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Abstract

We consider P-spline smoothing in a varying coefficient regression model when the

response is subject to random right censoring. We introduce two data-transformation ap-

proaches to construct a synthetic response vector that is used in a penalized least-squares

optimization problem. We prove the consistency and asymptotic normality of the P-spline

estimators for a diverging number of knots and show by simulation studies and real data

examples that the combination of a data-transformation for censored observations with

P-spline smoothing leads to good estimators of the varying coefficient functions.

keywords: Censoring, Non-parametric statistics, P-splines, Regularization, Varying

coefficient model

1 Introduction

Parametric regression models are commonly used for exploring relationships between a re-

sponse variable and a set of explanatory variables. Linear models are often a good first

approximation of the underlying association patterns but sometimes not able to capture com-

plex dynamic structures. An extension of the classical linear regression model is the varying

coefficient model (VCM, [17]). These models are still linear in the regressors but with re-

gression coefficients that are smooth functions in one or more other variables, considered as

effect modifiers. VCMs have been used is a successful way in many applications, among which

are longitudinal models ([19]; [16]), survival models ([5]; [26]), generalized regression models

([6]; [24]) and non-linear time series [7]. The most commonly used estimation methods for

VCMs are kernel regression [36], polynomial splines [20] and smoothing splines [17]. In this

paper, we concentrate on the penalized spline (P-spline) smoothing technique proposed by

[11]. P-spline regression is an extension of B-spline regression with a penalty in terms of finite
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differences of the coefficients of adjacent B-splines to protect against overfitting. P-splines are

determined by the degree and the number and location of the knot points of the B-splines, the

order of the difference penalty and a smoothing parameter. The consistency and asymptotic

normality of the P-spline estimators for the regression coefficients in a VCM with longitudinal

data was proved by [1].

Often encountered in the statistical analysis are situations where the response is not fully

observed due to random right censoring, for example in medical and health care studies where

patients leave the study for numerous reasons before the event of interest occurs (23, [28]).

Another example of censoring arises in reliability studies, where the failure time of a device

might be censored if the device is still functional at the end of the experiment ([27]). The

popular proportional hazard model for right censored data ([9]) models the instantaneous

risk as a product of a baseline hazard an an exponential factor. It models the relation

between the response and covariates in an indirect way and is less simple to interpret than

classical mean-regression models, where interest is in direct modeling of the mean event time

as a function of covariates. The accelerated failure time model ([35]) on the other hand

does propose a direct linear relationship between the logarithm of the survival time and

covariates, but unlike the Cox proportional hazard model, accelerated failure time models

are often parametric and hence require additional assumptions on the underlying survival

distribution. Ordinary least squares regression, which avoid specifying the distribution of the

response variable for estimating the parameters in a linear regression model, needs however

modification when some of the responses are not observed. Extensions of ordinary least

squares to censored data settings were first considered by [4]. The estimation technique relies

on constructing a synthetic response based on a transformation formula that is (conditional)

mean preserving. The new response then replaces the original response in the ordinary least

squares regression problem with complete data. The transformation studied by [4] uses the

underlying regression model and therefore needs an iterative estimation algorithm (see [21]

for the implementation of the iterative procedure). When transformed responses deal with

transformations not depending on the unknown regression model but only on the censoring

distribution, an iterative procedure is no longer needed at the cost however of increased

variability in the transformed data. Transformations of this type were proposed by [15], [22],

[25] and [38]. The combination of non-linear mean regression models with synthetic data
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approaches for right censored data has mainly been studied for univariate covariates, see e.g.

[15] and [18] among others. Recently more attention to multivariate regression models with

right censored data transformation techniques is given by [37] for the VCM and by [3] for the

varying coefficient partially linear model.

The paper is organized as follows. In Section 2, we introduce the VCM for randomly right

censored data. The P-spline estimator in case censoring is absent is described in Section 3.

Data transformation approaches for right censored data are explained in Section 4. Motivated

by the research of [15], we first introduce model-independent transformations in Section 4.1

and later discuss, inspired by the approach of [4], transformations that take the underlying

regression model into account in Section 4.2. The consistency and asymptotic normality

of the proposed estimators is given in Section 5. Section 6 contains the details on how to

choose the parameters involved with the estimation in practical settings. The finite sample

behavior of the proposed method is analyzed using a simulation study in Section 7 and

compared with the estimates for a VCM with right censoring proposed by [37]. The proposed

estimation procedure is applied to the ‘addict dataset’ ([8]) in Section 8. The paper ends with

a discussion, given in Section 9. An Appendix is included that contains the Assumptions of

our main results. The technical details of our results are included in the Supplementary

Materials.

2 Model description

Consider the varying coefficient model:

Y = m(U,X) + σ(U,X)ε

= β1(U1)X1 + . . .+ βd(Ud)Xd + σ(U1, X1, . . . , Ud, Xd)ε, (2.1)

where, Y is the response variable, U = (U1, . . . , Ud)
′ ∈ Ud and X = (X1, . . . , Xd)

′ ∈ IRd are

associated covariate vectors, where Ud denotes a d-dimensional interval on which the measure-

ments are taken; ε is a mean-zero error term with variance one and (unknown) distribution

function F , assumed to be independent of U,X. The functions β1(u1), . . . , βd(ud) are the
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unknown regression coefficient functions at U = u ≡ (u1, . . . , ud)
′ and σ(u,x) is the variance

of Y conditional on U = u and X = x = (x1, . . . , xd)
′. When X1 ≡ 1, the function β1 is a

non-zero intercept function representing the baseline effect.

We consider the case that the response Y of interest is subject to random right censoring. Let

C be the censoring variable with survival function G(·|u,x) conditional on (U,X) = (u,x)

and ∆ be the censoring indicator 1{Y≤C}. We observe a sample (Zi,∆i,Ui,Xi), i = 1, . . . , n,

from (Z,∆,U,X). We assume throughout that Y and C are independent, non-negative

continuous random variables.

In this paper we focus on estimating the regression curve m(u,x). The estimation procedure

for β(u) = (β1(u1), . . . , βd(ud))
′ consists of two steps: a mean-preserving data-transformation

followed by P-spline smoothing using the transformed data. We describe the P-spline smooth-

ing procedure with fully observed responses Yi in Section 3 and describe in Section 4 two

data-transformation approaches that allow a separation between the P-spline technique and

the censored nature of the data.

3 P-spline estimator

Suppose that we have uncensored observations (Yi,Ui,Xi) for i = 1, . . . , n. We use P-

spline smoothing to estimate the varying coefficients in model (2.1). P-splines are an ex-

tension of regression splines with a penalty on the coefficients of adjacent B-splines. Each

coefficient function βp is approximated by a normalized B-spline basis expansion βp(up) ≈∑mp

l=1Bpl(up; qp)αpl, where {Bpl(·; q) : l = 1, . . . ,Kp+qp = mp} is the qp-th degree B-spline ba-

sis using normalized B-splines such that
∑mp

l=1Bpl(up; qp) = 1, with Kp + 1 equidistant knots

ξp = (ξp0, . . . , ξpKp). We use the notation α = (α′1, . . . ,α
′
d)
′ with αp = (αp1, . . . , αpmp)′

for p = 1, . . . , d to denote the unknown vector of B-spline regression coefficients and write

D =
∑d

p=1mp for the dimension of α.
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The P-spline optimization problem is given by

min
α

 n∑
i=1

{
Yi −

d∑
p=1

Xip

mp∑
l=1

Bpl(Ui; qp)αpl

}2
+

d∑
p=1

λp

 mp∑
l=kp+1

(∆k
pαpl)

2


= min

α

{
(Y −Rα)′(Y −Rα) + α′Qλα

}
, (3.1)

where Y = (Y1, . . . , Yn)′, R = (R1| . . . |Rn)′ ∈ IRn×D with Ri = B′(Ui)Xi ∈ IRD×1 and

B(u) ∈ IRd×D given by,

B(u) =


B11(u1; q0) . . . B1m1(u1; q1) 0 . . . 0 0 . . . 0

0 . . . 0
. . . 0 . . . 0

0 . . . 0 0 . . . 0 Bd1(ud; qd) . . . Bdmd
(ud; qd)

 ,

Qλ = diag(λ1D
′
k1

Dk1 , . . . , λdD
′
kd

Dkd) ∈ IRD×D, a block diagonal matrix with λpD
′
kp

Dkp on

the diagonal where Dkp is the matrix representation of the kp-th order difference operator

∆kp , i.e. ∆kp(αpl) =
∑kp

h=0(−1)h
(kp
h

)
αp(l−h) (for l ≥ kp), with kp ∈ IN ; and λ = (λ1, . . . , λd)

is the vector of smoothing parameters satisfying λp > 0, p = 1, . . . , d.

P-splines are computationally attractive since a closed form of the regression coefficient esti-

mator exists. [1] showed that R′R + Qλ is invertible except on a set with probability tending

to zero if m
3/2
maxλmax
n = o(1), where mmax = max(m1, . . . ,md) and λmax = max(λ1, . . . , λd).

Therefore the unique minimizer of S(α) is

α̂ =
(
R′R + Qλ

)−1
R′Y. (3.2)

The P-spline estimator of β(u) is

β̂(u) = B(u)α̂ = (β̂1(u1), . . . , β̂d(ud))
′, with β̂p(up) =

mp∑
l=1

Bpl(up; qp)α̂pl. (3.3)

In Section 44, we construct, for randomly right censored data, a new response vector Y∗ (the

transformed response vector), that will replace Y in (3.2).
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4 Data transformation approaches

We consider a data transformation approach and define the transformed response Y ∗ as

Y ∗ = ∆ϕ(U,X, Z) + (1−∆)ψ(U,X, Z) =

{
ϕ(U,X, Z) if uncensored

ψ(U,X, Z) if censored,

with transformation functions ϕ and ψ so that

E(Y ∗|U,X) = E(Y |U,X). (4.1)

Condition (4.1) ensures that inference based on (Y ∗i ,Ui,Xi) preserves the conditional mean.

In Section 4.1 we look at transformations that do not depend on the underlying regression

model (2.1). Transformations that depend on model (2.1) are considered in Section 4.2. When

a transformation depends on the unknown regression model, initial estimates for the regression

curve and variance function are needed. In the second transformation method, we use as initial

estimates for m and σ the estimates based on the model-independent transformation method

of Section 4.1. We use the notation ϕ1, ψ1 and ϕ2, ψ2 to denote the transformation functions

ϕ,ψ in methods one and two.

4.1 Transformation method 1: model independent transformations

From condition (4.1) we obtain the integral equation

ϕ1(u,x, y)G(y|u,x)−
∫ y

0
ψ1(u,x, c)dG(c|u,x) = y. (4.2)

A specific class of solutions to (4.2), for all y > 0,u ∈ Ud and x ∈ IRd is given in [15], with

z > 0 and γ ∈ IR,

ϕ1(u,x, z) = (1 + γ)

∫ z

0

dt

G(t|u,x)
− γ z

G(z|u,x)
,

ψ1(u,x, z) = (1 + γ)

∫ z

0

dt

G(t|u,x)
. (4.3)
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The transformations only depend on the censoring distribution G(·|u,x) of C conditional on

(U,X) = (u,x). Special cases of (4.3) are the methods proposed by [22] and [25], taking

γ = −1 and γ = 0 respectively. Since the functions ϕ1 and ψ1 depend on the unknown

conditional survival function of C, an estimator Ĝ(·|u,x) of G(·|u,x) is needed. A well-

known problem with right censored data is however the estimation of a distribution function

in the tail of the distribution. We therefore do not transform data points in the tail. As

suggested in [15], we define

ϕ̂1(u,x, z) = ϕ̄1(u,x, z)1{z≤τ1(u,x)} + z1{z>τ1(u,x)}

ψ̂1(u,x, z) = ψ̄1(u,x, z)1{z≤τ1(u,x)} + z1{z>τ1(u,x)}

for some 0 < τ1(u,x) < T (u,x) = sup{t|H(z|u,x) < 1} with H(z|u,x) = P (Z ≤ z|U =

u,X = x) representing the distribution function of Z conditional on (U,X) = (u,x); where

ϕ̄1 and ψ̄1 are given by (4.3) with G replaced by the estimator Ĝ.

