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Abstract

In this paper we study birth of canards near a smooth slow-fast Hopf
point of non-Liénard center type which plays an important role in slow-
fast codimension 3 saddle and elliptic bifurcations. We show that the
number of limit cycles created in the birth of canards in such a slow-fast
non-Liénard case is finite. Our paper is also a natural continuation of
[DR09] where slow-fast Hopf points of Liénard type have been studied.
We use geometric singular perturbation theory and the family blow-up.

1 Introduction

The goal of this paper is to finish the study of small amplitude limit cycles in
slow-fast codimension 3 saddle and elliptic bifurcations. The slow-fast codimen-
sion 3 saddle and elliptic bifurcations have been studied in [HDMD13, HDMD14,
Huz16], and our paper is the natural continuation of [Huz16] where, studying
the cyclicity of the origin in the slow-fast codimension 3 bifurcations, we en-
countered the birth of canards in a non-Liénard slow-fast Hopf point of center
type. Due to the length of the paper [Huz16], we give a detailed study of this
non-Liénard slow-fast Hopf case in a separate paper.

Before we explain general planar slow-fast Hopf points in more detail, we
will first use a family blow-up to detect the birth of canards in the slow-fast
codimension 3 saddle and elliptic bifurcations that we want to study here. These
very degenerate codimension 3 bifurcations are given by (see e.g. [HDMD13]):{

ẋ = y

ẏ = −xy + ε
(
b0 + b1x+ b2x

2 ± x3 + x4H̄(x, λ) + y2G(x, y, λ)
)
,

(1)

where ε ≥ 0 is the singular perturbation parameter (ε ∼ 0), b = (b0, b1, b2) ∼
(0, 0, 0) are regular perturbation parameters, λ ∈ Λ, with Λ a compact subset
of euclidean space, and where G and H̄ are smooth functions (in this paper
“smooth” means C∞-smooth). The cyclicity of the origin (x, y) = (0, 0) in the
family (1) has been studied in [HDMD13, HDMD14, Huz16] under the following
condition on the function H̄: H̄(0, λ) 6= 0 for all λ ∈ Λ. This condition “breaks”
the symmetry in (1) because the coefficient in front of the quartic term x4 in
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(1) is nonzero. (For the sake of generality, we have included parameter λ in the
slow-fast family (1).)

To study small amplitude limit cycles in (1), the idea in [HDMD13, HDMD14,
Huz16] was to reduce the codimension of the system by blowing up (1) at
(x, y, b) = (0, 0, 0). The method of reducing codimension consists of two steps
(see also [HDMD13]):

1. First, we blow up the origin in the parameter space b by using the following
blow-up formula:

(b0, b1, b2) = (r3B0, r
2B1, rB2), r ≥ 0, B = (B0, B1, B2) ∈ S2.

Instead of studying (1), with b kept in a small neighborhood of the origin
in b-space, it suffices to study (1), with r ∼ 0 and B ∈ S2. Thus, after this
rescaling in the parameter space b, we deal with only one small parameter
r (B 6= (0, 0, 0)). Instead of working with the spherical coordinates, in
[HDMD13] we introduced 6 charts (or regions) covering the sphere S2: the
jump regions {B0 = ±1} ((B1, B2) kept in a large compact set), the slow-
fast Hopf region {B1 = −1} (B0 ∼ 0 and B2 kept in a large compact set),
the saddle region {B1 = +1} (B0 ∼ 0 and B2 kept in a large compact set)
and the slow-fast Bogdanov-Takens regions {B2 = ±1} ((B0, B1) ∼ (0, 0)).
Taking these compact sets large enough, we can cover the entire sphere
(see also [HDMD13]). As we can see from [HDMD13, HDMD14, Huz16],
the slow-fast Hopf region represents the most difficult region to deal with,
and in this region we will detect our birth of canards.

2. We blow up (x, y, r) = (0, 0, 0) by using the following family blow-up:

(x, y, r) = (ux̄, u2ȳ, ur̄), u ≥ 0, r̄ ≥ 0, (x̄, ȳ, r̄) ∈ S2, (2)

Instead of using the spherical coordinates, it is more convenient to work
with 5 different charts covering the half-sphere: the family directional
chart {r̄ = 1} and the phase-directional charts {x̄ = 1}, {x̄ = −1}, {ȳ = 1}
and {ȳ = −1}. Now, if we want to study the limit cycles of (1) in a small
but fixed neighborhood of the origin (x, y) = (0, 0), then it suffices to
study the blown-up vector field in each chart. For the purpose of this
paper we use only the family directional chart {r̄ = 1}.

In the family chart {r̄ = 1} of the blow-up (2), system (1) changes to (after
division by u > 0, u ∼ 0):

˙̄x = ȳ

˙̄y = −x̄ȳ + ε
(
B0 +B1x̄+B2x̄

2 ± x̄3 + ux̄4H̄(ux̄, λ)

+uȳ2G(ux̄, u2ȳ, λ)
)
.

(3)

where (x̄, ȳ) is kept in a large compact set. Now, it is clear that (3) represents a
slow-fast family with codimension ≤ 2, in each region in the parameter space B.
Thus, we have reduced the codimension of our original system. In the slow-fast
Hopf region, (3) has the following form:

˙̄x = ȳ

˙̄y = −x̄ȳ + ε2
(
εB0 − x̄+B2x̄

2 ± x̄3 + ux̄4H̄(ux̄, λ)

+uȳ2G(ux̄, u2ȳ, λ)
) (4)
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where u ∼ 0, the parameter B2 is kept in a large compact set and where we
replace (ε, B0) by (ε2, εB0), with B0 ∼ 0. It is well known (see [HDMD13]
or [Huz16]) that limit cycles can occur only in the (ε2, εB0)-parameter region,
with ε ∼ 0 and B0 ∼ 0. As we will see later in this section, (4) represents
a slow-fast Hopf point at (x̄, ȳ) = (0, 0). The slow-fast Hopf point gives rise
to a birth of canard limit cycles that occur between large canard limit cycles
in the (x̄, ȳ)-space and small limit cycles near (x̄, ȳ) = (0, 0) the size of which
tends to 0 as ε → 0 (we detect the small limit cycles after a family blow-up
at (x̄, ȳ, ε) = (0, 0, 0), see Section 2). We denote by L0 the limit periodic set
near which such a birth of canards occurs, and the goal of our paper is to prove
Theorem 3.16 which gives the structure of the difference map defined near L0.
Then the finite cyclicity of L0 (see Theorem 2.1) will follow from Theorem 3.16.
Let us recall that in [Huz16] we use Theorem 3.16 to glue together local cyclicity
results and to obtain the global cyclicity 2 of (x, y) = (0, 0) in (1), when H̄(0, λ)
is nonzero. For a precise definition of L0, see Section 2.

Let us now explain how system (4) fits into a general framework for planar
slow-fast Hopf points. We use the following smooth normal form for a slow-fast
Hopf point (see e.g. [DMDR11]):{

˙̄x = ȳ
˙̄y = −x̄ȳ + ε

(
b0 − x̄+O(x̄2)

)
+O(εȳ2),

(5)

where ε is the singular parameter, b0 ∼ 0 is a breaking parameter and O(x̄2)
and O(εȳ2) are smooth functions. (O(x̄2) does not depend on ȳ.) It is well
known that limit cycles can be created by a (slow-fast) Hopf bifurcation in (5)
as we vary the breaking parameter b0 (see e.g. [Ben81, DR96, KS01, DR09]).
Like in (4), we can study a birth of canards in (5) creating limit cycles that
are smaller than detectable canard limit cycles of (5) in the (x̄, ȳ)-space, but
larger than small limit cycles of (5) near (x̄, ȳ) = (0, 0) the size of which goes to
0 as ε → 0. The birth of canards in codimension 1 slow-fast Hopf bifurcations
(i.e. (5) with a nonzero coefficient in front of the quadratic term x̄2 in O(x̄2))
has been studied in [KS01], generalizing the Van der Pol system [DR96]. The
paper [DR09] deals with the birth of canards in a Liénard version of (5) (i.e.
O(εȳ2) ≡ 0 in (5)), with a general O(x̄2)-term (see Theorem 5.11 of [DR09]). As
far as we know, the birth of canards in the non-Liénard case (i.e. O(εȳ2) 6≡ 0)
has not yet been studied, and the idea of our paper is to study the special non-
Liénard case (4). When (B0, B2, u) = (0, 0, 0), (4) is of center type (see Section
2) and we obtain Theorem 2.1(ii). When B2 6= 0, we deal with the well known
codimension 1 slow-fast Hopf point (see Theorem 2.1(i)). Like in Theorem 5.11
of [DR09], in Theorem 2.1 we obtain un upper bound for the cyclicity of L0 that
is one unit higher that the cyclicity of L0. This has been proved in [Huz16] by
gluing together different local cyclicity results and by using Theorem 3.16 (see
also [DR09]).

Although we deal with the special smooth center case (4), we believe that
our methods can be used for a smooth non-Liénard system (5) with a general
O(x̄2)-term (i.e. a general center or any finite codimension). This is a topic of
further study. When (5) is analytic, we can remove the quadratic term O(εȳ2)
(see [Huz17] for more details) and we can directly use the result of [DR09].

In Section 2 we define the limit periodic set L0 and state our main results. By
generalizing the methods introduced in [DR09], in Section 3, we proof our main

3



results (Theorem 3.16 and Theorem 2.1). We use symmetries from (4) and from
the family blow-up at (x̄, ȳ, ε) = (0, 0, 0) (see Section 2), we use smooth normal
forms from [DR10] to study transition maps near semi-hyperbolic singularities
on the blow-up locus, etc. Before applying results from [DR10], first we need
to construct a smooth and symmetric center manifold near the semi-hyperbolic
singularities and to find the most suitable structure of such a center manifold.

Our proof (see Section 3) follows similar steps as the one in [DR09] in the
Liénard case and consists essentially of two steps. First we find the form of
the transition maps near semi-hyperbolic singularities on the blow-up locus (see
Theorem 3.8) from which it follows that the non-Liénard term ε2uȳ2G in (4)
(i.e the term uδ3(1− 1

2v
2)2G in (14)) turns out to be not relevant in comparison

with the dominant (Liénard) term ε2ux̄4H̄ in (4) (i.e the term uδ3v4H̄ in (14))
if H̄(0, λ) 6= 0. In other words, the goal of Section 3.1 is to study the system
(14) near the semi-hyperbolic singularities and to show that the Liénard part of
(4) produces a principal part of (14). Since the rest of the proof (see Sections
3.2–3.5) is very similar to the proof in [DR09] and more technical, we omit here
the details. (We refer to [Huz13] for complete proofs.)

