005 (UNAIDS, 2003). In 2010 UNAIDS set

a target of getting to zero strategy in 2011-2015 (UNAIDS, 2010) with the aim to

get zero new HIV infections, zero AIDS-related deaths, and zero discrimination. In

2015, the number of new HIV infection was estimated to be equal to 2.1 million and

the number of AIDS related deaths was estimated to be about a million (UNAIDS,

2016a)

Post-2015 development agenda set 17 sustainable development goals (SDGs) and

169 targets stated in Osborn et al. (2015) in which target 3.3 aims to end the AIDS

epidemic by 2030. UNAIDS fast track strategy was launched in 2014 aiming to step

up the HIV response in low-income countries to end the epidemic by 2030. The

strategy sets targets for prevention, treatment, and human rights and known as the

90-90-90 targets (Poku, 2016): 90% of all people living with HIV will know their

HIV status, 90% will receive ART, and 90% of all receiving ART will have viral

suppression by 2020. It refer to the pathway by which a person is tested, linked

and retained in HIV care, and initiates and adheres to ART. Ultimately it is the

commitment which can help to achieve one of the sustainable development goal of
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ending AIDS by 2030 (UNAIDS, 2015). Ethiopia has started implementing SDGs as

part of its Growth and Transformation Plan (GTP) II in 2016 (Gizaw et al., 2017)

2.3 Choice of Initial Antiretroviral Drugs and Treatment Outcomes
among HIV-Infected Patients in sub-Saharan Africa: A Sys-
tematic Review and Meta-analysis of Observational Studies

2.3.1 Effectiveness of NVP and EFV: An Introduction

Staying on an initial regimen medication that successfully suppresses viral replication

is essential as it slows disease progression and preserves options for future treat-

ment (Ortblad et al., 2013). However, patients’ regimen is modified or changed due

to different reasons. Toxicity is the most frequently reported reason for modifying

or switch the first combined ART regimens (Sarfo et al., 2013). Once a drug com-

bination is modified, it can no longer be given to the same patient again. It also

causes significant morbidity, poor quality of life and also can be an important barrier

to adherence, ultimately resulting in treatment failure and viral resistance (Kiguba

et al., 2007). Treatment failure due to different reasons is the challenge faced by the

current ART scale up program specially in resource limited countries (Adeyinka and

Ogunniyi, 2012; Hassan et al., 2014).

In resource limited countries the available evidences are not consistent on the ef-

fectiveness of NNRTI choice. In Cameroon, hematologic related adverse drug reaction

was high among those who started ART which leads to treatment modification (Luma

et al., 2012). According to a Ghanaian study the effectiveness of first line ART (i.e.,

the proportion of patients who stay on the initial regimen) was 83.3% depending on

virologic failure (Barry et al., 2013). Documented virologic failure suggest that access

to viral load measurements may actually reduce the rate of switching to a second line

regimen (Sanne et al., 2009). The substitution due to toxicity of NVP was higher

compared to EFV and according to Boulle et al. (2007), 8% and 2% substitute their

initial regimen when initiated with NVP and EFV, respectively. Woldemedhin and

Wabe (2012) presented a study conducted in southern Ethiopia and showed that most

treatment modifications had occurred during the first 6 months of treatment.

Studies in resource-rich settings revealed that EFV regimen has better treatment

outcomes than NVP regimen (Pillay et al., 2013; Shubber et al., 2013). In India, a

randomized clinical trial (Swaminathan et al., 2011) showed that regimen contain-

ing NVP was inferior and was associated with more frequent virologic failure and
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death compare to EFV. Similar patterns were reported in Swaziland, Zambia and

Botswana (Takuva et al., 2013; van Dijk et al., 2013). However, studies in Ghana and

Ethiopia indicated that there is comparable effect between EFV and NVP (Barry

et al., 2013; Tirfe et al., 2013).

The choice of treatment combinations for HIV-infected patients to initiate ART

depends on cost and efficacy (Pandhi and Ailawadi, 2014). Identifying the long-term

treatment outcomes of these drugs is very decisive for clinical decisions. Clinical

decision-making requires ongoing reconciliation of studies that provide different an-

swers to the same question.

The above example indicate contradicting results in terms of the effectiveness of NVP

and EVF in first line ART regimen. The analysis presented in this section consists

of a systematic review and meta analysis conducted to investigate the difference in

NNRTI substitution between NVP and EFV regimens.

2.3.2 Literature Search Strategies

The literature search, presented in Ayele et al. (2017) was as follows. MEDLINE

through PubMed, google scholar, and HINARI were used to search for the relevant

papers. The research question was ”Does the choice of NNRTI drug affect the effec-

tiveness of first line treatment”? The search strategy included Medical Subject Head-

ing (MeSH) terms and a range of relevant keywords. Combinations of key words:

(((((((((((((HIV) OR AIDS*) AND antiretroviral*) OR HAART*) OR ART*) OR

ARV*) AND NNRTI*) AND outcomes*) OR treatment failure) OR switch) OR sub-

stitution) OR Discontinuation) AND Africa) OR sub-Saharan Africa OR developing

countries OR low income countries OR resource poor settings. The authors were

contacted and requested full articles by email when the article was not accessed from

these sources.

Inclusion Criteria

The study eligibility was determined using the following criteria:

� Type of studies:- epidemiological study designs done in sub-Saharan Africa,

including cohort, case-control, and retrospective follow up, and comparative

cohort were included.

� Intervention:- studies that evaluated EFV compared to NVP regimens in a com-

bination of three antiretroviral drugs. If a publication report on other drugs in



2.3. CHOICE OF INITIAL ANTIRETROVIRAL DRUGS AND TREATMENT OUTCOMES AMONG HIV-INFECTED
PATIENTS IN SUB-SAHARAN AFRICA: A SYSTEMATIC REVIEW AND META-ANALYSIS OF OBSERVATIONAL
STUDIES 21

combination with EFV or NVP, or two NRTIs and a protease inhibitor, then

only data for combination ART of two NRTIs with NVP or EFV were extracted.

� Types of outcome measures:- studies that included treatment failure or NNRTI

substitution as an outcome measures were considered.

� Studies published between 2007 and 2016 in English language were included.

Studies which were conducted among children (age < 15 years), published other

than English language, and initiated ART other than NNRTI (NVP or EFV)

drugs were excluded from the review.

Study Selection

The selection of studies from electronic databases was conducted in two stages: First

decision was made based on titles and, where available, abstracts. Secondly, for studies

that met the inclusion criteria, or in cases when a definite decision could not be made

based on the title and/or abstract alone, the full paper was obtained for detailed

assessment against the inclusion criteria. Two independent reviewers assessed study

quality. The Kappa statistics was used to measure agreement between the reviewers.

The paper was given to third reviewer for consensus in case of a discrepancy in decision

process.

2.3.3 Quality Assessment Tools

Quality assessment of the studies included in the review was conducted using the

Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instru-

ment (JBI-MAStARI) (Munn et al., 2014) and Newcastle-Ottawa quality assessment

scale (Wells et al., 2013) using two independent reviewers. The first assessment tool

consists of nine questions. The later consists of eight multiple-choice questions that

addressed subject selection and comparability (of cases and controls in case-control

studies, of cohorts in cohort studies) and the assessment of the outcome (in case-

control studies) or exposure (in cohort studies). The number of possible answers per

question ranged from two to five. Questions related to the assessment tools are listed

in Table A.1 Appendix A

2.3.4 Data Extraction Process

A standardized data collection form (Li et al., 2015) was used to extract necessary

data from the publications. For each study included in the review the following
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information was collected: the title of the study, first authors last name, country

where the study was conducted, study design, year of recruitment and follow up,

year of publication, sample size, study population, diagnosis and identification of

treatment modification, average duration of follow up (for cohort study), potential

confounders that were adjusted for, main findings and quality assessment tools. Any

data discrepancy was resolved by referring back to the original study. The selection

process and data collection tool was pretested based on the inclusion criteria on five

articles. It was aimed to check reliability of interpretation and classification of the

studies appropriately and to ensure that all the relevant information were captured.

Outcomes Measure

The outcomes of interest were treatment failure and NNRTI substitution. Treatment

failure is defined as either virologic, clinical or immunological failure as per the defini-

tion of WHO ART guideline (WHO, 2010). Several studies used a composite outcome

as their event of primary interest. A composite outcome is defined when the a patient

experienced either treatment failure, substitution or lost from the follow up. For these

studies, treatment failure is a part of the composite outcome. NNRTI substitution

was defined as either NNRTI modification, regimen change, NNRTI resistance, or

NNRTI discontinuation.

2.3.5 Data Synthesis and Statistical Analysis

Heterogeneity among studies was examined using the I2 statistic (Chen and Peace,

2013) given by

I2 = (Q − (K − 1)
Q

)100%.

Where Q = ∑ki=1Wi(ηi − µ)2, K is the number of studies, Wi is the weight of the ith

study, ηi is effect size of the ith study, and µ is the overall effect size.

According to Higgins and Green (2011), I2 values greater than 50% was considered

as indicative of moderate to high levels of heterogeneity. Adjusted point estimates

were extracted from individual studies and combined together to calculate the pooled

estimates. The DerSimonian-Laird random effects method was used to incorporate

an additional between study component to the estimate of variability (DerSimonian

and Kacker, 2007; Jackson et al., 2010). Let ηi is the observed effect size for the ith

study, i = 1,2, . . . ,K. The model assumes that ηi is sampled from a distribution with
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true effect θi and variance τ2, that is

ηi = θi + εi,

Here, εi ∼ N (0, σ2). The true effect θi is assumed to have a mean µ and a study-

specific effect ξi. Here, the model can be redefined as

ηi = µ + ξi + εi.

Subgroup analyses were conducted to explore differences in outcomes according to

study outcomes. The qualitative and quantitative methods were used to present the

data extracted from each study. Funnel plot is used to detect publication bias graphi-

cal in meta-analysis. It is a scatter plot of estimated treatment effects from individual

studies (horizontal axis) against a measure of study size (vertical axis). Funnel plot,

and Egger’s test were used to check the presence of publication bias (Egger et al.,

1997; Jin et al., 2014). The symmetry of funnel plots was assessed both by using

visual inspection, and using Eggers test in order to test if the effect decreased with

increasing sample size. A regression asymmetry test was used to detect the presence

of publication bias. Let ESi and sei are the standardized effect size and standard

error for study i. Then the regression model is defined as

ESi = β0 + β1sei + εi.

Under the null hypothesis H0;β0 = 0, the Funnel plot is symmetric. Hence, a rejection

of the null hypothesis implies a publication bias. Additional heterogeneity can be

modelled using a meta-regression model (Chen and Peace, 2013) in which study-

level variables are included to account for the extra heterogeneity on the true effect.

Length of follow up (followup), baseline CD4 cell count (bcd4), age and proportion

of female (femaleprop) were considered as study level variables. The mixed-effect

meta-regression model can be formulated as

ηi = α + β1 ∗ followup + β2 ∗ bcd4 + β3 ∗ bage + β4 ∗ femaleprop + ui.

Where ui is random intercept.
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2.4 Results

Figure 2.2 present the screening procedure, based on Systematic Reviews and Meta-

Analyses (PRISMA) described in Moher et al. (2009), that was implemented for the

literature review presented in this section. The inclusion criterion of this review

required that studies provide a comparison between the risk of long-term treatment

failure of NVP and EFV. A total of 6394 articles were identified in English-language

and human domain restrictions, of which 5779 were rejected based on the publication’s

title that was outside the research objectives of the review. The remaining 615 articles

were further screened and subsequently, 368 were considered irrelevant or duplicates.

The abstracts of 247 articles were then evaluated independently. Of these, 231 records

were excluded because of no comparison groups of the outcomes of interest, missing

comparison of EFV versus NVP drugs.

A study that was focused on the comparison between NVP and lopinavir-ritonavir

(Clumeck et al., 2014) was excluded as it was not the focus of this review. Other six

papers were excluded as the studies were conducted among children (Lowenthal et al.,

2013) or conducted outside of sub-Saharan Africa (Boettiger et al., 2016; de Castilla

et al., 2008; Patel et al., 2006; Sinha et al., 2013). The systematic reviews and meta-

analysis articles by Pillay et al. (2013) were excluded as well. Subsequently of 79

full record articles, a total of 36 were eligible studies. Further, the full text of 36

articles were reviewed in detail and 20 of them were excluded due to lack of sufficient

information on sample size, design and analysis. Study by van Zyl et al. (2011)

had used cross-sectional study design and the assessment tools might not evaluate

the quality appropriately. Therefore, 16 studies were included in the quantitative

synthesis out of 17 studies for which outcome measures were identified for meta-

analysis.

2.4.1 Quality Assessment

Two independent reviewers assessed the articles prior to inclusion to maintain method-

ological validity using Joanna Briggs Institute Meta-Analysis of Statistics Assessment

and Review Instrument (JBI-MAStARI) (Munn et al., 2014). The Kappa statistics

is estimated to be equal to 0.86 indicates the presence of good agreement between

the reviewers. The scores ranged from 5/9 ( 55.6%) to 8/9 (88.9% ). In addition, the

Newcastle-Ottawa quality assessment score ranges from 4 to 7 stars (Out of 9 stars).
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Figure 2.2. The PRISMA flow diagram of identification and selection of studies for
the systematic review and meta-analysis.
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2.4.2 Characteristics of Included Studies

Table 2.1 lists the 16 studies included in the meta analysis. The studies were con-

ducted between 2007 and 2016. As shown in the table, sample size ranges from

167 (van Zyl et al., 2011) to 27350 (Bock et al., 2013) with a total sample size of

70537. In total, 45010 (63.8%) were females (range from 51% to 72% (see Figure 2.3a).

The majority of patients, 42039 (59.6%) initiated with EFV regimen. The proportion

of female initiated with NVP by study is shown in Figure 2.3b. The median follow

up time is 4 years (Inter Quartile Range (IQR): 3-7). Nachega et al. (2008) had the

longest follow up time (10 years), while studies (Shearer et al., 2013) have the shortest

follow up periods of 1 year. Stringer et al. (2010) is a multicenter study (in Kenya and

in Zambia). Based on the inclusion criteria, a total of 509 and 152 patients were in-

cluded in Zambia and Kenya, respectively. Study design, by publication are reported

in Table 2.1. Table 2.1 also shows the median CD4 cell counts by study (ranges from

67, IQR: 21-161, to 192, IQR: 112-324) . Note that the median CD4 cell count was

smaller for patients who initiated with EFV regimen.

This might be due to the occurrence of different opportunistic infection among

this group of patients and EFV regimen had no organ damage like hepatotoxicity and

preferred for this group at large to maintain adherence (WHO, 2010). Two studies,

Tirfe et al. (2013) and van Zyl et al. (2011), did not report the median CD4 cell count

at initiation. Only two studies, Nachega et al. (2008) and Keiser et al. (2010) reported

the log transformed median viral load. Stavudine (d4T)/3TC was used as backbone

by 13 studies while 3 studies did not use this NRTI backbone at all. AZT/3TC was

used in 14 studies and 2 studies did not use this backbone at all, whilst TDF/3TC

was used in 7 studies. Eleven of sixteen studies used Cox-PH model for the analysis

and reported adjusted hazard ratio. Two studies used stratified and random effect

Cox-PH models (Table 2.1).
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(a)

(b)

Figure 2.3. Panel a: distribution of female by study. Panel b: distribution of
NNRTI drugs by study.
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2.4.3 Systematic Review: Treatment Outcomes

In this review, treatment failure, the primary outcome of interest, was measured using

clinical, virological and immunological criteria. The studies by Barth et al. (2011);

Gsponer et al. (2012); Keiser et al. (2010); Kwobah et al. (2012); Nachega et al. (2008);

Sarfo et al. (2013); Shearer et al. (2014, 2013); Stringer et al. (2010); Tirfe et al. (2013)

defined treatment failure as their primary outcome. A total of 30,069 patients were

included in the 10 studies of which 19,584 (65%) were females. The majority, 17,950

(60%) were initiated with EFV regimen. A total of 4,842 patients experience treat-

ment failure for both EFV and NVP drugs (2,077 EFV and 2,765 NVP). The study

by Nachega et al. (2008) defined treatment failure using two separate (consecutive or

non-consecutive) measurements of viral load ≥ 400 copies/ml, or switch to another

NNRTI or protease inhibitor after at least one such measurement. In this study,

about 1,822 (64.7%) patients were started on EFV regimen. The two groups did not

differ in viral load measurement, however patients started on EFV had a significantly

shorter time to virologic suppression. Subsequently, patients started on NVP were

more likely to experience virologic failure. The outcome reported in (Stringer et al.,

2010) was assessed at 48 weeks after initiating ART. Participant was considered as

having failed at 48 week if she/he died prior to that time, or had a plasma viral load ≥
400 copies/ml (confirmed with repeat testing) at either the 24 or 48 week study visits.

The difference in failure rates between the NVP-exposed and unexposed groups was

6.9%. Kwobah et al. (2012) presented a case-control study in which a case defined as

adult at least one viral load measurement > 5000 copies/ml or meet the WHO 2006

immunological or clinical failure criteria (WHO, 2006). Controls were those on non-

failing first-line ART with a CD4 cell count > 400/ml within the last 12 months, at

the time of case incidence. Patients who were either pregnant or co-infected with

tuberculosis at the time of ART initiation were excluded. A total of 1,084 cases were

included with median time to ART failure of 37 months. Sarfo et al. (2013) defined

the outcome measure of treatment failure as a composite of death, clinical progression

or discontinuation of NNRTI for any reason. A total of 3,999 patients were included

in the study from whom 2,369 (59%) initiated with EFV regimen and 633 (26.7%)

experienced at least one event.

The second outcome of interest was NNRTI substitution. The studies reported in

Abah et al. (2015); Anlay et al. (2016); Bock et al. (2013); Boulle et al. (2007); Sarfo

et al. (2013) defined NNRTI skin rash, NNRTI discontinuation, Regimen change,

NNRTI substitution, and regimen change as the outcome measure, respectively. The

study presented in Tirfe et al. (2013) defined immunologic response as secondary out-
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come measure and study reported in Barth et al. (2011) considered patients retention

as the outcome measure. In all studies, the initial NNRTI drug was substituted by

another drug in the same regimen and hence defined NNRTI substitution as the out-

come measure. The studies of Bock et al. (2013); Sarfo et al. (2013); Shearer et al.

(2014, 2013) defined outcome measure of death. In Sarfo et al. (2013), higher number

of deaths were observed for in patients who initiated with EFV, 208 (8.8%) than NVP,

110 (6.8%). A total of 27,350 patients were included of whom 19,441 (71.1%) started

EFV and 7,909 (28.9%) started NVP treatment. At the end of the study period,

1,593 (5.8%) patients were died. In the study reported in Shearer et al. (2014) 12,840

patients were included of whom 1061 died (8.3%) within the first 12 months on ART

(Table A.2 in Appendix A).

Meta-Analysis Results

Figure 2.4 shows the forest plot for the relative risk of composite outcome. The pooled

relative risk of composite outcome is equal to 0.72 (95% C.I 0.59-0.87) indicate that

there is lower risk of developing composite outcome for patients who initiated with

EFV as compared to NVP regimen. The relative risk estimates of eight individual

studies were significantly different from one.

Figure 2.5 shows the subgroup analysis based on the two outcomes of interest

(treatment failure and NNRTI substitution). Ten studies were included for treatment

failure subgroup. The weights of the studies were reported from random effect model

which ranged from 0.31% to a maximum of 28.28%. The pooled estimate of risk ratio

for treatment failure is 0.85 (RR=0.85; 95%CI: 0.75-0.88). The I2 value for treatment

failure subgroup was found to be 81.0% (p-value<0.0001) indicating the presence of

heterogeneity between studies.

The pooled relative risk for NNRTI substitution estimates is 0.57 (RR=0.57;

95%CI: 0.37-0.89). Similarly, the risk of NNRTI substitution is lower in patients

who initiated with EFV as compared to NVP. The weight of the studies ranges from

0.37% to 38.09%.

2.4.4 Evaluation for Publication Bias

Researches reported on statistically significant results is more likely to be published

than researches reported non-significant results. This could introduce bias during

systematic review and meta-analysis. Figure 2.6 shows the funnel plot of the study

with 95% confidence interval around the summary relative risk. The solid vertical line

represents the estimate of the relative risk. Figure 2.6 show the expected distribution
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Figure 2.4. Relative risk of composite outcome associated with the choice of
NNRTI drugs regiment during ART initiation. The definition of composite outcome
is given in Section 2.3.4.

Figure 2.5. Relative risk of treatment failure (EFV/NVP) and NNRTI substitution
associated with the choice of NNRTI drugs regiment during ART initiation.
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of the studies’ relative risk in the absence of heterogeneity or selection biases. Eggers

test revealed that there was no significant bias for either of the outcome (Overall test:

Intercept= -2.217, 95%CI: -5.562; 1.128), p-value=0.178).

Figure 2.6. Funnel plot of estimates versus standard error of log estimate.

A meta-regression analysis was conducted to determine whether there is associa-

tion between independent variables and composite outcome. Covariates included in

the model are, length of follow up, median CD4 cell counts, median age, and year of

publication and proportion of female. No significant relationship was found between

any of the covariates and composite outcome. This indicates that these covariates

may not be source of observed variability. The complete meta-regression analysis is

presented in Table A.3 in Appendix A.

2.5 Discussion

The systematic review and meta-analysis presented in the chapter attempted to assess

the individual and pooled estimate of the choice of NNRTI drugs on treatment failure,
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and NNRTI substitution in resource poor settings. A total of 16 observational studies

were found which compares EFV versus NVP, out of which 17 outcomes measures

were identified in two groups. We have shown that, in resource limited settings, that

initiation of ART regimen with EFV is associated with a reduced risk of treatment

failure (RR=0.85, 95%CI: 0.75-0.98) compared with NVP regimen. This finding was

consistent across 4 of the 10 individual studies. This is in line with previous meta-

analysis by Pillay et al. (2013) conducted from 10 RCTs and 24 observational studies

which concluded that EFV-based first line ART regimen is significantly less likely to

lead to virologic failure compared to NVP-based ART regimen. This might be due

to the hepatotoxic nature of NVP which may lead to poor adherence which might

further resulted in treatment failure.

Leth et al. (2004), did not find any evidence that EFV is superior to NVP twice

daily in terms of treatment failure. A Cochrane review of seven randomized clinical

trials (Mbuagbaw et al., 2010) demonstrated that the two drugs provided compa-

rable levels of viral suppression in patients infected with HIV when combined with

two NRTIs. Patel et al. (2006) reported a non randomized longitudinal cohort study

conducted in India, equivalent immunological response was observed among NVP and

EFV based ART. The risk ratio of NNRTI switch reduced by 0.57 (95% CI: 0.37-0.89)

times for patients who initiated with EFV than NVP. This finding is consistent with a

multicenter randomized non-inferiority trial (Bonnet et al., 2013) in which the switch-

ing rate was found to be higher among patients who initiated with NVP than EFV.

This finding is also consistent with previous meta-analyses reported in Shubber et al.

(2013) which revealed that adults on NVP were two times more likely to discontinue

treatment due to any adverse event compared to patients on EFV. A meta-analysis

on five randomized clinical trials and four retrospective clinical trials (Jiang et al.,

2014) revealed that the discontinuation rate was high among those who initiated with

NVP than EFV which is consistent with the review presented in this Chapter. Simi-

lar finding was reported in (Kryst et al., 2015) in which the discontinuation rate was

found to be lower among those who initiated with EFV compared to ART regimen

with NVP.

The meta-regression model revealed that the log relative risk of treatment failure

is not associated with the studys covariates. This might be due to the small number

of studies included in the meta-analysis. Sensitivity analysis revealed that there is

no single study which influences the pooled estimate. The results presented in this

chapter should be interpreted with caution due to the following limitations. Although

a lot of efforts has been made to find more studies, only few studies satisfied the

inclusion criteria. The analysis was limited to articles published in English language;
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the evidence may not be sufficiently robust to determine the comparative effectiveness

of EFV and NVP due to the size of included studies. In addition, the analysis include

articles with different definitions of treatment failure and different lengths of follow-

up. The reviewed articles have also differences in study design, the type of statistical

methods, and the variables included in the analysis. These variations may have

resulted in selection bias or low statistical power. Most of our analyses detected

heterogeneity between effect estimates obtained across studies. DerSimonian and

Laird random effect model was used to determine the pooled effect size (DerSimonian

and Kacker, 2007). However, the source of variation might not be real heterogeneity

rather within study differences which may introduce bias on the pooled effect size.

In conclusion, the review presented in this chapter indicates that initiation of ART

regimen with EFV leads to a reduction of the risk of treatment failure compared to

ART regimen with NVP. In addition, patients who initiated with EFV are less likely

to switch treatment than patients who initiated with NVP. Therefore, even though

EFV is expensive to afford for resource poor settings, initiating the patient with EFV

regimen could be a better option in terms of reduction of risk for treatment failure

and switch.



Chapter 3
Modeling Outcomes of First-Line Antiretroviral
Therapy and Rate of CD4 Cell Counts Change among a
Cohort of HIV/AIDS Patients in Northwest Ethiopia: A
Retrospective Cohort Study

3.1 Introduction

The effectiveness of ART can be assessed by clinical observations, CD4 cell counts and

determination of plasma viral load (EMH, 2010). Non-Nucleoside Reverse Transcrip-

tase Inhibitors (NNRTIs) are drugs choices for initial ART for HIV infection. Studies

in resource-rich settings revealed that EFV based regimen has better treatment out-

comes than NVP based regimen (Pillay et al., 2013; Shubber et al., 2013). The meta

analysis presented in Chapter 2 indicated the same pattern in sub-Saharan Africa.

Furthermore, (Swaminathan et al., 2011) presented a randomized clinical trial from

India and showed that NVP based regimen was inferior and was associated with more

frequent virologic failure and death. However, there exist evidence in resource-poor

settings that shows as there was no difference between EFV and NVP in the long-run

(Barry et al., 2013; Collaboration et al., 2012; Tirfe et al., 2013).

In the national treatment guideline of Ethiopia 2010, the first-line ART contains

four NRTIs backbone (Stavudine (d4t), zidovudine (AZT), Abacavir (ABC) and Teno-

fovir (TDF)) plus lamivudine (3TC) and two NNRTI drugs (EFV and NVP) (EMH,

2010). The combination regimens which have been used most frequently in Ethiopia

are d4t-3TC-EFV, d4t-3TC-NVP, AZT-3TC-EFV, AZT-3TC-NVP, TDF-3TC-EFV,

35
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or TDF-3TC-NVP. When the patient is unable to tolerate the side-effect due to tox-

icity, the offending drug can be substitute with another drug that does not have the

same side-effect. Whereas, patients switch to second-line regimen when the first-line

regimen failed due to different reasons. A failure in treatment is measured according

to the WHO definition, if at least one of the three conditions happened: (1) clinical-

when new or recurrent WHO stage 4 condition, (2) immunological-when persistent

CD4 level below 100 or 50% fall from on-treatment peak value and (3) virological

when plasma viral load above 10,000 copies/ml in duplicates after six months on

ART (EMH, 2010).

As mentioned in Chapter 2, the choice of treatment combinations for HIV/AIDS

patients to initiate ART depends on cost and efficacy. Thus, knowing the long-term

treatment outcomes of more costly drugs is very decisive for decision making in re-

source limited nations. In the analysis presented in this chapter, we aim to determine

the long-term outcomes of first-line ART drugs and rate of change in log(CD4) cell

counts in response to ART. Furthermore, the effect of treatment choices at the initi-

ation on the CD4 evolution was compared and tested as well.

This chapter is organized as follows. The data are presented in Section 1.3. The

statistical methodology used for the data analysis is presented in Section 3.2 and the

results in Section 3.4. The findings are discussed in Section 3.5.

3.2 Data and Methods

3.2.1 Study Population

Gondar University Hospital ART clinic started treating HIV/AIDS patients as part

of the National AIDS control program since 2005. At the same time ART was started

to be provided for free in the selected hospitals in the country, Gondar University

Hospital is one of these hospitals. As a result, patients were referred to Gondar

University Hospital from many areas in Northwest Ethiopia.

