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Abstract. In this paper we finish the study of the cyclicity ( i.e. the maximum

number of limit cycles) of the degenerate graphic DF2a of [6] which is initiated

in [5]. More precisely, we prove that the graphic DF2a has a finite cyclicity.
The goal of the program [6] is to solve the finiteness part of Hilbert’s 16th

problem for quadratic polynomial systems. We use techniques from geometric

singular perturbation theory, including the family blow-up.

1. Introduction. The second part of the famous Hilbert’s 16th problem is formu-
lated in the following way: determine the maximum number H(n) and the relative
positions of limit cycles of a planar polynomial vector field if the polynomial degree
n of the vector field is given. See [9]. This problem is more than 100 years old and
still open even in the case of quadratic polynomial vector fields (n = 2). To prove
the uniform finiteness for the quadratic vector fields, i.e., H(2) <∞, F. Dumortier,
R. Roussarie & C. Rousseau formulated a program (see [6]) consisting of 121 local
finiteness problems. Slightly more precisely, the DRR program reduces the proof
that H(2) <∞ to the proof that 121 graphics inside quadratic systems have a finite
cyclicity. We refer to [8] for an overview of the graphics whose finite cyclicity is
proved at the time.

Some of these graphics are degenerate, having a line of singular points in the finite
plane or at infinity. There are 13 such graphics and the systematic study of their
cyclicity began with [5], using geometric singular perturbation theory (GSPT) and
the family blow-up applied to GSPT (see e.g. [4]). The paper [5] more specifically
deals with the study of the cyclicity of the degenerate graphics DF1a and DF2a of
the DRR program, having a line of singularities in the finite plane. We consider
quadratic systems Xε,b,(D,E0,E1,E2) where Xε,b,(D,E0,E1,E2) stands for (see [5]){

ẋ = y + bxy − y2 + ε2(E0 + E1x+ E2x
2)

ẏ = xy + ε3D
(1)

with ε ≥ 0 small, b ∈ [0, 2[ and (D,E0, E1, E2) ∈ C. The set C is the boundary of a
cylinder:

C = B0 ∪ B+ ∪ B−
where

B0 = {(D,E0, E1, E2) ∈ R4 | D ∈ [−1, 1], (E0, E1, E2) ∈ S2}
and

B± = {(D,E0, E1, E2) ∈ R4 | D = ±1, E2
0 + E2

1 + E2
2 ≤ 1}.
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When ε = 0, the system (1) has the line of singular points {y = 0}. The set {y = 0}
is called the critical curve. All these singular points are semi-hyperbolic, except
for the origin (x, y) = (0, 0), where we have a nilpotent contact point. (For more
details on definitions of the critical curve, semi-hyperbolic singularities, nilpotent
contact points etc., see e.g. [1].) The degenerate graphic DF1a (resp. DF2a) is
observed in the fast subsystem X0,b,(D,E0,E1,E2), for b ∈]0, 2[ (resp. b = 0). See
Figure 1. The degenerate graphics DF1a and DF2a consist of an orbit of the fast
subsystem X0,b,(D,E0,E1,E2) and the part of the critical curve between the α-limit
(x∗, 0), x∗ > 0, and the ω-limit (Fb(x∗), 0) of that orbit (see Figure 1).

DF1a DF2a

(x∗, 0)(Fb(x∗), 0) (x∗, 0)(F0(x∗), 0)

Figure 1. The degenerate graphics DF1a (b ∈]0, 2[) and DF2a

(b = 0).

Remark 1. Let’s explain where (1) comes from. By Proposition 2.1 of [5], a
quadratic system with a line of singularities in the finite plane (all the singularities
except one are normally hyperbolic) and a focus (strong or weak) or center can be
brought to the form Q : {ẋ = y + b0xy − y2, ẏ = xy}, where b0 ∈] − 2, 2[. There
are 6 graphics with a line of singular points in the finite plane: DF1a, DF1b, DF2a,
DF2b, DH1 and DH2 (see [5] or Figure 11 of [6]). Moreover, Proposition 2.1 of [5]
implies that the general quadratic perturbation of Q has the following form, after
an affine change of coordinates and time scaling: {ẋ = y + bxy − y2 + µ1 + µ2x +
µ3x

2, ẏ = xy + µ4}, where b = b0 + µ0 ∈ [0, 2[. When we deal with DF1a and
DF2a, it is more convenient to write (µ1, µ2, µ3, µ4) = (ε2E0, ε

2E1, ε
2E2, ε

3D), with
(D,E0, E1, E2) ∈ C (for more details see [5]). This gives (1).