2 Definition of the polycycle L0 and statement
of results

For the sake of better readability, in this section we use the same notation as
in [Huz16]. We define a segment B = [−B0

3 , B
0
3 ], where B0

3 > 1 is an arbitrarily
large but fixed real number, and consider the following smooth slow-fast family:

Zε,B0,B2,B3,u,λ :


˙̄x = ȳ − 1

2 x̄
2

˙̄y = ε2
(
εB0 − x̄+B2x̄

2 +B3x̄
3 + ux̄4H̄(ux̄, λ)

+u(ȳ − 1
2 x̄

2)2G(ux̄, u2(ȳ − 1
2 x̄

2), λ)
)
,

(6)

where ε ≥ 0 is the singular perturbation parameter, B0 ∼ 0, B2 is kept in a
compact subset of R, B3 ∈ B, u ∼ 0, λ ∈ Λ and H̄ and G are smooth functions.
System (6) represents (4) in the Liénard plane {ȳ → ȳ − 1

2 x̄
2} which is more

convenient to use the results from [DR10]. For the sake of generality, we add a
parameter B3.

In this paper we distinguish between two cases:

1. (B2 6= 0) In this case we call (6) slow-fast Hopf bifurcations of codimension
1 and prove that the cyclicity of the polycycle L0 is bounded by 2 (see
Theorem 2.1(i)).

2. (B2 ∼ 0 and H̄(0, λ) 6= 0 for all λ ∈ Λ) This case is referred to as slow-
fast Hopf bifurcations of center type because (6) has a center at the origin
(x̄, ȳ) = (0, 0) when (B0, B2, u) = (0, 0, 0). Since H̄(0, λ) is nonzero, the
cyclicity of L0 is bounded by 3 (see Theorem 2.1(ii)).

As we will see in later sections, the cyclicity of L0 does not depend on
the coefficient B3 ∈ B because the cubic term B3x̄

3 in (6) is not a symmetry
breaking term. When B3 = +1 (resp. B3 = −1), we deal with the saddle case
(resp. the elliptic case).
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Before we define L0 by using a family blow-up at the origin (x̄, ȳ, ε) = (0, 0, 0)
in (6), let us observe that the slow-fast family (6) is invariant under

S : (x̄, ȳ, ε, B0, B2, B3, u, λ, t)→ (−x̄, ȳ, ε,−B0,−B2, B3,−u, λ,−t). (7)

The symmetry S plays a crucial role in our paper (see Section 3).

2.1 The family blow-up at the origin in the (x̄, ȳ, ε)-space

We consider a τ := (B0, B2, B3, u, λ)-family of vector fields on R3

Zτ := Zε,B0,B2,B3,u,λ + 0 ∂
∂ε ,

where we add the equation ε̇ = 0 to (6), and we define the following singular
change of coordinates (i.e. a family blow-up at (x̄, ȳ, ε) = (0, 0, 0)):

Θ1 : R+ × S2 → R3 : (δ, (x̃, ỹ, w)) 7→ (x̄, ȳ, ε) = (δx̃, δ2ỹ, δw), w ≥ 0.

The blown-up vector field is the pullback of Zτ divided by δ:

Z̄τ :=
1

δ
Θ∗1Zτ . (8)

Instead of studying the original vector field Zτ near (x̄, ȳ, ε) = (0, 0, 0), we study
(8) near the blow-up locus {0} × S2

+ in different charts.

2.1.1 Family directional chart {w = 1}

In the family chart {w = 1} we deal with the following family rescaling of (6):

(x̄, ȳ) = (εx̃, ε2ỹ), (9)

where (x̃, ỹ) is kept in an arbitrarily large disk in R2 and ε ≥ 0. The blown-up
field (8) becomes an (ε, τ)-family of 2-dimensional vector fields (we treat ε as a
parameter)

Z(1)
ε,τ :


˙̃x = ỹ − 1

2 x̃
2

˙̃y = B0 − x̃+B2εx̃
2 +B3ε

2x̃3 + uε3x̃4H̄(uεx̃, λ)
+uε3(ỹ − 1

2 x̃
2)2G(uεx̃, u2ε2(ỹ − 1

2 x̃
2), λ).

(10)

In the rest of this section we give some basic properties of (10) that, on
the one hand, help us detect the limit periodic set L0 (see Section 2.1.3). The
properties, on the other hand, will be used for the study of the difference map
near L0 visible in the family directional charts (see e.g. Sections 3.1.5 and 3.2).

From (7) and (9) it follows that Z
(1)
ε,τ is invariant under the symmetry:

S1 : (x̃, ỹ, B0, B2, B3, u, ε, λ, t)→ (−x̃, ỹ,−B0,−B2, B3,−u, ε, λ,−t). (11)

When B0 = ε = 0, Z
(1)
ε,τ has the following form:{

˙̃x = ỹ − 1
2 x̃

2

˙̃y = −x̃.
(12)

Since the vector field (12) is invariant under (x̃, ỹ, t) → (−x̃, ỹ,−t), (12) has a
center at the origin (x̃, ỹ) = (0, 0). Moreover, (12) is the dual of the differential
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1-form ω0 = x̃dx̃ + (ỹ − 1
2 x̃

2)dỹ, and the function H(x̃, ỹ) = e−ỹ(ỹ − 1
2 x̃

2 + 1)

represents a first integral if we use the function −e−ỹ as integrating factor (i.e.
−e−ỹw0 = dH). Clearly, {H(x̃, ỹ) = 1} represents the center (x̃, ỹ) = (0, 0),
denoted by L1 in Figure 1, and {H(x̃, ỹ) = 0} represents the orbit γ in Figure
1 which separates the closed level curves of H, for h ∈]0, 1[, from the open level
curves, parametrized by h < 0.

2.1.2 Phase-directional chart {ỹ = 1}

To study the end points of γ, we use the following blow-up formula in the
phase-directional chart {ỹ = 1}:

(x̄, ȳ, ε) = (δv, δ2, δw). (13)

The blown-up field (8) becomes:

Z(2)
τ :


v̇ = 1− 1

2v
2 + 1

2w
2vD(δ, w, v, τ)

δ̇ = − 1
2δw

2D(δ, w, v, τ)
ẇ = 1

2w
3D(δ, w, v, τ),

(14)

where D(δ, w, v, τ) = −
(
wB0− v+B2δv

2 +B3δ
2v3 +uδ3v4H̄(uδv, λ) +uδ3(1−

1
2v

2)2G(uδv, u2δ2(1− 1
2v

2), λ)
)

. From (13) and the symmetry S it follows that

Z
(2)
τ is invariant under the following symmetries:

S2 : (v, δ, w,B0, B2, B3, u, λ, t)→ (v,−δ,−w,−B0,−B2, B3,−u, λ, t), (15)

S3 : (v, δ, w,B0, B2, B3, u, λ, t)→ (−v, δ, w,−B0,−B2, B3,−u, λ,−t). (16)

The blow-up formula (13) also implies that Z̄τ is invariant under the symmetry:

S4 : (v, δ, w, τ, t)→ (−v,−δ,−w, τ,−t). (17)

When δ = w = 0, (14) has two singularities, v = ±
√

2. The eigenval-
ues at (v, δ, w) = (

√
2, 0, 0) =: S2 are given by (−

√
2, 0, 0) and at (v, δ, w) =

(−
√

2, 0, 0) =: S1 by (
√

2, 0, 0). This implies that (14) has at S2 (resp. S1)
a semi-hyperbolic singularity with a two-dimensional center manifold and the
v-axis as stable manifold (resp. unstable manifold). The points S1,2 are the end
points of γ and of the critical curve {v = ±

√
2, δ ≥ 0, w = 0} in the blown-up

space.
When we study L0, we don’t need to use the other phase-directional charts

({x̃ = ±1} and {ỹ = −1}). See Section 2.1.3.

2.1.3 Combining the family chart and the phase-directional chart
{ỹ = 1}

In this section we detect the limit periodic set L0, at level B0 = 0, using Sections
2.1.1 and 2.1.2. The blown-up vector field Z̄τ is a τ -family of 3-dimensional
vector fields defined in a small neighborhood of the blow-up locus, denoted by
S̄ in Figure 1. For ε = 0, this family depends on the parameter B0 ∼ 0 (see (10)
and (14)). The vector field (12) represents Z̄τ on S̄, when B0 = 0. Clearly, the
α-limit set of γ is S2 and the ω-limit set of γ is S1, and the limit periodic set
L0 is defined as the union of γ and the (regular) arc C between S1 and S2. See
Figure 1.
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S1

S2

{w = 0}

C

Lh

L1

γ

semi-hyperbolic singularities

S̄

Figure 1: The dynamics of the vector field Z̄τ for ε = B0 = 0 and the singular
cycle L0 = γ ∪ C.

2.2 Difference map and statement of results

Our goal is to study limit cycles Hausdorff close to L0 as zeros of a difference
map. First, we choose sections Σ± transverse to C and sections T± transverse
to γ (see Figure 2). The chosen sections are parametrized by two regular pa-
rameters (see Section 3 for precise definitions of Σ± and T±). Now we define
transition maps near L0 (see Figure 2):

(a) the regular transition map Fτ near C from Σ− to Σ+, defined by the flow

of Z
(2)
τ ,

(b) the Dulac transition maps D±τ from Σ± to T±, defined by the flow of

±Z(2)
τ ,

(c) the regular transition map Gτ near γ from T− to T+, defined by the flow

of −Z(1)
ε,τ ,

and the difference map

Ωτ (δ′, w′) = D+
τ ◦ Fτ (δ′, w′)− Gτ ◦ D−τ (δ′, w′), (18)

where (δ′, w′) are the regular parameters on Σ−. The intersection C ∩ Σ− is
given by (δ′, w′) = (0, 0).
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To define the cyclicity of L0, it is convenient to parametrize Σ− by (δ′, w′) =

(δ, w) ∼ (0, 0), where (δ, w) are the coordinates of Z
(2)
τ , and T+ by (h, ε), where

h ∼ 0 is the value of the Hamiltonian H (see Section 2.1.1). Then Ωτ (δ, w) =
(wτ (δ, w), 0), where wτ represents the h-component of the difference map Ωτ
(see also Section 3). We say that the cyclicity of L0 at B2 = B̄2 is bounded by
M ∈ N if there exist ε0 > 0, d > 0 and a small neighborhood V of (0, B̄2, 0) in
(B0, B2, u)-space such that for each ε ∈]0, ε0], (B0, B2, u) ∈ V, B3 ∈ B, λ ∈ Λ
and (B0, B2, u) 6= (0, 0, 0) the number of zeros (counting multiplicity) of wτ (δ, w)
on sε = {(δ, w); δw = ε, (δ, w) ∈ B(d), δ ≥ 0, w ≥ 0} is bounded by M . (B(d)
is a ball of radius d at (δ, w) = (0, 0).) The smallest M with this property is
called the cyclicity of L0 at B2 = B̄2. See also Section 3.4.