The study included ART nave patients aged ≥ 15 years-old who initiated ART

containing TDF, d4t, or AZT as NRTI backbone with NVP and EFV as NNRTI

drugs between 2009 and 2013. In total, following the inclusion criteria, 2386 patients

included in this study. Data on patients were recorded in patients chart and entered

into access database which was designed for this purpose. Baseline characteristics

such as sex, age, weight, WHO staging and functional status were collected when

the patient enrolled in the clinic. Whilst clinical variables such as CD4 cell counts,

and regimen were collected every 6 months subsequently depending on the progress
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of the patient. In some cases, patient’s visit might be taken at irregular time due

to different reasons such as diseases progression, toxicity or opportunistic infections.

The criteria for initiating ART in Ethiopia followed WHO guideline (WHO, 2010),

with an adjustment of CD4 threshold from 200 to 350 cell/mm3 in 2010.

3.2.2 Data and Study Variables

Data for the study were accessed from ART clinic database and presented in Section

1.3. The information collected by the health professional from the patient were sent to

the data manager who entered the data into the computer. Information on treatment

substitution, treatment discontinuations, death, lost to follow up and transferred out

were obtained from hospital records.

For the analysis presented in this Chapter, the following definitions were used:

1. NNRTI substitution: modifying NNRTI drugs of the original regimen for any

reason.

2. Treatment discontinuation: a patient that changed his/her first-line regimen to

second-line regimen.

3. Lost to follow up: defined as missing a clinic appointment for more than three

months without further attendance at clinic.

4. Transferred out: transfer of patients to other ART clinic with all the histo-

ry/records.

5. Death: confirmed deaths from medical records or verbal confirmation of death

by relatives or friends.

6. Composite outcome: the occurrence of either NNRTI substitution, discontinu-

ation, lost to follow up or death.

Patients who had at least two CD4 cell counts (two visits for those who experienced

the event) were included in the analysis. Information on baseline characteristics were

obtained from registry in the database. Whereas, follow-up variables were accessed

from ART refill. The data were closed for analysis on December 31, 2013.

3.2.3 Data Quality Control

The ART clinic of Gondar University Hospital has been using database to enter infor-

mation of the patients starting from the first visit. It was developed by information
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technologist and well tested before used for data entry in the hospital. Well trained

data entry clerks employed by the hospital perform the data entry. The entry process

is supervised by the data manager for completeness and consistency in daily bases.

The data for this study was accessed from this database and from patients’ chart in

order to increase the quality.

3.3 Data Analysis Methods

3.3.1 Data Analysis for Time to Event Outcomes

We compared patient characteristics at ART initiation by initial NNRTI treatment

groups (EFV or NVP) using chi-square test for categorical covariates and Wilcoxon

rank sum test for continuous covariates. There were different responses to ART treat-

ment. A composite endpoint which represents different responses to ART treatment

was defined and analyzed as time to event endpoint. These include drug substitu-

tion, lost to follow up, treatment discontinuation, and death. Three types of survival

analysis were considered; primary analysis (NNRTI substitution and lost to follow up

were treated as censored), two sensitivity analyses (NNRTI substitution and/or lost

to follow up were treated as event).

For the primary outcome, time to the first occurrence of any of the outcome

measures was calculated by subtracting the date of the event from the date of initiation

of ART. Patients were censored if death was not observed until the time of the last

visit for patients who were lost and December 31, 2013 for patients who were alive.

Note that we assessed NNRTI substitution and discontinuation as an event (Sarfo

et al., 2013). Discontinuation of NNRTI was defined as discontinuation of either

NVP or EFV due to toxicity, or patient or physician preference.

For each patient in the study we observe either the time to failure or censoring. For

the censored individuals we know only the time to failure is greater than the censoring

time. Denote T be a random variable representing failure time. The probability of

the failure time occurring at exactly time t (out of the whole range of possible t’s)

can be formulated as

f(t) = lim
∆t→0

P (t ≤ T < t +∆t)
∆t

,

where f(t) is probability density function, ∆t refers small change of time t. The

survival function S(t) can be defined as

S(t) = P (T ≥ t) = ∫
∞

t
f(u)du.
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Similarly, the hazard function can be defined as

λ(t) = lim
∆t→0

P (t ≤ T < t +∆t∣T ≥ t)
∆t

.

Comparison of Kaplan-Meier survival curves between different groups was done

using log-rank test which is used to test the null hypothesis that the probability of

an event occurring at any time point is the same for each group of the covariate. The

test statistic is calculated as follows

χ2(log − rank) = ∑
k
i=1 (Oi −Ei)2

Ei
.

Where Oi’s are the total numbers of observed events in group i, and Ei’s are the total

numbers of expected events in group i.

Similarly, Cox-PH regression model (Cox, 1972) was used to check the effect of

NNRTI drug, NRTI backbone and other covariates at baseline on event time. The

model can be formulated as

hi(t∣Xi) = h0(t)exp(Xiβ). (3.1)

Where β is a p × 1 vector of unknown parameters, Xi is the design matrix of

baseline covariates such as gender, age, WHO stage, etc, and h0(t) is an unknown

function giving the hazard function for the standard set of conditions Xi = 0.

Baseline covariates such as sex, age (≥ 40 versus <40 years), WHO clinical stage (IV

or III versus I or II), CD4 cell counts (<200 versus ≥200), calendar year (before 2010

versus since 2010), NRTI backbones (d4t plus 3TC, AZT plus 3TC or TDF plus 3TC)

and NNRTI drugs (EFV versus NVP) were considered. The categorization of numeric

variables was done based on other previous studies by Benjamin et al. (2011); Sarfo

et al. (2013) for comparison purpose. Similarly, Cox-PH regression analysis was used

to compare the baseline covariates for their risk of composite outcome. The hazard

ratio with 95% confidence interval was used to test statistical significant association.

3.3.2 Data Analysis for Immunological Outcomes

Treatment effects on the CD4 cell counts evolution varies over time and it is expected

that repeated measurements taken on the same subject to be correlated. Liner mixed

effects models (Verbeke and Molenberghs, 2000) are often used for analyzing con-

tinuous correlated data (Rizopoulos, 2012b). The liner mixed effects model can be

formulated as
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Yi(ti) = Xiβ +Zibi + εiti . (3.2)

Here Yi(ti), i = 1, . . . , ni, is ni-dimensional response vector of log transformed CD4

cell counts for individual i at time ti, Xi and Zi are ni × p and ni × q dimensional

fixed and random effects model matrices, respectively. The parameters vector β is a

p-dimensional vector of fixed effects and bi is a q-dimensional subject specific vector

of random effects.

However, many biomedical experiments generate non-linear data and imposing

parametric function for the mean evolution over time might yield unsatisfactory re-

sults (Bowman and Azzalini, 1997). In the context of HIV/AIDS data, the individual

profiles are non-linear and parametric models may be too restrictive. Therefore, we

propose a data-driven approach based on semi-parametric regression models proposed

by Wood (2003). In this model, the patient-specific random intercept is used to cap-

ture correlation of the CD4 cell count measurement over time within the patient. We

assumed patient-specific random parameters for both the linear and quadratic time

effects to capture different evolution between the patients of log(CD4) cell count over

time. It allows smoothing with respect to time. The Semi-parametric mixed effects

model, with patient-specific random effects can be expressed as

Yi(ti) = S(ti) + b0i + b1iti + b2it2i + εiti . (3.3)

Here S(ti) is the non-parametric component of the model. The patient-specific

random effects assumed to follow a multivariate normal distribution, [b0i, b1i, b2i]T ∼
MVN(0,Σb), where Σb denote the variance covariance matrix of patient-specific

random effects. The residuals εiti are assumed to be normally distributed with mean

zero and variance σ2
ε .

The non-parametric component of the model, S(t), is the smoother to the log(CD4)

evolution given by

S(ti) = β0 +
ν

∑
ι=1
βιfι(ti),

where fι(ti)s are a set of thin plate spline basis functions.

3.3.3 Pointwise Confidence Intervals

The penalized thin plate spline model can be expressed as a mixed model of the form
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Yi = Xiβi
²
S(t)

+Zibi + εi. (3.4)

Here βi be a parameters vector contains all fixed and random effects for the smooth

terms, Xi is the corresponding covariates matrix, Zi is the design matrix for the

random effects, and Σbi is the covariance matrix for the random effects.

For the given values of the parameters associated with the random effect and

error, application of maximum likelihood and best linear unbiased prediction (BLUP)

estimate for S is given by

Ŝ = Xβ̂. (3.5)

A point-wise confidence interval for the average fitted problem can be obtained by

Ruppert et al. (2003):

Ŝ(t) ± t1−α/2s.d(Ŝ(t)). (3.6)

Where s.d(Ŝ(t)) is the square root of the diagonal of the variance covariance

matrix XV̂βXt, with V̂β = (XtV̂ −1X +W)−1. Here, V̂ is the variance and covariance

matrix of the coefficients of the basis functions and W is the wiggliness penalty

matrix (Wood, 2003).

3.3.4 Pairwise Comparison of Treatment Groups

The linear mixed model formulated in (3.4) allows us to compare between the treat-

ment groups in order to investigate whether there is difference between groups (com-

paring their average profiles). The model can be rewritten as

Yig(ti) = β0g + β1treatg +
ν

∑
ι=1
βgιfι(ti)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Sg(t)

+ b0i + b1iti + b2it2i + εiti . (3.7)

where Yig(ti) is the response for the ith subject in the gth treatment group at

time point ti, Sg(t) is a group specific smoother, and fι(ti)’s are a set of thin plate
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spline basis functions, βιg are the coefficients of the basis function.

We estimated different spline coefficient variances for each treatment groups g,

and we used penalized thin plate regression splines with a roughness penalty on the

third-order derivative k = 3 to obtain a smooth first order derivative.

Our aim is to test if the CD4 evolution and the change in CD4 over time (i.e. the first

derivative) is the same for EFV and NVP. Let Sg(t) = βtgF (ti) be a group specific

smooth curve with Ft = [f0(t), . . . fν(t)]t, βg = [β0g, . . . βνg]t, and g = 1, . . . ,G is the

group indicator.

The difference between groups were estimated using the first derivative of the

smoother, that is

dSg(ti)
dt

+ b1i + 2b2i × t. (3.8)

Let S
′

g(ti) = βtgF
′

(ti) be the first order-derivatives of penalized thin-plate spline

model for the gth group. The difference can be estimated by S‘
`(t) − S‘

k(t). We can

construct the point-wise confidence interval for S
′

g(ti) in the same way as discussed

above.

3.4 Results

3.4.1 Baseline Description

A total of 2386 HIV-infected individual who initiated ART were included. Majority of

the patients, 1462 (61.27%) were initiated with NVP containing NNRTI; of whom 1023

(70.0%) used AZT as NRTI backbones. Patients who were initiated with treatment

containing NVP were predominantly female, 927 (63.41%), and were younger than 40

years were 1132 (77.43%). Among patients who were initiated with EFV containing

treatment, 140 (15.2%) were ambulatory as compared to 124 (8.5%) who initiated

with NVP containing treatment. At initiation most patients, 1149 (48.2%) were at

clinical stage III, of which 483 (52.3%) and 666 (45.5%) were initiated with EFV and

NVP containing treatments, respectively. The median CD4 cell count was higher for

those who were initiated with NVP as compared to EFV (152 versus 141); however

significant difference was not found with regard to age and weight among the two

treatment groups (see Table 3.1). There was no significant difference between EFV

and NVP with regard to baseline CD4 cell counts, but association was observed with

other baseline covariates.
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Table 3.1. Cohort characteristics at initiation of ART by Non-nucleotide Reverse
Transcriptase Inhibitor (NNRTI) of HIV/AIDS patients in Gondar University
Hospital, Northwest Ethiopia, 2013.

Characteristic Efavirenz, n=924 Nevirapine, n=1462 P-value
Sex, n(%)
Female 497(53.8) 927(63.4) <0.0001
Male 427(46.2) 535(36.6)
NRTI backbone, n(%)
Zidovudine + lamivudine 215(23.3) 1,023(70.0) <0.0001
Tenofovir + lamivudine 657(71.1) 331(22.6)
Stavudine + lamivudine 52(5.6) 108(7.4)
Functional Status, n(%)
Ambulatory 140(15.2) 124(8.5) <0.0001
Bedridden 62(4.2) 24(1.6)
Working 722(78.1) 1,314(89.9)
WHO stage, n(%)
I 119(12.9) 390(26.7) <0.0001
II 101(10.9) 285(19.5)
III 483(52.3) 666(45.5)
IV 221(23.9) 121(8.3)
ART Start Year, n(%)
2009 247(26.7) 437(29.9) <0.0001
2010 190(20.6) 321(22.0)
2011 154(16.7) 285(19.5)
2012 128(13.8) 253(17.3)
2013 205(22.2) 166(11.3)
Age, median (IQR) 33(27-40) 31(27-38) 0.004
CD4 counts, median(IQR) 141(66-231) 152(84-210) 0.196
Weight (kg), median (IQR) 49(43-55) 50(45-58) 0.00017

3.4.2 Description of Composite Treatment Outcomes

The composite outcome, defined in Section 3.2.2, was observed among 595(24.9%)

patients with rate per 100 person years of 12 (95%CI: 11.1-13.0). Amongst those who

were initiated with NVP 370(25.3%) patients experienced the events. Of these death,

lost to follow up, NNRTI substitution, and discontinuation accounted for 99(26.8%),

122(33.0%), 137(37.0%), and 12(3.2%), respectively. Whiles among those who were

initiated with EFV 225(24.4%) experienced the event. Of these death, lost to follow

up, NNRTI substitution, and discontinuation accounted for 71(7.7%), 108(11.07%),

37(4.0%) and 9(0.97%), respectively. A total of 818 (55.6%) and 515(55.7%) patients

stayed in their original regimen when initiated with NVP and EFV treatments, respec-
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tively. One-in-four patients who were initiated with NVP as NNRTI drug experienced

the event during the follow up period (see Figure 3.1).

Figure 3.1. Schematic presentation showing study participants with their
treatment outcomes assessed from January 2009 to December 2013.

3.4.3 Analysis of Time to Composite Treatment Outcomes

The cohort was followed for a maximum of 61 months. The cumulative probability

of staying 59 months was 82.7% and contributed a total of 4958.75 person-years of

the data with mean follow-up time of 25 (sd=17.8) months. The rate of composite

outcome was high during the first 10 months after ART initiation. Figure 3.2 shows

that the Kaplan-Meier survival curve for composite outcome decreased sharply after

40 months. Whereas the curve for death shows steady decrease.

Log-rank test was used to test the difference between the categories of baseline

covariates with the probability of death. This test revealed the presence of significant

difference among the categories of baseline NNRTI, and NRTI drugs (Figure 3.3). The

plots of other baseline covariates are presented in Figure B.1 and B.2 in Appendix

B.

Table 3.2 presents the results obtained from a Cox-PH model that was fitted in

order to test the effect of baseline covariates on time to death and time to composite
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Figure 3.2. Kaplan-Meier survival curves for death and composite outcome among
HIV/AIDS patients at Gondar University Hospital, 2013.

outcome. The patients could experience more than one event during follow-up, and

time to the first event was used for analysis. In the primary analysis, only death

was considered as an event of interest. The risk of death was not different among

patients on NVP compared with EFV (AHR=1.02 (95%CI: 0.81-1.58)) which was

also observed in the log-rank test. Other baseline covariates considered in the Cox-

PH regression analysis were sex, age, NRTI backbone, WHO staging, baseline CD4

cell counts, functional status and ART start years. In the adjusted analysis, patients

who were initiated with ART at age greater than 40 years (HR=1.65, 95%CI: 1.21-

2.31), TDF backbone as compared to AZT (HR=1.90, 95%CI: 1.35-2.67) and WHO

stage IV or III as compared to stage II or I (HR=1.77, 95%CI: 1.22-2.56) had higher

risk of death. Whilst CD4 cell counts higher than 200 cell/mm3 (HR=0.40, 95%CI:

0.25-0.64) and functional status of working (HR=0.51, 95%CI=0.37-0.71) had reduced

risk of death as compared to ambulatory or bedridden.

At baseline, patients who were lost to follow up had similar CD4 cell counts,

age, WHO stage and functional status as patients who died during the follow up

period. Following (Brinkhof et al., 2009) who showed that lost to follow up patients
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Figure 3.3. Kaplan-Meier survival curve for HIV/AIDS patients at Gondar
University Hospital, 2013. Left panel: NNRTI. right panel: NRTI.

were often found to be dead when tracked a sensitivity analysis was conducted by

considering lost to follow up as an event. The results are presented in Table 3.2.

Despite few changes, the effects of these covariates were similar with the primary

analysis. However, sex and d4t backbone were significant in the sensitivity analysis,

but not in the primary analysis. The risk of composite outcome was 1.30 (95%CI:

1.07-1.58) times higher among males patients than the female patients. Whilst the

hazard of composite outcome was 1.73 (95%CI: 1.22-2.46) and 1.89 (95%CI: 1.50-

2.38) times higher for patients who initiated with d4t and TDF compared with AZT,

respectively.

Characteristics at baseline might be different for patients initiated with NVP or

EFV. A secondary analysis was performed using a propensity score weighting of the

model. Covariates NRTI, age, gender, baseline functional status, WHO stage, and

CD4 cell counts were included in the propensity model. The continuous measure of

propensity score was used as an additional covariate in the final model. The results

revealed that the risk of death or composite outcome are not different among the
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Table 3.2. Cox-regression analysis of factors associated with the composite outcome of
treatment failure on first-line ART in Northwest Ethiopia, 2013.

Primary analysis (lost as censored) Sensitivity analysis(lost as event)
Covariate UHR(95%CI) AHR(95%CI) p-value UHR(95%CI) AHR(95%CI) p-value
Sex, n(%)
Female 1 1 1 1
Male 1.18(0.88-1.57) 0.97(0.72-1.31) 0.85 1.39(1.25-1.68) 1.30(1.07-1.58) 0.007
Age
< 40 years 1 1 1
≥ 40 years 1.66(1.23-2.24) 1.65(1.21-1.31) 0.001 1.12(0.90-1.39) 1.02(0.81-1.27) 0.88
NNRTI
Efavirenz 1 1 1 1
Nevirapine 0.75(0.56-0.99) 1.19(0.85-1.65) 0.29 0.65(0.54-0.79) 1.02(0.81-1.58) 0.88
NRTI backbone
Zidovudine 1 1 1 1
Stavudine 1.71(0.99-2.95) 1.20(0.68-2.12) 0.52 2.21(1.58-3.10) 1.73(1.22-2.46) 0.002
Tenofovir 2.20(1.62-2.98) 1.90(1.35-2.67) .0001 2.19(1.78-2.69) 1.89(1.50-2.38) <.001
WHO stage
I and II 1 1 1 1
III and IV 2.30(1.62-3.27) 1.77(1.22-2.56) .0002 1.81(1.45-2.26) 1.37(1.08-1.74) 0.008
Base CD4 cells
<200 cells/mm3 1 1 1 1
≥ 200 cells/mm3 0.33(0.21-0.52) 0.40(0.25-0.64) .0001 0.67(0.52-0.85) 0.79(0.62-1.01) 0.05
Functional status
Ambulatory/Bedridden 1 1 1 1
Working 0.35(0.26-0.48) 0.51(0.37-0.71) <.01 0.40(0.32-0.49) 0.53(0.42-0.66) <.001
ART start Year
Before 2010 1 1 1 1
Since 2010 0.67(0.50-0.91) 0.88(0.65-1.21) 0.44 0.81(0.65-0.98) 1.01(0.82-1.25) 0.93

NNRTI drugs which is consistent with multivariate Cox-PH regression model.

Comparison of Efavirenz versus Nevirapine on NRTI Backbone

In order to compare the risk of composite outcome on the two NNRTI drugs a Cox-

PH model was fitted adjusting for NRTI backbones. On a backbone of d4t and AZT,

there were no significant differences in the risk of composite outcome between NVP

and EFV after adjusting for other baseline covariates (sex, WHO stage, functional

status and ART start year). In a similar analysis for TDF, the risk of composite

outcome was 1.51 (95%CI: 1.01-2.28) times higher on NVP as compared to EFV.

Comparison of Zidovudine, Stavudine and Tenofovir on NNRTI Drugs

Similarly, NRTI backbones were compared using a Cox-PH model adjusting for NNRTI

drugs. In EFV of an NNRTI option, the risk of composite outcomes on TDF and D4T

were 1.83 (95%CI: 1.36-2.47), and 1.70 (95%CI: 1.11-2.61), respectively. Likewise, pa-

tients who initiated with NVP, the hazard of composite outcomes on TDF and d4t
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were 2.09 (95%CI: 1.38-3.18), and 0.97 (95%CI: 0.46-2.04), respectively. Thus, there

were significant differences in the risk of composite outcomes on TDF as compared

to AZT in both NNRTI drugs. Two way interaction of treatment with sex was tested

and the terms was not statistically significant.

3.4.4 Longitudinal Modeling of CD4 Cell Counts Evolution

The cohort was followed for a maximum of 61 months. The median number of re-

peated measurements was 4 (IQR=2-5) with a maximum of 10 measurements per

patient. Time from ART initiation until first regimen change was considered for anal-

ysis presented in this Chapter. The semi-parametric models discussed in Section 3.3.2

were applied to the data. Note that, for the analysis presented in this chapter, the

response variable is the the logarithm of CD4 cell counts. Figure 3.4A shows an exam-

ple of the CD4 cell counts for randomly selected individuals. The observed individual

profile with its mean plot showed an overall increase in the level of CD4 cell counts

over time as shown in Figure 3.4B. The rise was relativity quick during the first 5

months since the start of ART and became steady after month 5. The estimated over-

all trend of the data is shown in Figure 3.4C. In addition, as discussed in Section 3.3.2,

the semi-parametric mixed effect model allows the estimation of the rate of change

of CD4 cell counts (i.e. the first derivative). A derivative equal to zero implies a

constant trend with respect to time. The rate of change in CD4 cell counts over time

under ART treatment is shown in Figure 3.4D. Note how the derivative decreases

sharply to zero in the first 10 months after the initiation of the ART treatment and

thereafter remain relatively stable and closed to zero.

Non-Nucleotide Reverse Transcriptase Inhibitor (NNRTI) Drugs

The Semi-parametric mixed effects model also allows us to compare between different

treatments. Figure 3.5 presents a comparison between EFV and NVP. Regardless

of the type of original regimen, log(CD4) cell counts increases immediately after

initiation of ART. This can be clearly seen in Figure 3.5A and Figure 3.5B which

show the predicted trend and the rate of change over time, respectively. For both

treatments, a sharp increase is observed in the first 10 months after initiation of ART.

Further, Figure 3.5C and Figure 3.5D show the difference between the two treatments

in both estimated log(CD4) trend and the rate of change in log(CD4) cell counts. A

curve for which the 95% confidence band covers the value of zero indicates that the

difference is not statistically significant. Figure 3.5C and Figure 3.5D reveal that the

response for the two NNRTI drugs seems to be differ only in the first few months after
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Figure 3.4. Log(CD4) cell counts over time. Panel A: individual log(CD4) cell
count trajectories of 5 selected patients. Panel B: individual log(CD4) cell count
trajectories with observed average plot, Panel C: individual log cd4 count
trajectories with predicted CD4 cell count trend (by the semi-parametric mixed
effects model) and Panel D: the estimated rate of change (the first derivative) over
time.

initiation of ART and thereafter the treatments are not statistically different in both

CD4 cell count levels and the rate of change since the 95% confidence bands cover

the value of zero in both cases.

Nucleotide Reverse Transcriptase Inhibitor (NRTI) Backbone

The trend of log(CD4) cell counts was estimated for the three NRTI backbones (AZT,

d4t and TDF). Figure 3.6A and the upper panels in Figure 3.7 show that, 10 months
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Figure 3.5. Response of log(CD4) cell counts for two NNRTI drugs (EFV and
NVP). Panel A: individual and average profiles. Panel B: rate of change over time
for CD4 cell counts. Panel C: estimated difference between the trend for EFV and
NVP. Panel D: estimated difference between the rate of change (i.e. the first
derivative) of log(CD4) cell counts, for EFV and NVP. Whenever the 95%
confidence band for the curve (the gray area) covers the value of zero the difference
between the two treatment is not significant.

after the initiation of treatment, patients treated with d4t reached higher levels of

log(CD4) cell counts compared to the patients that were treated with AZT and TDF

as the backbones. Note that from 10 months after the initiation of the treatment the

rate of change in log(CD4) cell counts is the same for all backbones (see Figure 3.6B

and the lower panels in Figure 3.7).

3.5 Discussion

The Scaled-up of antiretroviral therapy has shown to be effective in improving qual-

ity of life, reducing morbidity and mortality, and increase productivity in patients

infected with HIV. However, there is a need to better understand the characteris-
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Figure 3.6. Individual and average profile plots of NRTI backbons. Panel A: fitted
individual and mean plots for each backbone. Panel B: estimated rate of change for
each backbone and 95% confidence band.

tics of long-term outcomes of treatment combinations. The main aim of this study

was to determine and compare the long-term response of patients on NVP or EFV

based first line ART regimen in Northwest Ethiopia. The analysis presented in this

chapter was focused on a hospital data and the methodology presented in the chapter

can be applied routinely to similar dataset from other treatment centers. We have

shown that treatment responses were comparable whether NVP or EFV was chosen

to initiate ART for HIV-positive patients in Gondar University Hospital, Ethiopia.

Statistical significant difference was not detected in the risk of death or composite

outcome among patients who initiated with the two NNRTI drugs after adjusting

for baseline covariates. This is in agreement with other studies conducted in central

Ethiopia (Tirfe et al., 2013), Ghana (Sarfo et al., 2013) and Botswana (Shipton et al.,

2009) which indicated a non-significant difference in the long-term effectiveness of

EFV and NVP based ART regimens in the population. However, it is in contrast

with findings from observational study of the ART Cohort Collaboration (ART-CC)
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Figure 3.7. Estimated pairwise difference between the NRTI backbones. Upper
panels: estimated difference between the CD4 trend over time for each pair of
backbone. Lower panels: estimated difference of the rate of change of CD4 cell
counts for each pair of backbones.

(Mugavero et al., 2008) and the HIV-CAUSAL collaboration reported by Cain and

Hernn (2013); Collaboration et al. (2012) in which patients who initiated with NVP

has an increased risk of treatment failure as compared to EFV. The systematic re-

view reported by Pillay et al. (2013) and the meta analysis presented in Chapter

2 revealed that EFV based first line ART is a preferred NNRTI drug in first line

treatment regimen for HIV treatment as it has lower risk for treatment failure.

We have shown that there is a difference in the risk of composite outcomes between

patients who were initiated with TDF and those with AZT after controlling for NNRTI

drugs. The risk on composite outcome for TDF when combined with NVP is two times

higher as compared to AZT. This was supported by studies reported in Zambia by

Benjamin et al. (2011), Nigeria by Scarsi et al. (2010) and France by Rey et al. (2009)

in which TDF containing regimen was associated with higher mortality and virologic

failure. In contrast with our study, studies conducted in South African reported
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by Velen et al. (2013) and Botswana showed as TDF appeared to perform better

than AZT with lower mortality. We have shown in the adjusted analysis the risk of

composite outcome on TDF backbone has increased by 50% on NVP as compared to

EFV indicating that TDF is more effective when administered with EFV than NVP.

This is in line with finding reported in Thailand by Manosuthi et al. (2010) in which

the frequency of TDF-associated renal impairment was significantly higher in patients

receiving TDF plus NVP compared to TDF plus EFV regimen.

Our analysis reveals that there is a 73% increased risk of composite outcome

for patients who were initiated with d4t containing regimen as compared to AZT

containing regimen. The risk of composite outcome was 70% and 72% higher on d4t

as compared to AZT for NVP and EFV, respectively. This was supported by a study

conducted in Cameron reported in Laurent et al. (2008) in which patients initiated

with d4t has increased risk of toxicity. However, this finding contradicts the results in

a study conducted in Kenya (Kwobah et al., 2012) in which d4t leads to a decreased

risk of treatment failure as compared to AZT. The risk of composite outcomes was

not statistically significant for d4t with any of the NNRTI drugs when lost to follow

up patients were assumed censored. This indicates that the difference in risk on

composite outcome on d4t versus AZT was due to lost to follow up cases. The risk of

composite outcome was higher among patients who initiated ART at clinical stage 3

or 4, low CD4 cell count and ambulatory or bedridden functional status during ART

initiation which is inline with other studies (Alave et al., 2013; Mutasa-Apollo et al.,

2014).