The synthetic response vector is defined as Ŷ∗1 = (Ŷ ∗1i, . . . , Ŷ
∗

1n)′ with, for i = 1, . . . , n,

Ŷ ∗1i = ∆iϕ̂1(Ui,Xi, Zi) + (1−∆i)ψ̂1(Ui,Xi, Zi),

and the P-spline estimator of m(u,x) in method 1 is

m̂1(u,x) = x′β̂1(u) with β̂1(u) = B(u)
(
R′R + Qλ

)−1
R′Ŷ∗1 (4.4)

Remark 1. In regression analysis, one is often interested in modeling E(f(Y )|U,X) =

mf (U,X). For example, taking f(y) = y gives model (2.1), and f(y) = 1{y≤t} corresponds to

estimating the conditional distribution function of Y . It is possible to modify transformation

functions ϕ1 and ψ1 such that we are estimating the conditional mean mf , where f is a

bounded non-decreasing function on [0, τ1(u,x)], by defining the functions

ϕ̂1,f (u,x, z) ={
(1 + γ)

∫ z

0

df(t)

Ĝ(t|u,x)
− γ f(z)

Ĝ(z|u,x)

}
1{z≤τ1(u,x)} + f(z)1{z>τ1(u,x)}
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and,

ψ̂1,f (u,x, z) =

{
(1 + γ)

∫ z

0

df(t)

Ĝ(t|u,x)

}
1{z≤τ1(u,x)} + f(z)1{z>τ1(u,x)}

and transformed responses

Ŷ ∗1,f = ∆ϕ̂1,f (U,X, Z) + (1−∆)ψ̂1,f (U,X, Z). (4.5)

The modified transformation formula is also suited for estimating the conditional variance of

Y , i.e. f(t) = (t −m(u,x))2, when γ = −1, since for γ = −1, the non-decreasing condition

for f is not necessary (see e.g. [12]). As a consequence, when a varying coefficient model for

σ2(U,X) is assumed, we can obtain a consistent estimate for σ2(u,x) by constructing

Ŷ ∗1,σ2 =
∆(Z − m̂1(U,X))2

Ĝ(Z)
1{Z≤τ1(U,X)} + (Z − m̂1(U,X))21{Z>τ1(U,X)}.

An estimate of σ2(u,x) is given by

σ̂2
1(u,x) = x′Bσ2(u)

(
R′σ2Rσ2 + Qλ,σ2

)−1
R′σ2Ŷ

∗
1,σ2 (4.6)

where the matrices Bσ2 ,Rσ2 and Qλ,σ2 are the matrices B,R and Qλ (introduced in Section

3) according to the model for σ2. Another approach could be to estimate E(Y 2|U,X) and

considering the difference E(Y 2|U,X) − (E(Y |U,X))2. Note that we are not restricted to

transformations with γ = −1 when we are estimating the conditional expectation of Y 2 since

the function f(t) = t2 in increasing on IR+. Although the latter approach gives a consistent

estimator for the variance function, in practice, numerical difficulties arise by taking the

differences, since the difference is not guaranteed to be positive in finite samples.

4.2 Transformation method 2: model dependent transformations

Based on the expression for the conditional expectation,

E(Y |Z,∆,U,X) = ∆Z
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+ (1−∆)

m(U,X) +
σ(U,X)

1− F
(
Z−m(U,X)
σ(U,X)

) ∫ ∞

(Z−m(U,X))/σ(U,X)

tdF (t)

 ,

it follows that E
(
Y ∗2[0]|U,X

)
= E

(
Y |U,X

)
, for

Y ∗2[0] = ∆ϕ∗2[0](U,X, Z) + (1−∆)ψ∗2[0](U,X, Z),

where ϕ∗2[0](U,X, Z) = Z and

ψ∗2[0](U,X, Z) = m(U,X) +
σ(U,X)

1− F
(
Z−m(U,X)
σ(U,X)

) ∫ ∞

(Z−m(U,X))/σ(U,X)

tdF (t).

In order to construct an estimator ψ̂2 of ψ∗2[0], we again consider a truncation device that

avoids problems associated with the instability of an estimator for F . We follow the idea of

[18] and define ψ2 and Y ∗2 as follows:

ψ2(U,X, Z) = m(U,X) +
σ(U,X)

1− F (ET )

∫ S

ET

tdF (t),

Y ∗2 = ∆ϕ2(U,X, Z) + (1−∆)ψ2(U,X, Z), (4.7)

where the truncated residual ET = min(E,S) with

E =
Z −m(U,X)

σ(U,X)
and S =

τ2(U,X)−m(U,X)

σ(U,X)
,

for some τ2(u,x) < T (u,x). Let

Ê =
Z − m̂1(U,X)

σ̂1(U,X)
, Ŝ =

τ2(U,X)− m̂1(U,X)

σ̂1(U,X)
and ÊT = min(Ê, Ŝ).

We obtain the estimator ψ̂2 by replacing, in (4.7), m and σ by m̂1 and σ̂1, defined in (4.4)

and (4.6), ET and S by ÊT and Ŝ and by replacing F by the Kaplan-Meier type estimator
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F̂ , constructed with residual observations Êi, i.e.

F̂ (t) = 1−
∏
i:Êi≤t

(
1− 1∑n

j=1 1{Êj≥Êi}

)∆i

,

The transformed response vector Ŷ∗2 = (Ŷ ∗21, . . . , Ŷ
∗

2n)′ is defined by,

Ŷ ∗2i = ∆iZi + (1−∆i)ψ̂2(Ui,Xi, Zi). (4.8)

The P-spline estimator β̂2(u) of β(u) in method 2 is obtained by replacing Y in (3.3) by Ŷ∗2.

Remark 2. Note that, for method 1, E(Y ∗1 |U,X) = E(Y |U,X) if Z ≤ τ1(U,X) but for

method 2 (as in [18]), E(Y ∗2 |U,X) 6= E(Y |U,X), since we truncate the integral in (4.7)

and as a consequence we estimate a truncated mean E(Y 1{ε≤S}|Z,∆,U,X). The conditional

expectation of Y ∗2 will, however, be arbitrarily close to the conditional expectation of Y if S

can be chosen arbitrarily close to τF = sup{t|F (t) < 1}, which is possible when τF ≤ τJ ,

where J is the distribution function of {C −m(U,X)}/σ(U,X) and τJ = sup{t|J(t) < 1}.

5 Asymptotic behavior

In Theorem 1, we show the consistency of the P-spline estimators obtained under transforma-

tion methods 1 and 2. The asymptotic normality of the estimators is considered in Theorem

2. Before stating the main results, we first give the following definition.

Definition 1. Let G(qp, ξp) be the space of spline functions on Up with fixed degree qp and

knot sequence ξp. Let dist(βp,G(qp, ξp)) = infg∈G(qp,ξp) supu∈U | βp(u) − g(u) | be the L∞-

distance between βp and G(qp, ξp). The approximation error due to spline approximation is

given by

ρn = max
1≤p≤d

dist(βp,G(qp, ξp)).

We use the notations β̂j = (β̂j1, . . . , β̂jd)
′, β∗j = (β∗j1, . . . , β

∗
jd)
′ and β̃j = (β̃j1, . . . , β̃jd)

′

for methods j = 1, 2, when we replace Y in expression (3.3) by Ŷ∗j = (Ŷ ∗j1, . . . , Ŷ
∗
jn)′,
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Y∗j = (Y ∗j1, . . . , Y
∗
jn)′, and M = (Mj1, . . . ,Mjn)′ with Mji = E(Y ∗ji|Ui,Xi) for i = 1, . . . , n

respectively. Note that E(β∗j |Xn) = β̃j for j = 1, 2 where Xn = {(U′i,X′i)′, i = 1, . . . , n}. See

the Appendix for the definition of the L2-distance and for Assumptions A-D in Theorems 1

and 2.

Theorem 1. Suppose Assumptions A, B.1 and B.2 hold, then,

‖β̂1 − β‖L2 =Op

(
n−1/2m1/2

max + n−1m3/2
maxλmax + ρn

+ sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})
.

where κ(u,x) is given by,

max
φ=ϕ1,ψ1

[
E
{

1{Z>τ1(U,X)}|Z − φ(U,X, Z)|
∣∣U = u,X = x

}]
.

If, further Assumptions B.3 and C hold, then,

‖β̂2 − β̃2‖L2 = Op

(
n−1/2m1/2

max + n−1/2 log n+ n−1m3/2
maxλmax + ρn+

m−1/2
max

[
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x) + κσ(u,x)

}])
.

where κσ(u,x) is given by,

E
{

1{Z>τ1(U,X)} (Z −m(U,X, Z))2 |1−∆/G(Z|U,X)|
∣∣U = u,X = x

}
.

Remark 3. If supu,x κ(u,x) → 0, the tail-contribution is negligible and the truncation de-

vice is justified. This condition was first introduced by [15] and suggests taking τ1(u,x) as

a sequence converging to T (u,x). If, e.g., conditional on (U,X) = (u,x), Y ∼Exp(θu,x)

and C ∼Exp(ν) are independent exponentially distributed random variables, then κ(u,x) =

O
(
n−θu,x log n

)
by taking τ1(u,x) = log n for all u,x. As another illustration, suppose

Y ∼U[0, θu,x] conditional on (U,X) = (u,x) and C ∼U[0, ν] are independent uniform ran-
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dom variables. After some tedious calculations we can show that κ(u,x) → 0 for τ1(u,x) =

n−1(n − 1)θu,x and θu,x ≤ ν. κσ arises similarly when method 1 is used to estimate σ using

the transformation with γ = −1.

Remark 4. Suppose that each βp is an r times continuously differentiable function (p =

1, . . . , d), if q = qp ≥ r − 1, mmax � n1/(2r+1) and λmax � nι with ι ≤ (r − 1/2)/(2r + 1),

then ‖β∗p−βp‖L2 = Op(n
−r/(2r+1)) reaches the optimal rate of convergence for non-parametric

regression estimators. ([32]). The convergence rate of our P-spline estimator β̂∗p is further

influenced by the censored nature of the data.

Theorem 2 gives the asymptotic normality results of the P-spline estimator. The variance-

covariance matrix of β∗j (u), conditional on Xn = {(U′i,X′i)′, i = 1, . . . , n}, is given by,

B(u)
(
R′R + Qλ

)−1
( n∑
i=1

σ2
j,iRiR

′
i

)(
R′R + Qλ

)−1
B′(u), (5.1)

where σ2
j,i = Var(Y ∗ji|Ui,Xi).

Theorem 2. If Assumptions A, B.1, B.2 and D.1 hold, then, for all up ∈ Up, p = 1, . . . , d,

(
s.e.

(
β∗1,p(up) | Xn

))−1
(
β̂1,p(up)− βp(up)

)
d→ N(0, 1).

If Assumptions A, B, C and D.2 hold, then, for all up ∈ Up, p = 1, . . . , d

(
s.e.

