Cyclicity of degenerate graphic DF2a of Dumortier-Roussarie-Rousseau program Peer-reviewed author version

HUZAK, Renato (2018) Cyclicity of degenerate graphic DF2a of Dumortier-Roussarie-Rousseau program. In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 17(3), p. 1305-1316.

DOI: 10.3934/cpaa. 2018063
Handle: http://hdl.handle.net/1942/25661

CYCLICITY OF DEGENERATE GRAPHIC $D F_{2 a}$ OF DUMORTIER-ROUSSARIE-ROUSSEAU PROGRAM

Renato Huzak
Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D
3590 Diepenbeek, Belgium

Abstract

In this paper we finish the study of the cyclicity (i.e. the maximum number of limit cycles) of the degenerate graphic $D F_{2 a}$ of [6] which is initiated in [5]. More precisely, we prove that the graphic $D F_{2 a}$ has a finite cyclicity. The goal of the program [6] is to solve the finiteness part of Hilbert's 16th problem for quadratic polynomial systems. We use techniques from geometric singular perturbation theory, including the family blow-up.

1. Introduction. The second part of the famous Hilbert's 16 th problem is formulated in the following way: determine the maximum number $H(n)$ and the relative positions of limit cycles of a planar polynomial vector field if the polynomial degree n of the vector field is given. See [9]. This problem is more than 100 years old and still open even in the case of quadratic polynomial vector fields $(n=2)$. To prove the uniform finiteness for the quadratic vector fields, i.e., $H(2)<\infty$, F. Dumortier, R. Roussarie \& C. Rousseau formulated a program (see [6]) consisting of 121 local finiteness problems. Slightly more precisely, the DRR program reduces the proof that $H(2)<\infty$ to the proof that 121 graphics inside quadratic systems have a finite cyclicity. We refer to [8] for an overview of the graphics whose finite cyclicity is proved at the time.

Some of these graphics are degenerate, having a line of singular points in the finite plane or at infinity. There are 13 such graphics and the systematic study of their cyclicity began with [5], using geometric singular perturbation theory (GSPT) and the family blow-up applied to GSPT (see e.g. [4]). The paper [5] more specifically deals with the study of the cyclicity of the degenerate graphics $D F_{1 a}$ and $D F_{2 a}$ of the DRR program, having a line of singularities in the finite plane. We consider quadratic systems $X_{\epsilon, b,\left(D, E_{0}, E_{1}, E_{2}\right)}$ where $X_{\epsilon, b,\left(D, E_{0}, E_{1}, E_{2}\right)}$ stands for (see [5])

$$
\left\{\begin{array}{l}
\dot{x}=y+b x y-y^{2}+\epsilon^{2}\left(E_{0}+E_{1} x+E_{2} x^{2}\right) \tag{1}\\
\dot{y}=x y+\epsilon^{3} D
\end{array}\right.
$$

with $\epsilon \geq 0$ small, $b \in\left[0,2\left[\right.\right.$ and $\left(D, E_{0}, E_{1}, E_{2}\right) \in \mathcal{C}$. The set \mathcal{C} is the boundary of a cylinder:

$$
\mathcal{C}=\mathcal{B}_{0} \cup \mathcal{B}_{+} \cup \mathcal{B}_{-}
$$

where

$$
\mathcal{B}_{0}=\left\{\left(D, E_{0}, E_{1}, E_{2}\right) \in \mathbb{R}^{4} \quad \mid D \in[-1,1],\left(E_{0}, E_{1}, E_{2}\right) \in \mathbb{S}^{2}\right\}
$$

and

$$
\mathcal{B}_{ \pm}=\left\{\left(D, E_{0}, E_{1}, E_{2}\right) \in \mathbb{R}^{4} \mid D= \pm 1, E_{0}^{2}+E_{1}^{2}+E_{2}^{2} \leq 1\right\}
$$

When $\epsilon=0$, the system (1) has the line of singular points $\{y=0\}$. The set $\{y=0\}$ is called the critical curve. All these singular points are semi-hyperbolic, except for the origin $(x, y)=(0,0)$, where we have a nilpotent contact point. (For more details on definitions of the critical curve, semi-hyperbolic singularities, nilpotent contact points etc., see e.g. [1].) The degenerate graphic $D F_{1 a}$ (resp. $D F_{2 a}$) is observed in the fast subsystem $X_{0, b,\left(D, E_{0}, E_{1}, E_{2}\right)}$, for $\left.b \in\right] 0,2[$ (resp. $b=0$). See Figure 1. The degenerate graphics $D F_{1 a}$ and $D F_{2 a}$ consist of an orbit of the fast subsystem $X_{0, b,\left(D, E_{0}, E_{1}, E_{2}\right)}$ and the part of the critical curve between the α-limit $\left(x_{*}, 0\right), x_{*}>0$, and the ω-limit $\left(F_{b}\left(x_{*}\right), 0\right)$ of that orbit (see Figure 1).

Figure 1. The degenerate graphics $D F_{1 a}(b \in] 0,2[)$ and $D F_{2 a}$ ($b=0$).

Remark 1. Let's explain where (1) comes from. By Proposition 2.1 of [5], a quadratic system with a line of singularities in the finite plane (all the singularities except one are normally hyperbolic) and a focus (strong or weak) or center can be brought to the form $Q:\left\{\dot{x}=y+b_{0} x y-y^{2}, \dot{y}=x y\right\}$, where $\left.b_{0} \in\right]-2,2[$. There are 6 graphics with a line of singular points in the finite plane: $D F_{1 a}, D F_{1 b}, D F_{2 a}$, $D F_{2 b}, D H_{1}$ and $D H_{2}$ (see [5] or Figure 11 of [6]). Moreover, Proposition 2.1 of [5] implies that the general quadratic perturbation of Q has the following form, after an affine change of coordinates and time scaling: $\left\{\dot{x}=y+b x y-y^{2}+\mu_{1}+\mu_{2} x+\right.$ $\left.\mu_{3} x^{2}, \dot{y}=x y+\mu_{4}\right\}$, where $b=b_{0}+\mu_{0} \in\left[0,2\left[\right.\right.$. When we deal with $D F_{1 a}$ and $D F_{2 a}$, it is more convenient to write $\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right)=\left(\epsilon^{2} E_{0}, \epsilon^{2} E_{1}, \epsilon^{2} E_{2}, \epsilon^{3} D\right)$, with $\left(D, E_{0}, E_{1}, E_{2}\right) \in \mathcal{C}$ (for more details see [5]). This gives (1).