Theorem 2.1. The following statements are true:

(i) Suppose that B̄2 6= 0. Then the cyclicity of L0 at B2 = B̄2 is bounded by
2.

(ii) If H̄(0, λ) 6= 0 for all λ ∈ Λ, then the cyclicity of L0 at B2 = 0 is bounded
by 3.

Theorem 2.1 will be proved in Section 3. The proof of Theorem 2.1 consists of
two steps. First, we have to prove Theorem 3.16 which gives the structure of the
difference map wτ (δ, w). (Let us recall that Theorem 3.16 plays an important
role in [Huz16].) Then we study the number of zeros of wτ (δ, w) by using the
so-called Lie-derivative of wτ (δ, w) along the vector field Y = δ ∂∂δ − w

∂
∂w and

Rolle’s theorem (see Sections 3.4 and 3.5).

S̄

Gτ

Fτ
D−
τ

S1
D+
τ

S2

T+

T−

Σ+

Σ−

sε

{w = 0}{δw = ε}

Figure 2: The maps D±τ ,Fτ ,Gτ .
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3 Proof of Theorem 2.1

In order to prove Theorem 3.16, we study the form of the (global) transition
maps Fτ and Gτ , and the (local) Dulac transition maps D±τ . We start with D±τ .

We will often denote by O(r1, ..., rj) a function
∑j
i=1Riri, where Ri and ri

are functions of x. If all these functions are smooth in x, then we say that the
function O(r1, ..., rj) is smooth in x.

3.1 Transitions near S1 and S2

To study the blown-up field Z̄τ around S1,2, we will use the vector field (14).
The symmetry (17) implies that the study of (14) in backward time near S1 in
the region {δ ≥ 0, w ≥ 0, v < 0} follows from a study of (14) in forward time
near S2 in the region {δ ≤ 0, w ≤ 0, v > 0}. Thus, it suffices to study the point
S2. The results for S1 will be obtained by using the symmetry S4 (see Section

3.1.3). Instead of working with Z
(2)
τ near S2, it is more convenient to use the

following equivalent field near S2:

Z̃τ := D(δ, w, v, τ)−1Z(2)
τ , (19)

where D(δ, w, v, τ) is defined in (14). The vector field Z̃τ is well defined in
a small and fixed neighborhood of the point S2 because the parameter τ is
bounded.

To find the structure of the transition map D+
τ , we have to linearize the

hyperbolic v-component in (19). The linearization method consists of 3 steps.
First, we prove existence of a smooth and S2-invariant center manifold at S2

and study the structure of such a center manifold (see Section 3.1.1). Then we
straighten the center manifold and study the structure of the linear part of the
hyperbolic component in (19) (see Section 3.1.2). Finally, in Section 3.1.4 we
linearize the vector field (41), obtained in Section 3.1.2. In Section 3.1.5 we find
the form of D+

τ where T+ is parametrized by (h, ε) (see Theorem 3.11).

3.1.1 A smooth and symmetric center manifold

We saw in Section 2.1 that S2 is a semi-hyperbolic singular point of Z
(2)
τ (or

Z̃τ ), for any value of the parameter τ . A center manifold Cτ at S2 can be
represented by {v =

√
2 + v0(δ, w, τ)}, where v0(δ, 0, τ) ≡ 0. Following the

well known theory [DR96], we can suppose that Cτ is a smooth family, i.e. the
function v0(δ, w, τ) is C∞. In the rest of this section, we restrict ourselves to
smooth τ -families of center manifolds Cτ near S2.

In this section, we show that it is possible to fix a smooth S2-invariant choice
v0(δ, w, τ), and we find that v0(δ, w, τ)− v0(0, w, τ) = w2O(B2δ,B3δ

2, uδ3, δ4).
As we will see in later sections, this plays an important role. We begin with the
intersection Cτ ∩ {δ = 0}.

Lemma 3.1. The restriction of any (smooth) center manifold Cτ of Z̃τ at S2

to {δ = 0} does not depend on (B2, B3, u, λ) and on the choice of Cτ and it is
the graph of a smooth function v =

√
2 + v̄0(w,B0) where

v̄0(w,B0) = v0(0, w, τ) = w2(
1√
2
− 1

2
B0w) +O(w4). (20)
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We have that v̄0(w,B0) = v̄0(−w,−B0).

Proof. See [Huz13].

Let us recall that τ = (B0, B2, B3, u, λ). We denote by τ∗ the parameter
(−B0,−B2, B3,−u, λ).

Proposition 3.2. We can choose v0(δ, w, τ) such that

v0(δ, w, τ) = v0(−δ,−w, τ∗). (21)

Proof. Let Cτ = {v =
√

2 + v0(δ, w, τ)} be a center manifold of Z̃τ at S2. Since

system Z̃τ is invariant under S2 defined in (15), {v =
√

2 + v0(−δ,−w, τ∗)} is

also a center manifold of Z̃τ .
The center manifold Cτ satisfies

1− 1
2

(√
2 + v0(δ, w, τ)

)2

D(δ, w,
√

2 + v0(δ, w, τ), τ)

+
1

2
w2
(√

2 + v0(δ, w, τ) + δ
∂v0

∂δ
(δ, w, τ)− w∂v0

∂w
(δ, w, τ)

)
= 0. (22)

We define the n-jet of v0(δ, w, τ) at w = 0, for each n ∈ N ∪ {∞}:

jnv0(δ, w, τ) =

n∑
k=0

vk0 (δ, τ)wk.

The formal series of v0(δ, w, τ) in powers of w at w = 0 does not depend on
the chosen center manifold Cτ . Indeed, using (22) it can be easily seen that
v0

0(δ, τ) = v1
0(δ, τ) ≡ 0 and vk0 (δ, τ), k ≥ 2, is solution of an explicit solvable

function. In other words,

j∞v0(δ, w, τ) = j∞v0(−δ,−w, τ∗). (23)

Hence the infinite jet of v0 satisfies the S2-symmetry. We define now

V (δ, w, τ) = (
√

2 + v0(δ, w, τ))χ{w≥0} + (
√

2 + v0(−δ,−w, τ∗))χ{w<0},

where χA is the characteristic function of the set A. Hence we consider the
restriction of Cτ to {w ≥ 0} and extension of it in the set {w ≤ 0} by S2-
symmetry. It is clear that V is smooth for w 6= 0. It remains to prove that
V is smooth along {w = 0}. To prove this, we compare the right-hand partial
derivatives of any order at w = 0 and the corresponding left-hand partial deriva-
tives at w = 0. From the definition of V and the property (23) follows that V

is smooth along {w = 0}. Note that {v = V (δ, w, τ)} is a center manifold of Z̃τ
and S2-invariant by the definition of V . This completes the proof.

From now on we suppose that v0 is smooth and invariant under the symmetry
S2. To study the structure of v0, we need the following lemma:

Lemma 3.3. Let Σ = w ∂
∂w + αδ ∂∂δ for some α 6= 0. Let f(δ, w, τ) be a smooth

function which verifies:

(1 +O(w, δ))f(δ, w, τ) +Aw2(1 +O(w, δ))Σf(δ, w, τ) = O(δk) (24)

for some k ∈ N1, a constant A > 0 and smooth functions O(w, δ), O(δk). Then
f(δ, w, τ) = O(δk).

10



Proof. See [DR09], Lemma 4.5.

Proposition 3.4. We can find smooth functions Ψk(δ, w, τ), k = 1, 2, 3, 4, such
that:

v0(δ, w, τ) = v̄0(w,B0) + w2
(
B2δΨ1 +B3δ

2Ψ2 + uδ3Ψ3 + δ4Ψ4

)
, (25)

where Ψ1(0, 0, τ) = −1, Ψ2(0, 0, τ) = −
√

2, Ψ3(0, 0, τ) = −2H̄(0, λ), Ψ4(0, 0, τ) =
0. Moreover, we can suppose that Ψ1 and Ψ2 do not depend on the parameter
u.

Proof. We can write:

v0(δ, w, τ) = v̄0(w,B0) + V (δ, w, τ), (26)

where V = O(δ). Putting v0 = v̄0 + V in (22), we get

−
√

2v̄0 −
1

2
v̄2

0 −
√

2V − v̄0V −
1

2
V 2

+
1

2
w2(
√

2 + v̄0 + V − Σv̄0 − ΣV )D(δ, w,
√

2 + v̄0 + V, τ) = 0 (27)

where Σ := w ∂
∂w − δ

∂
∂δ . Taking into account the definition of v̄0 and (27) we

obtain:

−
√

2V − v̄0V −
1

2
V 2 − 1

2
w2(
√

2 + v̄0 − Σv̄0)D(0, w,
√

2 + v̄0, τ)

+
1

2
w2(
√

2 + v̄0 + V − Σv̄0 − ΣV )D(δ, w,
√

2 + v̄0 + V, τ) = 0,

or equivalently,

−
√

2V − v̄0V −
1

2
V 2 +

1

2
w2(V − ΣV )D(δ, w,

√
2 + v̄0 + V, τ)

+
1

2
w2(
√

2 + v̄0 − Σv̄0)
(
D(δ, w,

√
2 + v̄0 + V, τ)−D(0, w,

√
2 + v̄0, τ)

)
= 0. (28)

Bearing in mind that V = O(δ), v̄0 = O(w2) and Σv̄0 = O(w2), (28) changes to

V (−
√

2 +O(δ, w2))− 1

2
w2(
√

2 +O(δ, w))ΣV

= −1

2
w2(
√

2 +O(w2))
(
D(δ, w,

√
2 + v̄0 + V, τ)−D(0, w,

√
2 + v̄0, τ)

)
. (29)

Let us write η =
√

2 + v̄0 + V . We have

D(δ, w, η, τ)−D(0, w,
√

2 + v̄0, τ)

= −
(
− V +B2δη

2 +B3δ
2η3 + uδ3η4H̄(uδη, λ)

+uδ3(1− 1

2
η2)2G(uδη, u2δ2(1− 1

2
η2), λ)

)
.

