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of the manuscript [3]. Throughout, sections refer to the main manuscript.

1 Definitions and properties

Definition 1 For a real valued matrix A of dimension mA × nA, the 2-norm

of A is given by ‖A‖2 = supx6=0
‖Ax‖2
‖x‖2 , with x ∈ IRnA and ‖x‖2 =

√∑nA

i=1 x
2
i .

This norm is equal to
√
ζmax(A′A) where ζmax is the largest eigenvalue of

A′A.

Definition 2 For sequences of positive numbers rn and sn, rn . sn means
that s−1n rn is bounded and rn � sn means that s−1n rn and r−1n sn are bounded.

Definition 3 For a real valued function f on U and a vector valued function
g = (g1, ..., gd) on Ud, the L∞-norm is given by:

‖f‖∞ = sup
u∈U
| f(u) |, ‖g‖∞ = max

1≤p≤d
‖gp‖∞.

Our estimation technique relies on properties of B-splines. For a detailed
description of B-splines we refer to [2] or [6].

Property 1 Bpl(up; qp) ≥ 0 and
∑mp

l=1Bpl(up; qp) = 1.
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Property 2 There exists positive constants N7, N8 and coefficients αpl ∈ R
such that

m−1p N7

mp∑
l=1

α2
pl ≤

∫
U
{
mp∑
l=1

αplBpl(up; qp)}2du ≤ m−1p N8

mp∑
l=1

α2
pl.

Property 3
∫
U Bpl(u; qp)du = O(m−1p ).

Property 4 ‖g‖∞ . m
−1/2
p ‖g‖L2 for g ∈ G(qp, ξp), where G(qp, ξp) is the space

of spline functions on Up with fixed degree qp and knot sequence ξp.

We use as notations α̂j ,α
∗
j and α̃j for methods j = 1, 2 (described in Section

4 of [3]), when we replace Y in expression

α̂ =
(
R′R + Qλ

)−1
R′Y.

by Ŷ∗j = (Ŷ ∗j1, . . . , Ŷ
∗
jn)′, Y∗j = (Y ∗j1, . . . , Y

∗
jn)′, and Mj = (Mj1, . . . ,Mjn)′

with Mji = E(Y ∗ji|Ui, Xi) for i = 1, . . . , n respectively. Similar notations hold

for β̂j = (β̂j1, . . . , β̂jd)
′, β∗j = (β∗j1, . . . , β

∗
jd)
′ and β̃j = (β̃j1, . . . , β̃jd)

′.

1.1 Proof of Theorem 1, Part 1

The proof of the first result stated in Theorem 1 relies on the maximal distance
between the Y ∗1i and Ŷ ∗1i, derived in Lemma 1.

Lemma 1 max1≤i≤n | Ŷ ∗1i − Y ∗1i |=

Op

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})
.

Proof (Proof of Lemma 1)
Since | Ŷ ∗1i − Y ∗1i |=

| Ŷ ∗1i − Y ∗1i | 1{Zi≤τ1(Ui,Xi)}+ | Ŷ
∗
1i − Y ∗1i | 1{Zi>τ1(Ui,Xi)},

we consider two cases and prove the following results,

max
1≤i≤n

{
| Ŷ ∗1i − Y ∗1i | 1{Zi≤τ1(Ui,Xi)}

}
. sup

u,x

(
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|

)
, (1)

max
1≤i≤n

{
| Ŷ ∗1i − Y ∗1i | 1{Zi>τ1(Ui,Xi)}

}
. sup

u,x
κ(u,x). (2)
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For (1) we start by the triangle inequality,

| Ŷ ∗1i − Y ∗1i | 1{Zi≤τ1(Ui,Xi)} ≤| ∆i{ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi)}

+ (1−∆i){ψ̂1(Ui,Xi, Zi)− ψ1(Ui,Xi, Zi)} |

≤| ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi) | + | ψ̂1(Ui,Xi, Zi)− ψ1(Ui,Xi, Zi) | .

