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DANKWOORD 
 

"You must not let anyone define your limits because of where you come 

from. Your only limit is your soul." – Ratatouille (2007) 

Ziehier, mijn doctoraat. Een boekje dat mij bloed, zweet en tranen kostte, 

maar dat mij de afgelopen jaren ook enorm veel mogelijkheden tot 

zelfontplooiing geboden heeft. Naast kennis te maken met de 

academische wereld en de vrijheid die een onderzoeker krijgt, heb ik ook 

eindelijk de tijd gevonden om Instructeur en Trainer B te worden en heb 

ik er nog een postgraduaat bovenop kunnen doen. In een nine-to-five job 

zou dit praktisch gezien veel moeilijker geweest zijn aangezien ik nu al het 

merendeel van mijn vakantiedagen gebruikte om te studeren of om een 

tennisthesis te schrijven. Ik ben dan ook zeer blij dat ik al deze 

activiteiten met elkaar heb kunnen combineren. Gemakkelijk was het niet, 

en ik besef dan ook maar al te goed dat ik u dit boekje vandaag niet had 

kunnen voorleggen, zonder de hulp en bijstand van ontelbare mensen in 

mijn leven die mij altijd direct en indirect gesteund hebben. 

Op de eerste plaats wil ik Geert Jan Bex van het Vlaams Supercomputer 

Centrum (VSC) bedanken. U heeft mij altijd en snel, en zelfs op de 

weekenddagen, verder geholpen met mijn berekeningen. Dank u wel 

daarvoor. Ik hoop dat ik ooit de expertise heb die u heeft. Zo kan ik op 

mijn beurt anderen helpen om hun werk efficiënter en vlotter te laten 

verlopen. 

Ook de leden van mijn doctoraatscommissie wil ik hierbij expliciet 

bedanken voor de opmerkingen op mijn finale werk. Op het moment dat 

ik klaar was om af te ronden, pushten jullie met toch weer net wat verder 

om de zwakke punten uit mijn thesis te halen, en deze verder te 

verbeteren tot een geheel waar ik fier op mag zijn. Nele, Mark, Sebastien, 

Robert and Ana, thank you very much for your help. 
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Mark, u wil ik bij deze nog eventjes extra bedanken voor onze fijne 

samenwerking rond hoofdstuk 5. Je was altijd zeer optimistisch en 

enthousiast wanneer ik met een probleem aangesneld kwam, en ik heb 

echt genoten van onze discussies. Hoofdstuk 5 is uiteindelijk het 

hoofdstuk geworden waar ik het meest tevreden van ben en dit heb ik 

mede aan jou te danken! 

Het meest van allen, dien ik echter mijn promotor, Steven Van Passel, te 

danken voor zijn goede zorgen. Niet alleen gaf hij goede raad over mijn 

onderzoek, hij stond ook dag en nacht klaar om mails, sms’en en 

telefoons te beantwoorden. Bovendien hielp hij me ook verder ontwikkelen 

als persoon en stond hij steeds open voor nieuwe ideeën en 

opportuniteiten. Steven, het is normaal dat je zo weinig tijd hebt: naast je 

werk neem je nog ongelooflijk veel andere functies op. Voor mij was je 

niet alleen mijn promotor, je was ook mijn coach en mentor, en ik kon je 

alles toevertrouwen. Dank u wel voor je wijze lessen, je spannende 

verhalen, je geduld, je vertrouwen, je mensenkennis en je goede 

begeleiding de afgelopen jaren. Hopelijk blijven we ook na mijn doctoraat 

nog in contact! Ik houd je er uiteraard aan dat je zoals gewoonlijk op 1 

januari een leuk mailtje stuurt (daar keek ik altijd naar uit!). 

Even though my promoter is my second superman (my daddy is my first 

superman of course), I spent most of my time surrounded by my 

awesome colleagues. They joined me on awesome team buildings, 

broadened my intercultural open-mindedness, took away the pressure 

during stressy periods, created interesting discussions and were 

enthusiastic about numerous crazy ideas I entered the room with. 

Katharina and Kim, my awesome office mates, thanks to you being stuck 

in a dusty office (F11) or container (113) became something to look 

forward to. Some people might tell you that you are a bit weird, but I like 

you just the way you are. Thank you for being there, even when I left this 

university. Hope the Cactus Group stays united forever. Hajar and Parisa, 

thank you for showing me how to stand proudly and happily in life. I think 
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many people should take your example and learn from your energy and 

confidence. Sarah, as the bouncing heart of the research group, you are 

sincerely concerned about this group and you give a personal touch to the 

things you say and do. Thank you very much for your help and 

motivation! What would I have done without you? Anne and Hakan, you 

are two anticipating, responsible and brilliant researchers who are always 

in for an encouraging nice chat. You also keep an eye on my friends in the 

113, thank you for that! Sebastien and Miet, you are two super dedicated 

and concerned persons, who guide everybody through academia, jump by 

every office to say hello in the morning and you always check whether 

everybody is okay. We need more people like you in academia! Thank you 

very much for all the advice and insights. Bert and Illias, thank you for 

keeping the balance between men and women in the group, and thank 

you for your clever comments during lunch meetings. Gwenny, thank you 

for joining me for late work and for the postgraduate course. You made a 

lot of progress during your PhD and we had a lot of interesting 

discussions. But nevertheless, I don’t think I will ever forgive you for 

shooting me in the back with laser shooting… Silvie, no matter how busy 

you are, you always make time to listen to someone’s problems and help 

them out. Thank you for sharing your wisdom. I seriously learned a lot 

from you and you are a true inspiration for me! Nele and Tine, always 

ready to go the extra mile. Thank you for the nice welcome I got when I 

entered the research group, very shyly, on my first day! Michele, you are 

always interested in someone else’s research. And probably it is because 

of that that you always take up more work than can possibly be done in a 

week. Thank you for your support and enthusiasm! Even though I was 

sometimes frustrated with you, I enjoyed working with you and I will 

finish our next paper with you. Sophie, you were the first one with whom I 

skyped at Vito! Thank you very much for your interest and thank you for 

always being in a good mood. Tom, even though you call yourself the 

eternal number two, you are definitely my number 1 when it comes to 

teaching (and also when it comes to forwarding vacancies). Robert, 

starting something new is never easy; especially in a group with so much 
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character as this group. Thank you for not forgetting the wisdom of Marry 

Poppins: "In every job that must be done, there is an element of fun." 

Hopefully the Christmas tree and the wall papers bring additional joy and 

laughter to our group! And finally, I should not forget all the people that 

contributed to this welcoming group in the past: Lan, Sarah J., Marieke, 

Dries, Eloi, Yann, Ellen and Rob. So, to all of the current and old EEC’ers, 

thank you very much for accepting me the way I am. You helped me 

become the researcher I am today. Before I met you, I would never have 

thought that leaving university would touch me so hard.  

Echter, even belangrijk zijn de mensen die indirect tot mijn doctoraat 

hebben bijgedragen. Deze mensen hebben, lang voor ik ook maar dacht 

aan doctoreren, mee mijn karakter en persoon gevormd door mij kansen 

te geven om te groeien en om fouten te maken, door mij aan te moedigen 

en mij creatief te laten zijn, door mij te wijzen op mijn fouten en door mij 

te pushen om het beter te doen. Zonder hen, zou ik nooit staan waar ik 

vandaag sta. 

In het bijzonder wil ik daarbij al mijn tennisvrienden, -trainers en -

begeleiders bedanken. Mijn eigen oud-trainers, Robby, Christian en Rudy, 

omdat ze gedurende jaren energie staken in mij om mijn techniek te 

krijgen tot wat hij nu is. Jullie volhardheid, enthousiasme en creativiteit in 

lesgeven hebben mij gebracht tot de speler die ik vandaag ben. Wim en 

Liesbet, omdat ze mij (en vele andere jonge trainers) de kans gaven om 

te groeien binnen hun club. Met een zeer beperkte ervaring ben ik bij jullie 

beginnen met lesgeven en jullie stonden altijd open voor mijn ideeën en 

bemerkingen. Dank u wel ook aan alle spelers (en ouders van spelers) 

waar ik het vertrouwen van heb gekregen om te mogen lesgeven. Jullie 

enthousiasme en schouderklopjes gaven mij veel voldoening en 

zelfvertrouwen. Zelfs buiten de tennislessen stonden jullie klaar om een 

gezelschapsspel te spelen of euromunten mee te verzamelen (dank u wel 

Els!), een knuffel te komen geven (dank u wel Gijs, Daan, Tuur, Fien en 

Robbe) of mij vriendelijk te begroeten. Jullie hebben er geen idee van 
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hoeveel dit betekent voor mij. Ook wil ik hierbij eventjes Thomas 

bedanken voor de goede begeleiding tijdens mijn trainer B opleiding. Je 

bent een trainer die een goede balans tussen techniek en fun vindt en ik 

kan nog veel van jou leren. 

Uiteraard zijn er nu nog ontelbare mensen die ik niet bij naam kan 

noemen. Neem bijvoorbeeld de vele inspirerende leerkrachten die ik 

gehad heb en de ontelbare babysitplaatsen waar ik vertrouwen genoten 

heb. Bovendien heb ik ook tijdens mijn opleiding aan de UHasselt de kans 

gekregen om maar liefst drie keer naar het buitenland te trekken om er te 

studeren of onderzoek te doen. Ook hier heb ik vele mensen leren kennen 

die een grote impact gehad hebben op mijn leven. In this regard, I would 

like to show my gratitude to my dear friend Mamadou. You showed me 

the value of the present time, selflessness and integrity. In a short time, 

you changed me more than anybody else previously did. Thank you for 

your patience and guidance. I hope you will always be judged by who you 

are and how you act. Not by your origin or the color of your skin. 

Tot slot zijn er nog Lisa, Indra, Tim, Sven, Michiel, Jorma, Jasper en Gert-

Jan, Anneleen en Kevin: bedankt voor de vele jaren vriendschap en steun, 

dat er nog vele jaren mogen bijkomen. Michiel, Daan, Jelle, Stefaan, 

Robin en Rudy, bedankt voor de toffe tennisavonden (ondanks het feit dat 

ik het laatste seizoen de helft van de tijd niet in vorm was). Rudy, 

bedankt om mijn tennisniveau deze winter terug op te krikken. Ik heb al 

veel geleerd van je spontaniteit op en naast het veld. Elke, Annelien, An-

Sofie, Leen, Nathalie, Anke, Buana, Nele en Hanne: dank u wel voor alle 

fijne en creatieve onderonsjes. Jullie zijn de max en ik zou jullie voor geen 

goud van de wereld willen missen! Hanne en Joeri, bedankt om mij 

onrechtstreeks een plaatsje te geven in jullie familie en mij te vertrouwen 

als metie van jullie kleinste schat. Ik ben hier tot op heden nog steeds 

zeer nerveus voor, maar Mauro, ik beloof je dat ik er altijd voor jou zal 

zijn! (Bij deze staat dat dus ook op papier) Aan mijn familie, ouders en 

broer die altijd voor me klaarstaan, ondanks het feit dat ze geregeld een 
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andere mening hebben dan mezelf: weet dat ik jullie enorm dankbaar ben 

voor de kansen, vrijheid en flexibiliteit die jullie me geven. Bedankt voor 

de goede opvoeding en zorgen. Het is fijn om te weten dat ik altijd op 

jullie kan terugvallen en ik hoop oprecht dat ik jullie nooit zal 

teleurstellen. Maar nu, mama, weet dat je niet alles kan controleren in je 

leven. Met mij gaat het goed, nu is het aan jou om terug meer te leren 

genieten! Papa, dank je wel voor je zachtaardigheid en 

relativeringsvermogen. Precies wat ik nodig had op moeilijke momenten! 

Martijn, mijn excuses dat je niet vermeld werd in mijn Masterproef 

thesis… maar toen had je ook echt niets gedaan  Deze keer hoor je er 

wel bij! Bedankt voor het luisterend oor wanneer ik iets kwijt wou, 

bedankt voor het samenzweren tegen mama en papa wanneer dit nodig 

was, bedankt voor het aanvaarden van mijn zotheid en om me te laten 

winnen met gezelschapsspelen (ik weet heus wel dat jij veel beter bent 

dan ik hoor). Je bent een goede broer en ik zou me geen betere kunnen 

inbeelden. 

Kortom, vele mensen hebben mij kansen gegeven om te groeien, ondanks 

het feit dat ze mij initieel maar amper kenden. Ik sta hier vandaag dus 

omdat er mensen waren die in mij geloofden en mij vertrouwden. Om het 

in de woorden van de film Ratatouille te zeggen: “Everyone can cook”. Of, 

vrij vertaald: “Not everyone can become a great artist, but a great artist 

can come from anywhere.” Ik zal deze wijsheid nooit vergeten en hoop 

dat ik andere mensen die mijn pad kruisen ook altijd zal helpen groeien, 

zonder al te veel vooroordelen. Op dat vlak hoop ik dat ik zeker word 

zoals mijn lieve oma en opa: altijd klaar om iemand te helpen. 
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ENGLISH SUMMARY 
 

The agricultural sector is one of the sectors directly dependent on the 

climatic conditions of its surrounding environment. With climate change, 

farmers need to adjust their current farm management practices to adapt 

to new climatic conditions in order to moderate climate change impacts or 

exploit beneficial opportunities. To provide insights into these adaptation 

decisions and processes, it is important to use climate change impact 

models that account for the numerous adaptation strategies farmers 

possess to displace no-longer-advantageous activities under new climate 

conditions. As a result, the microeconomic approach most commonly used 

to assess the impact of climate change on agriculture is the Ricardian 

method. The Ricardian method accounts implicitly for adaptation options 

by assuming that farmers maximize their profits by optimizing all 

variables within their control. The only variables that then influence yields 

are exogenous variables outside the farmer’s control. The method uses 

cross-sectional data, as it assumes that farmers today have adapted to 

their current environment. As such, by looking at how farmers behave in 

response to their current environment, one can understand how farmers 

respond to climate change by comparing them with farmers in other 

climates. 

 

Nevertheless, the Ricardian method’s ability to capture adaptation has to 

be treated with caution because it does not model adaptation explicitly. 

Endogenous farm management variables are not explicitly modeled by the 

method, as these are assumed to be optimized. As a result, the user of 

the results of the Ricardian method gains no insight into how a farmer 

adapts, making adaptation invisible and undefined. This is unfortunate for 

adaptation practitioners who need to gain more insight into the adaptation 

decision and implementation process itself. The goal of this dissertation is 

therefore specifically to improve the Ricardian method to make its results 

regarding climate change adaptation more defined and explicit for policy 
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use (European policy use in particular). This is done by addressing four 

weaknesses of the Ricardian method. 

 

First of all, the Ricardian method ignores adaptation requirements that 

need to be in place before a farmer can adapt. The method gives a false 

feeling of certainty that “farmers will adapt in the most optimal way” even 

though this is not always realistic, as not all farmers have access to such 

adaptation strategies. This is because farmers do not always possess all 

the necessary adaptive capacity characteristics such as information, skills, 

technology, economic wealth, and institutions that help them to 

implement adaptation strategies. Chapters 2 and 3 both resolve this 

weakness but in different ways. Chapter 2 suggests clustering farmers or 

regions based on pre-existing historical conditions that are assumed to 

influence farmers’ ability to adapt. As such, all farmers in one cluster are 

restricted to uniquely rely on only the adaptation strategies available in 

that cluster. For European farms, when clustered in Eastern versus 

Western Europe, this implies that Eastern Europe only has access to the 

adaptation strategies available in Eastern Europe. Depending on the 

climate change scenario, this results in an almost 50 percent loss in 

Eastern European land values compared to a 2 to 32 percent loss for 

Western Europe. As an alternative, chapter 3 suggests explicitly capturing 

a measurement of adaptive capacity as an additional variable in the 

model. This leads to more detailed results as adaptive capacity also 

diverges within the clusters built in chapter 2. Chapter 3 confirms that not 

taking into account adaptive capacity leads to too optimistic results, as 

positive marginal effects of temperature decrease between 2.5 and 5 

percentage points in regions with a lower adaptive capacity. Clearly, there 

is a positive relationship between adaptive capacity and the agricultural 

climate response, even though chapter 3 shows this relationship is non-

linear. 

 

A second weakness of the Ricardian method is that it only accounts for 

adaptation options that are in the dataset. It does not account for future 
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technological improvements, as these do not yet exist in the data. This is 

unfortunate for estimations of the impact of climate change on agriculture 

as technological improvements will play a very important role in climate 

change adaptation. Chapter 2 shows that by splitting technological 

development into two types (development due to existing technologies in 

developed countries, and development due to future technologies), it is 

already possible to account for technological development in regions in 

transition, based on existing technologies in more advanced regions. As 

such, by broadening the dataset with more advanced adaptation 

strategies from other regions, one can improve the climate response by 

taking into account future technological development based on existing 

technologies. The results in chapter 2 show that if Eastern Europe were to 

apply and implement the same adaptation options as Western Europe by 

2100, it could avoid a 50 to 69 percentage point decrease in land value, 

depending on the climate scenario. 

 

Unlike chapters 2 and 3, which focus on adaptation in general, the second 

part of this dissertation focuses specifically on one adaptation strategy, 

irrigation, in order to better understand in which contexts it should be 

prioritized compared to other adaptation strategies. Irrigation is one of the 

primary mechanisms by which agriculture can respond and adapt to 

climate change. Comparing irrigated versus rain-fed agriculture reveals a 

third weakness of the Ricardian method: There is heterogeneity within the 

adaptation option that influences its overall effectiveness. Farmers do not 

simply make one adaptation decision. In the case of irrigation, they 

consider water management options across a spectrum that ranges from 

purely rain-fed farms to purely irrigated farms. In between the extremes, 

there are, among others, farmers that use supplemental irrigation on only 

part of their field, farmers that apply conservation practices to store water 

in the soil, farmers that add more surface- or groundwater to their fields, 

and farmers that irrigate on a very frequent basis. Chapter 4 shows that 

by taking into account such within-adaptation-option differences (either by 

means of subsampling, or by means of an interaction term), differences in 
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the effects of marginal changes in climate on farmers at the extremes of 

the irrigation spectrum can rise up to 30 percentage points, depending on 

the size of the farm. 

 

Finally, because (as shown in chapter 4) the type of adaptation 

significantly influences the climate response and a farm has numerous 

adaptation strategies to choose from, it is important to tackle a fourth 

weakness of the Ricardian method by revealing the farm adaptation 

decision process itself. Because each farmer makes numerous decisions at 

one time, in chapter 5, this dissertation provides a unique simultaneous 

irrigation-crop decision model to illustrate the farm adaptation decision-

making process. The model shows that the irrigation choice is highly crop-

specific and that the farm irrigation probability is highly influenced by 

climate. Specifically, the model reveals that climate and water constraints 

often hamper the use of irrigation as an adaptation tool. Southern regions, 

for instance, show decreases in irrigation probability of up to 7 percent in 

summer, when temperature marginally increases. This shows that those 

regions adapt through other means than irrigation (for instance by means 

of crop choice). As a result, the conditional climate response of the 

different farm adaptation responses differs significantly between irrigated 

and rain-fed farms. In general, irrigated crops are more resistant to 

higher temperatures than rain-fed crops in southern regions. However, 

the model shows there is a difference between large and small farms as 

small farmers are more dependent on water access before they can 

irrigate. In addition to the insights this model provides, the model also 

appears to be more robust when compared to traditional cross-sectional 

models that do not capture irrigation explicitly. 

 

These four chapters prove that it is possible to adjust the Ricardian 

method to reveal adaptation more explicitly. This more explicit view is 

important for policy as it leads to more insight and results that are more 

robust. It shows that the climate change responses of Western and 

Eastern Europe could be similar, on the condition that policy, society, and 
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behavior are devoted to bringing forth equal and optimal adjustment and 

adaptation conditions over both regions. Policy and institutions should 

increase adaptive capacity to facilitate climate change adaptation. The EU 

should ensure sufficient investment in water management infrastructure, 

as well as ensuring water regulations as climate change will limit the 

usage of adaptation strategies that are dependent rain water. 

Nevertheless, adaptation through more drought-resilient crops should also 

be further encouraged as crop choice is a beneficial alternative to 

irrigation in water-scarce regions. Finally, policy should not merely scale 

up adaptation strategies that work in one region to a larger region. There 

are clear differences in the way different adaptation options are 

implemented, and policy should allow the execution of different adaptation 

strategies. 
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NEDERLANDSTALIGE SAMENVATTING 
 

Het klimaat bepaalt in sterke mate de activiteiten en het management van 

de landbouwsector. Klimaatverandering dwingt landbouwers dan ook tot 

het aanpassen van hun huidige activiteiten (zoals het veranderen van 

gewassen of het irrigeren van velden) om de impact van de nieuwe 

klimaatomstandigheden te minimaliseren of om opportuniteiten te 

benutten. Het is belangrijk om inzicht te krijgen in deze 

adaptatiebeslissingen en –processen. Daarom hebben modellen, die de 

impact van klimaatverandering in kaart brengen en tegelijk deze 

adaptatiebeslissingen in rekening nemen, de laatste jaren aan populariteit 

gewonnen. De micro-economische methode die in dit opzicht het meest 

gebruikt is, is de methode van Ricardo. Deze methode houdt impliciet 

rekening met klimaatadaptatie in veronderstelling dat landbouwers hun 

winst maximaliseren door alle winst-beïnvloedende factoren binnen hun 

controle (bijvoorbeeld de keuze van input en output) te optimaliseren. 

Concreet betekent dit dat de enige factoren die de winst beïnvloeden, 

exogene factoren zijn buiten het bereik van de landbouwer (bijvoorbeeld 

het type grond en klimaat). Door gebruik te maken van cross-sectionele 

data kan de methode afleiden hoe landbouwers reageren onder 

verschillende klimaatomstandigheden omdat er verondersteld wordt dat 

landbouwers gelijkaardig reageren indien alle omstandigheden hetzelfde 

zijn.  

 

De sterkte van de methode om adaptatie in rekening te nemen, moet 

echter sterk genuanceerd worden omdat de methode adaptatie niet 

expliciet meet of toont. Adaptatie wordt namelijk verondersteld optimaal 

te zijn. Het probleem hierbij is dat ondanks het feit dat de methode 

adaptatie wel in rekening neemt, de methode geen inzicht geeft in hoe 

een landbouwer zich aanpast. Adaptatie blijft ongedefinieerd en 

onzichtbaar en dit maakt de methode minder interessant voor 

beleidsmakers of beslissingsnemers in adaptatie. Het doel van deze thesis 

is dan ook om de methode van Ricardo te verbeteren zodat haar 
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resultaten klimaatadaptatie expliciet in kaart brengen en bijgevolg 

bruikbaarder zijn voor (Europees) beleid. Concreet kaart deze thesis vier 

tekortkomingen aan van de methode, die een obstakel vormen om 

adaptatie te visualiseren. 

 

Eerst en vooral negeert de methode dat adaptatie enkel kan plaatsvinden 

indien landbouwers aan de minimumvereisten voldoen om zich te kunnen 

aanpassen. De methode geeft een vals gevoel van zekerheid dat 

“landbouwers zich zullen aanpassen op de meest optimale wijze” terwijl 

dit in werkelijkheid niet altijd realistisch is. Niet alle landbouwers hebben 

toegang tot alle adaptatiestrategieën omdat ze niet altijd beschikken over 

het nodige aanpassingsvermogen (informatie, kennis, technologie, 

financiële middelen en instituten). Hoofdstuk 2 en 3 stellen twee 

verschillende manieren voor om dit op te lossen. Hoofdstuk 2 raadt aan 

om landbouwers te groeperen op basis van historische eigenschappen die 

hun aanpassingsvermogen beïnvloeden. Op deze manier erkent de 

methode dat landbouwers binnen een groep enkel aanspraak maken op 

adaptatiestrategieën beschikbaar binnen die groep. Voor Europese 

landbouwers betekent dit dat landbouwers in Oost-Europa enkel gebruik 

zouden kunnen maken van adaptatiestrategieën beschikbaar in Oost-

Europa. Afhankelijk van het klimaatscenario leidt dit voor Oost-Europa in 

dalingen tot 50 procent in haar netto inkomen, in vergelijking met 2 tot 32 

procent verliezen in West-Europa. Een alternatieve methode wordt 

voorgesteld in hoofdstuk 3 waar het aanpassingsvermogen van de sector 

expliciet in rekening wordt genomen als een extra variabele in het model. 

Dit leidt tot meer specifieke resultaten aangezien er zo op een meer 

gedetailleerde geografische schaal naar verschillen in 

aanpassingsvermogen gekeken kan worden. Hoofdstuk 3 bevestigt de 

resultaten van hoofdstuk 2 en concludeert dat positieve marginale 

temperatuureffecten dalen met 2.5 tot 5 percentagepunten in regio’s met 

een laag aanpassingsvermogen. Ondanks het positieve verband tussen 

het aanpassingsvermogen en de agrarische klimaatreactie, is deze relatie 

niet lineair. 
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Een tweede zwakte van de methode is dat de methode geen 

aanpassingsstrategieën in rekening kan nemen die voortvloeien uit 

technologische ontwikkeling aangezien deze aanpassingsmogelijkheden 

nog niet aanwezig zijn in de data. Desondanks zal technologische 

ontwikkeling een belangrijke invloed hebben op toekomstige agrarische 

aanpassingsstrategieën. Hoofdstuk 2 toont dat technologische 

ontwikkeling op twee manieren plaatsvindt: ontwikkeling die enerzijds 

voortvloeit uit vergevorderde technologieën in meer ontwikkelde regio’s, 

en anderzijds uit compleet nieuwe technologieën en kennisstromen. Dit 

betekent dat het wel mogelijk is om de eerste vorm van technologische 

ontwikkeling in rekening te nemen indien de dataset uitgebreid wordt met 

aanpassingsstrategieën uit meer ontwikkelde regio’s. Door de datasets 

van Oost- en West-Europa te bundelen, toont hoofdstuk 2 aan dat, indien 

Oost-Europa dezelfde adaptatiestrategieën als West-Europa zou kunnen 

hanteren, het afhankelijk van het klimaatscenario een daling van 50 tot 

69 percentagepunten in netto-inkomen zou kunnen voorkomen. 