The degenerate graphics $D F_{1 a}$ and $D F_{2 a}$ can generate limit cycles in the systems (1), with $\epsilon>0$. Their cyclicity has been studied in [5] in the case ($\left.D, E_{0}, E_{1}, E_{2}\right) \neq$ $P_{0}:=(0,0,0,1),\left(D, E_{0}, E_{1}, E_{2}\right) \in \mathcal{C}$. Under this condition on $\left(D, E_{0}, E_{1}, E_{2}\right)$, one deals with a slow dynamics along the critical curve with non-zero isolated singularities on $\left[F_{b}\left(x_{*}\right), x_{*}\right]$, and the results presented in [1] and [2] can be used to study the cyclicity of $D F_{1 a}$ and $D F_{2 a}$. We refer to [5] for more details. However, in [5] it was not possible to study the cyclicity of $D F_{1 a}$ and $D F_{2 a}$ in slow-fast systems

$$
\left\{\begin{array}{l}
\dot{x}=y+b x y-y^{2}+\epsilon^{2}\left(e_{0}+e_{1} x+x^{2}\right) \tag{2}\\
\dot{y}=x y+\epsilon^{3} D,
\end{array}\right.
$$

with $\left(D, e_{0}, e_{1}\right) \sim(0,0,0), \epsilon \sim 0$ and $b \in[0,2[$, because a singularity of the slow dynamics $x^{\prime}=e_{0}+e_{1} x+x^{2}$ of (2) can be located at the contact point $x=0$. Note that the system (2) represents (1) with $\left(D, E_{0}, E_{1}, E_{2}\right) \sim P_{0}$ and ($\left.D, E_{0}, E_{1}, E_{2}\right) \in$ \mathcal{C}. In fact, instead of using the spherical coordinates near P_{0}, it is more convenient to work in the chart $\left(D, E_{0}, E_{1}, E_{2}\right)=\left(D, e_{0}, e_{1}, 1\right),\left(D, e_{0}, e_{1}\right) \sim(0,0,0)$, covering \mathcal{C} near P_{0} (for more details see [5]). Since there is no difference between (1) and (2)
for $\epsilon=0$, we deal with the same degenerate graphics in the family (2), $D F_{1 a}$ and $D F_{2 a}$.

Later, it has been proved in [3] that the cyclicity of $D F_{1 a}$ in (2) is finite. The paper [3] treats the cyclicity of so-called detectable canard cycles by studying zeros of the derivative of the related slow divergence integral if the slow dynamics is regular, except for the contact point, where a saddle-node singularity occurs. The case $D F_{2 a} \quad(b=0)$ is technically far more difficult due to the center problem and our goal is to study this case using techniques from singular perturbation theory and the family blow-up developed in [3] and [7].

Denote the degenerate graphic $D F_{2 a}$ by $\Gamma_{x_{*}}$, where $x_{*} \in K$, with $\left.K \subset\right] 0, \infty[$ compact. In Section 2 we prove
Theorem 1.1. There exist small $\epsilon_{0}>0, b_{0}>0, d>0$ and $a\left(D, e_{0}, e_{1}\right)$-neighborhood W of the origin such that system (2) has at most three limit cycles (counting multiplicity) within Hausdorff distance d of $\Gamma_{x_{*}}$, for each value $\left(x_{*}, \epsilon, b, D, e_{0}, e_{1}\right) \in$ $K \times\left[0, \epsilon_{0}\right] \times\left[-b_{0}, b_{0}\right] \times W$.
Remark 2. It will be clear from the proof of Theorem 1.1 (see Section 2) that the cyclicity of $\cup_{x_{*} \in K} \Gamma_{x_{*}}$ is bounded by 3 . In this paper we don't study the cyclicity of the limit periodic sets Γ_{0} and Γ_{∞}, denoted by $D F_{2 b}$ and $D H_{2}$ in [6]. As far as we know, these two cases are open (see $[8,5]$) and different techniques are needed to treat them. The same is true for the two limiting cases $\left(D F_{1 b}\right.$ and $\left.D H_{1}\right)$ for $b>0$.

Combining Theorem 1.1, Theorem 3.1 of [5] and Theorem 7 of [3], we obtain a cyclicity result for the complete unfolding (1):

Theorem 1.2. Consider a system $X_{\epsilon, b,\left(D, E_{0}, E_{1}, E_{2}\right)}$ given in (1) and a family of degenerate graphics $\Gamma_{x_{*}}^{b_{*}}$, where $\epsilon \geq 0$ small, $b_{*} \in\left[0,2\left[,\left(D, E_{0}, E_{1}, E_{2}\right) \in \mathcal{C}\right.\right.$ and $x_{*} \in K$, with $\left.K \subset\right] 0, \infty\left[\right.$ compact (the degenerate graphics $\Gamma_{x_{*}}^{b_{*}}$ are of type $D F_{1 a}$ for $\left.b_{*} \in\right] 0,2\left[\right.$ and the degenerate graphics $\Gamma_{x_{*}}^{0}$ are of type $D F_{2 a}$). Then the following statements are true:
(i) (finite cyclicity of $D F_{1 a}$) If $\left.b_{*} \in\right] 0,2\left[\right.$, there exist $\epsilon_{0}>0, \eta_{0}>0$ and $\rho_{0}>0$ such that system (1) with $\epsilon \in\left[0, \epsilon_{0}\right]$ and $b \in\left[b_{*}-\eta_{0}, b_{*}+\eta_{0}\right]$ has at most three limit cycles (multiplicity taken into account), lying each within Hausdorff distance ρ_{0} of a corresponding slow-fast cycle $\Gamma_{x_{*}}^{b_{*}}$, with $x_{*} \in K$. If moreover we keep $E_{1} \geq 0$, then, under the same conditions on (ϵ, b), system (1) has at most one limit cycle, which is hyperbolic and attracting when it exists.
(ii) (finite cyclicity of $D F_{2 a}$) If $b_{*}=0$, there exist $\epsilon_{0}>0, \eta_{0}>0$ and $\rho_{0}>0$ such that system (1) with $\epsilon \in\left[0, \epsilon_{0}\right]$ and $b \in\left[-\eta_{0}, \eta_{0}\right]$ has at most five limit cycles (multiplicity taken into account), lying each within Hausdorff distance ρ_{0} of a corresponding slow-fast cycle $\Gamma_{x_{*}}^{0}$, with $x_{*} \in K$.
(iii) Let $B_{\delta}\left(P_{0}\right)$ (resp. $\left.B_{\delta_{1}}\left(\left(0, E_{0}, 0, E_{2}\right)\right)\right)^{x_{*}}$ be a δ-neighbourhood (resp. a δ_{1} neighbourhood) of $P_{0}=(0,0,0,1)$ (resp. the circle $\left\{D=E_{1}=0\right\}$) inside \mathcal{C}. If $b_{*}=0$ and δ and δ_{1} are arbitrary, then there exist $\epsilon_{0}>0$ and $\eta_{0}>0$ such that the system (1) with $\epsilon \in\left[0, \epsilon_{0}\right], b \in\left[-\eta_{0}, \eta_{0}\right]$ and $\left(D, E_{0}, E_{1}, E_{2}\right) \in \mathcal{C} \backslash\left(B_{\delta}\left(P_{0}\right) \cup B_{\delta_{1}}\left(\left(0, E_{0}, 0, E_{2}\right)\right)\right)$ has at most one limit cycle and this limit cycle is hyperbolic; it is repelling for $E_{1}<0$ and attracting for $E_{1}>0$.
Remark 3. Theorem $1.2(\mathrm{i})$ follows directly from Theorem 3.1(i) of [5] (the parameter $\left.\left(D, E_{0}, E_{1}, E_{2}\right) \neq P_{0}\right)$ and Section 4.2 of $[3]\left(\left(D, E_{0}, E_{1}, E_{2}\right) \sim P_{0}\right)$. On
the other hand, Theorem $1.1\left(\left(D, E_{0}, E_{1}, E_{2}\right) \sim P_{0}\right)$ and Theorem 3.1(ii) of [5] $\left(\left(D, E_{0}, E_{1}, E_{2}\right) \neq P_{0}\right)$ imply Theorem 1.2(ii). Statement (iii) of Theorem 1.2 has been proved in [5], Theorem 3.1(iii).