Results reported in Table B.2 in Appendix B revealed that TDF has higher risk

for different event types compared to AZT which is consistent with other studies

(Benjamin et al., 2011; Rey et al., 2009). Although the effect of d4t and AZT on

death and NNRTI modification was the same, statistical significant difference was

observed on lost to follow up. Those patients who initiated with d4t had about two

fold risk of lost to follow up compared to those who initiated with AZT. This might

be due to the long-term irreversible side effects of d4t (WHO, 2010). Patients who

initiated with NVP had 2.5 times higher risk of modifying the NNRTI drug than

those patients who initiated with EFV. Initiating with TDF of NRTI backbone has

also higher risk of NNRTI modification than those who initiated with AZT. This is in

contrast with finding of the study in South Africa reported in Brennan et al. (2013)

in which rate of substitution was lower among those who initiated with TDF than

AZT or d4t.

In Ethiopia, similar to other resource-limited countries, CD4 cell counts are used

as a main surrogate marker of treatment response due to the fact that viral load
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monitoring is not easily accessible. We proposed a semi-parametric mixed effects

model for the longitudinal evolution of CD4 cell counts in order to investigate response

to treatment based on individual and average profile plots. We have shown that there

is an overall increase in CD4 cell counts over time which is consistent with other

studies (Luz et al., 2014; McManus et al., 2015; Nash et al., 2008; Wright et al.,

2013). Furthermore, the rate of change in CD4 cell count increase in response of

treatment was high during the first 10 months and stabilized later. The analysis

presented in this chapter reveals that there was no difference in the trend of CD4 cell

counts in the long-run among patients who initiated with EFV or NVP. This result

is in line with a study conducted in Ghana (Barry et al., 2013). Considering only the

NRTI backbones, there was difference in the evolution of log(CD4) cell counts which

is consistent with Bongiovanni and Tordato (2014). Even though d4t is less preferable

by clinicians, it has better effect in improving CD4 cell counts than AZT and TDF

which is supported in (Wainberg et al., 2007). In the long run, the improvement

of CD4 level was better among patients who initiated with TDF. Even though d4t

together with NVP was found to be the combination which offers better performance

in increasing CD4 cells counts during the first 10 months since initiation, the rate of

increase was not as good as the other combinations. All options of original regimen

have similar effect between month 20 and 50. The results obtained from the semi-

parametric mixed effect model can be affected by the different time to lost to follow

up or death reported in this chapter. A joint model for CD4 cell counts and time to

composite outcome will be discussed in Chapter 5.

The main limitation of this study was the limited number of variables that were

measured in the treatment center. Since the study is based on retrospective data,

many covariates were not measured. Some of the variables which were not measured

includes nutritional status of the patients, adherence, opportunistic infections, viral

load, side effects and reasons of regimen change. This could affect the findings of

this study. Another limitation was the definition of treatment failure as composite

outcome which is broad. This might overestimate the event which makes comparison

with other findings difficult. Therefore, the results should be interpreted with insight

of these limitations.

In conclusion, the analysis presented in this chapter revealed that the long-term

treatment outcomes did not depend on NNRTI groups of the regimen. The outcomes

of EFV containing regimen is comparable with NVP containing regimen. However,

difference was observed for NRTI backbones chosen to initiate the treatment of HIV-

infected patients in Ethiopia. The response of CD4 cell counts to treatment was high

during the first 10 months and stable then after. Further clinical study is warranted
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in resource limited settings to investigate the effect of EFV and NVP on long-term

outcomes.
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Chapter 4
Model-Based Prediction of CD4 Cells Counts in
HIV-Infected Adults on Antiretroviral Therapy in
Northwest Ethiopia

4.1 Introduction

In order to allow a rapid roll-out of ART, countries use the World Health Organization

(WHO) public health guideline, which proposes standard first line therapy, together

with treatment initiation and switch guided by clinical disease progression and, where

possible, with monitoring of CD4 cell counts (Gilks et al., 2006). As mentioned in

Chapter 2, the standard therapy consists of three NRTI (AZT, TDF and d4t) and one

NNRTI (EFV and NVP). In resource limited settings, WHO recommends the use of

two NNRTI as first line ART regimen (Blas-Garćıa et al., 2011). The number of CD4

cells/mm3 of blood has been widely used as an important biomarker for progression

to AIDS. Measurement of CD4 cell counts is a crucial parameter in the management

of HIV patients.

In many low income countries, according to the CD4 cell count criteria, the patient

would be eligible when his/her CD4 cells counts dropped below a given threshold

value. The threshold value has been changed from less than 200 cells/mm3 in 2006

to less than 350 cells/mm3 in 2010 (WHO, 2006, 2010). The WHO 2013 guideline

consolidated ART guidelines recommend that ART be initiated for all patients with

CD4 cell count 500 cells/mm3 or less. In 2015, WHO (2015) recommended HIV-treat

all approach as presented based on two clinical trial outcomes (Group et al., 2015a,b).

However, several studies are against earlier initiation of ART in patients who have

57
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high CD4 cell counts (Collaboration et al., 2011; Sabin and Phillips, 2009). This

is because early exposure to ART may precipitate early evolution of resistance and

unnecessary side-effects (Wood et al., 2005).

Limited studies were focused on the trend of CD4 cell counts for patients on

ART especially in Sub-Saharan Africa. A longitudinal study conducted in eastern

Ethiopia (Reda et al., 2013) used a linear mixed effect model which ignores the non-

linear nature of the evolution. Similarly, Lubyayi et al. (2015) analysed longitudinal

study in Uganda and used cubic time effect to account the non-linear nature of CD4

cell counts. Awoke et al. (2016) proposed a semi-parametric mixed effect model to

investigate CD4 cell counts response to treatments. In this Chapter, we proposed

a flexible parametric modeling, the fractional polynomials framework proposed by

Royston and Altman (1994), to predict a subject specific evolution of CD4 cell counts

over time. We focus on two main issues: (1) early prediction of CD4 cell counts under a

specific treatment and (2) estimation of the time to cross a given CD4 threshold under

treatment. The later allows us to compare the efficacy between different treatments.

This chapter is structured as follows; the proposed modeling approach is formu-

lated in Section 4.2. In Section 4.3 the proposed model is applied to the ART data

of Gondar University Hospital. A discussion is provided in Section 4.4.

4.2 Methods

4.2.1 Modeling CD4 Cell Counts using Subject Specific Models

We considered a linear mixed effects model presented in Section 3.3, given by

Yitij = Xiβ +Zibi + εitij . (4.1)

Here, Yitij(i = 1, . . . , ni, j = 1, . . . ,mi) is ni-dimensional response vector of log

transformed CD4 cell counts for individual i at time tij , Xi and Zi are ni×p and ni×q
dimensional fixed and random effects model matrices, respectively. The vector β is a

p-dimensional vector of fixed effects and bi is a q-dimensional subject specific vector of

random effects bi ∼ N (0,Σb) and εitij is the random error term, εitij ∼ N (0, σ2Ini).
In what follows we discuss the usage of the mixed effects model for subject specific

model based prediction of the CD4 cell counts (Section 4.2.2), and the estimation of

the time to cross a CD4 cell count threshold under a given treatment (Section 4.2.3). A

flexible model formulation for the mean structure using fractional polynomial random

effect model is presented in Section 4.2.4
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4.2.2 Model Based Prediction

The primary goal of the analysis presented in this chapter is to obtain a model based

subject specific prediction under a specific treatment regimen of long term level of

CD4 cell counts as early as possible. For this purpose, a two stage procedure was

used. First a mixed effect model is fitted using only data between 0 to 30 months.

We term this period is the estimation period. In the second stage, the fitted model

is used to predict the CD4 cell counts in the period 31 to 68 months. We term the

second period is the prediction period. The procedure is illustrated in Figure 4.1a,

where t0, ti, and tk represented the initiation time of ART treatment, estimation

period and prediction period, respectively. Note that only data within the estimation

period, i.e, between t0 and ti, is used in order to estimate the unknown parameters

of the model. The observed and predicted values in both estimation and prediction

period are compared and their correlation was calculated in order to determine how

good the model predicts the long-term CD4 cell counts. Figure 4.2 presents profile

for selected individuals.

Figure 4.1. Panel a: an illustrative example for the estimation and prediction
periods. Panel b: an illustrative example of a patient that cross the therhold of τ at
time tτ .

4.2.3 Model Based Prediction of Time to Cross a Pre-specified CD4 Threshold

The linear mixed effect model formulated in (4.1) can be used to predict the time

that a subject will cross a pre specified threshold level of CD4 cell counts. Let τ be

a thresholds value, t0 is the time to initiate ART, and ⊺τ the first time in which the
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Figure 4.2. Individual profiles for selected patients who initiated ART with NVP
(upper panel) and EFV (lower panel) who crossed and remain below the a threshold
of 350.

subject CD4 cell counts crossed the threshold defined by

⊺τ =min{j ≥ 1 ∶ Yitij ≥ τ}, (4.2)

Figure 4.1b illustrates schematically the trajectory of an individual who initiated

ART at t0 and cross the threshold at tτ . Our aim is to estimate the time tτ .

For the analysis presented in this chapter, three different threshold values of CD4

level were used for illustration: τ = log(200) = 5.2983, τ = log(350) = 5.8579, and

τ = log(500) = 6.21461 log(cells/mm3). The threshold value of 200 cells/mm3 was

recommended by WHO (2006) as a criteria to initiate ART. In 2010, the criteria

was modified to 350 cells/mm3 by WHO (2010). In order to reduce the time between

registration to treatment initiation, the 2013 guidelines recommended to initiate ART

when the level of CD4 cell counts is less than 500 cells/mm3. Currently, test and

treat all approach is used irrespective of CD4 cell count level (WHO, 2015).

Based on the results presented in Reddy et al. (2016) the expected time for in-

dividual i to reach a CD4 cell count greater or equal to threshold τ can be express
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as

E(⊺τ) = ti1P (Yiti1 ≥ τ) + ti2P (Yiti1 < τ, Yiti2 ≥ τ)
+ti3P (Yiti1 < τ, Yiti2 < τ, Yiti3 ≥ τ) + . . .
= ∑∞j=1 tijSij ,

(4.3)

where tij is the time corresponding to the jth visit for individual i, and Sij is the

probability of individual i experiencing the event or stopping at tij . In practice, the

infinite series will be truncated at a time point relevant to the study subjects Reddy

et al. (2016). Conditioned on the random effects, the mixed model formulated in (4.1)

implies that

Yij ∣bi ∼ N (Xiβ +Zibi,Σi) .

Hence, the joint probability that form Sij reduces to the product of the individual

probabilities, which can be expressed as

Sij(Xi, Zi,bi,β) = P (Yiti1 < τ)P (Yiti2 < τ)P (Yiti3 < τ), . . . , P (Yitij ≥ τ)
= [φ̃i1(τ)][φ̃i2(τ)], . . . , [φ̃ij−1][1 − φ̃ij(τ)],

(4.4)

where φ̃ij(τ) is a cumulative normal distribution with mean Xiβ +Zibi and vari-

ance σ2, that is

φ̃ij(τ) = φ ( τ−Xiβ−Zibi
σ

) , (4.5)

Note that both fixed and random effects defined in the mixed model formulation

in (4.1) are used to calculate φ̃ij(τ). We elaborate this point in section 4.2.3 when

we discuss the mean structure of the model.

The expected time to attain CD4 cell count above the threshold in (4.3) can

be computed by substituting each unknown parameter by its estimate. As shown

by Reddy et al. (2016), the non-parametric bootstrap method is used to compute

standard errors and 95% confidence intervals for ⊺̂τ . Four steps procedure were ap-

plied to compute the standard errors and confidence intervals:

1. Individual i is removed from the full dataset resulting N − 1 samples.

2. Sample N − 1 subjects with replacement from the dataset in step 1.

3. Append the data of individual i to the bootstrap sample.

4. compute ⊺̂τ .
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This procedure is repeated 1000 times.

4.2.4 Flexible Modeling of the Mean Structure

The fractional polynomial model was proposed by Royston et al. (2006) as a flexi-

ble parametric approach to describe the dependency between a response of primary

interest and continuous covariates (Royston and Sauerbrei, 2008). The responses of

primary interests in the current application is the log transformed CD4 cell counts and

the covariate is time under ART treatment measured in months. The mean structure

of an m order fractional polynomial model can be formulated as

m

∑
l=0
βlHl(t) +

m

∑
l=0
bliHl(t), (4.6)

Where m is an integer, p1 ≤ p2 ≤ ⋅ ⋅ ⋅ ≤ pm is a sequence of known powers and Hl(t) is

a transformation function given by

Hl(t) =
⎧⎪⎪⎨⎪⎪⎩

tpl if pl ≠ pl−1 ,

Hl−1(t) × log(t) if pl = pl−1,
(4.7)

with p0 = 0 and H0(t) = 1. Note that there are two components in the mean

structure. The first consists of the fixed parameters βl and the second the subject

specific parameters bli.

For the analysis presented below, both first (m = 1) and second (m = 2) order

factional polynomials were considered and the model with the best goodness of fit,

based on Akaike Information Criteria (AIC) (Akaike, 1973), was selected. For a second

order mixed effect fractional polynomial, the mean structure is given by

Xiβ +Zibi = (β0 + b0i) + (β1 + b1i)tp1ij + (β2 + b2i)tp2ij , (4.8)

Here, β0, β1, and β2 are fixed effect parameters, and b0i, b1i, and b2i are subject

specific parameters. To compute cumulative probability above the threshold, the

unknown values of (4.5) were substituted by; Xiβ = β0 + β1t
p1
ij + β2t

p2
ij and Zibi =

b0i + b1itp1ij + b2it
p2
ij .
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4.3 Results

The median follow up period was 27.10 months (IQR=12.1-43.1). The cohort con-

tributed a total of 236.58 per 100 person years of follow up. The contributions were

237.11 per 100 person years and 234.28 per 100 person years by NVP and EFV regi-

mens, respectively. There is small difference between the two treatment groups with

regard to time contributed for the observation period. The median number of re-

peated measurements was 3 (IQR=2-6) with a maximum of 11 measurements per

patient. CD4 cell counts ranges between 2 and 2057 cells/mm3.

The evolution of CD4 cell counts over time for both treatment groups is shown in

Figure 4.3 and reveal substantial variability between subjects. At baseline, 68.09%

and 64.32% of the patients who initiated with EFV and NVP containing regimens

had CD4 cell counts below 200 cells/mm3, respectively. The percentage lower than a

threshold of 350 cells/mm3 increased to 94.53% and 91.97% for those who initiated

with EFV and NVP, respectively.
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Figure 4.3. Individual and average profiles for patients who initiated ART with
NVP (left panel) and EFV (right panel).

4.3.1 Model Based Prediction of CD4 cell Counts: Estimation Period 0-68 Months

The fractional polynomial mixed effect model discussed in the method section was

used to estimate subject-specific evolutions for the log(CD4) cell counts within the

follow-up period of the study. First and second order fractional polynomial mixed

effect models were considered and compared. To select the power of the fractional

polynomial mixed effect model, powers in the range {−2,−1.5, . . . ,2.5,3} were consid-

ered. According to the AIC value, a second order fractional polynomial mixed effect
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model (FP2) was selected. The smallest value of AIC was obtained at (p1 = 0, p2 = 0.5)
and (p1 = 0, p2 = 0) for NVP and EFV ART regimen, respectively. The comparison

of the models is presented in Figure C.1 and C.2 in Appendix C.
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Figure 4.4. Model based predicted means for log(CD4) cell counts for NVP (left
panel) and EFV (right panel) with observed average profile.

Figure 4.4 shows the estimated mean profiles for the second order FP2 models

for patients who initiated with NVP (left panel) and EFV (right panel) treatment

regimen. The increase in log(CD4) cell counts from baseline was maintained until the

end of follow-up period. Based on estimated FP2 models we can predict a subject-

specific log(CD4) cell counts for subjects under NVP and EFV, respectively, by

f̂(tij) = (5.22 + b̂0i) + (0.05 + b̂1i)log(tij) + (0.08 + b̂2i)t0.5ij ,
f̂(tij) = (5.05 + b̂0i) + (0.14 + b̂1i)log(tij) + (0.024 + b̂2i)(log(tij))2,

(4.9)

Here, b̂0i, b̂1i and b̂2i are the empirical Bayes estimates for the subject specific

random effects.

The density estimate for the distribution of the predicted and observed values for

NVP and EFV at 6 and 12 months are shown in Figure 4.5 and indicates that the

model is performing well in terms of prediction at time points within the estimation

period.

Observed and predicted values at all time points are presented in Figure 4.6 which

reveals a strong correlation between the predicted and observed values (0.966 and

0.977 for NVP and EFV, respectively).
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Figure 4.5. Density estimates for the distribution of the observed values (dashed
line) and model-based predictions (solid line) at month 6 and 12 for NVP (panel a
and b): and EFV (panel c and d).

4.3.2 Model Based Prediction of CD4 cell Counts: Estimation Period 0-30 Months

In the previous section model based prediction were obtained using FP2 models which

were estimated using all data. In this section the data is divided into two periods.

The first, 0 to 30 months, is used for the estimation of the model parameters while

the second, 31 to 68 months, is used for prediction. Figure 4.7a and 4.7b present the

observed and predicted values of log(CD4) cell counts within the estimation period

and reveal, similar to the previous section, high correlation (0.976 for NVP and 0.982

for EFV). Figure 4.7c and 4.7d display the predicted versus the observed log(CD4)

cell counts within the prediction period. Note that for this period the data were not

used for the estimation of the model parameters. The correlations are equal to 0.805

and 0.742 for EFV and NVP, respectively.

The FP2 model estimated within the estimation period can be used to predict a

subject specific last observed log(CD4) cell counts. This implies that for each subject,
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Figure 4.6. Plot of observed versus model based predicted for NVP and EFV (0 to
68 month). Note that all data are used to estimate the predictive model.

information about log(CD4) cell counts from the first 30 months of the treatment is

used to predict the last observed log(CD4) cell count of the subject. Figure 4.8a and

4.8b present the observed and the predicted values. The correlations are equal to

0.764 and 0.808 for NVP and EFV, respectively.

4.3.3 Subject Specific Prediction of Time to Cross a Pre-specified CD4 Thresh-
old

Subject Specific Prediction of Time to Cross a Threshold

The FP2 model allows us to estimate a subject specific time to cross a pre specified

CD4 threshold. Three different thresholds were used (200, 350 and 500 ) to estimate

a model-based time to cross the threshold which was consider as an event. Those

patients who have time to cross the threshold longer than 70 months were censored.

Note that model based predictions are obtained using a model for which the parameter

were estimated using data from the estimation period (i.e. 0-30 months).

Figure 4.9 shows the observed and predicted log(CD4) cell counts for four selected

patients. Panel a shows an example of a patient for which both the observed and

predicted values cross the threshold within the estimation period. The time to cross

the threshold is estimated to be 5.62 months. For the patient presented in panel

b, both the observed and predicted values cross the threshold within the prediction

period (i.e 31-68 months). Panel c presents a patient for which the observed log(CD4)

cell counts are below the threshold of 350 and the predicted time to cross the threshold
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Figure 4.7. Observed and model based predicted values of log(CD4) cell counts
obtained from a model that was estimated within the estimation period (0-30
months). Panel a and b: observed versus estimated values in the estimation period
for NVP and EFV, respectively; Panel c and d: observed versus predicted values in
the prediction period for NVP and EFV, respectively.



68 CHAPTER 4. MODEL-BASED PREDICTION OF CD4 CELL COUNTS IN HIV-INFECTED ADULTS ON ART

3 4 5 6 7

3
4

5
6

7

(a)

Last observed

La
st

 e
xt

ra
po

la
te

d

r=0.764

3 4 5 6 7

3
4

5
6

7

(b)

Last observed

La
st

 e
xt

ra
po

la
te

d

r=0.808

Figure 4.8. Last observed log(CD4) cell count and model based prediction based
on a model which was estimated within the estimation period. Panel a: Patients
who initiated with NVP containing regimen. Panel b: patients who initiated with
EFV containing regimen.

is estimated to be 74.55 months. Panel d shows an example of patients for which both

the observed and predicted log(CD4) cell counts remain below the threshold of 350

until the end of the follow up period.

Figure 4.10 presents the Kaplan-Meier curves for the estimated time to cross

the threshold of 200 and 350 cells/mm3. For the threshold of 200 CD4 cells/mm3,

there is a significant difference between EFV and NVP groups (p-values for the log

rank test is 0.0422). The median time to cross the threshold is estimated to be equal

to 11.6 months (95% CI: 10.8-12.4) for NVP group and 15.0 months (95% CI: 12.7-

17.3) for EFV group. This implies that it took shorter time to cross the threshold

of 200 cells/mm3 for the NVP group. When the threshold increases to 350 (see

Figure 4.10, panel b), the distribution of the time to cross the threshold of the groups

were comparable (p-value=0.52).

For each patient, the probability to cross the threshold of 350 cells/mm3, a differ-

ent time points, was calculated according to Equation 4.5 and presented in Figure 4.11.

The rate of increase in the probability of crossing the threshold differs for each pa-

tients irrespective of the type of regimen. The difference of the rate of increase in

crossing the threshold might be partly explained by the baseline CD4 cell counts.
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Figure 4.9. Observed and model based predicted log(CD4) cell counts for selected
patients. Panel a: a patient for whom both observed and predicted values cross the
threshold within the estimation period. Panel b: a patient for whom both observed
and predicted values crossed the threshold after the estimation period. Panel c: a
patient for whom the observed values are below the threshold and the predicted
time to cross the threshold is estimated to be 74.55 months. Panel d: a patient for
whom both observed and predicted values are below the threshold (350 cells/mm3)
during the study period.
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Figure 4.10. Kaplan-Meier curve for the time to cross a pre specified threshold of
CD4 cells/mm3 by treatment group; Panel a: Kaplan-Meier curves for threshold of
200 cells/mm3 for EFV and NVP. Panel b: Kaplan-Meier courses for a threshold of
350 cells/mm3 for EFV and NVP.

Predicted Probability to Cross a Pre-specified CD4 Threshold

The predicted probabilities to cross a threshold of 350 cells/mm3 at 60, 90 and 120

months were calculated according to equation 4.3 and shown in Figure 4.12. For all

time points, the probability to cross a threshold of 350 cells/mm3 is higher for the

EFV group. Although, the difference between the two treatment groups is higher for

lower months. For example, at 60 months, there were 400 (36.36%) patients initiated

with NVP who have CD4 cell count lower than the threshold as compared to 100

(40.48%) patients who initiated with EFV containing regimen and have CD4 cell

counts lower than the threshold. The number of patients with CD4 cell counts lower

than the threshold at 60% probability reduces to 200 for those who initiated in NVP

containing regimen. Figure 4.12 d shows sorted predicted probabilities calculated

using two models: (1) a model that was fitted within the estimation period and (2)

a model which was fitted for all available data. We noticed that the two models lead

to comparable probabilities in the estimation period and all observed dataset.

The procedures described in section 4.2.3 allows us to use (4.3) to estimate both

the time and the probability to be above a given threshold. For illustration we use

8 subjects. Patients 2077, 1191, 67 and 783 are initiated with EFV, while patients

44, 240, 747, and 252 are initiated with NVP. Table 4.1 shows the estimated time to

cross the threshold and the corresponding 95% confidence intervals for the selected

patients.

Patients 783 and 252 started ART when their CD4 cell counts dropped below 100
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Figure 4.11. Probabilities to cross a threshold of 350 cells/mm3 for selected
subjects. Panel a: patients who initiated with NVP containing regimen. Panel b:
patients who initiated with EFV.

cells/mm3. The estimated time to cross 200 cells/mm3 threshold for these patients

are 20.282 (95%CI: 19.189-21.052) and 10.728 (95%CI:10.473-11.027), respectively.

Patients 67 and 747 were initiated ART at CD4 cell counts between 100 and 200

cells/mm3. These patients are expected to reach 200 cells/mm3 at 13.667 (95%CI:

12.737-14.495) and 6.711 (95%CI: 6.765, 7.096) months, respectively. For both sce-

narios it takes shorter time to reach a threshold for patients who initiated with NVP.

Table 4.1. Estimated time to cross the threshold and 95% confidence interval for
selected individuals (time in months).

≥ 200cells/mm3 ≥ 350cells/mm3 ≥ 500cells/mm3

PatientID Baseline CD4 ⊺̂τ 95%CI ⊺̂τ 95%CI ⊺̂τ 95%CI
EFV
2077 425 2.8x10−3 (3.7x10−4-1.1510−2) 1.376 (1.045-1.763) 10.312 (9.897-10.890)
1191 210 2.789 (2.392-2.981) 9.752 (9.456-10.081) 19.786 (19.336-20.486)
67 126 13.667 (12.737-14.495) 42.918 (37.654-52.951) 79.928 (55.524-82.962)
783 67 20.282 (19.189-21.052) 51.361 (48.968-54.427) 82.1640 (71.872-85.256)
NVP
44 490 2.5x10−3 (5.4X10−4, 9.0x10−3) 1.601 (1.177-2.142) 16.717 (16.023-17.624)
240 271 1.406 (0.975-1.501) 12.102 (11.954-12.259) 21.481 (21.001-22.085)
747 138 6.711 (6.765-7.096) 28.107 (27.259-29.968) 69.545 62.335-72.333
252 54 10.728 (10.473-11.027) 39.161 (38.496-40.721) 69.422 (67.492-71.566)

At the start of their ART regimen, patients 1191 and 240 had CD4 cell count

greater than 200 cells/mm3. The expected time to cross threshold 350 cells/mm3

are estimated to be equal to 9.752 (95%CI: 9.456-10.081) and 12.102 (95%CI: 11.954-
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12.259), respectively. Patients 2077 and 44 were initiated ART with CD4 cell counts

greater than 350 cells/mm3. The estimated times to reach the threshold 500 cells/mm3

are estimated to be equal to 10.312 (95%CI: 9.897-10.890) and 16.717 (95%CI: 16.023-

17.624), respectively.
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Figure 4.12. Sorted probabilities to cross a threshold of 350 CD4 cell counts.
Panel a: sorted probability to cross the threshold at 60 months. Panel b: sorted
probability to cross the threshold at 90 months. Panel c: sorted probability to cross
the threshold at 120 months. Panel d: Sorted probability at 60 months obtained for
models which were estimated within the estimation period and when using all data.
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4.4 Discussion

The primary goal of ART is to reduce HIV-related morbidity and mortality, prolong

survival, improve the quality of life, restore and preserve immunologic function and

prevent HIV-transmission (Günthard et al., 2014). The level of CD4 cell counts is

routinely used to monitoring response to ART in HIV-infected patients. It is used

as a measure of the risk of development of opportunistic infections (Crampin et al.,

2011). Patients with CD4 cells counts less than 200 cells/mm3 are at higher risk of

opportunistic infections (Stephan et al., 2012). If CD4 cell counts are close to or less

than the threshold of 200 cells/mm3, continued monitoring for CD4 cell counts can

help to identify those needing prophylaxis for opportunistic infections (Kaplan et al.,

2009). Through time, the threshold at which ART is initiated has been changed by

the WHO from 200 to 350, 500 and currently ART should be initiated regardless

of CD4 cell counts (WHO, 2015). Though ART treat-all approach is the strategy,

however CD4 cell count remained very important indicator of immunosuppression

(Ford et al., 2017).

In this chapter, we proposed a flexible method to model the relationship between

CD4 cells counts and follow-up time in response to treatment. We applied a cross-

validation to evaluate the performance of the prediction accuracy of a fractional poly-

nomial mixed effect model. We have shown that model based prediction are highly

correlated with the observed values within the estimation period (0.977 and 0.982 for

NVP and EFV, respectively). The correlation between observed and model based

prediction within the prediction period was found to be relatively high (0.805 and

0.742 for EFV and NVP, respectively). This provide evidences that our model can be

used for long-term prediction of unobserved CD4 cell counts. The density plot for the

distribution of observed and predicted values supported these relations. Other studies

used similar approach for long term prediction based on longitudinal data (Aregay

et al., 2013; Lawton et al., 2015).

