Penalized spline estimation in varying coefficient models with censored data Supplementary material

HENDRICKX, Kim; JANSSEN, Paul \& VERHASSELT, Anneleen (2018) Penalized spline estimation in varying coefficient models with censored data. In: TEST, 27(4), p. 871-895.

DOI: 10.1007/s11749-017-0574-y
Handle: http://hdl.handle.net/1942/25678

Penalized spline estimation in varying coefficient models with censored data

Supplementary Material

K. Hendrickx ${ }^{1}$ • P. Janssen ${ }^{1}$ • A. Verhasselt ${ }^{1}$

Received: date / Accepted: date

We prove the asymptotic results (Theorem 1 and Theorem 2) of Section 5 of the manuscript [3]. Throughout, sections refer to the main manuscript.

1 Definitions and properties

Definition 1 For a real valued matrix \mathbf{A} of dimension $m_{A} \times n_{A}$, the 2-norm of \mathbf{A} is given by $\|\mathbf{A}\|_{2}=\sup _{\mathbf{x} \neq 0} \frac{\|\mathbf{A} \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$, with $\mathbf{x} \in \mathbb{R}^{n_{A}}$ and $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n_{A}} x_{i}^{2}}$. This norm is equal to $\sqrt{\zeta_{\max }\left(\mathbf{A}^{\prime} \mathbf{A}\right)}$ where $\zeta_{\max }$ is the largest eigenvalue of $\mathbf{A}^{\prime} \mathbf{A}$.

Definition 2 For sequences of positive numbers r_{n} and $s_{n}, r_{n} \lesssim s_{n}$ means that $s_{n}^{-1} r_{n}$ is bounded and $r_{n} \asymp s_{n}$ means that $s_{n}^{-1} r_{n}$ and $r_{n}^{-1} s_{n}$ are bounded.

Definition 3 For a real valued function f on \mathcal{U} and a vector valued function $\mathbf{g}=\left(g_{1}, \ldots, g_{d}\right)$ on \mathcal{U}^{d}, the L_{∞}-norm is given by:

$$
\|f\|_{\infty}=\sup _{u \in \mathcal{U}}|f(u)|, \quad\|\mathbf{g}\|_{\infty}=\max _{1 \leq p \leq d}\left\|g_{p}\right\|_{\infty}
$$

Our estimation technique relies on properties of B-splines. For a detailed description of B-splines we refer to [2] or [6].

Property $1 B_{p l}\left(u_{p} ; q_{p}\right) \geq 0 \quad$ and $\quad \sum_{l=1}^{m_{p}} B_{p l}\left(u_{p} ; q_{p}\right)=1$.
K. Hendrickx

Hasselt University, I-BioStat, Agoralaan, B3590 Diepenbeek, Belgium.
Tel.: +32 11268281
E-mail: kim.hendrickx@uhasselt.be
${ }^{1}$ Hasselt University

Property 2 There exists positive constants N_{7}, N_{8} and coefficients $\alpha_{p l} \in \mathrm{R}$ such that

$$
m_{p}^{-1} N_{7} \sum_{l=1}^{m_{p}} \alpha_{p l}^{2} \leq \int_{\mathcal{U}}\left\{\sum_{l=1}^{m_{p}} \alpha_{p l} B_{p l}\left(u_{p} ; q_{p}\right)\right\}^{2} d u \leq m_{p}^{-1} N_{8} \sum_{l=1}^{m_{p}} \alpha_{p l}^{2}
$$

Property $3 \int_{\mathcal{U}} B_{p l}\left(u ; q_{p}\right) d u=O\left(m_{p}^{-1}\right)$.
Property $4\|g\|_{\infty} \lesssim m_{p}^{-1 / 2}\|g\|_{L_{2}}$ for $g \in \mathrm{G}\left(q_{p}, \boldsymbol{\xi}_{p}\right)$, where $\mathrm{G}\left(q_{p}, \boldsymbol{\xi}_{p}\right)$ is the space of spline functions on \mathcal{U}_{p} with fixed degree q_{p} and knot sequence $\boldsymbol{\xi}_{p}$.

We use as notations $\hat{\boldsymbol{\alpha}}_{j}, \boldsymbol{\alpha}_{j}^{*}$ and $\tilde{\boldsymbol{\alpha}}_{j}$ for methods $j=1,2$ (described in Section 4 of [3]), when we replace \mathbf{Y} in expression

$$
\hat{\boldsymbol{\alpha}}=\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)^{-1} \mathbf{R}^{\prime} \mathbf{Y}
$$

by $\hat{\mathbf{Y}}_{j}^{*}=\left(\hat{Y}_{j 1}^{*}, \ldots, \hat{Y}_{j n}^{*}\right)^{\prime}, \mathbf{Y}_{j}^{*}=\left(Y_{j 1}^{*}, \ldots, Y_{j n}^{*}\right)^{\prime}$, and $\mathbf{M}_{j}=\left(M_{j 1}, \ldots, M_{j n}\right)^{\prime}$ with $M_{j i}=E\left(Y_{j i}^{*} \mid \mathbf{U}_{i}, X_{i}\right)$ for $i=1, \ldots, n$ respectively. Similar notations hold for $\hat{\boldsymbol{\beta}}_{j}=\left(\hat{\beta}_{j 1}, \ldots, \hat{\beta}_{j d}\right)^{\prime}, \boldsymbol{\beta}_{j}^{*}=\left(\beta_{j 1}^{*}, \ldots, \beta_{j d}^{*}\right)^{\prime}$ and $\tilde{\boldsymbol{\beta}}_{j}=\left(\tilde{\beta}_{j 1}, \ldots, \tilde{\beta}_{j d}\right)^{\prime}$.

1.1 Proof of Theorem 1, Part 1

The proof of the first result stated in Theorem 1 relies on the maximal distance between the $Y_{1 i}^{*}$ and $\hat{Y}_{1 i}^{*}$, derived in Lemma 1.

Lemma $1 \max _{1 \leq i \leq n}\left|\hat{Y}_{1 i}^{*}-Y_{1 i}^{*}\right|=$

$$
O_{p}\left(\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+\kappa(\mathbf{u}, \mathbf{x})\right\}\right)
$$

Proof (Proof of Lemma 1)
Since $\left|\hat{Y}_{1 i}^{*}-Y_{1 i}^{*}\right|=$

$$
\left|\hat{Y}_{1 i}^{*}-Y_{1 i}^{*}\right| 1_{\left\{Z_{i} \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}}+\left|\hat{Y}_{1 i}^{*}-Y_{1 i}^{*}\right| 1_{\left\{Z_{i}>\tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}}
$$

we consider two cases and prove the following results,

$$
\begin{align*}
\max _{1 \leq i \leq n}\left\{\mid \hat{Y}_{1 i}^{*}-\right. & \left.Y_{1 i}^{*} \mid 1_{\left\{Z_{i} \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}}\right\} \\
& \lesssim \sup _{\mathbf{u}, \mathbf{x}}\left(\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|\right), \tag{1}\\
\max _{1 \leq i \leq n}\left\{\mid \hat{Y}_{1 i}^{*}-\right. & \left.Y_{1 i}^{*} \mid 1_{\left\{Z_{i}>\tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}}\right\} \lesssim \sup _{\mathbf{u}, \mathbf{x}} \kappa(\mathbf{u}, \mathbf{x}) . \tag{2}
\end{align*}
$$

For (1) we start by the triangle inequality,

$$
\begin{aligned}
& \left|\hat{Y}_{1 i}^{*}-Y_{1 i}^{*}\right| 1_{\left\{Z_{i} \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}} \leq \mid \Delta_{i}\left\{\hat{\varphi}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)-\varphi_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)\right\} \\
& \quad+\left(1-\Delta_{i}\right)\left\{\hat{\psi}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)-\psi_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)\right\} \mid \\
& \leq\left|\hat{\varphi}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)-\varphi_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)\right|+\left|\hat{\psi}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)-\psi_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)\right| .
\end{aligned}
$$

We derive the order bound for $\left|\hat{\varphi}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)-\varphi_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)\right|$, similar result holds if we replace φ_{1} and $\hat{\varphi}_{1}$ by ψ_{1} and $\hat{\psi}_{1}$ respectively.