(
β∗2,p(up) | Xn

))−1
(
β̂2,p(up)− β̃2,p(up)

)
d→ N(0, 1).

6 Practical technicalities

6.1 Choice of the truncation points

We estimate the functional regression coefficients in VCM (2.1) by a combination of a data

transformation for censored data and the P-spline estimator for complete case data. The

proposed data transformations involve an estimator of a distribution function. In the presence
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of censoring, non-parametric estimators of a distribution function are often inaccurate in the

tail. To control this instability we use a truncation device that avoids the generation of

transformed data in the tail.

In a clinical trial, censoring is often due to the termination of the study and hence not influ-

enced by patient specific characteristics. In such situations the conditional survival function

of C does not depend on the covariates, i.e. G(·|u,x) ≡ G(·), and the Kaplan-Meier product-

limit estimator can be used to estimate the survival distribution of the censoring variable C.

Note that, when estimating the censoring distribution G, the independent but non-identically

distributed event times Yi, i = 1, . . . n now play the role of censoring variables. For such

situation the uniform strong consistency of the Kaplan-Meier estimator is still valid (see e.g.

[40] and [3]). If censoring is informative, but Y and C are conditionally independent given

U,X, the conditional (on U,X) distribution of C, should be estimated in method 1, using,

for example, the [2] estimator. However this may cause problems with the curse of dimension-

ality and one may want to consider a parametric or semi-parametric model for the censoring

distribution instead.

In method 1, we do not transform data points when the observed response Z falls within the

truncation area (τ1,∞). Choosing τ1 too small implies that a lot of observations will not be

transformed. On the other hand when τ1 is chosen too large, large transformed responses

are possible. In our numerical results we consider a censoring variable C independent of

(U,X). We take τ1 = inf{t|Ĝ(t) < 0.01} for method 1 and suggest to consider all jumps of

the Kaplan-Meier estimator F̂ in method 2 by taking Ŝ = max(Ê1, . . . , Ên).

6.2 Smoothing parameter selection

Smoothing parameters are needed to control the amount of smoothing in the estimation pro-

cess and imply a compromise between bias and variance. Undersmoothing arises by choosing

too small values for the smoothing parameters, as a result, the bias will decrease at the price

of an increased variance. When the smoothing parameters are too large, oversmoothing leads

to a small variance but large bias (see [14, p. 187]). Cross-validation (CV) is a popular

parameter selection technique with complete case data based on minimizing the prediction
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error. With censored data, the prediction error cannot be calculated directly. We suggest to

consider the transformed responses and choose the smoothing parameter λ that minimizes,

CV (λ) =
n∑
i=1

{
Ŷ ∗ji −X′iβ̂j(Ui)

1− hii

}2

,

where hii is the i-th diagonal element of the hat-matrix H = R(R′R + Qλ)−1R′. The idea of

using transformed responses in the prediction error calculation was also considered in [15] and

[34] among others. In practice, CV (λ) is minimized over a d-dimensional grid of λ-values.

With P-spline smoothing it is advisable to first consider a grid of the smoothing parameters on

a logarithmic scale, which can later be fine-tuned when a more accurate smoothing parameter

is desirable. Note that the P-spline estimator of βp depends on the degree of the B-spline

basis qp, the number of knots Kp+1, the order of the difference penalty kp and the smoothing

parameter λp. Cross-validation can be used to select several parameters, however, a good

chosen smoothing parameter for fixed values of qp,Kp and kp will ensure a good fit. Cubic

splines and a second order difference penalty are frequently used. A change in one of the

parameters influences the choice of the other parameters, as a consequence, it is sufficient to

select the smoothing parameters and keep the other parameters fixed.

6.3 Transformation parameter selection in method 1

The transformation parameter γ in method 1 determines the synthetic responses. We suggest

to choose γ in a data-driven way. A cross-validation procedure can simultaneously select

the smoothing parameter λ and transformation parameter γ when we search over a (d+ 1)-

dimensional grid.

A second selection technique for the transformation parameter γ is based on the following

observation. For γ = −1, all censored observations less than τ1 are set equal to zero (ψ1 ≡
0), the uncensored observations are enlarged in order to compensate. If γ increases, we

see that the variance of censored observations increases and that the enlargement of the

uncensored observations is less pronounced (see Table 7.5). Therefore, we propose to select the

transformation parameter γ that minimizes the sample variance of the transformed responses,
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denoted by the minimal-variance (MV) parameter γMV . Compared to CV-selection, the MV-

selection procedure is appealing for being not computational intensive.

7 Finite sample behavior

In this section, we illustrate the finite sample behavior of our proposed P-spline estimates for

VCMs when the observations are subject to random right censoring. Simulation studies are

used to address the following objectives:

1. Compare our P-spline method with the smooth-backfitting (SBF) approach of [37].

2. Investigate the quality of the data-transformation methods given in Section 4.

3. Evaluate the cross-validation selection criterion for the P-spline smoothing parameters.

We consider three different simulation scenarios. The first model is also used in [24] and in [37]

and contrasts the performance between a spline smoothing and kernel approach for model-

independent data transformation techniques. The second and third simulation model illus-

trate how model-dependent transformations increase the performance of model-independent

approaches. The main difference between the two latter models is the nature of the random

error terms which is homoscedastic in Model 2 and hetereoscedastic in Model 3. Therefore,

Model 3 also gives insight in the quality of the variance estimation discussed in Remark 1.

The simulation scenarios are as follows:

Model 1: Y = m(U,X) + σ(U,X)ε = β0(U0) + β1(U1)X1 + β2(U2)X2 + σ(U,X)ε,

where β0(u) = 1 + exp(2u − 1), β1(u) = 0.5 cos(2πu), β2(u) = u2 and σ(U,X) = 0.5 +

(x2
1 +x2

2)/(1 +x2
1 +x2

2) exp(−2 + (u0 +u1)/2). The variables U0, U1, and U2 are sampled

from a Uniform[0, 1]-distribution, the vector (X1, X2) is generated from a bivariate

normal distribution with mean (0, 0)′ and variance-covariance matrix
(

1 0.5

0.5 1

)
, and the

random error has a normal distribution centered around 0 with standard deviation ζ = 1

respectively ζ = 1.5. The censoring variables are generated samples from a N(µc, 1.5)-

distribution.
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Model 2: Y = m(U,X) + ε = β1(U1)X1 + β2(U2)X2 + ε, where β1(u) = 2 +

sin(2πu), β2(u) = 1 + 0.1 exp(4x− 1) with U1, U2 ∼ U[0, 1] and (X1, X2)′ ∼ N2((3, 3)′,(
0.25 −0.125

−0.125 0.25

)
); ε has a standard normal distribution and the censoring variable has a

uniform distribution on [6.5,Rc].

Model 3: Y = m(U,X)+σ(U)ε = β0(U)+β1(U)X+σ(U)ε, where β0(u) = 2 exp(−2u−
u2)) , β1(u) = 1 + 5(u − 0.5)2 and σ2(u) = α exp(−2u − 0.4)/4 where α = 1, 2. We

generate U from a Uniform[0, 1]-distribution and X from a normal distribution with

mean 1 and standard deviation 0.25; ε has a standard normal distribution and C is

sampled from a N(µc, 1)-distribution

The parameters µc (in Model 1 and 3) and Rc (in Model 2) are chosen to control the level of

censoring to PC = 10%, 30% and 50%, respectively. No negative responses are observed in

these simulation set-ups in correspondence to our model assumptions. We simulate 200 times

a random sample of size n = 250, 500 from Models 2 and 3. For Model 1, we consider the

exact same simulation settings as in [37] and generate 500 samples of sizes n = 200, 400.

To evaluate the performance of the coefficient function estimates, we generate a uniform test

sample u1, . . . , u101 in [0, 1] for the random variables Uj and calculate the values for βj and

β̂j in each simulation run. We then compute the relative error (RE) defined as (for β̂j),

RE(β̂j) = ‖β̂j − βj‖2/‖βj‖2,

with βj = (βj(u1), . . . ,βj(u101))′; β̂j = (β̂j(u1), . . . , β̂j(u101))′ and where ‖ · ‖2 is the Eu-

clidean distance. For the performance of the regression function estimate m̂, we generate a

test sample xj = (x1j , x2j), j = 1, . . . , 101, calculate mj = m(uj ,xj) and m̂j = m̂(uj ,xj), and

compute the relative estimation error RE(m̂) = ‖m̂−m‖2/‖m‖2, where m = (m1, . . . ,m101)

and m̂ = (m̂1, . . . , m̂101). Tables 7.1- 7.2, Table 7.3 and Table 7.6 report the RE for the three

simulation models introduced above.

We smooth each of the coefficient functions βj with B-splines of degree 3 on 10 equidistant

knots and use a penalty term with second order finite differences. The smoothing parameters

λj are selected in a grid of size 8d, where d equals the number of coefficient functions in the

different simulation models. The CV-smoothing parameters (Section 6.2) are compared with
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optimal smoothing parameters that minimize the relative estimation error of the regression

function m, referred to as the optimal selection criterion. Moreover, we present results for

the smooth-backfitting estimates, where the optimal selection criterion is used to choose the

bandwidths in a grid of equal size 8d.

The simulation results, reported in Tables 7.1-7.6 and Figures 7.1-7.2, are discussed in the

subsections below. The first objective is considered in Section 7.1. The importance of the

transformation parameter selection in method 1 and the difference between model-dependent

and model-independent transformations (objective 2) are outlined in Section 7.2. Section 7.3

addresses objective 3 and deals with the quality of the cross-validation smoothing parameter.

7.1 Comparison between P-spline and SBF-estimates

[37] proposed a smoothing estimation approach for the VCMs with right censored responses.

Their technique is a kernel analogue of the model-independent transformation method of

Section 4.1 that combines an SBF-estimator with the transformation method proposed by

[22] using γ = −1. It is reasonable to compare our P-spline estimates using transformation

method 1 with γ = −1 with the method proposed by [37] since in both approaches the

transformed response variable and covariates are the same. Table 7.1 and Table 7.2 therefore

contrast the RE of a P-spline and kernel smoothing approach for the simulation scenario

considered in [37]. The SBF-estimates of [37] (SBF, M1K) perform often slightly better than

the P-spline estimates with γ = −1 (P-SPLINE, M1K) in Model 1. In Model 2, the P-spline

estimates, however, outperform the SBF-estimates for PC = 10%, 30% (see Table 7.3).

In addition, we investigate the combination of an SBF-estimate with a data-driven MV -

transformation parameter, instead of with the transformation proposed by [22]. The relative

errors for both the P-spline and SBF-estimates decrease considerably if γ = −1 is changed to

γ = γMV (see Tables 7.1-7.3). We conclude from this decrease that the method proposed in

[37] can be improved if a different transformation parameter is considered. Interestingly, the

choice between a P-spline smoothing or kernel smoothing approach has much less influence

on the behavior of the estimates than the transformation parameter that is selected for the

construction of the synthetic response. For the model-independent transformation methods,
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both combinations of a P-spline or SBF approach with a data-driven transformation param-

eter represent good choices for estimating the coefficient functions in the VCM under right

censored observations. As expected, the relative errors in Tables 7.1-7.3 decrease with increas-

ing sample size. On the contrary, an increase of the relative errors occurs if the percentages

of censoring or the error variability increase.