The degenerate graphics DF1a and DF2a can generate limit cycles in the systems
(1), with ε > 0. Their cyclicity has been studied in [5] in the case (D,E0, E1, E2) 6=
P0 := (0, 0, 0, 1), (D,E0, E1, E2) ∈ C. Under this condition on (D,E0, E1, E2),
one deals with a slow dynamics along the critical curve with non-zero isolated
singularities on [Fb(x∗), x∗], and the results presented in [1] and [2] can be used to
study the cyclicity of DF1a and DF2a. We refer to [5] for more details. However, in
[5] it was not possible to study the cyclicity of DF1a and DF2a in slow-fast systems{

ẋ = y + bxy − y2 + ε2(e0 + e1x+ x2)
ẏ = xy + ε3D,

(2)

with (D, e0, e1) ∼ (0, 0, 0), ε ∼ 0 and b ∈ [0, 2[, because a singularity of the slow
dynamics x′ = e0 + e1x+ x2 of (2) can be located at the contact point x = 0. Note
that the system (2) represents (1) with (D,E0, E1, E2) ∼ P0 and (D,E0, E1, E2) ∈
C. In fact, instead of using the spherical coordinates near P0, it is more convenient
to work in the chart (D,E0, E1, E2) = (D, e0, e1, 1), (D, e0, e1) ∼ (0, 0, 0), covering
C near P0 (for more details see [5]). Since there is no difference between (1) and (2)
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for ε = 0, we deal with the same degenerate graphics in the family (2), DF1a and
DF2a.

Later, it has been proved in [3] that the cyclicity of DF1a in (2) is finite. The
paper [3] treats the cyclicity of so-called detectable canard cycles by studying zeros
of the derivative of the related slow divergence integral if the slow dynamics is
regular, except for the contact point, where a saddle-node singularity occurs. The
case DF2a (b = 0) is technically far more difficult due to the center problem and
our goal is to study this case using techniques from singular perturbation theory and
the family blow-up developed in [3] and [7].

Denote the degenerate graphic DF2a by Γx∗ , where x∗ ∈ K, with K ⊂]0,∞[
compact. In Section 2 we prove

Theorem 1.1. There exist small ε0 > 0, b0 > 0, d > 0 and a (D, e0, e1)-neighborhood
W of the origin such that system (2) has at most three limit cycles (counting mul-
tiplicity) within Hausdorff distance d of Γx∗ , for each value (x∗, ε, b,D, e0, e1) ∈
K × [0, ε0]× [−b0, b0]×W .

Remark 2. It will be clear from the proof of Theorem 1.1 (see Section 2) that the
cyclicity of ∪x∗∈KΓx∗ is bounded by 3. In this paper we don’t study the cyclicity of
the limit periodic sets Γ0 and Γ∞, denoted by DF2b and DH2 in [6]. As far as we
know, these two cases are open (see [8, 5]) and different techniques are needed to
treat them. The same is true for the two limiting cases (DF1b and DH1) for b > 0.

Combining Theorem 1.1, Theorem 3.1 of [5] and Theorem 7 of [3], we obtain a
cyclicity result for the complete unfolding (1):

Theorem 1.2. Consider a system Xε,b,(D,E0,E1,E2) given in (1) and a family of

degenerate graphics Γb∗x∗
, where ε ≥ 0 small, b∗ ∈ [0, 2[, (D,E0, E1, E2) ∈ C and

x∗ ∈ K, with K ⊂]0,∞[ compact (the degenerate graphics Γb∗x∗
are of type DF1a for

b∗ ∈]0, 2[ and the degenerate graphics Γ0
x∗

are of type DF2a). Then the following
statements are true:

(i) (finite cyclicity of DF1a) If b∗ ∈]0, 2[, there exist ε0 > 0, η0 > 0 and
ρ0 > 0 such that system (1) with ε ∈ [0, ε0] and b ∈ [b∗ − η0, b∗ + η0] has
at most three limit cycles (multiplicity taken into account), lying each within
Hausdorff distance ρ0 of a corresponding slow-fast cycle Γb∗x∗

, with x∗ ∈ K. If
moreover we keep E1 ≥ 0, then, under the same conditions on (ε, b), system
(1) has at most one limit cycle, which is hyperbolic and attracting when it
exists.

(ii) (finite cyclicity of DF2a) If b∗ = 0, there exist ε0 > 0, η0 > 0 and ρ0 > 0
such that system (1) with ε ∈ [0, ε0] and b ∈ [−η0, η0] has at most five limit
cycles (multiplicity taken into account), lying each within Hausdorff distance
ρ0 of a corresponding slow-fast cycle Γ0

x∗
, with x∗ ∈ K.

(iii) Let Bδ(P0) (resp. Bδ1((0, E0, 0, E2))) be a δ-neighbourhood (resp. a δ1 -
neighbourhood) of P0 = (0, 0, 0, 1) (resp. the circle {D = E1 = 0}) in-
side C. If b∗ = 0 and δ and δ1 are arbitrary, then there exist ε0 > 0
and η0 > 0 such that the system (1) with ε ∈ [0, ε0], b ∈ [−η0, η0] and
(D,E0, E1, E2) ∈ C \ (Bδ(P0)∪Bδ1((0, E0, 0, E2))) has at most one limit cycle
and this limit cycle is hyperbolic; it is repelling for E1 < 0 and attracting for
E1 > 0.