$$
\begin{aligned}
& \left|\hat{\varphi}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)-\varphi_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)\right| \\
& \leq\left|(1+\gamma)\left\{\int_{0}^{Z_{i}} \frac{1}{\hat{G}\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)} d t-\int_{0}^{Z_{i}} \frac{1}{G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)} d t\right\}\right| \\
& \quad+\left|\frac{\gamma Z_{i}}{\hat{G}\left(Z_{i} \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)}-\frac{\gamma Z_{i}}{G\left(Z_{i} \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)}\right| \\
& \leq\left|(1+\gamma) \int_{0}^{Z_{i}} \frac{\hat{G}\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)-G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)}{G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right) \hat{G}\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)} d t\right| \\
& \quad+\left|\frac{\gamma Z_{i}\left\{\hat{G}\left(Z_{i} \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)-G\left(Z_{i} \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}}{G\left(Z_{i} \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right) \hat{G}\left(Z_{i} \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)}\right| \\
& \leq|1+\gamma| \sup _{t \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}\left\{\left|\hat{G}\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)-G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)\right|\right\} \\
& \quad \times \int_{0}^{\tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)} \frac{G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)}{\hat{G}\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)} \frac{1}{G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)^{2}} d t \\
& \quad+|\gamma| \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right) \\
& \sup _{t \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}\left\{\left|\hat{G}\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)-G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)\right|\right\}
\end{aligned} \quad \begin{aligned}
& \sup _{t \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}\left\{\frac{1}{G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)^{2}} \frac{G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)}{\hat{G}\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)}\right\} .
\end{aligned}
$$

From the uniform convergence of \hat{G} we have:

$$
\sup _{t \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)} \frac{G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)}{\hat{G}\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)}=1+o_{p}(1) .
$$

Also $\inf _{t \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}\left\{G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}>0$, therefore,

$$
\begin{aligned}
& \left|\hat{\varphi}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)-\varphi_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}, Z_{i}\right)\right| \\
& \quad=O_{p}\left(\tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right) \sup _{t \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{x}_{i}\right)}\left|\hat{G}\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)-G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)\right|\right) .
\end{aligned}
$$

For (2) we have

$$
\begin{aligned}
& E\left\{\left|\hat{Y}_{1 i}^{*}-Y_{1 i}^{*}\right| 1_{\left\{Z_{i}>\tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}}\right\} \\
& \quad \leq E\left[E\left\{\max _{\phi=\varphi_{1}, \psi_{1}} 1_{\left\{Z_{i}>\tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}}\left|Z_{i}-\phi\left(U_{i}, \mathbf{X}_{i}, Z_{i}\right)\right| \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right\}\right] \\
& \quad \leq \sup _{\mathbf{u}, \mathbf{x}} \kappa(\mathbf{u}, \mathbf{x})
\end{aligned}
$$

By combining (1) and (2), the result of Lemma 1 follows.
Proof (Proof of Theorem 1, Part 1)
Since

$$
\left\|\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}\right\|_{L_{2}} \leq\left\|\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}^{*}\right\|_{L_{2}}+\left\|\boldsymbol{\beta}_{1}^{*}-\tilde{\boldsymbol{\beta}}_{1}\right\|_{L_{2}}+\left\|\tilde{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}\right\|_{L_{2}}
$$

the result follows by showing that

$$
\begin{align*}
& \left\|\hat{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}^{*}\right\|_{L_{2}} \tag{3}\\
& \quad=O_{p}\left(\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+\kappa(\mathbf{u}, \mathbf{x})\right\}\right) \\
& \left\|\boldsymbol{\beta}_{1}^{*}-\tilde{\boldsymbol{\beta}}_{1}\right\|_{L_{2}}=O_{p}\left(n^{-1 / 2} m_{\max }^{1 / 2}\right) \tag{4}\\
& \left\|\tilde{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}_{1}\right\|_{L_{2}}=O_{p}\left(n^{-1} m_{\max }^{3 / 2} \lambda_{\max }+\rho_{n}\right) \tag{5}
\end{align*}
$$

We start with the proof of (3). By Property 2 it suffices to show that

$$
\begin{aligned}
& \left\|\hat{\boldsymbol{\alpha}}_{1}-\boldsymbol{\alpha}_{1}^{*}\right\|_{2}= \\
& O_{p}\left(m_{\max }^{1 / 2}\left(\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+\kappa(\mathbf{u}, \mathbf{x})\right\}\right)\right) .
\end{aligned}
$$

From [1] we have

$$
\begin{aligned}
& \hat{\boldsymbol{\alpha}}_{1}-\boldsymbol{\alpha}_{1}^{*} \\
& \begin{aligned}
&=\left\{\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1}-\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1} \mathbf{Q}_{\boldsymbol{\lambda}}\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1}+o_{p}\left(n^{-1}\right.\right.\left.\left.m_{\max }^{3 / 2} \lambda_{\max }\right)\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1}\right\} \\
& \times \sum_{i=1}^{n} \mathbf{R}_{i}\left(\hat{Y}_{1 i}^{*}-Y_{1 i}^{*}\right) \\
&=\hat{\boldsymbol{\alpha}}_{1, \text { reg }}-\boldsymbol{\alpha}_{r e g}^{*}-\left\{\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1} \mathbf{Q}_{\boldsymbol{\lambda}}\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1}+o_{p}\left(n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right)\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1}\right\} \\
& \times \sum_{i=1}^{n} \mathbf{R}_{i}\left(\hat{Y}_{1 i}^{*}-Y_{1 i}^{*}\right) \\
&=\left\{1-\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1} \mathbf{Q}_{\boldsymbol{\lambda}}+o_{p}\left(n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right)\right\}\left(\hat{\boldsymbol{\alpha}}_{1, \text { reg }}-\boldsymbol{\alpha}_{r e g}^{*}\right),
\end{aligned}
\end{aligned}
$$

where $\hat{\boldsymbol{\alpha}}_{1, \text { reg }}$ and $\boldsymbol{\alpha}_{\text {reg }}^{*}$ denote the regular B-spline estimator (i.e. $\lambda_{0}=\ldots=$ $\lambda_{d}=0$). Consequently

$$
\begin{aligned}
& \left\|\hat{\boldsymbol{\alpha}}_{1}-\boldsymbol{\alpha}_{1}^{*}\right\|_{2} \\
& \quad \leq\left\{1+\left\|\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1}\right\|_{2}\left\|\mathbf{Q}_{\boldsymbol{\lambda}}\right\|_{2}+o_{p}\left(n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right)\right\}\left\|\hat{\boldsymbol{\alpha}}_{1, \text { reg }}-\boldsymbol{\alpha}_{1, \text { reg }}^{*}\right\|_{2} .
\end{aligned}
$$

From Lemma 1 in [1] we know that except on an event whose probability tends to zero, $\left\|\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1}\right\|_{2}\left\|\mathbf{Q}_{\boldsymbol{\lambda}}\right\|_{2}=O_{p}\left(n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right)$. Furthermore,

$$
\begin{aligned}
& \left\|\hat{\boldsymbol{\alpha}}_{1, \text { reg }}-\boldsymbol{\alpha}_{1, \text { reg }}^{*}\right\|_{2}^{2}=\left(\hat{\mathbf{Y}}_{1}^{*}-\mathbf{Y}_{1}^{*}\right)^{\prime} \mathbf{R}\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1}\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1} \mathbf{R}^{\prime}\left(\hat{\mathbf{Y}}_{1}^{*}-\mathbf{Y}_{1}^{*}\right) \\
& =\left(n^{-1} m_{\max }\right)^{2}\left(\hat{\mathbf{Y}}_{1}^{*}-\mathbf{Y}_{1}^{*}\right)^{\prime} \mathbf{R}\left(n^{-1} m_{\max } \mathbf{R}^{\prime} \mathbf{R}\right)^{-1}\left(n^{-1} m_{\max } \mathbf{R}^{\prime} \mathbf{R}\right)^{-1} \mathbf{R}^{\prime}\left(\hat{\mathbf{Y}}_{1}^{*}-\mathbf{Y}_{1}^{*}\right)
\end{aligned}
$$

and since all eigenvalues of $n^{-1} m_{\max } \mathbf{R}^{\prime} \mathbf{R}$ fall between positive constants, we have $\left\|n^{-1} m_{\max } \mathbf{R}^{\prime} \mathbf{R}\right\|_{2} \asymp 1$ and thus

$$
\begin{aligned}
& \left\|\hat{\boldsymbol{\alpha}}_{1, \text { reg }}-\boldsymbol{\alpha}_{1, \text { reg }}^{*}\right\|_{2}^{2}=\left(\hat{\mathbf{Y}}_{1}^{*}-\hat{\mathbf{Y}}_{1}^{*}\right)^{\prime} \mathbf{R}\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1}\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1} \mathbf{R}^{\prime}\left(\hat{\mathbf{Y}}_{1}^{*}-\mathbf{Y}_{1}^{*}\right) \\
& \asymp n^{-1} m_{\max }\left(\hat{\mathbf{Y}}_{1}^{*}-\mathbf{Y}_{1}^{*}\right)^{\prime}\left(\hat{\mathbf{Y}}_{1}^{*}-\mathbf{Y}_{1}^{*}\right) \\
& \lesssim m_{\max }\left(\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+\kappa(\mathbf{u}, \mathbf{x})\right\}\right)^{2} .
\end{aligned}
$$