The mixed effects FP2 model allow us to estimate the distribution of the time to

cross a pre specified CD4 cell count threshold of interest and to use this distribution

to compare between treatments. We have shown that more than half (52.87%) of

the patients who initiated ART at CD4 cell counts less than 200 cells/mm3 cross the

threshold in six months period after initiation. When the threshold is 350 cells/mm3,

the proportion who crossed the threshold at 6, 24, 36 and 48 months were 13.88%,

40.14%, 52.79% and 61.65%, respectively.

Those patients who initiated at higher CD4 cell count get more pronounced CD4

cell count rise quickly than those who initiated at lower CD4 cells counts. Different
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studies witnessed that the baseline CD4 cell count influences the rate of immune

reconstitution (Jacobson et al., 2004; Kadima et al., 2014; Notermans et al., 1999;

Smith et al., 2004). These studies indicated that markers of HIV disease stage at the

time of ART initiation are critical determinants of the progression while under ART.

This might be due to the damage on the immune system leads to the increase to the

risk of illness.

We have shown that when ART is initiated to patients with low level of CD4 cell

counts it took shorter time to reach the threshold for patients who were initiated with

NVP. This pattern is reverse when ART is initiated to patients with high level of CD4

cell counts. Patients who were initiated with EFV cross the threshold of 350. The

later difference between the two treatment groups persists for higher baseline CD4 cell

counts which is also supported by other studies (Ford et al., 2017; Teeranaipong et al.,

2016). This might be due to the high potency nature of EFV containing regiment.

The Kaplaan-Meier survival curve also shows that the median time to cross the

thresholds 200 CD4 cells/mm3 was shorter for patients who had been initiated with

NVP as compared to EFV. Similar trend was reported by other studies (Teeranaipong

et al., 2016; Van Leth et al., 2005). The possible reason is NVP has been used for

patients with low CD4 level to reduce the side effect of EFV.

In conclusion, fractional polynomial mixed effect model enables the prediction of

long-term treatment effects on CD4 cell counts. In addition, we used the model to

estimate the predicted probability of an individual to have CD4 cell count above a

pre-specified threshold. By predicting the long-term outcomes of CD4 cell count of

the patient one can advise patients about the potential ART benefits that accrue in

the long term. EFV regimen improves CD4 cells counts of the patient quicker than

NVP regimen for higher baseline CD4 cell counts. Therefore, to our opinion, patients

who have higher baseline CD4 cells counts can be initiated with EFV regimen to

achieve immunological success at a faster rate. However, more strong clinical studies

are needed to confirm the effect of the drugs based on CD4 label.



Chapter 5
Predicting Long-term ART Outcomes in HIV-infected
Adults using Longitudinal Biomarkers: A Joint
Modeling Approach.

5.1 Introduction

HIV-infected individuals in Ethiopia are followed since the date of their first test for

HIV and during the time of pre and ART periods. As a result, there are two types

of outcomes of interest; evolution of CD4 cell counts (longitudinal process) and, time

to event outcomes (time to event process, (Rizopoulos, 2010)). Both of the outcomes

pose difficulties if we attempt to model them independently. This is due to the fact

that subjects with sharper rates of CD4 decline may have a higher risk to adverse

events and have fewer CD4 cell count measurements (Little and Rubin, 2014).

The main focus of the analysis presented in this chapter is to determine the time

to composite outcomes accounting for longitudinal outcomes. In HIV/AIDS data,

CD4 cell counts have been used as a potential marker for treatment outcomes be-

cause of its observed correlation with clinical outcomes. Often only baseline values

of the biomarker is used, despite the existence of repeated measurements for the

biomarker (Awoke et al., 2016; McManus et al., 2012). As done in Chapter 3, one

option is to fit two independent models; Cox-PH model with time-dependent co-

variate for the time-to-event outcomes, and mixed effect models for the longitudinal

measurements. However, Cox-PH model does not account the biological variation and

measurement errors of CD4 cell counts measured periodically. Prentice (1982) showed

that regression coefficients on the partial likelihood are asymptotically biased when

75
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it accommodates covariates measured with error. Failure to take appropriate account

of this phenomenon and use of ordinary survival and longitudinal data models, can

lead to biased estimation of average quantities of interest (Sweeting and Thompson,

2011).

Instead, different approaches have been proposed. Self and Pawitan (1992); Tsiatis

et al. (1995) proposed a two stage approach in which at the first stage the repeated

measurements are fitted over time using a mixed-effects models and in the second

stage the individual predictions from this mixed effect model are used as either fixed

or time-dependent covariates in a Cox-PH model. Kleinbaum and Klein (2005) pro-

posed extended Cox-PH model in which the model consists of a time varying covariate.

Faucett and Thomas (1996) proposed a simultaneous modelling approach of continu-

ous covariates over time. Here, Markov chain Monte Carlo method of Gibbs sampling

is used to generate the joint posterior distribution of all unknown parameters of the

comprehensive model given only the observed data. Even though two stage aims

to reduce bias by using a survival model that incorporates a longitudinal covariate

that has been measured with error, it did not avoid all sources of bias. In the other

hand, extended Cox-PH model assumes that the covariates are external and, for that

reason, not related to the failure mechanism and that time-dependent covariates are

measured without error. However, the approach is not appropriate for internal time-

dependent covariates because it can result in biased estimations. Resent interest has

focused on joint models, introduced by Self and Pawitan (1992), where models for the

event time distribution and longitudinal data include a common set of latent random

effects. It allows both models to share information and can lead to better estimation

of the unknown parameters of the model (Seid et al., 2014).

In this chapter, our aim is to determine the relationship between CD4 cell count

and the risk of composite outcome. A joint model (Rizopoulos, 2012b) that allows

a broad range of dependencies between the longitudinal responses and the survival

endpoints is used. Similar to Chapter 4, a flexible mean structure, based on fractional

polynomials mixed effect model, is formulated to the longitudinal process. The event

processes are defined as death or composite outcome. The joint model is used to

predict the probability of the occurrence of the event given the longitudinal measure-

ments of CD4 cell counts.

This chapter is organized as follow. In section 5.2 we introduce the joint model

for the longitudinal and time to composite outcome will be formulated and will be

applied to the data in Section 5.3. Finally, the results are discussed in Section 5.4.
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5.2 Formulation of the Joint Model

The joint model for the longitudinal and time to event was implemented using the

two stage procedure proposed by Rizopoulos (2012b). Briefly, in the first stage a

fractional polynomial mixed effect model is fitted to the longitudinal data (CD4 cell

counts) and the parameter estimates for both fixed and random effects are used in

the second stage in the partial likelihood of the Cox-PH regression model for time to

event model. For the analysis presented in this chapter two time to event endpoints

were analysed: time-to-death and composite outcome (defined in Chapter 3). For

both endpoints, a shared random-effects method (Rizopoulos, 2012b) was used.

Let T ∗i be the true event time for the ith subject, Ti be the observed event time,

defined as the minimum of censoring time Ci and T ∗i , and δi = I(T ∗i ≤ Ci) are the event

indicator. For the longitudinal outcome, let yi(tij) be its observed value at time point

tj (the visit time) for the ith subject. The main interest of the analysis presented

in this chapter is to estimate the probability to death or composite outcome based

on CD4 cell counts. This can be done using a joint model in which two submodels;

the survival model for time to death or composite outcome and the CD4 cell counts,

described below, are linked together via a shared random effect.

5.2.1 Model Formulation

Longitudinal Process

Similar to Chapter 4, a fractional polynomial mixed effect models was formulated for

the mean structure of the longitudinal process. This model is a flexible parametric ap-

proach to describe the dependency between longitudinal response of primary interest

and a covariates (Royston and Sauerbrei, 2008). Let mi(tij) be the mean structure

(include both fixed and random effects) for the fractional polynomial model given by

mi(tij) =
k

∑
l=0
βlHl(tij) +

k

∑
l=0
bliHl(tij), (5.1)

where k is an integer, p1 ≤ p2 ≤ ⋅ ⋅ ⋅ ≤ pk is a sequence of powers and Hl(tij) is

a transformation function defined in (4.2.4) with p0 = 0 and H0 = 1. As shown in

Chapter 4, for a given powers, p1 and p2, the second order mixed effect fractional

polynomial can be written as

yi(tij) = (β0 + b0i) + (β1 + b1i)tp1ij + (β2 + b2i)tp2ij + εi(tij).

In matrix notation the above mixed fractional polynomial model can be expressed
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as:
yi(tij) =mi(tij) + εi(tij),

= x⊺i (tij)β + z⊺i (tij)bi + εi(tij),
= (β0 + b0i) + (β1 + b1i)tp1ij + (β2 + b2i)tp2ij + εi(tij).

(5.2)

Here, bi= (b0i, b1i, b2i) is a subject specific random effect vector, bi∼ N (0,Σbi
)

were Σbi
is the covariance matrix for the random effects and εi(tij) ∽ N (0, σ2)

Survival Process

For the time to event, a Cox-PH model is used. The survival probability can be

expressed in terms of the risk function as

Si(t∣ωi) = exp(−∫
t

0
h0(s)exp{γτωi}ds), t > 0. (5.3)

Consequently, the cox-proportional hazard model is formulated as

hi(t) = h0(t)exp{γTωi}. (5.4)

Here, hi(t) is the hazard function, ωi is the vector of baseline covariates, γ is the

corresponding vector of regression coefficients and h0(t) is the baseline hazard. It

assumes that the hazard ratio hi(t)/h0(t) depends only on covariates, whose value is

fixed during the follow-up.

A joint Model for the Longitudinal and Time to Event processes

Following the modeling approached proposed by Rizopoulos (2012b), we formulated

a joint model for the time to event (time to composite outcome) and longitudinal

outcome (CD4 cell count). The two endpoints described in the previous section were

link together via the linear predictor of the hazard function,

hi(t∣Mi(tij), ωi) = h0(t) exp(γτωi + αmi(tij)), t > 0. (5.5)

Where Mi(tij) = (mi(tij),0 ≤ s < t) denotes the history of the true unobserved

longitudinal outcomes process up to time point t (Rizopoulos, 2012b) and m(tij)
represents the model for the longitudinal outcome. Hence, the parameter α quantifies

the effect of longitudinal outcomes on the risk for composite outcome (Njagi et al.,

2013). The case with α = 0 implies that the longitudinal outcome and the risk to

composite outcome are independent. Indeed, exp(α) be the relative increase in the
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risk of composite outcome at time t that results from one unit increase in mi(tij) at

the same time point t. The parameter exp(γ) be the hazard ratio for one unit change

in ωi at any time t. A joint model in which the time to death is the survival endpoint

can be formulated in the same way.

The risk of composite outcomes at time t depends on the current value, mi(tij),
and the change (slope), m′

i(tij), of CD4 cell counts, that is

hi(t∣Mi(tij), ωi) = h0(exp(γτ ×CD4 + α1mi(tij) + α2m
′
i(tij))), t > 0. (5.6)

where

m′
i(tij) =

d

dtij
(x⊺i (tij)β + z⊺i (tij)bi) .

The choice of the baseline hazard h0(.) is essential. In this chapter we used piecewise-

constant approach proposed by Rizopoulos (2012b).

5.2.2 Estimation

Maximum likelihood estimation for joint models is based on the maximization of

the log-likelihood corresponding to the joint distribution of the time-to-event and

longitudinal outcomes {Ti, δ, yi}. We assumed that the longitudinal process and the

survival process are conditionally independent given bi:

p(Ti, δi, yi∣bi; θ) = p(Ti, δi∣bi; θ)p(yi∣bi; θ),

with

p(yi∣bi; θ) =∏
j

p{yi(tij ∣bi; θ)}.

Where θ = (θTt , θTy , θTb ) denotes the full parametric vector for the event time out-

come, the longitudinal outcome and for the random effects and covariance matrix,

respectively. Under the conditional independence, the joint log-likelihood contribu-

tion for the ith subject can be formulated as;

log(p(Ti, δi, yi; θ)) = log∫ p(Ti, δi∣biθt, β)[∏
j

p{yi(tij)∣bi; θy}]p(bi; θb)dbi, (5.7)



80 CHAPTER 5. JOINT MODELING OF LONGITUDINAL AND TIME TO EVENT OUTCOMES

where the likelihood of the survival part is written as

p(Ti, δi∣bi; θ, β) = {hi(Ti∣Mi(Ti); θt, β)}δSi(Ti∣Mi(Ti; θt), β). (5.8)

Then the overall log-likelihood for all the observed data is formulated as

l(θ) =∑
i

logp(Yi, δi, yi; θ). (5.9)

The maximization of this function (5.9) with respect to θ requires a combination

of numerical integration and optimization algorithms, because both the integral with

respect to the random effects in (5.7) and in the survival function given by (5.8)

do not have an analytical solution. The Expectation-Maximization (EM) algorithm

has been traditionally preferred (Wulfsohn and Tsiatis, 1997). The idea behind the

EM algorithm is to maximize the log-likelihood in two steps: the Expectation step,

where missing data are filled, so we replace the log-likelihood of the observed data

with a surrogate function, and the Maximization step, where this surrogate function

is maximized. For an elaborate discussion about the estimation procedure we refer

to Rizopoulos (2012a).

5.2.3 Predicted Time to Composite Outcome

Our interest is the subject-specific event within a time interval (s, t + s] given the

whole information available on the subject accumulated till the landmark time s.

The time t denotes a fixed window of prediction whereas the varying landmark time

s denotes the time at which predictions are made conditionally to the subject-specific

biomarker history. Based on the fitted joint model, our aim is to predict the survival

probabilities for a new subject i that has provided a set of longitudinal measurements

Yi(tij) = {yi(s); 0 ≤ s ≤ t}. For the subject-specific survival probabilities, yi(tij)
is directly related to the failure mechanism. This is due to the fact that providing

longitudinal measurements up to t implies survival up to this time point. Thus, it

is more relevant to focus on the conditional probability of surviving time u > t given

survival up to t. Here survival implies that the patient dose not experience composite

outcome. For any time u > t we are interested in the probability that subject i will

survive at least up to u, given survived up to time t can be computed as:

πi(u∣t) = Pr(T ∗i > u∣T ∗i > t,Yi(tij),Dn; θ). (5.10)

Where Dn = {Ti, δi, yi; i = 1, . . . , n}, being the sample on which the model was
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fitted, and on which we wish to base our predictions (Rizopoulos, 2011). These

predictions are dynamic in the sense that they change with increasing landmark time

u and available information (Yi(u), Ti > u). The time dynamic nature of πi(u∣t) is

evident from the fact that when new information is recorded for subject i at time

t > t′, we can update these predictions to obtain πi(u∣t′), and proceed in a time

dynamic process.

5.2.4 Prediction Accuracy Measures

Assume we have collected a set of longitudinal measurements Yi(t) = {yi(s); 0 ≤
s < t} up to time point t for subject i. We are interested in events occurring in

the time window of (t, t + ∆t) within which the physician can initiate or change

treatment to increase the time of composite outcome of this patient. From all the

longitudinal history (Yi) of the patient, we aim to determine which values contribute

to the specification of the prediction. A value of CD4 cell count lower than a specific

threshold c is considered as predictive for composite outcome (death). The prediction

rule is defined using the (estimated) probability to experience a composite outcome,

πi(t +∆t∣t), ). The case in which πi(t +∆t∣t) ≤ c is termed as success (occurrence of

the event), and πi(t+∆t∣t) > c is a failure. The sensitivity and specificity then defined

respectively as:

Se(c, t) = Pr{πi(t +∆t∣t) ≤ c∣T ∗i ∈ (t +∆t]}.
Sp(c, t) = Pr{πi(t +∆t∣t) > c∣T ∗i > (t +∆t]}.

(5.11)

The performance of the model in discriminating between patients who will expe-

rience the event of composite outcome and those who will not experience the event of

composite outcome was assessed using Area Under Receiver Operating Characteristic

(ROC) curve (AUC) values. An AUC equal to 1 indicates maximum discrimination,

whereas AUC = 0.5 indicates random discrimination. Predictive accuracy can be

assessed at certain time points and for given time windows, using the time-dependent

AUC. An AUC at time t is obtained by varying c as

AUC(t) = Pr[πi(t +∆t∣t) < πj(t +∆t∣t)∣{T ∗i ∈ (t +∆t]} ∩ {T ∗j > t +∆t}]. (5.12)

Here i and j represent a pair of comparable subjects (Antolini et al., 2005). Note

that at each time point, and for a given time period of interest, if we consider two

patients, one of whom experiences the event within the time window, and the other
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who is not in the time window, the calculated conditional survival probability for the

first patient should be lower. So far, we assumed that the prediction rule utilizes

only the last available measurement of the marker. However, we can define another

prediction rule which utilizes the last two measurements of the marker. We could

define success when the pre-last marker value is c and the last one as kc, for k ∈ (0,1),
indicating that a k% decrease is strongly indicative for death or composite outcome.

The overall performance can be assessed using a summary of the AUCs, in the

form of the dynamic discrimination index (DDI), C∆t
dyn and is defined as Rizopoulos

(2011)

C∆t
dyn =

∫ AUC(t,∆t)Pr(T ∗i > t)dt
∫ Pr(T ∗i > t)dt

. (5.13)

where

ε(t,∆t) = [{T ∗i ∈ (t, t +∆t)} ∩ {T ∗i > t +∆t}].

Here, Pr{ε(t,∆t)} is the probability that the random pair of patients is compara-

ble at time t. The value C∆t
dyn depends on the time interval of interest, ∆t. Technical

details regarding the estimation of these quantities are discussed in Rizopoulos (2011,

2012b).

5.3 Application to the Data

The data used for the analysis presented in this section are the ART database from

Gondar University Hospital that was introduced in Section 1.3. Table 5.1 presents

the baseline characteristics of the patients induced in the analysis. A total of 1041

(40.8%) patients initiated with TDF containing backbone, from whom 688(66.1%) ini-

tiated with NVP containing regimen. The event of interest accounted for 115(11.05%)

deaths and 289(27.76%) composite outcome. During the follow-up a total of 69(10%)

and 187(27.2%) death and composite outcomes among NVP treatment groups, re-

spectively. The cohort contribute a total of 2410.307 per 100 person months during

the follow-up time. The incidence rate of death and composite outcome were 4.77

and 11.99 per 100 person months, respectively.

5.3.1 Survival Process

A Cox-model with treatment effect (EFV vs NVP) for the two events of interest

(death and composite outcome) is fitted. The results revealed that the risk of death

decrease by 28% (95%CI:0.539; 0.9618) when initiated by NVP containing regimen
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Table 5.1. Baseline characteristics for patients who initiated by TDF containing
backbone.

NNRTI
Covariate NVP EFV Total
Death (n)
No 307 619 926
Yes 46 69 115
Composite event (n)
NO 251 501 752
Yes 102 187 289
Sex
Female 245 401 646
Male 108 287 395
BWHOS
I 76 105 181
II 66 84 150
III 163 339 502
IV 48 160 208
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Figure 5.1. Individual profile selected patients (panel A) and individual and
average profile for all patients (panel B).

as compared to EFV. However, for composite outcome, the risk of failure was not

statistically significant among NNRTI treatment groups (Table D.1 in Appendix D).
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Table 5.2. Model comparison for log(CD4) cell counts.

Model Log-Likelihood AIC BIC
Linear Time + random int-Slope -3049.802 6115.604 6164.859
Square time + random int-Slope -2956.97 5935.94 6003.665
Cubic time + random int-Slope -2867.695 5759.39 5833.268
FP(0,0) -2672.377 5366.755 5434.48
FP(0,0.5) -2660.899 5343.797 5411.522

5.3.2 Longitudinal Process

The fractional polynomial mixed effect models discussed above were used to estimate

subject-specific evolutions for the log(CD4) cell counts within the follow-up period of

the study. Different models for log(CD4) cell counts were fitted and compared using

the AIC. Table 5.2 shows that the smallest value of AIC was obtained at (p1 = 0, p2 =
0.5). Unstructured covariance structure was used for the random effects. Figure 5.2

shows the observed mean and predicted plot for the model with quadratic time, and

fractional polynomials.

Estimated, subject specific, mean structures, is given by

m̂i(tij) = (β0 + b̂0i) + β1 × treatment + (β2 + b̂1i)log(tij) + (β3 + b̂2i)t0.5ij . (5.14)

Note that the rate of change in log(CD4) cell count evolution, defined in Section 5.2.1,

is given by

m̂′(tij) =
0.046 + b̂1i
time

+ 0.097 + b̂2i
2 ∗

√
time

.

5.3.3 Joint Modeling of the Longitudinal and Time to Event Process

Time to Composite Outcome

The rate of change in CD4 cell counts (first derivative) parametrization is the model

with lower value of AIC (see Table D.8 in Appendix D). The mean structure for

log(CD4) cell count is defined as

m̂i(tij) = (5.036 + b̂0i) + 0.102 × treatment + (0.047 + b̂1i)log(tij) + (0.096 + b̂2i)t0.5ij .

For time to composite outcome, the model include both the current value, mi(tij),
and the change (slope), m

′

i(tij), of the longitudinal process of CD4 cell counts as
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Figure 5.2. Plot of the fitted models for the longitudinal process.

predictor, that is

hi(t) = h0(exp(γτ × treatment + α1mi(tij) + α2m
′
i(tij))), t > 0. (5.15)

The parametrization of mi(tij) is given in (5.14). Table 5.3 presents the parameter

estimates for the joint model. The parameter estimate for α1 is equal to 0.601 and

found to be significant. A unit increase in the current value of log(CD4) cell counts has

60.1%(95% CI: 0.520; 0.695, P=0.0001) reduction in the risk of composite outcome.

The parameter estimate for α2 is equal to 0.009 which implies that a unit increase

in the rate of change in log(CD4) cell count (i.e. a unit change in the derivative),

the hazard of composite outcome reduced by 99.0%(95%CI:0.001; 0.131, P=0.0006).

There was no significant difference between NNRTI groups on the risk of composite

outcomes.
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Time to Death

The model formulation presented in (5.15) was used for time to death. Similarly,

current value, mi(tij), and the rate of change, m
′

i(tij), of the longitudinal process of

log(CD4) cell counts are included as predictor for time to death as well. The parameter

estimate for α1 is equal to 0.458, which indicates that a unit increase in the current

value of log(CD4) cell count has 45.8%(95% CI: 0.370; 0.566, P=0.0001) reduction

in the risk of death. The parameter estimate for α2 is equal to 0.014(95%CI:0.001;

0.363, P=0.009) implies that a unit increase in the rate of change in log(CD4) cell

count, the hazard of composite outcome reduced by 98.4% (see Table 5.3).

Table 5.3. The effect of current value and rate of change on the risk of death and
composite outcome .

Death Composite event
Covariate Estimate SE 95%CI P-value Estimate SE 95%CI P-value

Longitudinal process
(Intercept) 5.034 0.035 4.965; 5.103 <0.0001 5.037 0.0351 4.968; 5.106 <0.0001

NNRTINVP 0.101 0.035 0.032; 0.170 0.0042 0.102 0.0352 0.033; 0.171 0.0038
log(time) 0.046 0.004 0.039; 0.053 <0.0001 0.0468 0.0035 0.040; 0.053 <0.0001
time0.5 0.097 0.006 0.085; 0.108 <0.0001 0.0959 0.0059 0.084; 0.107 <0.0001

Random Effect
σb0 0.676 0.677
σb1 0.060 0.060
σb2 0.037 0.037
σ 0.299 0.300

Event process
NNRTINVP 0.841 0.194 0.574; 1.231 0.3738 1.130 0.1249 0.885; 1.444 0.3269

α1 0.458 0.109 0.370; 0.566 <0.0001 0.601 0.0743 0.520; 0.695 <0.0001
0.001; 0.363 α2 0.014 1.655 0.0101 0.009 1.3611 0.001 0.131 0.0006

AIC 5971.252 7668.195

5.3.4 Individual Prediction for Time to Composite Outcome

The joint model discussed in the previous section allows us to estimate the probability

that a patient is free of composite outcome given the longitudinal history of CD4 cell

counts. Note that the event free survival probabilities can be predicted using different

number of the longitudinal measurements. For illustration purposes, we considered

four patients (two from each treatment group), who provided CD4 cell counts mea-

surements for 60 and 68 months. For each of these patients, the measurements at the

observation time t is considered. Given that the patients survived up to each of these

time points, we compute the predicted conditional survival probabilities at each of

the remaining time points until the study ends. Figure 5.3 shows the log(CD4) cell

counts measurements at the observation time for selected patients.
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Figure 5.3. Individual profile for selected patients. Patients 37 and 51 were
initiated with EFV and patients 190 and 192 were initiated with NVP.

For each scenario, 400 Monte Carlo sample were generated and their median event

free survival with 95% point wise confidence intervals were computed. The median

probability with 95% point wise confidence interval for patients 37 and 51, who initiate

with EFV. The upper panels of Figure 5.4 shows the predicted probability of event-free

survival within the observed time when only one measurements of the CD4 cell count

is used for prediction. The lower panels show the event-free survival probability when

additional CD4 cell counts measurements are used. The scatter points appearing

before the vertical dashed lines represent a plot of log(CD4) cell counts up to that

particular time point. The conditional survival probability curve (and 95% confidence

intervals) are shown to the right of the vertical line. Note that subject 37 and 51 were

excluded from the original data and the joint model was fitted.

The probabilities of event-free survival at month 68 were 70% and 50% for patient

37 and 51 respectively when we use CD4 cell count measurements until month 10.

Consequently, the probability of event-free survival increased to 90% and 70% when

CD4 cell counts measurements until time equals to 40 months were used for prediction.

As expected, the length of confidence interval decreases as the number of log(CD4)

cell counts measurements increases.

Figure 5.5 shows results for patients 190 and 192 who initiated with NVP. Note

that the two patients were excluded from the analysis before the joint mode was fitted.
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Figure 5.4. Prediction of the probability for composite outcome. Dynamic survival
probabilities for Patients 37 and 51 during follow-up. The vertical dotted lines
represent the time point of the last CD4 cell count measurement at time t=0 and
t=40 months. Left of this vertical line, the fitted longitudinal trajectory is depicted.
Right of the vertical line, the solid line represents the median estimator for πi(u∣t),
and the dashed lines the corresponding 95% point-wise confidence intervals. Upper
panels: log(CD4) cell count up to 10 moths are used for prediction. Lower panels:
log(CD4) cell counts until 60 months are used for prediction.

The first CD4 cell counts measurement was used to estimate the event-free survival

probability at last follow up time (68 months). The event-free survival probabilities

were 47.73% and 57.16% for patients 190 and 192, respectively. When CD4 cell counts

until month 60 were used to predict the probability of developing composite outcomes

(see Figure 5.5, lower panel) , the probabilities of event-free survival increased to 70%

and 80%, respectively.

The conditional survival probabilities are updated as more measurements become

available. Figure 5.6 illustrates the change in CD4 cell counts profile in the dynamic

updates of the survival probabilities. This is done by comparing the estimates of

πi(u∣t) between patient 37 and 190 who were initiated with EFV and NVP regimens,

respectively. A thousand Monte Carlo samples was used for estimation. The condi-

tional probabilities were estimated along with 95% confidence interval at four time
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Figure 5.5. Dynamic survival probabilities for Patients 190 and 192 during the
follow-up. The vertical dotted lines represent the time point of the last CD4 cell
count measurement at time t=0 and t=60 months. Left of this vertical line, the
fitted longitudinal trajectory is depicted. Right of the vertical line, the solid line
represents the median estimator for πi(u∣t), and the dashed lines the corresponding
95% point-wise confidence intervals.

points (t= 12, 24, 36 and 48 months), and u = t + ∆t at different values of ∆t. We

observed that patient 37 (top panel) showed much more stable CD4 cell counts profile,

has higher survival probability of not experiencing composite outcome as compared

to patient 190 (bottom panel).

Next, we investigate how well the model performs in terms of discriminating be-

tween subjects who will experience a composite outcome and those who will not

experience a composite outcome. For illustration, we use patients 31 and 57. The

sensitivity and specificity, defined in section 5.2.4 were calculated for all different pos-

sible prediction rules. Figure 5.7 shows that the ROC curve for ∆t = 48 lies above the

ROC curves for ∆t = 12 and ∆t = 24, indicating that at months 48 the marker can

discriminate better between patients who will experience composite outcome before

months 85 from patients who will not experience a composite outcome before month

85. Similar pattern was observed for patient 51.

Table 5.4 provides the time-dependent AUCs under the different options for ∆t =12,

24, 36 and 48 months, and the time points of t=7, 14, 23, 31, 58 and 63 months for
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patient 51. We notice varying degrees of discriminative ability for different time win-

dows at different time points. At time point t = 63, time window ∆t = 48 provides

slightly better discriminating power between those who will experience the event and

those who will not. This means, for instance, if interest was on predicting composite

outcome within a 48 months window, and such a prediction was done at 63 months,

then the probability that the model would allocate a lower conditional survival prob-

ability to a patient who was going to develop composite outcome within the next 48

months as compared to one, that was not, would be 0.6621.