We derive the order bound for | ϕ̂1(Ui,Xi, Zi)−ϕ1(Ui,Xi, Zi) |, similar result

holds if we replace ϕ1 and ϕ̂1 by ψ1 and ψ̂1 respectively.

|ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi)|

≤

∣∣∣∣∣(1 + γ)

{∫ Zi

0

1

Ĝ(t|Ui,Xi)
dt−

∫ Zi

0

1

G(t|Ui,Xi)
dt

}∣∣∣∣∣
+

∣∣∣∣∣ γZi

Ĝ(Zi|Ui,Xi)
− γZi
G(Zi|Ui,Xi)

∣∣∣∣∣
≤

∣∣∣∣∣(1 + γ)

∫ Zi

0

Ĝ(t|Ui,Xi)−G(t|Ui,Xi)

G(t|Ui,Xi)Ĝ(t|Ui,Xi)
dt

∣∣∣∣∣
+

∣∣∣∣∣γZi{Ĝ(Zi|Ui,Xi)−G(Zi|Ui,Xi)}
G(Zi|Ui,Xi)Ĝ(Zi|Ui,Xi)

∣∣∣∣∣
≤ |1 + γ| sup

t≤τ1(Ui,Xi)

{
| Ĝ(t|Ui,Xi)−G(t|Ui,Xi) |

}
×
∫ τ1(Ui,Xi)

0

G(t|Ui,Xi)

Ĝ(t|Ui,Xi)

1

G(t|Ui,Xi)2
dt

+ |γ|τ1(Ui,Xi) sup
t≤τ1(Ui,Xi)

{
| Ĝ(t|Ui,Xi)−G(t|Ui,Xi) |

}
× sup
t≤τ1(Ui,Xi)

{ 1

G(t|Ui,Xi)2
G(t|Ui,Xi)

Ĝ(t|Ui,Xi)

}
.

From the uniform convergence of Ĝ we have:

sup
t≤τ1(Ui,Xi)

G(t|Ui,Xi)

Ĝ(t|Ui,Xi)
= 1 + op(1).

Also inft≤τ1(Ui,Xi){G(t|Ui,Xi)} > 0, therefore,

| ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi) |

= Op

(
τ1(Ui,Xi) sup

t≤τ1(Ui,Xi)

| Ĝ(t|Ui,Xi)−G(t|Ui,Xi) |
)
.
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For (2) we have

E{| Ŷ ∗1i − Y ∗1i | 1{Zi>τ1(Ui,Xi)}}

≤ E
[
E

{
max

φ=ϕ1,ψ1

1{Zi>τ1(Ui,Xi)} | Zi − φ(Ui,Xi, Zi) |
∣∣Ui,Xi

}]
≤ sup

u,x
κ(u,x).

By combining (1) and (2), the result of Lemma 1 follows.

Proof (Proof of Theorem 1, Part 1)
Since

‖β̂1 − β1‖L2
≤ ‖β̂1 − β

∗
1‖L2

+ ‖β∗1 − β̃1‖L2
+ ‖β̃1 − β1‖L2

,

the result follows by showing that

‖β̂1 − β
∗
1‖L2 (3)

= Op

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})
,

‖β∗1 − β̃1‖L2 = Op

(
n−1/2m1/2

max

)
, (4)

‖β̃1 − β1‖L2 = Op

(
n−1m3/2

maxλmax + ρn

)
. (5)

We start with the proof of (3). By Property 2 it suffices to show that

‖α̂1 −α∗1‖2 =

Op

(
m1/2

max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

From [1] we have

α̂1 −α∗1
=
{

(R′R)−1 − (R′R)−1Qλ(R′R)−1 + op(n
−1m3/2

maxλmax)(R′R)−1
}

×
n∑
i=1

Ri(Ŷ
∗
1i − Y ∗1i)

= α̂1,reg −α∗reg −
{

(R′R)−1Qλ(R′R)−1 + op(n
−1m3/2

maxλmax)(R′R)−1
}

×
n∑
i=1

Ri(Ŷ
∗
1i − Y ∗1i)

=
{

1− (R′R)−1Qλ + op(n
−1m3/2

maxλmax)
}(
α̂1,reg −α∗reg

)
,
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where α̂1,reg and α∗reg denote the regular B-spline estimator (i.e. λ0 = . . . =
λd = 0). Consequently

‖α̂1 −α∗1‖2

≤
{

1 + ‖(R′R)−1‖2‖Qλ‖2 + op(n
−1m3/2

maxλmax)
}
‖α̂1,reg −α∗1,reg‖2.