In the last step, we use the result of Lemma 1 and the inequality

$$
\sqrt{\left(\hat{\mathbf{Y}}_{1}^{*}-\mathbf{Y}_{1}^{*}\right)^{\prime}\left(\hat{\mathbf{Y}}_{1}^{*}-\mathbf{Y}_{1}^{*}\right)}=\left\|\hat{\mathbf{Y}}_{1}^{*}-\mathbf{Y}_{1}^{*}\right\|_{2} \leq \sqrt{n} \max _{1 \leq i \leq n}\left|\hat{Y}_{1 i}^{*}-Y_{1 i}^{*}\right|
$$

We continue with the proof of (4). Using similar arguments as is the proof of (3), we have

$$
\begin{align*}
& \left\|\boldsymbol{\alpha}_{1}^{*}-\tilde{\boldsymbol{\alpha}}_{1}\right\|_{2} \\
& \leq\left\{1+\left\|\left(\mathbf{R}^{\prime} \mathbf{R}\right)^{-1}\right\|_{2}\left\|\mathbf{Q}_{\boldsymbol{\lambda}}\right\|_{2}+o_{p}\left(n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right)\right\}\left\|\boldsymbol{\alpha}_{1, \text { reg }}^{*}-\tilde{\boldsymbol{\alpha}}_{1, \text { reg }}\right\|_{2} \tag{6}
\end{align*}
$$

and
$\left\|\boldsymbol{\alpha}_{1, \text { reg }}^{*}-\tilde{\boldsymbol{\alpha}}_{1, \text { reg }}\right\|_{2}^{2}$
$=\left(n^{-1} m_{\max }\right)^{2}\left(\mathbf{Y}_{1}^{*}-\mathbf{M}_{1}\right)^{\prime} \mathbf{R}\left(n^{-1} m_{\max } \mathbf{R}^{\prime} \mathbf{R}\right)^{-1}\left(n^{-1} m_{\max } \mathbf{R}^{\prime} \mathbf{R}\right)^{-1} \mathbf{R}^{\prime}\left(\mathbf{Y}_{1}^{*}-\mathbf{M}_{1}\right)$.

By Assumption A.3,

$$
\begin{aligned}
& E\left\{\left(\mathbf{Y}_{1}^{*}-\mathbf{M}_{1}\right)^{\prime} \mathbf{R} \mathbf{R}^{\prime}\left(\mathbf{Y}_{1}^{*}-\mathbf{M}_{1}\right)\right\} \\
& =E\left[\left\{\sum_{i=1}^{n} \mathbf{R}_{i}\left(Y_{1 i}^{*}-M_{1 i}\right)\right\}^{\prime}\left\{\left(\sum_{i=1}^{n} \mathbf{R}_{i}\left(Y_{1 i}^{*}-M_{1 i}\right)\right\}\right]\right. \\
& =E\left\{\sum_{p, l} \sum_{i, j=1}^{n} X_{i p} X_{j p} B_{p l}\left(U_{i p} ; q_{p}\right) B_{p l}\left(U_{j p} ; q_{p}\right)\left(Y_{1 i}^{*}-M_{1 i}\right)\left(Y_{1 j}^{*}-M_{1 j}\right)\right\} \\
& \lesssim \sum_{p, l}\left[\sum_{i=1}^{n} E\left\{B_{p l}^{2}\left(U_{i p} ; q_{p}\right)^{2}\left(Y_{1 i}^{*}-M_{1 i}\right)^{2}\right\}\right. \\
& \left.\quad+\sum_{i \neq j} E\left\{B_{p l}\left(U_{i p} ; q_{p}\right) B_{p l}\left(U_{j p} ; q_{p}\right)\left(Y_{1 i}^{*}-M_{1 i}\right)\left(Y_{1 j}^{*}-M_{1 j}\right)\right\}\right]
\end{aligned}
$$

By the independence of the observations, Assumption A. 5 and Properties 2 and 3 of B-splines it follows that, using the law of the total expectation,

$$
\begin{aligned}
& E\left\{B_{p l}^{2}\left(U_{i p} ; q_{p}\right)\left(Y_{1 i}^{*}-M_{1 i}\right)^{2}\right\} \lesssim E\left\{B_{p l}^{2}\left(U_{i p} ; q_{p}\right)\right\} \lesssim m_{p}^{-1}=O\left(m_{\max }^{-1}\right), \\
& E\left\{B_{p l}\left(U_{i p} ; q_{p}\right) B_{p l}\left(U_{j p} ; q_{p}\right)\left(Y_{1 i}^{*}-M_{1 i}\right)\left(Y_{1 j}^{*}-M_{1 j}\right)\right\} \\
& \quad=E\left\{B_{p l}\left(U_{i p} ; q_{p}\right)\left(Y_{1 i}^{*}-M_{1 i}\right)\right\} E\left\{B_{p l}\left(U_{j p} ; q_{p}\right)\left(Y_{1 j}^{*}-M_{1 j}\right)\right\}=0 .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
E\left\{\left(\mathbf{Y}_{1}^{*}-\mathbf{M}_{1}\right)^{\prime} \mathbf{R} \mathbf{R}^{\prime}\left(\mathbf{Y}_{1}^{*}-\mathbf{M}_{1}\right)\right\}=O(n), \\
\left(\mathbf{Y}_{1}^{*}-\mathbf{M}_{1}\right)^{\prime} \mathbf{R} \mathbf{R}^{\prime}\left(\mathbf{Y}_{1}^{*}-\mathbf{M}_{1}\right)=O_{p}(n),
\end{gathered}
$$

such that

$$
\begin{equation*}
\left\|\boldsymbol{\alpha}_{1, \text { reg }}^{*}-\tilde{\boldsymbol{\alpha}}_{1, \text { reg }}\right\|_{2}^{2}=O_{p}\left(n^{-1} m_{\max }^{2}\right) . \tag{7}
\end{equation*}
$$

Combining (6) and (7) gives,

$$
\begin{aligned}
\left\|\boldsymbol{\alpha}_{1}^{*}-\tilde{\boldsymbol{\alpha}}_{1}\right\|_{2}^{2} & =O_{p}\left(n^{-1} m_{\max }^{2}\left(1+n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right)^{2}\right)=O_{p}\left(n^{-1} m_{\max }^{2}\right) \\
\left\|\boldsymbol{\beta}_{1}^{*}-\tilde{\boldsymbol{\beta}}_{1}\right\|_{L_{2}}^{2} & \asymp \frac{1}{m_{\max }}\left\|\boldsymbol{\alpha}_{1}^{*}-\tilde{\boldsymbol{\alpha}}_{1}\right\|_{2}^{2}=O_{p}\left(n^{-1} m_{\max }\right)
\end{aligned}
$$

where we use Assumption A. 6 and B-spline Property 2. From the proof of Theorem 1 in [1], we have,

$$
\left\|\tilde{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}\right\|_{L_{2}}=O_{p}\left(n^{-1} m_{\max }^{3 / 2} \lambda_{\max }+\rho_{n}\right),
$$

and (5) follows immediately.
1.2 Proof of Theorem 1, Part 2

To prove Part 2 of Theorem 1, we can repeat the proof of Part 1 of Theorem 1 but now using Lemma 2 instead of Lemma 1 giving the maximal distance between Y_{2}^{*} and \hat{Y}_{2}^{*}. The proof of Lemma 2 needs two further lemmas: Lemma 3 on the uniform consistency of the initial estimators \hat{m}_{1} and $\hat{\sigma}_{1}$ as estimators for m and σ; and Lemma 4 on the uniform consistency of \hat{F} as estimator of F. The proof of Lemma 3 is included, that of Lemma 4 follows along the lines of a similar result (in the kernel estimation context) in [7]. The details of the proof of Lemma 4 are not given but we do give and prove, in Lemma 5, the key result that is needed to modify their result to our P-spline setting.

Lemma 2 If Assumptions A, B and C hold,

$$
\max _{1 \leq i \leq n}\left|\hat{Y}_{2 i}^{*}-Y_{2 i}^{*}\right|=O_{p}\left(a_{n}\right)=o_{p}(1)
$$

where $a_{n}=n^{-1 / 2}(\log n)^{1 / 2}+n^{-1} m_{\text {max }}^{3 / 2} \lambda_{\text {max }}+\rho_{n}+$
$m_{\max }^{-1 / 2}\left(\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+\kappa(\mathbf{u}, \mathbf{x})+\kappa_{\sigma}(\mathbf{u}, \mathbf{x})\right\}\right)$.