 

In tegenstelling tot het eerste deel van de thesis, dat de nadruk legt op 

adaptatie in het algemeen, focust het tweede deel in hoofdstuk 4 en 5 

specifiek op één adaptatiestrategie: irrigatie. Het in detail bestuderen van 

adaptatiestrategieën is noodzakelijk om beter te begrijpen wanneer welke 

adaptatiestrategieën de voorkeur moeten krijgen. Irrigatie is één van de 

meest gebruikte adaptatiemechanismes waarmee de landbouwsector 

reageert op klimaatverandering. Indien irrigatie vergeleken wordt met de 

niet-irrigerende landbouwsector, is het echter noodzakelijk een derde 

zwakte van de methode van Ricardo uit te klaren. Landbouwers maken 

namelijk niet zomaar een ja-neen adaptatiekeuze. In het geval van 

irrigatie nemen ze watermanagement opties over een wijd spectrum van 

niet-geïrrigeerde landbouw tot zuiver geïrrigeerde landbouw in 

overweging. Tussen deze extremen heeft de landbouwer de keuze uit 

onder andere irrigatie op slechts een gedeelte van zijn akkers, 

waterconservatietechnieken om water in de bodem op te slaan of het 

toepassen van verschillende irrigatiefrequenties. Deze verschillende 



 

xvi 
 

implementatiemogelijkheden van dezelfde adaptatiestrategie kunnen tot 

sterk verschillende klimaatreacties leiden. Hoofdstuk 4 bevestigt dit door 

het categoriseren van landbouwers op basis van verschillen in uitvoering 

van de irrigatie adaptatiestrategie en toont aan dat marginale 

veranderingen in klimaat tot veranderingen in netto-inkomen kunnen 

leiden die groter zijn dan 30 percentagepunten tussen de irrigatie-

extremen.  

 

Omdat hoofdstuk 4 aantoont dat de keuze van de adaptatiestrategie de 

klimaatreactie in sterke mate beïnvloedt en een landbouwer bovendien de 

keuze heeft uit een groot aantal adaptatiemogelijkheden, is het belangrijk 

om een vierde zwakte van de methode van Ricardo aan te kaarten en op 

te lossen. De methode geeft namelijk geen inzicht in het 

adaptatiekeuzeproces van de landbouwer en onthult dus niet hoe een 

landbouwer zich aanpast. In hoofdstuk 5 stelt deze thesis daarom een 

uniek adaptatiebeslissingsmodel voor waarin er simultaan twee 

adaptatiekeuzes van de landbouwer bepaald worden aan de hand van een 

simultaan irrigatiegewas keuzemodel. Dit is realistischer omdat 

landbouwers in werkelijkheid ook meerdere beslissingen tegelijk dienen te 

nemen en omdat de irrigatiekeuze sterk gewasafhankelijk is. Eén van de 

hoofdresultaten van het model is dat klimaat en waterschaarste vaak de 

keuze voor irrigatie als een adaptatiestrategie beperken. In Zuid-Europa 

dalen de kansen op irrigatie tot 7 procent in de zomer als de temperatuur 

marginaal stijgt. Dergelijke regio’s reageren op klimaatverandering op 

andere manieren zoals het wisselen naar meer droogteresistente 

gewassen. Bovendien blijkt ook dat landbouwers in meer Noordelijke 

regio’s negatief reageren op temperatuurstijgingen omdat zij zich eerder 

aanpassen aan veranderingen in neerslag. Ook blijken er grote verschillen 

te zijn tussen grote en kleine landbouwers, in die zin dat kleine 

landbouwers meer waterafhankelijk zijn alvorens ze kunnen irrigeren. Tot 

slot bewijst deze thesis dat het simultaan beslissingsmodel geschat in 

hoofdstuk 5 robuuster is dan de traditionele schattingen van de methode 

van Ricardo. Het is daarom belangrijk om adaptatie expliciet te schatten. 
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Deze vier hoofdstukken bewijzen dat het mogelijk is de methode van 

Ricardo aan te passen zodat adaptatie expliciet onthuld wordt. Dit leidt 

niet enkel tot belangrijke inzichten voor beleid, maar ook tot meer 

robuuste resultaten. De aangepaste methode bewijst dat de klimaatreactie 

tussen Oost- en West-Europa gelijkaardig zou kunnen zijn indien beleid 

erin slaagt een gelijk speelveld over de volledige Europese Unie te 

creëren. Daarom is het belangrijk om het aanpassingsvermogen over 

beide regio’s te vergroten om klimaatadaptatie aan te moedigen. De EU 

moet bovendien ook voldoende investeren in 

watermanagementinfrastructuur en waterwetgeving aangezien 

klimaatverandering de druk tussen vraag en aanbod van water zal 

verhogen. Adaptatie via meer droogteresistente gewassen zal daarom ook 

een belangrijke adaptatiestrategie zijn in regio’s met waterschaarste. Tot 

slot moet beleid opletten met het opschalen van adaptatiestrategieën die 

in een bepaalde regio effectief zijn. Er zijn verschillende manieren waarop 

adaptatiestrategieën geïmplementeerd kunnen worden en beleid moet 

erover waken dat deze correct aangepast worden aan de beoogde regio. 
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Chapter 1.  

The importance of agricultural adaptation to climate change 

 

“Mitigate we might; adapt we must” - Nordhaus (1994) 

 

ABSTRACT – The goal of this dissertation is to improve the cross-sectional 

Ricardian method to make its results regarding adaptation more defined 

and explicit for policy use. This goal is operationalized by focusing in four 

chapters on four methodological weaknesses of the Ricardian method that 

impede its understanding of adaptation. First of all, the Ricardian method 

is too optimistic regarding which adaptation options are available to 

farmers. This dissertation therefore captures, both explicitly and implicitly, 

adaptive capacity in order to assess whether a farmer has access to 

specific adaptation options or not. Secondly, the Ricardian method does 

not take into account technological development regarding adaptation. By 

combining datasets of more developed farmers with datasets of farmers in 

transition, it is possible to take into account technological development, 

based on existing technologies, in regions that are still making the 

transition to using more developed technologies. Thirdly, the Ricardian 

method ignores differences within an adaptation option that might greatly 

influence the climate response of the farmers. It is therefore important to 

take into account differences in the implementation of adaptation 

strategies. Finally, the Ricardian method does not explicitly model the 

adaptation process. This dissertation therefore explicitly captures one 

adaptation choice (the irrigation choice) and models this choice 

simultaneously with one other adaptation choice (the crop choice), 

because farmers make multiple, simultaneous decisions. 

1.1. The climate sensitivity of agriculture 

“From the top of the atmosphere to the depths of the oceans” (USGCRP, 

2017), there is overwhelming evidence that climate change influences our 

world as it looks today. There are losses and damages to ecosystems and 

water resources, threats to food security and human health, sea level 
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rises, increased severity and frequency of hurricanes and storms, 

infrastructure damages, equity issues, and numerous other impacts on 

society (Ciscar et al., 2011; Dyurgerov and Meier, 2000; Parmesan and 

Yohe, 2003; Stocker, 2014). If emissions do not decrease significantly, 

the effects of climate change will further increase. Ciscar et al. (2014) 

estimate for instance that in Europe by 2080, without adaptation and 

under high-emission scenarios, about 200,000 people per year would die 

due to extreme heats, damage of river floods would exceed 10 billion 

euros per year and would affect over 290,000 people, costs of droughts 

would increase to about 150 million euros per year and would mostly 

affect Southern Europe, forest fires would damage 800,000 ha a year, 

transport infrastructure damages could reach around 930 million euros a 

year, tourism losses in Southern Europe could increase up to 7 billion 

euros a year, and sea-level rise would increase welfare losses to 42 billion 

per year. 

Nevertheless, even though numerous sectors are affected by climate 

change, “arguably the sector most affected by climate change” 

(Rosenzweig et al., 2014) is the agricultural sector. The production of both 

crops and livestock is influenced directly and indirectly by different climate 

inputs that have an impact on three major parts of the hydrological cycle 

(Gordon et al., 2008): (i) the atmosphere (in which temperature, solar 

radiation, wind speed, and CO2 concentrations influence 

evapotranspiration processes, photosynthetic rates, and water 

requirements (Falkenmark and Rockström, 2006; Kimball and Idso, 1983; 

Turral et al., 2011)), (ii) the aquatic systems (which determine the runoff 

of precipitation and the upstream capacity of bodies of water, which 

together with temperature influence the frequency of floods and 

droughts), and (iii) the soil (which captures and retains some of the 

rainfall water or water from other sources, which generates soil moisture 

and natural replenishment of ground water (IIASA/FAO, 2000; Taylor et 

al., 2013; Turral et al., 2011)). 
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For all these different climate factors, there exists an optimal range in 

which crops and animals are the most productive and obtain the highest 

yield (Figure 1). This is confirmed by different laboratory experiments and 

field experience (Mendelsohn and Dinar, 2009). As a result, even though 

there are differences between different species, the relationship between 

climate and yields is hill-shaped for all the different crop and animal 

species. Such a hill-shaped relationship explains why there is not a lot of 

agriculture in the Sahara (too warm and dry) or in the Arctic (too cold). 

These environments are obviously not ideal for obtaining the highest 

possible yields of most crops and animals. 

 

Figure 1 – Impact of climate and limiting factors on growth and production 
of crops and livestock  

(Source: Mendelsohn and Dinar (2009)) 
 

With climate change, farmers will move from one point on the function in 

Figure 1 to another. Because of this, some farmers might face more 

hostile and less optimal environments to work in. Cows and sheep could 

suffer, for instance, from heat stress, and could produce less milk or wool 

in response to increasing temperatures, or crops could suffer from heat 

stress and shorter growing seasons. Given that agriculture is of major 
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importance to our society (it provides food and clothing, and is a main 

source of income for many households in developing countries), 

understanding the impact of such a changing climate on agricultural yields 

and food security is important. As a result, the agricultural sector is the 

sector studied the most with regard to the impact of climate change. 

Most of the studies executed to examine the impact of climate change on 

agriculture are based on crop simulation models, the first method used to 

model the crop impacts of climate change (Mendelsohn and Dinar, 2009). 

Crop simulation models or agro-economic analyses are based on current 

scientific knowledge from plant pathology, soil physics, and other 

disciplines and predict crop growth by means of weather conditions, 

genetics, soil characteristics, and crop management (Rosenzweig and 

Parry, 1994). The later implies that these models are based on a deep 

understanding of agronomic science (Mendelsohn and Dinar, 2009) 

because the models reflect the crop growth processes based on genetic 

characteristics of the crop. They can integrate hydrologic conditions, local 

environments, and carbon dioxide fertilization. An alternative way to 

model agricultural climate change sensitivity is with production function 

models or empirical yield models that link water, soil, climate, and 

economic inputs to crop yields for specific crops (Mendelsohn and Dinar, 

2009). These methods are less data-intensive than crop simulation 

models. A final group of models to model the impact of climate change on 

agriculture uses the intertemporal or panel net revenue approach. 

However, those methods focus on short-term responses to weather 

fluctuations and represent climate change itself less accurately. 

1.2. The relationship between climate change and agriculture 

The relationship between climate and agriculture is, however, more 

complicated than the hill-shaped relationship shown in Figure 1. Changes 

in the natural relationship between crops or animals and the crops’ or 

animals’ environment can occur due to interlinkages between 

atmospheric, aquatic, soil, and biophysical crop systems and as such 
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move the relationship (Figure 1) up or down depending on limiting 

variables. 

However, a natural relationship between a crop or an animal and its 

environment can also be changed by numerous socio-economic factors. 

Agriculture is a man-made adjunct to natural ecosystems (Wreford et al., 

2010), and the farmer can influence the natural biophysical relationships 

between production and the environment. As such, when the farmer 

interferes, the slope of the relationship (Figure 2) can change, making the 

relationship between climate and yields, for instance, less sensitive and 

more optimal over a wider temperature range. 

 

Figure 2 – Schematic presentation of the temperature-yield relationship 
with various enabling technologies  
(Source: Mendelsohn and Dinar (2009)) 
 

This farm interference is also referred to as “farm adaptation”, and it 

implies that farmers make “adjustments in natural or human systems in 

response to actual or expected climatic stimuli or their effects, which 

moderates harm or exploits beneficial opportunities” (IPCC, 2007b). One 
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of the most cited examples in the European Union (EU) of the proof of the 

importance of such adaptation is related to one of the worst droughts in 

Europe. During the 2003 drought, July temperatures went up to 6°C 

above long-term means, and precipitation was 50 percent below the 

average. This caused a reduction in Europe’s primary crop productivity 

that was unprecedented (Ciais et al., 2005). However, this reduction in 

crop productivity was much lower in Mediterranean countries because they 

were more adapted to dry and hot summers and using irrigation and 

drought-tolerant crops (Ciais et al., 2005). Adaptation to new climate 

circumstances is therefore important and beneficial. 

In summary, each animal and crop is adapted to grow under specific 

climate conditions. Yet, if the production takes place in less optimal 

environmental conditions, specific factors can be addressed to make sure 

that the farm is more adapted to its environment than it would be under 

natural circumstances. Farmers possess a wide range of adaptation 

options to improve the natural climate response function if some 

conditions are suboptimal. They can change their usual management 

strategies by changing the quantities or quality of their inputs (such as 

fertilizers, soil moisture, nutrients, and pesticides). Or, for instance, in 

response to seasonal changes in temperature and water, they can change 

their sowing or harvesting days. They might add new technologies or 

infrastructure to their farm such as irrigation or covers, or they can switch 

between different crops and animals. 

Switching between different crops and animals is considered a very 

effective way to adapt to climate change because the crops and animals 

continue to be grown in the environment to which they are most adapted. 

For example, sheep are less sensitive to water supply than cattle 

(Mendelsohn and Dinar, 2009), while chicken cannot survive if the 

temperature increases drastically. Figure 3 gives an example of switching 

farm activities to minimize decreases in yields due to climate change. The 

graph shows three different farm activities that produce optimal yields 
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under different temperatures or other environmental conditions. Wheat 

obtains the highest yield under a temperature of B, while corn obtains its 

highest yield at a temperature of D. If a farmer is currently situated in 

climate A, wheat will not yet have reached its optimal yield. If climate 

changes and temperature increases up to B, the farmer will obtain higher 

yields of wheat. However, beyond point B, the yield of wheat will drop. If 

temperature increases above point C, a farmer who maximizes his yields 

will switch from wheat to corn because the yields of corn are higher than 

the yields of wheat above a temperature of C. Adaptation therefore 

minimizes the loss of a high yield of wheat that would occur if the farmer 

persisted in growing wheat under the new climatic conditions. Finally, 

under the new climatic condition of temperature D, corn would be much 

more beneficial than wheat. 

 

Figure 3 – Comparison of single crop farms versus farms that adapt by 

switching between crops  
(Source: Mendelsohn et al. (1994)) 
 
As a result, simply modeling the natural agronomic or biophysical 

relationship as done by crop simulation models is not enough because 

human influences are not accounted for. Researchers should instead 

model the envelope of the most profitable adaptation options to see what 
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the response of farmers to climate change, and therefore the residual 

impact of climate change after adaptation has taken place, is. It is 

important to take into account “an infinite variety of substitutions, 

adaptations and old and new activities that may displace no-longer-

advantageous activities” when climate changes (Mendelsohn et al., 1994). 

Thanks to these adaptive responses, the decrease in yields might be much 

less rapid then would be the case in the natural crop environment 

(Mendelsohn et al., 1996). Ignoring these adaptation options and this 

farm adaptive behavior would imply the “dumb farmer assumption” 

(Rosenberg, 1992), meaning that the farmer would basically not respond 

at all to changes in the environment. This is incorrect as farmers have 

always adapted to changes in their environment. As a result, the 

relationship between climate and farm productivity should not depend on 

simply one crop or animal (Figure 1), but should look like Figure 3. If this 

human reaction to climate change is not taken into account, damages of 

climate change will be overestimated. When modeling the impact of 

climate change on agriculture, it is therefore important to take into 

account all the different adaptation options instead of merely looking at 

one crop or adaptation option in isolation. 

1.3. Modeling climate change impact and adaptation in agriculture 

The previous section highlights the important distinction between a farm-

raised plant and a naturally growing plant: a farmer possesses a 

significant number of management and adaptation options to break the 

natural link between climate and crop growth. As a result, when studying 

agriculture, it is important not to study one single crop, but to examine 

the sector as a whole. This reveals some major disadvantages of crop 

simulation models and other models discussed above. First of all, while 

the crop simulation approach gives very detailed results on climate 

sensitivity for individual crops and regions, the results are not easily 

generalized to wider regions as this would be geographically less precise 

(Mendelsohn et al., 2009). Moreover, both crop simulation models and 

empirical yield functions can only model one (or just a few) crop(s) at a 
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time and therefore cannot model crop switching (Wang et al., 2009). 

These methods assume that the same crops and animals will continue to 

be grown in the same regions, even if climate changes. Yet as indicated 

above, each crop and animal has an ideal climate in which it is grown, and 

crop and animal switching is therefore expected to be an important 

adaptation strategy in response to climate change.  

Not only is crop and animal switching not permitted by the method, 

adaptation in general is not accounted for. These models basically model 

the agronomic relationship itself and assume the behavior of the farmer is 

exogenous or fixed (Mendelsohn and Dinar, 2009). 

Alternatively, economic management models (also known as agro-

economic simulation models) can be used to model farm behavior 

(Mendelsohn and Dinar, 2009). Such models assume profit-maximization 

and look at which farm behaviors lead to the highest profits. 

Unfortunately, in practice it is too expensive to look at all alternative 

farming methods, and therefore these models do not capture the full 

range of farm adaptations (Mendelsohn and Dinar, 2009). 

The method used in this dissertation is the Ricardian method, which 

addresses the weakness of not taking into account a large range of 

adaptation options. The Ricardian method studies agricultural productivity 

or net income in a specific region (Mendelsohn et al., 1994). Yet, instead 

of directly looking at productivity or income, it uses data on land value. 

This is because of Ricardo’s observation that in a competitive market, land 

value or land rent reflects the present value of future net income for each 

farm (Ricardo, 1817; Seo and Mendelsohn, 2008b). As a result, land 

value, or the net present value of net income (𝑉), can be expressed as 

follows (Mendelsohn and Dinar, 2003; Wang et al., 2009): 

 𝑉 =  ∫[∑ 𝑃𝑞𝑖𝑄𝑖(𝑋𝑖 , 𝐿𝑖 , 𝐾𝑖 , 𝐶, 𝑍, 𝐺) − ∑ 𝑃𝑥𝑋𝑖 − ∑ 𝑃𝐿𝐿𝑖 − ∑ 𝑃𝐾𝐾𝑖]𝑒−𝜑𝑡𝑑𝑡 
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where 𝑃𝑞𝑖 is the market price of crop i, 𝑄𝑖 is the output or production 

function for crop i, 𝑋𝑖 is the vector of purchased inputs for crop i, 𝐿𝑖 is the 

vector of labor for crop i, Ki is the vector of capital for crop i, 𝐶 is the 

vector of climate variables, 𝑍 is the set of soil characteristics, 𝐺 is a set of 

economic variables, 𝑋𝑖 is the vector of purchased inputs for crop i, 𝑃𝑥 is the 

vector for prices of annual inputs, 𝑃𝐿 is the vector for prices for labor, 𝑃𝐾 is 

the rental price of capital, t is time, and 𝜑 is the discount rate. 

 

The explanatory variables in this equation can be divided into two groups: 

exogenous variables that are outside the farmer’s control (such as 

climate, market prices, and soil characteristics); and endogenous 

variables that are within the farmer’s control (such as farm inputs and the 

crop type chosen). The Ricardian model is derived from the previous 

equation by assuming that each farmer maximizes net income by 

choosing the optimal amount of all different endogenous variables that are 

within his or her control (𝑄𝑖, 𝑋𝑖, 𝐿𝑖, 𝐾𝑖) and by using land with the most 

suitable climate for the most profitable activity, subject to the exogenous 

conditions of each farm (𝑃𝑞 , 𝐶, 𝑍, 𝐺, 𝑅, 𝑃𝑥, 𝑃𝐿, 𝑃𝐾) that are outside the farmer’s 

control (Maharjan and Joshi, 2013; Mendelsohn et al., 1994). The 

resulting profit maximizing equation is therefore a reduced function that 

explains how exogenous variables determine variations in land value, and 

the value of the land is assumed to be the value of the most profitable use 

of the land (Mendelsohn et al., 2009). Variables such as labor, capital, and 

crop choice (that is, farm management tools to adapt to exogenous 

influences) are therefore not included in the regression because they are 

assumed to be optimized. 

 

As a result, because farmers adapt by matching farm management 

decisions (such as inputs and crop choice) to surrounding climate 

conditions, adaptation is implicitly captured. Because the Ricardian 

method is based on cross-sectional data, it can look at how farmers in a 

variety of climates response to their current environment. As such, the 
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method accounts for how farmers respond to climate change by 

comparing them with farmers in other climates (Mendelsohn et al., 1996). 

In order to do that, the method assumes that farms are already adapted 

to the environment they exist in (Mendelsohn et al., 2009). In this way, 

adaptation is taken into account as it is captured by the data and not 

because it is explicitly modeled. The advantage of this is that all 

adaptation options used by farmers in the dataset are taken into account, 

even if the researcher is not aware of them. 

 

1.4. Dissertation goals and outline 

As discussed in the previous section, the Ricardian method is capable of 

capturing the actual adaptive behavior of farmers in response to climate 

change (Blanc and Reilly, 2017). The method is popular because it is easy 

to estimate and because it yields geographically precise values 

(Mendelsohn, 2007), but it is mostly used because it is “the only method 

that accounts for full adaptation.” In addition, the adaptation captured by 

the model can be totally different than the adaptation modeled in 

controlled experiments because the farm practices and conditions in real 

life might be quite different from those in the experiments (Blanc and 

Reilly, 2017). As a result, today the method is the most commonly used 

microeconomic approach to assess the impact of climate change on 

agriculture and has been applied to different geographical contexts and 

scales (De Salvo et al., 2014). 

 

The Ricardian method’s strong point of capturing adaptation has to be 

treated with caution, however. This is because the Ricardian method 

captures adaptation in a “black box.” That is, it does not require the 

explicit modeling of adaptation options, making adaptation invisible and 

undefined. It merely observes yield or production outcomes instead of 

identifying adaptation options (Blanc and Reilly, 2017). This is shown in 

Figure 3, which illustrates how the method models the envelope of the 

most profitable adaptation options without explicitly distinguishing 

between them. The method just estimates one climate response function 
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and does not estimate the different climate responses of the different 

adaptation strategies separately. This implies that researchers, policy 

makers, and other practitioners that want to use the results of the method 

will have only limited evidence and knowledge on (1) which adaptation 

options are used or should be used by farmers, (2) how such adaptation 

options established themselves and what efforts and requirements were 

needed before they could be implemented, (3) whether implementation of 

such adaptation options is homogenous among different farmers, and (4) 

how farmers decide upon their adaptation choice. Because the traditional 

Ricardian method does not explicitly model adaptation, it only shows the 

regional agricultural climate sensitivity, and it gives little to no information 

on how to improve such climate sensitivity. 

 

Such knowledge on adaptation is necessary as adapting to climate change 

becomes more complex and expensive with increasing degrees of climate 

change (see Figure 4). The biggest benefits from adaptation are likely to 

result from more costly adaptation tools such as the expansion of 

irrigation of agricultural land and the development of new crop varieties 

(Rosenzweig and Parry, 1994). Such adaptations require significant 

investments from numerous stakeholders ranging from farmers to 

governments (Lobell et al., 2008). Yet, resources are scarce. It is 

therefore indispensable to direct resources “to those actions with greatest 

benefits” (Campbell et al., 2016). This implies that it is important to 

properly quantify the benefits of making adaptation-related investments. 

 

The fact that more information on adaptation itself is needed makes the 

Ricardian method less practical and useful for policy makers, as it does 

not provide adaptation insights. This is unfortunate, given the fact that the 

Ricardian cross-sectional method is currently one of the most commonly 

used methods to examine climate sensitivity. It is therefore important to 

improve the Ricardian cross-sectional method in such a way that 

adaptation becomes more explicit and that it becomes clear for policy 

makers which actions improve agricultural climate sensitivity. This  
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Figure 4 – Transitions in adaptation types in relation to climate change 

and complexity 
(Source: Silvestri (2014), adapted from Howden et al., 2010, and 
Vermeulen et al., 2013)) 
 

 

dissertation therefore focuses on contributing to the following research 

question, as well as the questions in the overview below: 

 

1. How can the Ricardian cross-sectional method be improved to 

make its results regarding climate change adaptation more 

defined and explicit for policy use? 

To answer this question, it is important to understand which 

characteristics and weaknesses of the Ricardian method cause barriers to 

better understanding and to taking action regarding adaptation. In the 

overview below, we present four weaknesses of the Ricardian method for 

which we suggest solutions in the following four chapters (see also Figure 

5). The methodological solutions suggested will provide insights for 

climate change adaptation policy. The geographical research field of this 
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dissertation is the EU. 

 

Figure 5 – Structure and content of this dissertation 
 

Chapter 2 – The first weakness of the Ricardian method that this 

dissertation addresses is that the Ricardian method does not explicitly 

define which adaptation options are accounted for. The theory of the 

Ricardian method says that the method accounts for all adaptation options 

covered by the dataset used for the analysis. This implies that each 

analysis based on a different dataset probably accounts for a different set 

of adaptation strategies. For instance, researchers using only data of 

potato farmers would limit the adaptation options in their dataset to 

potato adaptation strategies, and they would not account for all 

adaptation options; they would not allow these potato farmers to switch to 

other crops or types of agriculture like livestock. As a result, it is the 

dataset that determines which adaptation options are available to the 

farmers when estimating their climate response. A large, heterogeneous 

dataset with wide geographical coverage most likely contains a wider 
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range of adaptation strategies than a small, homogenous dataset with 

smaller geographical coverage. 