2. Proof of Theorem 1.1.

2.1. Slow dynamics and slow divergence integral. In this section we focus on systems (2), where $\epsilon \geq 0$ is small and ($\left.b, D, e_{0}, e_{1}\right) \sim(0,0,0,0)$. We denote (2) by $X_{\epsilon, b,\left(D, e_{0}, e_{1}\right)}$. The slow dynamics is given by

$$
x^{\prime}=e_{0}+e_{1} x+x^{2}, x \neq 0
$$

When limit cycles are Hausdorff-close to $\Gamma_{x_{*}}$, the slow dynamics allows the passage from the attracting part of the critical curve to the repelling part of the critical curve, for some parameters $\left(e_{0}, e_{1}\right)$. Note that the slow dynamics is strictly positive for $\left(e_{0}, e_{1}\right)=(0,0)$, except for the origin $x=0$, where it has a saddle-node singularity. See Figure 2. The passage near the saddle-node singularity has to be studied separately from the rest of the critical curve using blow-up techniques from [3] or [7]. It will be explained later in this section.

Figure 2. The degenerate graphic $D F_{2 a}$ and the indication of the slow dynamics of (2) for $e_{0}=e_{1}=0$. One can expect limit cycles of (2) to bifurcate from $D F_{2 a}$.

Following [3], an upper bound for the number of limit cycles near the set $\cup_{x_{*} \in K} \Gamma_{x_{*}}$, with $K \subset] 0, \infty\left[\right.$ compact, could be found by studying zeros of the derivative $\frac{\partial I}{\partial x_{*}}$ of the slow divergence integral with respect to x_{*} along $\left[F_{b}\left(x_{*}\right), x_{*}\right]$

$$
I\left(x_{*}, b, e_{0}, e_{1}\right)=\int_{F_{b}\left(x_{*}\right)}^{x_{*}} \frac{x d x}{e_{0}+e_{1} x+x^{2}}
$$

with $\left(b, e_{0}, e_{1}\right) \sim(0,0,0), x_{*} \in K$ and with $F_{b}\left(x_{*}\right)$ defined in Section 1. Clearly, the divergence of $X_{0, b,\left(D, e_{0}, e_{1}\right)}$ on the critical curve $\{y=0\}$ is x and $d t=\frac{d x}{e_{0}+e_{1} x+x^{2}}$. Although the slow divergence integral I is divergent for $e_{0}=e_{1}=0$, its derivative w.r.t. x_{*}

$$
\begin{equation*}
\frac{\partial I}{\partial x_{*}}\left(x_{*}, b, e_{0}, e_{1}\right)=\frac{x_{*}}{e_{0}+e_{1} x_{*}+x_{*}^{2}}-\frac{F_{b}\left(x_{*}\right) \frac{\partial F_{b}}{\partial x_{*}}\left(x_{*}\right)}{e_{0}+e_{1} F_{b}\left(x_{*}\right)+F_{b}\left(x_{*}\right)^{2}} \tag{3}
\end{equation*}
$$

is well defined for $x_{*} \in K$ and $\left(e_{0}, e_{1}\right) \sim(0,0)$. When $b>0$, (3) is nonzero for $\left(e_{0}, e_{1}\right)=(0,0)$ (see [3]) and it helps us find the number of zeros of the derivative of the "full" divergence integral of (2) which is related to the cyclicity of $D F_{1 a}$ in the family (2) (see Theorem 5 of [3]).

Note that $F_{b}\left(x_{*}\right)=-x_{*}+O(b)$ because the system $X_{0,0,\left(D, e_{0}, e_{1}\right)}$ is invariant under $(x, t) \mapsto(-x,-t)$ with a center at $(x, y)=(0,1)$. Thus, $\frac{\partial I}{\partial x_{*}}\left(x_{*}, b, e_{0}, e_{1}\right)$ is identically zero for $b=e_{1}=0$, and this degenerate case cannot be studied using

Theorem 5 of [3]. In order to prove Theorem 1.1, we have to improve some results given in [3] by studying the derivative of the full divergence integral of $X_{\epsilon, b,\left(D, e_{0}, e_{1}\right)}$ and using symmetries of $X_{\epsilon, b,\left(D, e_{0}, e_{1}\right)}$.
2.2. Normal form near the contact point and reduction to slow-fast Hopf parameter regions. To find the regions in the parameter space (D, e_{0}, e_{1}) where the passage near the contact point at the origin $(x, y)=(0,0)$ is possible, we first blow up the origin $\left(D, e_{0}, e_{1}\right)=(0,0,0)$ using a quasi-homogeneous blow-up

$$
\left(D, e_{0}, e_{1}\right)=\left(r^{3} \tilde{D}, r^{2} \tilde{e}_{0}, r \tilde{e}_{1}\right),\left(\tilde{D}, \tilde{e}_{0}, \tilde{e}_{1}\right) \in \mathbb{S}^{2}, r \geq 0, r \sim 0
$$

After this blow-up in the (D, e_{0}, e_{1})-space, the slow-fast system (2) becomes

$$
\left\{\begin{array}{l}
\dot{x}=y+b x y-y^{2}+\epsilon^{2}\left(r^{2} \tilde{e}_{0}+r \tilde{e}_{1} x+x^{2}\right) \tag{4}\\
\dot{y}=x y+\epsilon^{3} r^{3} \tilde{D}
\end{array}\right.
$$

Clearly, instead of studying systems (2), with $\left(D, e_{0}, e_{1}\right)$ in a small neighborhood of the origin $\left(D, e_{0}, e_{1}\right)=(0,0,0)$, it suffices to study systems (4), with $r \sim 0$ and with $\left(\tilde{D}, \tilde{e}_{0}, \tilde{e}_{1}\right)$ on a 2-dimensional sphere. In order to desingularize systems (4), we can combine two blow-up constructions (see [3] or [7]): a primary blow$u p(x, y, r)=\left(u \bar{x}, u^{2} \bar{y}, u \bar{r}\right),(\bar{x}, \bar{y}, \bar{r}) \in \mathbb{S}^{2}, \bar{r} \geq 0$, where we blow up the phase coordinates (x, y) and the parameter $r \geq 0$, and a secondary blow-up $(\bar{x}, \bar{y}, \epsilon)=$ $\left(\delta \tilde{x}, \delta^{2} \tilde{y}, \delta \tilde{\epsilon}\right),(\tilde{x}, \tilde{y}, \tilde{\epsilon}) \in \mathbb{S}^{2}, \tilde{\epsilon} \geq 0$, where the new phase coordinates (\bar{x}, \bar{y}) and the singular perturbation parameter $\epsilon \geq 0$ are included in the blow-up. Rather than repeating the calculations from [3] for slow-fast systems (4) near the contact point in different charts of the primary and secondary blow-up, we bring (4) near the contact point to a normal form studied in [3], and we use the results from [3] directly. Using the coordinate change

$$
Y=y+b x y-y^{2}\left(i . e ., y=Y\left(1-b x+O(Y)+O\left(x^{2}\right)\right)\right)
$$

near $(x, y)=(0,0),(4)$ becomes

$$
\left\{\begin{array}{l}
\dot{x}=Y+\epsilon^{2}\left(e_{0}+e_{1} x+x^{2}\right) \tag{5}\\
\dot{Y}=\epsilon^{3} D(1+b x)+Y\left(\epsilon^{2} \alpha_{1}+\left(1+\epsilon^{2} \alpha_{2}\right) x+O\left(x^{2}\right)\right)+O\left(Y^{2}\right)
\end{array}\right.
$$