Method 2 uses (8) and (10) as initial estimates for $m(\mathbf{u}, \mathbf{x})$ and $\sigma^{2}(\mathbf{u}, \mathbf{x})$. We therefore need, in the proof of Theorem 1, Part 2, the consistency results given in Lemma 3.

Lemma 3 Under Assumptions A, B. 1 and B.2, we have
(a) $\sup _{\mathbf{u}, \mathbf{x}}\left|\hat{m}_{1}(\mathbf{u}, \mathbf{x})-m(\mathbf{u}, \mathbf{x})\right|=O_{p}\left(n^{-1 / 2}+n^{-1} m_{\max }^{3 / 2} \lambda_{\max }+\rho_{n}\right.$

$$
\left.+m_{\max }^{-1 / 2}\left(\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+\kappa(\mathbf{u}, \mathbf{x})\right\}\right)\right) .
$$

(b) $\max _{1 \leq i \leq n}\left|\hat{Y}_{1 i, \sigma^{2}}^{*}-Y_{1 i, \sigma^{2}}^{*}\right|=O_{p}\left(n^{-1 / 2}+n^{-1} m_{\max }^{3 / 2} \lambda_{\max }+\rho_{n}+\right.$ $\left.\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+m_{\max }^{-1 / 2} \kappa(\mathbf{u}, \mathbf{x})+\kappa_{\sigma}(\mathbf{u}, \mathbf{x})\right\}\right)$, where $Y_{1 i, \sigma^{2}}^{*}=\frac{\Delta_{i}\left(Z_{i}-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right)^{2}}{G\left(Z_{i} \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)}$.
(c) $\sup _{\mathbf{u}, \mathbf{x}}\left|\hat{\sigma}_{1}(\mathbf{u}, \mathbf{x})-\sigma(\mathbf{u}, \mathbf{x})\right|=O_{p}\left(n^{-1 / 2}+n^{-1} m_{\max }^{3 / 2} \lambda_{\max }+\rho_{n}\right.$

$$
\begin{array}{r}
+m_{\max }^{-1 / 2}\left(\operatorname { s u p } _ { \mathbf { u } , \mathbf { x } } \left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|\right.\right. \\
\left.\left.\left.+m_{\max }^{-1 / 2} \kappa(\mathbf{u}, \mathbf{x})+\kappa_{\sigma}(\mathbf{u}, \mathbf{x})\right\}\right)\right)
\end{array}
$$

Proof (Proof of Lemma 3(a))
Since the X_{p} are bounded (see Assumption A.3), we have,

$$
\begin{aligned}
\sup _{\mathbf{u}, \mathbf{x}}\left|\hat{m}_{1}(\mathbf{u}, \mathbf{x})-m(\mathbf{u}, \mathbf{x})\right| & \lesssim \sum_{p=1}^{d}\left\|\hat{\beta}_{1 p}-\beta_{p}\right\|_{L_{\infty}} \\
& \leq \sum_{p=1}^{d}\left\|\hat{\beta}_{1 p}-\tilde{\beta}_{1 p}\right\|_{L_{\infty}}+\sum_{p=1}^{d}\left\|\tilde{\beta}_{1 p}-\beta_{p}\right\|_{L_{\infty}}
\end{aligned}
$$

By Property 4, we have $\left\|\hat{\beta}_{1 p}-\tilde{\beta}_{1 p}\right\|_{L_{\infty}} \lesssim m_{\max }^{-1 / 2}\left\|\hat{\beta}_{1 p}-\tilde{\beta}_{1 p}\right\|_{L_{2}}$. Using the intermediate results stated in the proof of Theorem 1, part 1, we obtain that

$$
\begin{aligned}
& \left\|\hat{\beta}_{1 p}-\tilde{\beta}_{1 p}\right\|_{L_{\infty}}=O_{p}\left(n^{-1 / 2}+\right. \\
& \left.\quad m_{\max }^{-1 / 2}\left(\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+\kappa(\mathbf{u}, \mathbf{x})\right\}\right)\right)
\end{aligned}
$$

By Lemma A. 10 of [5], we have

$$
\left\|\tilde{\boldsymbol{\beta}}_{1, \text { reg }}-\boldsymbol{\beta}\right\|_{L_{\infty}}=O_{p}\left(\rho_{n}\right)
$$

where $\tilde{\beta}_{1 p, \text { reg }}\left(u_{p}\right)=\mathbf{B}\left(u_{p}\right)\left(\mathbf{R}^{\prime} \mathbf{R}\right) \mathbf{R M}$ is the expectation of the regular spline estimator (i.e. $\lambda_{1}=\ldots=\lambda_{d}=0$). From the proof of Theorem 2 in [1], we have that

$$
\tilde{\boldsymbol{\beta}}_{1}=\left(1-O_{p}\left(n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right)\right) \tilde{\boldsymbol{\beta}}_{1, \text { reg }} .
$$

Since each spline $\tilde{\beta}_{p}$ is a continuous function on the compact set \mathcal{U}_{p}, each spline $\tilde{\beta}_{p}$ is bounded and $\left\|\tilde{\boldsymbol{\beta}}_{1, \text { reg }}\right\|_{L_{\infty}}=O_{P}(1)$. We therefore conclude that

$$
\left\|\tilde{\boldsymbol{\beta}}_{1}-\boldsymbol{\beta}\right\|_{L_{\infty}}=O_{p}\left(\rho_{n}+n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right) .
$$

The result of Lemma 3(a) now follows.
Proof of Lemma 3(b)
Lemma $3(\mathrm{~b})$ is for $\sigma(\mathbf{u}, \mathbf{x})$ what Lemma 1 is for $m(\mathbf{u}, \mathbf{x})$. Again we consider two cases: Z_{i} exceeds or does not exceed $\tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)$. Suppose first that $Z_{i} \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)$, then we write

$$
\begin{aligned}
& \left|\hat{Y}_{1 i, \sigma^{2}}^{*}-Y_{1 i, \sigma^{2}}^{*}\right| \\
& \begin{aligned}
& \leq\left|\hat{m}_{1}^{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-m^{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right|+2 Z_{i}\left|\hat{m}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right| \\
&+\left(Z_{i}-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right)^{2}\left|\hat{G}\left(Z_{i} \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)-G\left(Z_{i} \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)\right|
\end{aligned}
\end{aligned}
$$

Since $\hat{m}^{2}(\mathbf{u}, \mathbf{x})-m^{2}(\mathbf{u}, \mathbf{x})=\{\hat{m}(\mathbf{u}, \mathbf{x})-m(\mathbf{u}, \mathbf{x})\}\{\hat{m}(\mathbf{u}, \mathbf{x})+m(\mathbf{u}, \mathbf{x})\}$, we get from the uniform convergence of $\hat{m}(\mathbf{u}, \mathbf{x})$ to $m(\mathbf{u}, \mathbf{x})$, that the rate of the first and second term on the right-hand side are both equal to the rate obtained in

Lemma 3 (a). The third term on the right hand side is bounded in probability by $\sup _{t \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}\left|\hat{G}\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)-G\left(t \mid \mathbf{U}_{i}, \mathbf{X}_{i}\right)\right|$.

Next, suppose $Z_{i}>\tau_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)$, then we can write

$$
\left|\hat{Y}_{1 i, \sigma^{2}}^{*}-Y_{1 i, \sigma^{2}}^{*}\right| \leq\left|\hat{Y}_{1 i, \sigma^{2}}^{*}-\tilde{Y}_{1 i, \sigma^{2}}^{*}\right|+\left|\tilde{Y}_{1 i, \sigma^{2}}^{*}-Y_{1 i, \sigma^{2}}^{*}\right|,
$$

where $\tilde{Y}_{1 i, \sigma^{2}}^{*}=Y_{1 i, \sigma^{2}}^{*} 1_{\left\{Z_{i} \leq \tau_{1}\left(\mathbf{U}_{i}, \mathbf{x}_{i}\right)\right\}}+\left(Z_{i}-m^{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right)^{2} 1_{\left\{Z_{i}>\tau_{1}\left(\mathbf{U}_{i}, \mathbf{x}_{i}\right)\right\}}$. Analogue to the second part of the proof of Lemma 1, we use κ_{σ} to bound the difference between $\hat{Y}_{1 i, \sigma^{2}}^{*}$ and $Y_{1 i, \sigma^{2}}^{*}$ in the truncation area. For the estimation of the mean of Y, the transformation formula when Z_{i} lies in the truncation area is Z_{i}, whereas in this case, the transformation formula is $\left(Z_{i}-\hat{m}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right)^{2}$ and therefore also involves an estimator \hat{m}_{1}. The variable $\tilde{Y}_{1 i, \sigma^{2}}^{*}$ is introduced to make the transition from $\hat{Y}_{1 i, \sigma^{2}}^{*} \equiv\left(Z_{i}-\hat{m}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right)^{2}$ via $\tilde{Y}_{1 i, \sigma^{2}}^{*} \equiv\left(Z_{i}-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right)^{2}$ to $Y_{1 i, \sigma^{2}}^{*}$. We get

$$
E\left|\tilde{Y}_{1 i, \sigma^{2}}^{*}-Y_{1 i, \sigma^{2}}^{*}\right| \leq \sup _{\mathbf{u}, \mathbf{x}} \kappa_{\sigma}(\mathbf{u}, \mathbf{x}),
$$

and

$$
\begin{aligned}
&\left|\hat{Y}_{1 i, \sigma^{2}}^{*}-\tilde{Y}_{1 i, \sigma^{2}}^{*}\right| \\
& \leq 2 Z_{i}\left|\hat{m}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right|+\left|\hat{m}_{1}^{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-m^{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right| \\
&= O_{p}\left(n^{-1 / 2}+n^{-1} m_{\max }^{3 / 2} \lambda_{\max }+\rho_{n}\right. \\
&\left.+m_{\max }^{-1 / 2}\left(\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+\kappa(\mathbf{u}, \mathbf{x})\right\}\right)\right) .
\end{aligned}
$$