Remark 3. Theorem 1.2(i) follows directly from Theorem 3.1(i) of [5] (the pa-
rameter (D,E0, E1, E2) 6= P0) and Section 4.2 of [3] ((D,E0, E1, E2) ∼ P0). On
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the other hand, Theorem 1.1 ((D,E0, E1, E2) ∼ P0) and Theorem 3.1(ii) of [5]
((D,E0, E1, E2) 6= P0) imply Theorem 1.2(ii). Statement (iii) of Theorem 1.2 has
been proved in [5], Theorem 3.1(iii).

2. Proof of Theorem 1.1.

2.1. Slow dynamics and slow divergence integral. In this section we focus on
systems (2), where ε ≥ 0 is small and (b,D, e0, e1) ∼ (0, 0, 0, 0). We denote (2) by
Xε,b,(D,e0,e1). The slow dynamics is given by

x′ = e0 + e1x+ x2, x 6= 0.

When limit cycles are Hausdorff-close to Γx∗ , the slow dynamics allows the passage
from the attracting part of the critical curve to the repelling part of the critical
curve, for some parameters (e0, e1). Note that the slow dynamics is strictly pos-
itive for (e0, e1) = (0, 0), except for the origin x = 0, where it has a saddle-node
singularity. See Figure 2. The passage near the saddle-node singularity has to be
studied separately from the rest of the critical curve using blow-up techniques from
[3] or [7]. It will be explained later in this section.

DF2a

(0, 1)

Figure 2. The degenerate graphic DF2a and the indication of the
slow dynamics of (2) for e0 = e1 = 0. One can expect limit cycles
of (2) to bifurcate from DF2a.

Following [3], an upper bound for the number of limit cycles near the set ∪x∗∈KΓx∗ ,
with K ⊂]0,∞[ compact, could be found by studying zeros of the derivative ∂I

∂x∗
of

the slow divergence integral with respect to x∗ along [Fb(x∗), x∗]

I(x∗, b, e0, e1) =

∫ x∗

Fb(x∗)

xdx

e0 + e1x+ x2
,

with (b, e0, e1) ∼ (0, 0, 0), x∗ ∈ K and with Fb(x∗) defined in Section 1. Clearly, the
divergence of X0,b,(D,e0,e1) on the critical curve {y = 0} is x and dt = dx

e0+e1x+x2 .
Although the slow divergence integral I is divergent for e0 = e1 = 0, its derivative
w.r.t. x∗

∂I

∂x∗
(x∗, b, e0, e1) =

x∗
e0 + e1x∗ + x2

∗
−

Fb(x∗)
∂Fb

∂x∗
(x∗)

e0 + e1Fb(x∗) + Fb(x∗)2
(3)

is well defined for x∗ ∈ K and (e0, e1) ∼ (0, 0). When b > 0, (3) is nonzero for
(e0, e1) = (0, 0) (see [3]) and it helps us find the number of zeros of the derivative
of the “full” divergence integral of (2) which is related to the cyclicity of DF1a in
the family (2) (see Theorem 5 of [3]).

Note that Fb(x∗) = −x∗ + O(b) because the system X0,0,(D,e0,e1) is invariant

under (x, t) 7→ (−x,−t) with a center at (x, y) = (0, 1). Thus, ∂I
∂x∗

(x∗, b, e0, e1) is
identically zero for b = e1 = 0, and this degenerate case cannot be studied using
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Theorem 5 of [3]. In order to prove Theorem 1.1, we have to improve some results
given in [3] by studying the derivative of the full divergence integral of Xε,b,(D,e0,e1)

and using symmetries of Xε,b,(D,e0,e1).

2.2. Normal form near the contact point and reduction to slow-fast Hopf
parameter regions. To find the regions in the parameter space (D, e0, e1) where
the passage near the contact point at the origin (x, y) = (0, 0) is possible, we first
blow up the origin (D, e0, e1) = (0, 0, 0) using a quasi-homogeneous blow-up

(D, e0, e1) = (r3D̃, r2ẽ0, rẽ1), (D̃, ẽ0, ẽ1) ∈ S2, r ≥ 0, r ∼ 0.

After this blow-up in the (D, e0, e1)-space, the slow-fast system (2) becomes{
ẋ = y + bxy − y2 + ε2(r2ẽ0 + rẽ1x+ x2)

ẏ = xy + ε3r3D̃.
(4)