Table 5.4. Dynamic Discrimination Index at different time windows for patient 51.

Time Window ∆t Time Point AUC(t) DDI
12 7 0.6458 0.6557

14 0.6143
23 0.6218
31 0.6479
58 0.6521
63 0.6483

24 7 0.6435 0.6179
14 0.6151
23 0.6237
31 0.6510
58 0.6538
63 0.6533

36 7 0.6401 0.6341
14 0.6160
23 0.6282
31 0.6510
58 0.6556
63 0.6578

48 7 0.6360 0.6176
14 0.6196
23 0.6305
31 0.6513
58 0.6576
63 0.6621

The DDI was calculated for the windows of interest ∆t =12, 24, 36 and 48 months,

to get a summarized measure of the discriminative ability over the follow-up period.

It provides a weighted average of the AUC, with weights accounting for how many

patients are still at risk. The indices’s range from 0.6176 for a time window of 48

months to 0.6557 for a time window of 12 months.
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Figure 5.6. Conditional survival probabilities of surviving an extra 12, 24, 36 and
48 months, with each additional 12 months of measurement. The left panels
corresponds to t = 12 months, second column corresponds to t=24, third column
corresponds to t = 36 months and right panels corresponds to t=48 months. The
dots represent the median conditional probability.
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Figure 5.7. Receiver Operating Curve (ROC) at time t = 63 and three options for
Deltat under the simple prediction rule for two patients (id=37 and id=51).
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5.4 Discussion

The number of HIV/AIDS patients are increasing from time to time and so do the

number of measurements resulting a wealth of data available from each treatment pro-

viding institutes. Such follow-up data produces multiple types of events and repeated

measurements taken from each subject. It has been evidenced that the longitudinal

evolution of biomarkers provide important additional information on the development

of time to event outcomes compared to the baseline or current value of the biomarkers.

The main aim of the current study was to assess the association of CD4 cell counts

trajectory over time and the risk of death or composite outcome among a cohort of

HIV/AIDS patients on ART in Ethiopia.

Different approaches have been proposed in the literature to take the longitudinal

evolution to predict the time to event outcome. such as Cox-PH regression model

used to study the relationship between CD4 cell counts as time-dependent covariate

and time-to-event outcome. However, CD4 cell counts is measured periodically and

with substantial measurement error and biological variation. Standard methods for

estimating the parameters in the Cox-PH model by maximizing the partial likelihood

are no longer appropriate. Further, two stage approach was proposed as an option

(Tsiatis et al., 1995). Evidence show that using two stage approaches severely un-

derestimate any association between the current underlying longitudinal value and

the hazard of the event (Sweeting and Thompson, 2011). These provides extensive

opportunities to utilize the joint modeling framework Self and Pawitan (1992).

In this chapter, the joint model proposed by Rizopoulos (2012b) is used. This

general class of model allows accurate inference regarding time-to-event outcomes

while adjusting for the longitudinal response. As can be seen from the individual

and average profile in Figure 5.1, the relationship between CD4 cell counts and time

seems nonlinear. We used fractional polynomial random effect model to capture

the curvature of the relationship. Cox proportional hazards model is used for the

event process (death or composite outcome). In the longitudinal process, there was

no statistical significant difference in CD4 cell counts among the treatment groups

over time. Whereas, logarithm and square root transformed time were significantly

associated with CD4 cell count evolution.

The results of time-dependent slop parametrization revealed that the hazard of

death or composite outcome depended on log(CD4) cell counts trajectory. The risk

of death increased by 2.31-fold (95%CI:1.652; 3.235) for a unit decrease in the current

value of log(CD4) cell counts for patients who initiated with EFV. Meanwhile, for

patients who initiated with NVP, the risk of death increase by 1.942-fold for a unit
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decrease in current values of log(CD4) cell counts. This finding is in-agreement with

a collaboration observational HIV Epidemiological Research in Europe (COHERE

et al., 2012), which shows that a higher CD4 cell count is associated with a reduced

risk of death.

For composite outcome, the risk increased by 2.10-fold (95%CI:1.645; 2.653) for

a unit decrease in the current value of log(CD4) cell counts in patients who initiated

with EFV. The risk increased by 1.385-fold for patients who initiated with NVP

containing regimen. There was no significant difference among the interaction of

drug and log(CD4) cell counts on the risk of death. This is in contrast with study

findings that employed separate analysis by Alemu and Sebastián (2010), Morquin

et al. (2012) and Okomo et al. (2012). These studies reported that the risk of death

was not related to the level of CD4 cell counts at baseline. This might be due to the

fact that separate analysis did not take the longitudinal evolution of CD4 cell counts

over time in to account.

Joint modelling provides a framework for performing individual predictions of the

outcomes. Such prediction are dynamic in the sense that when additional information

becomes available for the individual, the prediction can be updated taking in to

account this new observation. The method predict the probability of an event in

some future time for an individual with available baseline information and longitudinal

outcomes.

The study was a retrospective cohort which limits the availability and quality of

data collected. Some follow up variables were not complete in the record. All the

patients are supposed to have CD4 cell counts in every six months. However, the

current data structure do not keep the six monthly records for the patients.

In conclusion, joint modeling of longitudinal biomarker and time-to-event pro-

cesses are more efficient than the two-stage method and extended Cox-PH regression

for estimating the coefficients related to the longitudinal biomarkers. There was strong

relationship between the risk of death and rate of change in CD4 cell counts. This

relation remains constant between composite outcome and rate of CD4 cell counts

change. We have explored how dynamic prediction can assist physicians make inter-

vention for patients who experience composite outcome.
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Chapter 6
Visceral Leishmaniasis and HIV Co-infection

6.1 Introduction: Visceral Leishmaniasis Infection

6.1.1 The Epidemiology of Visceral Leishmaniasis

Visceral leishmaniasis (VL) is an endemic and potentially life-threatening disease in

the Tropics, Subtropics, and Mediterranean region (Pavlia and Maltezoub, 2010).

Worldwide, leishmaniasis occurs in 88 countries or territories (Desjeux, 2006). It

mainly affects the poorest segment of the population, those living in rural areas, and

migrants are affected in the African and Indian subcontinent (Figure 6.1) while in

southern Europe the epidemic re-emergence was associated with HIV, drug abuse

and immunosuppression (Alvar et al., 2008, 1997, 2006). Without treatment VL is

nearly always fatal. Lack of effective, drugs resulted the suffering of people infected

with VL worldwide (Narain et al., 2010).

The epidemiology of leishmaniasis depends on the characteristics of the parasite

species, the local ecological characteristics of the transmission sites, current and past

exposure of the human population to the parasite, and human behaviour. There is an

estimated 350 million people in 88 countries at risk of leishmaniasis (Den Boer et al.,

2011; Murray et al., 2015). Worldwide, the number of new cases is estimated to be

0.2-0.4 million with 20,000 to 40,000 estimated deaths occurring each year (Alvar

et al., 2012). However, these numbers are widely acknowledged to be a gross under-

estimation of the real burden (Bern et al., 2008). Visceral leishmaniasis has immense

impact on the developing world and delay economic development, with an estimated

loss of 2.3 million disability-adjusted life years (WHO, 2014). Most transmission in

rural areas occurs outside village, primarily affecting farmers working in agriculture
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Figure 6.1. Geographic distribution of visceral leishmaniasis: Source: Desjeux
(2004).

fields in the endemic area in East Africa (Pearson and Queiroz, 1996).

6.1.2 Transmission

There are about 20 different species and subspecies of leishmania parasite which can

cause leishmaniasis, from which leishmania donovani complex causes VL (Desjeux,

2004). The transmission occurs commonly during a blood meal of the female phle-

botamine sandfly (Bates, 2007). A susceptible female phlebotomine sand fly can be

infection when it bites an infected animal or human and vice versa, a susceptible

animal or human can be infected after an infected female’s bite. Less common forms

of transmission include blood transfusions, contaminated needles, and from pregnant

mother to her child. Symptoms typically appear two to eight months after the person

has been bitten by an infected female sand fly (CDC, 2013).

6.1.3 VL-HIV Co-Infection

VL-HIV co-infection has an important clinical and epidemiological implications. There

is overlap between the transmission areas of VL and HIV which results an increasing

number of cases of VL-HIV co-infection spread throughout these regions (Lindoso

et al., 2016). The two diseases reinforce each other and lead to profound immune

deficiency. Most HIV-infected people worldwide live in regions where leishmaniasis
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is endemic and they are particularly vulnerable to VL, while VL accelerates HIV

replication and progression to AIDS (WHO, 2017).

A VL-HIV co-infection represents a challenging diagnosis since clinical charac-

teristics of VL is similar to that of other disseminated opportunistic diseases (Cota

et al., 2014). Both VL and HIV infections reduce cellular immunity. As a result,

VL-HIV co-infection leads to accelerated progression of VL, drug toxicity, treatment

failure, repeated relapse and increased mortality (Burza et al., 2014; Diro et al., 2014;

Rachel et al., 2008). Up to 50% of patients fail to clear parasites from infected tissues

which ultimately leading to treatment unresponsiveness and overwhelming parasite

load (van Griensven et al., 2014a). As many as 35 countries throughout the world

have reported cases of VL-HIV co-infection (Lindoso et al., 2016). High co-infection

rates are reported from Brazil, Ethiopia and the state of Bihar in India (Diro et al.,

2014). In this highly endemic area for VL, the rate of HIV co-infection among VL

patients ranges between 15-30% (WHO, 2017). The highest rate of co-infection was

observed in Ethiopia (van Griensven et al., 2014b) with an estimate of 30% co-infected

individuals among the total number of VL infections.

First line treatment for VL-HIV co-infected patients include liposomal ampho-

tericin B and paromomycin (Meyerhoff, 1999; Saravolatz et al., 2006; WHO, 2017).

Second-line treatment options for VL in HIV-co-infected patients include miltefosine

and paromomycin. Pentamidine isethionate has been used as a second-line alternative

but is no longer recommended, because of toxicity that sometimes includes irreversible

insulin-dependent diabetes mellitus (Kaplan et al., 2009). Using first line antileishma-

nial drugs as secondary prophylaxis increases the risk to develop resistance that can

easily be transmitted in anthroponotic transmission regions. Thus pentamidine was

chosen as an aromatic diamidine that is not used in first intention because of toxicity

but that was found to be safe when used as prophylaxis at a lower dose therapeutic

dosage (Calza et al., 2001; Patel and Lockwood, 2009; Perez-Molina et al., 1996).

6.2 Visceral Leishmaniasis in Ethiopia

6.2.1 Epidemiology

In Ethiopia VL is found widespread in several regions as shown in Figure 6.2. The

first case was documented in 1942 in the lower Omo plains, the south-western part

of the country (Leta et al., 2015). The country has the second largest number of

VL cases in sub-Saharan Africa, with an estimated annual incidence of VL ranging

from 3,700 to 7,400 cases (Alvar et al., 2008). The Northwest lowland areas (Metema
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and Humera districts) bordering Sudan have the highest prevalence of the disease,

accounting for 60% of the VL burden in the country (Argaw et al., 2013). Each year,

it is estimated that 0.3 to 0.5 million young highlanders migrate into the VL endemic

region for a daily labour work in the cash-crop farms (Leta et al., 2014). These non-

immune migrants stay for several months to years in the farm where they can be

acquire VL infection.

Figure 6.2. Distribution of Visceral Leishmaniasis in Ethiopia: Source: (Leta
et al., 2014).

Worldwide the highest burden of VL-HIV co-infection is found in north-west

Ethiopia, where up to 30% of VL patients are co-infected with HIV (Alvar et al.,

2008; Hurissa et al., 2010; Mengistu and Ayele, 2007).

6.2.2 Effect of Malnutrition and Intestinal Parasites on VL

Several studies were conducted in Gondar University to investigate the possible impact

of malnutrition and intestinal parasitic infections on VL severity of VL (by modulating

cell-mediated immunity (Diro et al., 2015a)). Helminth infections are characterised by

a strong T-helper (Th)2 response (Maizels et al., 2012) and it has been suggested that

this might suppress a protective Th1 response in VL patients and therefore contribute

to the strong immunosuppression characteristic of these patients (Nylén and Sacks,

2007)
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Malnutrition plays a crucial role in an increased susceptibility to infection and/or

disease severity by weakening the immune system, however the causal links between

malnutrition and infections are not yet well established. Moreover, the majority of

the work on malnutrition has been mainly done with malnourished patients suffering

from infectious diseases, or other pathological conditions, and, apart from studies on

patients with eating disorders such as anorexia nervosa (Marcos et al., 2003). Little

is known about the impact on malnutrition on the immune system of apparently

healthy adult individuals. Previous studies on immune responses of patients with VL

has shown that the majority of these patients suffer from severe malnutrition (Abebe

et al., 2013; Takele et al., 2013). The immune status of these patients is characterised

by a profound suppression of T-cell responses, high levels of cytokine and chemokine

production and strong inflammatory responses (Goto and Prianti, 2009; Nylén and

Sacks, 2007).

Takele et al. (2016) compared immunological outcomes between malnourished and

individuals with normal Body Mass Index (BMI). Several immunological parameters

that have been shown to be impaired in patients with non-healing VL: haematolog-

ical profile, cytokine profiles in the plasma, CD4 and CD8 T-cell ratio and activa-

tion status, as well as neutrophil effector functions. Takele et al. (2016) shows that

several immunological parameters are altered in apparently healthy malnourished in-

dividuals: we observed significantly increased production of mixed cytokines as well

as impaired neutrophil effector functions. In contrast, the haematological data were

similar amongst all groups, suggesting that the malnourished individuals did not have

an infection, were not anaemic, neutropenic, lymphopenic or thrombocytopenic. Fur-

thermore, the frequency and percentage of CD4 and CD8 T-cells were similar in the

malnourished healthy individuals and those with normal BMI.

In addition, intestinal parasites may also contribute to malnutrition by competing

for nutrients in the gut, inducing chronic inflammation and causing malabsorption.

Northwest Ethiopia, has a high prevalence of intestinal parasitic infections (Diro et al.,

2015a) and malnutrition appears to be relatively common (Branca et al., 1993). How-

ever, precise information about the impact of co-infection with intestinal parasites on

the severity of patients with VL patients is typically not available. Tajebe et al.

(2017) present an investigation of the impact of intestinal parasite co-infections on

the disease status of patients with VL, before the start of anti-leishmaniasis treat-

ment. Clinical data were collected and haematological, inflammatory mediators and

cytokines were determined. All these parameters were compared between patients

presenting with VL and VL co-infected with intestinal parasites. The result indi-

cated that co-infection of VL patients with intestinal parasites does not affect VL
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disease severity, since clinical, haematological data and the treatment outcome are

not altered by co-infection. This is in contrast with VL-HIV co-infection that, as

mentioned above, can lead to an increases risk for treatment failure (for both VL and

HIV).



Chapter 7
Predicting Relapse of Visceral Leishmaniasis in HIV
Co-infected Patients using Longitudinal Biomarkers: A
Cohort Study in Northwest Ethiopia

7.1 Introduction

As mentioned in Chapter 6, Ethiopia is the country with the highest VL-HIV co-

infection rate which can lead to an increase risk of treatment failure. Available treat-

ments for VL are expensive and have serious associated toxicities and may lead to

the development of drug-resistant parasites (Croft et al., 2006). Recurrent epidemics

of VL in East Africa (Ethiopia, Kenya, South Sudan and Sudan) have caused high

morbidity and mortality in affected communities (Richard and Tim, 2014).

The evidence regarding best treatment practices for co-infected patients is limited

specially for resource limited countries such as Ethiopia. The data analysed in this

chapter are outcome of a clinical trials in which co-infected VL-HIV patients were

treated by pentamidine. Patients in the clinical trails were fallowed for a period of 12

months and their response to treatment status (relapse /not relapse) was measured.

At the end of the follow up time, patients who were not relapsed were followed for

another 6 months based on their CD4 cell count (< 200cells/mm3). In addition to

the response to treatment status, laboratory indicator such as WBC, and Hgb were

measured regularly.

Our aim in this chapter is to use clinical or laboratory variables in order to predict

probability of relapse after treatment. In particular, we model the relationship be-

tween WBC, and Hgb, with relapse, using a shared random effects joint model for
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the time to relapse and laboratory indicators. The joint model used in this chapter

is similar to the model presented in Chapter 5 for composite outcome and CD4 cell

counts.

This chapter is organized as follow. In Section 7.2 we introduce the data, study

setting and design. The joint model for the longitudinal and time to relapse is formu-

lated in Section 7.3 and will be applied to the data in Section 7.4. Finally, the results

are discussed in Section 7.5.

7.2 Data and Methods

7.2.1 The PSP Clinical Trial

As mentioned in Section 1.3.2, the Pentamidine as secondary prophylaxis (PSP) clin-

ical trial was conducted on the use of PSP to prevent VL relapses in HIV co-infected

patients in Gondar, since May 2011 for a year. Recruitment of the patients for the

study proceeded in two steps. During pre-screening, age 18 or more years, para-

sitological diagnosis of VL, documented HIV test result and acceptable distance of

residence from the trial centres for monthly follow-up were checked. Eligible patients

were then approached for consent. For detailed information of the study we refer to

Section 1.3.2 and Diro et al. (2015b).

Study Setting

The study was conducted in Northwest Ethiopia at two LRTC; University of Gondar

Hospital (UoGH) and Abdurafi Health Centre. They are the largest VL treatment

centers in the region and are supported by the non-governmental organizations Drugs

for Neglected Diseases initiative (DNDi) and Mdecins sans Frontires respectively.

Patients register to the center either spontaneously or are referred from other health

institutes in the catchment area. Pentavalent antimonials and liposomal forms of

amphotericin B, and more recently paromomycin, are the main drugs used to treat

VL. While liposomal amphotericin B is recommended for VL-HIV co-infected patients,

due to the inadequate supply, it is often reserved for more severe cases such as patients

with organ dysfunction. Miltefosine is infrequently available. As a result, most VL-

HIV co-infected patients are being treated with SSG.
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Study Design and Population

The PSP clinical trial was started in March 2011 and closed in February 2016 (http ∶
//clinicaltrials.gov/show/NCT01360762). It was an open label, single arm trial

designed to investigate the effectiveness, safety and feasibility of monthly pentami-

dine prophylaxis to prevent relapse for VL-HIV co-infected patients. All VL-HIV

co-infected patients that were registered at LRTC were screened for enrolment to

the clinical trial and their findings and initial treatment responses are documented

in individual patient record files. The detail on diagnosis procedure and treatment

monitoring procedure are presented in Diro et al. (2015b). At the end of the trial

PSP, VL-HIV co-infected patients were enrolled and treated by SSG.

Data Collection Procedures

Pentamidine isethionate was started one month after VL cure for the current VL

patients; and soon after the inclusion criteria were met for past VL cases. Patients

were followed until the event of interest or over a period of 12 months. By the end of

the study period, patients that were not experienced the event (relapse or death) were

censored. All adverse events were documented, and all the serious adverse events were

reported to the sponsor and concerned Ethics Committee via a fast track procedure.

Analysis of Baseline Characteristics

Table 7.1 present a summary values of baseline variables in the PSP trail. A total of 74

VL-HIV co-infected patients were enrolled to the PSP study, from whom 71 (95.9%)

were male. The mean age of the participants was 32.6 (sd=7.01). The maximum

number of repeated measurements was 13 (IQR=5-14). Nearly half (47.3%) of the

patients were followed in Gondar University hospital. The mean baseline weight

of the patients was 49.44 (sd=6.13). The median WBC count and Hgb were 3253

(IQR=2300-3900) and 9.365 (IQR=7.725-10.975), respectively. All patients enrolled

to the study were under ART.

Treatment Outcomes

Figure 7.1 shows possible treatment outcomes. At the end of the main study period

(12 months), 28 patients (37.84%) had CD4 cell counts greater than 200 cells/mm3

followed by CD4 cell count less than or equal to 200 cells/mm3. The cohort contribute

a total of 619.6 person-months. The incidence of relapse was 2.4 per 100 person

months of follow-up. Seven (9.46%) patients lost from the follow up, and 5 patients



106 CHAPTER 7. PREDICTING RELAPSE IN VL AND HIV CO-INFECTED PATIENTS

Table 7.1. The median, and inter quartile range for selected baseline clinical and
immunological variables of the patients.

Variable Number
Sex, male 71(95.9%)
Baseline CD4, > 200cells/mm3 37(50%)
Pulse rate, median(IQR) 91.14(84.00-96.00)
Temperature, median(IQR) 36.12(35.60-36.40)
Liver span, median(IQR) 12.98(10.00-13.00)
White Blood cell(WBC), median(IQR) 3253(2300-3900)
Lymphocyte, median(IQR) 31.26(22.35-38.35)
Haemoglobin, median(IQR) 9.365(7.725-10.975)
Creatinine, median(IQR) 0.9297(0.700-1.100)
Blood glucose, median(IQR) 100.4(86.00-112.00)

Figure 7.1. Outcomes of Treatment at 12 months since the start of treatment.

(6.76%) were died during the follow-up period. Figure 7.2 shows the Kaplan-Mair

estimate for the probability of time to relapse. The probability of event free survival

at 83, 140 and 240 days were 0.972 (95%CI: 0.933-1.000), 0.837 (95%CI:0.748-0.925)

and 0.772 (95%CI:0.671-0.874), respectively. The first event was observed 35 days

after the start of treatment and the last event was observed at 240 days. Note that

the incidence of relapse was null from day 35 to day 84 Most of the relapse happen

between 84 days to 100 days.

The individual profiles of log(WBC) and Hgb levels are presented in Figure 7.3.
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Figure 7.2. Plot of Kaplan-Meier survival curve for time to relapse.

The incidence of relapse was almost null until day 84 except the patients who expe-

rienced at day 35. Most of the relapse (8 out of 15, 53.33%) happen between 84 days

to 100 days (see Panel C and D in Figure 7.3).

Table 7.2 shows that the time interval when the patients developed relapse. Only

one event was observed until 80 days after the start of treatment. Note that one lapse

was observed in day 35, while the rest of the relapse are observed between day 84 to

day 240. The longitudinal processes until 84 days were plotted in Figure 7.4. This

portion of the repeated measurements of log(WBC) and haemoglobin will be used to

formulate the longitudinal process.
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Figure 7.3. Individual profile for log(WBC) and Hgb. Panel A: log(WBC) for
patients who did not develop relapse. Panel B: Hgb for patients who did not develop
relapse. Panel C: log(WBC) for patients who developed relapse. Panel D: Hgb for
patients who developed relapse.

Table 7.2. The number of relapse at different follow-up periods.

Time Interval Number of Relapse Cumulative Relapse
<80 days 1 1

80.1 to 85 days 4 5
85.1 to 90 days 2 7
90.1 to 100 days 2 9
100.1 to 150 days 3 12
150.1 to 240 days 3 15

7.3 A Joint Model for Time to Relapse and Laboratory Indicators

Our aim, in this chapter, is to predict the probability of relapse using the laboratory

markers WBC and Hgb. Note that, since only one relapse was observed within the

first 84 days of the study, only the longitudinal data within this period will be included
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Figure 7.4. Individual profile for WBC(left panel) and Hgb (right panel) for the
first 84 days after the start of treatment.

in the model. This part of the data is shown in Figure 7.4. The joint model described

in Section 5.2.1 is used to jointly model the longitudinal laboratory markers and

time to relapse. Each laboratory marker, WBC and Hgb is modelled separately.

Similar to Chapter 5, the model for the hazard function include information about

the longitudinal marker. For example, the risk of a relapse at time t depends on the

current value of WBC, mi(tij).

hi(t∣Mi(tij), ωi) = h0(exp(γτ ∗CD4 + α1mi(tij))), t > 0.

Here, CD4 represents the CD4 cell counts at baseline. Similarly, the risk of relapse

at time t depends on the current value and the change of Hgb, that is

hi(t∣Mi(tij), ωi) = h0(exp(γτ ×CD4 + α1mi(tij) + α2m
′
i(tij))), t > 0.

Where,

m′
i(tij) =

d

dtij
(x⊺i (tij)β + z⊺i (tij)bi) .

For the mean structure of the longitudinal outcome, we used the fractional poly-

nomial model, described in Section 4.2.4. Note that, as explained above, only the
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first 84 days are used for the estimation of m(tij).

7.3.1 Predicted Time to Relapse

As in Section 5.2.3, our primary interest is to predict a subject-specific relapse within

a time interval (s, t + s] given the whole information available on the subject accu-

mulated until the landmark time s. The time t denotes a fixed window of prediction

whereas the varying landmark time s denotes the time at which predictions are made

conditionally to the subject-specific WBC or Hgb history.

7.4 Application to the Data

7.4.1 Joint Modeling

A Joint Model for Hemoglobin and Time to Relapse

As pointed out in Section 7.2.1, the longitudinal measurement of the clinical variables

until 84 days were used to predict the incidence of relapse later. For Hgb, fractional

polynomial mixed effects model with p1 = 0.5 and p2 = 1 with random intercept,

random slope of time with degree p1 and p2 was the model with the best goodness to

fit the data. Additional covariates that were included in the model are baseline CD4

cell count (categorized in to two levels, CD4 cell count < 200 cells/mm3 versus CD4

cell count ≥ 200 cells/mm3) and study site (Gondar versus Abderafe). The estimated

mean structure for Hgb is defined as

m̂(tij) = (8.46+ b̂0i)+1.78×site+1.028×CD4+(1.62+ b̂1i)t0.5ij +(−0.204+ b̂2i)tij . (7.1)

The predicted and observed vales are presented in Figure 7.5 left panel (correla-

tions equals to 0.983). For time to relapse, the initial model include both the current

value, mi(tij), and the change (the derivative), m
′

i(tij), of the longitudinal process

of Hgb were included in the model as predictor.

The parametrization of mi(tij) is given in (7.1). Table 7.3 presents the parameter

estimates for the joint model. The parameter estimate for α1 is equal to 0.91 and

found to be not significant. The parameter estimate for α2 is equal to 0.341 (95%CI:

0.132-0.883, P=0.0267) implies that a unit increase in the rate of change in Hgb (i.e.

a unit change in the slope) reduces the probability of relapse by 65.9% (HR=0.341,

95%CI: 0.132-0.883).
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Figure 7.5. Model based predicted versus observed values for Hgb (left panel) and
log(WBC) (right panel). Predicted values were obtained using a model that include
Hgb (log(WBC)) measurements until 84 days.

Table 7.3. Parameter estimates of joint model for Hgb and time to relapse
processes.

Covariate Estimate SE 95%CI P-value
Longitudinal process
(Intercept) 8.1673 0.3712 (7.4397-8.8948) <0.0001
SiteG 1.6222 0.3968 (0.8444-2.3999) <0.0001
CD4>200cells/mm3 0.9164 0.4062 (0.1204-1.71248) 0.0240

time1/2 1.2676 0.3509 (0.5799-1.9552) 0.0003
time -0.0573 0.1958 (-0.4411-0.3265621) 0.7699
Random Effect
σb0 2.1330
σb1 1.2225
σb2 0.2671
σ 0.8958
Event process
CD4>200cells/mm3 0.280 0.6588 (0.0943-1.2482) 0.1045
α1 0.910 0.1714 (0.6815-1.3343) 0.7815
α2 0.341 0.4851 (0.1319-0.8833) 0.0267
log likelihood -566.6732
AIC 1177.346

A Joint Model for WBC and Time to Relapse

A fractional polynomial model with p1 = −1 and p2 = 1 that includes random intercept

and degree p1 slope was found to be the best model (based on AIC) for log(WBC).