Proof of Lemma 3(c)
Following the same steps as in the proof of Theorem 1, Part 1, we can, using the result of Lemma $3(\mathrm{~b})$, derive the L_{2}-distance between $\hat{\sigma}^{2}$ and σ^{2}. Analogous to Lemma 3(a), the L_{∞}-distance then follows. Since $\hat{\sigma}_{1}-\sigma=\left(\hat{\sigma}_{1}^{2}-\sigma^{2}\right) /\left(\hat{\sigma}_{1}+\sigma\right)$, it follows from the convergence of $\hat{\sigma}_{1}^{2}(\mathbf{u}, \mathbf{x})$ to $\sigma^{2}(\mathbf{u}, \mathbf{x})>0$, that the rate is maintained for $\hat{\sigma}_{1}-\sigma$.
Lemma 4 If assumptions A, B and C hold, then, for $t<S$, we have

$$
\begin{aligned}
& \hat{F}(t)-F(t)=O_{p}\left(n^{-1 / 2}(\log n)^{1 / 2}+n^{-1} m_{\max }^{3 / 2} \lambda_{\max }+\rho_{n}+\right. \\
& \left.m_{\max }^{-1 / 2}\left[\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+\kappa(\mathbf{u}, \mathbf{x})+\kappa_{\sigma}(\mathbf{u}, \mathbf{x})\right\}\right]\right)
\end{aligned}
$$

Lemma 5 Suppose $\beta_{p} \in C^{r}\left(\left[a_{p}, b_{p}\right]\right)$ for each $p=1, \ldots, d$. Then under $A s$ sumptions A and B, we have

$$
\begin{aligned}
& \left\|\hat{\boldsymbol{\beta}}_{1}^{(v)}-\boldsymbol{\beta}^{(v)}\right\|_{L_{\infty}}=O_{p}\left(n^{-1 / 2} m_{\max }^{v}+n^{-1} m_{\max }^{3 / 2} \lambda_{\max }+m_{\max }^{v-r}\right. \\
& \left.+m_{\max }^{v-1 / 2}\left[\sup _{\mathbf{u}, \mathbf{x}}\left\{\tau_{1}(\mathbf{u}, \mathbf{x}) \sup _{t \leq \tau_{1}(\mathbf{u}, \mathbf{x})}|\hat{G}(t \mid \mathbf{u}, \mathbf{x})-G(t \mid \mathbf{u}, \mathbf{x})|+\kappa(\mathbf{u}, \mathbf{x})\right\}+\rho_{n}\right]\right)
\end{aligned}
$$

where $\boldsymbol{\beta}^{(v)}=\left(\frac{\partial^{v} \beta_{1}}{\partial u_{1}^{v}}, \ldots, \frac{\partial^{v} \beta_{d}}{\partial u_{d}^{d}}\right)^{\prime}$ and $\hat{\boldsymbol{\beta}}_{1}^{(v)}=\left(\frac{\partial^{v} \hat{\beta}_{11}}{\partial u_{1}^{v}}, \ldots, \frac{\partial^{v} \hat{\beta}_{1 d}}{\partial u_{d}^{v}}\right)^{\prime}$ are the vectors of the v-th order derivative functions for $v=0, \ldots, r-1$.

Proof (Proof of Lemma 5)
We first note that the v-th derivative of the B -spline function $\hat{\boldsymbol{\beta}}_{1 p}\left(u_{p}\right)=$ $\sum_{l=1}^{m_{p}} \hat{\alpha}_{1 p, l} B_{p l}\left(u_{p}, q_{p}\right)$ of degree q_{p} is a B-spline function of degree $q_{p}-v$ given by (see [2])

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{1}^{(v)}=K_{p}^{v} \mathbf{b}\left(u_{p}, q-v\right)^{\prime} \mathbf{D}_{v} \hat{\boldsymbol{\alpha}}_{1 p} \tag{8}
\end{equation*}
$$

where $\mathbf{b}\left(u_{p}, q-v\right)=\left(B_{1 p}\left(u_{p}, q_{p}-v\right), \ldots, B_{m_{p}-1, p}\left(u_{p}, q_{p}-v\right)\right)^{\prime}$ is the vector of the $K_{p}+q_{p}-v \mathrm{~B}$-spline basis functions of degree $q_{p}-v$ with knots $\boldsymbol{\xi}_{p}$, i.e. for $v=1$, we have

$$
\begin{aligned}
\hat{\beta}_{1 p}^{(1)}\left(u_{p}\right) & =K_{p} \sum_{l=1}^{m_{p}-1}\left(\hat{\alpha}_{1 p, l-1}-\hat{\alpha}_{1 p, l}\right) B_{p l}\left(u_{p}, q_{p}-1\right)=K_{p} \mathbf{b}\left(u_{p}, q-1\right)^{\prime} \mathbf{D}_{1} \hat{\boldsymbol{\alpha}}_{1 p} \\
& =K_{p}\left(\mathbf{b}\left(u_{p}, q-1\right)^{\prime} \hat{\boldsymbol{\alpha}}_{1[-1]}-\mathbf{b}\left(u_{p}, q-1\right)^{\prime} \hat{\boldsymbol{\alpha}}_{1[-m]}\right)
\end{aligned}
$$

where $\hat{\boldsymbol{\alpha}}_{1[-1]}=\left(\hat{\boldsymbol{\alpha}}_{12}, \ldots \hat{\boldsymbol{\alpha}}_{1 m}\right), \boldsymbol{\alpha}_{1[-m]}=\left(\hat{\boldsymbol{\alpha}}_{11}, \ldots \hat{\boldsymbol{\alpha}}_{1, m-1}\right)$. Representation (8) implies that the v-th derivative of β_{p} is again a spline function with coefficient vector $K_{p} \mathbf{D}_{v} \hat{\boldsymbol{\alpha}}_{1 p}$. As a consequence we have, using Property 2, that

$$
\begin{equation*}
\left\|\hat{\boldsymbol{\beta}}_{1}^{(v)}-\tilde{\boldsymbol{\beta}}_{1}^{(v)}\right\|_{L_{2}}=O_{p}\left(m_{\max }^{v-1 / 2}\left\|\hat{\boldsymbol{\alpha}}_{1}-\tilde{\boldsymbol{\alpha}}_{1}\right\|_{2}\right) \tag{9}
\end{equation*}
$$

We now use the fact that there exists a spline function (see Corollary 6.21 and (2.120) of Theorem 2.59 in [6]) $\zeta_{p}\left(u_{p}\right)=\sum_{l=1}^{m_{p}} c_{p l} B_{p l}\left(u_{p}, q_{p}\right)$ of degree q_{p} with equidistant knots $\boldsymbol{\xi}_{p}$ and coefficient vector $\mathbf{c}_{p}=\left(c_{1 p}, \ldots, c_{m_{p} p}\right)^{\prime}$ such that

$$
\begin{equation*}
\left\|\tilde{\boldsymbol{\beta}}_{1}^{(v)}-\boldsymbol{\zeta}^{(v)}\right\|_{L_{2}}=O_{p}\left(m_{\max }^{v} \rho_{n}+n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right) \tag{10}
\end{equation*}
$$