 

The key problem of the fact that adaptation is not visible and fluctuating 

depending on the dataset is that the Ricardian method has to make 

assumptions with regard to which adaptation options are available to 

which farmers. It does so by assuming that farmers in one location 

behave the same as farmers in a second location would if that second 

location were made to look like the first one. This implies that the method 

assumes that farmers at the same latitude, facing the same climate and 

other geographical factors such as soil and elevation, react similarly to 

climate change impacts. Translating this assumption to adaptation options 

means that the Ricardian method assumes that farmers at the same 

latitude have access to the same adaptation options. 

 

This assumption, however, might be too optimistic in the EU, as there are 

currently still sizeable socio-economic disparities and technology gaps 

between Western and Eastern Europe. The regions face significantly 

different pre-existing historical conditions, as Eastern Europe only 

switched from a plan to market-oriented economy in 1989 and entered 

the EU in 2004. These pre-existing conditions might highly affect 

countries’ capability to adapt, influence their adaptation decisions, restrict 

access to a wide range of adaptation options, and, therefore, make the 

residual impact of climate change worse than it could have been after 

adaptation has taken place (Lourenço et al., 2014). 

 

As such, a dataset of Western Europe, a dataset of Eastern Europe, or a 

dataset of the EU can be expected to contain different ranges of 

adaptation options. Depending on which dataset is used, climate 

responses might differ significantly because each dataset possesses 

different adaptation options. That is, if a dataset of the entire EU is used, 

the method assumes that all adaptation options in the dataset are 

accessible to all farmers. Due to pre-existing historical conditions between 
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Eastern and Western Europe, it might be wrong to assume that Eastern 

and Western Europe have access to the same adaptation options and 

consequently react in the same way to climate change. We therefore 

examine the following research question: 

 

2.1. Do Western and Eastern Europe have the same agricultural climate 

response? 

We will answer this question by comparing the climate responses of the 

different datasets (Eastern versus Western Europe versus the EU). Once 

this question is answered, we continue with a second weakness of the 

Ricardian method that is also related to the dataset used: the Ricardian 

method does not take into account future technological adaptation 

improvements. This is because the method only accounts for adaptation 

options that are currently available in the dataset, and future 

technological improvements are per definition not yet existing in the data. 

The fact that the Ricardian method does not take technological 

improvements into account is unfortunate for estimations of the impact of 

climate change on agriculture, as technological improvements will play a 

very important role in climate change adaptation. 

 

There are two types of technological development: (a) development due 

to existing technologies and knowledge in developed countries, and (b) 

development due to future technologies. In the case of developing 

countries or countries in transition, one can already partly take into 

account technological development by looking at existing technologies in 

developed regions. We therefore examine whether it is possible to 

improve the climate response of Eastern Europe by combining the range 

of adaptation options of Western Europe and Eastern Europe. Some 

adaptation options that are currently only used in Western Europe will 

suddenly become available in Eastern Europe. Our second research 

question therefore is the following: 
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2.2. Does the agricultural climate response function of Eastern Europe 

improve if we broaden its range of adaptation options? 

 

The answers to these two research questions (2.1 and 2.2.) will allow 

policy makers to decide whether Eastern and Western Europe need 

different climate change adaptation strategies. The original Ricardian 

method assumes that regions at the same latitude behave the same and 

therefore does not give insights with regard to potential differences 

between the eastern and western regions. With regard to the 

methodology, our approach allows the method to be applied in numerous 

regions and case studies all over the world, as it does not require 

additional data. This is a significant advantage of our modification. 

 

Chapter 3 – While answering questions 2.1 and 2.2, we observe that 

Eastern and Western Europe do not have access to the same adaptation 

strategies. However, apart from the fact that this conclusion was based on 

making specific geographical clusters based on historical conditions, there 

was no explicit measurement of the reason why adaptation differs 

between the regions. It is therefore important to explicitly capture the 

cause of the differences in the regions’ adaptation behaviors. 

 

There are differences in adaptation behavior between Western and 

Eastern Europe because adaptation comes at a cost. Numerous efforts are 

needed before a farm becomes an “adapted” farm. Before adaptation can 

take place, (farm) systems must possess the necessary set of natural, 

financial, institutional, and human resources, along with the ability, 

awareness, expertise, and knowledge to use these resources effectively 

(Brooks and Adger, 2005; IPCC, 2001). All the costs that go along with 

this process are generally termed “adjustment or transition costs” (Kelly 

et al., 2005). 

 

Unfortunately the Ricardian method is a comparative and not a dynamic 

analysis. It therefore ignores all the efforts and requirements that are 
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needed to go from the pre-adaptation equilibrium to the equilibrium where 

the farm is adapted. This not only leads to an underestimation of the 

impact of climate change on agriculture, but it also leads to the 

assumption that all farmers are equally capable of adapting to climate 

change, because the cost of adaptation is not accounted for. Yet, a 

farmer’s ability to adapt is highly influenced by resource access and 

adaptation costs, which vary (Berkhout et al., 2006; IPCC, 2014b; Kates, 

2000). “Adaptive capacity” (IPCC, 2001) is “the ability or potential of a 

system to respond successfully to climate variability and change, and 

includes adjustments in both behavior and in resources and technologies” 

(IPCC, 2007a). Adaptive capacity is influenced by characteristics such as 

information and skills, institutions, equity, technology, and economic 

wealth, among others (IPCC, 2007a). 

 

Given the fact that adaptive capacity is a requirement for both the design 

and the implementation of effective adaptation strategies (Brooks and 

Adger, 2005), differences in adaptive capacity will cause climate change 

effects to differ significantly between more- and less-developed regions. It 

is therefore important to identify what exactly are differences in adaptive 

capacity within Europe. In doing so, it is important to also look at 

heterogeneity within specific geographical clusters. That is, we should not 

merely compare Eastern versus Western Europe, but we should also look 

at differences in adaptive capacity within each of these regions. 

 

3.1. How do adaptive capacity levels differ within the European Union? 

Once we have an explicit measurement of adaptive capacity in the EU, we 

will use this measurement to examine explicitly whether the differences in 

climate response between Western and Eastern Europe (identified in 

chapter 2) can be explained by means of differences in adaptive capacity. 

By explicitly accounting for adaptive capacity, we make the Ricardian 

method more realistic because we no longer assume that all farmers have 

access to all the adaptation options in the dataset. Whether they have 
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access to the most optimal adaptation options depends on whether they 

have a level of adaptive capacity that is high enough to obtain and 

implement such adaptation options. As such, we examine the following 

research question: 

 

3.2. What is the effect of adaptive capacity on the impact of climate 

change on European agriculture, and how does it differ between different 

regions? 

Given the fact that adaptive capacity is only rarely quantified in climate 

change impact studies, the shape of the relationship between adaptive 

capacity and the marginal effects of climate change is not known. This 

information is important with regard to future investments that are 

needed. If the relationship is non-linear, certain thresholds might need to 

be surpassed before adaptive capacity indeed leads to a more beneficial 

climate response. Moreover, at a certain point, increases in adaptive 

capacity might not continue to improve agricultural climate response. It is 

important to be aware of such potential pitfalls. We therefore also 

examine the following question: 

 

3.3. What is the relationship between adaptive capacity and the marginal 

agricultural climate response? 

 

Chapter 4 – By answering questions 2.1 to 3.3, we show the importance 

of increasing adaptive capacity in order to allow adaptation to occur. 

Higher levels of adaptive capacity should lead to more positive climate 

responses. However, the truth is that greater adaptive capacity does not 

always automatically lead to adaptive action (Adger and Barnett, 2009; 

Moser and Ekstrom, 2010). Different farm characteristics influence the 

adaptation decision and implementation process, making farmers behave 

differently under similar circumstances. 

 

It is therefore important to examine specific adaptation options in more 
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detail to better understand how they are selected by farmers, and how 

they are implemented. This dissertation focuses on one specific type of 

adaptation: irrigation. Irrigation is currently already one of the primary 

mechanisms for agriculture to respond and adapt to climate change 

(Howden et al., 2007). With climate change causing more severe and 

more frequent drought events (Dai, 2012), the role of irrigation will 

become increasingly important. Especially in Europe, significant changes 

in irrigation are to be expected because currently approximately 85 

percent of European irrigated land is concentrated in the lower latitude 

Mediterranean area (Giannakis et al., 2016). However, irrigation is now 

also spreading to regions at higher latitudes due to climate-driven drought 

and water scarcity. This implies that investments in irrigation and water 

infrastructure are needed in a significant part of the EU. Insights in 

irrigation as an adaptation tool to climate change are therefore required. 

 

Looking at irrigation, however, it becomes clear that there is no such thing 

as “irrigation.” Farmers nowadays consider water management options 

across a spectrum that ranges from purely rain-fed farms to purely 

irrigated farms. In between the extremes, there are, among others, 

farmers that use supplemental irrigation on only part of their fields, 

farmers that apply conservation practices to store water in the soil, 

farmers that add more surface- or groundwater to their fields, and 

farmers that irrigate on a very frequent basis (Molden, 2007). This implies 

that two farmers who “irrigate” can have significantly different irrigation 

efficiencies and effectiveness, which might explain differences in their 

climate responsiveness. Not taking into account these farm-to-farm 

differences might unintentionally lead to inconsistent results regarding the 

impact of irrigated versus rain-fed farming, or regarding the farm decision 

process. For policy, this leads to uncertainties and confusion regarding 

which adaptation options should be used. We therefore examine the 

following research question: 
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4.1. Does ignoring the continuous spectrum from purely rain-fed to purely 

irrigated agricultural farms influence climate change impact results? 

 

Chapter 5 – In chapter 4, we show that the farm irrigation decision is not 

merely a “yes” or “no” decision determining whether to irrigate or not. 

Instead, the farm irrigation decision consists of a number of decisions 

concerning the irrigation technology, the water application rate, and the 

share of irrigated land. These decisions lead to a range of water 

management options that lead to a wide range of climate responses 

depending on the degree of adaptation. 

 

Given the large number of adaptation decisions a farmer can take, and 

given the fact that such decisions influence the farm’s climate response 

and sensitivity, it is important to gain more insight into the farm decision-

making process. Remarkably, however, only few studies examine farm 

irrigation decisions explicitly. And, the Ricardian method, as explained 

previously, does not explicitly model adaptation. Adaptation is implicitly 

accounted for and not revealed to the researcher. As such, the adaptation 

process is a “black box,” which makes it hard to better understand and act 

on it. 

 

The goal of this chapter is therefore to open this black box to better 

understand the farm irrigation decision process. However, before doing so, 

it is important to clearly set the scope of this chapter, as it is impossible to 

model all farm irrigation decisions. We therefore present a framework 

consisting of three levels. The first level captures the binary irrigation 

decision itself: will the farmer irrigate or not? A complication here is that 

farmers (and decision makers in general) make multiple decisions at the 

same time. In the case of irrigation, the decision to irrigate depends 

highly on water requirements, which depend on how much water a crop 

needs. As a result, the irrigation decision is dependent on the crop choice 

of the farmer. And, the farm crop choice in turn depends on how much 

water is available to a crop. This water availability and reliability depends 
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in its turn on the farm irrigation decision. As a result, the first level of the 

framework consists of a simultaneous irrigation-crop choice model, as 

both decisions are made simultaneously. Depending on this irrigation-crop 

decision, a number of successive decisions will be made in the second 

level of the framework. That is, if a farmer decides to irrigate, he will have 

to decide on the size of the irrigated land, adoption of different irrigation 

technologies, adjustments in water application rates for specific crops, and 

allocation of land to different crops. Finally, depending on all these 

choices, a farmer will face a conditional climate response in the third level 

of the framework. 

 

Ideally, this entire framework should be modeled as one mixed, 

simultaneous decision model in which all decisions are jointly modeled. 

However, this chapter will focus on only the first and the third levels of the 

framework. That is, we will estimate the farm’s simultaneous irrigation-

crop decision and its conditional climate response. This is done because 

estimating the entire framework at once would be computationally very 

challenging and data-intensive. In addition, we do not possess sufficient 

data to model the successive decisions in the second level of the 

framework. Furthermore, we are aware of at least one study (Olen et al., 

2016) that models such successive decisions (even though separately and 

not in a joint, simultaneous model). This study of Olen et al. (2016) 

suggests that researchers focus on building a mixed, simultaneous 

decision model that estimates the irrigation and crop decisions 

simultaneously, as currently the majority of researchers examining the 

farm irrigation decision do not take into account the simultaneous crop 

decision. We therefore focus on building a simultaneous irrigation-crop 

decision model. In doing so, we answer the following question: 

 

5.1. Does crop choice influence irrigation choice? 

 

The irrigation-crop decision model in the first level of the framework 

provides more information than only the relationship between crop and 
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irrigation choice. Given the fact that climate change is causing more 

periods of drought and higher levels of water scarcity, it is also important 

to examine how farmers choose adaptation options in response to such 

climatic changes. We therefore answer the following question: 

 

5.2. Do climatic influences increase a farm’s probability to opt for irrigated 

farming? And if so, how? 

 

Once it is determined how farmers make irrigation decisions, farmers can 

endogenously categorize themselves in one of the two decision categories 

(rain-fed versus irrigated farms). As such, it will be possible to compare 

the different conditional climate responses with one another to evaluate 

the effectiveness of the farm adaptation decision. 

 

5.3. Do irrigated and rain-fed farms have different climate response 

functions? And if so, how do the functions differ? 

 

Finally, it should be noted that accounting for irrigation in cross-sectional 

methods has been subject to numerous discussions in the past. A 

recurring question was whether traditional cross-sectional methods take 

into account irrigation properly and whether estimates are biased if 

irrigation is not modeled explicitly. We therefore also compare our model, 

which explicitly models irrigation, with the traditional model that does not 

explicitly model irrigation, and we answer the following question: 

 

5.4. Do traditional cross-sectional models properly capture irrigation? 

 

Conclusion – The final chapter of this PhD dissertation contains general 

conclusions and the answers to the above research questions. It discusses 

these findings regarding further research and policy implications.  
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CHAPTER 2.  

Do Western and Eastern Europe have the same agricultural climate 

response? – Taking adaptive capacity into account 

“Climate change increasingly poses one of the biggest long-term threats 

to investments.” – Christiana Figueres (UNFCCC) 

 

Abstract – This dissertation’s first sub-research question relates to the 

question to which extent differences in adaptation and investment efforts 

are needed in different European regions and whether it is possible to 

improve regional climate responses. Current cross-sectional 

methodologies measuring climate change impacts namely assume that 

regions at the same latitude face a similar climate response and therefore 

have the same adaptive capacity. This chapter proves that assumption to 

be erroneous in the European Union. It does so by ameliorating the 

Ricardian methodology by restricting which farmers (and therefore which 

adaptation options) are allowed in the dataset. In doing so, a comparative 

Ricardian methodology is suggested that makes it possible to examine, for 

the first time, how the climate responsiveness of a region changes if 

adaptive capacity changes. The chapter combines climate, soil, 

geographic, socio-economic, and farm-level data in a linear mixed-effect 

model and examines whether Eastern and Western Europe have the same 

climate responses and how these responses change if regional adaptive 

capacity increases. The results show that when both regions rely 

independently on autonomous profit-maximizing farm behavior, 

depending on the climate change scenario this leads to an almost 50 

percent loss in Eastern European land values compared to a 2–32 percent 

loss for Western Europe. This is because both regions do not have the 

same means to adapt to climate change. However, it is possible to 

improve the agricultural climate response function of Eastern Europe by 

broadening its range of adaptation options up to the same level as 

Western Europe. If Eastern Europe were to apply and implement the same 

adaptation options as Western Europe by 2100, it could avoid a 50–69 
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percentage points decrease in land value depending on the climate 

scenario. 

 

2.1. Introduction 

It is a striking statistic that between 2011 and 2013, agricultural labor 

productivity in Eastern Europe was only 19 percent of agricultural labor 

productivity in Western Europe (EC, 2013). This is despite investment of 

approximately 20 billion euro of European Union (EU) and national funds 

to modernize Eastern European agriculture between 2000 and 2012 

(Erjavec, 2012). Clearly, there continue to be sizeable socio-economic 

disparities and technology gaps between Western and Eastern Europe, 

even though Eastern European countries entered the EU as early as 2004 

(Swinnen and Vranken, 2009). In contrast with this slow transition 

process, the United Nations Environment Program (UNEP) points to the 

urgent need to close this type of technology gap in less-developed regions 

because climate change will have a disproportionate impact if their 

adaptive capacity does not increase quickly enough (IPCC, 2014b; UNEP, 

2014). Indeed, “those with the least resources have the least capacity to 

adapt and are the most vulnerable” (p.8) (IPCC, 2001). 

 

Nevertheless, most studies in this area have focused on the impact of 

climate change on agriculture in developed countries, not representing 

developing countries (Sanghi and Mendelsohn, 2008) or countries in 

transition such as those in Eastern Europe. Furthermore, studies that have 

looked at developing countries have ignored the technological 

development and steep learning curve those countries continue to face. 

Consequently, they are unable to distinguish climate change impacts from 

losses due to a lack of adaptive capacity. Although there has been a lot of 

criticism related to this ignorance of technological development, the 

criticism has failed to differentiate between (a) development due to 

existing technologies and knowledge in developed countries, and (b) 

development due to future technologies. However, in case of developing 

countries or countries in transition, one can already partly take into 
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account technological development by looking at existing technologies in 

developed regions. 

Related to this is the problem of large-scale agricultural climate change 

impact studies (e.g. Cline (2007)) ignoring East–West differences. In 

doing so, these studies assume that regions at the same latitude facing 

the same climate (and holding environmental and other factors fixed) 

have the same adaptive capacity or climate response, and thus face 

similar climate change impacts. This assumption is erroneous given that 

adaptive capacity is context-specific and differs from country to country 

(Smit and Wandel, 2006). In addition, adaptive capacity is not static; it 

changes over time. Therefore, both developed and developing countries 

can enhance their adaptive capabilities to cope better with climate change 

(IPCC, 2001). In this respect, Haddad (2005) noticed that adaptive 

capacity development paths in response to climate change are highly 

influenced by national socio-political aspirations and priorities. In the case 

of the European Union, it seems that the latest Common Agricultural 

Policy (CAP) reform is not sufficiently encouraging (Eastern European) 

countries to increase their rural climate change adaptive capacity. This 

could be due to the fact that differences in European adaptive capacity to 

climate change have not received significant attention, even though such 

attention is a prerequisite for understanding differences in adaptive 

capacities for successful targeting interventions (Vincent, 2007). 

The present paper examines these warnings for the EU by separating it 

into Eastern and Western Europe: a region in transition and a developed 

region, respectively. The most recent large-scale study of climate change 

impacts in Europe already examined Western Europe (Van Passel et al., 

2017). This paper builds on their work by testing whether Western and 

Eastern Europe have similar climate responses. We defined climate 

response using the Ricardian technique and ameliorated it in order to take 

into account differences in adaptive capacity. The Ricardian technique is a 

statistical cross-sectional regression method that measures the sensitivity 
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of comparable land values to climate and other factors by using historical 

data about existing farms that face different climate and soil conditions 

(Mendelsohn and Dinar, 2003; Mendelsohn et al., 1994). As a result, this 

method takes into account hidden human, climatic, agronomic and other 

mechanisms that have already been presented in the regional climates 

(Sanghi and Mendelsohn, 2008). The main advantage of the Ricardian 

technique, compared to other approaches, is that it takes adaptation into 

account in its estimations because farmers have already adapted to the 

climate in which they live (Mendelsohn et al., 2009). To date, however, 

the methodology has never distinguished between differences in adaptive 

capacity within the sample examined, or how the climate responsiveness 

would change if adaptive capacity increases. The present paper is the first 

to study farmers’ actual and potential climate response by estimating the 

same model twice, but using different datasets: the first dataset includes 

all Eastern and Western European farms, while the second dataset 

contains the same farms, but splits them in separate sub-datasets (one 

with only Eastern European farms and one with only Western European 

farms). In this way, the paper improves on the traditional Ricardian 

method and economically valuates the benefits of unlocking Eastern 

European potential adaptive capacity. As such, it provides an 

understanding of how climate change impacts could be moderated by 

increasing adaptive capacity.  

 

Sections 2–6 discuss (2) the Ricardian technique, its assumptions and this 

paper’s improvement; (3) the data and model estimation; (4) the 

empirical findings and projections of different climate scenarios; (5) the 

discussion; and (6) the conclusion. 

 

2.2. Methodology and modeling 

This section begins with a general overview of the Ricardian method and 

then clarifies how this paper’s approach is different from previous studies 

that have assumed farm development and adaptive capacity to be the 

same within regions at the same latitude or climate zone. 
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In its original form, the Ricardian model explains variation in land value 

per hectare of land in different regions (Mendelsohn et al., 1994). The 

method assumes that land value reflects the present value of future net 

income for each farm (Ricardo, 1817; Seo and Mendelsohn, 2008b). Net 

income (NI) of the farm can be described as follows (Mendelsohn and 

Dinar, 2003; Wang et al., 2009): 

 

 𝑁𝐼 =  ∑ 𝑃𝑞𝑖𝑄𝑖(𝑋𝑖 , 𝐿𝑖 , 𝐾𝑖 , 𝐶, 𝑍, 𝐺) − ∑ 𝑃𝑥𝑋𝑖 − ∑ 𝑃𝐿𝐿𝑖 − ∑ 𝑃𝐾𝐾𝑖 

  

where 𝑃𝑞𝑖 is the market price of crop i, 𝑄𝑖 is the output or production 

function for crop i, 𝑋𝑖 is the vector of purchased inputs for crop i, 𝐿𝑖 is the 

vector of labor for crop i, 𝐾𝑖 is the vector of capital, 𝐶 is the vector of 

climate variables, 𝑍 is the set of soil characteristics, 𝐺 is a set of economic 

variables, 𝑋𝑖 is the vector of purchased inputs for crop i, 𝑃𝑥 is the vector 

for prices of annual inputs, 𝑃𝐿 is the vector for prices for labor, and 𝑃𝐾 is 

the rental price of capital. 

 

The net present value of net income (𝑉) is as follows (Mendelsohn and 

Dinar, 2003; Wang et al., 2009):  

 

 𝑉 =  ∫[∑ 𝑃𝑞𝑖𝑄𝑖(𝑋𝑖 , 𝐿𝑖 , 𝐾𝑖 , 𝐶, 𝑍, 𝐺) − ∑ 𝑃𝑥𝑋𝑖 − ∑ 𝑃𝐿𝐿𝑖 − ∑ 𝑃𝐾𝐾𝑖]𝑒−𝜑𝑡𝑑𝑡 

  

where 𝑡 is time and 𝜑 is the discount rate. The Ricardian model is derived 

from the latter equation by assuming that each farmer maximizes net 

income by choosing the optimal amount of all different endogenous 

variables that are within his or her control (𝑄𝑖, 𝑋𝑖, 𝐿𝑖, 𝐾𝑖) and by using land 

with the most suitable climate for the most profitable activity, subject to 

the exogenous conditions of each farm (𝑃𝑞 , 𝐶, 𝑍, 𝐺, 𝑅, 𝑃𝑥, 𝑃𝐿, 𝑃𝐾) that are 

outside the farmer’s control (Maharjan and Joshi, 2013; Mendelsohn et 

al., 1994).  
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This profit-maximization assumption is the key to explaining how the 

Ricardian method takes adaptation into account: the method assumes 

that farmers in one location behave the same as farmers in a second 

location would if that second location were made to look like the first one 

(Lippert et al., 2009; Timmins, 2006). Referring to the example illustrated 

in the paper of Mendelsohn et al. (1994), this means that if a change in 

climate lowers the value of producing wheat, a profit maximizing farmer 

will adapt and switch to corn if these revenues are higher than those of 

wheat in the new climate. 

 

This knowledge of how adaptation is taken into account is indispensable to 

understand the strengths and limitations of the model. However, it is even 

more important to understand which adaptation options are taken into 

account. The Ricardian method, which corresponds to the idea of Hedonic 

Pricing of environmental attributes, automatically takes into account all 

possible adaptation options of which data of other farmers are available in 

the dataset (Lippert et al., 2009). Therefore, it is the dataset on which the 

Climate-Response Function is based that determines the size of the 

adaptive capacity available per farmer. All Ricardian papers acknowledge 

that this implies that the methodology is very optimistic with regard to 

climate change adaptation because it disregards transition costs and 

efforts. Nonetheless, we are not aware of a Ricardian paper that tests 

whether the dataset or chosen sample has an influence on the result and 

how this would change the climate response. Still, this is important to 

know in case certain regions in the study have no or less access to 

adaptation options that are available in the dataset anyway and are thus 

incorrectly assumed to be at the disposal of the region. 

 

Given that there are large differences between Eastern and Western 

Europe, this paper specifically tests the consistency and robustness of the 

European Climate-Response Function over different farmers at the same 

latitude and tests how the function changes if available adaptive capacity 

changes. This is done by comparing two models: a Single Climate-
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Response Model and a Double Climate-Response Model. The Single 

Climate-Response Model estimates one single overarching relationship, 

assuming that climate coefficients are the same for both Eastern and 

Western Europe. This means that all the Eastern and Western European 

farms in the dataset are taken into account to estimate the climate 

response. The Double Climate-Response Model repeats the Single Climate-

Response Model, but also allows climate coefficients to vary between the 

two regions. This is done by multiplying a dummy for Eastern and Western 

Europe by each variable. This implies that the Eastern European Double 

Climate-Response model is based entirely and only on the Eastern 

European part of the dataset, and the Western European Double Climate-

Response model is based entirely and only on the Western European part 

of the dataset. Therefore, the only difference between the Single and 

Double models is the datasets that they use. Thirdly, as an additional 

robustness test to further justify and test the results of the models, we 

applied the coefficients of the Double Climate-Response Model from one 

region to predict what would happen in the other region. In this way, we 

recognize that Eastern and Western Europe have a slightly different base 

climate. 