From a theoretical point of view, both our P-spline and the SBF-estimates of [37] converge at

rate n2/5 to a normal limiting distribution for suitably chosen smoothing parameters in case

the censoring distribution is known and in case the coefficient functions are twice continuously

differentiable (see Remark 4 and Lemma 1 in [37]). The difference between the true and

estimated coefficient functions depends further on the approximation error of the censoring

distribution for both P-spline and SBF-estimates. Hence, the choice between our P-spline

approach and the SBF method of [37] is hardly decided by the theoretical properties of the

estimators. From a practical point of view, we note that P-spline estimates are obtained using

simple matrix algebra whereas SBF-estimates require an iterative estimation procedure. The

computations for the model-independent data transformation approaches took only a few

seconds for the P-spline estimates and was, on average, 22 times larger for the SBF method

than for the P-spline method in Simulation Model 2 (results not shown).

7.2 Findings on the transformation method

For the model-independent transformation method 1 of Section 4.1, Tables 7.1-7.3 show that

a data-driven choice for the transformation parameter γ decreases the RE of the estimates

compared to the choice γ = −1. Moreover, Table 7.3 shows how the estimates for transfor-

mation method 1 with the transformation by [22] (γ = −1) behave worse than the estimates

that are obtained when censoring is ignored (i.e. Z is considered as the true response). Con-

sequently, we do not advise to use the transformation approach by [22]. Similar relative errors

are obtained with the proposed data-driven transformations (MV and CV), with a slightly

better result for the CV-method when the percentage of censoring is large. The computation

cost for CV-selection is, however, considerably larger than for MV-selection. Therefore, we

recommend to use the MV-transformation parameter when method 1 is used to obtain the

synthetic response variable.
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Table 7.3 and Table 7.6 report the performance of the model-dependent transformation

method of Section 4.2 in case the initial starting estimates are obtained from the model-

independent transformation method using γ = γMV . Transformation method 2 outperforms

transformation method 1 for both the homoscedastic Model 2 and the heteroscedastic Model

3. Pointwise confidence bands of the P-spline estimates in Model 2 are illustrated in Figure

7.1. The curves show the 5% and 95% empirical quantiles at each grid point uj and expose

that the estimates obtained with method 2 are close to the true coefficient functions, even

though in theory, method 2 is estimating a slightly different model. The results of method 2

are insensitive towards changes of γ in the initial transformation (results not shown). Addi-

tionally, Figure 7.1 shows once more the poor performance of the model-independent estimates

using γ = −1.

7.3 Behavior of the smoothing parameter selection techniques

Table 7.4 presents the ratio of the relative error for m obtained with CV-selected smoothing

parameters and optimal smoothing parameters in simulation Model 2 and illustrates that the

CV-procedure works reasonably well (the ratio is close to one). Figure 7.2 presents scaled

values of CV(λ1, λ2) and relative error ofm for λ1 and λ2 (in Model 2) varying in 10{0.5,0.6,...,2.6}

and demonstrates that the size of the CV-selected and optimal smoothing parameters are

comparable. The behavior of both curves is similar. As a consequence the CV-method tends

to select smoothing parameters that minimize the relative regression error for m. A data-

driven bandwidth choice for the bandwidths of the SBF-estimates was proposed in [37] and

based on their results in Table 4 on p. 243, their comparison between the performance with

optimal and data-driven bandwidth parameters is similar to our comparison in Table 7.4.

8 Real data example: Addict data

In a study by [8] data were collected on a cohort of 238 heroin addicts, who entered main-

tenance programs between February 1986 and August 1987, to study retention of patients

in methadone treatment. All patients had been referred to one of two methadone treatment
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Table 7.1: Simulation Model 1: average relative error for the estimates of the functions (F) β0, β1, β2
and m obtained with the P-spline estimator and the smooth-backfitting estimator (SBF) with optimal
smoothing parameters; using transformation method 1 (M1) (M1MV : M1 with minimal-variability
transformation, MK : M1 with transformation by [22] using γ = −1). n is the sample size, ζ = s.d.(ε)
and PC is the percentage of censoring.

P-SPLINE SBF

n ζ PC F M1MV M1K M1MV M1K

200 1 10 β0 0.0374 0.0728 0.0424 0.0721
β1 0.3303 0.7483 0.3555 0.7711
β2 0.2147 0.5440 0.2074 0.4799
m 0.0742 0.1715 0.0781 0.1631

30 β0 0.0539 0.1517 0.0574 0.1334
β1 0.4443 1.3628 0.4856 1.3090
β2 0.3082 0.9922 0.2910 0.8652
m 0.1039 0.3189 0.1072 0.2853

50 β0 0.0812 0.2594 0.0812 0.2232
β1 0.6312 2.0543 0.6832 1.8961
β2 0.4640 1.4777 0.4276 1.2512
m 0.1543 0.4898 0.1530 0.4208

1.5 10 β0 0.0539 0.1020 0.0574 0.0938
β1 0.4490 0.9118 0.4802 0.9152
β2 0.3028 0.7186 0.2791 0.6345
m 0.1034 0.2223 0.1049 0.2045

30 β0 0.0707 0.1903 0.0714 0.1658
β1 0.5513 1.5512 0.6005 1.4506
β2 0.3918 1.1901 0.3586 1.0379
m 0.1323 0.3792 0.1319 0.3330

50 β0 0.1010 0.3069 0.0938 0.2648
β1 0.7315 2.2477 0.7752 2.0514
β2 0.5446 1.7031 0.4926 1.4363
m 0.1836 0.5545 0.1746 0.4740
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Table 7.2: Simulation Model 1: average relative error for the estimates of the functions (F) β0, β1, β2
and m obtained with the P-spline estimator and the smooth-backfitting estimator (SBF) with optimal
smoothing parameters; using transformation method 1 (M1) (M1MV : M1 with minimal-variability
transformation, MK : M1 with transformation by [22] using γ = −1). n is the sample size, ζ = s.d.(ε)
and PC is the percentage of censoring.

P-SPLINE SBF

n ζ PC F M1MV M1K M1MV M1K

400 1 10 β0 0.0265 0.0490 0.0316 0.0529
β1 0.2433 0.5631 0.2693 0.5855
β2 0.1581 0.3923 0.1559 0.3491
m 0.0539 0.1249 0.0583 0.1217

30 β0 0.0374 0.1127 0.0424 0.0990
β1 0.3268 1.0173 0.3599 1.0072
β2 0.2238 0.7260 0.2159 0.6332
m 0.0755 0.2385 0.0794 0.2152

50 β0 0.0592 0.1954 0.0608 0.1706
β1 0.4839 1.4747 0.5142 1.3873
β2 0.3342 1.2063 0.3127 1.0467
m 0.1145 0.3803 0.1145 0.3332

1.5 10 β0 0.0387 0.0700 0.0436 0.0693
β1 0.3360 0.6946 0.3606 0.7205
β2 0.2234 0.5107 0.2066 0.4508
m 0.0762 0.1612 0.0787 0.1530

30 β0 0.0500 0.1459 0.0539 0.1292
β1 0.4177 1.2250 0.4506 1.1785
β2 0.2851 0.9122 0.2627 0.7905
m 0.0975 0.2958 0.0985 0.2627

50 β0 0.0735 0.2421 0.0721 0.2059
β1 0.5633 1.7462 0.5967 1.5620
β2 0.3960 1.4647 0.3561 1.2511
m 0.1364 0.4618 0.1319 0.3909
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Table 7.3: Simulation Model 2: average relative error for the estimates of the functions (F) β1, β2
and m obtained with the P-spline estimator and the smooth-backfitting estimator (SBF) with op-
timal smoothing parameters; using transformation methods 1 (M1) and 2 (M2). (M1CV : M1 with
cross-validation transformation, M1MV : M1 with minimal-variability transformation, MK : M1 with
transformation by [22] using γ = −1. MZ indicates the estimator when no transformation is applied
to the observed response (Z,∆). n is the sample size, PC is the percentage of censoring.

P-SPLINE SBF
n PC F M1CV M1MV M1K M2 MZ M1MV M1K

250 10 β1 0.0514 0.0519 0.1718 0.0424 0.0778 0.0806 0.2127
β2 0.0674 0.0680 0.2218 0.0564 0.0876 0.0983 0.2659
m 0.0260 0.0262 0.0740 0.0229 0.0474 0.0355 0.0840

30 β1 0.0856 0.0868 0.3522 0.0546 0.1704 0.1164 0.4003
β2 0.1121 0.1131 0.4621 0.0730 0.1580 0.1430 0.4853
m 0.0414 0.0419 0.1637 0.0303 0.1135 0.0521 0.1675

50 β1 0.1245 0.1322 0.7222 0.0862 0.2741 0.1828 0.7120
β2 0.1612 0.1716 0.9379 0.1137 0.2266 0.2029 0.8216
m 0.0684 0.0742 0.3867 0.0571 0.1820 0.0830 0.3409

500 10 β1 0.0367 0.0366 0.1230 0.0301 0.0641 0.0653 0.1549
β2 0.0482 0.0481 0.1604 0.0394 0.0724 0.0783 0.1961
m 0.0188 0.0190 0.0557 0.0157 0.0433 0.0274 0.0679

30 β1 0.0608 0.0605 0.2713 0.0361 0.1612 0.0914 0.3172
β2 0.0800 0.0796 0.3598 0.0484 0.1493 0.1092 0.3925
m 0.0301 0.0300 0.1276 0.0207 0.1106 0.0411 0.1412

50 β1 0.0997 0.1070 0.6291 0.0667 0.2682 0.1552 0.6224
β2 0.1365 0.1460 0.7931 0.0923 0.2240 0.1722 0.6943
m 0.0539 0.0620 0.3652 0.0465 0.1812 0.0716 0.3146

average relative error based on true (unobserved) responses with the P-
spline estimate for: n = 250: β1: 0.0400; β2: 0.0534, m: 0.0217 and

n = 500: β1: 0.0375; β2: 0.0287, m: 0.0145

clinics for maintenance. Methadone is a drug similar to heroin which prevents or reduces

withdrawal symptoms when a patient stays off heroin. Patients detoxifying from methadone
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Table 7.4: Simulation Model 2: average ratio of RE(m̂) based on λCV and λopt for the P-spline
estimates using transformation methods 1 (M1) and 2 (M2). (M1CV : M1 with cross-validation trans-
formation, M1MV : M1 with minimal-variability transformation, MK : M1 with transformation by [22]
using γ = −1. n is the sample size, PC is the percentage of censoring.

n = 250 n = 500

PC M1CV M1MV M1K M2 M1CV M1MV M1K M2

10 1.2126 1.2152 1.3705 1.1529 1.2028 1.1959 1.3234 1.1462
30 1.2349 1.2281 1.4376 1.1342 1.2563 1.2560 1.3614 1.1620
50 1.1688 1.1589 1.2220 1.0875 1.1686 1.1354 1.1328 1.0705

Table 7.5: Simulation Model 2: Responses transformed with method 1 (M1) for different choices of γ
and method 2 (M2) for PC = 10% and PC = 50% for n = 250. Uncensored observations are indicated
by black dots, censored observations are indicated by red asterisks.