112 CHAPTER 7. PREDICTING RELAPSE IN VL AND HIV CO-INFECTED PATIENTS

The estimated mean structure is given by

m̂(tij) = (8.322+ b̂0i)− 0.11× site+ 0.215×CD4+ (−0.003+ b̂1i)t−1
ij − 0.036× tij . (7.2)

The observed and predicted vales are presented in Figure 7.5 right panel (corre-

lations equals to 0.835). The parametrization for the survival process includes the

current value of WBC, mi(tij), of the longitudinal process of WBC as predictor has

the best fit.

Table 7.4 presents the parameter estimates for the joint model. For the hazard

function, α = 0.151 (95%; 0.026-0.874, P=0.0348) implies that a unit increase in the

current value of log(WBC) reduce the probability of relapse by 84.9

Table 7.4. Parameter estimates for the joint model for the log(WBC) and time to
relapse.

Covariate Estimate SE 95%CI P-value
Longitudinal process
(Intercept) 8.221 0.094 (8.038-8.406) <0.0001
SiteG -0.130 0.084 (-0.294-0.035) 0.1237
CD4>200cells/mm3 0.218 0.082 (0.057-0.379) 0.0080

time1/2 -0.003 0.001 (-0.004;-0.001) 0.0003
time -0.039 0.036 (-0.11-0.032) 0.2801
Random Effect
σb0 0.3517
σb1 0.0018
σ 0.3222
Event process
CD4>200cells/mm3 0.397 0.653 (0.110-1.428) 0.1572
α 0.151 0.896 (0.026; 0.874) 0.0348
log likelihood -192.7376
AIC 419.4751

7.4.2 Predicted Survival Probability

Hemoglobin

The joint model discussed in the previous section allows us to estimate the probability

that a patient is event free (i.e. not develop relapse yet) given the longitudinal history

of the biomarker. Note that the event free survival probabilities can be predicted
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using different number of the longitudinal measurements. Baseline Hgb measurement

of a patient was used to predict the probability of event free survival in the follow

up period. In the next step, more measurements of the Hgb were used to update

the predicted probability for an event free subject. For illustration, let us focus on

patients 13 and 20 shown in Figure 7.6. Patient 13 relapsed at day 215 while patient

20 did not experience relapse up to 277 days (last observed time).

Figure 7.6 shows the event free predicted probability using Hgb as a biomarker. For

patient 13 the predicted event free survival at 29 and 355 days using only baseline

measurement of the biomarker were 0.92 (95%CI: 0.940-0.995) and 0.775 (95%CI:

0.229-0.965), respectively. For patient 20, the probabilities were 0.969 (95%CI: 0.911-

0.990) and 0.738 (95%CI: 0.123-0.931), respectively. Using the Hgb measurements up

to 84 days, the probabilities at 355 days were 0.796 (95%CI: 0.423-0.921) and 0.809

(95%CI: 0.398-0.941) for patients 13 and 20, respectively.
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Figure 7.6. Hgb. Prediction of event free probabilities at baseline (top panel) and
84 days (bottom panel) for two selected patients.
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White Blood Cell

Figure 7.7 shows the event free predicted probability for patients 13 and 20 using

log(WBC) as a biomarker. When only baseline WBC measurement was used, me-

dian event-free survival probabilities for patient 13, at 29 and 355 days were 0.988

(95%CI:0.945-0.998) and 0.868 (95%CI: 0.523-0.983), respectively. For patient 20, the

event-free survival probabilities were 0.990 (95%CI: 0.943-0.999) and 0.867 (95%CI:

0.489-0.985) at the two time points, respectively. When the measurements of WBC

up to day 84 were included, patients 13 and 20 have median probability of event

free survival 0.805 (95%CI: 0.502 0.928) and 0.880 (95%CI: 0.653-0.971) at 355 days,

respectively.
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Figure 7.7. WBC. Prediction of event free probabilities at baseline (top panel) and
84 days (bottom panel) for two selected patients.

Figure 7.8 shows the predicted probability for event free (i.e. a patient not yet

experience relapse) for an extra 30, 60, 90 and 120 days of measurements given a fixed

number of days for which the longitudinal sequence for WBC was observed. Patient

13 (upper panels) experienced a relapse at 215 days. It is, therefore less likely to
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survive an extra 120 days which implies of 300 days of observed time. Patient 20

has higher probability of event free survival for an extra 120 days. Patient 20 (lower

panels) did not experience relapse until 277 days has higher probability of event free

survival for an extra 120 days.

7.4.3 Prediction Accuracy

The joint model allows to investigate whether Hgb or WBC is a potentially useful

marker in discriminating between patients who experience relapse within a short time

window after their last assessment and patients who did not experienced relapse. In

order to asses the overall discrimination power of the markers, the sensitivity (true

positive rate, i.e., a patient that was relapsed was classified as relapse) and specificity

(i.e., a patient that was not relapsed was classified as non relapsed patient) were

calculated. Given the sensitivity and 1-specificity (false positive rate) the ROC curve

can be constructed by varying the threshold of the biomarkers. Figure 7.9 shows the

ROC curve for WBC and Hgb at t equals to 28, 56 and 84 days, and four options of

∆t (14, 28, 42, 56). Hemoglobin has higher discriminating power of patients who will

experience relapse from those who will not.

Later we changed the prediction rule in to two threshold where each of these

measurements could be utilized. We considered the last two available measurements

of the marker, and when there is 20% decrease from the pre-last to the last Hgb it is

considered as strong indicator for relapse.

As we mentioned in Section 5.2.4, a summary of the predictive accuracy index of

the marker for a possible threshold value cs is given by AUC. The medically relevant

time window, ∆t, is assumed to be 14 days. To obtain the estimates for the dis-

crimination measures, AUC and DDI, discussed in Section 5.2.4 were used. At each

observed time, the specific time at which the discrimination measures were estimated

was assumed to be the last available time (in addition to the baseline).

Table 7.5 presents the AUCs and DDIs values of Hgb marker for patient 13. The

discrimination quality alters for different time windows at different time points, from

a high of 0.878 for ∆t = 14 at baseline, to a low of 0.775 for ∆t = 56 at baseline. This

implies that if the primary interest is to predict relapse within a 14 day window, and

such a prediction was done at baseline, then the probability that the model would

allocate a lower conditional survival probability to a patient who will experience

relapse within the next 14 days compared to a patient who will not experience relapse

within the 14 days window is equal to 0.878. Based on 20% relative decrease from

the previous measurement of Hgb, AUCs varies between 0.890 for ∆t = 14 at 84 days,
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and 0.788 for∆t = 56 at 56 days.

Table 7.5. Area under the ROC curve and the estimated DDI of Hgb marker
(based on 1000 Monte Carlo samples for patient 13) for two prediction rules.

Parametrization Simple value 20% Rel.decrease
∆t t AUC(t) DDI AUC(t) DDI
14 0 0.8779 0.7225 0.8858 0.7225

28 0.8728 0.8730
56 0.8730 0.8352
84 0.8656 0.8904

28 0 0.8376 0.6627 0.8531 0.6627
28 0.8652 0.8561
56 0.8637 0.8222
84 0.8545 0.8599

42 0 0.7989 0.6507 0.8283 0.6507
28 0.8594 0.8446
56 0.8549 0.8019
84 0.8491 0.8413

56 0 0.7747 0.6401 0.8088 0.6401
28 0.8538 0.8349
56 0.8468 0.7876
84 0.8454 0.8288

The DDIs presented in Table 7.5 for patient 13, is used as a summarized measure

of the discriminative ability over the follow-up period. As shown in Section 5.2.4, it

provides a weighted average of the AUCs, with weights that account for the size of

the risk group within the follow-up period. The indices range from 0.6401 for a time

window of 56 days to 0.7225 for a time window of 14 days. As time progresses, we see

a decrease in the separation between the three values of ∆t. Similarly, Table D.9 in

Appendix D and presents the results for WBC marker. A similar analysis for patients

20 is presented in Table D.10 Appendix D.
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Figure 7.8. WBC. Predicting conditional survival probabilities and 95% confidence
intervals of surviving an extra 30, 60, 90 and 120 days, with each additional 30 days
of measurement.
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Figure 7.9. Time-dependent ROC curves for WBC (upper panel) and Hgb (lower
panel) at t=28, 56 and 84 and four options of ∆t=14, 28, 42 and 56 days (based on
1000 Monte Carlo samples).
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7.5 Discussion

Kala-azar, also known as visceral leishmaniasis (VL), is a chronic multi systemic dis-

ease. Co-infection with VL and HIV is recognized as a major public health challenge

in Africa which leads to frequent treatment failure, relapse, lost to follow up and death

(Cota et al., 2014). Ethiopia is one of the sixth country where 90% of the global bur-

den of VL originated and highest burden of VL-HIV co-infection is found (Argaw

et al., 2013). Available treatments have serious associated toxicities and may lead

to the development of drug-resistant parasite (Richard and Tim, 2014). Recurrent

epidemics of VL have caused high morbidity and mortality in affected communities.

In a cohort of VL-HIV co-infected patients, pentamidine has been used as secondary

prophylaxis to prevent relapse primarily (Diro et al., 2015b; Singh et al., 2016).

The analysis presented in this chapter aimed to investigate the clinical or labo-

ratory variables to be used as biomarker for the prediction of time to event process

in VL-HIV co-infected patients who have been taking pentamidine for the purpose

of preventing VL relapse. This involves testing of the different clinical, laboratory,

and immunological follow-up variables if they can be used as a biomarker to pre-

dict relapse. A total of 74 VL-HIV co-infected patients were included in the study.

Nearly one in five patient experience relapse. The cohort contribute a total of 619.6

person-months of follow-up. The current value of WBC and the change in Hgb were

significantly associated with relapse (Table 7.3 and 7.3 ).

Most of the patients were male. This might be explained by the nature of the study

area where most of the people in this area are migrant workers coming from different

part of the country for work. This is also supported by others studies from Brazil

(Cota et al., 2011; Daher et al., 2009) in which most VL-HIV co-infected patients

were male. The mean age of the study participates was 33.36 ± 7.01 years, which is

similar with another studies by Cota et al. (2011); Daher et al. (2009). The median

Hgb level in this study is higher as compared to the study in Southern Sudan and

North-east Brazil (Collin et al., 2004; Tvora et al., 2015).

The proportion of relapse in this study was 15 (20.27%). The first patients who

experienced relapse was observed after 35 days of treatment initiation. A study in

North-east Brazil by Tvora et al. (2015) showed that the mean time for recurrent

event was 38 days, which is close to the time the first event was observed in our

study. The second event was observed after 83 days. The probability of event free

survival at 83, 140 and 240 days were 0.972 (95%CI: 0.933-1.000), 0.837 (95%CI:0.748

-0.925) and 0.772 (95%CI:0.671-0.874), respectively. A study in India revealed that

VL-HIV co-infected patients had higher 6-month relapse rate, and less relapse-free
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12-month survival (Goswami et al., 2017). The prevalence of relapse in the current

study is lower than the study conducted in Spain by Molina et al. (2007), but much

greater than the study conducted in India by Mahajan et al. (2015).

We have shown that, based on the joint model for Hgb and time to relapse,

the rate of change in Hgb over time is associated with relapse. Different studies

conducted in India showed that Hgb was not significantly associated with relapse

in the adjusted analysis (Burza et al., 2014; Mahajan et al., 2015). These studies

used the baseline value of Hgb as a predictor for relapse. A unit increase in the

slope of Hgb level reduces the probability of relapse by 65.9% (HR=0.341, 95%CI:

0.132-0.881). Similarly, probability of relapse can be predicted by the current value of

WBC. A unit increase in log WBC results in a 84.9% (HR=0.151, 95%; 0.026-0.874)

reduction in the probability of relapse.

In addition, the longitudinal process of the biomarker was used to predict event free

survival probability of relapse in the future for each patient. The biomarkers were

updated with additional measurements up to 84 days, and the event free survival

probability were predicted at any time after 84 days. The higher the number of

measurements of the biomarker included in the model, the higher precision of the

predicted probability. We have shown that the predictive of Hgb marker is better the

predictive ability of WBC as evidenced by ROC and AUCs values for relapse. Lower

values of Hgb has higher discriminating ability between patients who will experience

relapse and who will not. Time window of 14 days is the optimal time to discriminate

patients who will experience relapse from those who will not. For a 20% relative

decrease of Hgb (9.7423 to 7.7939), the value of area under ROC curve was equal to

0.8904 for time window of 14 at 84 days.

One of the limitations of this study was small sample size that leads to a lower

power. As a results, clinical and laboratory markers could turn to be not significant.

In conclusion, using the joint model presented in this chapter we have shown that

both WBC and Hgb can be used for biomarkers for time to replace. This implies that

the patients performance in the early stage of the follow up can be used to predict

the patients outcome at the end of the study.
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Chapter 8
The ETART Shiny App

8.1 Introduction

HIV care and treatment services are available, since the epidemic started in Ethiopia.

The facilities provide counselling, testing, pre-ART services, and ART treatment

where both self-referred individuals and physician referred patients receive services.

It is estimated that currently, 386, 123 patients are enrolled to ART program in

Ethiopia (UNAIDS, 2016a). Being a life long diseases, data for HIV patients are

accumulated from the date of test for an HIV-infected individual throughout his/her

treatment period (Young, 2015). Initially, the service was limited to government hos-

pitals, but since 2006 government health centers started providing the services as well.

Currently, a total of 1045 treatment centers are providing the services in Ethiopia (As-

sefa et al., 2017; Frehiwot et al., 2014). Since 2009 both paper based and electronic

data archiving system is implemented in treatment centers and the data of a treated

patient are recorded at each visit during the treatment period.

Although the databases contain treatment information and patient performance

and typically available in the hospitals, they are rarely analysed due to limited capac-

ity in data analysis skills. Health professionals and policy makers should base their

decision on the current and future treatment strategy based on evidence available in

the data. However, due to lack of expertise in data analysis, the information available

in the treatment center database is typically not used. For example, local treatment

efficiency in a health center can be evaluated using the centers database but this is

usually not done.

This chapter is aimed to close the gap in local data analysis capacity by providing,

123
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a free, on-line based, user friendly, data analysis tool for the analysis of a standard

HIV patients database. We provide a Shiny R application, the ETART Shiny App,

that can be used to produce a similar analyses that was presented in Chapter 3-5.

Both on-line and standalone version of the ETART package are available. The latter is

useful for treatment centers with poor internet infrastructure. The ETART Shiny App

can be downloaded from:

https://hivshiny.shinyapps.io/shiny-DataAnalysis level1/

The ETART Shiny App can be applied to a local patients database in any treatment

canter provides that the treatment canter uses a standardized database to store the

patients data. In Section 8.2, we introduce the standardized databases structure that

should be constructed by a treatment canter. In Section 8.3, we overview the data

analysis tools, the methods and the analysis output that can produced using the

ETART Shiny App.

8.2 Local Standardized Database for ART Patients

In this section we introduce the structure of the standardized local database that

can be used as an input data for the ETART Shiny App. Figure 8.1 shows the three

stage procedures that should be applied to construct and analysed the ART patients’

standardized database. There are two type of outcomes that can be analysed by the

ETART Shiny App: time to event (i.e, time to death, time to composite outcomes,

etc) and longitudinal outcome (i.e. CD4 cell counts, etc). Two databases should be

constructed using the following procedure:

� Stage 1: The user should prepare the data in excel format based on the outcome

of interest:

– For time-to-event outcome, the data should include time variable (with the

specified unit), censoring indicator, and possible covariates.

– For the longitudinal outcomes, the time variable (i.e. date of each visit),

response variable and other baseline covariates are required.

� Stage 2: Once the databases were created, the dataset has to be uploaded to

ETART Shiny App.

� Stage 3: Based on the information required, select and execute the data analysis

in order to produce the outputs.
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An example of the databases created for Gondar University Hospital is discussed in

the next sections.

Figure 8.1. Schematic presentation of data preparation for the ETART Shiny App.
The user should organized and prepared the data based on the research question,
time to event analysis or longitudinal analysis of CD4 cell counts (second lines). The
data is uploaded and executed to produce the required outputs (third and fourth
lines). Note that the data analysis using fractional polynomial requires an initial
modeling step.

8.2.1 ART Database at Gondar University Hospital

Gondar University Hospital grew out of the Gondar Public Health College and Train-

ing Center (PHC) established in 1954. It is a 570-beds university hospital, which

acts as the referral centre for four district hospitals in the area. It serves as the main

hospital for more than 5 million individuals in the region and neighbouring regions. It

has a range of specialities including paediatrics, surgery, gynaecology, psychiatry, HIV

care and treatment clinic. The HIV clinic provide pre-ART and ART services since

2005. A total of 14333 adult HIV-infected individuals ever enrolled and currently
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5492 HIV-infected individuals are on ART care. In the clinic, baseline and follow-

up variables are recorded at registration and over the treatment period, respectively.

Baseline variables include gender, age, weight, WHO staging and functional status

were collected when the patient registered in the clinic. Follow up variables include

patient performance indicators such as CD4 cell counts, weight, functional status,

adherence, opportunistic infection (OIs), TB status and regimen. The follow up vari-

ables are recorded every 6 months subsequently depending on the progress of the

patient.

Two databases were created. The first dataset, 1survdata.csv, shown in Figure 8.2,

contains information about time to event data and treatment and will be used to

compare treatment efficacy in terms of time to event outcome (for example, survival

time under NNRTI treatment, NRTI backbone that was presented in Chapter 3).

The second dataset, 3longData.csv, shown in Figure 8.3 contains information about

patients performance using CD4 cell counts and treatment and will be used to com-

pare treatments efficacy in terms of CD4 evolution and change over time that was

presented in Chapter 3 and 4.

Figure 8.2. Variables for the analysis of time to event data are specified in the left
panel. A short description of the data and a partial printout are shown in the right
panel.
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Figure 8.3. The ART 3longData.csv analysis is specified. A short description of
the data and a partial printout are shown in the right panel.

8.3 Data Analysis Tools and Methods

8.3.1 Time to Event

Distribution of Patients

Once the time to event dataset 1survdata.csv is uploaded to the ETART Shiny App,

several analyses can be conducted. A summary of patients distribution by backbone

and treatment is shown in Figure 8.4.

Kaplan-Meier Curves and Log-rank Test

Two time to event outcomes can be analysed by the ETART Shiney App: time to

death and time to composite outcome. For both outcomes, a comparisons between

the treatment groups in the center can be conducted. Let T be a random variable rep-

resenting the time to event (i.e. death or composite outcome). Then the probability

of the event occurring at exactly time t can be formulated as;

S(t) = P (T ≥ t) = ∫
∞

t
f(u)du.

The Kaplan-Meier survival curve for both outcomes can be produced automatically

using the middle tab in Figure 8.5. Note that although the analysis conducted using

the R software, the ETART Shiny App users are not expose to the R code used to
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Figure 8.4. Summary table (upper panel) and bar-chart plot for the ART groups
(lower panel).

produce the analysis and do not need to install R. The Kaplan-Meier plot, presented

in Figure 8.5, can be produce using the R function survfit,

tfailure<- survfit(Surv(time, comp)~1, conf.type ="plain",

data = dataInput())")

The variables time and comp are, respectively, the time to event and censoring

variables in the dataset 1survdata.csv presented in Figure 8.1.

Comparison of Kaplan-Meier survival curves between different groups can be done

using log-rank test Grafféo et al. (2016).

χ2(log − rank) = ∑
k
i=1 (Oi −Ei)2

Ei
. (8.1)

Here, k the total number of groups, Oi is the total numbers of observed events

in the ith group, and Ei is the total numbers of expected events in the ith group.

Figure 8.6 presents the results for the comparison of time to composite outcome

between the EFV and NVP groups in Gondar university Hospital and reveals that

the time of composite outcome of the EFV group is faster i.e., more patients who

treated by EFV experienced the event compare to the NVP group.
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Figure 8.5. Gondar University Hospital. Kaplan-Meier survival curve for
composite outcome.

The log-rank test specified above can be produced using the R function survdiff:

lrankNNRTI<-survdiff(Surv(time, comp)~NNRTI,

data = dataInput(), rho=0))

summary(lrankNNRTI)

The variable NNRTI is a factor variable and the time to event will be compared across

the factor levels, i.e., EFV and NVP groups.

Cox Proportional Hazard Model

The ETART Shiny App allow to test the effect of NNRTI drug, NRTI backbone and

other covariates at baseline on the event time using a Cox-PH model. The hazard for

an event, conditional on the covariates of interest, is formulated as;

hi(t∣Xi) = h0(t)exp(Xiβ). (8.2)

Here, h0(t) is the baseline hazard and Xi are the covariates of interest. For the

analysis of time to composite outcome in Gondar University Hospital, it is assumed
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Figure 8.6. Log-rank test between time to composite outcome of the EFV and
NVP NNRTI groups.

to be depended on treatment, age and gender, that is

Xiβ = β0 + β1NNRTI + β2NRTI + β3age + β5sex. (8.3)

The specification of Cox-PH model in (8.2) and the output are presented in Fig-

ure 8.7. A similar model can be fitted using the R package coxph in the following

code:

mysurv<-coxph(Surv(time, comp) ~as.character(NNRTI) +

as.character(NRTI) + age + as.character(sex), data = dataInput()))

summary(mysurv)

For the model specified in (8.3), the variable comp is a censoring variable related

to the event composite outcome. The variables NNRTI, NRTI, age and sex are the

covariates in the dataset 1survdata.csv, (see Figure 8.3) included in the model.



8.3. DATA ANALYSIS TOOLS AND METHODS 131

Figure 8.7. Cox-PH regression for selected covariates. Left panel: model’s
specification. Right panel: output.

8.3.2 A Longitudinal Analysis of Immunological Outcomes

Profile Plots

The second database contains information about immunological performance of the

patients measured by CD4 cell counts. In addition to baseline variables, data are

available at each patient’s visit and can be used to compare patients immunological

performance between treatment groups.

Patients profiles plots (by group) and the evolution of mean CD4 cell counts over

tome is shown in Figure 8.8 and 8.9.

Semi-parametric Mixed Effect Model

The ETART Shiny App uses a penalized thin plate spline mixed effect model to model

a subject specific change in CD4 cell counts over the treatment period. Let Yi be
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Figure 8.8. Gondar University Hospital. Patients’ profiles of log(CD4) cell counts.

Figure 8.9. Gondar University Hospital. Observed individual and average profile
of log(CD4) cell counts.

the patients CD4 cell counts. The penalized thin plate spline mixed effect can be

expressed as a mixed model of the form
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Yi = Xiβi
²
S(ti)

+Zibi + εi. (8.4)

Here, Xi is matrix of fixed effect covariate and Zi is matrix of random effect

covariates. For the CD4 cell counts, the following subject-specific model is formulated:

Yi(ti) = S(ti) + b0i + b1iti + b2it2i + εiti . (8.5)

Here, S(ti) is the smoother to the log(CD4) evolution given by

S(ti) = β0 +
ν

∑
ι=1
βιfι(ti),

Where fι(ti)s are a set of thin plate spline basis functions. The ETART Shiny App uses

a penalized thin plate spline mixed effect model to model a subject specific change

in log(CD4) cell counts over the treatment period. Figure 8.10 shows the estimated

mean profiles by treatment group, obtained for the penalized thin plate spline mixed

model.

The semi-parametric model can be fitted using the R function gamm using the following

R code:

GammFit<-gamm(y ~ as.character(NNRTI)+ s(time, by=NNRTI, bs="tp",

m=3), data=dataInput(),random=list(id=~1+ time + time*time))

summary(GammFit)

Here, y is the log(CD4) cell counts, NNRTI is the fixed effect for the group and

s(time, by=NNRTI, bs="tp", m=3) is used to define a third order thin plate spline

for which the data are smoothed with respect to time (time), taking into account

the treatment group (NNRTI). The random effect configuration is defined using the

random statement,

random=list(id=~1+time + time*time).

The rate at which the CD4 cell counts change over time can be estimated using

the first derivative of the mean given by

dSg(ti)
dt

+ b1i + 2b2i × t. (8.6)

Figure 8.11 shows the first derivative and 95% confidence interval for the NNRTI
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Figure 8.10. Gondar University Hospital. Estimated mean log(CD4) cell count
over time by treatment group.

group. Note that whenever the first derivative cover the value of zero, it indicates

that the mean CD4 cell count reach an asymptote. It shows that, for the NNRTI

group in Gondar University Hospital, the patients are stabilized after approximately

10 months.

Pointwise Confidence Intervals

A point-wise confidence interval for the mean CD4 cell count can be computed as:

Ŝ(t) ± t1−α/2s.d(Ŝ(t)). (8.7)

Where s.d(Ŝ(t)) is the square root of the diagonal of the variance covariance

matrix XV̂βXt, with V̂β = (XtV̂−1X +Z)−1. Here, V̂ is the variance and covariance

matrix and Z is the wiggliness penalty matrix.

Pairwise Comparison of Treatment Groups

The semi-parametric model implemented in the ETART Shiny App allows to com-

pare between the patients immunological performance, i.e., the CD4 evolution of the
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Figure 8.11. First derivative of CD4 cell counts. Plot with 95% point-wise
confidence interval.

treatment group. This can be done using a group specific smoother,

Yig(ti) = β0g + β1treatg +
ν

∑
ι=1
βgιfι(ti)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Sg(t)

+ b0i + b1iti + b2it2i + εiti . (8.8)

Where Yig(ti) is the response for the ith subject in the gth treatment group at

time point ti, Sg(t) is a group specific smoother, and fι(ti)’s are a set of thin plate

spline basis functions, βιg are the coefficients of the basis function. The first derivative

is given by

dSg(ti)
dt

+ b1i + 2b2i × t. (8.9)

Here, S
′

g(ti) = βtgF
′

(ti) is a treatment group specific first order-derivatives of

penalized thin-plate spline fit. Pointwise confidence interval for S
′

g(ti) can be con-

structed in the same way as described in Section 8.3.2.

Figure 8.12 shows that the point-wise confidence intervals for the EFV and NVP

groups are overlapping indicating that there is no difference between the two group
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Figure 8.12. Treatment specific rate of change in CD4 cell counts over time and
with 95% pointiwse confidence interval

in terms of the change in immunological performance of the patients.

Figure 8.13. Difference between the rate of CD4 cell count change over time: NVP
Vs. EFV. The smoothed line shows S

′

NV P − S
′

EFV .
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8.3.3 Model Based Prediction of Time to Cross a Pre-Specified CD4 Threshold

The analysis presented in this section is based on initial modeling using fractional

polynomials (FP) discussed in Chapter 4. It is assumed that the user fit a FP model

and hence, in this stage, the powers are known. The mean structure of a second order

mixed effects fractional polynomial is given by

f(tij) = (β0 + b0i) + (β1 + b1i)tp1ij + (β2 + b2i)tp2ij . (8.10)

As shown in Chapter 4, the optimal values of the powers that lead to smallest value

of AIC are (p1 = 0; p2 = 0.5) and (p1 = 0; p2 = 0) for NVP and EFV, respectively.

The estimated subject-specific mean structure, for each treatment group, are given,

respectively, by

f̂(tij) = (5.22 + b̂0i) + (0.05 + b̂1i)log(tij) + (0.08 + b̂2i)t0.5ij ,
f̂(tij) = (5.05 + b̂0i) + (0.14 + b̂1i)log(tij) + (0.024 + b̂2i)(log(tij))2.

(8.11)

Figure 8.14 shows the estimated model for the NVP treatment. Note that, as ex-

plained above, the model is estimated assuming that the powers for the FP were

estimated in the first stage of the analysis. Estimated mean CD4 cell counts for each

group are shown in Figure 8.15.

As mentioned in Chapter 4, the mixed effect FP2 model allows to estimate and to

predict a subject specific CD4 profile and to compare this to a pre specified threshold.

Figure 8.16 shows the estimated CD4 profile (using an estimation period of 30 months)

for selected subjects.
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Figure 8.14. R output for the estimated fractional polynomial model of the NVP
group.

Figure 8.15. Estimated mean profiles using a fractional polynomial models. Panel
a: NVP. Panel b: EFV.
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Figure 8.16. Observed and model based predicted log(CD4) cell counts values for
selected individuals. Panel a and b: NVP group. Panel c and d: EFV group.
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8.4 Discussion
In Ethiopian hospitals, HIV treatment centers are routinely collecting data on different

characteristics of the patients since their time of enrolment in the center. These

data are seldom analysed at a hospital level. Therefore, although the information is

available, it is not usually used for a decision making and for monitoring the patient

population in the treatment canter of the hospital. There is currently a gap between

the capacity to collect the patients data and the capacity to analyse them and/or

to produce a monitoring report about the patients’ performance in treatment center.