 

In order to address the question of whether Eastern and Western Europe 

have the same climate response, we do not compare Eastern and Western 

Europe directly. Instead, we compare the Single and the Double Climate-

Response Models with each other, which are identical apart from the 

dataset they use. If there is one consistent Climate-Response function in 

Europe, the Single and the Double Climate-Response Models should not be 

significantly different from each other. Nevertheless, for the control 

variables, we do compare Eastern and Western Europe directly by 

comparing the coefficients of the Double Climate-Response Model for each 

region. Finally, in order to answer the research question of how a regional 

Climate-Response function changes if its adaptive capacity increases, the 

response of one region in the Single model is compared with its own 

response in the Double model.  
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Independent of the dataset applied to the model, the profit-maximization 

assumption still implies that all the endogenous variables within the 

farmer’s control are optimized and that the Ricardian model therefore only 

consists of a set of exogenous variables that affect the future net value of 

net income (NI*), and thus land value (𝑉). 

 

 𝑁𝐼∗ = 𝑓(𝑃𝑞 , 𝐶, 𝑍, 𝐺, 𝑅, 𝑃𝑥, 𝑃𝐿, 𝑃𝐾) 

 𝑉 = 𝛽0 + 𝛽1𝐶 + 𝛽2𝐶2 + 𝛽3𝑍 + 𝛽4𝐺 

  
These exogenous variables can be grouped in three subgroups: climate 

variables (C), exogenous control variables (Z) and socio-economic 

variables (G). For the first subgroup, (C), we use temperature and 

precipitation to describe climate. These climate data are averaged into 

four seasons because there is a high correlation in climate data from 

month to month. Linear and quadric terms are introduced for both 

temperature and precipitation since earlier field studies proved the non-

linear nature of the net revenue function (Mendelsohn and Dinar, 2003; 

Mendelsohn et al., 1994). Due to the quadratic climate term, the marginal 

impact of a climate variable i on the value of farmland depends upon the 

level of the climate, Ci, in which the farm is already located (Mendelsohn 

et al., 2009). Therefore, interpreting the climate coefficients should be 

done by interpreting the marginal effect of climate change (determined 

separately for precipitation (p) and temperature (t)) for season i (MEi)), 

which is calculated as follows: 

 

 𝑀𝐸𝑖 =
𝜕𝑉

𝜕𝐶𝑖
= 𝛽1,𝑖+2𝛽2,𝑖𝐶𝑖 

  

The annual average marginal effect (MEt and MEp) is derived from the 

previous by taking the sum of the average seasonal marginal effects. 

When presenting the marginal effects, we weighted the average results by 

a weight reflecting the total amount of farmland that each farm represents 

in its region. This implies that the marginal effects as presented in this 
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paper can be interpreted as the percentage change in 1 hectare land value 

of a certain region associated with an increase of 1 °C in temperature for 

MEt or an increase of 1cm/mo in precipitation for MEp. 

Having estimated the Ricardian model, we can calculate what the 

estimated value of the land under the new climate will be (𝐶1) and 

compare this with the current climate (𝐶0). The difference between the 

two is the change in welfare (∆𝑊) after climate has changed from 𝐶0 to 𝐶1 

(Mendelsohn et al., 2009). GCM models can be used to calculate this non-

marginal climate change impact. 

 

In this paper specifically, when comparing the Single and the Double 

Climate-Response, above all, the marginal effects of climate have to be 

examined before interpreting climate change impacts from the GCM 

models. This is important because changes in climate are slightly different 

in Eastern and Western Europe. The marginal effects allow us to compare 

the same increase in temperature and precipitation over both Eastern and 

Western Europe. This allows for an interpretation of possible differences 

between the Single and the Double Climate-Response Models that are not 

related to differences in climate change. We can then draw, ceteris 

paribus, conclusions for climate change scenarios that differ between the 

regions. 

 

Finally, land value was not only influenced by a group of climate variables, 

but also by a group of exogenous control variables and socio-economic 

variables. These are needed in order to isolate climate factors from fixed, 

unmeasured and climate-correlated factors (Chen et al., 2013). Because 

land values are used, it is necessary to account for population density, 

GDP per capita, elevation, and distance to ports and cities to control for 

market access for farm products and the opportunity cost of land 

utilization (Chen et al., 2013). In addition, different soil characteristics 

must be controlled for because these undoubtedly have an influence on 

productivity. Finally, since the paper is on a continental scale, it is also 

important to control for continental influences. A special concern in Europe 
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is whether the EU Common Agricultural Policy (CAP) distorts climate 

sensitivities. Therefore, we also control for CAP subsidies at the farm 

level. These subsidies have a linear effect on land value because they are 

decoupled from production in order to reinforce market orientation and to 

improve environmental and social conditions (Schmid et al., 2007). 

 

2.3. Data and estimation method 

In this section we explain which data and estimation methods are used. 

With regard to the farm-specific data (agricultural land value, subsidies 

and land rented), we relied on farm accountancy data collected in 2007 by 

the FADN (Farm Accountancy Data Network) (FADN, 2014). FADN 

provides farm-specific measures of approximately 80,000 farm holdings in 

the EU-27, which represent nearly 14 million farms with a total utilized 

agricultural area of about 216 million hectares. FADN data are collected 

uniformly and consistently over Europe, which is important in order to 

correctly compare different regions. The USD–Euro exchange rate 

fluctuated in 2007 between 0.672 and 0.770 Euro per 1 USD (ECB, 2016). 

 

For privacy reasons, it is not possible to link these farm holdings to unique 

locational coordinates, but they can be linked to the different NUTS3 

(Nomenclature of Territorial Units for Statistics regions) in the EU. These 

are homogenous geographic units across all European countries that are 

identified by the EU. We used a sample of 60,563 commercial farms that 

utilize 5,470,490 hectare of farmland and cover by stratification 54 

percent of all agricultural areas in the EU-27, situated in 1143 NUTS3 

regions. Consequently, the farm sample data are clustered within different 

countries, which means that our dataset has a nested structure. This can 

lead to random effects that influence the variance of the dependent 

variable because the agricultural land values of observations in the same 

country may be more related to each other than to agricultural land 

values of observations in other countries (Crawley, 2007). Especially for 

this study, due to this large geographic dispersion, and given that there 

are multiple unmeasurable differences between Eastern and Western 
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Europe, it is important to take into account the added variation caused by 

the differences between the countries. This study uses the Linear Mixed 

Effect Model (LME), which consists of fixed effects (that are equivalent to 

the Ordinary Least Squares estimates), and random country effects that 

make it possible to take into account differences between countries by 

allowing for a random shift around the intercept. This implies that the 

model assumes that the variation around the intercept is normally 

distributed for each country and with a certain variance (Zuur et al., 

2009). As such, the LME model creates underlying different intercept 

values that capture the differences between the different countries. 

Alternatively, we could have used 25 country dummy variables to build a 

country fixed-effects model, but this would have cost 24 degrees of 

freedom and the results are almost identical to the results of the LME 

Model. This implies that national influences are captured by the model, 

while the paper’s models still have to control for regional or individual 

influences on land value. The LME model is estimated by means of the 

Restricted Maximum Likelihood (REML). Finally, it should be noted that we 

can use a unique and large dataset, which has a positive influence on the 

robustness of the model with respect to capturing unmeasurable 

influences on land value. 

 

Furthermore, the paper corrects for non-normality by taking the log 

transformation of the dependent variable. This is also suggested by 

Massetti and Mendelsohn (2011b) and Schlenker et al. (2006) since land 

values are log-normal. In addition, each farm is weighted using the total 

amount of owned agricultural land in that farm to further control for 

heteroskedasticity. Finally, outlier tests were conducted. The open 

software R was used to run the regression model and graph the results (R 

Core Team, 2014).  

 

All of the information about fixed effects (climate and control variables) is 

linked on the NUTS3 level. The baseline climate should be representative 

for the recent average climate in the study region and should be of a 



Chapter 2 

40 
 

sufficient duration to encompass a range of climatic variations (Carter and 

La Rovere, 2001). This study uses the 30-year normal period for 

temperature and precipitation from 1961–1990 from the Climatic 

Research Unit (CRU) CL 2.0 (New et al., 2002). These long-run climate 

estimates are stable.  

 

Soil data come from the Harmonized World Soil Database, a partnership of 

Food and Agriculture Organization (FAO), the European Soil Bureau 

Network, and the Institute of Soil Science (FAO/IIASA/ISRIC/ISSCAS/JRC, 

2009). Additional socioeconomic and geographic variables (population 

density, distance from urban areas, distance from ports, mean elevation, 

elevation range and GDP per capita) were obtained from EuroGeographics 

Natural Earth Data, the World Port Index, ESRI and Eurostat, respectively 

(ESRI, 2014; EuroGeographics, 2014; Eurostat, 2016; National 

Geospatial-Intelligence Agency, 2014; Natural Earth, 2014). An overview 

and detailed description of all model variables and sources can be found in 

Appendix A. An overview of the distribution of the sampled farm land that 

we used can be found in Appendix B. 

 

Once the Single and the Double Climate-Response Models had been built, 

we determined the marginal effects of temperature and precipitation and 

used Wald chi-square tests (comparable with F-tests in country fixed 

effects models) to compare both models and to test whether the climate 

responses of both models differ significantly. We then used the estimated 

parameters of the Ricardian regression to simulate impacts from future 

climate change. This is done based on plausible climate change scenarios. 

A common method to develop climate scenarios is to use the output of 

Global Climate Model experiments (Carter and La Rovere, 2001). To 

construct GCM-based climate change scenarios, an emission scenario that 

predicts atmospheric greenhouse gas and aerosol concentrations should 

be chosen (Goodess, 2014). This paper uses GCMs that are used in the 

AR4 and that use the well-known IPCC-approved A2 SRES scenario 

(Nakicenovic et al., 2000): the ECHO-G (Legutke and Voss, 1999) and 
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NCAR PCM (Washington et al., 2000) climate models for 2071-2100. 

These two climate scenarios represent a moderate and a mild possible 

change in climate, respectively. The mean temperature and precipitation 

in Eastern and Western Europe of each scenario can be found in  

Appendix A. 

 

Mean differences between the control climate and the future climate are 

calculated from these climate models (Carter and La Rovere, 2001). The 

standard approach in climate science literature is then to add these GCM 

projections of regional climate change of the control period to the 

subregional baseline. This method preserves subregional variation and 

avoids regression toward the mean is avoided (Fisher et al., 2012). Ratios 

(future climate/control climate) are used for temperature variables, 

differences (future climate minus control climate), and for precipitation 

variables (Carter and La Rovere, 2001). Finally, the climate generated by 

GCMs is attributed to each NUTS3 region centroid by interpolating the four 

closest grid points of the GCM scenario using inverse distance weights. 

 

2.4. Results 

This section presents the two regressions that have been modeled in this 

paper and introduced in section 1 (see Table 1). Both regressions consist 

of the same variables; however, unlike the Single Climate-Response 

Model, the Double Climate-Response Model allows the climate response in 

Europe to differ between Eastern and Western Europe. This is done by 

means of an interaction between each variable and a dummy indicating 

whether the farm is located in Western or Eastern Europe. As such, in the 

Double Climate-Response Model, the coefficients of Eastern Europe are 

estimated using the Eastern European part of the dataset, and the 

coefficients of Western Europe are estimated using the Western European 

part of the dataset. In the Single Climate-Response Model, the climate 

response of Eastern and Western Europe is assumed to be identical and 

therefore estimated using one dataset combining all Eastern and Western 

European farms. 
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Comparing both models as a whole, the ANOVA test gives a Chi square 

value of 2208.8, which implies a significant difference between the Single 

and the Double Climate-Response Models. Looking specifically at the 

 

Table 1 – Single and Double Climate-Response Mixed Effect Regressions 
  Single Double Climate-Response 

  a) East + West b) East c) West d) Difference 

    Coef     Sig St Er     Coef    Sig St Er   Coef     Sig St Er    Coef     Sig 

(Intercept) -0.822    0.524 -0.966    2.331 2.955    2.398 3.921    

T Winter -0.010    0.017 -0.511 *** 0.049 -0.017    0.021 0.494 *** 

T Winter² 0.002 *  0.001 -0.021 **  0.009 0.006 *** 0.001 0.027 *** 

T Spring 0.223 *** 0.033 1.565 *** 0.141 0.082 *  0.044 -1.484 *** 
T Spring² 0.018 *** 0.002 -0.054 *** 0.009 0.025 *** 0.002 0.079 *** 

T Summer 0.414 *** 0.061 -2.143 *** 0.349 0.446 *** 0.075 2.589 *** 

T Summer² -0.019 *** 0.002 0.043 *** 0.010 -0.018 *** 0.002 -0.06 *** 

T Autumn 0.144 **  0.060 1.065 *** 0.304 0.338 *** 0.069 -0.727 **  

T Autumn² -0.015 *** 0.003 -0.031 **  0.015 -0.026 *** 0.003 0.005    

P Winter 0.055 *** 0.015 -0.026    0.116 0.110 *** 0.016 0.136    

P Winter² 0.001    0.001 0.017    0.013 0.000    0.001 -0.017    

P Spring -0.218 *** 0.025 -0.197    0.136 -0.202 *** 0.029 -0.005    

P Spring² 0.008 *** 0.001 -0.006    0.012 0.006 *** 0.002 0.012    

P Summer 0.130 *** 0.018 -0.438 *** 0.076 0.115 *** 0.020 0.552 *** 
P Summer² 0.000    0.001 0.024 *** 0.004 0.002 *  0.001 -0.022 *** 

P Autumn 0.145 *** 0.014 -0.022    0.095 0.127 *** 0.015 0.149    

P Autumn² -0.011 *** 0.001 0.002    0.007 -0.011 *** 0.001 -0.014 *  

Elev range -0.017    0.011 0.002    0.036 -0.011    0.012 -0.013    

Elev mean 0.204 *** 0.045 0.732 *** 0.176 0.018    0.049 -0.714 *** 

Subsidies 0.431 *** 0.016 -0.003    0.050 0.464 *** 0.017 0.467 *** 

Distance ports -0.900 *** 0.051 -1.104 *** 0.106 -0.563 *** 0.072 0.541 *** 

Distance cities -0.701 *** 0.073 0.057    0.178 -0.953 *** 0.085 -1.009 *** 

Pop density 0.498 *** 0.033 -0.366 **  0.159 0.476 *** 0.034 0.842 *** 
GDP/inhabitant 0.003 *** 0.001 0.046 *** 0.005 0.001    0.001 -0.044 *** 

Freight 

transport 0.003 *** 0.001 0.011 

**  

0.004 0.003 

*** 

0.001 -0.007 

   

Rented land 0.130 *** 0.014 0.485 *** 0.023 -0.084 *** 0.018 -0.569 *** 

pH 1.191 *** 0.104 5.294 *** 0.301 0.163    0.121 -5.131 *** 

pH squared -0.075 *** 0.008 -0.410 *** 0.023 0.010    0.010 0.42 *** 

Gravel -0.009 *** 0.003 0.022 **  0.009 -0.037 *** 0.003 -0.059 *** 

Silt -0.013 *** 0.002 0.018 *** 0.004 -0.022 *** 0.002 -0.039 *** 

Sand -0.013 *** 0.001 0.004 *  0.002 -0.022 *** 0.001 -0.026 *** 

AIC 195204 193253 

BIC 195501 193830 
Random effect  

1.397 0.8347 1.150 1.039 countries  

(Std. Dev) 

Random effect  

5.011 5.0272 4.875 4.922 residual  

(Std. Dev) 

ICC   0.038   0.027   0.053  

Std. Dev (ICC)   0.002   0.007   0.003  

Number  

of farms 60563 18577 41986 60563 

***p<0.01,**p<0.05,*p<0.1 

 

Double Climate-Response Model, using the Wald chi-square test to 

determine whether the Eastern European coefficients are jointly 
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significantly different from the Western European coefficients gives a 

value of 2229.2, indicating a significant difference between the two 

regions. 

 

2.4.1. Control variables 

For both models and regions, most of the control variables have the 

expected signs: higher GDP per capita, smaller distance from cities and 

ports, higher subsidies and a higher pH value, and a positive impact on 

land values. However, when comparing Western and Eastern Europe in 

the Double Climate-Response Model, it must be noted that subsidies do 

not significantly influence Eastern European land values. This could imply 

that subsidies have been spent on unproductive farms (Mendelsohn and 

Reinsborough, 2007). Furthermore, distance from cities does not have a 

significant impact for Eastern Europe. It should also be noted that a higher 

share of rented land has a negative impact on land values in Western 

Europe, but a positive impact in Eastern Europe. There are different and 

diverging explanations for this, which differ between and even within 

countries. In general, in Western Europe it is assumed that farmers who 

are owners of their agricultural land are more willing to invest in and 

improve their land value. However, this argument is not applicable to 

Belgium, for instance, where tenants are highly protected by the national 

land rental policy (Swinnen and Vranken, 2009). Due to the favorable 

rental conditions in Belgium, farmers are more inclined to rent a portion of 

their utilized agricultural area since it would leave them more capital for 

investments. Nevertheless, unlike Western Europe, renting agricultural 

land is established mostly in Eastern Europe for numerous reasons: for 

instance, imperfectly working capital markets may mean that financing of 

land purchases is an issue. Renting land could also prevent capital from 

being tied up in land that cannot be freed for investments in farm-specific 

assets or new technologies, and transaction costs for land sales are high 

(Ciaian et al., 2012). Moreover, land reforms in Eastern Europe have 

involved land restitutions to individuals who are not active in agriculture. 

Therefore, land-owners may use land for reasons other than production, 
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such as for storing wealth or for speculative purposes. Therefore, rental 

markets play a key role in the exchange of land from less to more 

productive land users, which explains the positive sign of the coefficient 

for Eastern Europe. With respect to soil type, gravel, silt and sandy soils 

tend to be slightly harmful in Western Europe, but beneficial in Eastern 

Europe. As expected, a location at a higher altitude has a positive impact 

on land values as well. Finally, with respect to the random effects, there 

are two sources of random variation: one between countries, and one for 

farms within a country (Larget, 2007). The variance for the random 

intercept is (1.150²) 1.323 for Western Europe and (0.835²) 0.697 for 

Eastern Europe. This explains how much variability there is between farms 

over all countries. This means that the average relationship can be shifted 

for each country by something that is normally distributed with a variance 

of 1.323 for Western Europe and 0.697 for Eastern Europe. When 

comparing the variance of Eastern and Western Europe, it can be seen 

that the differences between farms in Eastern European countries is 

smaller because their variance is smaller. On the other hand, the residual 

variance is (4.875²) 23.763 for Western Europe and (5.027²) 25.273 for 

Eastern Europe. This explains the amount of variability there is within the 

different countries. In this case, it can be seen that within distances 

between farmers are larger in Eastern European countries than in Western 

European countries. 

 

2.4.2. Climate variables 

The variables of key interest for this paper are the climate variables. It is 

clear from column D of Table 1 that it is fundamentally wrong to assume 

that farmers in Western Europe behave the same as farmers at the same 

latitude in Eastern Europe. Twenty-two of the 31 variables, 10 of which 

are climate variables, differ significantly between Eastern and Western 

Europe. The Wald chi-square test confirms that all the temperature 

variables (Chisq = 528.65), and all the precipitation values (Chisq = 

371.89), and all the precipitation and temperature variables combined 

(Chisq = 880.91), jointly differ significantly each time at the 1 percent 
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level between Eastern and Western Europe. Clearly, there is (currently) no 

such thing as a European response to climate change and it is crucial to 

acknowledge this when applying the Ricardian method to the model.  

 

Therefore, we look in more detail below at the direction of the differences 

between the traditional Single Climate-Response Function, which does not 

sufficiently acknowledge differences between farmers at the same 

latitude, and the Double Climate-Response Function, which distinguishes 

clearly between regions at the same latitude. This means for Western 

Europe, comparing column A with column C, and for Eastern Europe 

comparing column A with column B from Table 1. Starting with Western 

Europe, it can be concluded that, when comparing the Single and the 

Double Climate-Response, there is no significant difference for the 

Western European region between the two models. For Eastern Europe, 

however, these conclusions cannot be drawn: comparing the Eastern 

European Single Climate-Response with its Double Climate-Response 

indicates that the Double Climate-Response is more volatile than the 

Single Climate-Response. 

 

These two findings are confirmed when looking at Table 2 and Table 3. 

Table 2 presents the average regional marginal temperature and 

precipitation effects on land value for Eastern and Western Europe. It 

shows the percentage change in land value when temperature increases 

by 1°C, or when precipitation increases with 1 cm per season. 

Independent of the model chosen, both regions suffer from increases in 

summer temperatures. This is because warmer summers stress crops and 

livestock, while warmer springs are beneficial since they lengthen the 

growing seasons. However, even though the direction of the response is 

the same, it is clear that the Eastern European response is more volatile in 

the Double Climate-Response Model than in the Single Climate-Response 

Model, while for Western Europe both models give very similar results. 
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Table 4 – Percentage change in land value 
(%/ha per scenario)  

   
NCPNAR ECHOG 

Single climate-response 
East 0.029 0.214 

West -0.012 -0.325 

Double climate-response 
East -0.496 -0.472 

West -0.017 -0.317 

 

However, interpreting the average MEt (Table 2) does not provide a good 

view on the climate response of the different countries because it does not 

show the within differences (the high positive impacts of the Northern 

countries (Estonia, Latvia, and Lithuania) averages out the negative 

impacts of the Southern regions). In Table 3, on the other hand, both the 

MEt and MEp for the Double and the Single Climate-Response are 

presented, together with a ranking from the lowest marginal effect (1) to 

the highest marginal effect. These results are also visualized at NUTS3 

level for the annual marginal effect of temperature in Figure 6a. With 

regard to Western Europe (both the Single and the Double Climate-

Response Models), the marginal effects lie relatively close to each other. 

In the Double Climate-Response Model for Eastern Europe the Northern 

countries (Estonia, Latvia and Lithuania) enjoy significantly higher benefits 

from an increase in temperature than in the Single Climate-Response 

Model. These differences decrease in the Single Climate-Response Model 

and the impacts lie closer together.  

 

Therefore, Table 3 and Figure 6a clearly confirm our findings from Table 1. 

Looking at the Single Climate-Response Model, the marginal impacts of 

climate in Eastern and Western Europe are very similar to each other. 

However, when looking at the Double Climate-Response Model, the two 

regions behave quite differently: Western Europe responds similar to 

climate change as in the Single model, while Eastern European countries 

face a more negative impact than in the Single Climate-Response Model.  
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Figure 6 – Percentage change in land value: MEt, NCPNAR & ECHOG  
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Finally, the above results show that individual differences between 

countries need to be taken into account as well since marginal climate 

effects differ over Europe because of differing initial conditions. Therefore, 

we have verified that the base climate, which slightly differs in both 

regions, does not influence the marginal impacts. Using the Western 

European coefficients of the Double Climate-Response Model to predict 

what would happen in the Eastern European climate shows that Eastern 

Europe would react in a similar way to how Western Europe would. Both 

the marginal impact of temperature (14.05 percent) and precipitation (12 

percent) increase in Eastern Europe when the Western European 

coefficients are used. For Western Europe, on the other hand, if the 

climate response of Eastern Europe (in the Double Climate-Response 

Model) is applied to the Western European climate, the marginal effect of 

temperature and precipitation both decrease. Comparing the marginal 

effect of Eastern Europe in the Single Climate-Response Model (13.6 

percent) and the marginal effect of Eastern Europe when the climate 

response of Western Europe in the Double Climate-Response Model is 

used (14.05 percent) highlights the fact that the base climate is not 

causing significant bias to the previous conclusions. 

 

2.4.3. Future welfare changes 

Having proven that the Single and the Double Climate-Response Model 

differ significantly from each other and give different climate impacts 

under the same increase in temperature and precipitation, we now 

examine how these climate impacts change when GCM-based climate 

change scenarios are applied to the models. Using the NCAR PCM (mild 

climate change) and the ECHO-G (moderate climate change) scenario, this 

section determines for each of the regressions the new land value after 

climate change has taken place according to each scenario. Table 4 

displays the percentage differences between the future land value 

estimates and the current climate estimates for each type of this paper’s 

regressions. This is also visualized in Figures 6b and 6c. 
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In the NCAR PCM scenario, precipitation increases on average by 1.2 cm 

per year, and temperature increases by 3.1 °C per year in Eastern Europe. 

In Western Europe, temperature increases on average by 2.8 °C and 

precipitation decreases by 0.2 cm per year. Comparing the Single and the 

Double Climate-Response, it is clear that the same climate change 

scenario causes a more negative impact in Eastern Europe in the Double 

Climate-Response Model than in the Single Climate-Response Model. For 

Western Europe, decreases in land value are slightly under 0 percent 

depending on which regression is taken, but there is no significant 

difference between both models. 

 

If the ECHOG scenario would occur, average increase in rainfall would be 

0.6 cm less than in the NCAR PCM scenario, while the temperature 

increases by an additional 1.6 °C. For Western Europe, on the other hand, 

total rainfall decreases by 1.3 cm and temperature increases by 4.11 °C 

compared to the current climate. Land values in Western Europe would 

decrease by about 32 percent, independent of which regression is taken. 

For Eastern Europe, the same conclusions can be drawn as in the NCAR 

PCM scenario: if the Single Climate-Response is assumed to be the correct 

one, Eastern Europe benefits on average from climate. Otherwise, it faces 

decreases in land value of up to 47 percent. 

  

Therefore, the same change in climate in Eastern Europe causes 

significantly different impacts under both models. As such, it can be 

concluded that under the Single Climate-Response Model, Eastern Europe 

is better off than under the Double Climate-Response Model. 

 

2.5. Discussion 

The impacts determined by the Single and the Double Climate-Response 

Model clearly differ significantly between Western and Eastern Europe. 

Therefore, there is (currently) no common European climate response. 