PC M1(γ = −1) M1(γ = −0.5) M1(γ = 0.2) M2
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maintenance soon return to illicit opiate abuse, and methadone is only beneficial to addicts in

treatment. The main objective of the study was to investigate the effectiveness of treatment

programs based on the time an addict spends in a clinic, the larger this duration time the

more effective the therapy is. The response is the duration time T , in days) of heroin addicts

from entry to a clinic until departure or end of study period; 150 out of the 238 patients left

the clinic during the study period, the remaining 88 patients still in the clinic at the end of
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Figure 7.1: Simulation Model 2: Pointwise confidence band for the P-spline estimates of (a) β1 and
(b) β2 obtained with method 1 (γ = −1) (green, dashed dotted), method 1 and γMV (blue, dotted)
and method 2 (red, dashed) for n = 500 and PC = 30%.

the study period are censored cases. We focus on the effect of clinic (C, 1= clinic 1, 0 = clinic

2) and a history of imprisonment (P , 1= yes, 0= no) on the time remaining on methadone

treatment in a VCM where the coefficients vary with the maximum methadone dosage (M ,

in mg/day), i.e.,

E(T |M,C,P ) = β1(M) + β2(M)× C + β3(M)× P.

We present results for a homoscedastic model based on method 2 only, since method 2 out-

performed method 1 in our simulation study and since similar results were obtained with a

hetereoscedastic model. We smooth the coefficients by P-splines of degree 3 on 15 equidistant

knots with a second order difference penalty. The initial estimate for the regression coefficients

is obtained using the first method and an MV-transformation parameter (γMV = −0.2). The

smoothing parameters (λ1 = 50, λ2 = 250 and λ3 = 100) were selected by cross-validation on

a logarithmic scale. Figure 8.3 presents the resulting estimated mean survival time obtained

with transformation method 2 . Only in the second clinic doses above 80 mg/day were given
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Figure 7.2: Simulation Model 2: (a) CV (red,solid) and relative regression error (blue, dashed) curves
for λ1 ∈ 10{0.5,0.6,...,2.6} and for λ2 minimizing CV resp. relative error. (b) CV (red, solid) and relative
regression error (blue, dashed) curves for λ2 ∈ 10{0.5,0.6,...,2.6} and for λ1 minimizing CV resp. relative
error. The black asterisk indicates the minimal value. The curves are based on one simulated data set
of size n = 500 and PC =30% using method 1 with MV-transformation parameter.

to the patients, however our model reveals that these doses no longer result in larger duration

times. This finding could not be obtained if a linear term was considered for the methadone

effect. For small methadone doses, the estimated mean survival time is similar for all patients

but when the dosage increases, the second clinic tends to do a better job in retaining its pa-

tients under treatment. Figure 8.3 also shows that the length of time in treatment is shorter

for patients with a history of imprisonment.

9 Summary and further research

We propose a P-spline smoothing technique for the estimation of the varying coefficients

in a VCM with responses that are subject to right censoring. Using the mean-preserving

principle we transform the original observations into ‘synthetic’ observations, which are then

25



Table 7.6: Simulation Model 3: average relative error for the estimates of the functions (F) β0, β1,m
and σ2 obtained with the P-spline estimator using method 1 with minimal-variability transformation
(M1) and method 2 (M2). n is the sample size, PC is the percentage of censoring.

n : 250 500
PC: 10% 30% 50% 10% 30% 50%
α M F

1 M1 β0 0.1984 0.3393 0.5431 0.1392 0.2731 0.3891
β1 0.1371 0.2502 0.4077 0.0995 0.2021 0.2868
m 0.0411 0.0781 0.1328 0.0306 0.0614 0.0956

M2 β0 0.1494 0.2294 0.3778 0.1024 0.1780 0.2735
β1 0.0983 0.1769 0.3048 0.0694 0.1399 0.2178
m 0.0309 0.0580 0.1063 0.0228 0.0456 0.0775

2 M1 β0 0.2274 0.3647 0.5532 0.1624 0.2787 0.4053
β1 0.1538 0.2682 0.4139 0.1127 0.2045 0.3011
m 0.0468 0.0847 0.1371 0.0355 0.0642 0.1012

M2 β0 0.1899 0.2591 0.3880 0.1336 0.1939 0.2811
β1 0.1224 0.1954 0.3096 0.0874 0.1463 0.2255
m 0.0383 0.0655 0.1109 0.0290 0.0491 0.0819

1 M1 σ2 0.2006 0.3398 0.7071 0.1594 0.2896 0.4480
2 M1 σ2 0.2158 0.3186 0.4803 0.1674 0.2623 0.3658

used for the P-spline estimation. We emphasize the benefit of a data-driven data transforma-

tion when the transformation formula is independent of the underlying VCM. Better results

are obtained with data transformations that take the true VCM into account. The latter

transformation formulas require prior knowledge of the VCM which is obtained from the

model-independent transformation methods. We give asymptotic support for the behavior of

our proposed P-spline estimators and prove the consistency and asymptotic normality of our

P-spline estimators. Simulation studies compare its finite sample behavior with that of the

SBF-estimator proposed by [37] and illustrate good finite sample performance of our proposed

P-spline estimates and moreover suggest improvements for the method proposed in [37]. We
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Figure 8.3: Addict data. Fitted P-spline regression function with method 2 using method 1 with
γMV = −0.2 and λ0,CV = 50, λ1,CV = 250, λ2,CV = 100.

conclude for the model-independent transformation methods that the combination of either

P-spline smoothing or SBF-smoothing with a data-driven transformation parameter are both

good approaches for estimating the coefficient functions in a VCM.

Our simulation results show that the complexity of the simulation scenario (number of ex-

planatory variables, variance of the error terms, shape of the coefficient functions,...) in-

fluences the performance of and the comparison between the P-spline and SBF-estimates.

Further research is needed to explore which estimation approach (P-spline or SBF) works

best in particular scenarios and to investigate how the choice between the different methods

presented in this paper depends on factors such as the number of covariates.

For data subject to right censoring, the synthetic data approach for heteroscedastic models is

considered in e.g. [15], [18] and [37]. None of these authors consider variance-based weighting

in the estimation of the mean regression curve. Although it is common practice to use weighted

least squares when heterogeneity is present in the data (e.g. for non-censored data [31] use

reweighting for heteroscedastic VCMs), [1] shows a good performance of P-spline estimators

in VCMs for non-censored data even if the heteroscedasticity is ignored in the estimation

process. How to bring in variance-based reweighting in the estimation process and studying
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the impact of reweighting on the quality of the P-spline estimators in heteroscedastic VCMs

are challenging open problems.

Finally note that, for interval censored observations, the construction of synthetic data has

been considered in a few papers, e.g. [39] proposed a mean preserving transformation and

[29] studied a Buckley-James type estimator in the classical linear regression context. Finding

appropriate transformations for interval censored data in VCMs is an unexplored interesting

open question.

10 Appendix

10.1 Definitions and Properties

This section contains the Definition of the L2-distance and the Assumptions needed for the

main results, i.e., Theorem 1 and 2.

Assumption A.

1. For all p = 1, . . . , d, the random variable Up has distribution function FUp on Up =

[ap, bp]. The distribution function FUp has Lebesgue density fUp which is bounded away

from zero and infinity, uniformly in Up, i.e. there exist positive constants N1 and N2

such that N1 ≤ fUp(u) ≤ N2 for u ∈ Up.
2. The eigenvalues η1(u), . . . , ηd(u) of Σ(u) = E(XX′|U = u) are bounded away from zero

and infinity, uniformly over all u ∈ Ud, i.e. there exist positive constants N3 and N4

such that N3 ≤ η1(u) ≤ · · · ≤ ηd(u) ≤ N4 for u ∈ Ud.
3. There exists a positive constant N5 such that | Xp |≤ N5 for p = 1, . . . , d.

4. There exists a positive constant N6 such that σ2
j (u,x) ≤ N6 < ∞ for j = 1, 2 and for

every u ∈ Ud,x ∈ IRd, where σ2
j (u,x) = Var(Y ∗j | U = u,X = x).

5. lim supn
(maxpmp

minpmp

)
<∞.

6. n−1m
3/2
maxλmax → 0 and n−1mmax → 0 as n→∞.

7. n−1mmax log(mmax)→ 0 as n→∞.

8. ρn → 0 as n→∞.
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Assumption B.

1. supu,x τ1(u,x) supt≤τ1(u,x) |Ĝ(t|u,x)−G(t|u,x)| = op(1).

2. supu,x κ(u,x)→ 0 as n→∞.

3. supu,x κσ(u,x)→ 0 as n→∞ .

Assumption C.

1. βp ∈ C3([ap, bp]), for each p = 1, . . . , d, where Cr([a, b]) is the space of r−times contin-

uously differentiable functions on [a, b] .

2. m
3/2
max

[
supu,x

{
τ1(u,x) supt≤τ1(u,x) |Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

+ κσ(u,x)
}

+ ρn

]
→ 0 and n−1/2m2

max → 0; n−1m
3/2
maxλmax → 0

as n→∞.

Assumption D.

1. m
−1/2
max n1/2

(
supu,x

(
τ1(u,x) supt≤τ1(u,x) |Ĝ(t|u,x)−G(t|u,x)|+

κ(u,x)
))
→ 0 and n−1/2mmaxλmax + n1/2ρn → 0 as n→∞ .

2. m−1
maxn

1/2 supu,x

(
τ1(u,x) supt≤τ1(u,x) |Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

+ κσ(u,x)
)
→ 0 and m

−1/2
max log n+ n−1/2mmaxλmax + n1/2ρn → 0

as n→∞.

Assumption A.1 guarantees that the observation points are randomly scattered and is a natu-

ral assumption in non-parametric regression (see e.g. [13]). All A assumptions are common in

P-spline theory (see e.g. [1]). In particular A.1-A.4 are common in mean regression in varying

coefficient models. Also note that Assumptions A.5, A.6 andA.7 are satisfied with the choice

of number of knots and smoothing parameter of Remark 4. When all βp have bounded r-th

derivatives ρn = Op(m
−r
max) ([30]). Assumption B ensures that the censored nature of the data

is taken into account and is illustrated by an example in Remark 3. When the Kaplan-Meier

estimator is used to estimate G, it follows from [40] that supt≤τ1(u,x) |Ĝ(t)−G(t)| = Op(n
−1/2).

Assumption C guarantees that, uniformly over Up, the second order derivative of β̂1p is a con-

sistent estimator for β1p, for p = 1, . . . , d. It is a technical assumption needed in the proof of

Theorem 1, Part 2 and guarantees that the Kaplan-Meier estimator based on residual obser-

vations constructed with method 1 converges to the true error distribution F . Assumption D
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is an assumption on the convergence rate of the P-spline estimators and guarantees that the

squared L∞-distance between the P-spline estimators β̂j and β∗j converges to zero at a faster

rate than the variance given by (5.1). For the examples considered in Remark 3, Assumptions

C and D are also fulfilled when G is estimated using the Kaplan-Meier estimator, mmax � n1/5

and λmax � nι, ι < 3/10.

Definition 2. For a real valued function f on U and a vector valued function g = (g1, ..., gd)

on Ud, the L2-norm is given by:

‖f‖L2 =

{∫
U
f2(t)dt

}1/2

, ‖g‖L2 =

 d∑
p=1

‖gp‖2L2

1/2

,

Definition 3. For a real valued matrix A of dimension mA × nA, the 2-norm of A is given

by ‖A‖2 = supx 6=0
‖Ax‖2
‖x‖2 , with x ∈ IRnA and ‖x‖2 =

√∑nA
i=1 x

2
i . This norm is equal to√

ζmax(A′A) where ζmax is the largest eigenvalue of A′A.

Definition 4. For sequences of positive numbers rn and sn, rn . sn means that s−1
n rn is

bounded and rn � sn means that s−1
n rn and r−1

n sn are bounded.

Definition 5. For a real valued function f on U and a vector valued function g = (g1, ..., gd)

on Ud, the L∞-norm is given by:

‖f‖∞ = sup
u∈U
| f(u) |, ‖g‖∞ = max

1≤p≤d
‖gp‖∞

Our estimation technique relies on properties of B-splines. For a detailed description of B-

splines we refer to [10] or [30].