Clearly, instead of studying systems (2), with (D, e0, e1) in a small neighborhood
of the origin (D, e0, e1) = (0, 0, 0), it suffices to study systems (4), with r ∼ 0

and with (D̃, ẽ0, ẽ1) on a 2-dimensional sphere. In order to desingularize systems
(4), we can combine two blow-up constructions (see [3] or [7]): a primary blow-
up (x, y, r) = (ux̄, u2ȳ, ur̄), (x̄, ȳ, r̄) ∈ S2, r̄ ≥ 0, where we blow up the phase
coordinates (x, y) and the parameter r ≥ 0, and a secondary blow-up (x̄, ȳ, ε) =
(δx̃, δ2ỹ, δε̃), (x̃, ỹ, ε̃) ∈ S2, ε̃ ≥ 0, where the new phase coordinates (x̄, ȳ) and the
singular perturbation parameter ε ≥ 0 are included in the blow-up. Rather than
repeating the calculations from [3] for slow-fast systems (4) near the contact point in
different charts of the primary and secondary blow-up, we bring (4) near the contact
point to a normal form studied in [3], and we use the results from [3] directly. Using
the coordinate change

Y = y + bxy − y2

(
i.e., y = Y

(
1− bx+O(Y ) +O(x2)

))
near (x, y) = (0, 0), (4) becomes{

ẋ = Y + ε2(e0 + e1x+ x2)

Ẏ = ε3D(1 + bx) + Y
(
ε2α1 + (1 + ε2α2)x+O(x2)

)
+O(Y 2),

(5)

where (D, e0, e1) = (r3D̃, r2ẽ0, rẽ1), α1 = be0 − 2εD and α2 = −b2e0 + be1 + 2bεD.
After the change of coordinates Ȳ = −

(
Y + ε2(e0 + e1x + x2)

)
, and after division

by −1, systems (5) change into
ẋ = Ȳ
˙̄Y = ε2

(
εb0 + b1x+ b2x

2 + b3x
3 +O(x4)

)
+
(
ε2O(D, e0, e1) + (−1 +O(ε))x+O(x2)

)
Ȳ +O(Ȳ 2),

(6)

where b0 = D + εO(De0, e
2
0), b1 = −e0 + εO(D, e2

0, e0e1), b2 = −e1 + O(D, e0, e
2
1)

and b3 = −1 +O(D, e0, e1). After a translation X̄ = x−O(ε2D, ε2e0, ε
2e1) we may

(and will) assume that ε2O(D, e0, e1) = 0 in (6), and after a rescaling of (X̄, Ȳ , t)
we have −1 +O(ε) = −1 in (6). More precisely, (6) changes into{

˙̄X = Ȳ
˙̄Y = −X̄Ȳ + ε2

(
εb0 + b1X̄ + b2X̄

2 + b3X̄
3 +O(X̄4)

)
+O(X̄2Ȳ , Ȳ 2)

(7)

with b0 = D+εO(D, e2
0, e0e1, e

3
1), b1 = −e0+εO(D, e0, e

2
1), b2 = −e1+O(D, e0, e

2
1, εe1)

and b3 = −1 +O(ε,D, e0, e1). Systems (7) are of the form (5) of [3], implying that
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the results of [3] can be applied. The system (5) of [3] has the following form:{
ẋ = y
ẏ = −xy + ε2

(
εa0 + a1x+ a2x

2 − x3 +G(x, y, λ)
)

+ yH(x, y, λ),

where ε > 0, ε ∼ 0, (a0, a1, a2) ∼ (0, 0, 0), λ is kept in a compact subset of Rp,
for some p ≥ 1, G and H are smooth near the origin with G = O(x4, x2y, y2) and
H = O(x2, y).

Taking into account (D, e0, e1) = (r3D̃, r2ẽ0, rẽ1), (7) can be written as
˙̄X = Ȳ
˙̄Y = −X̄Ȳ + ε2

(
εr3B0 + r2B1X̄ + rB2X̄

2 − (1 +O(ε, r))X̄3 +O(X̄4)
)

+O(X̄2Ȳ , Ȳ 2)

(8)

with B0 = D̃ + O(ε), B1 = −ẽ0 + O(ε) and B2 = −ẽ1 + O(ε, r). Note that

B2
0 +B2

1 +B2
2 = 1 +O(ε, r) because (D̃, ẽ0, ẽ1) ∈ S2. In Section 3.2 of [3], instead of

working with the spherical coordinates, 6 different charts (or regions) of the sphere
have been used (see also [7]):

• Jump region (JR)
B0 = ±1, (B1, B2) ∈ K0, where K0 is a sufficiently large compact set in

R2.
• Saddle region (SR)

B1 = 1, B0 ∈ U1, B2 ∈ K1, where U1 is a sufficiently small neighborhood
of the origin in R and where K1 is a sufficiently large compact set in R.

• Slow-fast Hopf region (SFHR)
B1 = −1, B0 ∈ U1, B2 ∈ K1, where U1 is a sufficiently small neighborhood

of the origin in R and where K1 is a sufficiently large compact set in R.
• Slow-fast Bogdanov-Takens region (SFBTR)

B2 = ±1, (B0, B1) ∈ U2, where U2 is a sufficiently small neighborhood of
the origin in R2.

Clearly, for any small U1 and U2 we can take the compact sets K0 and K1 large
enough such that the chosen charts cover a complete neighborhood of (0, 0, 0) in
the (D, e0, e1)-space.