Using the above expression and (29) we finally get

V +
1

2
w2(1 +O(δ, w))ΣV

= −1

2
w2(1 +O(δ, w))

(
B2δη

2 +B3δ
2η3 + uδ3η4H̄(uδη, λ)

+uδ3(1− 1

2
η2)2G(uδη, u2δ2(1− 1

2
η2), λ)

)
. (30)

11



From (30) it follows that V = w2V̄ , for some smooth function V̄ , and

(1 +O(δ, w))V̄ +
1

2
w2(1 +O(δ, w))ΣV̄

= −1

2

(
B2δη

2 +B3δ
2η3 + uδ3η4H̄(uδη, λ)

+uδ3(1− 1

2
η2)2G(uδη, u2δ2(1− 1

2
η2), λ)

)
, (31)

for some new functions O(δ, w). If we denote the right hand side of (31) by R,
then there exist smooth functions R3, ..., R6 such that:
R = δR3,
R3 = δR4 −B2(1 +O(δ, w)),
R4 = δR5 −B3

√
2(1 +O(δ, w)),

R5 = δR6 + u(−2H̄(0, λ) +O(δ, w)) and
R6 = u2(−2

√
2(∂1H̄)(0, λ) +O(δ, w))

where we use the fact that 1− 1
2η

2 = O(w2).
Let us denote the left hand side of (31) by A(V̄ ). The symbol A is any

operator A(f) = (1 + O(δ, w))f + 1
2w

2(1 + O(δ, w))Σf . We can prove that
A(δf) = δA(f), up to changing O(δ, w) in the expression of A(f).

We rely on Lemma 3.3. Since A(V̄ ) = δR3, Lemma 3.3 implies that there
exists a smooth function V̄3 such that V̄ = δV̄3. We have that δR3 = A(V̄ ) =
A(δV̄3) = δA(V̄3). As a consequence, A(V̄3) = R3 = δR4 − B2(1 + O(δ, w)).
Then we have that V̄3(0, 0, τ) = −B2 and, by Lemma 3.3, V̄3 = δV̄4 + O1(B2)
where V̄4, O1(B2) are smooth.

Working modulo B2, it implies that δR4 = A(V̄3) = δA(V̄4). Hence A(V̄4) =
R4 = δR5 − B3

√
2(1 + O(δ, w)) modulo B2. As a consequence, we have that

V̄4(0, 0, τ) = −B3

√
2+O(B2) and, by Lemma 3.3, V̄4 = δV̄5 +O2(B2, B3) where

V̄5, O2(B2, B3) are smooth.
Working modulo B2 and B3, it implies that δR5 = A(V̄4) = δA(V̄5). Hence

A(V̄5) = R5 = δR6 + u(−2H̄(0, λ) + O(δ, w)) modulo B2 and B3. As a conse-
quence, we have that V̄5(0, 0, τ) = −2uH̄(0, λ)+O(B2)+O(B3) and, by Lemma
3.3, V̄5 = δV̄6 +O3(B2, B3, u) where V̄6, O3(B2, B3, u) are smooth.

Working modulo B2, B3 and u, it implies that δR6 = A(V̄5) = δA(V̄6).
Hence A(V̄6) = R6 = u2(−2

√
2(∂1H̄)(0, λ) +O(δ, w)) modulo B2, B3 and u. As

a consequence, we have that V̄6(0, 0, τ) = O(B2, B3, u).
We have proved that V = w2V̄ = w2δV̄3 = w2δ(δ(δ(δV̄6 + O3(B2, B3, u)) +

O2(B2, B3)) +O1(B2)). After regrouping terms this gives

V = w2
(
B2δΨ1(δ, w, τ) +B3δ

2Ψ2(δ, w, τ)

+uδ3Ψ3(δ, w, τ) + δ4Ψ4(δ, w, τ)
)
, (32)

where Φk are smooth, Φ1(0, 0, τ) = −1, Φ2(0, 0, τ) = −
√

2, Φ3(0, 0, τ) =
−2H̄(0, λ) and Φ4(0, 0, τ) = 0.

To see that Ψ1 and Ψ2 can be taken to be independent of u, let us write

v0 = ṽ0 + Ṽ ,

where ṽ0 = v0(δ, w,B0, B2, B3, 0, λ) and Ṽ = O(u). As in the case v0 = v̄0 + V

we put ṽ0 (v0 for u = 0) and ṽ0 + Ṽ in (22) and we obtain

Ṽ +
1

2
w2(1 +O(δ, w))ΣṼ = w2uδ3(−2H̄(0, λ) +O(δ, w)).
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As a consequence of Lemma 3.3, we have that Ṽ = w2uδ3(−2H̄(0, λ)+O(δ, w)),
for some new O(δ, w). Now we can get rid of the u-dependent terms in Ψ1 and
Ψ2 by putting them in uδ3Ψ3(δ, w, τ). This completes the proof.

3.1.2 Straightening of the center manifold

We continue working at the point S2. We define the following smooth τ -family
of diffeomorphisms (in a small neighborhood of S2):

(v, δ, w)→ (z, δ, w), z = v − (
√

2 + v0(δ, w, τ)),

where v0 is fixed in Section 3.1.1. The fixed center manifold is given now by
Cτ = {z = 0} and the equation Z̃τ has the following form

ż =
1− 1

2 (
√

2+v0+z)2

D(δ,w,
√

2+v0+z,τ)
+ 1

2w
2(
√

2 + v0 + z + δ ∂v0∂δ − w
∂v0
∂w )

δ̇ = − 1
2δw

2

ẇ = 1
2w

3.

(33)

Taking into account (22) the z-component in (33) changes to

ż =
( 1− 1

2 (
√

2 + v0 + z)2

D(δ, w,
√

2 + v0 + z, τ)
−

1− 1
2 (
√

2 + v0)2

D(δ, w,
√

2 + v0, τ)

)
+

1

2
w2z. (34)

Proposition 3.5. There exist smooth functions A(w,B0), R(z, δ, w, τ), φk(δ, w, τ),
for k = 1, 2, 3, 4, such that the z-component (34) can be written as

ż = −
(
A+B2δφ1 +B3δ

2φ2 + uδ3φ3 + δ4φ4 + zR
)
z, (35)

where φ1(0, 0, τ) =
√

2, φ2(0, 0, τ) = 2, φ3(0, 0, τ) = 2
√

2H̄(0, λ), φ4(0, 0, τ) =

0, A(w,B0) =
1− 1

2 (
√

2+v̄0)(2wB0−
√

2−v̄0)

(wB0−
√

2−v̄0)2
− 1

2w
2 and where R = R0(z, w,B0) +

O(B2δ,B3δ
2, uδ3, δ4).

Proof. The function D(δ, w, v, τ) is given by:

D(δ, w, v, τ) = −
(
wB0 − v + B2δv

2 + B3δ
2v3 + uδ3v4H̄(uδv, λ) + uδ3(1 −

1
2v

2)2G(uδv, u2δ2(1− 1
2v

2), λ)
)

. It is clear that

1− 1
2 (
√

2 + v0 + z)2

−(wB0 −
√

2− v0 − z + α)
=

1− 1
2 (
√

2 + v0 + z)2

−(wB0 −
√

2− v0 − z)
+ α.L, (36)

where L(α, z, δ, w, τ) is smooth and α ∼ 0. Let us write η0 =
√

2 + v0 and
η =
√

2 + v0 + z. We use (36) where
α = α1 := B2δη

2 + B3δ
2η3 + uδ3η4H̄(uδη, λ) + uδ3(1 − 1

2η
2)2G(uδη, u2δ2(1 −

1
2η

2), λ) and
α = α0 := B2δη

2
0 +B3δ

2η3
0 + uδ3η4

0H̄(uδη0, λ) + uδ3(1− 1
2η

2
0)2G(uδη0, u

2δ2(1−
1
2η

2
0), λ):

1− 1
2η

2

D(δ, w, η, τ)
−

1− 1
2η

2
0

D(δ, w, η0, τ)

=
1− 1

2η
2

−(wB0 − η)
+ α1L(α1, z, δ, w, τ)−

1− 1
2η

2
0

−(wB0 − η0)
− α0L(α0, 0, δ, w, τ)

=
1− 1

2η
2

−(wB0 − η)
−

1− 1
2η

2
0

−(wB0 − η0)
+B2δp1 +B3δ

2p2 + uδ3p3, (37)
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where pk(z, δ, w, τ), for k = 1, 2, 3, is a smooth function, and
p1 = L(α1, z, δ, w, τ)η2 − L(α0, 0, δ, w, τ)η2

0 ,
p2 = L(α1, z, δ, w, τ)η3 − L(α0, 0, δ, w, τ)η3

0 and
p3 = L(α1, z, δ, w, τ)

(
η4H̄(uδη, λ) + (1− 1

2η
2)2G(uδη, u2δ2(1− 1

2η
2), λ)

)
−L(α0, 0, δ, w, τ)

(
η4

0H̄(uδη0, λ) + (1− 1
2η

2
0)2G(uδη0, u

2δ2(1− 1
2η

2
0), λ)

)
.

A direct computation shows that pk(z, δ, w, τ) = zp̄k(z, δ, w, τ), for k = 1, 2, 3,
where p̄1 = −

√
2 + O(z, δ, w), p̄2 = −2 + O(z, δ, w) and p̄3 = −2

√
2H̄(0, λ) +

O(z, δ, w).
Using (25) for v0 we have

1− 1
2η

2

−(wB0 − η)
−

1− 1
2η

2
0

−(wB0 − η0)
+

1

2
w2z

= −
(1− 1

2η0(2wB0 − η0)− 1
2z(wB0 − η0)

(wB0 − η0)(wB0 − η)
− 1

2
w2
)
z

= −
(
p1

0 +B2δp
1
1 +B3δ

2p1
2 + uδ3p1

3 + δ4p1
4

)
z (38)

with

p1
0(z, w,B0) =

1− 1
2 (
√

2+v̄0)(2wB0−
√

2−v̄0)− 1
2 z(wB0−

√
2−v̄0)

(wB0−
√

2−v̄0)(wB0−
√

2−v̄0−z)
− 1

2w
2

and, for k=1,2,3,4,

p1
k(z, δ, w, τ) = w2Ψk(δ, w, τ)M(v0(δ, w, τ)− v̄0(w,B0), z, w,B0), (39)

where Ψk are introduced in (25) and M(β, z, w,B0) is a smooth function.

Putting φ̃k = −p̄k + p1
k, for k = 1, 2, 3, and φ̃4 = p1

4, we can rewrite (34):

ż = −
(
p1

0 +B2δφ̃1 +B3δ
2φ̃2 + uδ3φ̃3 + δ4φ̃4

)
z. (40)

WritingA(w,B0) = p1
0(0, w,B0) and φk(δ, w, τ) = φ̃k(0, δ, w, τ), for k = 1, 2, 3, 4,

(40) becomes (35).