Firstly, this raises two questions: what explains the differences between 

the two models, and which of the two models should be used for further 
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studies. 

 

The difference between the Single and the Double Climate-Response 

Models is explained by the differences in datasets that they used. This is 

because the Ricardian technique only accounts for adaptation options that 

are observed in the dataset. For the Double Climate-Response Model, the 

paper allowed the model parameters to differ between Eastern and 

Western Europe. Therefore, the model looks independently at Eastern and 

Western Europe, which means that for each region there is one inventory 

of potential adaptation options, each with the technologies and knowledge 

of that region. Since the variation in Eastern European farms is smaller, 

and since agriculture is less developed, modernized, and capital-intensive 

than in Western Europe, the inventory of potential Eastern European 

adaptation options is smaller in the Double Climate-Response Model than 

in the Single Climate-Response Model. This is undoubtedly caused by 

institutional and societal differences that influence the development 

options of regional agriculture. Therefore, the negative impact of climate 

change is overestimated in the Double Climate-Response Model because 

multiple plausible adaptation options, which already exist in Western 

Europe, are not taken into account. Moreover, after unifying with the 

European Union, Eastern European countries are continuing to re-adjust 

their institutions according to Western European templates and Eastern 

European farmers have access to EU farm subsidies. 

 

As such, looking at the Single Climate-Response Model, where all 

coefficients are assumed to be identical for Eastern and Western Europe, 

implies looking at a model that assumes the convergence of Eastern 

Europe to the Western European societal, economic, political and 

institutional model has been completed. Therefore, in the Single Climate-

Response Model, the adaptive capacity of Eastern Europe is much larger 

because plausible adaptation options available in Western Europe are 

assumed to be as well available in the adaptation inventory of Eastern 

Europe. Consequently, the Single Climate-Response Model looks at one 
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combined inventory of potential adaptation options of both Western and 

Eastern Europe together. However, this is overly optimistic at the moment 

because before Eastern Europe gains access to the same level and 

quantity of adaptation options as Western Europe, complex behavioral, 

technical, societal and institutional costs and adjustments at all levels of 

the society are required (Downing et al., 1997; Tol et al., 2004). Such a 

transformation cannot take place overnight and it is not clear how long 

the convergence process will take. Nevertheless, the Ricardian model, 

when taking adaptation into account, only assumes optimal autonomous 

adaptation at the local, farm-scale level, without looking at the broader 

contexts (such as agricultural and trade policies, policy intervention) or 

acknowledging the dynamic processes needed to go from the current 

equilibrium to the new equilibrium (Kelly et al., 2005; Lippert et al., 2009; 

Polsky and Easterling III, 2001). This observation is key to correctly 

interpreting and using the results of this study. 

 

2.5.1. Policy implications 

Ultimately, both models should be looked at simultaneously on a resilience 

scale from the current Double Climate-Response where Eastern Europe 

has a significantly lower adaptive capacity, to the most optimal Single 

Climate-Response where Eastern Europe benefits from the same adaptive 

capacity as Western Europe. As such, the Double Climate-Response Model 

represents the case in which there is no adaptation transfer from Western 

Europe to Eastern Europe and it is clearly the most pessimistic model on 

the resilience scale. Therefore, the adaptive capacity in the Double 

Climate-Response Model can be defined as independent and autonomous 

profit-maximizing farm behavior. On the other hand, the Single Climate-

Response Model represents the most optimistic model on the resilience 

scale. This model represents the currently locked, potential adaptive 

capacity of Eastern Europe, which only becomes available if Eastern 

Europe is capable of implementing Western European adaptation 

technologies and the necessary accompanying institutional transformation.  
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One of the plausible reasons why adaptation is currently more difficult in 

Eastern Europe than in Western Europe can be found in the currently 

already existing adaptation deficit that most of these countries are facing 

regarding the current climate (Fay et al., 2010). Comparing gross value 

added or crop yield per farm across the EU-27 shows that most Eastern 

European farms are still not yet obtaining the yields they could potentially 

achieve (Giannakis and Bruggeman, 2015; Supit et al., 2010). This can be 

explained by the passed centralized input-focused over-specialization, 

which has “left the sector unprepared to adapt to knowledge-based 

farming better suited to a world of constrained resources” (p.110) (Fay et 

al., 2010). While market principles are now predominant all over the 

European Union, and while Eastern Europe made a lot of progress to close 

the gaps, the countries in this region continue to face significant socio-

economic setbacks that decrease the countries’ options to respond to the 

current and the future climate. 

  

Nevertheless, yields, economic performance, competitiveness, and thus 

the adaptive capacity of agriculture can be increased by increasing levels 

of gross fixed capital formation (GFCF). The GFCF measurement indicates 

how much of the value added in agriculture is invested rather than 

consumed (European Commision, 2014). In 2011, 90 percent of the EU-

28 gross value added was invested in the EU-15 and some of the lowest 

levels of agricultural investment could be found in Eastern European 

countries (European Commision, 2014). In addition, over the last years 

(although this is now changing with the 2013 CAP reform), CAP direct 

payments per farm holding and even per hectare were also significantly 

lower for Eastern European farms than for Western European farms. 

Therefore, it seems that there is also a gap between support needed and 

support received.  

 

As a conclusion for policy measures, the results of this paper imply that 

the importance of a large adaptive capacity on all possible fields (crop 

variety, technological efficiency, institutional fundamentals, sustainable 
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farm management, different farm types, etc.) in order to tackle climate 

change impacts cannot be overestimated. However, it takes time to 

increase adaptive capacity, while the effects of climate change are already 

becoming visible. Therefore, financial means and other institutional 

support with regard to knowledge transfer and implementation 

management are necessary in order to improve adaptive capacity. 

However, different farmers (big versus small, crop versus livestock, 

specialized versus mixed farms, location, etc.) are affected differently by 

climate change and require adapted support. Therefore, it is important to 

conduct further studies on the country or small region level to determine 

specifically which types of farms are the most vulnerable and to determine 

the exact type of support they each need. Currently, only a few studies 

have examined climate change on the individual country level in Eastern 

Europe. 

 

Given the current development efforts of Eastern Europe, and if further 

significant institutional efforts are continued, we believe there is no reason 

to believe that the assumptions of the Double Climate-Response Model will 

hold in the future. However, before the Single Climate-Response Model 

becomes reality, significant transition costs are necessary before equal 

adjustment and adaptation conditions are achieved over all regions. These 

costs are not taken into account by the Ricardian Technique because it 

only measures long-term effects, ignoring the period between the short 

and the long term. The results of the Double Climate-Response Model 

provide an initial idea of the benefits of such transition costs and should 

encourage all stakeholders to make the effort to further increase adaptive 

capacity in Eastern Europe. 

 

2.5.2. Methodology 

Comparing the two models has provided a better understanding of the 

benefits of increasing adaptive capacity and an economic valuation for 

unlocking Eastern European potential adaptive capacity. Future Ricardian 

studies should examine how to further improve this two-model 
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framework. First of all, not all regions have the situation where a 

developed region is located near a region in transition or in development. 

A research suggestion here could be to use traditional crop models or 

experimental simulations to test how more-developed technologies would 

behave in these less-developed environments. The results of these 

experimental simulations could be used to build a dataset with a higher 

adaptive capacity, which could be used to test how the climate response 

changes if a higher adaptive capacity is available. In a similar way, 

combining experimental simulations and cross-sectional methods could 

also be the solution to take into account future technological 

improvements. This paper has only been able to take into account existing 

technologies to model technological development in Eastern Europe. 

However, future technologies might increase adaptive capacity even more. 

By means of experimental simulations, the dataset could be enlarged with 

more technologies than are (currently) available in Europe alone, and so 

different Ricardian models can be estimated with different adaptive 

capacities. Further applications of this comparative Ricardian modeling 

should also elicit and visualize which adaptation options are included in 

the unused adaptive capacity. Finally, to further test the framework of the 

resilience scale from the Double to the Single Climate-Response Model 

presented in this paper, this study should be repeated after 5–10 years in 

order to identify the direction in which Eastern Europe is moving.  

 

All of this is important because many climate change studies have already 

created before-and-after pictures of the impact of climate change. What is 

of interest for policy now is to picture the dynamic path in between those 

two stages (Mendelsohn, 2007). The present paper is a clear step towards 

comparing how different decisions with regard to adaptation options 

included in the dataset influence regional climate responsiveness. There is 

an urgent need to improve methods in this direction.  

 

With regard to the correctness of these conclusions, a number of points 

reinforce this paper’s conclusion. First of all, the models are fairly robust. 
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This can be seen by looking at the Western European coefficients and 

marginal impacts over both models: the Western European climate 

response is almost the same in both the Single and the Double Climate-

Response Models. In the Double Climate-Response Model, Western Europe 

relies on its own adaptive capacity (because the coefficients are 

determined only on the Western European dataset). Nevertheless, 

Western Europe responds approximately the same as it does in the Single 

Climate-Response model, where it can also rely on the adaptive capacity 

of Eastern Europe. This proves that the adaptive capacity of Western 

Europe is not significantly increased if the adaptive capacity of Eastern 

Europe is added. On the other hand, this is the case for Eastern Europe. If 

the adaptive capacity of Western Europe is added to the adaptive capacity 

of Eastern Europe, that region will respond more positively to changes in 

climate. This conclusion is also confirmed by looking at the variance for 

the random intercept of the LME Model, where it can be seen that there 

are fewer differences between Eastern European countries. With regard to 

their adaptive capacity, this means that farmers can rely less on 

adaptation knowledge and technologies from more Southern countries. 

Secondly, as with all models, the correctness of the model depends on 

how well it can control for unmeasurable influences. This paper’s large 

dataset enables the LME Model to correct for national influences. One of 

the ways we tested this was by adding a national variable of which 

regional data were available (farm taxes- Results can be provided by the 

author on request). This brought no significant influence to the models, 

indicating that the national influence is well captured by the LME model. 

Also, in Appendix C, comparison with a standard country fixed effect 

model and an LME model estimated with ML estimation is shown for the 

Double model, indicating its robustness. However, in the event that there 

is an influence other than adaptive capacity that the paper does not 

control sufficiently for, it should be highlighted that the paper’s 

conclusions are only based on the comparison of two identical models. The 

only thing that differs between the models is the dataset upon which they 

are based. This also implies that potential bias is (at least partially) 
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cancelled out when evaluating the differences. The best way to prove this 

would be to add (endogenous) variables that indicate differences in 

adaptive capacity. If this is successfully controlled for, the climate 

response of the Double and the Single Model should move together.  

 

Thirdly, while we started by comparing the marginal effects of both 

models to examine the impact of the same increase in temperature and 

precipitation, we also verified that the base climate, which slightly differs 

in both regions, does not influence the conclusion. 

 

Therefore, this paper offers a solution for one limitation of the Ricardian 

Method. However, when interpreting the results, readers should still keep 

in mind other limitations of the method. The method specifies climate as a 

combination of temperature and precipitation, while disregarding carbon 

dioxide concentrations and extreme weather events. Also, with regard to 

predictions for 2100, it assumes that apart from climate and adaptive 

capacity, all other factors remain constant. This is done in order to see the 

effect of change in climate and adaptive capacity, ceteris paribus, on 

climate change impacts. However, Eastern Europe, which is a transition 

economy, is likely to face changes in land value and prices as productivity 

increases and as Eastern Europe grows towards Western Europe. 

Transition costs, for instance, will probably be significant, even though 

they are also not taken into account by the methodology. Moreover, future 

predictions of benefits and damages from climate change may be 

overestimated because if production falls, prices will rise and vice versa. 

However, it is difficult to project how prices will behave in the European 

Union because of changing global and regional policies, increasing world 

population and changing food preferences. 

 

2.6. Conclusion 

This study traces back the concern of whether climate impact estimates 

are consistent and robust over space to the question whether policy, 

institutes, society, and behavior are capable of bringing forth equal and 
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optimal adjustment conditions over the entire region studied. Using a 

comparative continental scale – Ricardian analysis – and acknowledging 

its assumption of autonomous farm adaptation behavior, we warn that 

underlying adaptation requirements are not necessarily realistically 

applicable to all regions in the dataset. 

  

Therefore, with respect to the methodology and further applications, this 

paper shows the benefits of testing farm systems in developing regions or 

transition economies with reference to those of more developed regions 

with comparable climate variations. It does so by ameliorating the 

Ricardian methodology by restricting which farmers (and therefore which 

adaptation options) are allowed in the dataset. As such, we have modeled 

both a Single Climate-Response Model (implying that two regions have the 

same adaptive capacity) and a Double Climate-Response Model, which 

examines the adaptive capacity of two regions separately (without 

assuming there is a transfer in adaptation inventory and knowledge). The 

comparison between the two climate response functions identifies unused 

adaptive capacity enlargement options and provides insights into the 

economic value of these potential enlargement options. Further 

applications of this comparative Ricardian modeling should elicit and 

visualize which adaptation options are included in the unused adaptive 

capacity and how this translates to region- and farm-specific policy.  

 

With respect to the European case study, this paper mostly improves 

understanding on the differences between Eastern and Western Europe in 

impacts and associated costs of climate change. It shows that the region 

with the lowest adaptive capacity, Eastern Europe, suffers the most from 

climate change. However, if Eastern Europe were to apply the same 

adaptation options as Western Europe, it would avoid a significant 

decrease in land value, or even benefit from climate change, depending on 

the climate scenario. Since it is unrealistic to assume that this will occur 

by counting on autonomous, profit-maximizing or market-driven farm 

behavior, we justify the need for planned adaptation in Eastern Europe. 
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The European Union, the CAP, national governments and regional policy 

must attempt to overcome the barriers to adaptation in Eastern Europe 

and increase Eastern European adaptive capacity by providing more 

information on adaptation opportunities and climate change, by enlarging 

the adaptation options and resource inventory and by creating a favorable 

implementation and management environment, by encouraging 

knowledge and skills transfer between all European farmers and by 

guiding farmers in making efficient adaptation decisions.  

  



 

 

  



 

61 
 

CHAPTER 3. THE EFFECT OF POLICY LEVERAGING 
CLIMATE CHANGE ADAPTIVE CAPACITY IN 

AGRICULTURE 

Janka Vanschoenwinkel*1, Dr. Michele Moretti1 PhD,  

Prof. Dr. Ir. Steven Van Passel12 PhD 

 

1 Centre for Environmental Sciences, Hasselt University, Agoralaan 
Building D, Diepenbeek, Belgium 
2 Department Engineering Management, University of Antwerp, 
Prinsstraat 13, Antwerp, Belgium 
* Corresponding author: janka.vanschoenwinkel@gmail.com 
 

 

February 2018, Under review  

 

 

Acknowledgements 

This paper was supported by the Horizon 2020 project SUFISA (Grant 

Agreement No. 635577). 

 

  



 

 

  



Chapter 3 

 

63 
 

CHAPTER 3. The effect of policy leveraging climate change 

adaptive capacity in agriculture 

“Climate change does not respect border; it does not respect who you are 

- rich and poor, small and big. Therefore, this is what we call 'global 

challenges,' which require global solidarity.” - Ban Ki-moon 

 

Abstract – Chapter 2 pointed out that most climate response modeling 

methods accounting for adaptation are based on economic modelling that 

assumes simple farm profit-maximization and autonomous farm 

adaptation. This makes adaptation look like something ‘unconditional’, 

explaining why agricultural policy down-sized the attention for adaptation. 

This is unrealistic as adaptation is facing numerous barriers such as low 

levels of adaptive capacity. Compared to the previous chapter, this 

chapter therefore captures and quantifies the impact of adaptive capacity 

explicitly in economic cross-sectional models, showing that those methods 

can be more policy-oriented. The results show that on average, once 

adaptive capacity is accounted for, the marginal effects of temperature 

decrease by 2.5–5 percentage points in Eastern and Southern European 

regions. Higher levels of adaptive capacity lead to more positive climate 

responses. If adaptive capacity increases from 0.4 to 0.8 on the ESPON 

index, the marginal effect of temperature increases by 0–10 percent on 

average. However, the relationship between marginal effects and adaptive 

capacity appeared to have a concave shape, leveling out at higher levels 

of adaptive capacity. This implies that adaptive capacity only increases 

marginal benefits from changes in climate up to a certain adaptive 

capacity level. 

 

3.1. Accounting for adaptive capacity 

Adaptation to climate change is unavoidable (Berrang-Ford et al., 2011) 

as substantial climate change is inevitable due to already unavoidable past 

emissions (IPCC, 2007b; Stern, 2007). This is especially the case for the 

agricultural sector who is directly dependent on its surrounding 
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environmental conditions and therefore “arguably the sector mostly 

affected by climate change” (p.1) (Rosenzweig et al., 2014). In the EU, 

one of the worst droughts occurred in 2003: July temperatures went up to 

6°C above long-term means and precipitation was 50 percent below the 

average. This caused a reduction in Europe’s primary crop productivity 

that was unprecedented (Ciais et al., 2005). However, this reduction in 

crop productivity was much lower in Mediterranean countries because they 

were more adapted to dry and hot summers by means of irrigation and 

drought-tolerant crops (Ciais et al., 2005). Clearly, adaptability of farming 

systems is important and it will prove to be a key aspect of farm survival 

and food security (Darnhofer et al., 2010; Moore and Lobell, 2014). On 

average, adaptation leads to approximately 10% yield benefits compared 

with farmers that do not adapt, even though the benefits of adaptation 

differ between regions and farms (IPCC (2007b), WGII AR4 Section 

5.5.1.). Adaptation has therefore become an important pillar for the 

response to climate change (Field et al., 2014). 

 

Climate change adaptation implies making “adjustments in natural or 

human systems in response to actual or expected climatic stimuli or their 

effects, which moderates harm or exploits beneficial opportunities (IPCC, 

2007b). Historically, farmers responded autonomously to changes of 

climate (Wreford et al., 2010). As a result, studies examining the impact 

of climate change realized they had to account for these adaptive farm 

measurements instead of merely modeling the natural relationship 

between a crop and its surrounding climate. Farmers that adapt to climate 

change have a different climate response function than farmers who do 

not adapt. The most famous method addressing this point of taking into 

account adaptation, is the Ricardian Method (Mendelsohn et al., 1994). 

 

Today, however, it appears that farmers are not responding quickly to 

recent climate changes anymore (Adger et al., 2007; Burke and Emerick, 

2016). The Fourth Assessment Report (AR4) indicated that the level of 

adaptation was inadequate to reduce climate change vulnerability (IPCC, 
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2007b). Even though adaptation plans are being developed at different 

(sub)national levels, there is still limited evidence of adaptation 

implementation (IPCC, 2014a). This is because compared to the gradual 

change in climate in the past, climatic events occurring in and predicted 

for this century are of a larger magnitude, occur fast and discrete, and 

therefore cannot be readily absorbed (Anwar et al., 2013). In addition, 

before adjustments to this level of climate change can take place, a 

number of requirements need to be fulfilled. One of the key components 

that is necessary to have in place before adaptation can take place, is a 

farmer’s ability to adapt. This ability is highly influenced by differential 

resource access and adaptation costs (Berkhout et al., 2006; IPCC, 

2014b; Kates, 2000). (Farm) systems must possess the necessary set of 

natural, financial, institutional, and human resources, along with the 

ability, awareness, expertise, and knowledge to use these resources 

effectively, before they can adapt (Brooks and Adger, 2005; IPCC, 2001). 

This is defined as adaptive capacity (IPCC, 2001). As described in the First 

Assessment Report (FAR), adaptive capacity is dynamic and influenced by 

social networks, institutions, governance, technology and other resources 

(Adger et al., 2007), implying that it can be linked to the theory of 

innovation economics. Innovation is briefly summarized as the 

implementation of solutions that fill in new requirements (in this case 

climate change) (Maranville, 1992). The theory of innovation economics 

says that economic growth is spurred by innovative capacity (Antonelli, 

2014) and not by merely looking at prices and inputs as claimed by the 

neoclassicals. Adaptive capacity therefore goes further than the 

adaptation itself, as it represents the potential of a system to adapt (de 

Assumpcao et al., 2017).  

 

Given the fact that implementation of adaptation itself goes slowly, there 

is currently a larger focus on framing adaptation as capacity building 

(Smith et al., 2011). Individual adaptive capacities are being identified as 

critical for successful climate change adaptation (Wamsler and Brink, 

2015). Methodologies modeling agricultural climate responses should 
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therefore not merely account for adaptation. They should also examine or 

take into account whether the capacity to adapt is appropriate instead of 

assuming that farmers always adapt autonomously. Adaptive capacity, 

however, is hardly ever taken into account to study the impact of climate 

change on agriculture. As shown by Vanschoenwinkel et al. (2016), this 

leads to cross-sectional studies being too optimistic regarding autonomous 

profit-maximizing farm adaptation behavior because it makes adaptation 

unconditional, making it appear like a somewhat “easy” solution that does 

not need a lot of intervention (Lobell, 2014). 

 

This paper therefore examines the relationship between adaptive capacity 

and the agricultural climate response, and quantifies the impact of 

adaptive capacity on agricultural climate responses. The paper looks 

specifically to Europe, which has compared to other world regions a high 

capacity to adapt (Field et al., 2014). Nevertheless, within Europe, there 

are large differences in adaptive capacity distribution (ESPON, 2011; 

Fuentes, 2011) (see Figure 7A). In this paper, we examine whether these 

differences in adaptive capacity will cause climate change effects to differ 

significantly between more- and less-developed regions. This research 

question is in part inspired by the latest IPCC report (Field et al., 2014) 

that points out that in Europe there is “a lack of information on the 

resilience of cultural landscapes and communities, and how to manage 

adaptation, particularly in low-technology (productively marginal) 

landscapes” (p. 1305). More studies on rural development implications in 

Europe are needed (Field et al., 2014) and “there is a need to better 

monitor and evaluate local and national adaptation responses to climate 

change” (p.1304). 
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Figure 7 – ESPON and Agricultural Adaptive Capacity Index 
7A: ESPON Adaptive Capacity Index (figure adapted from ESPON (2011)) 

– The higher the index, the better; 7B: Adaptive Capacity Index based on 
past yield fluctuations (own elaboration using FADN data 2008–2013) – 
The lower the index, the better. 

 

3.2. Material and methods  

The main focus of this paper is to take into account adaptation in climate 

response functions in a more realistic way by better accounting for 

possible barriers or reinforcements to adaptation (that is, adaptive 

capacity). In doing so we test whether the farm’s climate response differs 

with different levels of adaptive capacity. 

 

For the methodology used, this implies that we need a measurement of 

adaptive capacity and a method that measures the farm climate response 

while accounting for adaptation. As indicated in the previous section, the 

most famous method to study agricultural productivity while accounting 

for adaptation is the cross-sectional Ricardian method (Mendelsohn et al., 

1994; Van Passel et al., 2017; Vanschoenwinkel et al., 2016). Yet, instead 

of directly looking at productivity or income, the Ricardian method uses 

data on land value instead. This is because the method assumes that land 

value reflects the present value of future net income for each farm 
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(Ricardo, 1817; Seo and Mendelsohn, 2008b). A second assumption of the 

method is that each farmer maximizes net income by choosing the optimal 

amount of all different endogenous variables that are within his or her 

control (such as inputs and other management choices) subject to the 

exogenous conditions that are outside the farm’s control (such as climate, 

water or soil) (Maharjan and Joshi, 2013; Mendelsohn et al., 1994). As 

such, the Ricardian model shows how only exogenous variables explain 

variations in land value (Mendelsohn et al., 2009). Variables such as 

labor, capital, and crop choice, are not included in the regression because 

they are endogenous and assumed to be optimized. This implies that the 

method assumes that farms today are already adapted to the environment 

they live in (Mendelsohn et al., 2009). As such, looking at how farmers 

behave today in response to their current environment, one can 

understand how farmers respond to climate by comparing them with 

farmers in other climates (Mendelsohn et al., 1996). In this way, 

adaptation is taken into account as it is captured by the data. 

 

All of this implies that farmers in one location behave the same as farmers 

in a second location, if that second location were made to look like the 

first one (taking into account the control variables) (Lippert et al., 2009; 

Timmins, 2006). However, this means the method often ignores regional 

and individual barriers or requirements to adaptation that might influence 

farm choices and possibilities. As explained in the introduction, adaptive 

capacity is a measurement for the ability of a farmer to adapt. It is 

therefore important to account for this in order to not make incorrect 

assumptions about adaptation options available to the farmer. One needs 

to consider the adaptive capacity of individual farmers and/or regions to 

get a realistic picture of adaptation (Marshall et al., 2013). For our model 

this implies that we should add an additional group of variables to the 

model to explain adaptive capacity. Given the fact that land value is 

assumed to be influenced only by exogenous control variables, the model 

can be summarized as follows: 
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𝐿𝑉∗ = 𝑓(𝐶, 𝑍, M, 𝐀𝐂)   (1) 

 

where future net value of net income or land value is presented by 𝐿𝑉∗, Z 

are regional control variables related to soil type and elevation mean and 

range, and M are regional market related factors such as population 

density, subsidies, distance to ports and cities. 𝐶 are seasonal climate 

variables that consist of both a linear and a squared term of seasonal 

temperature and precipitation (Mendelsohn et al., 2009) since earlier field 

studies proved the non-linear nature of the net revenue function with 

climate (Mendelsohn and Dinar, 2003; Mendelsohn et al., 1994). 

Interpreting the climate coefficients should be done by interpreting the 

marginal effect of climate change (determined separately for precipitation 

(p) and temperature (t)) for season i (MEi)), which is calculated as 

follows: 

 

MEi =
∂V

∂Ci
= β1,i+2β2,iCi (2) 

The annual average marginal effect (MEt and MEp) is derived by taking 

the sum of the average seasonal marginal effects. When presenting the 

marginal effects, we weighted the average results by a weight reflecting 

the total amount of farmland that each farm represents in its region. This 

implies that the marginal effects as presented in this paper can be 

interpreted as the percentage change in 1 hectare land value of a certain 

region associated with an increase of 1 °C in temperature for MEt or an 

increase of 1cm/mo in precipitation for MEp.  