where $\left(D, e_{0}, e_{1}\right)=\left(r^{3} \tilde{D}, r^{2} \tilde{e}_{0}, r \tilde{e}_{1}\right), \alpha_{1}=b e_{0}-2 \epsilon D$ and $\alpha_{2}=-b^{2} e_{0}+b e_{1}+2 b \epsilon D$. After the change of coordinates $\bar{Y}=-\left(Y+\epsilon^{2}\left(e_{0}+e_{1} x+x^{2}\right)\right)$, and after division by -1 , systems (5) change into

$$
\left\{\begin{array}{l}
\dot{x}=\bar{Y} \tag{6}\\
\dot{\bar{Y}}=\epsilon^{2}\left(\epsilon b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+O\left(x^{4}\right)\right) \\
\quad \quad+\left(\epsilon^{2} O\left(D, e_{0}, e_{1}\right)+(-1+O(\epsilon)) x+O\left(x^{2}\right)\right) \bar{Y}+O\left(\bar{Y}^{2}\right)
\end{array}\right.
$$

where $b_{0}=D+\epsilon O\left(D e_{0}, e_{0}^{2}\right), b_{1}=-e_{0}+\epsilon O\left(D, e_{0}^{2}, e_{0} e_{1}\right), b_{2}=-e_{1}+O\left(D, e_{0}, e_{1}^{2}\right)$ and $b_{3}=-1+O\left(D, e_{0}, e_{1}\right)$. After a translation $\bar{X}=x-O\left(\epsilon^{2} D, \epsilon^{2} e_{0}, \epsilon^{2} e_{1}\right)$ we may (and will) assume that $\epsilon^{2} O\left(D, e_{0}, e_{1}\right)=0$ in (6), and after a rescaling of ($\left.\bar{X}, \bar{Y}, t\right)$ we have $-1+O(\epsilon)=-1$ in (6). More precisely, (6) changes into

$$
\left\{\begin{array}{l}
\dot{\bar{X}}=\bar{Y} \tag{7}\\
\dot{\bar{Y}}=-\bar{X} \bar{Y}+\epsilon^{2}\left(\epsilon b_{0}+b_{1} \bar{X}+b_{2} \bar{X}^{2}+b_{3} \bar{X}^{3}+O\left(\bar{X}^{4}\right)\right)+O\left(\bar{X}^{2} \bar{Y}, \bar{Y}^{2}\right)
\end{array}\right.
$$

with $b_{0}=D+\epsilon O\left(D, e_{0}^{2}, e_{0} e_{1}, e_{1}^{3}\right), b_{1}=-e_{0}+\epsilon O\left(D, e_{0}, e_{1}^{2}\right), b_{2}=-e_{1}+O\left(D, e_{0}, e_{1}^{2}, \epsilon e_{1}\right)$ and $b_{3}=-1+O\left(\epsilon, D, e_{0}, e_{1}\right)$. Systems (7) are of the form (5) of [3], implying that
the results of [3] can be applied. The system (5) of [3] has the following form:

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-x y+\epsilon^{2}\left(\epsilon a_{0}+a_{1} x+a_{2} x^{2}-x^{3}+G(x, y, \lambda)\right)+y H(x, y, \lambda),
\end{array}\right.
$$

where $\epsilon>0, \epsilon \sim 0,\left(a_{0}, a_{1}, a_{2}\right) \sim(0,0,0), \lambda$ is kept in a compact subset of \mathbb{R}^{p}, for some $p \geq 1, G$ and H are smooth near the origin with $G=O\left(x^{4}, x^{2} y, y^{2}\right)$ and $H=O\left(x^{2}, y\right)$.

Taking into account $\left(D, e_{0}, e_{1}\right)=\left(r^{3} \tilde{D}, r^{2} \tilde{e}_{0}, r \tilde{e}_{1}\right),(7)$ can be written as

$$
\left\{\begin{align*}
\dot{\bar{X}}= & \bar{Y} \tag{8}\\
\dot{\bar{Y}}= & -\bar{X} \bar{Y}+\epsilon^{2}\left(\epsilon r^{3} B_{0}+r^{2} B_{1} \bar{X}+r B_{2} \bar{X}^{2}-(1+O(\epsilon, r)) \bar{X}^{3}+O\left(\bar{X}^{4}\right)\right) \\
& +O\left(\bar{X}^{2} \bar{Y}, \bar{Y}^{2}\right)
\end{align*}\right.
$$

with $B_{0}=\tilde{D}+O(\epsilon), B_{1}=-\tilde{e}_{0}+O(\epsilon)$ and $B_{2}=-\tilde{e}_{1}+O(\epsilon, r)$. Note that $B_{0}^{2}+B_{1}^{2}+B_{2}^{2}=1+O(\epsilon, r)$ because $\left(\tilde{D}, \tilde{e}_{0}, \tilde{e}_{1}\right) \in \mathbb{S}^{2}$. In Section 3.2 of $[3]$, instead of working with the spherical coordinates, 6 different charts (or regions) of the sphere have been used (see also [7]):

- Jump region (JR)
$B_{0}= \pm 1,\left(B_{1}, B_{2}\right) \in K_{0}$, where K_{0} is a sufficiently large compact set in \mathbb{R}^{2}.
- Saddle region (SR)
$B_{1}=1, B_{0} \in U_{1}, B_{2} \in K_{1}$, where U_{1} is a sufficiently small neighborhood of the origin in \mathbb{R} and where K_{1} is a sufficiently large compact set in \mathbb{R}.
- Slow-fast Hopf region (SFHR)
$B_{1}=-1, B_{0} \in U_{1}, B_{2} \in K_{1}$, where U_{1} is a sufficiently small neighborhood of the origin in \mathbb{R} and where K_{1} is a sufficiently large compact set in \mathbb{R}.
- Slow-fast Bogdanov-Takens region (SFBTR)
$B_{2}= \pm 1,\left(B_{0}, B_{1}\right) \in U_{2}$, where U_{2} is a sufficiently small neighborhood of the origin in \mathbb{R}^{2}.
Clearly, for any small U_{1} and U_{2} we can take the compact sets K_{0} and K_{1} large enough such that the chosen charts cover a complete neighborhood of $(0,0,0)$ in the (D, e_{0}, e_{1})-space.

By Theorem 1 of [3], the passage near the contact point of (8) from the section $\{\bar{X}=\rho\}$ to the section $\{\bar{X}=-\rho\}(\rho>0$ small) is possible only for the parameters $\left(B_{0}, B_{1}, B_{2}\right)$ in the slow-fast Hopf region $\left\{B_{1}=-1\right\}: B_{0} \sim 0$ and $B_{2} \in\left[-B_{2}^{0}, B_{2}^{0}\right]$, with $B_{2}^{0}>0$ large and fixed. This, together with the fact that (5) was divided by -1 and $B_{1}=-\tilde{e}_{0}+O(\epsilon)$, implies that the passage near the contact point of (4) from $\{x=-\rho\}$ to $\{x=\rho\}$ is only possible for the parameters $\left(\epsilon, D, e_{0}, e_{1}\right) \sim(0,0,0,0)$ with the property that

$$
\left(D, e_{0}, e_{1}\right)=\left(r^{3} \tilde{D}, r^{2}, r \tilde{e}_{1}\right), \epsilon>0, r>0, \tilde{D} \sim 0, \tilde{e}_{1} \in\left[-\tilde{e}_{1}^{0}, \tilde{e}_{1}^{0}\right],
$$

with $\tilde{e}_{1}^{0}>0$ large and fixed.
Remark 4. The canard limit cycles of (4) Hausdorff-close to $D F_{2 a}$ are not possible in the charts $\{\widetilde{D}= \pm 1\},\left\{\tilde{e}_{0}=-1\right\}$ and $\left\{\tilde{e}_{1}= \pm 1\right\}$ covering $\mathbb{S}^{2} \backslash\left\{\tilde{e}_{0}=1\right\}$ in the $\left(\tilde{D}, \tilde{e}_{0}, \tilde{e}_{1}\right)$-space. Indeed, $\{\widetilde{D}= \pm 1\}$ corresponds to the jump region $\left\{B_{0}= \pm 1\right\}$ $\left(B_{0}=\tilde{D}+O(\epsilon)\right),\left\{\tilde{e}_{0}=-1\right\}$ corresponds to the saddle region $\left\{B_{1}=1\right\}$ ($B_{1}=$ $\left.-\tilde{e}_{0}+O(\epsilon)\right)$ and $\left\{\tilde{e}_{1}= \pm 1\right\}$ corresponds to the slow-fast Bogdanov-Takens region $\left\{B_{2}= \pm 1\right\}\left(B_{2}=-\tilde{e}_{1}+O(\epsilon, r)\right)$. Theorem 1 of [3] implies now that the passage near the contact point of (8) (hence the passage near the contact point of (4)) is