To show the validity of (10), we proceed as follows. By Lemma A. 7 of [5], we have that $\left\|\tilde{\boldsymbol{\alpha}}_{1, \text { reg }}-\mathbf{c}\right\|_{2}=O\left(m_{\max }^{1 / 2} \rho_{n}\right)$, using a similar argument as before we find, $\left\|\tilde{\boldsymbol{\beta}}_{1, \text { reg }}^{(v)}-\boldsymbol{\zeta}^{(v)}\right\|_{L_{2}}=O_{p}\left(m_{\max }^{v} \rho_{n}\right)$. Using the relationship

$$
\tilde{\boldsymbol{\beta}}_{1}^{(v)}=\left(1-O_{p}\left(n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right)\right) \tilde{\boldsymbol{\beta}}_{1, \text { reg }}^{(v)},
$$

and the fact that $\boldsymbol{\beta}_{1, \text { reg }}^{(v)}$ is bounded on a compact region, we have $\left\|\boldsymbol{\beta}_{1, \text { reg }}^{(v)}\right\|_{L_{2}}=$ $O_{p}(1)$ and (10) follows. Also note ([6]) that ζ_{p} satisfies

$$
\begin{equation*}
\left\|\beta_{p}^{(v)}-\zeta_{p}^{(v)}\right\|_{L_{\infty}}=O\left(m_{p}^{v-r}\right) . \tag{11}
\end{equation*}
$$

The rates in (9)-(11) provide the key for the proof. Indeed

$$
\begin{equation*}
\left\|\hat{\boldsymbol{\beta}}_{1}^{(v)}-\boldsymbol{\beta}^{(v)}\right\|_{L_{\infty}} \leq\left\|\hat{\boldsymbol{\beta}}_{1}^{(v)}-\boldsymbol{\zeta}^{(v)}\right\|_{L_{\infty}}+\left\|\boldsymbol{\zeta}^{(v)}-\boldsymbol{\beta}^{(v)}\right\|_{L_{\infty}} \tag{12}
\end{equation*}
$$

For the second term in (12) we use (11). For the first term, note that

$$
\begin{equation*}
\left\|\hat{\boldsymbol{\beta}}_{1}^{(v)}-\boldsymbol{\zeta}^{(v)}\right\|_{L_{\infty}} \lesssim m_{\max }^{-1 / 2}\left\|\hat{\boldsymbol{\beta}}_{1}^{(v)}-\boldsymbol{\zeta}^{(v)}\right\|_{L_{2}} \tag{13}
\end{equation*}
$$

and that

$$
\begin{align*}
\left\|\hat{\boldsymbol{\beta}}_{1}^{(v)}-\boldsymbol{\zeta}^{(v)}\right\|_{L_{2}} & \leq\left\|\hat{\boldsymbol{\beta}}_{1}^{(v)}-\tilde{\boldsymbol{\beta}}^{(v)}\right\|_{L_{2}}+\left\|\tilde{\boldsymbol{\beta}}_{1}^{(v)}-\boldsymbol{\zeta}^{(v)}\right\|_{L_{2}} \\
& =O_{p}\left(m_{\max }^{v-1 / 2}\left\|\hat{\boldsymbol{\alpha}}_{1}-\tilde{\boldsymbol{\alpha}}_{1}\right\|_{2}+m_{\max }^{v} \rho_{n}+n^{-1} m_{\max }^{3 / 2} \lambda_{\max }\right) \tag{14}
\end{align*}
$$

The result now follows from the rate obtained for $\left\|\hat{\boldsymbol{\alpha}}_{1}-\tilde{\boldsymbol{\alpha}}_{1}\right\|_{2}$ in Theorem 1, Part 1 in combination with (9)-(14).

Proof (Proof of Lemma 2)
We first note that $\sup _{\mathbf{u}, \mathbf{x}}\left|\hat{m}_{1}(\mathbf{u}, \mathbf{x})-m(\mathbf{u}, \mathbf{x})\right|$ and $\sup _{\mathbf{u}, \mathbf{x}}\left|\hat{\sigma}_{1}(\mathbf{u}, \mathbf{x})-\sigma(\mathbf{u}, \mathbf{x})\right|$ are both $O_{p}\left(a_{n}\right)$ by Lemma 3 . We write

$$
\begin{align*}
& \hat{Y}_{2 i}^{*}-Y_{2 i}^{*}=\hat{m}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right) \\
& \quad \quad+\frac{\hat{\sigma}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{1-\hat{F}\left(\hat{E}_{i}^{T}\right)} \int_{\hat{E}_{i}^{T}}^{\hat{S}_{i}} s d \hat{F}(s)-\frac{\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{1-F\left(E_{i}^{T}\right)} \int_{E_{i}^{T}}^{S_{i}} s d F(s) \\
& =\left\{\hat{m}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\} \tag{15}\\
& \tag{16}\\
& \quad+\frac{\hat{\sigma}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{1-\hat{F}\left(\hat{E}_{i}^{T}\right)} \int_{\hat{E}_{i}^{T}}^{\hat{S}_{i}} s d \hat{F}(s) \tag{17}\\
& \quad+\frac{\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\left\{\hat{F}\left(\hat{E}_{i}^{T}\right)-F\left(E_{i}^{T}\right)\right\}}{\left\{1-\hat{F}\left(\hat{E}_{i}^{T}\right)\right\}\left\{1-F\left(E_{i}^{T}\right)\right\}} \int_{\hat{E}_{i}^{T}}^{\hat{S}_{i}} s d \hat{F}(s) \tag{18}\\
& \quad+\frac{\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{1-F\left(E_{i}^{T}\right)}\left\{\int_{\hat{E}_{i}^{T}}^{E_{i}^{T}} s d \hat{F}(s)+\int_{E_{i}^{T}}^{S_{i}} s d(\hat{F}(s)-F(s))+\int_{S_{i}}^{\hat{S}_{i}} s d \hat{F}(s)\right\} .
\end{align*}
$$

We first consider the three integrals in (18). Using integration by part, we have

$$
\begin{align*}
& \int_{\hat{E}_{i}^{T}}^{E_{i}^{T}} s d \hat{F}(s)=E_{i}^{T} \hat{F}\left(E_{i}^{T}\right)-\hat{E}_{i}^{T} \hat{F}\left(\hat{E}_{i}^{T}\right)-\int_{\hat{E}_{i}^{T}}^{E_{i}^{T}} \hat{F}(s) d s \\
& =E_{i}^{T}\left\{\hat{F}\left(E_{i}^{T}\right)-F\left(E_{i}^{T}\right)\right\}+\left\{E_{i}^{T} F\left(E_{i}^{T}\right)-\hat{E}_{i}^{T} F\left(E_{i}^{T}\right)\right\}+\hat{E}_{i}^{T}\left\{F\left(E_{i}^{T}\right)-\hat{F}\left(\hat{E}_{i}^{T}\right)\right\} \\
& \quad \quad-\int_{\hat{E}_{i}^{T}}^{E_{i}^{T}} \hat{F}(s) d s \tag{19}
\end{align*}
$$

For the first term of (19), using Lemma 4, we conclude that

$$
\left|E_{i}^{T}\left\{\hat{F}\left(E_{i}^{T}\right)-F\left(E_{i}^{T}\right)\right\}\right|=\left|E_{i}^{T}\right| O_{p}\left(a_{n}\right)=O_{p}\left(a_{n}\right),
$$

since $\left|E_{i}^{T}\right| \leq\left\{\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}^{-1}\left\{\left|\min \left(Z_{i}, \tau_{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right)\right|+\left|m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right|\right\}<\infty$. To get a consistency rate for the second and the fourth term of (19), note that

$$
\begin{aligned}
& \hat{E}_{i}^{T}-E_{i}^{T} \\
& \begin{aligned}
&=\frac{\min \left(\tau_{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right), Z_{i}\right)-\hat{m}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{\hat{\sigma}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}-\frac{\min \left(\tau_{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right), Z_{i}\right)-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)} \\
&=\frac{1}{\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right) \hat{\sigma}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)} {\left[\min \left(\tau_{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right), Z_{i}\right)\left\{\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-\hat{\sigma}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}\right.} \\
&\left.-\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\left\{\hat{m}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right)\right\} \\
&\left.+m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\left\{\hat{\sigma}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}\right] .
\end{aligned}
\end{aligned}
$$

It then follows from Lemma 3 and the convergence of $\hat{\sigma}_{1}(\mathbf{u}, \mathbf{x})$ to $\sigma(\mathbf{u}, \mathbf{x})>0$ that

$$
\left|\hat{E}_{i}^{T}-E_{i}^{T}\right|=O_{p}\left(a_{n}\right)
$$

which gives the rate for the second and the fourth term of (19). For the third term of (19), we have that

$$
\hat{F}\left(\hat{E}_{i}^{T}\right)-F\left(E_{i}^{T}\right)=\left\{\hat{F}\left(\hat{E}_{i}^{T}\right)-F\left(\hat{E}_{i}^{T}\right)\right\}+\left\{F\left(\hat{E}_{i}^{T}\right)-F\left(E_{i}^{T}\right)\right\}
$$