From Lemma 1 in [1] we know that except on an event whose probability tends

to zero, ‖(R′R)−1‖2‖Qλ‖2 = Op(n
−1m

3/2
maxλmax). Furthermore,

‖α̂1,reg −α∗1,reg‖22 = (Ŷ∗1 −Y∗1)′R(R′R)−1(R′R)−1R′(Ŷ∗1 −Y∗1)

= (n−1mmax)2(Ŷ∗1 −Y∗1)′R
(
n−1mmaxR

′R
)−1(

n−1mmaxR
′R
)−1

R′(Ŷ∗1 −Y∗1).

and since all eigenvalues of n−1mmaxR
′R fall between positive constants, we

have ‖n−1mmaxR
′R‖2 � 1 and thus

‖α̂1,reg −α∗1,reg‖22 = (Ŷ∗1 − Ŷ∗1)′R(R′R)−1(R′R)−1R′(Ŷ∗1 −Y∗1)

� n−1mmax(Ŷ∗1 −Y∗1)′(Ŷ∗1 −Y∗1)

. mmax

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})2

.

In the last step, we use the result of Lemma 1 and the inequality

√
(Ŷ∗1 −Y∗1)′(Ŷ∗1 −Y∗1) = ‖Ŷ∗1 −Y∗1‖2 ≤

√
n max

1≤i≤n
|Ŷ ∗1i − Y ∗1i|.

We continue with the proof of (4). Using similar arguments as is the proof of
(3), we have

‖α∗1 − α̃1‖2

≤
{

1 + ‖(R′R)−1‖2‖Qλ‖2 + op(n
−1m3/2

maxλmax)
}
‖α∗1,reg − α̃1,reg‖2, (6)

and

‖α∗1,reg − α̃1,reg‖22
= (n−1mmax)2(Y∗1 −M1)′R(n−1mmaxR

′R)−1(n−1mmaxR
′R)−1R′(Y∗1 −M1).
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By Assumption A.3,

E {(Y∗1 −M1)′RR′(Y∗1 −M1)}

= E

[{
n∑
i=1

Ri(Y
∗
1i −M1i)

}′{
(

n∑
i=1

Ri(Y
∗
1i −M1i)

}]

= E

∑
p,l

n∑
i,j=1

XipXjpBpl(Uip; qp)Bpl(Ujp; qp)(Y
∗
1i −M1i)(Y

∗
1j −M1j)


.
∑
p,l

[
n∑
i=1

E
{
B2
pl(Uip; qp)

2(Y ∗1i −M1i)
2
}

+
∑
i 6=j

E
{
Bpl(Uip; qp)Bpl(Ujp; qp)(Y

∗
1i −M1i)(Y

∗
1j −M1j)

}]
.

By the independence of the observations, Assumption A.5 and Properties 2
and 3 of B-splines it follows that, using the law of the total expectation,

E
{
B2
pl(Uip; qp)(Y

∗
1i −M1i)

2
}
. E{B2

pl(Uip; qp)} . m−1p = O(m−1max),

E{Bpl(Uip; qp)Bpl(Ujp; qp)(Y ∗1i −M1i)(Y
∗
1j −M1j)}

= E{Bpl(Uip; qp)(Y ∗1i −M1i)}E{Bpl(Ujp; qp)(Y ∗1j −M1j)} = 0.

Therefore,

E {(Y∗1 −M1)′RR′(Y∗1 −M1)} = O(n),

(Y∗1 −M1)′RR′(Y∗1 −M1) = Op(n),

such that

‖α∗1,reg − α̃1,reg‖22 = Op
(
n−1m2

max

)
. (7)

Combining (6) and (7) gives,

‖α∗1 − α̃1‖22 = Op

(
n−1m2

max

(
1 + n−1m3/2

maxλmax

)2)
= Op(n

−1m2
max),

‖β∗1 − β̃1‖2L2
� 1

mmax
‖α∗1 − α̃1‖22 = Op

(
n−1mmax

)
,

where we use Assumption A.6 and B-spline Property 2. From the proof of
Theorem 1 in [1], we have,

‖β̃1 − β‖L2
= Op

(
n−1m3/2

maxλmax + ρn

)
,

and (5) follows immediately.
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1.2 Proof of Theorem 1, Part 2

To prove Part 2 of Theorem 1, we can repeat the proof of Part 1 of Theorem
1 but now using Lemma 2 instead of Lemma 1 giving the maximal distance
between Y ∗2 and Ŷ ∗2 . The proof of Lemma 2 needs two further lemmas: Lemma
3 on the uniform consistency of the initial estimators m̂1 and σ̂1 as estimators
for m and σ; and Lemma 4 on the uniform consistency of F̂ as estimator of
F . The proof of Lemma 3 is included, that of Lemma 4 follows along the lines
of a similar result (in the kernel estimation context) in [7]. The details of the
proof of Lemma 4 are not given but we do give and prove, in Lemma 5, the
key result that is needed to modify their result to our P-spline setting.