Following Proposition 3.5, (33) can be written as:
ż = −

(
A(w,B0) +B2δφ1(δ, w, τ)

+B3δ
2φ2(δ, w, τ) + uδ3φ3(δ, w, τ) + δ4φ4(δ, w, τ) + zR(z, δ, w, τ)

)
z

δ̇ = − 1
2δw

2

ẇ = 1
2w

3.

(41)

The functions A, φ2 and φ4 in (41) have the following symmetry properties:

Proposition 3.6. We have

A(−w,B0)−A(w,B0) = A(w,−B0)−A(w,B0) = −
√

2B0w(1 +O(w2)).

It is possible to choose φ2 and φ4 in a way that

φ2(−δ,−w, τ)− φ2(δ, w, τ) = O(B0w) +O(B2)

φ4(−δ,−w, τ)− φ4(δ, w, τ) = O(B0w) +O(B2) +O(u).
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Proof. As v̄0(w,B0) = v̄0(−w,−B0), we have A(−w,−B0) − A(w,B0) = 0.
It implies that A(−w,B0) − A(w,B0) = O(wB0). Using the fact that v̄0 =

O(w2), we find that ∂
∂w (A(−w,B0)−A(w,B0))

∣∣∣
w=0

= −
√

2B0. Hence we have

A(−w,B0)−A(w,B0) = −
√

2B0w(1+O(w2)) due to the fact that A(−w,B0)−
A(w,B0) is an odd function in variable w.

Consider now φ2 and φ4. We will prove that it is possible to regroup terms in
(40) in a way that new functions φ̃2 and φ̃4 in (40) have the following symmetry
properties:

φ̃2(z,−δ,−w, τ)− φ̃2(z, δ, w, τ) = O(B0w) +O(B2)

φ̃4(z,−δ,−w, τ)− φ̃4(z, δ, w, τ) = O(B0w) +O(B2) +O(u). (42)

Then, it suffices to put z = 0 in the above expressions. Let us recall that
φ̃k = −p̄k + p1

k, for k = 1, 2, 3, and φ̃4 = p1
4, where p̄k is defined after (37) and

p1
k is defined in (39).

Since v0 is S2-invariant, it is clear that L(α, z, δ, w, τ) = L(α, z,−δ,−w, τ∗)
where L is defined in (36) and τ∗ = (−B0,−B2, B3,−u, λ). As a consequence,
we have p̄2(z, δ, w, τ) = p̄2(z,−δ,−w, τ∗). Moreover, p̄2(z, δ, 0, τ) does not de-
pend on B0 due to the fact that v0 = O(w2). Hence, we obtain

p̄2(z,−δ,−w, τ)− p̄2(z, δ, w, τ) = O(B0w) +O(B2) +O(u). (43)

Based on Proposition 3.4 and (36), we have p̄2 = p̄2|u=0 + O(uδ3). Hence we
get

B2δp̄1 +B3δ
2p̄2 + uδ3p̄3 = B2δp̄1 +B3δ

2p̄2|u=0 + uδ3(p̄3 +O(B3δ
2))

=: B2δp̃1 +B3δ
2p̃2 + uδ3p̃3.

Since p̃2 = p̄2|u=0 does not depend on u, (43) implies that

p̃2(z,−δ,−w, τ)− p̃2(z, δ, w, τ) = O(B0w) +O(B2). (44)

We know, by Proposition 3.4, that Ψ2 in (39) does not depend on u. As a
consequence we have that p1

2 = p1
2|u=0 +O(uδ3). Hence we obtain

B2δp
1
1 +B3δ

2p1
2 + uδ3p1

3 + δ4p1
4

= B2δp
1
1 +B3δ

2p1
2|u=0 + uδ3(p1

3 +O(B3δ
2)) + δ4p1

4

= B2δp
1
1 +B3δ

2p1
2|u=0 + uδ3(p1

3 +O(B3δ
2, δ)) + δ4p1

4|u=0

= B2δp
1
1 +B3δ

2(p1
2|u=0 +O(δ2)) + uδ3(p1

3 +O(B3δ
2, δ)) + δ4p1

4|u=0,B3=0

=: B2δp̃
1
1 +B3δ

2p̃1
2 + uδ3p̃1

3 + δ4p̃1
4.

Notice that p̃1
2 is u-independent and p̃1

4 is B3-independent.
Using the S2-invariance of (38) we have that

B3δ
2(p̃1

2(z,−δ,−w, τ)− p̃1
2(z, δ, w, τ))

+δ4(p̃1
4(z,−δ,−w, τ)− p̃1

4(z, δ, w, τ)) = O(w2B0) +O(w2B2) +O(w2u). (45)

Using (45) and the above mentioned properties of p̃1
2 and p̃1

4, we get

B3δ
2(p̃1

2(z,−δ,−w, τ)− p̃1
2(z, δ, w, τ)) = O(wB0) +O(B2)

δ4(p̃1
4(z,−δ,−w, τ)− p̃1

4(z, δ, w, τ)) = O(wB0) +O(B2) +O(u).
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Now, it is clear that

p̃1
2(z,−δ,−w, τ)− p̃1

2(z, δ, w, τ) = O(wB0) +O(B2)

p̃1
4(z,−δ,−w, τ)− p̃1

4(z, δ, w, τ) = O(wB0) +O(B2) +O(u),

for some new O-functions.
Define φ̃k := −p̃k + p̃1

k, for k = 1, 2, 3, and φ̃4 := p̃1
4. Using the above

expressions and (44) we obtain (42).

Let us from now on fix some choice (φ2, φ4) as in Proposition 3.6.

3.1.3 Study of Z
(2)
τ near S1

As the system (14) (i.e. Z
(2)
τ ) is invariant under the transformation S4 defined

in (17), we can use {v = −
√

2 − v0(−δ,−w, τ)} as a smooth symmetric center
manifold at the point S1 where {v =

√
2 + v0(δ, w, τ)} is the (fixed) smooth

symmetric center manifold at S2. It implies that the study of (14) in backward
time near S1 in the region {δ ≥ 0, w ≥ 0, v ≥ −

√
2−v0(−δ,−w, τ)} is equivalent

to the study of Z̃τ near S2 in the region {δ ≤ 0, w ≤ 0, v ≤
√

2 + v0(δ, w, τ)}.
Thus, in the coordinates (z, δ, w), where z = v −

√
2 − v0(δ, w, τ), we focus on

(41) on {δ ≥ 0, w ≥ 0, z ≤ 0}, to study Z̃τ near S2, and we focus on (41) on

{δ ≤ 0, w ≤ 0, z ≤ 0}, to study −Z(2)
τ near S1.

3.1.4 Normally linearizing the equation (41) along {z = 0}

As the functions A+B2δφ1 +B3δ
2φ2 +uδ3φ3 +δ4φ4 and R(z, δ, w, τ) in (41) are

invariant under S2, defined in (15), and A(0, B0) = 1 > 0, we have the following
normal linearization theorem (see [DR10] (Theorem 1.1.) or [DR09] (Theorem
4.8.)):

Theorem 3.7. There exists a smooth family Gτ (z, δ, w) : (z, δ, w)→ (Z,∆,W )
of local diffeomorphisms, defined on a (τ -uniform) neighborhood of (z, δ, w) =

(0, 0, 0), which brings the equation (41), for Z̃τ near the point S2, into the
following normally linearized form:

Ż = −
(
A(W,B0) +B2∆φ1(∆,W, τ) +B3∆2φ2(∆,W, τ)

+u∆3φ3(∆,W, τ) + ∆4φ4(∆,W, τ)
)
Z

∆̇ = − 1
2∆W 2

Ẇ = 1
2W

3.

(46)

The diffeomorphisms Gτ preserve each line {δw = const}; this means that
Gτ (z, δ, w) = (z(1+zgτ (z, δ, w)), δ, w) where gτ is a smooth family of functions.
The functions A, φk are the ones given in (41) (i.e. A, φk are given in Propo-
sition 3.5 taking into account Proposition 3.6). Moreover the diffeomorphisms
Gτ commute with the symmetry S2.

Remark 1. We have, by Theorem 3.7, G−1
τ (Z,∆,W ) = (Z(1 + Γτ (Z,∆,W )),

∆,W ) where Γτ is a smooth family of functions and Γτ (Z,∆,W ) = O(Z). The
inverses G−1

τ commute with the symmetry S2 because Gτ commute with S2. As
a consequence, we have that Γτ (Z,∆,W )−Γτ (Z,−∆,−W ) = O(B0)+O(B2)+
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O(u). As B2 and u are accompanied by, respectively, δ and δ3 in the expression
(40), we get Γτ (Z,∆,W )−Γτ (Z,−∆,−W ) = O(B0) +O(B2∆) +O(u∆3) (see
also [DR10] and [DR09]).

Section 3.1.3 and Theorem 3.7 imply that for the study of Z̃τ near S2 we
have to use (46) on {∆ ≥ 0,W ≥ 0, Z ≤ 0}, and to study (14) near S1 in
backward time we can use (46) on {∆ ≤ 0,W ≤ 0, Z ≤ 0}. Hence we use (46)

on {∆ ≥ 0,W ≥ 0, Z ≤ 0} to study Z̃τ near S2, where we write A+ for A and φ+
k

for φk. To study (14) in backward time near S1 we apply (∆,W )→ (−∆,−W )
to (46) to get

Ż = −
(
A−(W,B0) +B2∆φ−1 (∆,W, τ) +B3∆2φ−2 (∆,W, τ)

+u∆3φ−3 (∆,W, τ) + ∆4φ−4 (∆,W, τ)
)
Z

∆̇ = − 1
2∆W 2

Ẇ = 1
2W

3,

(47)

with A−(W,B0) = A+(−W,B0) and φ−k (∆,W, τ) = (−1)kφ+
k (−∆,−W, τ), k =

1, 2, 3, 4. Hence for the study of (14) in backward time near S1 we consider (47)
on {∆ ≥ 0,W ≥ 0, Z ≤ 0}.