Lemma 4 can be used for the first summand. For the second summand, we use a first order Taylor approximation and write

$$
\begin{aligned}
& F\left(\hat{E}_{i}^{T}\right)-F\left(E_{i}^{T}\right)=\left(-\frac{\hat{m}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{\hat{\sigma}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}\right. \\
& \left.-\frac{\left\{\hat{\sigma}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)-\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}\left\{\min \left(\tau_{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right), Z_{i}\right)-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)\right\}}{\hat{\sigma}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right) \sigma_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}\right) f_{\varepsilon}(\theta),
\end{aligned}
$$

with f_{ε} the density of ε and for some θ between $\frac{\min \left(\tau_{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right), Z_{i}\right)-\hat{m}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{\hat{\sigma}_{1}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}$ and $\frac{\min \left(\tau_{2}\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right), Z_{i}\right)-m\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}$. By the convergence of $\hat{\sigma}_{1}(\mathbf{u}, \mathbf{x})$ to $\sigma(\mathbf{u}, \mathbf{x})>0$ and the fact that $\sup _{e}\left|e f_{\varepsilon}(e)\right|<\infty$, we get

$$
\begin{equation*}
F\left(\hat{E}_{i}^{T}\right)-F\left(E_{i}^{T}\right)=O_{p}\left(a_{n}\right) \tag{20}
\end{equation*}
$$

We conclude that

$$
\left|\hat{E}_{i}^{T}\left\{F\left(E_{i}^{T}\right)-\hat{F}\left(\hat{E}_{i}^{T}\right)\right\}\right|=O_{p}\left(a_{n}\right),
$$

where we use that by Lemma $3,\left|\hat{E}_{i}^{T}\right|=\left|E_{i}^{T}\right|+O_{p}\left(a_{n}\right)<\infty$. Based on the analysis of (19) we obtain for the first term of (18)

$$
\begin{equation*}
\frac{\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{1-F\left(E_{i}^{T}\right)} \int_{\hat{E}_{i}^{T}}^{E_{i}^{T}} s d \hat{F}(s)=O_{p}\left(a_{n}\right) . \tag{21}
\end{equation*}
$$

In a similar way, we obtain for the third term of (18)

$$
\begin{equation*}
\frac{\sigma\left(\mathbf{U}_{i}, \mathbf{X}_{i}\right)}{1-F\left(E_{i}^{T}\right)} \int_{\hat{S}_{i}^{T}}^{S_{i}^{T}} s d \hat{F}(s)=O_{p}\left(a_{n}\right) \tag{22}
\end{equation*}
$$

For the second integral in (18), we use partial integration and Lemma 4 to obtain

$$
\begin{aligned}
\int_{E_{i}^{T}}^{S_{i}^{T}} s d(\hat{F}(s)-F(s))= & S_{i}^{T}\left\{\hat{F}\left(S_{i}^{T}\right)-F\left(S_{i}^{T}\right)\right\}-E_{i}^{T}\left\{\hat{F}\left(E_{i}^{T}\right)-F\left(E_{i}^{T}\right)\right\} \\
& -\int_{E_{i}^{T}}^{S_{i}^{T}}\{\hat{F}(s)-F(s)\} d s=O_{p}\left(a_{n}\right)
\end{aligned}
$$

The terms (15)-(17) are more easy to handle. For (15) we use Lemma 3(a). For (16) and (17) we need that

$$
\begin{equation*}
\int_{\hat{E}_{i}^{T}}^{\hat{S}_{i}} s d \hat{F}(s)=O_{p}(1) \tag{23}
\end{equation*}
$$

To show (23), note that, using similar reasoning as in [4], we can prove that

$$
\int_{E_{i}^{T}}^{S_{i}} s d \hat{F}(s)=O_{p}(1)
$$

Combining this result with the rates obtained in (21) and (22) yields

$$
\int_{\hat{E}_{i}^{T}}^{\hat{S}_{i}} s d \hat{F}(s)=O_{p}(1)
$$

By the convergence of $\hat{F}\left(\hat{E}_{i}^{T}\right)$ to $F\left(E_{i}^{T}\right)<1$ (20), we get that (16) and (17) are both $O_{p}\left(a_{n}\right)$.

1.3 Proof of Theorem 2

Proof (Proof of Theorem 2)
We prove the asymptotic normality of the P-spline estimator $\hat{\boldsymbol{\beta}}_{1}$ for method 1 by proving that for $p=1, \ldots, d$,

$$
\begin{equation*}
\left\{\text { s.e. }\left(\beta_{j p}^{*}\left(u_{p}\right) \mid \mathcal{X}_{n}\right)\right\}^{-1}\left\{\beta_{j p}^{*}\left(u_{p}\right)-\tilde{\beta}_{j p}\left(u_{p}\right)\right\} \xrightarrow{d} \mathrm{~N}(0,1), \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\text { s.e. }\left(\beta_{j p}^{*}\left(u_{p}\right) \mid \mathcal{X}_{n}\right)\right\}^{-1}\left\{\left(\hat{\beta}_{1 p}\left(u_{p}\right)-\beta_{1 p}^{*}\left(u_{p}\right)\right)+\left(\tilde{\beta}_{1 p}\left(u_{p}\right)-\beta_{p}\left(u_{p}\right)\right)\right\} \xrightarrow{p} 0 . \tag{25}
\end{equation*}
$$

The proof of (24) is based on the proof given in [1] where some steps can be simplified due to the independence of the observations.

Let $\mathbf{B}_{p}(\mathbf{u})$ be the column vector representing the p-th row of $\mathbf{B}(\mathbf{u})$.

$$
\mathbf{B}_{p}^{\prime}(\mathbf{u})\left(\boldsymbol{\alpha}^{*}-\tilde{\boldsymbol{\alpha}}\right)=\sum_{i=1}^{n} \mathbf{B}_{p}^{\prime}(\mathbf{u})\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)^{-1} \mathbf{R}_{i}\left(Y_{1 i}^{*}-M_{1 i}\right)=\sum_{i=1}^{n} d_{i} \xi_{i}
$$

where $d_{i}^{2}=\sigma_{1, i}^{2}\left\{\mathbf{B}_{p}^{\prime}(\mathbf{u})\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)^{-1} \mathbf{R}_{i}\right\}^{2}$ and $\xi_{i}=\sigma_{1, i}^{-2}\left(Y_{1 i}^{*}-M_{1 i}\right)$. Conditioning on \mathcal{X}_{n} the ξ_{i} are independent with mean 0 and variance 1 . To prove the asymptotic normality of the P -spline estimator we verify the Lindeberg condition

$$
\frac{\max d_{i}^{2}}{\sum_{i=1}^{n} d_{i}^{2}} \xrightarrow{p} 0 .
$$

Then

$$
\frac{\sum_{i=1}^{n} d_{i} \xi_{i}}{\sqrt{\sum_{i=1}^{n} d_{i}^{2}}} \xrightarrow{d} \mathrm{~N}(0,1) .
$$

For any $\boldsymbol{\omega}=\left(\boldsymbol{\omega}_{0}^{\prime}, \ldots, \boldsymbol{\omega}_{d}^{\prime}\right)^{\prime}$ with $\boldsymbol{\omega}_{p}=\left(\omega_{p 1}, \ldots, \omega_{p m_{p}}\right)^{\prime}$, and especially for $\left.\boldsymbol{\omega}=\left\{\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)^{-1} \mathbf{B}_{p}(\mathbf{u})\right\}$, we have by the Cauchy-Schwarz inequality

$$
\begin{aligned}
\boldsymbol{\omega}^{\prime} \mathbf{R}_{i} \mathbf{R}_{i}^{\prime} \boldsymbol{\omega} & =\left\{\sum_{p=0}^{d} X_{i p} \sum_{l=1}^{m_{p}} \omega_{p l} B_{p l}\left(U_{i p} ; q_{p}\right)\right\}^{2} \\
& \leq\left(\sum_{p=0}^{d} X_{i p}^{2}\right)\left[\sum_{p=0}^{d}\left\{\sum_{l=1}^{m_{p}} \omega_{p l} B_{p l}\left(U_{i p} ; q_{p}\right)\right\}^{2}\right] .
\end{aligned}
$$

Set $g \boldsymbol{\omega}_{, p}\left(u ; q_{p}\right)=\sum_{l=1}^{m_{p}} \omega_{p l} B_{p l}\left(u_{p} ; q_{p}\right)$ for $p=0, \ldots, d$. By Assumption (B3) and Properties 2 and 4 , we have

$$
\begin{equation*}
\boldsymbol{\omega}^{\prime} \mathbf{R}_{i} \mathbf{R}_{i}^{\prime} \boldsymbol{\omega} \lesssim \sum_{p=0}^{d}\left\|g_{\boldsymbol{\omega}, p}\right\|_{\infty}^{2} \lesssim m_{\max } \sum_{p=0}^{d}\left\|g \boldsymbol{\omega}_{, p}\right\|_{L_{2}}^{2} \asymp\|\boldsymbol{\omega}\|_{2}^{2} \tag{26}
\end{equation*}
$$