Lemma 2 If Assumptions A, B and C hold,

max
1≤i≤n

| Ŷ ∗2i − Y ∗2i |= Op(an) = op(1),

where an = n−1/2(logn)1/2 + n−1m
3/2
maxλmax + ρn +

m
−1/2
max

(
supu,x

{
τ1(u,x) supt≤τ1(u,x) |Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x) + κσ(u,x)

})
.

Method 2 uses (8) and (10) as initial estimates for m(u,x) and σ2(u,x). We
therefore need, in the proof of Theorem 1, Part 2, the consistency results given
in Lemma 3.

Lemma 3 Under Assumptions A, B.1 and B.2, we have

(a) sup
u,x
|m̂1(u,x)−m(u,x)| = Op

(
n−1/2 + n−1m3/2

maxλmax + ρn

+m−1/2max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

(b) max
1≤i≤n

| Ŷ ∗1i,σ2 − Y ∗1i,σ2 |= Op

(
n−1/2 + n−1m3/2

maxλmax + ρn+

sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+m−1/2max κ(u,x) + κσ(u,x)

})
,

where Y ∗1i,σ2 =
∆i(Zi −m(Ui,Xi))

2

G(Zi|Ui,Xi)
.

(c) sup
u,x
|σ̂1(u,x)− σ(u,x)| = Op

(
n−1/2 + n−1m3/2

maxλmax + ρn

+m−1/2max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|

+m−1/2max κ(u,x) + κσ(u,x)
}))

.
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Proof (Proof of Lemma 3(a))
Since the Xp are bounded (see Assumption A.3), we have,

sup
u,x
|m̂1(u,x)−m(u,x)| .

d∑
p=1

‖β̂1p − βp‖L∞

≤
d∑
p=1

‖β̂1p − β̃1p‖L∞ +

d∑
p=1

‖β̃1p − βp‖L∞ .

By Property 4, we have ‖β̂1p − β̃1p‖L∞ . m
−1/2
max ‖β̂1p − β̃1p‖L2 . Using the

intermediate results stated in the proof of Theorem 1, part 1, we obtain that

‖β̂1p − β̃1p‖L∞ = Op

(
n−1/2+

m−1/2max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

By Lemma A.10 of [5], we have

‖β̃1,reg − β‖L∞ = Op(ρn),

where β̃1p,reg(up) = B(up)(R
′R)RM is the expectation of the regular spline

estimator (i.e. λ1 = . . . = λd = 0). From the proof of Theorem 2 in [1], we
have that

β̃1 =
(

1−Op(n−1m3/2
maxλmax)

)
β̃1,reg.

Since each spline β̃p is a continuous function on the compact set Up, each spline

β̃p is bounded and ‖β̃1,reg‖L∞ = OP (1). We therefore conclude that

‖β̃1 − β‖L∞ = Op(ρn + n−1m3/2
maxλmax).

The result of Lemma 3(a) now follows.

Proof of Lemma 3(b)
Lemma 3(b) is for σ(u,x) what Lemma 1 is for m(u,x). Again we con-
sider two cases: Zi exceeds or does not exceed τ1(Ui,Xi). Suppose first that
Zi ≤ τ1(Ui,Xi), then we write

| Ŷ ∗1i,σ2 − Y ∗1i,σ2 |
≤
∣∣m̂2

1(Ui,Xi)−m2(Ui,Xi)
∣∣+ 2Zi |m̂1(Ui,Xi)−m(Ui,Xi)|

+ (Zi −m(Ui,Xi))
2 |Ĝ(Zi|Ui,Xi)−G(Zi|Ui,Xi)|.

Since m̂2(u,x)−m2(u,x) = {m̂(u,x)−m(u,x)}{m̂(u,x) +m(u,x)}, we get
from the uniform convergence of m̂(u,x) to m(u,x), that the rate of the first
and second term on the right-hand side are both equal to the rate obtained in
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Lemma 3(a). The third term on the right hand side is bounded in probability
by supt≤τ1(Ui,Xi) |Ĝ(t|Ui,Xi)−G(t|Ui,Xi)|.