For example, the survival rate in a treatment center is typically does not estimate on

a regular basis and over time.

This chapter is aimed to close this gap. We provide a publicly and user friendly

Shiny App, the ETART that can be used to produce standard analysis of HIV pa-

tients under ART treatment. To conduct that analysis, the user should construct a

standardized database for the HIV patients under treatment that include the clinical

information and treatment allocation for the patient. Once the database is created,

the user can conduct the analysis using a self-explanatory graphical user interface.

An expert knowledge in R and/or statistical modelling is not required.



Chapter 9
Discussion and Future Research

9.1 Modeling HIV Data in Ethiopia

The emergence of HIV has been one of the biggest challenges the world faced for the

last three decades. There is no cure for the diseases so far, however the introduction

of ART transformed the disease manageable chronic disease type of illness. The pri-

mary goal of ART is to reduce HIV-related morbidity and mortality, prolong survival,

improve the quality of life, restore and preserve immunologic function and prevent

HIV-transmission (Günthard et al., 2014). Cohen et al. (2011) confirmed that if an

HIV-positive person adheres to an effective ART regimen, the risk of transmitting

the virus to their uninfected sexual partner can be reduced by 96%. A study in the

US and Canada, reported in (Samji et al., 2013), that a person in his/her 20s who

contracts HIV can now expect to live into the 70s if initiated ART early and adhere.

In chapter 2, we compared the effect of the choice of treatment combination dur-

ing initiation of ART. First-line ART regimen should contain one NNRTIs (EFV or

NVP) plus two NRTI, one of which is either AZT or TDF (WHO, 2006). The choice

of treatment combinations for HIV-infected patients to initiate ART depends on cost

and efficacy (Pandhi and Ailawadi, 2014). Identifying the long-term treatment out-

comes of these drugs is very decisive for clinical decision. The systematic review and

meta-analysis by Ayele et al. (2017) showed that initiating with EFV ART regimen

is associated with a reduced risk of treatment failure compared to NVP regimen in

resource limited settings. This is in line with previous meta-analysis by Pillay et al.

(2013). In contrast, a Cochrane review of seven randomized clinical trials (Mbuag-

baw et al., 2010) demonstrated that the two drugs provided comparable results in

141
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suppression the viral load. In addition, the patients who initiated with EFV are less

likely to switch treatment than NVP which is consistent with multicenter randomized

non-inferiority trial (Bonnet et al., 2013).

The outcomes of first-line ART regimens are different in the long-run and a com-

posite outcome was defined as NNRTI substitution, discontinuation, lost to follow up

or death. In Chapter 3, we have shown that there is no statistical significant dif-

ference in the risk of composite outcome among patients who initiated with EFV or

NVP regimens after adjusting for baseline covariates. This is contradicting with the

result of systematic review and meta-analysis (Ayele et al., 2017). This might be due

to the difference in the definition of the outcome of interest in which the current study

defined outcome to be the combination of NNRTI substitution, discontinuation, lost

to follow up or death.

Treatment selection is often influenced by subject characteristics at baseline in

which selection bias is one of the major issues when we assess the treatment effect in

observational studies. Propensity score matching method was performed to reduce the

effect of selection bias. We have shown that the risk of composite outcomes between

patients who were initiated with TDF regimen is higher compared to AZT regimen

(after controlling for NNRTI drugs). The risk of composite outcome for TDF when

combined with NVP is two times higher as compared to AZT. We have also shown

that there was an increased risk of composite outcome for patients who were initiated

with d4t containing regimen as compared to AZT regimen. The risk of composite

outcomes was not statistically significant on d4t with any of the NNRTI drugs when

lost patients were assumed censored. This indicated that the difference in risk on

composite outcome on d4t versus AZT was due to lost to follow up cases. TDF has

higher risk despite the types of events which is consistent with other studies (Ben-

jamin et al., 2011; Rey et al., 2009). Those patients who initiated with d4t regimen

had about two fold risk of lost to follow up as compared to those who initiated with

AZT containing regimen. This might be due to the long-term irreversible side effects

of d4t. Initiating with TDF backbone has also higher risk of NNRTI modification

than those who initiated with AZT. This is in contrast with finding of the study in

South Africa by Brennan et al. (2013) in which rate of substitution was lower among

those who initiated with TDF than AZT or d4t.

The outcomes of treatment can be monitored using different markers of HIV-

infected individual who initiated ART. From Chapter 3 onward, we focused on CD4

cell counts that has been used as a main surrogate marker of treatment response

for HIV-infected individuals in order to predict long-term outcomes of treatment.

In Chapter 3 we compared the rate of CD4 change between treatment groups at
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initiation. We proposed a semi-parametric mixed effects model for the longitudinal

evolution of CD4 cell counts in order to investigate treatment response. We assumed

patient-specific random parameters for both the linear and quadratic time effects to

capture different evolution of the CD4 cell count over time. The first derivative plot

shows that the rate of CD4 increase in response to treatment is high during the first

10 months and stabilized later. The result also revealed that there was no difference

in the trend of CD4 cell counts in the long-run among patients who initiated with

EFV or NVP containing regimen which is in-line with previous study conducted in

Ghana (Barry et al., 2013).

In Chapter 4, a flexible parametric approach is used to describe the dependency

between a response of primary interest and continuous covariates. Further, the model

was used for early prediction of CD4 cell counts under a specific treatment and to

estimate the time to cross a given CD4 threshold under treatment. A cross-validation

procedure was applied to evaluate the performance of the prediction accuracy of a

fractional polynomial mixed effect model. Using the model, the time to attain a pre-

specified CD4 threshold after ART initiation was estimated. The model allow us to

estimate the distribution of the time to cross a pre specified CD4 cell count threshold

of interest and to use this distribution to compare between treatments. Subsequently

the probability to attained CD4 cell count above a pre-specified threshold is predicted

for each individual. We have shown that more than half of the patients who initiated

ART at CD4 cell counts less than 200 cells/mm3 cross the threshold in six months

period after initiation.

Different studies showed that the baseline CD4 cell count influences the rate of

immune reconstitution (Jacobson et al., 2004; Kadima et al., 2014; Notermans et al.,

1999; Smith et al., 2004). These studies indicated that markers of HIV disease stage

at the time of ART initiation are critical determinants of the progression while under

ART. The time it takes to reach the threshold is shorter for patients who were initiated

with NVP regimen as compared to EFV. Similar trend was reported by other studies

(Teeranaipong et al., 2016; Van Leth et al., 2005). The possible reason might be NVP

has been used for patients with low CD4 level to reduce the side effect of EFV. This

trend changed when treatment is initiated at higher CD4 cell counts which is also

supported by other studies (Ford et al., 2017; Teeranaipong et al., 2016). This might

be due to the high potency nature of EFV containing regiment.

In Chapter 5, the longitudinal process of CD4 cell count was used to predict the

time to composite outcome (and death) using joint modelling proposed by Rizopoulos

(2012b). The model with time dependent slope parametrization was found to be the

best model. The results revealed that the hazard of death or composite outcome de-
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pended on a longitudinal process of log-CD4 cell counts. The risk of death increased

by 2.31-fold for a unit decrease in the current value of log(CD4) cell counts for pa-

tients who initiated with EFV. This is consistent with study conducted in Canada by

Lim et al. (2013) in which significant association is observed between two processes.

There was no significant difference among the interaction of drug and log(CD4) cell

counts on the risk of death. The joint model provides a framework for performing in-

dividual predictions of the outcomes. The probability of developing the event process

in the future time is predicted in the future for an individual with available baseline

information and longitudinal outcomes.

The findings in all the chapters should be interpreted with insight of the following

limitations. (1) The studies are based on retrospective data in which many covariates

were not measured. (2) The model used in Chapter 4 considered only one covariate to

reduce model complexity. (3) For some models, possible confounding variables were

not controlled neither methodologically nor in the analysis part. This is also related

to the first limitation.

In conclusion, initiation of ART with EFV containing regimen has reduce risk

of treatment failure as compared to NVP containing regimen. The long-term out-

comes are comparable between NNRTI treatment groups. Significant difference was

observed for NRTI backbones chosen to initiate HIV-infected patients in Ethiopia.

The maximum benefit of ART is obtained during the first 10 months after initiation.

For higher CD4 cell counts, EFV containing regimen improves CD4 cells counts of the

patient quicker than NVP containing regimen. Thus, those who have higher baseline

CD4 cells count can be initiated with EFV containing regimen. There is a strong

association between the risk of composite outcome and rate of change in CD4 cell

counts. Early prediction on the change in CD4 cell count could be an evidence to

make decision by the health professional on the type of regimen the patients should

take.

Based on our findings in the first part of the dissertation, several recommendations

for future research/treatment procedures formulated:

� Modeling recommendations for future research

The CD4 cell count was used for the analysis presented in the first part of

the thesis. However, recently routine viral load measurements are available

in resource-limited countries as well. Hence, the models implemented in this

dissertation can be extended to address similar research questions based on

viral load as a single marker or a joint model in which CD4 cell counts and viral

load are used jointly to predict treatment failure.
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� Treatment procedures recommendations:

– We have shown that the first 10 months after initiation of ART were the

period the patients can get the maximum benefit of the treatment with

regard to CD4 improvement. The health providers have to take this in to

account, monitor the patients progress within the 10 months period more

closely and advice their clients accordingly.

– The result indicated that EFV regimen improves CD4 cells counts of the

patient faster than NVP regimen for higher baseline CD4 cell counts.

Hence, those who have higher baseline CD4 cells count should be initi-

ated with EFV regimen.

� Public health recommendation

The analyses presented in this dissertation can be reproduce in other hospitals

and the methodology presented in the dissertation can be applied to similar

dataset from other treatment centers. This will allow public health authorities to

compare between treatment centers and to monitor closely the patients progress

within and between treatment canters.

9.2 Modeling VL-HIV Co-infection in Ethiopia

In the second part of the dissertation, we proposed a joint model for longitudinal

measurements, applied to the prediction of time to VL relapse in VL-HIV co-infected

patients under treatment. Results of the model revealed strong association between

WBC and Hgb trajectories and VL relapse. Different parametrization of the longitu-

dinal process were considered. Rate of change in Hgb level was found to be significant

predictor for the incidence of relapse. Similarly, the incidence of relapse can be also

predicted by the current value of WBC. The probabilities of relapse free survival for

each individual was computed and updated dynamically when additional informations

on the biomarker are included. The biomarkers measurements from an estimation pe-

riod of 84 days were used to predict the probability of relapse in the later follow-up

periods. The more the numbers of measurements of the biomarker, the precise the

predicted probability as evidenced by the 95% confidence interval. The predictive

ability of Hgb is better than WBC based on AUCs values. Lower values of Hgb has

higher discriminating ability between patients who will experience relapse and who

will not.

The analysis presented in the second part of the dissertation was conducted to each
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biomarker separately. For a future research, it is recommended to develop a joint

model in which both WBC and Hgb are used jointly to predict the time to relapse.

Furthermore, based on the results presented Chapter 7, we recommend to develop a

predictive tool in which WBC and Hgb of future patients will be used to determine

the patients probability for relapse.

9.3 The ETART Shiny App

We are living in the era of data. The capacity to collect and to store detailed data was

increases substantially in the last decade and in the same time, the cost decreased.

As a result, big datasets can be constructed and stored. Data about HIV patients

under ART in Ethiopia, and Africa, are collated routinely as part of the treatment

procedure. Unfortunately, these data are either not analysed or analysed by external

sponsor(s). In both cases, information about patients performance is not used by

local clinicians or local researchers and, although available, typically ignored when

decision is made about the treatment procedure

The ETART Shiny App, developed as a part of this PhD, is a first step to create

major change in HIV patients data usage. The ETART Shiny App allows for both

local clinicians and local researchers to analyse and monitor the treatment procedure

for HIV patients using a standardized database. Furthermore, since the standardized

database consists of measurements which are currently collected routinely, the cost for

constructing the standardize database is minimal. Once the database is completed, it

can be used for a ”within treatment center” analysis or, when combined with similar

databases from several treatment centers, to produce a ”between center analysis.

The ETART Shiny App is a first step. Further work should be done to develop a protocol

for the construction of the standardized database so it can be easily implemented

within each treatment center. A construction of the standardized ART database

can lead to a revolution in HIV data analysis and monitoring and can lead to an

improvement in ART treatment allocation and further reduction of treatment failure.

The current findings can be translated to policy and program implications. The

first implication is on HIV/AIDS treatment guidelines. The findings of this study

revealed that initiating ART at a higher CD4 cell counts supported the treat all

approach. The second implication is on the supply of drugs for HIV-infected adults.

Our findings suggest that the long-term effect of EFV and NVP are comparable.

Comparing the price of the drug, EFV is more expensive than NVP. Based on our

finding, NVP can be made available. The third very important implication is on
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VL relapse in VL-HIV co-infected patients. The rate of change in Hgb label or

current values of WBC can be used to predict VL relapse. The forth very important

implication is in utilizing available database for decision making by the local clinicians.

The application we developed can be localized to other similar hospitals in the region.



148 CHAPTER 9. DISCUSSION AND FUTURE RESEARCH



Bibliography

Abah, I. O., Darin, K. M., Ebonyi, A. O., Ugoagwu, P., Ojeh, V. B., Nasir, N., Falang,

K. D., Olaitan, O., Agbaji, O., Idoko, J., et al. (2015). Patterns and predictors

of first-line antiretroviral therapy modification in hiv-1-infected adults in a large

urban outpatient cohort in nigeria. Journal of the International Association of

Providers of AIDS Care (JIAPAC), 14(4):348–354.

Abebe, T., Takele, Y., Weldegebreal, T., Cloke, T., Closs, E., Corset, C., Hailu, A.,

Hailu, W., Sisay, Y., Corware, K., et al. (2013). Arginase activity-a marker of

disease status in patients with visceral leishmaniasis in ethiopia. PLoS neglected

tropical diseases, 7(3):e2134.

Adeyinka, D. A. and Ogunniyi, A. (2012). Predictors of clinical failure in hiv/aids pa-

tients on antiretroviral therapy in a resource limited setting, nigeria: A comparative

study. HIV & AIDS Review, 11(1):20–24.

AIDSinfo (2014). Guidelines for the use of antiretroviral agents in hiv-1-infected

adults and adolescents: https://aidsinfo.nih.gov/. accessed on 19/02/2018.

Akaike, H. (1973). Problems of control and information. In 2nd International Sym-

posium on Information Theory, Budapest: Akademiai Kaido, pages 267–281.

Akinbo, B. D., Atere, A. D., Fatunade, H. B., and Iyabor, N. O. (2015). Haemato-

logical indices and absolute cd4 counts of apparently healthy population in ondo

state, nigeria. British Journal of Medicine and Medical Research, 8(8):717–723.

Alave, J., Paz, J., Gonzlez, E., Campos, M., Rodrguez, M., Willig, J., and et al

(2013). Risk factors associated with virologic failure in hiv- infected patients re-

ceiving antiretroviral therapy at a public hospital in peru. Rev Chilena Infectol,

30(1):42–8.

149



150 BIBLIOGRAPHY

Alemu, A. W. and Sebastián, M. S. (2010). Determinants of survival in adult hiv

patients on antiretroviral therapy in oromiyaa, ethiopia. Global health action,

3(1):5398.

Alvar, J., Aparicio, P., Aseffa, A., Den Boer, M., and Moreno, J. (2008). The rela-

tionship between leishmaniasis and aids: the second 10 years. Clinical microbiology

reviews, 21(2):334–359.

Alvar, J., Canavate, C., Gutierrez-Solar, B., Jimenez, M., Laguna, F., Lopez-Velez,

R., Molina, R., and Moreno, J. (1997). Leishmania and human immunodeficiency

virus coinfection: the first 10 years. Clinical microbiology reviews, 10(2):298–319.
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Appendix A
Systematic Review and Meta-Analysis

This Appendix contains additional supporting information for the materials presented

in Chapter 2.Sensitivity analysis to assess heterogeneity is presented in Figure A.1.

Figure A.1. Sensitivity analysis to assessing the influence of individual study.
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Table A.1 provides the list of questions used to extract information from each

paper included in the systematic review and meta analysis.

Table A.1. Data extraction form.

S.No Question Answer
1 General information

Study ID
First Author and year
Study site (setting)
Enrolment and follow up period

2 Study Characteristics
Study design
Inclusion criteria of the study
Exclusion criteria of the study

3 Sample size
Sampling methods
Intervention/exposed group
Control/unexposed group

4 Statistical analysis
5 Result

Length of follow up
Participants include in the analysis
Lost to follow up/drop
Number of total person-years

6 Participants characteristics
7 Outcome measures(Effect size)
8 Quality Assessment

Selection
Comparability
Outcome

9 Comment on methodology you have after reading
10 Main findings

Detail of the selected characteristics of the papers included in the systematic review

and meta analysis are presented in Table A.2.
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Table A.2. Selected characteristics of the included studies.
Authors Outcomes Intervention Confounding adjusted Main Findings Newcastle-Ottawa-scale.

Stringer JS, et al Treatment Failure nNVP=355 Month on ART, -Month on ART, CD4 cell count Selection 2 stars
CD4 cell count viral load, WHO stage, age, Comparability 1 star

nEFV =523 viral load Hgb, and BMI were significantly Outcome 2 stars
WHO stage, age, associated factors
gb, BMI, Weight, In total, 724 women (82%)
NNRTI completed 48 week of follow-up on an

NNRTI-containing regimen

Kwobah CM,et al Treatment Failure nEFV =427 Education level, -No association between the Selection 3 stars
CD4 category, choice of NNRTI used Comparability 2 star

nNVP=2,633 WHO stage, BMI, (Nevirapine or Efavirenz) and treatment failure. Outcome 1 stars
Hemoglobin,Adherence, -Low baseline CD4, AZT based NRTI,
disclosure, travel imperfect adherence are associated
time, NNRTI, and NRTI with first line ART failure

NNRTI-containing regimen

Nachega JB, et al Virologic Failure nEFV =212 Age, sex, race, -Nevirapine was associated Selection 2 stars
baseline CD4, with greater risk of virologic Comparability 2 star

nNVP=103 baseline VL, failure compared to efavirenz Outcome 2 stars
NRTI, year of -NNRTI, age, sex, baseline viral load, year on ART, and
ART, adherence adherence were significantly associated

Boulle A, et al NNRTI substitution nEFV =1,612 Weight, age, -Substantial difference in the Selection 2 stars
WHO stage per tolerability of commonly Comparability 2 star

nNVP=1,067 increment, CD4 used first line ART drugs. Outcome 2 stars
Count, district -Baseline weight, and Age, for

NVP and Weigh and WHO stage for EFV

Shearer K, et al Treatment Failure nEFV =11,962 NNRTI, ART, -Patients with NVP-are more Selection 3 stars
year, sex, age, likely to experience virologif failure Comparability 2 star

nNVP=878 baseline CD4, -NNRTI, years of ART Outcome 1 stars
WHO stage, BMI,NRTI, initiation, age, and baseline
baseline anaemia CD4 cell counts

Sarfo FS, et al Composite endpoint nEFV =2,369 Sex, age, NNRTI, -Treatment outcomes were Selection 3 stars
NRTI, Baseline comparable whether EFV or Comparability 2 star

nNVP=1,621 CD4, Baseline NVP is used. There was a 36% lower Outcome 2 stars
BMI, WHO stage, risk of all-cause discontinuation of EFV compared
Adherence with NVP. NRTI, age, baseline CD4 counts, BMI,

WHO stage, and adherence were associated
factors of treatment failure

Shearer K, eta al Treatment failure nEFV =2,254 NNRTI, sex, age, -Given TDF as NRTI, Nevirapine has Selection 3 stars
baseline CD4, higher risk of treatment failure Comparability 1 star

nNVP=131 WHO stage, as compared to EFV. Outcome 1 stars
Anemia, BMI Regimen, and Baseline CD4 cell counts

were significantly associated with failure

Barth RE, et al Treatment failure nEFV =426 Gender, age, -No difference between EFV Selection 2 stars
BMI, Karnofsky score and NVP in treatment failure Comparability 1 star

nNVP=309 CD4 counts, -60% of patients showed Outcome 2 stars
Time since start ART, of them were switched to second-line
NNRTI, Occupation treatment. Gender, mean BMI, and baseline

CD4 counts were associated
in the univariate

Gsponer T, et al Treatment failure nEFV =186 Age, Sex, -Mortality was lower among patients who switched Selection 2 stars
Baseline CD4, compared to patients remaining on failing Comparability 1 star

nNVP=2,218 WHO stage first-line ART Outcome 1 stars
-Current CD4 count was associated

Sarfo FS, et al NNRTI Substitution nEFV = 2,378 NNRTI, Gender, -Patients starting nevirapine are more Selection 3 stars
age, BMI, WHO stage, likely to develop rashes and then more Comparability 2 star

nNVP=1,621 CD4 counts, likely to discontinue therapy than those Outcome 1 stars
hepatitis B surface starting efavirenz. -NNRTI,
antigen status, ALT Gender, and low baseline CD4

counts were associated factors

Keiser O, et al Treatment failure nEFV=1,951 Not controlled -Compared to patients who remained on Selection 2 stars
non-failing first-line therapy, mortality Comparability 1 star

nNVP=2,325 and loss from follow-up was higher y Outcome 2 stars
in patients who switched, and substantially
higher in patients who remained on
failing first-line therap

Anlay DZ, et al NNRTI Substitution nEFV=289 Weight, WHO stage -There is no difference in regimen Selection 3 stars
TB on initial regimen, change between NVP and EFV. Comparability 2 star

nNVP=121 NRTI, NNRTI, -WHO stage, TB status, co-medication, Outcome 2 stars
Co-medication and side effect were associated factors

van Zyl GU, et al NNRTI resistance nEFV=82 Age, gender, ART regimen -Failure on NVP therapy may result in Selection 3 stars
most recent CD4 count, cross-resistance to ETV. Comparability 2 star

nNVP=85 concurrent viral load NNRTI, and estimated period of Outcome 2 stars
and genotypic resistance failure were associated

Abah IO, et al NNRTI Substitution nEFV=558 Sex, age, HBV, CD4 count, -Drug substitutions of efavirenz Selection 3 stars
WHO stage, NNRTI, NRTI were more likely than of nevirapine Comparability 2 star

nNVP=5,751 -Age, greater immunosuppression, EFV Outcome 1 stars
and drug toxicity were significant

Bock P, et al NNRTI Substitution nEFV=19,441 NNRTI, NRTI -Superior efficacy of EFV Selection 3 stars
gender, age, CD4, compared with NVP for Comparability 2 star

nNVP=7,909 WHO stage, TB first-line ART-NNRTI, gender, Outcome 1 stars
year of ART initiation year of initiation, and province were associated

Tirfe ZM, et al Treatment failure nEFV=246 NNRTI, Facility type, age -NVP and EFV regimens were effective Selection 3 stars
sex, marital status and comparable, in term of immunological Comparability 2 star

nNVP=246 education status, religion responses.-Gender, eligibility criteriar Outcome 1 stars
NRTI, presence of OIs WHO stage, provision of IPT, and baseline CD4 counts were associated
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Parameters estimates for the random effect meta-regression, discussed in Sec-

tion 2.4.4, are presented in Table A.3.

Table A.3. Parameter estimates of meta regression.

Covariate Estimate S.E 95%CI
Length of Follow up -0.0138 0.0666 (-0.1322-0.1046)
Median CD4 count -0.0034 0.0066 (-0.0150-0.0079)
Median Age 0.0415 0.0503 (-0.1013-0.0755)
Year of publication 0.0637 0.0815 (-0.1736-0.0980)
Female proportion -0.5305 1.4575 (-3.6792- 2.6183)



Appendix B
Modeling Outcomes of ART and Rate of CD4 Change

This Appendix provides additional supporting informations for the analysis presented

in Chapter 3.

Sensitivity Analysis for Composite Outcome

As a second sensitivity analysis, the definition of the composite outcome was mod-

ified and the new event is defined as follows: patients experienced either death,

lost to follow up, treatment discontinuation, or NNRTI substitution. The results

of the cox-regression model for the modified composite outcome are presented in Ta-

ble B.1. There is no significant difference in the risk of modified composite outcome on

NVP (AHR=1.02, 95%CI:0.82-1.27). TDF containing regimen at initiation has 1.73

(95%CI:1.42-2.07)times higher risk on modified composite event. Baseline covariates

such as sex, WHO stage, functional status and ART start year were significantly as-

sociated with composite outcomes. The risk of the modified composite outcomes on

male, WHO stage III or IV, ART start year since 2010 were 1.27 (94%CI:1.07-1.50),

1.35 (95%CI:1.12-1.63), and 1.7 5(95%CI:1.43-2.13), respectively.

Separate Analysis of Long-term Treatment Outcomes

From the separate analysis of events death, lost to follow up and NNRTI substitution

(Table B.2), there was no significant difference in the hazard of death and lost to

follow up among patients who initiated with EFV or NVP regimen after adjusting

for other covariates (sex, WHO stage, and functional status). Though the hazard of

lost to follow up was lower for patients who were initiated with NVP from bivariable
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Table B.1. Parameter estimates for Cox-PH model of factors associated with the
modified composite outcome among HIV/AIDS patients at Gondar University
Hospital, in Northwest Ethiopia.

Sensitivity analysis(Composite outcomes)
Covariate Unadjusted HR(95%CI) Adjusted HR(95%CI) p-value
Sex, n(%)
Female 1 1
Male 1.27(1.08-1.49) 1.27(1.05-1.50) 0.006
Age
< 40 years 1
≥ 40 years 1.02(0.85-123) - -
NNRTI
Efavirenz 1 1
Nevirapine 0.87(0.73-1.02) 1.02(0.82-1.27) 0.881
NRTI backbone
Zidovudine 1 1
Stavudine 1.33(0.98-1.81) 1.33(0.97-1.83) 0.072
Tenofovir 1.64(1.38-1.94) 1.73(1.42-2.07) <.001
WHO stage
I and II 1 1
III and IV 1.48(1.24-1.77) 1.35(1.12-1.63) 0.002
Base CD4 cells
<200 cells/mm3 1 1
≥ 200 cells/mm3 0.86(0.71-1.04) 0.95(0.78-1.15) 0.5
Functional status
Ambulatory/Bedridden 1 1
Working 0.52(0.43-0.63) 0.58(0.47-0.71) <0.001
ART start Year
Before 2010 1 1
Since 2010 1.45(1.20-1.76) 1.75(1.43-2.13) <0.001

analysis, it turned out to be insignificant after adjustment for other covariates. The

risk of NNRTI discontinuation was 2.55 (95%CI: 1.70-3.82) times higher on NVP

compared to EFV after adjusting for other covariates. Initiating ART with TDF

containing regimen had increased risk of death, lost to follow up and NNRTI change in

reference to AZT backbone. The hazard of death, lost to follow up and NNRTI change

increased by 1.62 (95%CI: 1.23 2.32), 1.92 (95%CI: 1.40-2.64), and 1.59 (95%:1.12-

2.25) times for patients who initiated with TDF containing regimen in reference to

AZT regimen, respectively. Initial ART regimen with D4T has 2.30 (95%CI:1.46-3.62)

times higher risk of lost to follow up in reference to AZT initial regimen.
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Table B.2. Parameter estimates for Cox-PH model for factors associated with
treatment outcomes among HIV/AIDS patients at Gondar University Hospital, in
Northwest Ethiopia.

Outcome Treatment Unadjusted HR(95%CI) P-value Adjusted HR(95%CI) p-value
Death NNRTI

Efavirenz 1 1
Nevirapine 0.75(0.55 - 1.02) 0.065 1.14(0.81 - 1.62) 0.45

NRTI backbone
Zidovudine 1 1
Stavudine 1.97(1.14 - 3.42) 0.015 1.29(0.72 2.29) 0.38
Tenofovir 2.03(147 - 2.80) <0.001 1.62(1.23 2.32) 0.008

Lost to follow up NNRTI
Efavirenz 1 1

Nevirapine 0.59(0.45- 0.76) <0.001 0.88(0.85- 1.20) 0.41
NRTI backbone

Zidovudine 1 1
Stavudine 2.65(1.72 -4.01) <0.001 2.30(1.46- 3.62) 0.003
Tenofovir 2.18(1.65- 2.89) <0.001 1.92(1.40- 2.64) <0.001

NNRTI substitution NNRTI
Efavirenz 1 1

Nevirapine 1.94(1.35-2.79) 0.003 2.55(1.70-3.82) <0.001
NRTI backbone

Zidovudine 1 1
Stavudine 0.31(0.13-0.71) 0.005 0.43(0.18-1.01) 0.053
Tenofovir 0.84(0.62-1.16) 0.31 1.59(1.12-2.25) 0.008



180 APPENDIX B. MODELING OUTCOMES OF ART AND RATE OF CD4 CHANGE

Log-rank Test

Log-rank test was performed for all treatment combinations. Kaplan-Meier curves are

presented in Figure B.1. Significant difference was observed between the treatment

combinations (p-value=0.001).