Figure 3. Six regions covering the sphere in the $\left(B_{0}, B_{1}, B_{2}\right)$ space. Canard limit cycles of (4), Hausdorff-close to $D F_{2 a}$, are only possible for the parameters in the slow-fast Hopf region.
not possible in the jump, saddle and slow-fast Bogdanov-Takens regions. Thus the canard limit cycles of (4) are only possible in the chart $\left\{\tilde{e}_{0}=1\right\}$.

For the sake of completeness, we give a sketch of the proof of Theorem 1 of [3] (for more details see Sections 3.2.5-3.2.6 of [3]). After the (singular) change of coordinates $(x, y)=\left(r \bar{x}, r^{2} \bar{y}\right)$, with (\bar{x}, \bar{y}) kept in a compact set, and after division by $r>0$, (4) becomes $X_{P}:\left\{\dot{\bar{x}}=\bar{y}+b r \bar{x} \bar{y}-r^{2} \bar{y}^{2}+\epsilon^{2}\left(\tilde{e}_{0}+\tilde{e}_{1} \bar{x}+\bar{x}^{2}\right), \dot{\bar{y}}=\bar{x} \bar{y}+\epsilon^{3} \tilde{D}\right\}$. The slow-fast vector field X_{P} represents (4) in the family directional chart $\{\bar{r}=1\}$ of the primary blow-up defined after (4). When $\epsilon=0$, the vector field X_{P} has the line of singularities $\{\bar{y}=0\}$ that connects the attracting part and the repelling part of the critical curve $\{y=0\}$ of (4). All the singularities are semi-hyperbolic on the critical curve $\{\bar{y}=0\}$, except for the origin $\bar{x}=0$, where we deal with the nilpotent contact point. The slow dynamics of X_{P}, along $\{\bar{y}=0\}$, is given by

$$
\bar{x}^{\prime}=\tilde{e}_{0}+\tilde{e}_{1} \bar{x}+\bar{x}^{2}
$$

First, suppose that $\tilde{e}_{1}= \pm 1$ and $\left(\tilde{D}, \tilde{e}_{0}\right) \sim(0,0)$. Then the slow dynamics has a hyperbolic singularity near $\bar{x}=1$ (resp. $\bar{x}=-1$) when $\tilde{e}_{1}=-1$ (resp. $\tilde{e}_{1}=1$). This implies that in this chart the slow dynamics cannot go from $\bar{x}=-\infty$ to $\bar{x}=+\infty$ (hence the passage from the attracting part to the repelling part of the critical curve of (4) is not possible). Suppose now that $\tilde{D} \sim 0, \tilde{e}_{0}= \pm 1$ and \tilde{e}_{1} is kept in an arbitrary compact set. When $\tilde{e}_{0}=-1$, the slow dynamics is negative near $\bar{x}=0$, and therefore it cannot go from $\bar{x}=-\infty$ to $\bar{x}=+\infty$. When $\tilde{e}_{0}=1$, the slow dynamics is (uniformly) positive for some values of the parameter \tilde{e}_{1} (in this chart, the passage is possible). Finally, suppose that $\tilde{D}= \pm 1$, with ($\tilde{e}_{0}, \tilde{e}_{1}$) kept in a compact set. In this chart, the slow dynamics has a saddle-node at $\bar{x}=0$, for $\left(\tilde{e}_{0}, \tilde{e}_{1}\right)=(0,0)$, like the (original) slow dynamics of (4). In this chart, we use the secondary blow-up, defined after (4), to show that the origin $(\bar{x}, \bar{y})=(0,0)$ is a jump point (see Section 3.2.6 of [3]). In the family chart $\{\tilde{\epsilon}=1\}$, the secondary blow-up formula becomes $(\bar{x}, \bar{y})=\left(\epsilon \tilde{x}, \epsilon^{2} \tilde{y}\right)$, with (\tilde{x}, \tilde{y}) kept in a compact set. After this
rescaling and division by $\epsilon>0, X_{P}$ changes to $X_{S}:\left\{\dot{\tilde{x}}=\tilde{y}+\tilde{e}_{0}+O(\epsilon), \dot{\tilde{y}}=\tilde{x} \tilde{y} \pm 1\right\}$ (we supposed that $\tilde{D}= \pm 1)$. After the coordinate change $Y=-\left(\tilde{y}+\tilde{e}_{0}\right)$, and after division by -1 , the vector field X_{S}, with $\epsilon=0$, becomes: $\bar{X}_{S}:\{\dot{\tilde{x}}=Y, \dot{Y}=$ $\left.-\tilde{x} Y+\left(\pm 1-\tilde{e}_{0} \tilde{x}\right)\right\}$, where \tilde{e}_{0} is kept in a compact set. This vector field is of the form (22) of [3], and therefore we can apply the results of Section 3.2.6 of [3]. Following Section 3.2.6 of [3] (Figures 3 and 4), the passage from $\tilde{x}=\infty$ to $\tilde{x}=-\infty$ in the family \bar{X}_{S} is not possible. This implies that the passage from $\tilde{x}=-\infty$ to $\tilde{x}=+\infty$ in the family X_{S} is not possible (we changed the time). Thus, the passage from the attracting branch to the repelling branch of the critical curve $\{\bar{y}=0\}$ is not possible.

From now on, our focus will thus be on the chart $\left\{\tilde{e}_{0}=1\right\}$ of the sphere in the ($\left.\tilde{D}, \tilde{e}_{0}, \tilde{e}_{1}\right)$-space.
2.3. Difference map near $D F_{2 a}$ and the divergence integral. The limit cycles of $X_{\epsilon, b,\left(r^{3} \tilde{D}, r^{2}, r \tilde{e}_{1}\right)}$ near $\cup_{x_{*} \in K} \Gamma_{x_{*}}$ can be studied as zeros of a difference map. We define a section $S_{1} \subset\{x=0\}$, parametrized by $x_{*} \in K$. More precisely, $S_{1}=\left\{\left(0, \psi\left(x_{*}\right)\right) \mid x_{*} \in K\right\}$, where we suppose that the orbit of the system $\frac{1}{y} \cdot X_{0,0,\left(r^{3} \tilde{D}, r^{2}, r \tilde{e}_{1}\right)}$ through the point $\left(x_{*}, 0\right), x_{*} \in K$, intersects the section $\{x=0\}$ at a point denoted by $\left(0, \psi\left(x_{*}\right)\right)$. Note that $\psi\left(x_{*}\right)>1$ and $\psi^{\prime}\left(x_{*}\right)>0$ uniformly in $x_{*} \in K$. We define a second section $S_{2} \subset\{\bar{X}=0\}=\left\{x=O\left(\epsilon^{2} D, \epsilon^{2} e_{0}, \epsilon^{2} e_{1}\right)\right\}$ parametrized by $\bar{Y} \sim 0$. Now if we follow the orbits of (4) in forward (resp. backward) time, we can define a transition map from S_{1} to S_{2} which we denote by $\Delta_{+}\left(x_{*}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)\left(\right.$ resp. $\left.\Delta_{-}\left(x_{*}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)\right)$. See Figure 4. Closed orbits of (4) are given by zeros of the difference map