By Theorem 1 of [3], the passage near the contact point of (8) from the section
{X̄ = ρ} to the section {X̄ = −ρ} (ρ > 0 small) is possible only for the parameters
(B0, B1, B2) in the slow-fast Hopf region {B1 = −1}: B0 ∼ 0 and B2 ∈ [−B0

2 , B
0
2 ],

with B0
2 > 0 large and fixed. This, together with the fact that (5) was divided by

−1 and B1 = −ẽ0+O(ε), implies that the passage near the contact point of (4) from
{x = −ρ} to {x = ρ} is only possible for the parameters (ε,D, e0, e1) ∼ (0, 0, 0, 0)
with the property that

(D, e0, e1) = (r3D̃, r2, rẽ1), ε > 0, r > 0, D̃ ∼ 0, ẽ1 ∈ [−ẽ0
1, ẽ

0
1],

with ẽ0
1 > 0 large and fixed.

Remark 4. The canard limit cycles of (4) Hausdorff-close to DF2a are not possible

in the charts {D̃ = ±1}, {ẽ0 = −1} and {ẽ1 = ±1} covering S2 \ {ẽ0 = 1} in the

(D̃, ẽ0, ẽ1)-space. Indeed, {D̃ = ±1} corresponds to the jump region {B0 = ±1}
(B0 = D̃ + O(ε)), {ẽ0 = −1} corresponds to the saddle region {B1 = 1} (B1 =
−ẽ0 + O(ε)) and {ẽ1 = ±1} corresponds to the slow-fast Bogdanov-Takens region
{B2 = ±1} (B2 = −ẽ1 + O(ε, r)). Theorem 1 of [3] implies now that the passage
near the contact point of (8) (hence the passage near the contact point of (4)) is
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B0

B1

B2

JR(B0 = 1)

JR(B0 = −1)

SFBTR(B2 = +1)

SR

SFBTR(B2 = −1)

SFHR

Figure 3. Six regions covering the sphere in the (B0, B1, B2)-
space. Canard limit cycles of (4), Hausdorff-close to DF2a, are
only possible for the parameters in the slow-fast Hopf region.

not possible in the jump, saddle and slow-fast Bogdanov-Takens regions. Thus the
canard limit cycles of (4) are only possible in the chart {ẽ0 = 1}.

For the sake of completeness, we give a sketch of the proof of Theorem 1 of
[3] (for more details see Sections 3.2.5-3.2.6 of [3]). After the (singular) change of
coordinates (x, y) = (rx̄, r2ȳ), with (x̄, ȳ) kept in a compact set, and after division

by r > 0, (4) becomes XP : { ˙̄x = ȳ+ brx̄ȳ−r2ȳ2 + ε2(ẽ0 + ẽ1x̄+ x̄2), ˙̄y = x̄ȳ+ ε3D̃}.
The slow-fast vector field XP represents (4) in the family directional chart {r̄ = 1}
of the primary blow-up defined after (4). When ε = 0, the vector field XP has the
line of singularities {ȳ = 0} that connects the attracting part and the repelling part
of the critical curve {y = 0} of (4). All the singularities are semi-hyperbolic on the
critical curve {ȳ = 0}, except for the origin x̄ = 0, where we deal with the nilpotent
contact point. The slow dynamics of XP , along {ȳ = 0}, is given by

x̄′ = ẽ0 + ẽ1x̄+ x̄2.

First, suppose that ẽ1 = ±1 and (D̃, ẽ0) ∼ (0, 0). Then the slow dynamics has a
hyperbolic singularity near x̄ = 1 (resp. x̄ = −1) when ẽ1 = −1 (resp. ẽ1 = 1). This
implies that in this chart the slow dynamics cannot go from x̄ = −∞ to x̄ = +∞
(hence the passage from the attracting part to the repelling part of the critical

curve of (4) is not possible). Suppose now that D̃ ∼ 0, ẽ0 = ±1 and ẽ1 is kept
in an arbitrary compact set. When ẽ0 = −1, the slow dynamics is negative near
x̄ = 0, and therefore it cannot go from x̄ = −∞ to x̄ = +∞. When ẽ0 = 1, the
slow dynamics is (uniformly) positive for some values of the parameter ẽ1 (in this

chart, the passage is possible). Finally, suppose that D̃ = ±1, with (ẽ0, ẽ1) kept in
a compact set. In this chart, the slow dynamics has a saddle-node at x̄ = 0, for
(ẽ0, ẽ1) = (0, 0), like the (original) slow dynamics of (4). In this chart, we use the
secondary blow-up, defined after (4), to show that the origin (x̄, ȳ) = (0, 0) is a jump
point (see Section 3.2.6 of [3]). In the family chart {ε̃ = 1}, the secondary blow-up
formula becomes (x̄, ȳ) = (εx̃, ε2ỹ), with (x̃, ỹ) kept in a compact set. After this