Next, suppose Zi > τ1(Ui,Xi), then we can write

|Ŷ ∗1i,σ2 − Y ∗1i,σ2 | ≤ |Ŷ ∗1i,σ2 − Ỹ ∗1i,σ2 |+ |Ỹ ∗1i,σ2 − Y ∗1i,σ2 |,

where Ỹ ∗1i,σ2 = Y ∗1i,σ21{Zi≤τ1(Ui,Xi)}+(Zi−m2(Ui,Xi))
21{Zi>τ1(Ui,Xi)}. Ana-

logue to the second part of the proof of Lemma 1, we use κσ to bound
the difference between Ŷ ∗1i,σ2 and Y ∗1i,σ2 in the truncation area. For the es-
timation of the mean of Y , the transformation formula when Zi lies in the
truncation area is Zi, whereas in this case, the transformation formula is
(Zi − m̂1(Ui,Xi))

2 and therefore also involves an estimator m̂1. The variable
Ỹ ∗1i,σ2 is introduced to make the transition from Ŷ ∗1i,σ2 ≡ (Zi − m̂1(Ui,Xi))

2

via Ỹ ∗1i,σ2 ≡ (Zi −m(Ui,Xi))
2 to Y ∗1i,σ2 . We get

E|Ỹ ∗1i,σ2 − Y ∗1i,σ2 | ≤ sup
u,x

κσ(u,x),

and

|Ŷ ∗1i,σ2 − Ỹ ∗1i,σ2 |
≤ 2Zi |m̂1(Ui,Xi)−m(Ui,Xi)|+

∣∣m̂2
1(Ui,Xi)−m2(Ui,Xi)

∣∣
= Op

(
n−1/2 + n−1m3/2

maxλmax + ρn

+m−1/2max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

Proof of Lemma 3(c)
Following the same steps as in the proof of Theorem 1, Part 1, we can, using the
result of Lemma 3(b), derive the L2-distance between σ̂2 and σ2. Analogous to
Lemma 3(a), the L∞-distance then follows. Since σ̂1−σ = (σ̂2

1−σ2)/(σ̂1 +σ),
it follows from the convergence of σ̂2

1(u,x) to σ2(u,x) > 0, that the rate is
maintained for σ̂1 − σ.

Lemma 4 If assumptions A, B and C hold, then, for t < S, we have

F̂ (t)− F (t) = Op

(
n−1/2(logn)1/2 + n−1m

3/2
maxλmax + ρn+

m
−1/2
max

[
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x) + κσ(u,x)

}])
.

Lemma 5 Suppose βp ∈ Cr([ap, bp]) for each p = 1, . . . , d. Then under As-
sumptions A and B, we have

‖β̂(v)
1 − β(v)‖L∞ = Op

(
n−1/2mvmax + n−1m

3/2
maxλmax +mv−rmax

+m
v−1/2
max

[
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}
+ ρn

])
,



10 K. Hendrickx1 et al.

where β(v) =
(
∂vβ1

∂uv
1
, . . . , ∂

vβd

∂uv
d

)′
and β̂

(v)

1 =
(
∂vβ̂11

∂uv
1
, . . . , ∂

vβ̂1d

∂uv
d

)′
are the vec-

tors of the v-th order derivative functions for v = 0, . . . , r − 1.

Proof (Proof of Lemma 5)

We first note that the v-th derivative of the B-spline function β̂1p(up) =∑mp

l=1 α̂1p,lBpl(up, qp) of degree qp is a B-spline function of degree qp− v given
by (see [2])

β̂
(v)

1 = Kv
p b(up, q − v)′Dvα̂1p, (8)

where b(up, q − v) = (B1p(up, qp − v), . . . , Bmp−1,p(up, qp − v))′ is the vector
of the Kp + qp − v B-spline basis functions of degree qp − v with knots ξp, i.e.
for v = 1, we have

β̂
(1)
1p (up) = Kp

mp−1∑
l=1

(α̂1p,l−1 − α̂1p,l)Bpl(up, qp − 1) = Kpb(up, q − 1)′D1α̂1p

= Kp

(
b(up, q − 1)′α̂1[−1] − b(up, q − 1)′α̂1[−m]

)
,

where α̂1[−1] = (α̂12, . . . α̂1m), α1[−m] = (α̂11, . . . α̂1,m−1). Representation (8)
implies that the v-th derivative of βp is again a spline function with coefficient
vector KpDvα̂1p. As a consequence we have, using Property 2, that

‖β̂
(v)

1 − β̃
(v)

1 ‖L2
= Op(m

v−1/2
max ‖α̂1 − α̃1‖2). (9)

We now use the fact that there exists a spline function (see Corollary 6.21 and
(2.120) of Theorem 2.59 in [6]) ζp(up) =

∑mp

l=1 cplBpl(up, qp) of degree qp with
equidistant knots ξp and coefficient vector cp = (c1p, . . . , cmpp)