Property 1. Bpl(up; qp) ≥ 0;
∑mp

l=1Bpl(up; qp) = 1.

Property 2. There exists positive constants N7, N8 and coefficients αpl ∈ R such that,

m−1
p N7

mp∑
l=1

α2
pl ≤

∫
U
{
mp∑
l=1

αplBpl(up; qp)}2du ≤ m−1
p N8

mp∑
l=1

α2
pl.

Property 3.
∫
U Bpl(u; qp)du = O(m−1

p ).
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Property 4. ‖g‖∞ . m
−1/2
p ‖g‖L2 for g ∈ Gp, p = 1, . . . , d where Gp is the space of spline

functions of degree qp on Up with knots ξp.

We use as notations α̂j ,α
∗
j and α̃j for methods j = 1, 2, when we replace Y in expression

α̂ =
(
R′R + Qλ

)−1
R′Y.

by Ŷ∗j = (Ŷ ∗j1, . . . , Ŷ
∗
jn)′, Y∗j = (Y ∗j1, . . . , Y

∗
jn)′, and M = (Mj1, . . . ,Mjn)′ with Mji =

E(Y ∗ji|Ui, Xi) for i = 1, . . . , n respectively. Similar notations hold for β̂j = (β̂j1, . . . , β̂jd)
′,

β∗j = (β∗j1, . . . , β
∗
jd)
′ and β̃j = (β̃j1, . . . , β̃jd)

′.

10.2 Proof of Theorem 1, Part 1

The proof of the first result stated in Theorem 1 relies on the maximal distance between the

Y ∗1i and Ŷ ∗1i responses, derived in Lemma 1.

Lemma 1. max1≤i≤n | Ŷ ∗1i − Y ∗1i |=

Op

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})
,

Proof of Lemma 1. Since| Ŷ ∗1i − Y ∗1i |=

| Ŷ ∗1i − Y ∗1i | 1{Zi≤τ1(Ui,Xi)}+ | Ŷ
∗

1i − Y ∗1i | 1{Zi>τ1(Ui,Xi)},

we consider two cases and prove the following results,

max
1≤i≤n

{
| Ŷ ∗1i − Y ∗1i | 1{Zi≤τ1(Ui,Xi)}

}
. sup

u,x

(
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|

)
. (10.1)

max
1≤i≤n

{
| Ŷ ∗1i − Y ∗1i | 1{Zi>τ1(Ui,Xi)}

}
. sup

u,x
κ(u,x). (10.2)
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For (10.1) we start by the triangle inequality,

| Ŷ ∗1i − Y ∗1i | 1{Zi≤τ1(Ui,Xi)} ≤| ∆i{ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi)}

+ (1−∆i){ψ̂1(Ui,Xi, Zi)− ψ1(Ui,Xi, Zi)} |

≤| ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi) | + | ψ̂1(Ui,Xi, Zi)− ψ1(Ui,Xi, Zi) | .

We derive the order bound for | ϕ̂1(Ui,Xi, Zi) − ϕ1(Ui,Xi, Zi) |, similar result holds if we

replace ϕ1 and ϕ̂1 by ψ1 and ψ̂1 respectively.

|ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi)|

≤

∣∣∣∣∣(1 + γ)

{∫ Zi

0

1

Ĝ(t|Ui,Xi)
dt−

∫ Zi

0

1

G(t|Ui,Xi)
dt

}∣∣∣∣∣
+

∣∣∣∣∣ γZi

Ĝ(Zi|Ui,Xi)
− γZi
G(Zi|Ui,Xi)

∣∣∣∣∣
≤

∣∣∣∣∣(1 + γ)

∫ Zi

0

Ĝ(t|Ui,Xi)−G(t|Ui,Xi)

G(t|Ui,Xi)Ĝ(t|Ui,Xi)
dt

∣∣∣∣∣
+

∣∣∣∣∣γZi{Ĝ(Zi|Ui,Xi)−G(Zi|Ui,Xi)}
G(Zi|Ui,Xi)Ĝ(Zi|Ui,Xi)

∣∣∣∣∣

≤ |1 + γ| sup
t≤τ1(Ui,Xi)

{
| Ĝ(t|Ui,Xi)−G(t|Ui,Xi) |

}
×
∫ τ1(Ui,Xi)

0

G(t|Ui,Xi)

Ĝ(t|Ui,Xi)

1

G(t|Ui,Xi)2
dt

+ |γ|τ1(Ui,Xi) sup
t≤τ1(Ui,Xi)

{
| Ĝ(t|Ui,Xi)−G(t|Ui,Xi) |

}
× sup
t≤τ1(Ui,Xi)

{ 1

G(t|Ui,Xi)2

G(t|Ui,Xi)

Ĝ(t|Ui,Xi)

}
.
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From the uniform convergence of Ĝ we have:

sup
t≤τ1(Ui,Xi)

G(t|Ui,Xi)

Ĝ(t|Ui,Xi)
= 1 + op(1).

Also inft≤τ1(Ui,Xi){G(t|Ui,Xi)} > 0, therefore,

| ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi) |

= Op

(
τ1(Ui,Xi) sup

t≤τ1(Ui,Xi)
| Ĝ(t|Ui,Xi)−G(t|Ui,Xi) |

)
.

For (10.2) we have,

E{| Ŷ ∗1i − Y ∗1i | 1{Zi>τ1(Ui,Xi)}}

≤ E
[
E

{
max

φ=ϕ1,ψ1

1{Zi>τ1(Ui,Xi)} | Zi − φ(Ui,Xi, Zi) |
∣∣Ui,Xi

}]
≤ sup

u,x
κ(u,x).

By combining (10.1) and (10.2), the result of Lemma 1 follows.

Proof of Theorem 1, Part 1. Since

‖β̂1 − β1‖L2 ≤ ‖β̂1 − β∗1‖L2 + ‖β∗1 − β̃1‖L2 + ‖β̃1 − β1‖L2 ,

the result follows by showing that,

‖β̂1 − β∗1‖L2 (10.3)

= Op

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})
‖β∗1 − β̃1‖L2 = Op

(
n−1/2m1/2

max

)
(10.4)

‖β̃1 − β1‖L2 = Op

(
n−1m3/2

maxλmax + ρn

)
. (10.5)
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We start with the proof of (10.3). By Property 2 it suffices to show that

‖α̂1 −α∗1‖2 =

Op

(
m1/2

max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

From [1] we have,

α̂1 −α∗1
=
{

(R′R)−1 − (R′R)−1Qλ(R′R)−1 + op(n
−1m3/2

maxλmax)(R′R)−1
}

×
n∑
i=1

Ri(Ŷ
∗

1i − Y ∗1i)

= α̂1,reg −α∗reg −
{

(R′R)−1Qλ(R′R)−1 + op(n
−1m3/2

maxλmax)(R′R)−1
}

×
n∑
i=1

Ri(Ŷ
∗

1i − Y ∗1i)

=
{

1− (R′R)−1Qλ + op(n
−1m3/2

maxλmax)
}(
α̂1,reg −α∗reg

)
,

where α̂1,reg and α∗reg denote the regular B-spline estimator (i.e. λ0 = . . . = λd = 0).

Consequently,

‖α̂1 −α∗1‖2

≤
{

1 + ‖(R′R)−1‖2‖Qλ‖2 + op(n
−1m3/2

maxλmax)
}
‖α̂1,reg −α∗1,reg‖2.

From Lemma 1 in [1] we know that except on an event whose probability tends to zero,

‖(R′R)−1‖2‖Qλ‖2 = Op(n
−1m

3/2
maxλmax),

‖α̂1,reg −α∗1,reg‖22 = (Ŷ∗1 −Y∗1)′R(R′R)−1(R′R)−1R′(Ŷ∗1 −Y∗1)

= (n−1mmax)2(Ŷ∗1 −Y∗1)′R
(
n−1mmaxR′R

)−1(
n−1mmaxR′R

)−1
R′(Ŷ∗1 −Y∗1).

and since all eigenvalues of n−1mmaxR′R fall between positive constants, we have ‖n−1mmaxR′R‖2 �
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1 and thus,

‖α̂1,reg −α∗1,reg‖22 = (Ŷ∗1 − Ŷ∗1)′R(R′R)−1(R′R)−1R′(Ŷ∗1 −Y∗1)

� n−1mmax(Ŷ∗1 −Y∗1)′(Ŷ∗1 −Y∗1)

. mmax

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})2

.

In the last step, we use the result of Lemma 1 and the inequality√
(Ŷ∗1 −Y∗1)′(Ŷ∗1 −Y∗1) = ‖Ŷ∗1 −Y∗1‖2 ≤

√
n max

1≤i≤n
|Ŷ ∗1i − Y ∗1i|.

We continue with the proof of (10.4). Using similar arguments as is the proof of (10.3), we

have

‖α∗1 − α̃1‖2

≤
{

1 + ‖(R′R)−1‖2‖Qλ‖2 + op(n
−1m3/2

maxλmax)
}
‖α∗1,reg − α̃1,reg‖2, (10.6)

and,

‖α∗1,reg − α̃1,reg‖22
= (n−1mmax)2(Y∗1 −M1)′R(n−1mmaxR′R)−1(n−1mmaxR′R)−1R′(Y∗1 −M1).

By Assumption A.3,

E
{

(Y∗1 −M1)′RR′(Y∗1 −M1)
}

= E

[{
n∑
i=1

Ri(Y
∗

1i −M1i)

}′{
(

n∑
i=1

Ri(Y
∗

1i −M1i)

}]

= E

∑
p,l

n∑
i,j=1

XipXjpBpl(Uip; qp)Bpl(Ujp; qp)(Y
∗

1i −M1i)(Y
∗

1j −M1j)


.
∑
p,l

[
n∑
i=1

E
{
B2
pl(Uip; qp)

2(Y ∗1i −M1i)
2
}
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+
∑
i 6=j

E
{
Bpl(Uip; qp)Bpl(Ujp; qp)(Y

∗
1i −M1i)(Y

∗
1j −M1j)

}]
.

By the independence of the observations, Assumption A.5 and Properties 2 and 3 of B-splines

it follows that, using the law of the total expectation,

E
{
B2
pl(Uip; qp)(Y

∗
1i −M1i)

2
}
. E{B2

pl(Uip; qp)} . m−1
p = O(m−1

max),

E{Bpl(Uip; qp)Bpl(Ujp; qp)(Y ∗1i −M1i)(Y
∗

1j −M1j)}

= E{Bpl(Uip; qp)(Y ∗1i −M1i)}E{Bpl(Ujp; qp)(Y ∗1j −M1j)} = 0.

Therefore,

E
{

(Y∗1 −M1)′RR′(Y∗1 −M1)
}

= O(n),

(Y∗1 −M1)′RR′(Y∗1 −M1) = Op(n)

such that,

‖α∗1,reg − α̃1,reg‖22 = Op
(
n−1m2

max

)
. (10.7)

Combining (10.6) and (10.7) gives,

‖α∗1 − α̃1‖22 = Op

(
n−1m2

max

(
1 + n−1m3/2

maxλmax

)2
)

= Op(n
−1m2

max)

‖β∗1 − β̃1‖2L2
� 1

mmax
‖α∗1 − α̃1‖22 = Op

(
n−1mmax

)
,

where we use Assumption A.6 and B-spline Property 2. From the proof of Theorem 1 in [1],

we have,

‖β̃1 − β‖L2 = Op

(
n−1m3/2

maxλmax + ρn

)
,

and (10.5) follows immediately.
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10.3 Proof of Theorem 1, Part 2

To prove Part 2 of Theorem 1, we can repeat the proof of Part 1 of Theorem 1 but now using

Lemma 2 instead of Lemma 1 giving the maximal distance between Y ∗2 and Ŷ ∗2 responses.