 

Finally, the adaptive capacity explanatory group in equation (1) is 

presented by AC. We discuss this in more detail in subsection 3.2.1. The 

model is estimated through an ordinary least square regression and can 

be compared with previous peer-reviewed work (Van Passel et al., 2017; 

Vanschoenwinkel et al., 2016) because apart from the adaptive capacity 

index, similar data are used. 
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3.2.1. Adaptive Capacity 

A good measure of adaptive capacity is needed. Adaptive capacity is a 

complex, multidimensional, and broad concept, consisting of several 

subcomponents (Below et al., 2012). Data from a wide range of factors 

such as financing, knowledge, nature, and technology should be captured 

when measuring adaptive capacity. Given this complexity, adaptive 

capacity is commonly synthesized in one term or index, making it more 

comprehensive and operational, and facilitating communication for both 

academic, political, and practical purposes (Gallopin, 1997). Nevertheless, 

there are numerous types of adaptive capacity indices differing greatly 

with regard to geographical scaling, content, interpretation, and timing 

(e.g. drought versus flood adaptive capacity). This paper will not focus on 

all the different types of adaptive capacity but instead focus on general 

climate change adaptive capacities. This is done to maintain the focus on 

tackling the adaptive capacity ignorance of cross-sectional studies itself, 

and to give straightforward policy insights. As such, we only distinguish 

between two types of indices: a generic and a farm adaptive capacity 

index (ACI). 

 

The first index we use is a regional generic index measuring adaptive 

capacity to climate change. The index is not developed for the agricultural 

sector specifically, and it can be used over different sectors. It is 

developed by ESPON on a NUTS 3 European scale and measures 

economic, sociocultural, institutional, and technological abilities of a region 

to adapt (see Figure 7A) (ESPON, 2011). In total, 15 indicators were 

developed to represent the different adaptation dimensions, which were 

then weighted and aggregated in one index. Even though such an 

adaptive capacity index is not specific for agriculture or very specific 

climate events, it is important to take into account, because adaptive 

capacity at higher geographical and institutional levels has an influential 

enabling or constraining role in individual farm adaptive capacity (ESPON, 

2011; Jordan et al., 2010). The lower the scale of governance, the more 

interdependent the capacity is. These type of regional generic indices are 
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often seen as a reflection of a system’s socioeconomic status (IPCC, 

2007b), assuming that characteristics of individuals, institutions, and 

organizations foster learning in the context of change and uncertainty and 

allow them to respond more flexibly to change and disturbance (Armitage, 

2005). 

 

The second index we use is a more farm specific adaptive capacity index. 

This is because adaptation is often a site-specific action demanding a very 

specific and local set of resources, depending on the sector in which 

adaptation is needed (Adger et al., 2005; Smit and Wandel, 2006). In 

Germany for instance, inputs explain on average 49% of the total wheat 

yield volatility (Albers et al., 2017). The adaptive capacity index therefore 

must be specific enough to capture local variation (Vincent, 2007) and 

define farm systems more narrowly (Hinkel, 2011). Having a more specific 

agricultural index allows better understanding of fundamental processes 

underlying adaptation (Below et al., 2012). This helps to prepare well 

targeted adaptation policies. Unfortunately, no such ready-made index is 

available, and no agreed-upon and uncontroversial measure of adaptive 

capacity in agriculture exists (Grasso and Feola, 2012). In addition, scant 

guidance can be found regarding the selection of the indicator sub-

determinants themselves, which causes some subjective interference of 

the researcher (Brooks et al., 2005). We believe one issue in building such 

a farm specific index is related to the question of when to measure 

adaptive capacity. Some sources assume that adaptation is related to (1) 

current farm performance and that current management characteristics 

are therefore good indicators of adaptive capacity (Reidsma et al., 2007). 

Other sources indicate that past experiences are good indicators of 

adaptive capacity. Regions build up a higher adaptive capacity to (2) past 

limiting factors and are therefore more prepared when these issues recur 

(Niles et al., 2015). As a result, more unfavorable agricultural areas do 

not necessarily suffer more as they adapt to the most limiting factors 

(Challinor et al., 2007; Reidsma et al., 2010). According to this view, 

variables such as yield fluctuations over years are good indicators of 
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adaptive capacity: low yield fluctuations and yield stability can be 

assumed to be indicators of adaptation and thus higher adaptive capacity 

(Reidsma and Ewert, 2008). Finally, there are authors such as Hinkel 

(2011) and Dilling et al. (2015) who note that most indices are not 

forward-looking enough. They state it is not about past or current 

behavior but instead about their ability to cope with emerging, (3) future 

climate changes. This past-current-future distinction is very important 

with regard to development of indices. In this paper, we focus on the past 

view because the paper’s main goal is not the development of the index 

itself, but rather the improvement of accounting for adaptive capacity in 

cross-sectional studies. 

 

3.2.2. Data 

In equation 1, we presented our data in four main groups. Land value 

data (𝐿𝑉∗) are farm-specific data from 2012 and are obtained through the 

Farm Accountancy Data Network (FADN) (FADN, 2014). FADN provides 

farm-specific measures of approximately 80,000 farm holdings in the EU-

27, which represent nearly 14 million farms with a total utilized 

agricultural area of about 216 million hectares. FADN data are collected 

uniformly and consistently over Europe, which is important in order to 

correctly compare different regions. For privacy reasons, it is not possible 

to link these farm holdings to unique locational coordinates, but they can 

be linked to the different NUTS3 (Nomenclature of Territorial Units for 

Statistics regions) in the EU. These are homogenous geographic units 

across all European countries that are identified by the EU. We used a 

sample of 60,563 commercial farms that utilize 5,470,490 hectare of 

farmland and cover by stratification 54 percent of all agricultural  areas in 

the EU-27, situated in 1143 NUTS3 regions. This means that all other 

variables (climate and control variables) that are not on farm-level are 

linked on the NUTS3 level. For the climate data, this study uses as a 

baseline climate the 30-year normal period for temperature and 

precipitation from 1961–1990 from the Climatic Research Unit (CRU) CL 

2.0 (New et al., 2002). Soil data come from the Harmonized World Soil 
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Database, a partnership of Food and Agriculture Organization (FAO), the 

European Soil Bureau Network, and the Institute of Soil Science 

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2009). Additional socioeconomic and 

geographic variables (population density, distance from urban areas, 

distance from ports, mean elevation, elevation range and GDP per capita) 

were obtained from EuroGeographics Natural Earth Data, the World Port 

Index, ESRI and Eurostat, respectively (ESRI, 2014; EuroGeographics, 

2014; Eurostat, 2016; National Geospatial-Intelligence Agency, 2014; 

Natural Earth, 2014). Finally, regarding the AC index, we already indicated 

that we use the ESPON data for the generic AC index. With regard to the 

farm specific index, we use variations in yield per hectare per farm for the 

years 2008-2013 from the FADN data. As such, we capture several 

different characteristics and decisions of the farmer in one variable, 

measuring at the same time how effective farms responded to limitations 

and changes in different factors of the last years. The fewer the variations, 

the better the farms are assumed to be adapted to their climate 

circumstances. In Appendix D, an overview of the dependent variable and 

the explanatory variables with their data sources can be found. Additional 

information on these data and the method can be found in 

Vanschoenwinkel et al. (2016) and Van Passel et al. (2017), although this 

paper uses more recent data from 2012. 

 

3.3. Results 

The regression results can be found back in table 5. The different columns 

represent the different regressions whose only differences can be found in 

the way they do, or do not, take into account adaptive capacity. All control 

variables have the expected signs (compare with previous peer-reviewed 

work (Van Passel et al., 2017; Vanschoenwinkel et al., 2016)). In all 

cases, the coefficients on the adaptive capacity coefficients are highly 

significant, and the ANOVA tests show that adding adaptive capacity to 

the original regression gives significant information on top of the already-

included variables in the original regression. The climate coefficients are 

analyzed by examining the marginal effects of climate in line with 
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differences in adaptive capacity. As explained by Mendelsohn et al. 

(1994), marginal effects are interpreted as the percentage change in 1 

hectare land value associated with an increase of 1°C in temperature. 

Starting with the ESPON index, it can be seen in Figure 8A that Southern 

and Eastern European regions have the lowest ranking on the generic 

index. This is in line with the idea that generic indices that focus on 

technology, knowledge, institutions, and economics, are highly related to 

socioeconomic determinants. Finland has the highest score on the index 

and is assumed to be best prepared to adapt to climate change. When 

comparing the marginal effects of temperature of the model that does not 

include AC (Figure 8A), with the marginal effects of temperature of the 

regression which does account for adaptive capacity by means of the 

ESPON index (Figure 8B), it becomes clear that apart from Finland, all 

countries show decreasing marginal effects of temperature when adding 

an AC index. In particular, countries scoring lowest on the ESPON index 

register the highest drops in MEts. Clear differences are also noted 

between Western (MEt = 10-15%) and Eastern (MEt = 7.5-10%) 

Germany when the ESPON adaptive capacity is taken into account. Yet, 

also in more developed regions, the estimates are significantly 

overestimated, and adaptive capacity does not seem to be sufficient for all 

the adaptation options needed. The relationship between MEts and the 

ESPON index is therefore clear in the sense that higher adaptive capacities 

lead to lower drops in MEts, indicating that higher adaptive capacity levels 

allow support of the necessary adaptation options needed to avoid 

decreases in MEts. This is a clear indication that the original cross-

sectional estimates were too optimistic because they disregard the fact 

that adaptive capacity is a requirement for adaptation and that adaptation 

cannot simply autonomously take place. 
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Table 5 – Linear regression results with and without adaptive capacity 

 

A - Original B - ESPON only C - Agri only 

 

Coef Std Er Coef St Er Coef St Er 

(Intercept)  2.639*** 0.428  2.525*** 0.422  2.874*** 0.422 

P Winter -0.041** 0.014  0.044** 0.014 -0.014  0.014 

P Winter²  0.000 0.001 -0.001** 0.001 -0.001  0.001 

P Spring -0.041  0.026 -0.148*** 0.026  0.005  0.026 
P Spring²  0.003* 0.001  0.006*** 0.001 -0.001  0.001 

P Summer  0.151*** 0.018  0.181*** 0.018  0.110*** 0.018 

P Summer² -0.001  0.001 -0.003*** 0.001  0.000  0.001 

P Autumn  0.067*** 0.013  0.012  0.013  0.027** 0.013 

P Autumn² -0.005*** 0.001 -0.004*** 0.001 -0.003*** 0.001 

T Winter  0.184*** 0.016  0.112*** 0.016  0.192*** 0.016 

T Winter²  0.002** 0.001  0.010*** 0.001  0.001  0.001 

T Spring  0.126*** 0.030  0.134*** 0.029  0.071** 0.029 

T Spring²  0.015*** 0.002  0.011*** 0.002  0.013*** 0.002 
T Summer  0.368*** 0.055 -0.007  0.055  0.311*** 0.054 

T Summer² -0.015*** 0.001 -0.005*** 0.001 -0.013*** 0.001 

T Autumn -0.112* 0.057  0.290*** 0.057 -0.128** 0.056 

T Autumn² -0.009*** 0.002 -0.024*** 0.002 -0.007** 0.002 

Population density  0.140*** 0.019  0.019  0.019  0.067*** 0.018 

Distance to ports -0.613*** 0.047 -0.661*** 0.047 -0.498*** 0.047 

Distance to cities -1.332*** 0.069 -1.328*** 0.068 -1.393*** 0.068 

Rented land  0.159*** 0.013  0.196*** 0.013  0.183*** 0.013 

Elevation mean -0.279*** 0.043 -0.365*** 0.043 -0.267*** 0.043 

Elevation range -0.03** 0.010 -0.011  0.010 -0.034*** 0.010 
Subsidies  0.460*** 0.015  0.447*** 0.015  0.455*** 0.015 

Gravel -0.012*** 0.003 -0.011*** 0.003 -0.007** 0.003 

pH  0.305** 0.097  0.021  0.096  0.431*** 0.096 

pH squared -0.004  0.008  0.017** 0.008 -0.017** 0.008 

Silt -0.006*** 0.002 -0.005** 0.002 -0.001  0.002 

Sand -0.006*** 0.001 -0.005*** 0.001 -0.006*** 0.001 

Belgium  2.354*** 0.051  2.260*** 0.051  2.171*** 0.051 

Bulgaria  1.287*** 0.047  1.917*** 0.048  1.229*** 0.046 

Czech Republic  1.105*** 0.035  1.414*** 0.035  1.144*** 0.034 
Germany  2.304*** 0.033  2.291*** 0.033  2.247*** 0.033 

Denmark  3.930*** 0.041  3.519*** 0.042  3.758*** 0.041 

Estonia  0.651*** 0.053  0.693*** 0.053  0.594*** 0.053 

Greece  3.297*** 0.056  3.901*** 0.057  2.778*** 0.056 

Spain  2.185*** 0.049  2.697*** 0.050  2.001*** 0.048 

Finland  3.413*** 0.070  2.389*** 0.074  3.311*** 0.069 

France  1.259*** 0.044  1.428*** 0.043  1.232*** 0.043 

Hungary  0.792*** 0.042  1.127*** 0.042  0.914*** 0.042 

Ierland  2.484*** 0.063  2.455*** 0.062  2.544*** 0.062 

Italy  3.538*** 0.044  4.310*** 0.047  3.232*** 0.044 
Lithuania  0.804*** 0.045  0.918*** 0.044  0.812*** 0.044 

Luxembourg  2.391*** 0.052  2.196*** 0.051  2.404*** 0.051 

Latvia  0.411*** 0.048  0.556*** 0.048  0.430*** 0.047 

The Netherlands  3.590*** 0.048  3.422*** 0.047  3.102*** 0.049 

Poland  2.01*** 0.035  2.545*** 0.037  2.077*** 0.035 

Portugal  0.648*** 0.059  1.254*** 0.060  0.642*** 0.058 

Romania  0.484*** 0.043  1.198*** 0.046  0.535*** 0.042 

Sweden  3.057*** 0.050  2.432*** 0.052  2.852*** 0.049 

Slovenia  1.832*** 0.054  2.351*** 0.055  1.891*** 0.053 

Slovakia  0.825*** 0.050  1.213*** 0.050  0.864*** 0.049 

United Kingdom  2.273*** 0.050  2.228*** 0.049  2.313*** 0.049 
ESPON index       3.205*** 0.079     

Agricultural index     

  

 0.465*** 0.011 

ANOVA F-test     1,656.2*** 

 

1,745.1***   

Adjust R²   0.709 

 

0.718   0.718 

A - Original = original regression; B - ESPON only = original regression with ESPON adaptive 

capacity; C - Agri only = original regression with NUTS 3 agricultural adaptive capacity 
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However, looking at Figure 9, it is clear that increasing adaptive capacity 

does not linearly result in increasing MEts. First, a minimum threshold 

adaptive capacity must be surpassed before adaptive capacity leads to 

increases in MEts. At low levels of adaptive capacity, large efforts are 

needed before benefits in terms of MEts are obtained. Once a threshold is 

surpassed, benefits in MEts increase exponentially. Second, there are 

multiple thresholds to be surpassed. Increases in MEts will flatten out at a 

certain point, and then large increases in adaptive capacity are again 

necessary before benefits are visible. Third, at a certain point, further 

increases in ESPON adaptive capacity do not lead to increases in MEts. 

These regions will probably benefit more from increases in specific 

adaptive capacity with regard to floods and droughts, for example, instead 

of further generic adaptive capacity increases. 

 

Next to the generic ESPON index, it is also important to examine more 

farm-specific indices that account for past behavioral choices that farmers 

took and that reflect more farm-specific AC. This allows us to see the 

direction in which the MEts are adjusted when an alternative index, not 

based on purely socioeconomic determinants, is taken into account. When 

comparing the MEts of the regression to the ESPON index alone, with the 

MEts of the regression with the farm index alone (Figure 8B versus 8C), it 

becomes clear that the farm index gives more negative results for 

Northwestern regions (see for instance Belgium, Germany, France, 

Sweden and Finland), while the results are more positive for Eastern 

regions (see for instance Slovakia, Hungary, Romania and Slovenia). 

Clearly, the larger the stereotype ESPON adaptive capacity (which is 

highly correlated with socioeconomic determinants), the more the ESPON-

MEts are adjusted downward when using the agricultural index instead of 

the ESPON index. This implies that for regions with a lower ESPON 

adaptive capacity, taking into account farm adaptive capacity instead of 

the socioeconomic adaptive capacity leads to more optimistic results. This 

indicates that the ESPON socioeconomic index might underestimate the
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Figure 9 – Evolution of MEts compared to adaptive capacity 
 

real agricultural adaptive capacity of less-developed regions when looking 

only at socioeconomic determinants. This is confirmed and visualized more 

clearly when plotting the difference in MEts when going from a regression 

with a farm specific index to a socioeconomic index (y-axis) and 

comparing it with the original ESPON index (x-axis) (Figure 10). The 

higher the ESPON adaptive capacity index, the more MEts are adjusted 

downward when using a regional agricultural index. 

 

Figure 10 – Change in MEts using a farm index instead of ESPON index 
(y-axis), compared to the original ESPON adaptive capacity (x-axis) 

Note, that Figure 9 and Figure 10 give different types of information as 

their y-axes are different. Northwestern European regions continue to 

perform better than other European regions (see Figure 8), and the 

relationship between MEts and adaptive capacity (Figure 9) is positive. 
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However, the point of Figure 10 is that the socioeconomic index favors 

more-developed regions. Looking at the farm index based on past 

adaptive behavior, the results are upward adjusted for regions in 

transition with a lower ESPON adaptive capacity, and downward adjusted 

for regions with a higher ESPON adaptive capacity. 

 

3.4. Policy implications and discussion 

This paper shows that lower degrees of adaptive capacity lead to larger 

decreases in the marginal effects of climate change. Policy makers should 

therefore acknowledge the importance of increasing climate change 

adaptive capacity. Nevertheless, in Europe, the Common Agricultural 

Policy (CAP) highly ignored the importance of climate-change-specific 

adaptation and adaptive capacity. There are no compulsory legislative 

forces at the European level to compel climate adaptation, and policy has 

mostly focused on mitigation (Jordan et al., 2012). This paper for the first 

time shows the effect of denying the importance of adaptive capacity and 

suggests the following policy points. 

 

First, within Europe there is a clear need for adaptive capacity 

development in a significant number of agricultural areas (mostly 

Southern and Eastern European countries). The Common Agricultural 

Policy (CAP) explicitly targets rural development through pillar II, but 

most of the funding goes to pillar I which focusses more on the status quo 

and does not link funding sufficiently to farm objectives and innovative 

changes. In addition, member states benefit from the flexibility to 

modulate some of their funding between pillar I and pillar II. This paper’s 

results are in favor of a shift from funds from pillar I to pillar II. 

 

Second, we show that the positive relationship between adaptive capacity 

and the impact of climate change is not necessarily linear. This implies 

that not all increases in adaptive capacity will lead to positive changes in 

the impact of climate change. Certain thresholds will need to be exceeded 

before policy in certain regions has a positive effect on adaptation. Some 
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regions will need to put more effort than other regions to increase their 

climate responsiveness. This is especially important with regard to 

distribution of funding, emphasizing our previous point about modulation. 

 

Third, it is not only regions with a lower adaptive capacity that should 

prepare themselves better for climate change, but also regions with a high 

adaptive capacity should. This paper shows that once a certain generic 

adaptive capacity has been achieved, no further significant improvements 

in climate responsiveness occur. This indicates that more-developed 

regions are less capable of preparing themselves for climate change 

through their conventional tools. They should increase their adaptive 

capacity to more specific events (such as droughts) in order to see more 

positive effects in their response to climate change. Countries such as 

Spain have already shown to be better adapted to drought than more 

northern regions (Ciais et al., 2005).  

 

Currently however, the CAP gives no clear directions to member states for 

tackling climate adaptation and adaptive capacity. For instance, apart 

from setting wrong funding priorities (the majority of funding goes to pillar 

I), its goals regarding risk management, knowledge transfer, enhancing 

ecosystems, climate-resilient economy, and resource efficiency are vague 

and unspecified, making it hard to measure and evaluate whether the CAP 

succeeds in its ambitions. In addition, the tools suggested to tackle these 

issues often overlap in their objectives, and even the two main pillars 

cannot be separated from one another (Bureau and Mahé, 2015). 

Consequently, some measures counteract, instead of reinforce, one 

another, or are competing for the same funding (Swinnen, 2015). We 

therefore argue that as long as no specific targets are set for which 

concrete measurements exist against which member states have to 

deliver, it is highly questionable whether the CAP will bring along 

significant changes to climate change adaptive capacity. The CAP should 

specifically target climate change adaptation and climate change adaptive 
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capacity, setting measureable goals for progress towards improving 

agricultural responsiveness to climate change. 

 

While the results give new insights into the importance of adaptive 

capacity, further research is needed to understand how farm adaptation is 

dependent on higher governance levels or whether there is 

interdependency between different governance levels (i.e. regional versus 

continental). Further research should also define the different AC 

thresholds and indicate in which regions increases in adaptive capacity are 

the most cost efficient. However, the opposite reasoning is also important: 

in certain regions, even though adaptive capacity might seem high, if 

exposure exceeds a certain threshold (e.g., tipping points (Lenton et al., 

2008)), even higher adaptive capacities cannot bring solutions (Reidsma 

and Ewert, 2008). Adaptive capacity therefore should be further linked to 

exposure. In this regard, it is very important to specify more impact-

specific adaptive capacities such as floods and drought, because these 

might lead to significantly different results. Finally, there is still a lot more 

behind adaptation than adaptive capacity. Transition and adjustment 

costs, the timing of adaptation, specific types of adaptation, adaptive 

capacity, and different levels of responsibility are important components 

and even requirements for adaptation. Given the fact that climate change 

is real, these questions must be put at the core of the adaptation 

paradigm. 

 

3.5. Conclusion 

Cross-sectional studies might give the impression that autonomous 

adaptation is a magical solution to tackle climate change impacts or take 

advantage of its benefits, but this is not the whole truth. The degree of 

autonomous adaptation highly depends on adaptive capacity levels and it 

only takes place if the appropriate requirements are present. Policy 

makers should therefore intervene and provide the appropriate 

requirements to stimulate adaptive capacity development. It should set 

clear, non-voluntarily and measurable targets for climate action, against 
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which member states must deliver in order to receive funding. Given the 

large diversity of the European Union, the different member state’s needs, 

and the fact that adaptation is a local action, flexibility in policy 

implementation should still be allowed, but this should not undermine 

common objectives and goals. The non-linear relationship between 

adaptive capacity and climate change impacts shows that some member 

states will have to make larger efforts before they see positive results of 

adaptive capacity. On the contrary, member states that already have a 

large socioeconomic adaptive capacity will have to take more diverse 

measurements in response to specific events such as drought before they 

see positive increases in climate responsiveness. This is because after a 

certain threshold, benefits from increasing generic adaptive capacity level 

out. 
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Chapter 4.  

Climate response of rainfed versus irrigated farms: the bias of 

farm heterogeneity in irrigation 

“It's too late to be studying Hebrew; it's more important to understand 

even the slang of today.” ― Henry David Thoreau 

 

Abstract – Starting from this chapter, this dissertation focusses on one 

specific adaptation option: irrigation. This chapter serves as a preparatory 

chapter for chapter 5 in which the goal is to explicitly unravel the farm 

irrigation choice. In order to do this, it should however be noted that there 

is a lot of farm heterogeneity in implementing irrigation, or other specific 

climate change adaptation options. Researchers who do not take into 

account these within-adaptation differences, might significantly bias their 

findings. To prove this point, this chapter highlights the fact that there is 

no such thing as “irrigation”. Instead, different farms consider water 

management options across a spectrum that ranges from purely rainfed 

farms to purely irrigated farms with in between the extremes practices 

such as supplemental irrigation, water conservation practices and different 

irrigation techniques. 

 

Accounting for such differences is necessary, yet difficult due to a lack of 

farm specific data on water management and irrigation. This chapter uses 

unique Farm Accountancy Data Network data of Western European 

farmers on the proportion of farmland that each farm irrigates. Unlike 

previous work, this allows taking into account some within-irrigation 

heterogeneity instead of simply categorizing farms as being ‘irrigated’. 

 

We estimate and compare climate response models based on the 

Ricardian cross-sectional method for a large range of irrigation categories. 

The results give insights into how the farm irrigation climate response can 

be significantly different depending on how irrigation is defined.  This 

proves that ignoring within-adaptation differences when comparing non-

https://www.goodreads.com/author/show/10264.Henry_David_Thoreau
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adaptation with adaptation (in this case rainfed versus irrigated 

agriculture) might lead to biased conclusions with regard to effectiveness 

of adaptation strategies. Differences between farmers on both extremes of 

the irrigation spectrum can rise up to 30 percent, depending on the size of 

farmer. We therefore argue that it might be more relevant to understand 

at which point and under which circumstances irrigated agriculture is more 

or less beneficial than rainfed agriculture. 

 

4.1. Introduction 

Given the fact that irrigated agriculture is claimed to be less sensitive to 

changes in climate than rainfed agriculture (Kurukulasuriya et al., 2006), 

it should be an eye-opening fact to see that within irrigated agriculture 

marginal increases in temperature and precipitation have significantly 

different impacts all over the world. It is true that to a certain extent, this 

is explained by different levels of technological capacity, regional 

differences and crop choice (Vanschoenwinkel et al., 2016). However, it 

should also be questioned how much researchers unintentionally 

contribute to these differing regional conclusions by bluntly categorizing 

farmers in “rainfed” versus “irrigated” agriculture and comparing them as 

such. Nowadays, farmers consider water management options across a 

spectrum that ranges from purely rainfed farms to purely irrigated farms. 

In between the extremes, there are among others, farmers that use 

supplemental irrigation on only part of their field, farmers that apply 

conservation practices to store water in the soil, farmers that add more 

surface- or groundwater to their fields or farmers that irrigate on a very 

frequent basis (Molden, 2007). This implies that two farmers, who 

‘irrigate’, can be significantly different from each other with regard to 

irrigation efficiency and effectiveness. This might explain differences in 

their climate responsiveness. 