Proposition 3.6 implies the following relations: A−(W,B0)−A+(W,B0) = −
√

2B0W (1 +O(W 2))
φ−2 (∆,W, τ)− φ+

2 (∆,W, τ) = O(B0W ) +O(B2)
φ−4 (∆,W, τ)− φ+

4 (∆,W, τ) = O(B0W ) +O(B2) +O(u).
(48)

3.1.5 Dulac maps D±τ in normal coordinates (Z,∆,W )

To study the transition near S2, we work with (46) on the side {∆ ≥ 0,W ≥
0, Z ≤ 0}. We define two sections Σ+ ⊂ {Z = −Z0} and T+ ⊂ {W = W0},
for some small Z0 > 0, W0 > 0. Section Σ+ is parametrized by (δ, w) ∈
[0, δ0]× [0, w0] for some δ0, w0 > 0 and section T+ is parametrized by (∆, Z) ∈
[0,∆0]× [−Z ′, Z ′] for some ∆0, Z

′ > 0.
To study the transition map near the point S1, we work with (47) on the

side {∆ ≥ 0,W ≥ 0, Z ≤ 0} and denote the transition map by D−τ between
sections Σ− ⊂ {Z = −Z0} and T− ⊂ {W = W0}, where Z0 and W0 are defined
above. Parameterizations of Σ− and T− are also chosen in the same way.

The structure of D±τ is given by:

Theorem 3.8. There are C∞-functions Ā±(w,w2 lnw,B0), φ̄±k (δ, w,w2 lnw, τ)
of (w,w2 lnw,B0), (δ, w,w2 lnw, τ) such that D±τ : (δ, w)→ (∆, Z) are given by
D±τ (δ, w) = ( δwW0

, Z±τ (δ, w)) where

Z±τ (δ, w) = −Z0 exp− 1

w2

(
Ā± +B2δφ̄

±
1 +B3δ

2φ̄±2 + uδ3φ̄±3 + δ4φ̄±4

)
, (49)

with Ā±(0, 0, B0) = 1, φ̄±1 (0, 0, 0, τ) = ±2
√

2/3, φ̄±2 (0, 0, 0, τ) = 1, φ̄±3 (0, 0, 0, τ) =
±4
√

2/5H̄(0, λ) and φ̄±4 (0, 0, 0, τ) = 0. Moreover,

Ā−(w,w2 lnw,B0)− Ā+(w,w2 lnw,B0) = −2
√

2B0w(1 +O(w)),

φ̄−2 (δ, w,w2 lnw, τ)− φ̄+
2 (δ, w,w2 lnw, τ) = O(B0w) +O(B2),

φ̄−4 (δ, w,w2 lnw, τ)− φ̄+
4 (δ, w,w2 lnw, τ) = O(B0w) +O(B2) +O(u).
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Proof. We integrate the equation (46)/(47) from a point (−Z0, δ, w) ∈ Σ± to
the point reached by the orbit on T±. Consider the trajectory (Z(t), δ(t), w(t))
through (−Z0, δ, w). Using the (∆,W )-component of (46) and (47) one finds

(δ(t), w(t)) = (δ(1− w2t)
1
2 , w(1− w2t)−

1
2 ). (50)

Clearly, we have δ(t)w(t) = δw = ε. This implies that the ∆-component of D±τ
is given by: ∆ = δw

W0
. The time we need to go from Σ± to T± is given by

t(w) =
1

w2
− 1

W 2
0

> 0. (51)

Integrating the Z-component of (46) and (47) we get∫ t

0

Ż(s)

Z(s)
ds = −

(∫ t

0

A±(w(s), B0)ds+B2

∫ t

0

δ(s)φ±1 (δ(s), w(s), τ)ds

+B3

∫ t

0

δ(s)2φ±2 (δ(s), w(s), τ)ds+ u

∫ t

0

δ(s)3φ±3 (δ(s), w(s), τ)ds

+

∫ t

0

δ(s)4φ±4 (δ(s), w(s), τ)ds
)
. (52)

Taking into account (50), (51), (52) and the initial condition Z(0) = −Z0 we
get the Z-component of D±τ :

Z±τ (δ, w) = −Z0 exp−
(∫ t(w)

0

A±(w(s), B0)ds+B2δ

∫ t(w)

0

(1− w2s)
1
2φ±1 ds

+B3δ
2

∫ t(w)

0

(1− w2s)φ±2 ds+ uδ3

∫ t(w)

0

(1− w2s)
3
2φ±3 ds

+δ4

∫ t(w)

0

(1− w2s)2φ±4 ds
)

(53)

where φ±k = φ±k (δ(s), w(s), τ), for k = 1, 2, 3, 4. If we use the change of variable:
σ = w2s in (53), then we obtain:

∫ t(w)

0

A±(w(s), B0)ds =
1

w2

∫ 1− w2

W2
0

0

A±(w(1− σ)−
1
2 , B0)dσ, (54)

and ∫ t(w)

0

(1− w2s)
i
2φ±i (δ(s), w(s), τ)ds

=
1

w2

∫ 1− w2

W2
0

0

(1− σ)
i
2φ±i (δ(1− σ)

1
2 , w(1− σ)−

1
2 , τ)dσ, i = 1, 2, 3, 4. (55)

To continue studying the integrals (54) and (55), we use the following propo-
sition (see [DR09], Lemma 4.10. and Proposition 4.11.):
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Proposition 3.9. Let r be a C∞-function and i ≥ 0 an integer. One considers
in the domain above defined for (δ, w, τ) (in particular 0 < w ≤ w0 < W0) the
integral function

J(δ, w, τ) =

∫ 1− w2

W2
0

0

(1− σ)
i
2 r(δ(1− σ)

1
2 , w(1− σ)−

1
2 , τ)dσ. (56)

Then this function is equal to s(δ, w,w2 lnw, τ) where s is a C∞-function. More-
over, one has that J(0, 0, τ) = 2

i+2r(0, 0, τ).

As a consequence of (54) and Proposition 3.9 (with i = 0) one has that∫ t(w)

0

A±(w(s), B0)ds =
1

w2
Ā±(w,w2 lnw,B0)

where Ā± is a C∞-function in variable (w,w2 lnw,B0) and Ā±(0, 0, B0) =
2

0+2A
±(0, B0) = 1. Using (55) we have, by Proposition 3.9, that∫ t(w)

0

(1− w2s)
i
2φ±i (δ(s), w(s), τ)ds =

1

w2
φ̄±i (δ, w,w2 lnw, τ), i = 1, 2, 3, 4,

where φ̄±i is a C∞-function of (δ, w,w2 lnw, τ) and φ̄±i (0, 0, 0, τ) = 2
i+2φ

±
i (0, 0, τ).

Proposition 3.5 and the fact that φ−i (δ, w, τ) = (−1)iφ+
i (−δ,−w, τ) imply that

φ̄±1 (0, 0, 0, τ) = ± 2
√

2
3 , φ̄±2 (0, 0, 0, τ) = 1, φ̄±3 (0, 0, 0, τ) = ± 4

√
2

5 H̄(0, λ) and

φ̄±4 (0, 0, 0, τ) = 0.
It remains to study Ā− − Ā+, φ̄−2 − φ̄

+
2 and φ̄−4 − φ̄

+
4 . Using the change of

variable s = w(1− σ)−
1
2 and (48) we have that

Ā−(w,w2 lnw,B0)− Ā+(w,w2 lnw,B0)

=

∫ 1− w2

W2
0

0

(
A−(w(1− σ)−

1
2 , B0)−A+(w(1− σ)−

1
2 , B0)

)
dσ

= 2w2

∫ W0

w

1

s3

(
A−(s,B0)−A+(s,B0)

)
ds

= −2
√

2B0w
2

∫ W0

w

1

s2
(1 +O(s2))ds

= −2
√

2B0w
2(

1

w
− 1

W0
+O(1)) = −2

√
2B0w(1 +O(w)),

where O(w) is smooth in (w,B0). Similarly, we get

φ̄−2 (δ, w,w2 lnw, τ)− φ̄+
2 (δ, w,w2 lnw, τ)

=

∫ 1− w2

W2
0

0

(1− σ)(φ−2 − φ
+
2 )(δ(1− σ)

1
2 , w(1− σ)−

1
2 , τ)dσ

= B0w

∫ 1− w2

W2
0

0

(1− σ)
1
2 f0(δ(1− σ)

1
2 , w(1− σ)−

1
2 , τ)dσ

+B2

∫ 1− w2

W2
0

0

(1− σ)f1(δ(1− σ)
1
2 , w(1− σ)−

1
2 , τ)dσ

= B0wF0(δ, w,w2 lnw, τ) +B2F1(δ, w,w2 lnw, τ),
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where, by Proposition 3.9, F0 and F1 are smooth functions.
The study of φ̄−4 − φ̄

+
4 is analogous to the study of φ̄−2 − φ̄

+
2 .

Following Section 2.1.1, the vector field −e−ỹZ(1)
ε,τ is Hamiltonian, for ε =

B0 = 0. Since T± are visible in the family chart of the blow-up defined in
Section 2.1, we can use (h, ε) as coordinates of T±, where h is the value of the
Hamiltonian H(x̃, ỹ) = e−ỹ(ỹ − 1

2 x̃
2 + 1). We have ε = ∆W0 and h = h±τ,ε(Z)

where (∆, Z) are the old coordinates of T±.

Lemma 3.10.
ε = ∆W0

h = h±τ,ε(Z) = h̃τ,ε(Z) +B0Π±0 (Z, τ, ε) +B2εΠ
±
1 (Z, τ, ε)

+uε3Π±3 (Z, τ, ε),

(57)

where h̃τ,ε,Π
+
k are smooth in variable (Z, τ, ε). The map Z → h̃τ,ε(Z) is a diffeo-

morphism, independent of ± and has the form h̃τ,ε(Z) = εφ̃(τ, ε)+ h̃1(τ, ε)Z(1+

O(Z)) with h̃1(τ, ε) < 0.

Proof. See [Huz13].

From Theorem 3.8 and Lemma 3.10 follows the form of Dulac maps D±τ from
Σ± to T±, where T± is parametrized by (h, ε). We write D±τ (δ, w) = (d±τ (δ, w), ε)
where ε = δw and d±τ (δ, w) = h±τ,ε(Z

±
τ (δ, w)).

Theorem 3.11. There are C∞-functions A±(δ, w,w2 lnw, τ), Φ±k (δ, w,w2 lnw, τ)
of (δ, w,w2 lnw, τ) such that

d±τ (δ, w) = D±(τ, ε)

+ exp− 1
w2

(
A± +B2δΦ

±
1 + uδ3Φ±3

)
, with

D±(τ, ε) = εφ̃(τ, ε) +B0Π±0 (0, τ, ε) +B2εΠ
±
1 (0, τ, ε) + uε3Π±3 (0, τ, ε).

(58)

The functions Π±k , φ̃ are introduced in Lemma 3.10, and A±(0, 0, 0, τ) = 1,

Φ±1 (0, 0, 0, τ) = ±2
√

2/3 and Φ±3 (0, 0, 0, τ) = (±4
√

2/5)H̄(0, λ). Moreover,

A−(δ, w,w2 lnw, τ)−A+(δ, w,w2 lnw, τ) = −2
√

2B0w(1 +O(δ2, w)).