The proof of Lemma 2 needs two further lemmas: Lemma 3 on the uniform consistency of

the initial estimators m̂1 and σ̂1 as estimators for m and σ; and Lemma 4 on the uniform

consistency of F̂ as estimator of F . The proof of Lemma 3 is included, that of Lemma 4

follows along the lines of a similar result (in the kernel estimation context) in [33]. The

details of the proof of Lemma 4 are not given but we do give and prove, in Lemma 5, the key

result that is needed to modify their result to our P-spline setting.

Lemma 2. If Assumptions A, B and C hold,

max
1≤i≤n

| Ŷ ∗2i − Y ∗2i |= Op(an) = op(1)

where an = n−1/2(log n)1/2 + n−1m
3/2
maxλmax + ρn+

m−1/2max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x) + κσ(u,x)

})
.

Method 2 uses (4.4) and (4.6) as initial estimates for m(u,x) and σ2(u,x). We therefore

need, in the proof of Theorem 1, Part 2, the consistency results given in Lemma 3.

Lemma 3. Under Assumptions A, B.1 and B.2, we have,

(a) sup
u,x
|m̂1(u,x)−m(u,x)| = Op

(
n−1/2 + n−1m3/2

maxλmax + ρn

+m−1/2
max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

(b) max
1≤i≤n

| Ŷ ∗1i,σ2 − Y ∗1i,σ2 |= Op

(
n−1/2 + n−1m3/2

maxλmax + ρn+

sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+m−1/2

max κ(u,x) + κσ(u,x)

})

37



where Y ∗1i,σ2 =
∆i(Zi −m(Ui,Xi))

2

G(Zi|Ui,Xi)
.

(c) sup
u,x
|σ̂1(u,x)− σ(u,x)| = Op

(
n−1/2 + n−1m3/2

maxλmax + ρn

+m−1/2
max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|

+m−1/2
max κ(u,x) + κσ(u,x)

}))

where Y ∗1i,σ2 =
∆i(Zi −m(Ui,Xi))

2

G(Zi|Ui,Xi)
.

Proof of Lemma 3(a). Since the Xp are bounded (see Assumption A.3), we have,

sup
u,x
|m̂1(u,x)−m(u,x)| .

d∑
p=1

‖β̂1p − βp‖L∞

≤
d∑
p=1

‖β̂1p − β̃1p‖L∞ +

d∑
p=1

‖β̃1p − βp‖L∞ .

By property 4, we have ‖β̂1p− β̃1p‖L∞ . m
−1/2
max ‖β̂1p− β̃1p‖L2 . Using the intermediate results

stated in the proof of Theorem 1, part 1, we obtain that,

‖β̂1p − β̃1p‖L∞ = Op

(
n−1/2+

m−1/2
max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

By Lemma A.10 of [20], we have,

‖β̃1,reg − β‖L∞ = Op(ρn),

where β̃1p,reg(up) = B(up)(R
′R)RM is the expectation of the regular spline estimator (i.e.
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λ1 = . . . = λd = 0). From the proof of Theorem 2 in [1], we have that,

β̃1 =
(

1−Op(n−1m3/2
maxλmax)

)
β̃1,reg.

Since each spline β̃p is a continuous function on the compact set Up, each spline β̃p is bounded

and ‖β̃1,reg‖L∞ = OP (1). We therefore conclude that,

‖β̃1 − β‖L∞ = Op(ρn + n−1m3/2
maxλmax),

The result of Lemma 3(a) now follows.

Proof of Lemma 3(b). Lemma 3(b) is for σ(u,x) what Lemma 1 is for m(u,x). Again

we consider two cases: Zi exceeds or does not exceed τ1(Ui,Xi). Suppose first that Zi ≤
τ1(Ui,Xi), then we write,

| Ŷ ∗1i,σ2 − Y ∗1i,σ2 |

≤
∣∣m̂2

1(Ui,Xi)−m2(Ui,Xi)
∣∣+ 2Zi |m̂1(Ui,Xi)−m(Ui,Xi)|

+ (Zi −m(Ui,Xi))
2 |Ĝ(Zi|Ui,Xi)−G(Zi|Ui,Xi)|

Since m̂2(u,x)−m2(u,x) = {m̂(u,x)−m(u,x)}{m̂(u,x)+m(u,x)}, we get from the uniform

convergence of m̂(u,x) to m(u,x) , that the rate of the first and second term on the right-

hand side are both equal to the rate obtained in Lemma 3(a). The third term on the right

hand side is bounded in probability by supt≤τ1(Ui,Xi) |Ĝ(t|Ui,Xi)−G(t|Ui,Xi)|.

Next, suppose Zi > τ1(Ui,Xi), then we can write,

|Ŷ ∗1i,σ2 − Y ∗1i,σ2 | ≤ |Ŷ ∗1i,σ2 − Ỹ ∗1i,σ2 |+ |Ỹ ∗1i,σ2 − Y ∗1i,σ2 |

where Ỹ ∗1i,σ2 = Y ∗1i,σ21{Zi≤τ1(Ui,Xi)} + (Zi − m2(Ui,Xi))
21{Zi>τ1(Ui,Xi)}. Analogue to the

second part of the proof of Lemma 1, we use κσ to bound the difference between Ŷ ∗1i,σ2

and Y ∗1i,σ2 in the truncation area. For the estimation of the mean of Y , the transformation

formula when Zi lies in the truncation area is Zi, whereas in this case, the transformation

formula is (Zi − m̂1(Ui,Xi))
2 and therefore also involves an estimator m̂1. The variable

Ỹ ∗1i,σ2 is introduced to make the transition from Ŷ ∗1i,σ2 ≡ (Zi − m̂1(Ui,Xi))
2 via Ỹ ∗1i,σ2 ≡
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(Zi −m(Ui,Xi))
2 to Y ∗1i,σ2 . We get,

E|Ỹ ∗1i,σ2 − Y ∗1i,σ2 | ≤ sup
u,x

κσ(u,x)

and,

|Ŷ ∗1i,σ2 − Ỹ ∗1i,σ2 |

≤ 2Zi |m̂1(Ui,Xi)−m(Ui,Xi)|+
∣∣m̂2

1(Ui,Xi)−m2(Ui,Xi)
∣∣

= Op

(
n−1/2 + n−1m3/2

maxλmax + ρn

+m−1/2
max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

Proof of Lemma 3(c). Following the same steps as in the proof of Theorem 1, Part 1, we

can, using the result of Lemma 3(b), derive the L2-distance between σ̂2 and σ2. Analogous

to Lemma 3(a), the L∞-distance then follows. Since σ̂1 − σ = (σ̂2
1 − σ2)/(σ̂1 + σ), it follows

from the convergence of σ̂2
1(u,x) to σ2(u,x) > 0, that the rate is maintained for σ̂1 − σ.

Lemma 4. If assumptions A, B and C hold, then, for t < S, we have,

F̂ (t)− F (t) = Op

(
n−1/2(log n)1/2 + n−1m3/2

maxλmax + ρn+

m−1/2
max

[
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x) + κσ(u,x)

}])
.

Lemma 5. Suppose βp ∈ Cr([ap, bp]) for each p = 1, . . . , d. Then under Assumptions A and

B, we have,

‖β̂(v)

1 − β(v)‖L∞ = Op

(
n−1/2mv

max + n−1m3/2
maxλmax +mv−r

max

+mv−1/2
max

[
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}
+ ρn

])
,
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where β(v) =
(
∂vβ1
∂uv1

, . . . , ∂
vβd
∂uvd

)′
and β̂

(v)

1 =
(
∂vβ̂11
∂uv1

, . . . , ∂
v β̂1d
∂uvd

)′
are the vectors of the v-th order

derivative functions for v = 0, . . . , r − 1.

Proof of Lemma 5. We first note that the v-th derivative of the B-spline function β̂1p(up) =∑mp

l=1 α̂1p,lBpl(up, qp) of degree qp is a B-spline function of degree qp − v given by (see [10]),

β̂
(v)

1 = Kv
p b(up, q − v)′Dvα̂1p, (10.1)

where b(up, q− v) = (B1p(up, qp− v), . . . , Bmp−1,p(up, qp− v))′ is the vector of the Kp+ qp− v
B-spline basis functions of degree qp − v with knots ξp i.e., for v = 1, we have,

β̂
(1)
1p (up) = Kp

mp−1∑
l=1

(α̂1p,l−1 − α̂1p,l)Bpl(up, qp − 1) = Kpb(up, q − 1)′D1α̂1p

= Kp

(
b(up, q − 1)′α̂1[−1] − b(up, q − 1)′α̂1[−m]

)
where α̂1[−1] = (α̂12, . . . α̂1m), α1[−m] = (α̂11, . . . α̂1,m−1). Representation (10.1) implies that

the v-th derivative of βp is again a spline function with coefficient vector KpDvα̂1p. As a

consequence we have, using Property 2, that,

‖β̂(v)

1 − β̃
(v)
1 ‖L2 = Op(m

v−1/2
max ‖α̂1 − α̃1‖2). (10.2)

We now use the fact that there exists a spline function (see Corollary 6.21 and (2.120) of

Theorem 2.59 in [30]) ζp(up) =
∑mp

l=1 cplBpl(up, qp) of degree qp with equidistant knots ξp and

coefficient vector cp = (c1p, . . . , cmpp)
′ such that,

‖β̃(v)
1 − ζ(v)‖L2 = Op(m

v
maxρn + n−1m3/2

maxλmax). (10.3)

To show the validity of (10.3), we proceed as follows. By Lemma A.7 of [20], we have that

‖α̃1,reg − c‖2 = O(m
1/2
maxρn), using a similar argument as before we find, ‖β̃(v)

1,reg − ζ(v)‖L2 =

Op(m
v
maxρn). Using the relationship

β̃
(v)
1 =

(
1−Op(n−1m3/2

maxλmax)
)
β̃

(v)
1,reg.
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and the fact that β
(v)
1,reg is bounded on a compact region, we have ‖β(v)

1,reg‖L2 = Op(1) and

(10.3) follows. Also note ([30]) that ζp satisfies

‖β(v)
p − ζ(v)

p ‖L∞ = O(mv−r
p ). (10.4)

The rates in (10.2)-(10.4) provide the key for the proof. Indeed

‖β̂(v)

1 − β(v)‖L∞ ≤ ‖β̂
(v)

1 − ζ(v)‖L∞ + ‖ζ(v) − β(v)‖L∞ . (10.5)

For the second term in (10.5) we use (10.4). For the first term, note that,

‖β̂(v)

1 − ζ(v)‖L∞ . m−1/2
max ‖β̂

(v)

1 − ζ(v)‖L2 (10.6)

and that,

‖β̂(v)

1 − ζ(v)‖L2 ≤ ‖β̂
(v)

1 − β̃
(v)‖L2 + ‖β̃(v)

1 − ζ(v)‖L2

= Op(m
v−1/2
max ‖α̂1 − α̃1‖2 +mv

maxρn + n−1m3/2
maxλmax). (10.7)

The result now follows from the rate obtained for ‖α̂1 − α̃1‖2 in Theorem 1, Part 1 in

combination with (10.2)-(10.7).

Proof of Lemma 2. We first note that supu,x |m̂1(u,x)−m(u,x)| and

supu,x |σ̂1(u,x)− σ(u,x)| are both Op(an) by Lemma 3.