 

This paper therefore examines how farm categorization in rainfed versus 

irrigated farms influences research findings and conclusions. As such, we 

challenge the status quo by acknowledging that there is no such thing as 
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‘irrigation’. The results of this paper have implications for numerous 

adaptation studies as they prove that heterogeneity in implementing 

adaptation options significantly influences results and therefore might be 

misleading. 

 

4.2. State of the art 

Agriculture is said to be “arguably the sector most affected by climate 

change” (p.1.) (Rosenzweig et al., 2014). Its production activity depends 

directly on climate inputs. However, agriculture is also partly a man-made 

system. This means that a response of a farm to climate is not a simple 

biophysical response. Instead it can be “manipulated” to become a more 

profitable or less climate sensitive response (Helms et al., 1996; Reilly, 

1999). For instance, during periods of droughts or in water scarce regions, 

agriculture often relies on irrigation for its water requirements (Finger et 

al., 2011). Irrigated farms are less sensitive to climate change since 

irrigation has a moderating effect (Kurukulasuriya et al., 2006). It reduces 

dependency on and uncertainty of rainfall patterns and decreases 

interannual variability of production (Tubiello, 2005).  

 

It therefore seems that under unfavorable climate circumstances, irrigated 

agriculture is less sensitive than rainfed agriculture. However, looking at 

cross-sectional studies that compared irrigated versus rainfed agriculture, 

it appears to be hard to draw a line between the conclusions of different 

studies. Indeed, in Europe and China, on average irrigated agriculture 

appears to be less sensitive than rainfed agriculture (Van Passel et al., 

2017; Wang et al., 2009). Yet, in Mexico, the Marginal effect of 

temperature (MEt) and the Marginal effect of Precipitation (MEp) are more 

optimistic for rainfed agriculture than for irrigated agriculture (Mendelsohn 

et al., 2009). In Africa, irrigated farms seem to benefit from marginal 

increases in temperature, while they suffer from marginal increases in 

precipitation (Seo and Mendelsohn, 2008c). Kurukulasuriya et al. (2006) 

show less supportive evidence of this negative MEp for irrigated farms. 

Finally, in Southern-America, the impacts of marginal increases in 
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temperature and precipitation are the opposite of the impacts in Africa 

(Seo and Mendelsohn, 2008a). 

 

Clearly, even though under the same conditions irrigated agriculture is 

assumed to be less sensitive to changes in climate than rainfed agriculture 

(Kurukulasuriya et al., 2006), it seems that there are signficant 

differences between different study findings. Some of these inconsistent 

and contradicting findings are likely explained by differences in 

technology, knowledge, experience and other factors inside and outside 

the farm (Reidsma et al., 2010). Yet, we believe a large proportion of 

these differences is also explained due to the fact that it is rarely specified 

‘what’ irrigated agriculture entails. Two farmers who irrigate might be 

completely different with regard to their frequency or intensity of 

irrigation. They might use different irrigation techniques or extract the 

irrigation water from different resources which might influence the quality. 

Some farmers irrigate all their fields, while others only apply irrigation to 

part of their fields. As such, farmers can be assigned to a continuum of 

categories in between the extremes of purely rainfed agriculture to purely 

irrigated agriculture. Farmers in one of these categories (even though all 

categories are one form of irrigation) might respond differently to changes 

in climate than farmers in another irrigation category. It is therefore 

important to examine whether it is necessary to distinguish between 

different farm irrigation practices when comparing rainfed and irrigated 

agriculture. 

 

To objectively compare different types of irrigated farms, one should have 

data on the quality, intensity and frequency of irrigation, and the resulting 

investment and operational costs. In addition, it is important to know 

where the irrigation water comes from (e.g. surface- or groundwater) and 

whether this water resource is renewable. There are also significant 

differences in irrigation technologies with regard to efficiency and 

effectiveness. Ideally, all these data should be available on a within-

seasonal basis because irrigation requirements, costs and applicability 
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highly vary from season to season. All these data can influence a farmer’s 

decision to irrigate and the resulting profitability of his decision. 

 

4.3. Data 

Unfortunately, data on specific farm irrigation characteristics only rarely 

exist on a detailed, farm scale level. Data that can be found through for 

instance Eurostat and FAO (2017), are mostly on an aggregated (e.g. 

country) scale and do not give sufficient information on farm differences in 

irrigation application, requirements, water usage and related costs. 

 

The data that we use are FADN (Farm Accountancy Data Network) data. 

FADN provides farm-specific measures of approximately 80,000 farm 

holdings in the European Union, which represent nearly 14 million farms 

with a total utilized agricultural area of about 216 million hectares. Their 

irrigation data register for each farm “the area of crops which have 

actually been irrigated at least once during the year” (p17) (European 

Commission, 2014). Irrigation data on such a large scale are unique and 

give a more detailed picture of irrigation on farm level than most other 

datasets do. With these data we can distinguish farmers based on their 

long-term irrigation investments regarding the percentage of UAA (utilized 

agricultural area) that they can irrigate. In a lot of cases this is a fixed 

investment which puts a limit on the percentage of area that can be 

irrigated (for instance the length of hoses and pipes, or the radius the 

sprinkler installation can reach). These data are therefore highly suited to 

examine the influence of climatic conditions on the farm long term 

irrigation investments. Note however that these data are less suited to 

measure short term farm specific irrigation management strategies in 

response to weather conditions (such as the frequency of usage, and the 

amount and the quality of water used in the irrigation installations). This 

is outside the scope of this paper as we only research whether it is 

necessary to distinguish farm-irrigation heterogeneity in response to 

climatic changes. 
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These farm-level irrigation data will be used to prepare different irrigation 

sub-samples (see section 4.4) to estimate different climate response 

functions. For the climate response functions themselves, we use the 

cross-sectional Ricardian method of  Mendelsohn et al. (1994) and 

therefore use the same variables as previously peer-reviewed work did. 

That is, we link farm land values to specific socio-economic, geographic, 

climatic, biological and farm influences. These variables are described and 

summarized in Appendix E (see also Van Passel et al. (2017) and 

Vanschoenwinkel et al. (2016)). Farm land values are used because they 

are assumed to be proxies for the net present value of farm revenues and 

therefore more robust and stable than yearly revenues. In addition, the 

FADN data are collected uniformly and consistenly over Europe which is 

important to correctly compare different regions. To describe climate, 

temperature and precipitation variables are used. These climate data are 

averaged into four seasons because there is a high correlation in climate 

data from month to month. Linear and quadric terms are introduced for 

both temperature and precipitation since earlier field studies proved the 

non-linear nature of the net revenue function (Mendelsohn and Dinar, 

2003; Mendelsohn et al., 1994). 

 

Apart from the farm specific variables, all variables are on a NUTS3 

geographical scale as for privacy reasons it is not posible to link the farm 

holdings to unique locational coordinates. With regard to the sample of 

farmers taken, we dropped out all mixed and livestock farms to obtain 

better estimations with regard to irrigation.  Finally, it should be noted 

that for this study, looking at the data of one year is enough because we 

only examine the farm response to climatic conditions. Using data of 

2007, 2008… or 2012 therefore should not change the results if data are 

sampled in the same way. However, we do show the findings of the period 

before 2008 (namely 2007) and after 2008 (namely 2012) because, as 

will be discussed in section 4.5, starting from 2008 there were changes in 

the way farms are sampled. 
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4.4. Method 

The method consists of three parts: (1) determining how the sample will 

be divided in rainfed versus irrigated farms depending on the percentage 

of UAA a farmer irrigates, (2) determining the climate response function 

per sample, and (3) deriving the marginal effects of temperature and 

precipitation per function. These three steps are repeated 1000 times so 

that different climate responses of different categorizations can be 

compared with one another. We now explain these three steps in more 

detail before showing the results. 

 

The climate response itself is estimated by means of the cross-sectional 

Ricardian method as presented by Mendelsohn et al. (1994). The method 

uses data on farm land values, assuming that these are proxies for the net 

present value of farm revenues. Each farmer is assumed to maximize his 

profits (and thus his land value) by optimizing endogenous variables such 

as inputs, crop choices and other management decisions. As such, such 

variables cannot explain changes in land value or revenues and only 

exogenous variables outside the control of the farmer are taken into 

account. The cross-sectional data used by the method allow comparing 

regions with different climatic, geographic, biophysical and socio-economic 

characteristics to understand their influences on the farm climate 

response. For the purpose of this paper, we run the model with an 

Ordinary Least Squares Regression but we split the full sample of farmers 

in an irrigated and a rainfed sample to determine the climate response 

function for each of these samples separately. This is also done by 

Kurukulasuriya et al. (2006), Mendelsohn and Dinar (2003), Schlenker et 

al. (2006), Seo and Mendelsohn (2008b) and Van Passel et al. (2017) who 

estimated separate response functions for rainfed and irrigated crops. 

 

This irrigated and rainfed climate response is estimated 1000 times, for 

1000 different farm categorizations in rainfed versus irrigated crops. The 

farm categorization in rainfed versus irrigated crops is done based on the 

percentage of UAA farmers irrigate. We call this percentage the irrigation 
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threshold. If a farm irrigates at least x% of its UAA, it is categorized as an 

irrigated farm. We allow to change this threshold x from 0,1% to 100% 

with steps of 0,1 throughout the analysis. As such we make a different 

irrigation and rainfed categories for each irrigation threshold. In total we 

use 1000 irrigation thresholds and as such we determine 1000 rainfed and 

irrigation climate responses that can be compared with one another. This 

will help us to better understand whether a farmer that irrigates for 

instance only 1% of his UAA, should be categorized as a true irrigated 

farm or not. 

 

For each of these subsamples, based on one specific irrigation threshold, 

we compare the irrigated and rainfed agricultural climate response with 

regard to their annual marginal effect of temperature (MEt) and their 

annual marginal effect of precipitation (MEp) by checking whether they 

were significantly different from each other (Weighted Welch’s t-test) and 

by comparing their absolute values. The marginal effects are necessary to 

determine because we both use linear and quadratic climate terms per 

season in the climate response functions (see Vanschoenwinkel et al. 

(2016)). Calculating the marginal effects per season is done as follows 

(determined separately for precipitation (p) and temperature (t)) for 

season i (MEi)): 

𝑀𝐸𝑖 =
𝜕𝑉

𝜕𝐶𝑖
= 𝛽1,𝑖+2𝛽2,𝑖𝐶𝑖 

The annual average marginal effect (MEt and MEp) is derived from the 

previous by taking the sum of the average seasonal marginal effects. The 

marginal effects can be interpreted as the percentage change in 1 hectare 

land value associated with an increase of 1°C in temperature for MEt or an 

increase of 1 cm in precipitation for MEp. Note that each marginal effect 

goes along with only one irrigation threshold as it is determined for each 

climate response function separately. Each marginal effect on each of the 

graphs is determined by a unique climate response function per irrigation-

threshold. The entire three-step procedure is repeated per year (in this 
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case 2007 and 2012) and per additional subsampling (small versus large 

farms).  

 

These results are visualized in the graphs in the next section. The 

marginal effects of irrigation are presented by a blue line and the marginal 

effects of rainfed agriculture by a green line. The significance of the t-test 

is visualized by means of a red background. If there is no significant 

difference between rainfed and irrigated agriculture, these points will have 

a red background. However, with regard to the significance of the Welch’s 

t-test, it should be noted that we only executed the t-test for discrete 

points ranging from 0.1-100%. That means that there might still be points 

in between that we did not test for and that might yet be insignificantly 

different from each other. This can for instance be seen in figure 12f 

where the irrigated-line suddenly drops below the rainfed line. In the point 

where the two lines intersect, there is obviously no significant difference 

between rainfed and irrigated agriculture. Yet, no red background is 

visible because the intersection must be somewhere between 95.2 and 

95,3%. We only tested for 95.2% and 95.3%. Not for the values in 

between. 

 

Furthermore, we also indicate with a bar chart included in each graph, the 

size of the sample of irrigated farms. This is because, the higher the 

threshold, the lower the sample of irrigated farms that remains. To keep 

track of this evolution, the bar chart in the graph indicates how many 

farmers remain and at what percentage they irrigate. In case the 

categorization of farmers in irrigated or rainfed farmers does not matter, 

the blue line should be horizontal, meaning that each irrigation-threshold 

results in a similar marginal effect or climate response. 

 

4.5. Results 

We determined for 1000 different categorizations of irrigation (that is 

1000 irrigation-thresholds), a climate response function for rainfed and 

irrigated agriculture. This implies that we have a total of 2000 regressions 
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per analysis (1000 irrigated and 1000 rainfed climate responses) that 

have to be compared with one another. As this would be very 

cumbersome, we focus our analysis on the visualization of the marginal 

effects of climate of all these regressions. These can be found in the 

graphs below. In the Appendix F, an example of the paper’s linear 

regressions of the 50%-threshold can be consulted for 2007 and 2012. 

 

Figure 11 shows the marginal effects of temperature for 2007 and 2012, 

distinguishing the results of the entire sample compared to samples of 

large and small farms. Looking at the full sample in 2007 (figure 11a), 

there is clearly a positive relationship between the MEt and the percentage 

of UAA that a farmer irrigates. That is, farmers who irrigate a higher 

percentage of their UAA have a more positive MEt than rainfed farmers. 

Clearly, when no distinction is made between farmers that irrigate at least 

73,1% of their UAA and farmers that irrigate a smaller part of their UAA, 

the analysis shows that the MEts of rainfed agriculture are more beneficial 

than the MEts of irrigated agriculture. The decision of the researcher to 

categorize farmers in one category or another therefore influences the 

final conclusion with regard to the effect of a marginal increase in 

temperature on irrigated versus rainfed agriculture. 

 

Farm categorization is, less of an issue when using data of 2012 (Figure 

11b). The MEts of 2012 are different from those in 2007 with regard to 

the fact that irrigated agriculture on average responds more beneficial 

than rainfed agriculture to marginal increases in temperature. No 

threshold with regard to the percentage of UAA irrigated must be 

exceeded although there are points on the graph where the differences 

between rainfed and irrigated agriculture are not significant or where the 

MEts of irrigated agriculture sometimes become less beneficial than those 

of rainfed agriculture (in between the threshold of 40.7-83.4%). 

 

These results, however, slightly change if other farm differences are also 

taken into account. Farmers are very heterogeneous and different farm 
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types (defined by characteristics such as farm size and crop choice) might 

respond differently to climate change and irrigation practices. It is 

therefore important to understand farm differences. In this paper, we 

compare small and large farms with each other and it can be seen that 

this explains the differences between 2007 and 2012. Looking at 11c and 

11d, it can be seen that large farms in general have lower MEts when 

opting for irrigation, while small farms (11e and 11f) have more beneficial 

MEts in case they irrigate. Only in 2007, small farms first have to irrigate 

a minimum percentage of their UAA before the MEt of irrigation becomes 

more beneficial than the MEt of rainfed agriculture. This threshold to be 

exceeded before the MEts of small irrigated farms become more beneficial 

than those of rainfed agriculture needs to be smaller than when compared 

to the results of the full sample (~40.0% instead of ~73.1%). As such, 

there are differences between 2007 and 2012 with regard to the 

proportion of large and small farms that influence the conclusion when 

looking at the results of the full sample. 

 

With regard to the MEp, comparison between rainfed and irrigated farms 

is more straightforward. In both 2007 and 2012, independent of the 

percentage UAA irrigated, irrigated agriculture benefits more from 

decreases in precipitation than rainfed agriculture. Furthermore, the 

relationship between MEp and the percentage of UAA irrigated is negative, 

indicating that farms that irrigate a higher percentage of UAA are less 

vulnerable to decreases in precipitation. This negative relationship is 

mostly visible for large farms that irrigate as they use irrigation in 

particular to avoid the negative impacts of decreases in precipitation 

(figure 12c and 12d). Small irrigated farmers (figure 12e and 12f) benefit 

from additional precipitation or respond more neutral. 

 

4.6. Discussion 

The results prove our point of criticism: differences between long term 

farm irrigation practices might influence the researcher’s conclusion of 

whether rainfed or irrigated agriculture is more or less responsive to 
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changes in climate. Farms that irrigate larger proportions of their UAA 

respond significantly different than farms that irrigate only occasionally. 

Researchers should therefore clearly define irrigated agriculture and not 

assume that all irrigated farms are the same.  

 

Given the differences between farmers and their different irrigation 

strategies and customs, it is however not straightforward to say which 

threshold a researcher should take to analyze rainfed versus irrigated 

farmers. In addition, regarding the sampling of the data in small versus 

large farmers, it should be noted that comparison between large and small 

farmers in Europa might be hard due to the fact that large farms in 

Europe are located mostly in North-Western regions where more rainfed 

agriculture is present. The results of large farmers should therefore not 

simply be generalized to all European farmers. Furthermore, Southern 

regions mostly have small farmers, and these farmers seem to prefer 

increases in precipitation (2007) or do not face serious consequences 

when precipitation increases (2012). This might indicate that they have 

less constant access to water resources and need additional precipitation 

to maintain their water reserves. 

 

Further research is therefore needed to better understand how differences 

in irrigation influence farm climate responses. In this respect it is 

important to understand that there is a difference between long term 

responses to climate and short term responses to weather. This study only 

measures the impact of climate change on the farm and not the impact of 

weather itself. To study the impact of weather changes, researchers 

should look more at short term irrigation responses such as the intensity 

and frequency of irrigation, and the type of water used. 

 

However, in case research further examines short term irrigation 

management variables, it is important to understand that such variables 

increase endogeneity issues. This is due to the fact that short term farm 

management is much more flexible and in control of the farmer than long 
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term irrigation investments. In this regard, it is important to improve 

methods in order to take into account such endogeneity issues. For the 

method and data used in this study, it is therefore more robust and 

correct to apply climatic data. In addition, the sample size of our data is 

large, minimizing possible biases. However, in case more flexible 

management variables are examined, endogeneity issues have to be 

accounted for. As such, even though frequently used (see Kurukulasuriya 

et al. (2006), Mendelsohn and Dinar (2003), Schlenker et al. (2006), Seo 

and Mendelsohn (2008b) and Van Passel et al. (2017)), it should be noted 

that the methodology of subsampling irrigated and rainfed farms is less 

accurate. This is a frequently cited problem which requires more research 

attention (see for instance Kurukulasuriya et al. (2011) and Chatzopoulos 

and Lippert (2016)). Chapter 5 addresses this issue in more detail and 

shows that endogeneity indeed leads to less robust model estimates, but 

that due to the large dataset used in this dissertation this does not 

influence research conclusions. Chapter 4 therefore provides useful 

insights into how we will define irrigation in chapter 5 (given the fact that 

irrigation is a continuous variable). The graphs of 2012 show that the 

direction of the conclusion in general stays the same over all the threshold 

and we therefore chose to maximize the number of farmers in our 

irrigation subsample. As such for chapter 5, we use a threshold of 0.1% to 

define irrigation. 

 

Thirdly, before it is possible to account for farm irrigation management 

heterogeneity, more farm irrigation data are needed. Given the fact that 

more institutions and researchers are aiming to collect more irrigation 

data, a peculiar finding of how sample characteristics can further influence 

differences between irrigated and rainfed farms of this paper should be 

highlighted regarding the FADN. With regard to the MEts, the climate 

responses of 2007 and 2012 differ significantly from another. However, 

given the fact that we use climatic control variables, it is unlikely that in 

such a short period of time, a region’s climate response would change this 

drastically. Instead, these differences are caused by changes in the data 
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sampling of large and small farmers in Italy between these years. Before 

2007, the full Italian FADN sample contained about 17,000 farms. After 

2007, only about 12,000 farms remained (Cisilino et al., 2011). This is 

possible because the data collection of the FADN occurs at country level 

and Member States have their own selection plans (FADN, 2016). Starting 

from the 2008 accounting year, the Italian survey system introduced a 

new software with related changes in data collection (Bodini and 

Marongiu, 2009). One of the sampling differences in the Italian sample 

appears to be the exclusion of very large farm holdings. This has two 

implications for our analysis: (1) we weight based on farm size as 

measured by UAA, (2) most Italian irrigated farms are large and are as a 

result dropped from the sample. The later means that there is a decrease 

of more than 40% in Italian irrigated farms in our sample (from 4588 

irrigated and 3019 rainfed farms in 2007, to 2652 irrigated and 2370 

rainfed farms in 2012). Given the fact that most irrigated farms in Europe 

are situated in Italy, this is a very important change for our analysis. We 

tested the years 2008, 2009, 2010 and 2011 and concluded that our 

results of these 4 years are (as expected) similar to the results of 2012. 

Results only differ between the period before and the period starting from 

2008 due to the sampling differences. 

 

4.7. Conclusion 

The climate response of irrigated versus rainfed agriculture highly differs 

depending on long term farm irrigation decisions. As such, conclusions 

with regard to differences between the benefits of rainfed versus irrigated 

agriculture can highly differ depending on how irrigation is defined. 

Reseachers should be aware of this and not blunty generalize their 

research conclusions to all irrigated farm types. There are certainly 

irrigation strategies that are more effective and efficient than others.  

 

Research therefore needs to use more farm-specific irrigation and water 

management data. Given the fact that these data are not always 

available, it might also be relevant to understand better at which point 
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and under which circumstances irrigated agriculture is more or less 

beneficial than rainfed agriculture. Finally, the criticism brought up by this 

paper should be taken further to other adaptation practices to understand 

how farm heterogeneity in implementing one adaptation option influences 

research findings. This should also be coupled to the adaptation decision 

process of the farm itself to tackle endogeneity issues. 
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Chapter 5 

How do Western European farms behave and respond to climate 

change? A simultaneous irrigation-crop decision model 

“If we don’t […] deepen our fundamental understanding of the world, we 

won’t provide a basis for the next generation of innovations.” – Bill Gates 

 

Abstract – Famers trying to adapt to climate change face a wide range of 

adaptation options which are simultaneously determined. Adaptation 

decision models do not capture such real-life complexity and only examine 

adaptation options individually. This chapter therefore models a 

simultaneous irrigation-crop farm decision model by using spatially 

detailed farm level data of over 18,000 farms on irrigation and seven 

different crop choices. In doing so, it adds to the recurring discussion 

about whether cross-sectional models properly capture irrigation in the 

climate response function and concludes that explicitly modeling farm 

decisions leads to more robust estimation results than when compared to 

their exogenous counterparts. Furthermore, the simultaneous decision 

model leads to a variety of results with regard to rain-fed and irrigated 

agriculture of European farmers. Some of the main results show that 

Southern European regions show significantly negative irrigation 

probabilities when temperature marginally increases (-5 to -7% in 

summer). This shows that those regions adapt through other means than 

irrigation to higher temperatures (for instance through crop choice). Yet, 

marginal increases in precipitation do increase Southern European small 

farmers’ irrigation probability (up to 4.5%), showing that precipitation is 

needed before irrigation can take place. These results imply that 

irrigation, as an adaptation tool to climate change, is often hampered due 

to climate constraints. 

 

5.1. Introduction 

“Clever humans” have always adapted agriculture to new growing 

conditions (Burke and Lobell, 2010; Wreford et al., 2010). Yet, it appears 
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that today’s farmers are not responding quickly to recent climate changes 

(Adger et al., 2007; Burke and Emerick, 2016), despite the fact that 

climate change is undoubtedly happening and causing significant 

agricultural losses (Rosenzweig et al., 2014). Therefore, immediate 

guidance on adaptation decisions and implementation is indispensable 

(IPCC, 2014a). However, unless we “begin to understand all the complex 

processes and reasons by which farmers make decisions, our efforts to 

help improve decisions will fail” (p. 288) (Öhlmér et al., 1998). It is 

therefore important to examine how a farmer choses an adaptation 

option. 

 

This article takes a closer look at one type of adaptation, namely 

irrigation, as it is one of the primary mechanisms for agriculture to 

respond and adapt to climate (Howden et al., 2007). Remarkably, 

however, only few studies examine farm irrigation decisions explicitly. An 

interesting irrigation decision model was developed by Kurukulasuriya et 

al. (2011). However, the article considers the farm irrigation choice only 

as a response to climate and other exogenous variables such as subsidies, 

geographical characteristics and socio-economic factors. More recent work 

of Olen et al. (2016) showed that (1) irrigation management contains not 

only making changes in the size of irrigated land, but also allows for 

adoption of different irrigation technologies, adjustments in water 

application rates for specific crops, and allocation of land to different 

crops. Secondly, (2) an irrigation decision is crop-specific, implying that, 

thirdly, (3) a farm’s irrigation decision and final climate response are also 

dependent on other farm decisions that have to be modelled jointly to 

properly understand the irrigation decision process. 

 

Olen et al. (2016) brought contributions to point (1) and (2) by estimating 

separately crop-specific irrigation decisions regarding the share of 

irrigated land (𝐼𝑆𝑖𝑗), technology adoption per crop (𝑇𝐴𝑖𝑗) and water 

application rates (𝐴𝑅𝑖𝑗). However, they did not estimate all these decisions 

jointly and therefore call for improvements regarding estimation methods 
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to estimate a mixed structural model that simultaneously estimates all 

decisions together. This article builds further on their work and 

suggestions by structuring their separate decisions in one framework and 

by estimating a mixed simultaneous decision model.  