8

rescaling and division by ε > 0, XP changes to XS : { ˙̃x = ỹ+ ẽ0 +O(ε), ˙̃y = x̃ỹ±1}
(we supposed that D̃ = ±1). After the coordinate change Y = −(ỹ + ẽ0), and

after division by −1, the vector field XS , with ε = 0, becomes: X̄S : { ˙̃x = Y, Ẏ =
−x̃Y +(±1−ẽ0x̃)}, where ẽ0 is kept in a compact set. This vector field is of the form
(22) of [3], and therefore we can apply the results of Section 3.2.6 of [3]. Following
Section 3.2.6 of [3] (Figures 3 and 4), the passage from x̃ = ∞ to x̃ = −∞ in the
family X̄S is not possible. This implies that the passage from x̃ = −∞ to x̃ = +∞
in the family XS is not possible (we changed the time). Thus, the passage from
the attracting branch to the repelling branch of the critical curve {ȳ = 0} is not
possible.

From now on, our focus will thus be on the chart {ẽ0 = 1} of the sphere in the

(D̃, ẽ0, ẽ1)-space.

2.3. Difference map near DF2a and the divergence integral. The limit cy-
cles of Xε,b,(r3D̃,r2,rẽ1) near ∪x∗∈KΓx∗ can be studied as zeros of a difference map.

We define a section S1 ⊂ {x = 0}, parametrized by x∗ ∈ K. More precisely,
S1 = {(0, ψ(x∗)) | x∗ ∈ K}, where we suppose that the orbit of the system
1
y .X0,0,(r3D̃,r2,rẽ1) through the point (x∗, 0), x∗ ∈ K, intersects the section {x = 0}
at a point denoted by (0, ψ(x∗)). Note that ψ(x∗) > 1 and ψ′(x∗) > 0 uniformly
in x∗ ∈ K. We define a second section S2 ⊂ {X̄ = 0} = {x = O(ε2D, ε2e0, ε

2e1)}
parametrized by Ȳ ∼ 0. Now if we follow the orbits of (4) in forward (resp. back-
ward) time, we can define a transition map from S1 to S2 which we denote by

∆+(x∗, ε, r, D̃, ẽ1, b) (resp. ∆−(x∗, ε, r, D̃, ẽ1, b)). See Figure 4. Closed orbits of (4)
are given by zeros of the difference map

∆ = ∆+ −∆−.

Lemma 2.1. The transition maps ∆± can be written as

Ȳ = ∆±(x∗, ε, r, D̃, ẽ1, b) = −ε2r2∆̃±(x∗, ε, r, D̃, ẽ1, b)

where ∆̃± are strictly positive Ck-functions in the variable (x∗, ε, r, D̃, ẽ1, b), with a

Ck-extension to the boundary of their domain, and ∆̃±(x∗, 0, r, 0, ẽ1, b) = 1.

Proof. Let’s prove this for the transition map ∆+; the transition map ∆− can be
treated similarly. First we consider the transition map of Xε,b,(r3D̃,r2,rẽ1) from the

section S1 to the section {X̄ = −ρ}, parametrized by Ȳ ∼ 0, where (X̄, Ȳ ) are
normal form coordinates and ρ > 0 is small. We denote this transition map by Ȳ =
∆1(x∗, ε, r, D̃, ẽ1, b) (see Figure 4). Following [1], the function ∆1 is smooth (smooth

stands for C∞-smoothness) in (x∗, ε, r
3D̃, r2, rẽ1, b) with a smooth extension to the

boundary {ε = 0} because the slow dynamics is regular along the attracting part
of the critical curve. We define the second transition map of Xε,b,(r3D̃,r2,rẽ1) from

the section {X̄ = −ρ}, parametrized by the normal form coordinate Ȳ ∼ 0, to the

section S2, denoted by Ȳ1 = ∆2(Ȳ , ε, r, D̃, ẽ1, b). Note that ∆2(Ȳ , ε, r, D̃, ẽ1, b) also
represents the transition map from the section {X̄ = −ρ} to the section S2 defined
by following the orbits of (8), with ẽ0 = 1, in backward time, and by Theorem 2 of
[3], it has the following form:

Ȳ1 = ∆2(Ȳ , ε, r, D̃, ẽ1, b) = −ε2r2∆̄2(Ȳ , ε, r, D̃, ẽ1, B0, B2, b) (9)
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where ∆̄2 is a strictly positive Ck-function on the topological closure of its domain.
Moreover, Theorem 1 of [3] implies that

∆̄2(Ȳ , 0, r, D̃, ẽ1, 0, B2, b) = 1. (10)

Clearly, the transition map ∆2 is a local Ck-diffeomorphism with respect to Ȳ
whenever it exists. Although the transition map does not exist when ε = 0, the
function ∆̄2, introduced in (9), can be Ck-extended to the boundary ε = 0 where
we obtain (10).

We now combine (9) with the fact that

∆+(x∗, ε, r, D̃, ẽ1, b) = ∆2(∆1(x∗, ε, r, D̃, ẽ1, b), ε, r, D̃, ẽ1, b),

to obtain the above result for the transition map ∆+.