′ such that

‖β̃
(v)

1 − ζ
(v)‖L2

= Op(m
v
maxρn + n−1m3/2

maxλmax). (10)

To show the validity of (10), we proceed as follows. By Lemma A.7 of [5], we

have that ‖α̃1,reg − c‖2 = O(m
1/2
maxρn), using a similar argument as before we

find, ‖β̃
(v)

1,reg − ζ
(v)‖L2

= Op(m
v
maxρn). Using the relationship

β̃
(v)

1 =
(

1−Op(n−1m3/2
maxλmax)

)
β̃
(v)

1,reg,

and the fact that β
(v)
1,reg is bounded on a compact region, we have ‖β(v)

1,reg‖L2 =
Op(1) and (10) follows. Also note ([6]) that ζp satisfies

‖β(v)
p − ζ(v)p ‖L∞ = O(mv−r

p ). (11)

The rates in (9)-(11) provide the key for the proof. Indeed

‖β̂
(v)

1 − β
(v)‖L∞ ≤ ‖β̂

(v)

1 − ζ
(v)‖L∞ + ‖ζ(v) − β(v)‖L∞ . (12)
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For the second term in (12) we use (11). For the first term, note that

‖β̂
(v)

1 − ζ
(v)‖L∞ . m−1/2max ‖β̂

(v)

1 − ζ
(v)‖L2

(13)

and that

‖β̂
(v)

1 − ζ
(v)‖L2 ≤ ‖β̂

(v)

1 − β̃
(v)
‖L2 + ‖β̃

(v)

1 − ζ
(v)‖L2

= Op(m
v−1/2
max ‖α̂1 − α̃1‖2 +mv

maxρn + n−1m3/2
maxλmax). (14)

The result now follows from the rate obtained for ‖α̂1 − α̃1‖2 in Theorem 1,
Part 1 in combination with (9)-(14).

Proof (Proof of Lemma 2)
We first note that supu,x |m̂1(u,x) −m(u,x)| and supu,x |σ̂1(u,x) − σ(u,x)|
are both Op(an) by Lemma 3. We write

Ŷ ∗2i − Y ∗2i = m̂1(Ui,Xi)−m(Ui,Xi)

+
σ̂1(Ui,Xi)

1− F̂ (ÊTi )

∫ Ŝi

ÊT
i

sdF̂ (s)− σ(Ui,Xi)

1− F (ETi )

∫ Si

ET
i

sdF (s)

= {m̂1(Ui,Xi)−m(Ui,Xi)} (15)

+
σ̂1(Ui,Xi)− σ(Ui,Xi)

1− F̂ (ÊTi )

∫ Ŝi

ÊT
i

sdF̂ (s) (16)

+
σ(Ui,Xi){F̂ (ÊTi )− F (ETi )}
{1− F̂ (ÊTi )}{1− F (ETi )}

∫ Ŝi

ÊT
i

sdF̂ (s) (17)

+
σ(Ui,Xi)

1− F (ETi )

{∫ ET
i

ÊT
i

sdF̂ (s) +

∫ Si

ET
i

sd(F̂ (s)− F (s)) +

∫ Ŝi

Si

sdF̂ (s)

}
.

(18)

We first consider the three integrals in (18). Using integration by part, we have

∫ ET
i

ÊT
i

sdF̂ (s) = ETi F̂ (ETi )− ÊTi F̂ (ÊTi )−
∫ ET

i

ÊT
i

F̂ (s)ds

= ETi {F̂ (ETi )− F (ETi )}+ {ETi F (ETi )− ÊTi F (ETi )}+ ÊTi {F (ETi )− F̂ (ÊTi )}

−
∫ ET

i

ÊT
i

F̂ (s)ds. (19)

For the first term of (19), using Lemma 4, we conclude that∣∣∣ETi {F̂ (ETi )− F (ETi )}
∣∣∣ = |ETi |Op (an) = Op (an) ,
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since |ETi | ≤ {σ(Ui,Xi)}−1{|min(Zi, τ2(Ui,Xi))|+|m(Ui,Xi)|} <∞. To get
a consistency rate for the second and the fourth term of (19), note that

ÊTi − ETi

=
min(τ2(Ui,Xi), Zi)− m̂1(Ui,Xi)

σ̂1(Ui,Xi)
− min(τ2(Ui,Xi), Zi)−m(Ui,Xi)

σ(Ui,Xi)

=
1

σ(Ui,Xi)σ̂(Ui,Xi)

[
min(τ2(Ui,Xi), Zi)

{
σ(Ui,Xi)− σ̂1(Ui,Xi)

}
− σ(Ui,Xi)

{
m̂1(Ui,Xi)−m(Ui,Xi))

}
+m(Ui,Xi)

{
σ̂1(Ui,Xi)− σ(Ui,Xi)

}]
.