$$
\Delta=\Delta_{+}-\Delta_{-}
$$

Lemma 2.1. The transition maps $\Delta_{ \pm}$can be written as

$$
\bar{Y}=\Delta_{ \pm}\left(x_{*}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)=-\epsilon^{2} r^{2} \tilde{\Delta}_{ \pm}\left(x_{*}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)
$$

where $\tilde{\Delta}_{ \pm}$are strictly positive C^{k}-functions in the variable $\left(x_{*}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)$, with a C^{k}-extension to the boundary of their domain, and $\tilde{\Delta}_{ \pm}\left(x_{*}, 0, r, 0, \tilde{e}_{1}, b\right)=1$.

Proof. Let's prove this for the transition map Δ_{+}; the transition map Δ_{-}can be treated similarly. First we consider the transition map of $X_{\epsilon, b,\left(r^{3} \tilde{D}, r^{2}, r \tilde{e}_{1}\right)}$ from the section S_{1} to the section $\{\bar{X}=-\rho\}$, parametrized by $\bar{Y} \sim 0$, where (\bar{X}, \bar{Y}) are normal form coordinates and $\rho>0$ is small. We denote this transition map by $\bar{Y}=$ $\Delta_{1}\left(x_{*}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)$ (see Figure 4). Following [1], the function Δ_{1} is smooth (smooth stands for C^{∞}-smoothness) in ($\left.x_{*}, \epsilon, r^{3} \tilde{D}, r^{2}, r \tilde{e}_{1}, b\right)$ with a smooth extension to the boundary $\{\epsilon=0\}$ because the slow dynamics is regular along the attracting part of the critical curve. We define the second transition map of $X_{\epsilon, b,\left(r^{3} \tilde{D}, r^{2}, r \tilde{e}_{1}\right)}$ from the section $\{\bar{X}=-\rho\}$, parametrized by the normal form coordinate $\bar{Y} \sim 0$, to the section S_{2}, denoted by $\bar{Y}_{1}=\Delta_{2}\left(\bar{Y}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)$. Note that $\Delta_{2}\left(\bar{Y}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)$ also represents the transition map from the section $\{\bar{X}=-\rho\}$ to the section S_{2} defined by following the orbits of (8), with $\tilde{e}_{0}=1$, in backward time, and by Theorem 2 of [3], it has the following form:

$$
\begin{equation*}
\bar{Y}_{1}=\Delta_{2}\left(\bar{Y}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)=-\epsilon^{2} r^{2} \bar{\Delta}_{2}\left(\bar{Y}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, B_{0}, B_{2}, b\right) \tag{9}
\end{equation*}
$$

where $\bar{\Delta}_{2}$ is a strictly positive C^{k}-function on the topological closure of its domain. Moreover, Theorem 1 of [3] implies that

$$
\begin{equation*}
\bar{\Delta}_{2}\left(\bar{Y}, 0, r, \tilde{D}, \tilde{e}_{1}, 0, B_{2}, b\right)=1 \tag{10}
\end{equation*}
$$

Clearly, the transition map Δ_{2} is a local C^{k}-diffeomorphism with respect to \bar{Y} whenever it exists. Although the transition map does not exist when $\epsilon=0$, the function $\bar{\Delta}_{2}$, introduced in (9), can be C^{k}-extended to the boundary $\epsilon=0$ where we obtain (10).

We now combine (9) with the fact that

$$
\Delta_{+}\left(x_{*}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)=\Delta_{2}\left(\Delta_{1}\left(x_{*}, \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right), \epsilon, r, \tilde{D}, \tilde{e}_{1}, b\right)
$$

to obtain the above result for the transition map Δ_{+}.

Figure 4. The transition maps $\Delta_{+}=\Delta_{2} \circ \Delta_{1}$ and Δ_{-}.

The following proposition (see [1]) allows us to express the derivative of the difference map Δ w.r.t. x_{*} in terms of a divergence integral.

Proposition 1 ([1]). Let f be a vector field on an open subset of \mathbb{R}^{n}. Let S_{1} and S_{2} be two open sections of \mathbb{R}^{n}, transverse to the flow of f. Assume $p \in S_{1}, q \in S_{2}$ and the orbit through p reaches q in finite time. Let $T: S_{0} \subset S_{1} \rightarrow S_{2}$ be the transition map defined in a neighborhood of p. If $\phi_{i}: U_{i} \rightarrow S_{i}$ are coordinates for S_{i} with $U_{i} \subset \mathbb{R}^{n-1}$, then

$$
\operatorname{det}\left(D\left(\phi_{2}^{-1} \circ T \circ \phi_{1}\right)\right)\left(s_{1}\right)=\frac{\operatorname{det}\left(D \phi_{1}\left(s_{1}\right) \mid f(p)\right)}{\operatorname{det}\left(D \phi_{2}\left(s_{2}\right) \mid f(q)\right)} \exp \left\{\int_{O(p, q)} \operatorname{div} f d t\right\}
$$

where $s_{1}=\phi_{1}^{-1}(p)$, $s_{2}=\phi_{2}^{-1}(q)$, and where $\left(D \phi_{1}\left(s_{1}\right) \mid f(p)\right)$ is a matrix composed of the $n \times(n-1)$ matrix $D \phi_{1}\left(s_{1}\right)$ and the column vector $f(p)$, and similarly for $\left(D \phi_{2}\left(s_{2}\right) \mid f(q)\right)$. The integral is taken over the orbit $O(p, q)$ from p to q parametrized by t.

Using Proposition 1, the fact that $S_{2} \subset\left\{x=O\left(\epsilon^{2} r^{3} \widetilde{D}, \epsilon^{2} r^{2}, \epsilon^{2} r \tilde{e}_{1}\right)\right\}$ and

$$
\begin{equation*}
\bar{Y}=-\frac{y(1+b x-y)+\epsilon^{2}\left(r^{2}+r \tilde{e}_{1} x+x^{2}\right)}{1+O(\epsilon)} \tag{11}
\end{equation*}
$$

we have that

$$
\frac{\partial \tilde{\Delta}_{ \pm}}{\partial x_{*}}=\frac{-L\left(x_{*}, \epsilon, D, e_{0}, e_{1}, b\right)}{\epsilon^{4} r^{4} \tilde{\Delta}_{ \pm}} \exp \left(\mathcal{I}_{ \pm}\left(x_{*}, \epsilon, D, e_{0}, e_{1}, b\right)\right)
$$

where $\left(D, e_{0}, e_{1}\right)=\left(r^{3} \tilde{D}, r^{2}, r \tilde{e}_{1}\right), L$ is a strictly positive smooth function, and with

$$
\mathcal{I}_{ \pm}\left(x_{*}, \epsilon, D, e_{0}, e_{1}, b\right)=\int_{\mathcal{O}^{ \pm}\left(x_{*}, \epsilon, D, e_{0}, e_{1}, b\right)} \operatorname{div}\left(\pm X_{\epsilon, b,\left(D, e_{0}, e_{1}\right)}\right) d t
$$