S1

∆1

∆−

S2

∆2

{X̄ = −ρ}

Figure 4. The transition maps ∆+ = ∆2 ◦∆1 and ∆−.

The following proposition (see [1]) allows us to express the derivative of the
difference map ∆ w.r.t. x∗ in terms of a divergence integral.

Proposition 1 ([1]). Let f be a vector field on an open subset of Rn. Let S1 and S2

be two open sections of Rn, transverse to the flow of f . Assume p ∈ S1, q ∈ S2 and
the orbit through p reaches q in finite time. Let T : S0 ⊂ S1 → S2 be the transition
map defined in a neighborhood of p. If φi : Ui → Si are coordinates for Si with
Ui ⊂ Rn−1, then

det(D(φ−1
2 ◦ T ◦ φ1))(s1) =

det(Dφ1(s1)|f(p))

det(Dφ2(s2)|f(q))
exp

{∫
O(p,q)

divfdt

}
,

where s1 = φ−1
1 (p), s2 = φ−1

2 (q), and where (Dφ1(s1)|f(p)) is a matrix composed
of the n × (n − 1) matrix Dφ1(s1) and the column vector f(p), and similarly for
(Dφ2(s2)|f(q)). The integral is taken over the orbit O(p, q) from p to q parametrized
by t.

Using Proposition 1, the fact that S2 ⊂ {x = O(ε2r3D̃, ε2r2, ε2rẽ1)} and

Ȳ = −y(1 + bx− y) + ε2(r2 + rẽ1x+ x2)

1 +O(ε)
, (11)

we have that

∂∆̃±
∂x∗

=
−L(x∗, ε,D, e0, e1, b)

ε4r4∆̃±
exp

(
I±(x∗, ε,D, e0, e1, b)

)
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where (D, e0, e1) = (r3D̃, r2, rẽ1), L is a strictly positive smooth function, and with

I±(x∗, ε,D, e0, e1, b) =

∫
O±(x∗,ε,D,e0,e1,b)

div (±Xε,b,(D,e0,e1))dt

where O+(x∗, ε,D, e0, e1, b) (resp. O−(x∗, ε,D, e0, e1, b)) is the orbit of the system
Xε,b,(D,e0,e1) through the point (0, ψ(x∗)) ∈ S1, in positive time (resp. in negative
time) until it hits the section S2. If we denote the divergence integral I+−I− by I,
and if we define the positive analytic function E(α1, α2) = expα1−expα2

α1−α2
, α1 6= α2,

and E(α1, α2) = expα1, then we obtain

∂∆

∂x∗
= −ε2r2 ∂(∆̃+ − ∆̃−)

∂x∗
=

L

ε4r2
E(α1, α2)

(
ε2I + ε2 ln

∆̃−

∆̃+

)
(12)

where

α1 = I+ − ln ∆̃+, α2 = I− − ln ∆̃−.

The derivative of ε2I + ε2 ln ∆̃−
∆̃+

in (12) is given by

ε2
∂I
∂x∗

+ ε2
( ∂∆̃−
∂x∗

∆̃−
−

∂∆̃+

∂x∗

∆̃+

)
. (13)

The reason we study the derivative (13) is twofold: it is that the function
ε2 ∂I
∂x∗

(x∗, ε,D, e0, e1, b) is Ck on the topological closure of its domain, and

ε2
∂I
∂x∗

(x∗, ε,D, e0, e1, b)
∣∣
ε=0

=
∂I

∂x∗
(x∗, b, e0, e1),

where ∂I
∂x∗

is given in (3) (see Theorem 4 and Section 4.2 of [3]), and the other
reason is that

Lemma 2.2. The functions ∂∆̃±
∂x∗

and
∂∆̃±
∂x∗
∆̃±

are Ck-functions w.r.t. original variable

(x∗, ε,D, e0, e1, b) on the closure of their domain.

Proof. We focus on ∂∆̃+

∂x∗
and

∂∆̃+
∂x∗
∆̃+

(∂∆̃−
∂x∗

and
∂∆̃−
∂x∗
∆̃−

can be treated similarly). We

have
∂∆̃+

∂x∗
=
∂∆̄2

∂Ȳ
(∆1(. . . ), . . . ).

∂∆1

∂x∗
(. . . )

and

∂∆̃+

∂x∗

∆̃+

=
∂∆̄2

∂Ȳ

∆̄2
(∆1(. . . ), . . . ).

∂∆1

∂x∗
(. . . ),

where ∆1 and ∆̄2 are defined above. Following [1], ∆1 and ∂∆1

∂x∗
are smooth functions

w.r.t. (x∗, ε,D, e0, e1, b) on the topological closure of their domain, hence including

{ε = 0}. From (7) and Theorem 3 of [3], the functions ∂∆̄2

∂Ȳ
and

∂∆̄2
∂Ȳ

∆̄2
are Ck w.r.t.