Figure B.1. Kaplan-Meier curves for all treatment regimens.
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Similarly, log-rank tests were used to compare between sex, age, functional status

and WHO (Figure B.2).

Figure B.2. Kaplan-Meier curves for selected baseline covariates.

Test of Proportionality Hazard Assumption

The proportional hazards (PH) assumption was checked using statistical tests based

on the scaled Schoenfeld residuals. The function cox.zph() provides a test of pro-

portional hazards assumption for each covariate included in a Cox-regression model.

Table B.3 shows the statistical test of PH assumption for Cox-regression.
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Table B.3. Test of proportionality hazard assumption.
Covariate ρ chi-square p-value
as.factor(sex)Male 0.10267 2.01974 0.1553
as.factor(ageg)2 -0.06889 0.89916 0.3430
as.factor(NNRTI)NVP 0.11468 2.72739 0.0986
as.factor(NRTI)d4t -0.13484 3.45644 0.0630
as.factor(NRTI)TDF 0.02006 0.08251 0.7739
as.factor(bcd4g2)2 -0.07467 1.06209 0.3027
as.factor(bwhosg) -0.09699 1.82211 0.1771
as.factor(year2)2 -0.00604 0.00687 0.9340
GLOBAL NA 12.88871 0.1157



Appendix C
Model-based Prediction of CD4 Cell Counts

This Appendix presented additional materials supporting the analysis presented in

Chapter 4.

Power Selection for the FP Models

The powers for the first order fractional polynomial versus AIC values is presented

in Figure C.1 for NVP and EFV. Similarly, the power of second degree fractional

polynomial and AIC values is presented in Figure C.2.
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Figure C.1. Powers for the first order fractional polynomial versus AIC values.
Left panel: NVP. Right panel: EFV.
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Figure C.2. Powers for the second order fractional polynomial versus AIC value
from the model. Panel a: first and second powers against AIC for NVP. Panel b: for
EFV.
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Comparison of models is made using log-likelihood are presented in Table C.1.

Table C.1. Application of the functional selection procedure to NVP and EFV
ART regimens.

Model Power Comparison -LogLL LogLL diff. p-value
NVP

Null - Linear vs Null 8972.7 2901.1 <0.0001
Linear 1 FP1 vs Linear 6071.6 1334.4 <0.0001
FP1 0 FP21 vs FP1 4737.2 293.2 <0.0001
FP2 0 ; 0.5 FP21 vs FP22 4444.0 131.3 <0.0001

EFV
Null - Linear vs Null 1867.4 489 <0.0001
Linear 1 FP1 vs Linear 1378.4 259.9 <0.0001
FP1 0.5 FP21 vs FP1 1121.5 19.5 0.0002
FP2 0;0 FP21 vs FP22 1102.0 79.2 <0.0001

Table C.2 shows the fixed effect parameter estimates fo the two degrees fractional

polynomial mixed effect model (NVP and EFV treatment group).

Table C.2. Parameter estimates and their associated standard error using FP22.
The p-values are based on the Wald test.

Effect Estimate Estimate(s.e) P-value
NVP

β0 5.2224 0.02262 <0.0001
β1 0.04857 0.004126 <0.0001
β2 0.07766 0.006034 <0.0001

EFV
β0 5.0473 0.05368 ’<0.0001
β1 0.1398 0.007194 <0.0001
β2 0.02436 0.002888 <0.0001



Appendix D
Joint Modeling for Longitudinal and Time to Event
Outcome

This appendix presents additional supporting information for the analyses presented

in Chapter 5 and 7.

Cox-PH Model for Time to Death and Composite Outcome

The survival model (cox-PH) is fitted for both death and composite outcome discussed

in Chapte 5. The result are presented in Table D.1.

Table D.1. Estimates of hazard ratio and 95% CI obtained for the Cox-PH model
for death and composite outcome.

Event
Death Composite outcomes

Covariate HR 95%CI P-value HR 95%CI P-value
NNRTI(NVP) 0.72 0.539; 0.962 0.0262 0.858 0.715; 1.031 0.102

Two Stage Procedure (Chapter 5)

To account the measurement error and biological variations, we used two stage pro-

cedure. In the first stage log(CD4) cell count is modelled using fractional polynomial

mixed effect model and the maximum likelihood estimate and best linear unbiased

predictors of the random effects are obtained. Then in a second stage, Cox-PH model

is fitted to the survival data using the longitudinal fitted values at different time as

187
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Table D.2. Estimates of hazard ratio and 95% CI using a two-stage procedure for
death and composite outcomes.

Event

Death Composite outcomes
Covariate HR SE 95%CI P-value HR SE 95%CI P-value
NNRTINVP 0.6761 0.166 0.4881; 0.9367 0.0186 1.142 0.0948 0.9484; 1.3752 0.161
yy1 0.3580 0.1068 0.2904; 0.4413 <0.0001 0.5227 0.0654 0.4598; 0.5943 <0.0001

covariates. The result revealed that the effect of fitted value of log(CD4) cell count at

time 1, 3, 6, 9 and 12 months were significantly associated with death and composite

outcome in the multivariate analysis (Table D.2).

Maximum Likelihood Estimation for Joint modeling

As pointed out in Rizopoulos (2012a), maximum likelihood estimation for joint models

is based on the maximization of the log-likelihood corresponding to the joint distri-

bution of the time-to-event and longitudinal outcomes {Ti, δ, yi}. In this section we

briefly describe the estimation procedure for the joint model. The vector of time

independent random effects bi underlies both the longitudinal and survival processes.

This means that these random effects account for both the association between the

longitudinal and event processes, and the correlation between the repeated measure-

ments in the longitudinal process. Strictly, we assumed that the longitudinal process

and the survival process are conditionally independent given bi:

p(Ti, δi, yi∣bi; θ) = p(Ti, δi∣bi; θ)p(yi∣bi; θ),

with

p(yi∣bi; θ) =∏
j

p{yi(tij ∣bi; θ)}.

Where θ = (θTt , θTy , θTb ) denotes the full parametric vector for the event time out-

come, the longitudinal outcome and for the random effect covariance matrix respec-

tively. Due to the fact that the survival and longitudinal submodels share the same

random effects, joint models of this type are also known as shared parameter mod-

els. Under the modeling and these conditional independence assumptions the joint

log-likelihood contribution for the ith subject can be formulated as;

log(p(Ti, δi, yi; θ)) = log∫ p(Ti, δi∣biθt, β)[∏
j

p{yi(tij)∣bi; θy}]p(bi; θb)dbi. (D.1)
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where the likelihood of the survival part is written as

p(Ti, δi∣bi; θ, β) = {hi(Ti∣Mi(Ti); θt, β)}δSi(Ti∣Mi(Ti; θt), β). (D.2)

with hi(.) and Si(.) obtained survival submodel. Whereas, the joint density for

longitudinal responses together with the random effects is performed through the

following expression

∏j p{yi(tij)∣bi; θy}p(bi; θb) = (2πσ2)ni/2exp{−∥yi −Xiβ −Zibi∥2σ2}
×(2π)−qb/2det(D)−1/2exp(−bTD−1bi/2).

(D.3)

Where qb and ∥.∥ denotes the dimensionality of the random effect vector, and the

euclidean vector norm respectively. The estimation procedure is discussed in details

in Rizopoulos (2012a).

Model Formulation of the Hazard Function.

In Chapter 5 and 7, we used different model parametrizations for longitudinal process

such as current value, lagged effect, time dependent slope and cumulative effects

parametrization as covariates that might influence the hazard function.

1. Lagged effect parametrization: Assumes that the risk of relapse at time t de-

pends on the value of the biomarker at time t− c, where c specifies the time lag

of interest. The model is defined as

hi(t∣Mi(t), ωi) = h0(t) exp(γτωi + αmi(tij) {max(t − c,0)}), t > 0.

2. Cumulative effect parametrization: The risk of relapse at time point t depends

on the cumulative effect of the longitudinal outcome up to time point t. The

model is formulated as

hi(t∣Mi(t), ωi) = h0(t) exp{γτωi + α∫
t

0
mi(sij)dsij} , t > 0.

Additional Joint Models Fitted for the Analysis Presented in Sec-
tion 5.3.3

In this section we present several joint models that were fitted within the analysis

presented in Section 5.3.3
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1. Current value

We assumed that the event of interest depends on the current value of the CD4 cell

count evolution. There was no significant different on the risk of death or composite

event whether the patient initiated with NVP or EFV. The parameter α measures

the association between log(CD4) cell counts and death or composite outcome. The

risk of death and composite event increased by 2.04 (95%CI:1.670;2.490) and 1.53

(95%CI:1.371;1.804) fold associated with one unit decrease in the current value of

log(CD4) level, respectively ( Table D.3). In the standard joint model, it is assumed

Table D.3. Joint modeling of CD4 cell counts evolution of current value and composite
events.

Death Composite outcome
Covariate Estimate SE 95%CI P-value Estimate SE 95%CI P-value

Longitudinal process
(Intercept) 5.033 0.035 (4.963;5.102) <0.0001 5.033 0.035 (4.964; 5.102) <0.0001

NNRTINVP 0.102 0.035 (0.032;0.171) 0.004 0.102 0.035 (0.033; 0.171) 0.0039
log(time) 0.046 0.004 (0.039;0.053) <0.0001 0.046 0.004 (0.039; 0.053) <0.0001
log(time)2 0.098 0.006 (0.086; 0.109) <0.0001 0.098 0.006 (0.086;0.109) <0.0001

Random Effect
σb0 0.676 0.675
σb1 0.060 0.060
σb2 0.037 0.037
σ 0.299 0.299

Event process
NNRTINVP 0.816 0.1937 (0.558; 1.194) 0.2961 0.759 0.125 (0.549;1.050) 0.3715

α 2.039 0.102 (1.670;2.490) <0.0001 1.528 0.070 (1.371;1.804) <0.0001
log.Lik -2969.60 -3821.76

that the risk for an event at a particular time point t depends on the true level of

the log(CD4) cell counts at the same time point t. The strength of the association

between the current level of the log(CD4) counts and death or composite outcome

is captured by the parameter α. However, this may not be the most appropriate in

expressing for the correct relation between the two processes. This is because of the

fact that time-dependent covariates can be much more challenging to handle than

baseline covariates.

2. Interaction Effect

The joint model was refitted with interaction effects of drug and log(CD4) cell counts

in addition to the main effect. The interaction of treatment with log(CD4) cell counts

was statistically significant for composite outcome, but not for death. The risk of

death and composite outcome increased by 2.31-fold (95%CI:(1.652; 3.235)) and 2.10-

fold (95%CI(1.645; 2.653)) for a unit decrease in the current value of log(CD4) cell

counts in patients who initiated with EFV, respectively. Whereas for patients who

initiated with NVP, the risk of death and composite outcome were 1.942-fold and

1.385-fold, respectively (See Appendix D.4).
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Table D.4. Joint modeling of CD4 cell counts evolution with interaction effect
parametrization.

Death Composite outcome
Covariate Estimate SE 95%CI P-value Estimate SE 95%CI P-value

Longitudinal process
(Intercept) 5.032 0.035 4.963; 5.101 <0.0001 5.033 0.035 4.964; 5.102 <0.0001

NNRTINVP 0.101 0.035 0.032; 0.170 0.0041 0.102 0.035 0.032; 0.171 0.004
log(time) 0.0461 0.0035 0.039; 0.053 <0.0001 0.046 0.004 0.039; 0.053 <0.0001
time0.5 0.0975 0.0059 0.086; 0.109 <0.0001 0.097 0.006 0.086; 0.109 <0.0001

Random Effect
σb0 0.676 0.675
σb1 0.060 0.060
σb2 0.037 0.037
σ 0.2989 0.2989

Event process
NNRTINVP 0.361 0.9678 0.054; 2.404 0.2921 0.153 0.7061 0.038; 0.611 0.008

α 0.432 0.1714 0.309; 0.605 <0.0001 0.479 0.122 0.377; 0.608 <0.0001
Assoct:NNRTINVP 1.190 0.209 0.790; 1.793 0.4043 1.508 0.146 1.134; 2.006 0.005

AIC 5981.634 7681.763

3. Legged Effect

The current value of log(CD4) cell counts may not determine the event process, but

previous measurement of the marker. One way to take this into account is to use

time-lagged covariates. The idea is the risk at time t depends on the true value of the

longitudinal marker at time tc, where c specifies the time lag of interest. Table D.5

shows joint model results at lagged time 1. The association between log(CD4) cell

counts at lag-time 1 and the risk for death was statistically significant. There was

2.07-fold (95%CI: 1.703; 2.511) increase in the risk of death for one unit decrease of

log(CD4) cell counts at time t−1. We also observed that a unit decrease in log(CD4)

cell count at time t − 1 has 1.562-fold (95%CI:1.361; 1.793) increase in the risk of

composite event. There was no statistical significant difference in the risk of either

death or composite outcome among the two treatment groups at baseline (Table D.5).

Higher Lagged time can be also considered, Table D.6 presents the model output for

lagged time 2 t − 2.

Table D.5. Joint modeling of CD4 cell counts evolution with lagged 1 effect.
Death Composite outcome

Covariate Estimate SE 95%CI P-value Estimate SE 95%CI P-value
Longitudinal process

(Intercept) 5.070 0.043 4.986; 5.153 <0.0001 5.080 0.043 4.996; 5.164 <0.0001
NNRTINVP 0.088 0.0426 0.005; 0.171 0.0387 0.086 0.043 0.002; 0.169 0.0441

log(time) 0.049 0.004 0.041; 0.057 <0.0001 0.050 0.004 0.042;0.058 <0.0001
time0.5 0.090 0.008 0.074; 0.105 <0.0001 0.086 0.008 0.071; 0.102 <0.0001

Random Effect
σb0 0.719 0.722
σb1 0.074 0.072
σb2 0.106 0.106
σ 0.288 0.2886

Event process
NNRTINVP 0.819 0.193 0.563; 1.20 0.314 1.129 0.125 0.884 1.442 0.3307
α(lag=1) 2.07 0.099 1.703;2.511 <0.0001 1.562 0.070 1.361; 1.793 <0.0001

AIC 6717.942 8420.485
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Table D.6. Joint modeling of CD4 cell counts evolution with lagged 2 effect.
Death Composite outcome

Covariate Estimate SE 95%CI P-value Estimate SE 95%CI P-value
Longitudinal process

(Intercept) 5.069 0.043 4.986; 5.153 <0.0001 5.080 0.043 4.995; 5.163 <0.0001
NNRTINVP 0.088 0.043 0.005; 0.171 0.0386 0.086 0.043 0.002; 0.169 0.0438

log(time) 0.048 0.004 0.041; 0.056 <0.0001 0.050 0.004 0.042;0.058 <0.0001
time0.5 0.090 0.008 0.074; 0.105 <0.0001 0.086 0.008 0.071; 0.102 <0.0001

Random Effect
σb0 0.719 0.722
σb1 0.074 0.072
σb2 0.106 0.106
σ 0.288 0.2886

Event process
NNRTINVP 0.819 0.193 0.561; 1.196 0.3015 1.129 0.125 0.884 1.442 0.3307
α(lag=2) 2.044 0.099 1.683;2.482 <0.0001 1.55 0.070 1.353; 1.780 <0.0001

AIC 6718.561 8420.929

4. Cumulative Effect

To account the whole history of CD4 count up to time point t, the integral of the

longitudinal trajectory is included in the relative risk submodel as a liner predictor.

The parameter which measures the association is statistically insignificant.

Table D.7. Joint modeling of cumulative effect parametrization.
Death Composite outcome

Covariate Estimate SE 95%CI P-value Estimate SE 95%CI P-value
Longitudinal process

(Intercept) 5.0581 0.0427 4.974; 5.142 <0.0001 5.0563 0.0430 4.972; 5.141 <0.0001
NNRTINVP 0.0896 0.0474 0.007; 0.173 0.0343 0.088 0.042 0.006; 0.171 0.0363

log(time) 0.0474 0.004 0.039; 0.055 <0.0001 0.0470 0.0041 0.039; 0.055 <0.0001
time0.5 0.094 0.0078 0.079; 0.109 <0.0001 0.095 0.008 0.080; 0.110 <0.0001

Random Effect
σb0 0.7287 )0.7347
σb1 0.0741 0.0737
σb2 0.1064 0.1059
σ 0.2878 0.2880

Event process
NNRTINVP 0.865 0.189 0.597; 1.254 0.4447 1.140 0.1222 0.897; 1.448 0.2830

α 0.994 0.008 0.979; 1.009 0.4603 1.000 0.0039 0.993; 1.009 0.8317
AIC 5971.252 7668.195

Table D.8. Comparison of models based on the different parametrization.
Death Composite outcome

Parametrization Log-Likelihood AIC BIC Log-Likelihood AIC BIC
Current value -3338.606 6717.213 6816.172 -4189.778 8419.555 8518.514
Interaction -2969.817 5981.634 6085.54 -3819.882 7681.763 7785.67
Lag 1 -3338.971 6717.942 6816.901 -4190.242 8420.485 8519.443
Lag 2 -3339.28 6718.561 6817.519 -4190.465 8420.929 8519.888
Time-Dependent Slope -2964.626 5971.252 6075.159 -3813.097 7668.195 7772.101
Cumulative effect -3364.919 6769.837 6868.796 -4207.455 8454.909 8553.868
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AUC and DDI for WBC and Hgb

Table D.9 and Table D.10 present additional materials for the analysis reported in

Section 7.4.3. Table D.9 presents the area under the ROC curve and estimated DDI of

WBC biomarker for patient 13 by considering simple and relative decrease prediction

rules.

Table D.9. Area under the ROC curve and the estimated DDI of WBC (based on
1000 Monte Carlo samples for patient 13) for both of the prediction rules.

Parametrization Simple value 20% Rel.decrease
∆t t AUC(t) DDI AUC(t) DDI
14 0 0.7049 0.7748 0.7253 0.7748

28 0.7222 0.6854
56 0.6600 0.6836
84 0.7102 0.6720

28 0 0.6905 0.654 0.6997 0.654
28 0.7173 0.6852
56 0.6599 0.6907
84 0.7058 0.6732

42 0 0.6811 0.7038 0.6934 0.7038
28 0.7136 0.6850
56 0.6628 0.6897
84 0.7037 0.6743

56 0 0.6749 0.681 0.6893 0.681
28 0.7107 0.6857
56 0.6642 0.6887
84 0.7026 0.6754
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Table D.10 presents the area under the ROC curve and estimated DDI of Hgb

biomarker for patient 20 by considering simple and relative decrease prediction rules.

Table D.10. Area under the ROC curve and the estimated DDI of Hgb marker
(based on 1000 Monte Carlo samples for patient 20) for both of the prediction rules.

Parametrization Simple value 20% Rel.decrease
∆t t AUC(t) DDI AUC(t) DDI
14 0 0.8638 0.7225 0.8858 0.7225

28 0.8432 0.8816
57 0.8562 0.8309
86 0.9094 0.8522

28 0 0.8278 0.6627 0.8531 0.6627
28 0.8172 0.8642
57 0.8409 0.8144
86 0.9089 0.8438

42 0 0.8012 0.6507 0.8283 0.6507
28 0.7953 0.8536
57 0.8294 0.8036
86 0.9032 0.8399

56 0 0.7791 0.6401 0.8088 0.6401
28 0.7790 0.8465
57 0.8193 0.7933
86 0.8950 0.8378



Samenvatting

De opkomst van HIV tijdens de laatste drie decennia is een van de grootste uitdagingen

waarmee de wereld wordt geconfronteerd. De ziekte is voorlopig ongeneesbaar maar de

invoering van Antiretroviral Therapy (ART) maakt van het virus een controleerbare

chronische ziekte. Indien er reeds een besmetting is van het HIV virus, is een co-

infectie met andere ziekten een extra zware last. Zo is Visceral leishmaniasis (VL) een

endemische en mogelijk levensbedreigend ziekte. Een derde van alle HIV patinten leeft

in regios waar leishmaniasis endemisch is en een co-infectie van VL-HIV verspreidt zich

doorheen deze regios. In deze dissertatie, beoogden we het resultaat van behandelde

genfecteerde HIV and co-genfecteerde V-HIVL patinten in Noordwest Ethiopi in kaart

te brengen.

De hoofdzakelijke doelen van ART op korte termijn zijn de HIV gerelateerde

ziekte- en sterftecijfers reduceren, de overlevingskansen verhogen, de levenskwaliteit

verbeteren, het herstellen en het behouden van het immunologisch functioneren en

het voorkomen van HIV-transmissie. De uitkomsten van ART op lange termijn zijn

anders. Daarom werd een nieuw variabele gedefinieerd met de volgende categorien:

een vervangend geneesmiddel werd toegediend, de patint wordt niet meer opgevolgd,

stopzetting van de behandeling en sterfte. Er was geen significant verschil in het risico

van deze samengestelde variabele tussen patinten die een behandeling begonnen met

EFV of NVP ART na aanpassing van de nul status. De selectie van een juiste be-

handeling wordt vaak benvloed door de karakteristieken van de patint. Hierbij is

vooringenomenheid voor een bepaalde behandeling een groot probleem indien we de

effect van een behandeling willen bestuderen in observatie studies. Een geneigdhei-

dsscore werd opgesteld voor elke behandeling om zo de selectiebias te reduceren.

Gelijkaardige resultaten werden gevonden.

Een significant verschil werd geobserveerd in het risico tussen patinten gestart

195
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met een TDF behandeling die ART bevat and patinten die startte met AZT na het

controleren voor NNRTI medicijnen. Het risico voor TDF gecombineerd met NVP is

in vergelijking met AZT twee keer zo hoog. De studie toonde ook dat er een verhoogd

risico was voor patinten gestart met d4t in vergelijking met AZT. Het risico was niet

significant verschillend voor d4t en de NNRTI medicijnen waarbij werd aangenomen

dat niet meer gevolgde patinten gecenseerd werden. Dit toonde aan dat het verschil

in risico tussen d4t en AZT werd veroorzaakt door de verloren opgevolgde patinten.

Patinten wiens behandeling startte met d4t hadden twee keer het risico niet opgevolgd

te worden in vergelijking met zij die begonnen met AZT. Een mogelijke verklaring

zijn de onomkeerbare bijwerkingen van d4t op lange termijn.

De effecten van de behandeling op de CD4 aantallen variren over tijd en er wordt

aangenomen dat herhaalde metingen van eenzelfde patint geassocieerd zijn. De data

toont een niet lineaire trend en het opleggen van een parametrische functie voor de

gemiddelde evolutie kan ongewenste resultaten opleveren. We namen patint specifieke

random parameters aan voor zowel het lineaire en kwadratische tijdseffect om zo de

verschillende evoluties van het CD4 aantal over de tijd te modelleren. De eerste

afgeleide plot toont dat de snelheid van de CD4 stijging als reactie op de behandeling

hoog is gedurende de eerste 10 maanden en stabiliseert na een jaar. Het resultaat

onthulde ook dat er op lange termijn geen verschil was in de trend van de CD4

aantallen tussen patinten met een EVF of NVP behandeling.

Een flexibele parametrisch benadering werd gebruikt voor de vroege predictie van

CD4 aantallen voor een specifieke behandeling en om de nodige tijd te schatten dat

het CD4 aantal een bepaalde drempelwaarde zal overschrijden. We pasten een cross

validatie toe om de prestatie van een fractioneel polynomiaal gemengd model te eval-

ueren in voorspellingsnauwkeurigheid. Het model wordt vervolgens gebruikt om de

verwachtte tijd te voorspellen die nodig is om de CD4 drempelwaarde te overschrijden

na het opstarten van ART. Zo kan de verdeling van de tijd nodig om de vooropgestelde

CD4 drempelwaarde worden opgesteld en kan deze verdeling worden gebruikt om be-

handelingen te vergelijken.

Vervolgens wordt de kans om een voldoende hoog CD4 aantal te bereiken voorspeld

voor elk individu. Meer dan de helft van de patinten met een ART behandeling en

CD4 aantallen minder dan 200 cells/mm3 overstijgen de drempelwaarde binnen zes

maanden na het opstarten van de behandeling. De tijd nodig om de drempel te

overschrijden is korter voor patinten met een NVP behandeling in vergelijking met

een EFV behandeling. Het verschil werd ook vergeleken gebruik makend van een log-

rank test door de tijd die het kost om de drempelwaarde te overschrijden te nemen

als de survival tijd. Het resultaat toonde aan dat de mediane tijd die het kost om de
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drempelwaarde van 200 CD4 cells/mm3 korter is voor patinten met een NVP dan met

een EFV behandeling. Een mogelijke reden is dat NVP wordt gebruikt voor patinten

met een laag CD4 aantal om de bijwerking van EFV te reduceren. Deze trend is

anders indien de behandeling begint met hogere CD4 aantallen. Dit kan mogelijk

veroorzaakt worden door de sterke natuur van de EFV behandeling.

De heropleving van VL in VL-HIV co-genfecteerde patinten is zeer hoog. Een

vroege detectie van herval kan worden gemaakt aan de hand van biomarkers. Dit

impliceert het testen van verschillende klinische, laboratorische en immunologische

opgevolgde variabelen voor het mogelijk gebruik als biomarker voor terugval. We

implementeerde een joint model voor longitudinale metingen, toegepast op het voor-

spellen van de tijd tot VL herval in VL-HIV co-genfecteerde patinten onder behan-

deling. Resultaten toonden aan dat sterke WBC en hemoglobine kunnen worden

gebruikt als een biomarker voor het voorspellen van een VL herval. De snelheid van

de verandering in hemoglobine niveaus werd een significante predictor bevonden voor

het voorkomen van een herval. Gelijkaardig kan het voorkomen van een herval kan

ook worden voorspeld door de huidige waarde van WBC.

De kansen op een terugval vrije overleving werden bepaald voor elk individu en dy-

namisch gepdatet door het toevoegen van bijkomstige informatie van de biomarker.

De kans op herval in latere opvolg periodes werden voorspeld aan de hand van de

metingen van de biomarkers gedurende 84 dagen. Hoe meer metingen van de biomark-

ers, hoe nauwkeuriger de kans kon worden voorspeld zoals aangetoond door het 95%

betrouwbaarheidsinterval. De voorspellende kracht van de hemoglobine marker is

groter dan deze van WBC. Dit is gebaseerd op de AUC waarden van voor herval.

Lagere waarden van hemoglobine heeft een hogere discriminerend vermogen tussen

patinten die een terugval zullen ondervinden en zij die terugval vrij zullen blijven.

Ter besluit, de lange termijn effecten van ART zijn vergelijkbaar in EFV en NVP

behandelingsgroepen. Een significant verschil werd geobserveerd voor de NNRTI

behandeling voor HIV patinten. Het maximum voordeel van ART wordt bereikt

gedurende de eerste 10 maanden na de opstart van de behandeling. Bij hogere CD4

aantallen, verbetert het CD4 aantal sneller met een EFV behandeling in vergelijking

met een NVP behandeling. Er is een sterke associatie tussen het risico van de eind

variabele en de snelheid van de verandering in het CD4 aantal. Een vroege voor-

spelling in de verandering van het CD4 aantal kan een argument zijn voor het type

behandeling. De kans op VL herval kan worden voorspeld door de verandering van

het hemoglobine niveau en de huidige waarde van de WBC aantallen. In het maken

van het onderscheid tussen patinten met een terugval en zij zonder terugval, heeft

hemoglobine meer kracht dan WBC. Een daling van 20% in hemoglobine kan een on-
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derscheid maken met patinten die binnen 14 dagen een terugval zullen ondervinden.