It then follows from Lemma 3 and the convergence of σ̂1(u,x) to σ(u,x) > 0
that

|ÊTi − ETi | = Op(an),

which gives the rate for the second and the fourth term of (19). For the third
term of (19), we have that

F̂ (ÊTi )− F (ETi ) = {F̂ (ÊTi )− F (ÊTi )}+ {F (ÊTi )− F (ETi )}.

Lemma 4 can be used for the first summand. For the second summand, we use
a first order Taylor approximation and write

F (ÊTi )− F (ETi ) =

(
−m̂1(Ui,Xi)−m(Ui,Xi)

σ̂1(Ui,Xi)

− {σ̂1(Ui,Xi)− σ(Ui,Xi)}{min(τ2(Ui,Xi), Zi)−m(Ui,Xi)}
σ̂1(Ui,Xi)σ1(Ui,Xi)

)
fε(θ),

with fε the density of ε and for some θ between min(τ2(Ui,Xi),Zi)−m̂1(Ui,Xi)
σ̂1(Ui,Xi)

and min(τ2(Ui,Xi),Zi)−m(Ui,Xi)
σ(Ui,Xi)

. By the convergence of σ̂1(u,x) to σ(u,x) > 0

and the fact that supe |efε(e)| <∞, we get

F (ÊTi )− F (ETi ) = Op(an). (20)

We conclude that ∣∣∣ÊTi {F (ETi )− F̂ (ÊTi )}
∣∣∣ = Op(an),

where we use that by Lemma 3, |ÊTi | = |ETi | + Op(an) < ∞. Based on the
analysis of (19) we obtain for the first term of (18)

σ(Ui,Xi)

1− F (ETi )

∫ ET
i

ÊT
i

sdF̂ (s) = Op(an). (21)
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In a similar way, we obtain for the third term of (18)

σ(Ui,Xi)

1− F (ETi )

∫ ST
i

ŜT
i

sdF̂ (s) = Op(an). (22)

For the second integral in (18), we use partial integration and Lemma 4 to
obtain∫ ST

i

ET
i

sd(F̂ (s)− F (s)) = STi {F̂ (STi )− F (STi )} − ETi {F̂ (ETi )− F (ETi )}

−
∫ ST

i

ET
i

{F̂ (s)− F (s)}ds = Op(an).

The terms (15)-(17) are more easy to handle. For (15) we use Lemma 3(a).
For (16) and (17) we need that∫ Ŝi

ÊT
i

sdF̂ (s) = Op(1). (23)

To show (23), note that, using similar reasoning as in [4], we can prove that∫ Si

ET
i

sdF̂ (s) = Op(1).

Combining this result with the rates obtained in (21) and (22) yields∫ Ŝi

ÊT
i

sdF̂ (s) = Op(1).

By the convergence of F̂ (ÊTi ) to F (ETi ) < 1 (20), we get that (16) and (17)
are both Op(an).

1.3 Proof of Theorem 2

Proof (Proof of Theorem 2)

We prove the asymptotic normality of the P-spline estimator β̂1 for method 1
by proving that for p = 1, . . . , d,

{
s.e.

(
β∗jp(up) | Xn

)}−1 {
β∗jp(up)− β̃jp(up)

}
d→ N(0, 1), (24)

and{
s.e.

(
β∗jp(up) | Xn

)}−1 {
(β̂1p(up)− β∗1p(up)) + (β̃1p(up)− βp(up))

}
p→ 0.

(25)
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The proof of (24) is based on the proof given in [1] where some steps can be
simplified due to the independence of the observations.

Let Bp(u) be the column vector representing the p-th row of B(u).

B′p(u)(α∗ − α̃) =

n∑
i=1

B′p(u)(R′R + Qλ)−1Ri(Y
∗
1i −M1i) =

n∑
i=1

diξi,

where d2i = σ2
1,i{B′p(u)(R′R + Qλ)−1Ri}2 and ξi = σ−21,i (Y

∗
1i −M1i). Condi-

tioning on Xn the ξi are independent with mean 0 and variance 1. To prove
the asymptotic normality of the P-spline estimator we verify the Lindeberg
condition

max d2i∑n
i=1 d

2
i

p→ 0.