Proof. See [Huz13].

3.2 Global transition maps Fτ ,Gτ
In Section 3.1 we found an expression for the local Dulac maps D±τ : Σ± → T±
working with normal coordinates. It remains to study the regular transition
maps Fτ : Σ− → Σ+ and Gτ : T− → T+.

3.2.1 Transition map Fτ
We will state our main theorem in terms of the normal coordinates, as intro-
duced in Section 3.1.5. To avoid confusion, let us parametrize Σ− = {Z = −Z0}
by normal coordinates (δ, w), (δ, w) ∼ (0, 0), δ ≥ 0, w ≥ 0 and Σ+ = {Z = −Z0}
by normal coordinates (∆,W ), (∆,W ) ∼ (0, 0), ∆ ≥ 0,W ≥ 0. Then:
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Theorem 3.12. The transition map Fτ : (δ, w) → (∆,W ) has the following
form:

Fτ (δ, w) =
(
δ(1 + w2Rτ (δ, w)), w(1 + w2Rτ (δ, w))−1

)
, (59)

where Rτ = O(B0, B2δ, uδ
3) is a smooth family of functions in (δ, w, τ).

Proof. See [Huz13].

3.2.2 Transition map Gτ
In Section 3.1.5 we have chosen two sections T− and T+ with the same value
W0: T− ⊂ {W = W0} and T+ ⊂ {W = W0}, and we have parametrized them
by (h, ε). We define a smooth transition map Gτ (h, ε) in the family directional

chart by following the orbits of −Z(1)
ε,τ , from T− to T+. (In the family chart, the

blown up vector field Z̄τ is the (τ, ε)-family Z
(1)
ε,τ .) The map Gτ has the following

form

Gτ (h, ε) = (g(h, ε, τ), ε).

Since Z
(1)
ε,τ is invariant under S1, defined in (11), we have that orbits of Z

(1)
ε,τ

are symmetric with respect to the ỹ-axis if B0 = B2 = u = 0. It is clear
that level curves {H(x̃, ỹ) = h} are also symmetric w.r.t. the ỹ-axis where the
Hamiltonian H is introduced in Section 2.1. Hence we obtain that

g(h, ε, τ) = h for B0 = B2 = u = 0.

Theorem 3.13. The h-component of the transition map Gτ has the following
form:

g(h, ε, τ) = h+B0l0(h, ε, τ) +B2εl1(h, ε, τ) + uε3l3(h, ε, τ), (60)

for smooth functions l0, l1, l3 such that l0(0, 0, τ) = −e
∫ x̃0

−x̃0
e−

1
2 x̃

2

dx̃+O(B0) < 0

where x̃0 =
√

2(1 +W 2
0 )/W0.

Proof. See [Huz13].

3.3 Difference map Ωτ

Let us recall the expression (18) of the difference map Ωτ :

Ωτ (δ, w) = D+
τ ◦ Fτ (δ, w)− Gτ ◦ D−τ (δ, w), (61)

where D±τ is defined in Section 3.1, and Fτ and Gτ are defined in Section 3.2.
Notice that we continue denoting the normalizing coordinates (∆,W ) near the
point S1 by (δ, w). Σ− is parametrized by (δ, w).

Clearly the ε-component of Ωτ (δ, w) is equal to 0. The h-component of
Ωτ (δ, w) is

ωτ (δ, w) = d+
τ (Fτ (δ, w))− g(d−τ (δ, w), δw, τ), (62)

where d±τ are the h-components of D±τ . First we study each of the terms
g(d−τ (δ, w), δw, τ) and d+

τ (Fτ (δ, w)).
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3.3.1 The study of d+
τ ◦ Fτ

Combining Theorem 3.11 and Theorem 3.12 we obtain:

Lemma 3.14.

d+
τ ◦ Fτ (δ, w) = D+(τ, ε) + exp− 1

w2

(
Ã+(δ, w,w2 lnw, τ)

+B2δΦ̃
+
1 (δ, w,w2 lnw, τ) + uδ3Φ̃+

3 (δ, w,w2 lnw, τ)
)
, (63)

where δw = ε, D+(τ, ε) is defined in Theorem 3.11, Ã+, Φ̃+
1 , Φ̃

+
3 are smooth

functions in δ, w,w2 lnw, τ and

Ã+ = A+ +O(w2B0),

Φ̃+
1 (0, 0, 0, τ) = Φ+

1 (0, 0, 0, τ), Φ̃+
3 (0, 0, 0, τ) = Φ+

3 (0, 0, 0, τ).

Proof. See [Huz13].

3.3.2 The study of g(d−τ (δ, w), δw, τ)

Combining Theorem 3.11 and Theorem 3.13 we obtain:

Lemma 3.15. We have

g(d−τ (δ, w), δw, τ) = ḡ0(ε, τ) + exp− 1

w2

(
Ã−(δ, w,w2 lnw, τ)

+B2δΦ̃
−
1 (δ, w,w2 lnw, τ) + uδ3Φ̃−3 (δ, w,w2 lnw, τ)

)
, (64)

where δw = ε, Ã−, Φ̃−1 , Φ̃
−
3 are smooth functions in δ, w,w2 lnw, τ and

ḡ0(ε, τ) = h̃τ,ε(0) +B0̃ l̄0(ε, τ) +B2ε̃l̄1(ε, τ) + uε3̃ l̄3(ε, τ),

with ˜̄lj smooth and h̃τ,ε(0) introduced in Lemma 3.10. Moreover, Ã− = A− +

O(w2B0), Φ̃−1 (0, 0, 0, τ) = Φ−1 (0, 0, 0, τ) and Φ̃−3 (0, 0, 0, τ) = Φ−3 (0, 0, 0, τ).

Proof. See [Huz13].

3.3.3 Conclusion

Combining Theorem 3.11, Lemma 3.14 and Lemma 3.15 we get

Theorem 3.16.

ωτ (δ, w) = d+
τ (Fτ (δ, w))− g(d−τ (δ, w), δw, τ)

= D+(τ, ε)− ḡ0(ε, τ) + exp− 1

w2

(
Ã+ +B2δΦ̃

+
1 + uδ3Φ̃+

3

)
− exp− 1

w2

(
Ã− +B2δΦ̃

−
1 + uδ3Φ̃−3

)
, (65)

where ḡ0(ε, τ), D+(τ, ε), Ã± and Φ̃±k are introduced in Lemma 3.14 and Lemma
3.15. Moreover, we have

Ã±(0, 0, 0, τ) = 1, Φ̃±1 (0, 0, 0, τ) = ±2
√

2/3, Φ̃±3 (0, 0, 0, τ) = (±4
√

2/5)H̄(0, λ),

Ã−(δ, w,w2 lnw, τ) = Ã+(δ, w,w2 lnw, τ)− 2
√

2B0w(1 +O(δ2, w)),

and

D+(τ, ε)− ḡ0(ε, τ) = B0κ0(τ, ε) + εB2κ1(τ, ε) + ε3uκ3(τ, ε)

where κj is a smooth function and κ0 is a strictly positive for (ε, B0) ∼ (0, 0).
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3.4 Lie-derivative

Suppose that (ε, τ) is arbitrary and fixed with ε ∼ 0 and ε > 0. (The case
ε = 0 is trivial.) Our goal is to study the number of zeros of the function ωτ on
each (1-dimensional) segment sε = {(δ, w); δw = ε, (δ, w) ∈ B(d), δ ≥ 0, w ≥ 0},
where B(d) is a ball of fixed radius d > 0 at the origin (δ, w) = (0, 0). We use the
Lie-derivative LYωτ = δ ∂ωτ∂δ −w

∂ωτ
∂w of ωτ along the vector field Y = δ ∂∂δ −w

∂
∂w ,

which does not have singularities on sε, and Rolle’s theorem. As we will see in
this section, instead of working with {ωτ (δ, w) = 0} it is more convenient to
work with {LYωτ (δ, w) = 0}.

First, we prove some properties of the Lie-derivative LY of functions which
are smooth in (δ, w,w2 lnw, τ, ε).

Lemma 3.17. If n,m ∈ Z, then LY(δnwm) = (n−m)δnwm. If F (δ, w, τ, ε) =
f(δ, w,w2 lnw, τ, ε) with f smooth, then G(δ, w, τ, ε) = LYF (δ, w, τ, ε) is also
smooth in (δ, w,w2 lnw, τ, ε) and G(0, 0, τ, ε) ≡ 0 (one can also write G = o(1)).

Proof. See [DR09], Lemma 5.9.

Lemma 3.17 implies the following lemma that will be useful later:

Lemma 3.18. Suppose that n,m ∈ Z and α ∈ R.
1. If n 6= m and F (δ, w, τ, ε) = δnwm(α + o(1)) where o(1) is smooth in
(δ, w,w2 lnw, τ, ε) and o(1) ≡ 0 for (δ, w) = (0, 0), then

LYF (δ, w, τ, ε) = (n−m)δnwm(α+ o(1)),

where the symbol o(1) is also for a function smooth in (δ, w,w2 lnw, τ, ε) and
o(1) ≡ 0 for (δ, w) = (0, 0).
2. If n = m, we have that

LY(δnwm(α+ o(1))) = o(δnwm).

Proof. As a consequence of Lemma 3.17, we have that

LY(δnwm(α+ o(1))) = (α+ o(1))LY(δnwm) + δnwmLY(α+ o(1))

= (n−m)δnwm(α+ o(1)) + δnwmo(1).

As a consequence of Lemma 3.17, we have that

LY(D+(τ, ε)− ḡ0(ε, τ)) = LY(D+(τ, δw)− ḡ0(δw, τ)) = 0.

Thus, it suffices to study the Lie-derivative of the exponential terms in (65). If

we write T±(δ, w, τ, ε) = Ã± +B2δΦ̃
±
1 + uδ3Φ̃±3 , then we obtain

LYωτ = −LY(
1

w2
T+) exp− 1

w2
T+ + LY(

1

w2
T−) exp− 1

w2
T−.

To push the terms LY( 1
w2T

±) in the corresponding exponential terms, we have
to study LY( 1

w2T
±) carefully. Using Lemma 3.17 we obtain that

LY(
1

w2
T±) = T±LY(

1

w2
) +

1

w2
LY(T±)

= 2
1

w2
T± +

1

w2
LY(T±) =

1

w2

(
2T± + LY(T±)

)
.
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Let us remind that T± is smooth in (δ, w,w2 lnw, τ, ε). Then, by Lemma 3.17,
we get

2T±(0, 0, τ, ε) + LY(T±)(0, 0, τ, ε) = 2Ã±(0, 0, 0, τ) + 0 = 2 > 0.