where $\mathcal{O}^{+}\left(x_{*}, \epsilon, D, e_{0}, e_{1}, b\right)$ (resp. $\mathcal{O}^{-}\left(x_{*}, \epsilon, D, e_{0}, e_{1}, b\right)$) is the orbit of the system $X_{\epsilon, b,\left(D, e_{0}, e_{1}\right)}$ through the point $\left(0, \psi\left(x_{*}\right)\right) \in S_{1}$, in positive time (resp. in negative time) until it hits the section S_{2}. If we denote the divergence integral $\mathcal{I}_{+}-\mathcal{I}_{-}$by \mathcal{I}, and if we define the positive analytic function $E\left(\alpha_{1}, \alpha_{2}\right)=\frac{\exp \alpha_{1}-\exp \alpha_{2}}{\alpha_{1}-\alpha_{2}}, \alpha_{1} \neq \alpha_{2}$, and $E\left(\alpha_{1}, \alpha_{2}\right)=\exp \alpha_{1}$, then we obtain

$$
\begin{equation*}
\frac{\partial \Delta}{\partial x_{*}}=-\epsilon^{2} r^{2} \frac{\partial\left(\tilde{\Delta}_{+}-\tilde{\Delta}_{-}\right)}{\partial x_{*}}=\frac{L}{\epsilon^{4} r^{2}} E\left(\alpha_{1}, \alpha_{2}\right)\left(\epsilon^{2} \mathcal{I}+\epsilon^{2} \ln \frac{\tilde{\Delta}_{-}}{\tilde{\Delta}_{+}}\right) \tag{12}
\end{equation*}
$$

where

$$
\alpha_{1}=\mathcal{I}_{+}-\ln \tilde{\Delta}_{+}, \alpha_{2}=\mathcal{I}_{-}-\ln \tilde{\Delta}_{-}
$$

The derivative of $\epsilon^{2} \mathcal{I}+\epsilon^{2} \ln \frac{\tilde{\Delta}_{-}}{\tilde{\Delta}_{+}}$in (12) is given by

$$
\begin{equation*}
\epsilon^{2} \frac{\partial \mathcal{I}}{\partial x_{*}}+\epsilon^{2}\left(\frac{\frac{\partial \tilde{\Delta}_{-}}{\partial x_{*}}}{\tilde{\Delta}_{-}}-\frac{\frac{\partial \tilde{\Delta}_{+}}{\partial x_{*}}}{\tilde{\Delta}_{+}}\right) \tag{13}
\end{equation*}
$$

The reason we study the derivative (13) is twofold: it is that the function $\epsilon^{2} \frac{\partial \mathcal{I}}{\partial x_{*}}\left(x_{*}, \epsilon, D, e_{0}, e_{1}, b\right)$ is C^{k} on the topological closure of its domain, and

$$
\left.\epsilon^{2} \frac{\partial \mathcal{I}}{\partial x_{*}}\left(x_{*}, \epsilon, D, e_{0}, e_{1}, b\right)\right|_{\epsilon=0}=\frac{\partial I}{\partial x_{*}}\left(x_{*}, b, e_{0}, e_{1}\right),
$$

where $\frac{\partial I}{\partial x_{*}}$ is given in (3) (see Theorem 4 and Section 4.2 of [3]), and the other reason is that
Lemma 2.2. The functions $\frac{\partial \tilde{\Delta}_{ \pm}}{\partial x_{*}}$ and $\frac{\frac{\partial \tilde{\Delta}_{ \pm}}{\partial \tilde{\Delta}_{*}}}{\hat{\Delta}_{ \pm}}$are $C^{k}-$ functions w.r.t. original variable $\left(x_{*}, \epsilon, D, e_{0}, e_{1}, b\right)$ on the closure of their domain.
Proof. We focus on $\frac{\partial \tilde{\Delta}_{+}}{\partial x_{*}}$ and $\frac{\frac{\partial \tilde{\Delta}_{+}}{\partial x_{*}}}{\tilde{\Delta}_{+}}\left(\frac{\partial \tilde{\Delta}_{-}}{\partial x_{*}}\right.$ and $\frac{\frac{\partial \tilde{\Delta}_{-}}{\partial x_{*}}}{\tilde{\Delta}_{-}}$can be treated similarly). We have

$$
\frac{\partial \tilde{\Delta}_{+}}{\partial x_{*}}=\frac{\partial \bar{\Delta}_{2}}{\partial \bar{Y}}\left(\Delta_{1}(\ldots), \ldots\right) \cdot \frac{\partial \Delta_{1}}{\partial x_{*}}(\ldots)
$$

and

$$
\frac{\frac{\partial \tilde{\Delta}_{+}}{\partial x_{*}}}{\tilde{\Delta}_{+}}=\frac{\frac{\partial \bar{\Delta}_{2}}{\partial \bar{Y}}}{\bar{\Delta}_{2}}\left(\Delta_{1}(\ldots), \ldots\right) \cdot \frac{\partial \Delta_{1}}{\partial x_{*}}(\ldots),
$$

where Δ_{1} and $\bar{\Delta}_{2}$ are defined above. Following [1], Δ_{1} and $\frac{\partial \Delta_{1}}{\partial x_{*}}$ are smooth functions w.r.t. $\left(x_{*}, \epsilon, D, e_{0}, e_{1}, b\right)$ on the topological closure of their domain, hence including $\{\epsilon=0\}$. From (7) and Theorem 3 of [3], the functions $\frac{\partial \bar{\Delta}_{2}}{\partial Y}$ and $\frac{\frac{\partial \bar{\Delta}_{2}}{\partial Y}}{\Delta_{2}}$ are C^{k} w.r.t. $\left(\bar{Y}, \epsilon, b_{0}, b_{1}, b_{2}, D, e_{0}, e_{1}, b\right)$ on the topological closure of their domain, and are hence C^{k} w.r.t. $\left(\bar{Y}, \epsilon, D, e_{0}, e_{1}, b\right)$. This concludes the proof of the lemma.

Let's write $F\left(x_{*}, b\right)=F_{b}\left(x_{*}\right)$. Proposition 4.1 of [5] implies that

$$
\begin{equation*}
\frac{\partial F}{\partial b}\left(x_{*}, 0\right)=-1+\frac{x_{*}^{2}+1}{x_{*}} \arctan x_{*}-\pi \frac{x_{*}^{2}+1}{x_{*}}, F\left(x_{*}, 0\right)=-x_{*} \tag{14}
\end{equation*}
$$

Using (3) and (14), $\frac{\partial I}{\partial x_{*}}\left(x_{*}, b, e_{0}, e_{1}\right)$ can be written as

$$
\begin{equation*}
e_{1}\left(-\frac{2}{x_{*}^{2}}+O\left(e_{0}, e_{1}, b\right)\right)+b\left(2 \frac{1-\frac{\arctan x_{*}}{x_{*}}+\frac{\pi}{x_{*}}}{x_{*}^{2}}+O\left(e_{0}, e_{1}, b\right)\right) . \tag{15}
\end{equation*}
$$