We write,

Ŷ ∗2i − Y ∗2i = m̂1(Ui,Xi)−m(Ui,Xi)

+
σ̂1(Ui,Xi)

1− F̂ (ÊTi )

∫ Ŝi

ÊT
i

sdF̂ (s)− σ(Ui,Xi)

1− F (ETi )

∫ Si

ET
i

sdF (s)

= {m̂1(Ui,Xi)−m(Ui,Xi)} (10.8)

+
σ̂1(Ui,Xi)− σ(Ui,Xi)

1− F̂ (ÊTi )

∫ Ŝi

ÊT
i

sdF̂ (s) (10.9)
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+
σ(Ui,Xi){F̂ (ÊTi )− F (ETi )}
{1− F̂ (ÊTi )}{1− F (ETi )}

∫ Ŝi

ÊT
i

sdF̂ (s) (10.10)

+
σ(Ui,Xi)

1− F (ETi )

{∫ ET
i

ÊT
i

sdF̂ (s) +

∫ Si

ET
i

sd(F̂ (s)− F (s)) +

∫ Ŝi

Si

sdF̂ (s)

}
. (10.11)

We first consider the three integrals in (10.11). Using integration by part, we have,

∫ ET
i

ÊT
i

sdF̂ (s) = ETi F̂ (ETi )− ÊTi F̂ (ÊTi )−
∫ ET

i

ÊT
i

F̂ (s)ds

= ETi {F̂ (ETi )− F (ETi )}+ {ETi F (ETi )− ÊTi F (ETi )}+ ÊTi {F (ETi )− F̂ (ÊTi )}

−
∫ ET

i

ÊT
i

F̂ (s)ds. (10.12)

For the first term of (10.12), using Lemma 4, we conclude that∣∣∣ETi {F̂ (ETi )− F (ETi )}
∣∣∣ = |ETi |Op (an) = Op (an) .

Since |ETi | ≤ {σ(Ui,Xi)}−1{|min(Zi, τ2(Ui,Xi))|+ |m(Ui,Xi)|} <∞. To get a consistency

rate for the second and the fourth term of (10.12), note that

ÊTi − ETi

=
min(τ2(Ui,Xi), Zi)− m̂1(Ui,Xi)

σ̂1(Ui,Xi)
− min(τ2(Ui,Xi), Zi)−m(Ui,Xi)

σ(Ui,Xi)

=
1

σ(Ui,Xi)σ̂(Ui,Xi)

[
min(τ2(Ui,Xi), Zi)

{
σ(Ui,Xi)− σ̂1(Ui,Xi)

}
− σ(Ui,Xi)

{
m̂1(Ui,Xi)−m(Ui,Xi))

}
+m(Ui,Xi)

{
σ̂1(Ui,Xi)− σ(Ui,Xi)

}]
.

It then follows from Lemma 3 and the convergence of σ̂1(u,x) to σ(u,x) > 0 that,

|ÊTi − ETi | = Op(an),

which gives the rate for the second and the fourth term of (10.12). For the third term of
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(10.12), we have that,

F̂ (ÊTi )− F (ETi ) = {F̂ (ÊTi )− F (ÊTi )}+ {F (ÊTi )− F (ETi )}.

Lemma 4 can be used for the first summand. For the second summand, we use a first order

Taylor approximation and write,

F (ÊTi )− F (ETi ) =

(
−m̂1(Ui,Xi)−m(Ui,Xi)

σ̂1(Ui,Xi)

− {σ̂1(Ui,Xi)− σ(Ui,Xi)}{min(τ2(Ui,Xi), Zi)−m(Ui,Xi)}
σ̂1(Ui,Xi)σ1(Ui,Xi)

)
fε(θ)

with fε the density of ε and for some θ between min(τ2(Ui,Xi),Zi)−m̂1(Ui,Xi)
σ̂1(Ui,Xi)

and min(τ2(Ui,Xi),Zi)−m(Ui,Xi)
σ(Ui,Xi)

.

By the convergence of σ̂1(u,x) to σ(u,x) > 0 and the fact that supe |efε(e)| <∞, we get

F (ÊTi )− F (ETi ) = Op(an). (10.13)

We conclude that ∣∣∣ÊTi {F (ETi )− F̂ (ÊTi )}
∣∣∣ = Op(an),

where we use that by Lemma 3, |ÊTi | = |ETi |+Op(an) <∞. Based on the analysis of (10.12)

we conclude for the first term of (10.11),

σ(Ui,Xi)

1− F (ETi )

∫ ET
i

ÊT
i

sdF̂ (s) = Op(an). (10.14)

In a similar way, we obtain for the third term of (10.11)

σ(Ui,Xi)

1− F (ETi )

∫ ST
i

ŜT
i

sdF̂ (s) = Op(an). (10.15)
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For the second integral in (10.11), we use partial integration and Lemma 4 to obtain

∫ ST
i

ET
i

sd(F̂ (s)− F (s)) = STi {F̂ (STi )− F (STi )} − ETi {F̂ (ETi )− F (ETi )}

−
∫ ST

i

ET
i

{F̂ (s)− F (s)}ds = Op(an).

The terms (10.8)-(10.10) are more easy to handle. For (10.8) we use Lemma 3(a). For (10.9)

and (10.10) we need that

∫ Ŝi

ÊT
i

sdF̂ (s) = Op(1). (10.16)

To show (10.16), note that, using similar reasoning as in [18], we can prove that∫ Si

ET
i

sdF̂ (s) = Op(1).

Combining this result with the rates obtained in (10.14) and (10.15) yields,

∫ Ŝi

ÊT
i

sdF̂ (s) = Op(1).

By the convergence of F̂ (ÊTi ) to F (ETi ) < 1 (10.13), we get that (10.9) and (10.10) are both

Op(an).

10.4 Proof of Theorem 2

Proof of Theorem 2. We prove the asymptotic normality of the P-spline estimator β̂1 for

method 1 by proving that for p = 1, . . . , d,

{
s.e.

(
β∗jp(up) | Xn

)}−1
{
β∗jp(up)− β̃jp(up)

}
d→ N(0, 1) (10.1)
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{
s.e.

(
β∗jp(up) | Xn

)}−1
{

(β̂1p(up)− β∗1p(up)) + (β̃1p(up)− βp(up))
}

p→ 0. (10.2)

The proof of (10.1) is based on the proof given in [1] where some steps can be simplified due

to the independence of the observations.

Let Bp(u) be the column vector representing the p-th row of B(u).

B′p(u)(α∗ − α̃) =

n∑
i=1

B′p(u)(R′R + Qλ)−1Ri(Y
∗

1i −M1i) =
n∑
i=1

diξi,

where d2
i = σ2

1,i{B′p(u)(R′R + Qλ)−1Ri}2 and ξi = σ−2
1,i (Y

∗
1i −M1i). Conditioning on Xn the

ξi are independent with mean 0 and variance 1. To prove the asymptotic normality of the

P-spline estimator we verify that the Lindeberg condition,

max d2
i∑n

i=1 d
2
i

p→ 0,

is satisfied, then, ∑n
i=1 diξi√∑n
i=1 d

2
i

d→ N(0, 1).

For any ω = (ω′0, . . . ,ω
′
d)
′ with ωp = (ωp1, . . . , ωpmp)′, and especially for ω = {R′R +

Qλ)−1Bp(u)}, we have by the Cauchy-Schwarz inequality,

ω′RiR
′
iω =


d∑
p=0

Xip

mp∑
l=1

ωplBpl(Uip; qp)


2

≤

 d∑
p=0

X2
ip

 d∑
p=0

{mp∑
l=1

ωplBpl(Uip; qp)

}2
 .

Set gω,p(u; qp) =
∑mp

l=1 ωplBpl(up; qp) for p = 0, . . . , d. By Assumption (B3) and Properties 2

and 4,

ω′RiR
′
iω .

d∑
p=0

‖gω,p‖2∞ . mmax

d∑
p=0

‖gω,p‖2L2
� ‖ω‖22. (10.3)
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From Lemmas A.1 and A.2 in [20], we know that except on an event with probability tending

to zero, n−1
∑n

i=1(
∑d

p=0Xipgω,p(Uip; qp))
2 � m−1

max‖ω‖22. Thus,

ω′
n∑
i=1

{
RiR

′
iσ

2
1,i

}
ω ≥ n min

1≤i≤n
σ2

1,in
−1

n∑
i=1

( d∑
p=0

Xipgω,p(Uip; qp)
)2

& m−1
maxn‖ω‖22. (10.4)

Combining (10.3) and (10.4), we find that except on an event whose probability tends to zero,

we have,
maxi(σ

2
1,iω

′RiR
′
iω)

ω′(
∑n

i=1 σ
2
1,iRiR′i)ω

. n−1mmax.

By Assumption (B6), it follows that the Lindeberg assumption is fulfilled and hence the

normality result in (10.1) follows.

We continue with the proof of (10.2). Since we assume that σ2
1,i is bounded away from zero

and ∞, we have,

Var(β∗1p(u) | Xn) = Cov
(
B′p(u)α∗ | Xn

)
= B(u)

(
R′R + Qλ

)−1
( n∑
i=1

RiR
′
iσ

2
1,i

)(
R′R + Qλ

)−1
Bp(u)

& B′p(u)
(
R′R + Qλ

)−1
R′R

(
R′R + Qλ

)−1
Bp(u)

� n

mmax
B′p(u)

(
R′R + Qλ

)−1(
R′R + Qλ

)−1
Bp(u)

&
n

mmax

(
1

λmax(R′R + Qλ)

)2 mp∑
l=1

B2
pl(u)

&
n

mmax

 1

n
mmax

(
1 + m

3/2
maxλmax
n

)


2

1

mp

� 1

n

(
1 +

m
3/2
maxλmax

n

)−2
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where we use the Cauchy-Schwarz inequality,

1 =

(mp∑
l=1

Bpl(u)

)2

≤
mp∑
l=1

B2
pl(u)

mp∑
l=1

1 = mp

mp∑
l=1

B2
pl(u),

and the upper bound for the largest eigenvalue λmax(R′R + Qλ):

λmax(R′R+Qλ) = ‖R′R + Qλ‖2 ≤ ‖R′R‖2 + ‖Qλ‖2

.
n

mmax
+

√√√√ d∑
p=1

‖Qλ‖∞ .
n

mmax
+
√
dλmaxm

1/2
max max

1≤p≤d
4kp

.
n

mmax

(
1 +

m
3/2
maxλmax

n

)

By Property 4 of B-splines and Assumption (A5),

β̂1p(up)−β∗1p(up) ≤ sup
u∈U
|β̂1p(up)− β∗1p(up)| = ‖β̂1p − β∗1p‖∞

.

(
1

mp

)1/2

‖β̂1p − β∗1p‖L2 �
(

1

mmax

)1/2

‖β̂1p − β∗1p‖L2 .

We conclude,

β̂1p(up)− β∗1p(up)

s.e.
(
β∗1p(up) | Xn

) .

(
n

mmax

)1/2
(

1 +
m

3/2
maxλmax

n

)
‖β̂1p − β∗1p‖L2 ,

and

β̃1p(up)− βp(up)

s.e.
(
β∗1p(up) | Xn

) . n1/2

(
1 +

m
3/2
maxλmax

n

)
‖β̃1p − βp‖L∞ .

From assumption D.1 it follows that these two terms converge to zero as n goes to ∞. The

proof for method 2 is exactly the same but we do not look at the difference β̃2p − βp.
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