It follows that the function P±(δ, w, τ, ε) := 2T±(δ, w, τ, ε) + LY (T±)(δ, w, τ, ε)
is strictly positive by taking a sufficiently small ball B(d) at the origin (δ, w) =
(0, 0). Since P± is smooth in (δ, w,w2 lnw, τ, ε), its logarithm is also a smooth
function in (δ, w,w2 lnw, τ, ε). So, we can write

LYωτ = − 1

w2
P+ exp− 1

w2
T+ +

1

w2
P− exp− 1

w2
T−

= − 1

w2

(
exp− 1

w2
(T+ − w2 lnP+)− exp− 1

w2
(T− − w2 lnP−)

)
. (66)

The expression (66) implies that the equation {LYωτ = 0} is equivalent to

T+ − T− + w2 ln
P−

P+
= 0, (67)

for w > 0. Using the properties of Ã±, Φ̃±1 and Φ̃±3 given in Theorem 3.16 we
have that

T+ − T− = Ã+ − Ã− +B2δ(Φ̃
+
1 − Φ̃−1 ) + uδ3(Φ̃+

3 − Φ̃−3 )

= 2
√

2B0w(1 +O(δ2, w)) +B2δ
4
√

2

3
(1 + o1(1)) + uδ3 8

√
2

5
(H̄(0, λ) + o3(1)), (68)

where O(δ2, w), o1(1) and o3(1) are smooth in (δ, w,w2 lnw, τ).

Let us study w2 ln P−

P+ . We have

P− − P+ = 2(T− − T+) + LY(T− − T+).

Keeping in mind Lemma 3.18 and (68) we obtain that

LY(T− − T+) = −2
√

2B0LY(w(1 +O(δ2, w)))

−B2
4
√

2

3
LY(δ(1 + o1(1)))− u8

√
2

5
LY(δ3(H̄(0, λ) + o3(1)))

= 2
√

2B0w(1 +O(δ2, w))−B2
4
√

2

3
δ(1 + o1(1))− u24

√
2

5
δ3(H̄(0, λ) + o3(1)),

for some new functions O(δ2, w), o1(1), o3(1) smooth in (δ, w,w2 lnw, τ). This
implies that

P− = P+ + 2(T− − T+) + LY (T− − T+)

= P+ − 2
√

2B0w(1 +O(δ2, w))−B24
√

2δ(1 + o1(1))− u8
√

2δ3(H̄(0, λ) + o3(1)),

for some new functions O(δ2, w), o1(1), o3(1).
From the above expression and the fact that P−(0, 0, τ, ε) = 2 > 0 it follows

that

P−

P+
= 1−

√
2B0w(1 + o(1))−B22

√
2δ(1 + o1(1))− u4

√
2δ3(H̄(0, λ) + o3(1)),
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for some functions o(1), o1(1), o3(1) smooth in (δ, w,w2 lnw, τ). Finally, we have

w2 ln
P−

P+
= B0wO(w2) +B2δO1(w2) + uδ3O3(w2), (69)

where O(w2), O1(w2) and O3(w2) are smooth in (δ, w,w2 lnw, τ).
If we use now the expressions (68) and (69) we obtain that

T+ − T− + w2 ln P−

P+ =

2
√

2B0w(1 +O(δ2, w)) +B2δ
4
√

2
3 (1 + o1(1)) + uδ3 8

√
2

5 (H̄(0, λ) + o3(1)),

where O(δ, w2), o1(1) and o3(1) are smooth in (δ, w,w2 lnw, τ). Thus, the equa-
tion {LYwτ = 0} is equivalent, for w > 0, to:

2
√

2B0w(1 +O(δ2, w)) +B2δ
4
√

2

3
(1 + o1(1))

+uδ3 8
√

2

5
(H̄(0, λ) + o3(1)) = 0. (70)

3.5 A finite cyclicity of L0

As mentioned above, we distinguish between the case B2 6= 0 and the case
B2 ∼ 0 and H̄(0, λ) 6= 0 for all λ ∈ Λ.

3.5.1 B2 ∈ C ⊂]−∞,+∞[\{0}, C is a compact set in R

We can write (70) as

2
√

2B0w(1 +O(δ2, w)) +B2δ
4
√

2

3
(1 + o(1)) = 0, (71)

where O(δ2, w) and o(1) are smooth in (δ, w,w2 lnw, τ). To prove Theorem 2.1
(i), we use an algorithm of derivation-division introduced in [DR09].

We begin the derivation-division algorithm by dividing (71) by 2
√

2w(1 +
O(δ2, w)), the factor of the parameter B0, which is strictly positive on segments
sε, ε > 0. Then the left-hand side of (71) changes to

Q := B0 +B2δw
−1 2

3
(1 + o(1)), (72)

for a new o(1) smooth in (δ, w,w2 lnw, τ). By Lemma 3.18, we get

LY(Q) = B2δw
−1 4

3
(1 + o(1)), (73)

where o(1) is different from the previous one. As B2 6= 0, this function is nonzero
for (δ, w) ∼ (0, 0), δ > 0, w > 0, B0 ∼ 0, B2 ∈ C, B3 ∈ B, u ∼ 0 and λ ∈ Λ.
Following Rolle’s Theorem, at most 2 limit cycles occur Hausdorff close to L0,
for B2 6= 0.
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3.5.2 B2 ∼ 0 and H̄(0, λ) 6= 0 for all λ ∈ Λ

We again use an algorithm of derivation-division. We introduce (B̄0, B̄2, ū),
where (B̄0, B̄2, ū) ∈ S2 and

(B0, B2, u) = r(B̄0, B̄2, ū)

where r ≥ 0, r ∼ 0. For r > 0, using this rescaling, the expression (70) can be
written as

Q̄(δ, w, r, B̄0, B̄2, ū, B3, λ) := 2
√

2B̄0w(1 +O(δ2, w)) + B̄2δ
4
√

2

3
(1 + o1(1))

+ūδ3 8
√

2

5
(H̄(0, λ) + o3(1)) = 0. (74)

(If r = 0, then the left-hand side of (70) is equal to zero, corresponding to a
system of center type.) Instead of using coordinates on the sphere, it is more
convenient to use different charts of the sphere.
(1) Case ū = ±1, (B̄0, B̄2) ∈ K, K is any compact subset of R2. We begin the
derivation-division algorithm by dividing (74) by

T1 = 2
√

2w(1 +O(δ2, w)),

the factor of the parameter B̄0 in (74), which is strictly positive on segments sε,
for each ε ∼ 0 and ε > 0. Using Lemma 3.18 we obtain that

LY(
Q̄

T1
) = B̄2δw

−1k1(1 + o1(1)) + ūδ3w−1k3(H̄(0, λ) + o3(1)), (75)

for some positive constant k1 and k3 and some new o1(1) and o3(1). Hence, we
have eliminated the parameter B̄0. Let us divide now (75) by the positive factor
T2 = δw−1k1(1 + o1(1)) of B̄2 in (75). Then, by Lemma 3.18,

LY(
LY( Q̄T1

)

T2
) = ūδ2k̄3(H̄(0, λ) + o3(1)), (76)

where k̄3 is a positive constant and o3(1) is smooth in (δ, w,w2 lnw, τ).
As ū = ±1 and H̄(0, λ) 6= 0 for all λ ∈ Λ, the expression (76) is nonzero, for

(δ, w) ∼ (0, 0), (δ, w) > (0, 0), r ∼ 0, (B̄0, B̄2) ∈ K, B3 ∈ B and λ ∈ Λ. Now
Rolle’s Theorem implies that Q̄ has at most 2 roots (counting multiplicity) on
the segments sε under the given conditions on the parameters.

Remark 2. Since H̄(0, λ) 6= 0 for all λ ∈ Λ, in each step of the above algorithm
of derivation-division we deal with factors δnwm(α + o(1)), where α 6= 0 and
n,m ∈ Z, n 6= m. This enables us to have a well-defined algorithm in each step.

(2) Case B̄0 = ±1, (B̄2, ū) ∈ K, K is any compact set, and (3) Case B̄2 = ±1,
(B̄0, ū) ∈ K, K is any compact set. The study of the case (2) and the case (3)
is analogous to the study of the case (1); we can prove that Q̄ has at most 2
roots (counting multiplicity) on the segments sε.

As the equation (70) is equivalent to {LYωτ = 0} for w > 0, the Rolle’s
theorem implies that the cyclicity of L0 at B2 = 0 is bounded by 3 under the
given condition on the function H̄. Hence we arrive at the statement of Theorem
2.1 (ii).
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[Ben81] É. Benôıt. Chasse au canard. II. Tunnels—entonnoirs—peignes.
Collect. Math., 32(2):77–97, 1981.

[DMDR11] P. De Maesschalck, F. Dumortier, and R. Roussarie. Cyclicity of
common slow-fast cycles. Indag. Math. (N.S.), 22(3-4):165–206,
2011.

[DR96] F. Dumortier and R. Roussarie. Canard cycles and center manifolds.
Mem. Amer. Math. Soc., 121(577):x+100, 1996. With an appendix
by Cheng Zhi Li.

[DR09] F. Dumortier and R. Roussarie. Birth of canard cycles. Discrete
Contin. Dyn. Syst. Ser. S, 2(4):723–781, 2009.

[DR10] F. Dumortier and R. Roussarie. Smooth normal linearization of
vector fields near lines of singularities. Qual. Theory Dyn. Syst.,
9(1-2):39–87, 2010.

[HDMD13] R. Huzak, P. De Maesschalck, and F. Dumortier. Limit cycles in
slow-fast codimension 3 saddle and elliptic bifurcations. J. Differ-
ential Equations, 255(11):4012–4051, 2013.

[HDMD14] R. Huzak, P. De Maesschalck, and F. Dumortier. Primary birth of
canard cycles in slow-fast codimension 3 elliptic bifurcations. Com-
munications on Pure and Applied Analysis, 13(6):2641–2673, 2014.

[Huz13] R. Huzak. Limit cycles in slow-fast codimension 3 bifurcations. PhD
thesis, Hasselt University, Belgium, 2013.

[Huz16] R. Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle
and elliptic bifurcations. Discrete Contin. Dyn. Syst., 36(1):171–
215, 2016.

[Huz17] R. Huzak. Normal forms of Liénard type for analytic unfoldings of
nilpotent singularities. Proc. Amer. Math. Soc., 145(10):4325–4336,
2017.

[KS01] M. Krupa and P. Szmolyan. Relaxation oscillation and canard ex-
plosion. J. Differential Equations, 174(2):312–368, 2001.

27