Since B_{0} in (8) is a "breaking parameter" (see [3] or [7]), periodic orbits of systems $X_{\epsilon, b,\left(r^{3} \tilde{D}_{, r} r^{2}, r \tilde{e}_{1}\right)}$, Hausdorff-close to $\Gamma_{x_{*}}$, can exist only for $\tilde{D}=\tilde{D}_{0}\left(x_{*}, \epsilon, r, \tilde{e}_{1}, b\right)$ where $\tilde{D}_{0}\left(x_{*}, \epsilon, r, \tilde{e}_{1}, b\right)$ is a C^{k}-function. This follows directly from the Implicit Function Theorem because $B_{0}=\tilde{D}+O(\epsilon),\left(\tilde{\Delta}_{+}-\tilde{\Delta}_{-}\right)\left(x_{*}, 0, r, 0, \tilde{e}_{1}, b\right)=0$ and $\frac{\partial\left(\tilde{\Delta}_{+}-\tilde{\Delta}_{-}\right)}{\partial \tilde{D}}\left(x_{*}, 0, r, 0, \tilde{e}_{1}, b\right) \neq 0$. Furthermore, since $X_{\epsilon, b,\left(r^{3} \tilde{D}_{,}, r^{2}, r \tilde{e}_{1}\right)}$ has a center for $\left(\tilde{D}, \tilde{e}_{1}, b\right)=(0,0,0)$, we have

$$
\Delta\left(x_{*}, \epsilon, r, 0,0,0\right)=0
$$

and

$$
\tilde{D}_{0}\left(x_{*}, \epsilon, r, 0,0\right)=0 .
$$

Since (15) is identically zero for $b=e_{1}=0$, it is more convenient to study zeros w.r.t. x_{*} of

$$
\Delta_{p}\left(x_{*}, \epsilon, r, \tilde{e}_{1}, b\right)=\Delta\left(x_{*}, \epsilon, r, \tilde{D}_{0}\left(p, \epsilon, r, \tilde{e}_{1}, b\right), \tilde{e}_{1}, b\right)
$$

where p is kept in the compact set K. We call this procedure "cloning a variable" (see [7]). Note that $\frac{\partial \Delta_{p}}{\partial x_{*}}\left(x_{*}, \epsilon, r, 0,0\right)=0$. If we now substitute in (12) the function $\tilde{D}_{0}\left(x_{*}, \epsilon, r, \tilde{e}_{1}, b\right)$ for \tilde{D}, and use (15) and the fact that the function in (13) is C^{k} w.r.t. to the original parameters $\left(D, e_{0}, e_{1}\right)$, then (13) can be written as

$$
\begin{equation*}
e_{1}\left(-\frac{2}{x_{*}^{2}}+O_{1}\left(\epsilon, e_{1}, b\right)\right)+b\left(2 \frac{1-\frac{\arctan x_{*}}{x_{*}}+\frac{\pi}{x_{*}}}{x_{*}^{2}}+O_{2}\left(\epsilon, e_{1}, b\right)\right) \tag{16}
\end{equation*}
$$

where O_{1} and O_{2} are C^{k}-functions w.r.t. $\left(x_{*}, \epsilon, r, \tilde{e}_{1}, b, p\right)$. In the rest of this section we will show that (16) has at most 1 zero (counting multiplicity) w.r.t. $x_{*} \in K$, with $\left(e_{1}, b\right) \neq(0,0)$. Using (12) and Rolle's theorem, this will imply that the difference map Δ has at most 3 zeros (counting multiplicity) w.r.t. $x_{*} \in K$ for $\epsilon>0, r>0$ and $\left(\widetilde{D}, \widetilde{e}_{1}, b\right) \neq(0,0,0)$, which will conclude the proof of Theorem 1.1.

If we define rescaling $\left(e_{1}, b\right)=\left(\kappa \bar{e}_{1}, \kappa \bar{b}\right),\left(\bar{e}_{1}, \bar{b}\right) \in \mathbb{S}^{1}, \kappa \sim 0, \kappa \geq 0$, then expression (16) can be written as

$$
\begin{equation*}
\frac{2}{x_{*}^{2}} \kappa\left(-\bar{e}_{1}+\bar{b}\left(1-\frac{\arctan x_{*}}{x_{*}}+\frac{\pi}{x_{*}}\right)+O(\epsilon, \kappa)\right) \tag{17}
\end{equation*}
$$

where $x_{*} \in K$. This rescaling is the so-called Bautin trick.
When $\kappa=0$, we deal with a center. Thus we suppose that $\kappa>0$. We will show that the expression

$$
\begin{equation*}
-\bar{e}_{1}+\bar{b}\left(1-\frac{\arctan x_{*}}{x_{*}}+\frac{\pi}{x_{*}}\right) \tag{18}
\end{equation*}
$$

has at most 1 zero (counting multipicity) with respect to $x_{*} \in K$, for each $\left(\bar{e}_{1}, \bar{b}\right) \in$ \mathbb{S}^{1}. This will imply that the expression in (17) has at most 1 zero counting multiplicity in K for each $\left(\bar{e}_{1}, \bar{b}\right) \in \mathbb{S}^{1}, \kappa>0, \kappa \sim 0$ and $\epsilon \sim 0$.

When $\left(\bar{e}_{1}, \bar{b}\right)=(\pm 1,0)$, the expression (18) has no zeros in K. When $\left(\bar{e}_{1}, \bar{b}\right) \in \mathbb{S}^{1}$ and $\bar{b} \neq 0$, we consider the derivative of (18):

$$
\begin{equation*}
-\frac{\bar{b}}{x_{*}^{2}\left(1+x_{*}^{2}\right)}\left(x_{*}-\left(1+x_{*}^{2}\right) \arctan x_{*}+\pi\left(1+x_{*}^{2}\right)\right) . \tag{19}
\end{equation*}
$$

If we write $l\left(x_{*}\right)=x_{*}-\left(1+x_{*}^{2}\right) \arctan x_{*}+\pi\left(1+x_{*}^{2}\right)$, then we have that $l(0)=\pi$ and

$$
l^{\prime}\left(x_{*}\right)=2 x_{*}\left(\pi-\arctan x_{*}\right)>0
$$

for all $x_{*}>0$. Thus we have that $l\left(x_{*}\right)>0$ for all $x_{*} \in K$. This implies that (19) has no zeros in K and, by Rolle's theorem, (18) has at most 1 zero counting multiplicity in K. This completes the proof of Theorem 1.1.

REFERENCES

[1] P. De Maesschalck and F. Dumortier, Time analysis and entry-exit relation near planar turning points, J. Differential Equations, 215 (2005), 225-267.
[2] P. De Maesschalck and F. Dumortier, Canard cycles in the presence of slow dynamics with singularities, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 265-299.
[3] P. De Maesschalck and F. Dumortier, Singular perturbations and vanishing passage through a turning point, J. Differential Equations, 248 (2010), 2294-2328.
[4] F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 121 (1996), x+100.
[5] F. Dumortier and C. Rousseau, Study of the cyclicity of some degenerate graphics inside quadratic systems, Commun. Pure Appl. Anal., 8 (2009), 1133-1157.
[6] F. Dumortier, R. Roussarie and C. Rousseau, Hilbert's 16 th problem for quadratic vector fields, J. Differential Equations, 110 (1994), 86-133.
[7] R. Huzak, P. De Maesschalck and F. Dumortier, Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations, J. Differential Equations, 255 (2013), 4012-4051.
[8] C. Rousseau, Normal forms, bifurcations and finiteness properties of vector fields, in Normal forms, bifurcations and finiteness problems in differential equations, volume 137 of NATO Sci. Ser. II Math. Phys. Chem., Kluwer Acad. Publ., Dordrecht, (2004), 431-470.
[9] S. Smale, Mathematical problems for the next century, in Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, (2000), 271-294.