From Lemmas A. 1 and A. 2 in [5], we know that, except on an event with probability tending to zero, $n^{-1} \sum_{i=1}^{n}\left(\sum_{p=0}^{d} X_{i p} g \boldsymbol{\omega}, p\left(U_{i p} ; q_{p}\right)\right)^{2} \asymp m_{\max }^{-1}\|\boldsymbol{\omega}\|_{2}^{2}$. Thus

$$
\begin{align*}
\boldsymbol{\omega}^{\prime} \sum_{i=1}^{n}\left\{\mathbf{R}_{i} \mathbf{R}_{i}^{\prime} \sigma_{1, i}^{2}\right\} \boldsymbol{\omega} & \geq n \min _{1 \leq i \leq n} \sigma_{1, i}^{2} n^{-1} \sum_{i=1}^{n}\left(\sum_{p=0}^{d} X_{i p} g \boldsymbol{\omega}_{, p}\left(U_{i p} ; q_{p}\right)\right)^{2} \\
& \gtrsim m_{\max }^{-1} n\|\boldsymbol{\omega}\|_{2}^{2} . \tag{27}
\end{align*}
$$

Combining (26) and (27), we find that, except on an event whose probability tends to zero, we have

$$
\frac{\max _{i}\left(\sigma_{1, i}^{2} \omega^{\prime} \mathbf{R}_{i} \mathbf{R}_{i}^{\prime} \omega\right)}{\boldsymbol{\omega}^{\prime}\left(\sum_{i=1}^{n} \sigma_{1, i}^{2} \mathbf{R}_{i} \mathbf{R}_{i}^{\prime}\right) \boldsymbol{\omega}} \lesssim n^{-1} m_{\max } .
$$

By Assumption (B6), it follows that the Lindeberg condition is fulfilled and hence the normality result in (24) follows.

We continue with the proof of (25). Since we assume that $\sigma_{1, i}^{2}$ is bounded away from zero and ∞, we have,

$$
\begin{aligned}
\operatorname{Var}\left(\boldsymbol{\beta}_{1 p}^{*}(\mathbf{u}) \mid \mathcal{X}_{n}\right) & =\operatorname{Cov}\left(\mathbf{B}_{p}^{\prime}(\mathbf{u}) \boldsymbol{\alpha}^{*} \mid \mathcal{X}_{n}\right) \\
& =\mathbf{B}(\mathbf{u})\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)^{-1}\left(\sum_{i=1}^{n} \mathbf{R}_{i} \mathbf{R}_{i}^{\prime} \sigma_{1, i}^{2}\right)\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)^{-1} \mathbf{B}_{p}(\mathbf{u}) \\
& \gtrsim \mathbf{B}_{p}^{\prime}(\mathbf{u})\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)^{-1} \mathbf{R}^{\prime} \mathbf{R}\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)^{-1} \mathbf{B}_{p}(\mathbf{u}) \\
& \asymp \frac{n}{m_{\max }} \mathbf{B}_{p}^{\prime}(\mathbf{u})\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)^{-1}\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)^{-1} \mathbf{B}_{p}(\mathbf{u}) \\
& \gtrsim \frac{n}{m_{\max }}\left(\frac{1}{\lambda_{\max }\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)}\right)^{2} \sum_{l=1}^{m_{p}} B_{p l}^{2}(\mathbf{u}) \\
& \gtrsim \frac{n}{m_{\max }}\left(\frac{1}{\frac{n}{m_{\max }}\left(1+\frac{m_{\max }^{3 / 2} \lambda_{\max }}{n}\right)}\right)^{2} \frac{1}{m_{p}} \\
& \asymp \frac{1}{n}\left(1+\frac{m_{\max }^{3 / 2} \lambda_{\max }}{n}\right)^{-2},
\end{aligned}
$$

where we use the Cauchy-Schwarz inequality

$$
1=\left(\sum_{l=1}^{m_{p}} B_{p l}(\mathbf{u})\right)^{2} \leq \sum_{l=1}^{m_{p}} B_{p l}^{2}(\mathbf{u}) \sum_{l=1}^{m_{p}} 1=m_{p} \sum_{l=1}^{m_{p}} B_{p l}^{2}(\mathbf{u}),
$$

and the following upper bound for the largest eigenvalue $\lambda_{\max }\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right)$:

$$
\begin{aligned}
\lambda_{\max }\left(\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right) & =\left\|\mathbf{R}^{\prime} \mathbf{R}+\mathbf{Q}_{\boldsymbol{\lambda}}\right\|_{2} \leq\left\|\mathbf{R}^{\prime} \mathbf{R}\right\|_{2}+\left\|\mathbf{Q}_{\boldsymbol{\lambda}}\right\|_{2} \\
& \lesssim \frac{n}{m_{\max }}+\sqrt{\sum_{p=1}^{d}\left\|\mathbf{Q}_{\boldsymbol{\lambda}}\right\|_{\infty}} \lesssim \frac{n}{m_{\max }}+\sqrt{d} \lambda_{\max } m_{\max }^{1 / 2} \max _{1 \leq p \leq d} 4^{k_{p}} \\
& \lesssim \frac{n}{m_{\max }}\left(1+\frac{m_{\max }^{3 / 2} \lambda_{\max }}{n}\right)
\end{aligned}
$$

By Property 4 of B-splines and Assumption (A5),

$$
\begin{aligned}
& \hat{\beta}_{1 p}\left(u_{p}\right)-\beta_{1 p}^{*}\left(u_{p}\right) \leq \sup _{u \in \mathcal{U}}\left|\hat{\beta}_{1 p}\left(u_{p}\right)-\beta_{1 p}^{*}\left(u_{p}\right)\right|=\left\|\hat{\beta}_{1 p}-\beta_{1 p}^{*}\right\|_{\infty} \\
& \quad \lesssim\left(\frac{1}{m_{p}}\right)^{1 / 2}\left\|\hat{\beta}_{1 p}-\beta_{1 p}^{*}\right\|_{L_{2}} \asymp\left(\frac{1}{m_{\max }}\right)^{1 / 2}\left\|\hat{\beta}_{1 p}-\beta_{1 p}^{*}\right\|_{L_{2}} .
\end{aligned}
$$

We conclude

$$
\frac{\hat{\beta}_{1 p}\left(u_{p}\right)-\beta_{1 p}^{*}\left(u_{p}\right)}{\text { s.e. }\left(\beta_{1 p}^{*}\left(u_{p}\right) \mid \mathcal{X}_{n}\right)} \lesssim\left(\frac{n}{m_{\max }}\right)^{1 / 2}\left(1+\frac{m_{\max }^{3 / 2} \lambda_{\max }}{n}\right)\left\|\hat{\beta}_{1 p}-\beta_{1 p}^{*}\right\|_{L_{2}}
$$

and

$$
\frac{\tilde{\beta}_{1 p}\left(u_{p}\right)-\beta_{p}\left(u_{p}\right)}{\text { s.e. }\left(\beta_{1 p}^{*}\left(u_{p}\right) \mid \mathcal{X}_{n}\right)} \lesssim n^{1 / 2}\left(1+\frac{m_{\max }^{3 / 2} \lambda_{\max }}{n}\right)\left\|\tilde{\beta}_{1 p}-\beta_{p}\right\|_{L_{\infty}}
$$

From Assumption D. 1 it follows that these two terms converge to zero as n goes to ∞. The proof for method 2 is similar.

References

1. Antoniadis, A., Gijbels, I., and Verhasselt, A. (2012). Variable selection in varyingcoefficient models using P-splines. Journal of Computational and Graphical Statistics, 21:638-661.
2. De Boor, C. (1978). A practical guide to splines. Springer, New York.
3. Hendrickx, K., Janssen, P., and Verhasselt, A. (2017). Penalized spline estimation in varying coefficient models with censored data. submitted to TEST.
4. Heuchenne, C. and Van Keilegom, I. (2007). Polynomial regression with censored data based on preliminary nonparametric estimation. Annals of the Institute of Statistical Mathematics, 59:273-297.
5. Huang, J., Wu, C., and Zhou, L. (2004). Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Statistica Sinica, 14:763-788.
6. Schumaker, L. (2007). Spline functions: Basic theory, 3th edition. Cambridge University Press, New York.
7. Van Keilegom, I. and Akritas, M. (1999). Transfer of tail information in censored regression models. The Annals of Statistics, 27:1745-1784.