(Ȳ , ε, b0, b1, b2, D, e0, e1, b) on the topological closure of their domain, and are hence
Ck w.r.t. (Ȳ , ε,D, e0, e1, b). This concludes the proof of the lemma.

Let’s write F (x∗, b) = Fb(x∗). Proposition 4.1 of [5] implies that

∂F

∂b
(x∗, 0) = −1 +

x2
∗ + 1

x∗
arctanx∗ − π

x2
∗ + 1

x∗
, F (x∗, 0) = −x∗. (14)



11

Using (3) and (14), ∂I
∂x∗

(x∗, b, e0, e1) can be written as

e1

(
− 2

x2
∗

+O(e0, e1, b)

)
+ b

(
2

1− arctan x∗
x∗

+ π
x∗

x2
∗

+O(e0, e1, b)

)
. (15)

SinceB0 in (8) is a “breaking parameter” (see [3] or [7]), periodic orbits of systems

Xε,b,(r3D̃,r2,rẽ1), Hausdorff-close to Γx∗ , can exist only for D̃ = D̃0(x∗, ε, r, ẽ1, b)

where D̃0(x∗, ε, r, ẽ1, b) is a Ck-function. This follows directly from the Implicit

Function Theorem because B0 = D̃ + O(ε), (∆̃+ − ∆̃−)(x∗, 0, r, 0, ẽ1, b) = 0 and
∂(∆̃+−∆̃−)

∂D̃
(x∗, 0, r, 0, ẽ1, b) 6= 0. Furthermore, since Xε,b,(r3D̃,r2,rẽ1) has a center for

(D̃, ẽ1, b) = (0, 0, 0), we have

∆(x∗, ε, r, 0, 0, 0) = 0

and

D̃0(x∗, ε, r, 0, 0) = 0.

Since (15) is identically zero for b = e1 = 0, it is more convenient to study zeros
w.r.t. x∗ of

∆p(x∗, ε, r, ẽ1, b) = ∆(x∗, ε, r, D̃0(p, ε, r, ẽ1, b), ẽ1, b)

where p is kept in the compact set K. We call this procedure “cloning a variable”

(see [7]). Note that
∂∆p

∂x∗
(x∗, ε, r, 0, 0) = 0. If we now substitute in (12) the function

D̃0(x∗, ε, r, ẽ1, b) for D̃, and use (15) and the fact that the function in (13) is Ck

w.r.t. to the original parameters (D, e0, e1), then (13) can be written as

e1

(
− 2

x2
∗

+O1(ε, e1, b)

)
+ b

(
2

1− arctan x∗
x∗

+ π
x∗

x2
∗

+O2(ε, e1, b)

)
(16)

where O1 and O2 are Ck-functions w.r.t. (x∗, ε, r, ẽ1, b, p). In the rest of this section
we will show that (16) has at most 1 zero (counting multiplicity) w.r.t. x∗ ∈ K, with
(e1, b) 6= (0, 0). Using (12) and Rolle’s theorem, this will imply that the difference
map ∆ has at most 3 zeros (counting multiplicity) w.r.t. x∗ ∈ K for ε > 0, r > 0

and (D̃, ẽ1, b) 6= (0, 0, 0), which will conclude the proof of Theorem 1.1.
If we define rescaling (e1, b) = (κē1, κb̄), (ē1, b̄) ∈ S1, κ ∼ 0, κ ≥ 0, then expres-

sion (16) can be written as

2

x2
∗
κ

(
− ē1 + b̄

(
1− arctanx∗

x∗
+

π

x∗

)
+O(ε, κ)

)
(17)

where x∗ ∈ K. This rescaling is the so-called Bautin trick.
When κ = 0, we deal with a center. Thus we suppose that κ > 0. We will show

that the expression

− ē1 + b̄
(
1− arctanx∗

x∗
+

π

x∗

)
(18)

has at most 1 zero (counting multipicity) with respect to x∗ ∈ K, for each (ē1, b̄) ∈
S1. This will imply that the expression in (17) has at most 1 zero counting multi-
plicity in K for each (ē1, b̄) ∈ S1, κ > 0, κ ∼ 0 and ε ∼ 0.

When (ē1, b̄) = (±1, 0), the expression (18) has no zeros in K. When (ē1, b̄) ∈ S1

and b̄ 6= 0, we consider the derivative of (18):

− b̄

x2
∗(1 + x2

∗)

(
x∗ − (1 + x2

∗) arctanx∗ + π(1 + x2
∗)
)
. (19)
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If we write l(x∗) = x∗ − (1 + x2
∗) arctanx∗ + π(1 + x2

∗), then we have that l(0) = π
and

l′(x∗) = 2x∗(π − arctanx∗) > 0

for all x∗ > 0. Thus we have that l(x∗) > 0 for all x∗ ∈ K. This implies that
(19) has no zeros in K and, by Rolle’s theorem, (18) has at most 1 zero counting
multiplicity in K. This completes the proof of Theorem 1.1.
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