Then ∑n
i=1 diξi√∑n
i=1 d

2
i

d→ N(0, 1).

For any ω = (ω′0, . . . ,ω
′
d)
′ with ωp = (ωp1, . . . , ωpmp

)′, and especially for
ω = {R′R + Qλ)−1Bp(u)}, we have by the Cauchy-Schwarz inequality

ω′RiR
′
iω =

{
d∑
p=0

Xip

mp∑
l=1

ωplBpl(Uip; qp)

}2

≤

(
d∑
p=0

X2
ip

) d∑
p=0

{
mp∑
l=1

ωplBpl(Uip; qp)

}2
 .

Set gω,p(u; qp) =
∑mp

l=1 ωplBpl(up; qp) for p = 0, . . . , d. By Assumption (B3)
and Properties 2 and 4, we have

ω′RiR
′
iω .

d∑
p=0

‖gω,p‖2∞ . mmax

d∑
p=0

‖gω,p‖2L2
� ‖ω‖22. (26)

From Lemmas A.1 and A.2 in [5], we know that, except on an event with

probability tending to zero, n−1
∑n
i=1(

∑d
p=0Xipgω,p(Uip; qp))

2 � m−1max‖ω‖22.
Thus

ω′
n∑
i=1

{
RiR

′
iσ

2
1,i

}
ω ≥ n min

1≤i≤n
σ2
1,in
−1

n∑
i=1

( d∑
p=0

Xipgω,p(Uip; qp)
)2

& m−1maxn‖ω‖22. (27)

Combining (26) and (27), we find that, except on an event whose probability
tends to zero, we have

maxi(σ
2
1,iω

′RiR
′
iω)

ω′(
∑n
i=1 σ

2
1,iRiR′i)ω

. n−1mmax.
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By Assumption (B6), it follows that the Lindeberg condition is fulfilled and
hence the normality result in (24) follows.

We continue with the proof of (25). Since we assume that σ2
1,i is bounded

away from zero and ∞, we have,

Var(β∗1p(u) | Xn) = Cov
(
B′p(u)α∗ | Xn

)
= B(u)

(
R′R + Qλ

)−1( n∑
i=1

RiR
′
iσ

2
1,i

)(
R′R + Qλ

)−1
Bp(u)

& B′p(u)
(
R′R + Qλ

)−1
R′R

(
R′R + Qλ

)−1
Bp(u)

� n

mmax
B′p(u)

(
R′R + Qλ

)−1(
R′R + Qλ

)−1
Bp(u)

&
n

mmax

(
1

λmax(R′R + Qλ)

)2 mp∑
l=1

B2
pl(u)

&
n

mmax

 1

n
mmax

(
1 + m

3/2
maxλmax

n

)
2

1

mp

� 1

n

(
1 +

m
3/2
maxλmax

n

)−2
,

where we use the Cauchy-Schwarz inequality

1 =

(
mp∑
l=1

Bpl(u)

)2

≤
mp∑
l=1

B2
pl(u)

mp∑
l=1

1 = mp

mp∑
l=1

B2
pl(u),

and the following upper bound for the largest eigenvalue λmax(R′R + Qλ):

λmax(R′R+Qλ) = ‖R′R + Qλ‖2 ≤ ‖R′R‖2 + ‖Qλ‖2

.
n

mmax
+

√√√√ d∑
p=1

‖Qλ‖∞ .
n

mmax
+
√
dλmaxm

1/2
max max

1≤p≤d
4kp

.
n

mmax

(
1 +

m
3/2
maxλmax

n

)
.

By Property 4 of B-splines and Assumption (A5),

β̂1p(up)−β∗1p(up) ≤ sup
u∈U
|β̂1p(up)− β∗1p(up)| = ‖β̂1p − β∗1p‖∞

.

(
1

mp

)1/2

‖β̂1p − β∗1p‖L2
�
(

1

mmax

)1/2

‖β̂1p − β∗1p‖L2
.

We conclude

β̂1p(up)− β∗1p(up)
s.e.

(
β∗1p(up) | Xn

) .

(
n

mmax

)1/2
(

1 +
m

3/2
maxλmax

n

)
‖β̂1p − β∗1p‖L2 ,
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and

β̃1p(up)− βp(up)
s.e.

(
β∗1p(up) | Xn

) . n1/2

(
1 +

m
3/2
maxλmax

n

)
‖β̃1p − βp‖L∞ .

From Assumption D.1 it follows that these two terms converge to zero as n
goes to ∞. The proof for method 2 is similar.
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