 

We start with the case of Europe because, on a European scale, no 

quantitative analysis on farms’ irrigation decisions exists, even though 

Europe is facing significant changes in its irrigated agriculture. In Europe, 

approximately 85 percent of the European irrigated land is concentrated in 

the lower latitude Mediterranean area (Giannakis et al., 2016), showing 

the importance of irrigation to reduce dependency on and uncertainty of 

rainfall patterns (Tubiello, 2005). Nevertheless, Kahil et al. (2015) have 

shown that climate change will have sizeable negative impacts on irrigated 

agriculture in Southern Europe, implying that irrigation might be a 

questionable adaptation tool in some circumstances. In addition, irrigated 

agriculture is now also spreading to regions at higher latitude due to 

climate-driven drought and water scarcity, meaning that investments in 

irrigation and water infrastructure are needed in a significant part of the 

European Union. Therefore, a quantitative analysis to gain insights into 

which factors influence the irrigation decision is indispensable to support 

policy decisions in Europe, but also in many other regions where the 

irrigated area is expanding due to climate-driven stimuli. It is therefore 

important to examine which variables influence the European irrigation 

decision. We start by briefly reviewing past irrigation modeling issues and 

capture these for the purpose of this article in one framework. We explain 

how to estimate the model and present the data we use. In the final 

sections we present and discuss the results and draw conclusions.  

 

5.2. Irrigation Decision Model 

This article uses a method that has its roots in statistical cross-sectional 

methods (as also used by Olen et al. (2016)). Such methods can gain 

insights into irrigation or other adaptation choices by looking at farmers’ 

actual irrigation or adaptation responses to the ongoing climate. 
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Experimental cross simulation models1 are less appropriate for this 

purpose as they do not capture the behavior of the farmer himself. The 

cross-sectional method used is the Ricardian method, which is established 

by Mendelsohn et al. (1994). The Ricardian method explains variations in 

land value (as a proxy for the net present value of farm revenues) by 

means of exogenous variables such as climate, soil, and socio-economic 

determinants. Endogenous variables such as inputs, crop choices and 

other management (adaptation) decisions are not explicitly examined by 

the method because these variables are assumed to be optimized by the 

profit-maximizing farmer himself. As such, the method takes adaptation 

into account because all farmers are expected to be adapted to the 

environment in which they live. 

 

5.2.1. Past modeling issues 

However, when using this methodology, adaptation options (whom are 

endogenous) are not explicitly modeled because they are assumed to be 

optimized. Look for instance at figure 13 in which you can see that 

different adaptation choices (rainfed versus irrigation) have different 

climate responses. With the traditional Ricardian method, only one climate 

response function is estimated, aggregating the coefficients for all the 

different adaptation options. The traditional Ricardian method is therefore 

also called ‘the black box’ as it does not reveal the exact nature of the 

adaptation choice chosen by the farmers (Seo and Mendelsohn, 2008c). 

This leads to a number of disadvantages: first of all it is not possible to 

distinguish between and compare rainfed and irrigated agriculture if only 

one aggregated climate response function is estimated. Yet, irrigation 

“breaks the link between the growth of a plant and the climate” (p. 396) 

(Schlenker et al., 2005), implying that the climate coefficients should be 

                                                

1 Crop simulation models are based on a deep understanding of agronomic 
science and are one of the most popular methods for estimating 
agricultural climate change impacts (Mendelsohn and Dinar, 2009). 
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Figure 13 – Adaptation via cropping pattern shift and irrigation  
(source Mendelsohn and Dinar (2003))  

allowed to differ between irrigated and rain-fed farms. Conclusions based 

on aggregated coefficients for irrigated and rain-fed farming combined 

might be biased and give less accurate information. Several studies have 

attempted to model irrigation by estimating separate response functions 

for rain-fed and irrigated farms by splitting the full sample based on 

irrigation (Kurukulasuriya et al., 2006; Mendelsohn and Dinar, 2003; 

Schlenker et al., 2007; Seo and Mendelsohn, 2008b; Van Passel et al., 

2017). In doing so, however, they consider irrigation to be an exogenous 

variable and do not allow the farmer to switch between rain-fed and 

irrigated crops. This could lead to endogenous treatment bias if one only 

observes whether farms use rain-fed or irrigated land (Kurukulasuriya and 

Mendelsohn, 2007). The sample is a non-random sample in the sense that 

the farmer self-selects himself in either the sample of irrigated farms or 

the sample of rain-fed farms (Heckman, 1979). This endogenous 

treatment bias also seems to be an issue in the article of Olen et al. 

(2016), as they do not look at the crop choice decision and therefore 

assume erroneously that crop choice is an exogenous variable. To solve 

this endogenous treatment bias, the irrigation choice itself should be 

modeled explicitly as it is influenced by numerous other variables. 
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Due to the above issues, there have been recurring discussions on the 

accuracy of representing and capturing irrigation in cross-sectional models 

(Cline, 1996; Darwin, 1999; Schlenker et al., 2007). A better 

understanding of the farm irrigation decision process will therefore not 

only give more insights for policy regarding how farmers adapt, but it will 

also help comparing adaptation options and improve climate change 

impact estimates (Vincent, 2007). 

 

5.2.2. Framework 

The irrigation decision itself is influenced by numerous variables such as 

water availability and supply, climate parameters, farm characteristics, 

soil characteristics and topography, specific irrigation investment or 

variable costs, institutional influences, and market conditions (Bowman 

and Zilberman, 2013; Brouwer et al., 1992; Culas and Mahendrarajah, 

2005; Elliott et al., 2014; Evans et al., 1996; Greig, 2009; Jamagani and 

Bivan, 2013; Knapp and Huang, 2017; Koundouri et al., 2006; Ley et al., 

1994; Matti et al., 2010; Olen et al., 2016; Scherer et al., 2013; Schewe 

et al., 2014; Schlenker et al., 2007; USDA, 1997; Zilberman et al., 2012). 

 

On top of these variables, one variable that is often not included in the 

irrigation decision model but that has a very high influence on the 

irrigation decision is the farm crop choice. The decision to irrigate is highly 

dependent on the crop choice of the farm because different crops have 

different water requirements (Fisher-Vanden et al., 2014). As such, 

depending on the crop choice, climate and water scarcity have a different 

effect on irrigation decisions, as crop choice is a tool for adapting to 

climate change. This is due to differences in root density, root depth, crop 

water use rate, critical growth period, crop evapotranspiration and pest 

resilience of different crops. It is important to make the irrigation decision 

crop-specific as otherwise aggregation mixes up crop-specific effects of 

different factors on the irrigation decision (Green and Sunding, 1997; Olen 

et al., 2016; Pfeiffer and Lin, 2014).  
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However, the crop a farmer cultivates is also a farm decision. A farmer will 

not decide to irrigate if he does not know yet whether the crop he will 

chose will or will not need additional water. Crop choice should therefore 

be modelled jointly with the irrigation decision and cannot simply be 

added as an additional variable to the irrigation model. But, on the other 

hand, the farm crop decision is also dependent on the farm’s irrigation 

decision. This is because in some regions crops cannot be cultivated with 

the local amount of precipitation and additional artificial water supplies are 

needed. If the farmer does choose such a crop, it means that he also 

immediately decides upon whether to irrigate or not. This implies that the 

farmer simultaneously has to decide on both the crop and irrigation 

choice. As such, an irrigation decision model needs to be estimated 

simultaneously with the farm crop decision model. 

 

Finally, as indicated by Olen et al. (2016), the irrigation decision is not 

only a ‘yes’ or ‘no’ decision determining whether to irrigate or not. 

Instead, it consists of a number of decisions concerning irrigation 

management (such as technology, water application rate, share of 

irrigated land). 

 

In our irrigation decision framework, we put all the above components 

together as shown in figure 14. We split the irrigation decision in two 

parts: equation (2) shows the decision whether the farmer decides to 

irrigate or not (this is a binary decision model). This decision is taken 

simultaneously with the crop decision (equation 1, which is a multinomial 

decision model). Once a farmer has decided upon this crop and irrigation 

choice, a number of subsequent irrigation (or rain-fed) decisions (a-d) 

follow that further explain ‘how’ the farmer will irrigate (or apply rain-fed  
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agriculture2). Eventually, for each combination of decisions (1), (2) and 

(a-d), the farmer will face a unique climate response function (measured 

by land value as this is a proxy for the net present value of farm 

revenues). Olen et al. (2016) estimated equations (a-c) separately. Our 

article will estimate equations 1-3 simultaneously, but will not explicitly 

model the within irrigation-heterogeneity (equations a-d). 

 

Figure 14 – Farm irrigation decision framework 
Framework consists of simultaneous decisions (1) and (2), and 

subsequent decisions (a-d) once (1) and (2) are decided upon. This leads 
to (3) the conditional climate response function. Abbreviations used in 
Olen et al. (2016) are used as a basis. 

 

                                                

2 Note that we did not add subsequent decision equations under the 

IRR=0 (rainfed) decision. We left this space open because rainfed farmers 
decide upon different elements than irrigated farmers. Olen et al. (2016) 
did not examine these decisions and further research is therefore needed 
in this area. This is outside the scope of this article. 
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5.2.3. Empirical Model 

Our irrigation decision model therefore consists of a unique system of 

three equations. The farmer is assumed to make a decision that 

maximizes the conditional income (equation 3) resulting from the 

simultaneous irrigation-crop decision (equation 1-2). Therefore, the 

farmer will only irrigate if irrigation is more beneficial than rain-fed 

agriculture. We implement a binary logit model that captures the decision 

to irrigate (𝐼𝑅𝑅𝑖 where 𝐼𝑅𝑅𝑖=0 is a rain-fed farm, while 𝐼𝑅𝑅𝑖=1 is an 

irrigated farm) (equation 2). This decision to irrigate is simultaneously 

determined with the farm crop choice (𝑐𝑟𝑜𝑝𝑖 where crop is divided into 

seven crop categories: olives, rice, cereals, field crops, fruits, root crops, 

and wine), which is a multinomial model that evaluates the probability 

that a certain crop will be cultivated (equation 1). Finally, equation 3 

explains the value of land (𝐿𝐴𝑁𝐷𝑉𝑖), conditional on the previous farm 

choices. The system is therefore complicated given its mix between non-

linear and linear models. The system can be written for each farm i as: 

 

Pr[𝑐𝑟𝑜𝑝
𝑖

= 𝑗] =
exp (𝑥𝒃′𝑖𝑗)

1+∑ exp (𝑥𝒃′𝑖𝑗)𝑘
𝑗=1

          𝑗 𝑘 (1) 

𝑥′𝒃𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝐼𝑅𝑅𝑖 + 𝛽′2𝑗𝑍𝑖 + 𝛽′3𝑗𝐶𝑅 + 
𝑖

+ 
𝑖
𝛽4𝑗 

𝐼𝑅𝑅𝑖 = 𝛼0 + 𝛼′1𝑍𝑖 + 𝛼′2𝐶𝑅 + 𝑐𝑟𝑜𝑝𝑖𝑗 + 
𝑖

+ 𝜖𝑖          𝑖 = 1 … 𝑁 ; 𝐼𝑅𝑅𝑖 = 0 − 1 (2) 

𝐿𝐴𝑁𝐷𝑉𝑖 = 𝐼𝑅𝑅𝑖 ∗ (𝛾0 + 𝛾′
1

𝑍𝑖 + 𝛾′2𝐶𝑅 + 𝜆𝑖 + 
𝑖
) (3) 

in which the errors in the equations are denoted as 𝜖𝑖, 𝑖
 (which differs per 

crop type) and 
𝑖
. 𝐶𝑅 represents the linear and quadratic regional NUTS3 

climatic influences in terms of seasonal temperature and precipitation and 

𝑍𝑖 represents all other exogenous variables that influence the farm choice. 

  

The model involves simultaneous endogeneity and endogenous treatment 

selection which are both solved through the error terms 𝜆𝑖 and 𝑖. This 

method is also known as the control function approach and is more robust 
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in this case as it explicitly models omitted relevant variables (Heckman 

and Navarro-Lozano, 2004). More specifically, 𝜆𝑖 and 𝑖 are the 

unobserved random components that solve the endogenous treatment 

bias and the simultaneous endogeneity, respectively. The inherent causal 

endogeneity issue is solved by applying a generalized structural equation 

model (GSEM) consisting of the two equations (𝐼𝑅𝑅𝑖 and 𝑐𝑟𝑜𝑝𝑖), both of 

which include the same unobserved farm heterogeneity component (𝑖) 

(Drukker, 2014). In GSEM, these unobserved components can solve for 

omitted variable bias when included in both equations. As such it corrects 

for causal endogeneity. The residual error (𝜖𝑖) represents the noise which 

includes possible measurement errors and variables such as knowhow and 

other potential farm-specific variables that influence irrigation choice and 

not crop choice. This model is estimated by means of full-information 

maximum likelihood (FIML) estimates. As such, it determines the 

probability of being in a specific treatment group (rain-fed or irrigated 

agriculture) by simultaneously taking crop choice into account. In the 

second stage, to solve the endogenous treatment problem (which is 

basically a correlation between the error term of the irrigation choice 

model (𝜖𝑖) and the land value model (𝑖)), we include only the part of 

irrigation that is not correlated with specific, unobserved factors that also 

determine land value. This is expressed as the 𝜆𝑖 in the second stage. In 

theory, this model of three equations should be estimated at once; 

however, due to computational difficulties3, the model was estimated in 

two steps (a simultaneous irrigation-crop choice model and the conditional 

land value equation) (see also Wooldridge (2005)). With regard to the 𝜆𝑖 

in the last step of the model, this implies that we had to approach this 𝜆𝑖 

by including the predicted residuals from the first-stage probit model (𝜖�̂�) 

in the second stage (inverse Mills would also have been a similar 

possibility) (Fernández-Val and Vella, 2011). 

                                                

3 The model converges for significantly restricted samples. However, when 
increasing the number of explanatory variables and observations it is not 
possible to estimate the full model at once. 
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With regard to the interpretation of the results, it should be noted that not 

all coefficients can be interpreted directly. The climate coefficients have a 

linear and a quadratic term, which makes calculating their marginal 

effects, as explained by Mendelsohn et al. (1994), a more straightforward 

way of analyzing the climate effects. For the linear regression model of 

land value, the marginal effects of temperature (MEt) and the marginal 

effects of precipitation (MEp) are calculated for each season i (MEi) as 

follows: 

𝑀𝐸𝑖 =
𝜕𝑉

𝜕𝐶𝑖
= 𝛽1,𝑖+2𝛽2,𝑖𝐶𝑖              (4) 

The annual average marginal effect (MEt and MEp) is derived from the 

previous equation by taking the sum of the average seasonal marginal 

effects. Marginal effects are interpreted as the percentage change in 1 

hectare land value associated with an increase of 1°C in temperature or 

an increase of 1 cm in precipitation. The marginal effects of the non-linear 

logit model in the simultaneous irrigation-crop model can be determined 

similarly after having taken a logit transformation. The MEs of the logit 

model are interpreted as the increase in the probability of irrigation when 

temperature increases by 1°C or when precipitation increases by 1 cm.  

 

The marginal effects for the conditional land value are divided up into the 

marginal effects for rain-fed and irrigated farms. In order to compare 

these split-up results with the traditional cross-sectional model, which 

does not distinguish between rain-fed and irrigated farms (the no-first-

stage choice model), we determine the expected marginal effects of the 

sample by summing the probability of each farm choice (irrigation versus 

rain-fed) multiplied by the marginal effects of that farm choice (see Seo 

and Mendelsohn (2008) for more details). That is: 

𝑀𝐸(𝐶) =  ∑ 𝑃𝐼𝑅𝑅(𝐶) ∗ 𝑀𝐸𝐼𝑅𝑅(𝐶)1
𝐼𝑅𝑅=0  with IRR=0(rain-fed) & IRR=1(irrigation)   (5) 

The exogenous full-sample marginal effects are determined directly as in 

Mendelsohn et al. (1994) because they do not explicitly take adaptation 
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choices into account. The model itself was run in Stata (StataCorp, 2015) 

within the infrastructure of the Flemish Supercomputer Center (VSC, 

2017) for additional computational resources. 

 

5.3. Data 

The different types of crop categories included in the analysis are 

summarized by country in Appendix G. However, irrigation is also non-

linearly influenced by climatic parameters such as temperature and 

precipitation that we capture per seasonal influence. Given that extreme 

events are assumed to be important stimuli for irrigation adaptation 

(Berrang-Ford et al., 2011), we also control for drought severity from 

1901 to 2008 as measured by Sheffield and Wood (2008) and drought 

frequency as indicated by the drought hazard frequency typology (ESPON, 

2011). The drought severity variable measures the average length of 

drought times the dryness of the drought (as measured by soil moisture 

remaining below the 20th percentile). The drought frequency indicator 

contains five categories indicating the degrees of drought frequencies. 

However, adaptation measures are not only taken in response to climate 

(Runhaar et al., 2012). Soils can also increase or decrease the probability 

of irrigation, although this depends on their combination with the 

inclination of the soil. Steep soils are generally less attractive for irrigation 

(Kurukulasuriya et al., 2011). Therefore, we account for geographical 

characteristics such as elevation mean and range. We also capture farm-

specific subsidies that might influence the irrigation decision. Finally, the 

decision to irrigate depends on the water flow on which irrigation depends. 

Water availability is one of the most constraining factors for food security 

(Kang et al., 2009). As such, work that considers irrigation adaptation 

needs to pay close attention to the particular hydrological systems and the 

property rights regimes. With regard to irrigation water property rights, 

the Ricardian method has been criticized in the U.S. due to the fact that 

Western and Eastern U.S. farmers have different water rights. This implies 

that the infinitely-elastic-supply-of-irrigation-water assumption of the 

method (Cline, 1996) is wrong if different farmers have access to water in 
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a different way. With regard to water rights, however, Europe differs from 

the U.S. in the sense that it has an established framework for community 

action in the field of water policy since 2000. The Water Framework 

Directive (WFD) (Directive 2000/60/EC) was adopted exactly to make the 

patchwork of existing policies and legislations more coherent over the 

European Union (European Court of Auditors, 2014). However, given the 

fact that the implementation of the water resource plans of the WFD is 

based on river basins, it is also important to capture water stress and 

other water supply indicators. The present study captures water stress in 

the region, accounting for both water supply and demand. This 

competition for water between different sectors (municipal, industrial, and 

agricultural sectors) is called the baseline water stress and is measured by 

the total annual water withdrawals of all sectors, expressed as a 

percentage of the total annual available flow (Gassert et al., 2013). 

Therefore, the baseline water stress variable might also help control for 

potential water regulations or water costs that we cannot control for 

explicitly. This is important because the demand for water is likely to also 

depend on the price of water (Mendelsohn and Dinar, 2003). For 

additional water supply indicators, we also rely on the return flow ratio, 

which measures the percentage of available water previously used and 

discharged upstream as wastewater. As such, it indicates availability and 

dependence on wastewater treatment plants (Gassert et al., 2013). We do 

not take groundwater into account, as this is already predicted in large 

part by the local climate and demand for water sources (Mendelsohn and 

Dinar, 2003). In addition, it is highly correlated with precipitation. With 

the current EU policy setting and above water control variables, it is 

reasonable to assume that property rights and hydrology in Europe are 

better suited to empirical modeling of adaptive irrigation behavior than in 

the U.S. 

 

Like irrigation, crop choice is influenced by extreme weather events, 

climatic variables, soil, and geography and subsidies. Unlike irrigation, we 

also include flood occurrences to control for other extreme events that 
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impact crop choice specifically. Flood occurrence data measure the 

number of floods recorded in each catchment between 1985 and 2011 

(Gassert et al., 2013). We also aim to control for market conditions such 

as supply of specific inputs and demand for the specific crop types by 

controlling for distance from cities and ports, length of motorways per 

1000 km², population density, and GDP per capita. 

 

Finally, the conditional value of land is determined by similar variables to 

those used in Vanschoenwinkel et al. (2016) and Van Passel et al. (2017). 

We include distance from cities and ports, as these might influence land 

value, account for soil type and elevation characteristics, and control for 

farm and socio-economic characteristics such as subsidies and percentage 

of rented land. Finally, we control for country-specific characteristics by 

including country-fixed effects. 

 

All of the resources used to obtain these data are summarized in Appendix 

H. For all farm-specific data (agricultural land value, subsidies, and land 

rented), we relied on unique farm accountancy data collected in 2012 by 

the FADN (Farm Accountancy Data Network) (FADN, 2014). We opted for 

2012 data because these were the most recent data available at the time. 

FADN provides farm-specific measures of approximately 80,000 farm 

holdings in the European Union, which represent nearly 14 million farms 

with a total utilized agricultural area of about 216 million hectares. For 

privacy reasons, it is not possible to link these farm holdings to unique 

locational coordinates, but they can be linked to the different NUTS3s 

(Nomenclature of Territorial Units for Statistics regions), which are 

homogenous geographic units across all European countries that are 

identified by the EU. As a result, all non-farm specific control variables are 

at NUTS3 level. The variables of drought severity, upstream water 

storage, return flow ratio, flood occurrence and baseline water stress were 

originally obtained through the World Resources Institute, which provides 

global water risk maps through the Aqueduct interactive platform (Gassert 

et al., 2013). We obtained data on NUTS3 level from these maps by 
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intersecting them with NUTS3 maps using the rgeos (Bivand et al., 2017) 

and raster (Hijmans et al., 2016) packages in R. Finally, the baseline 

climate should be representative for the recent average climate in the 

study region and should be of a sufficient duration to encompass a range 

of climatic variations (Carter and La Rovere, 2001). The present study 

uses the 30-year normal period for temperature and precipitation from 

1961–1990 from the Climatic Research Unit (CRU) CL 2.0 (New et al., 

2002). These long-run climate estimates are stable and the monthly 

climate data are aggregated into seasons because the correlation between 

climate data of neighboring months was too high (Mendelsohn et al., 

2001). With regard to the other data and sources, we refer to Appendix H. 

Our data do not include the most northern countries (Sweden, Finland, 

and Denmark) because they rely mostly on livestock and mixed farming 

(and these farms are not included in our analysis given our focus on 

irrigation). 

 

5.4. Results 

We start by discussing the GSEM simultaneous irrigation and crop choice 

model, before examining the conditional land values and discussing the 

robustness of our results. For each of these steps, we also analyze 

whether there are differences between large and small farms. This is 

because by 2050, there are likely to be fewer but larger farms and it is 

therefore also important to examine differences in adaptation behavior 

and consequences between larger and smaller farmers (Reidsma et al., 

2015). The division of the sample into large and small farms is based on 

the economic farm size (ESU, see Appendix H). Farms with an economic 

farm size larger than 120 ESU are categorized as large farmers. In total, 

we have 4269 large farms (of which 2972 rain-fed and 1297 irrigated) and 

13,767 small farms (of which 7301 rain-fed, and 6466 irrigated). We 

analyzed a total of 18,036 farms, of which 10,273 were rain-fed and 7763 

were irrigated. 
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5.4.1. Simultaneous irrigation-crop decision model  

As table 6 shows, in all models, irrigation is highly dependent on crop 

choice as all the crop dummies are significant. Crops such as root crops, 

field crops, fruits, and rice have a highly positive influence on the 

probability of adopting irrigation, while crops such as wine and olives are 

more likely to occur without irrigation compared to cereals. The other way 

around, this crop choice (as can be seen in table 74) was also highly 

dependent on the decision to irrigate.  

 

Furthermore, given the significance of most of the climate coefficients in 

the choice model, it is clear that temperature and precipitation have an 

influence on farm choice. The marginal effects of temperature and 

precipitation (table 8) show that on an annual basis, higher temperatures 

and more precipitation have a positive effect on the probability to irrigate. 

 

However, there are both regional, seasonal and farm differences in the 

relationship between climate and irrigation probability. In Figure 15, we 

estimated the quadratic relationship between annual climate (in terms of 

temperature or precipitation) and the probability that irrigation is chosen 

as an adaptation option. Figure 15A clearly shows the effect of higher 

temperatures on the probability to irrigate. However, for precipitation 

there are significant regional differences. Figure 15C (higher latitude 

farms) shows that the relationship between the probability to irrigate and   

                                                

4
 Given that we are mostly interested in the results of the irrigation choice 

model, Table 7 does not elaborate on the distinctions between large and 

small farms. The crop choice model in this article is mostly of interest for 
improving the irrigation model and solving endogeneity issues. However, 
results of the crop model for large and small farms can be obtained by 
contacting the authors. 
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Table 6 – GSEM model part irrigation choice 
  Small Farms Large Farms All Farms 

 

Coef St Er Sig Coef St Er Sig Coef St Er Sig 

Irrigaton Prob   

  

  

 

    

 

  

Olives -0.466 0.080 *** -1.335 0.240 *** -0.614 0.074 *** 

Fieldcrops 0.720 0.055 *** 0.924 0.109 *** 0.795 0.048 *** 

Roots 3.221 0.107 *** 2.356 0.116 *** 2.951 0.069 *** 

Wine -0.730 0.066 *** -0.570 0.128 *** -0.647 0.056 *** 

Fruit 3.937 0.102 *** 4.127 0.145 *** 4.102 0.080 *** 
Rice 6.033 1.018 *** 3.420 0.495 *** 4.104 0.380 *** 

Cereals 

 

NA 

  

NA   

 

NA   

Drought freq 

   

  

 

  

  

  

Very low (<12.1%) 

   

  

 

  

  

  

Low  (12.1-14%) 1.542 0.459 *** 1.012 0.154 *** 0.672 0.128 *** 

Medium (14-16%) 2.293 0.461 *** 0.647 0.176 *** 1.024 0.135 *** 

High (16-18%) 2.769 0.464 *** 1.904 0.215 *** 1.800 0.144 *** 
Very high (>18%) 2.060 0.466 *** 1.339 0.217 *** 1.096 0.147 *** 

Drought severity -0.070 0.006 *** -0.062 0.010 *** -0.069 0.005 *** 

Water Return -1.680 0.165 *** -2.158 0.388 *** -1.844 0.138 *** 

Water stress 0.820 0.098 *** 1.280 0.262 *** 0.952 0.084 *** 

Tem Winter -0.625 0.112 *** -0.004 0.177   -0.126 0.087   

Tem Winter² 0.036 0.012 *** -0.157 0.019 *** -0.025 0.009 *** 

Tem Spring -4.787 0.346 *** 1.133 0.502 ** -2.297 0.253 *** 

Tem Spring² 0.213 0.015 *** -0.027 0.024   0.118 0.011 *** 

Tem Summer 4.132 0.422 *** -2.834 0.651 *** 1.756 0.308 *** 
Tem Summer² -0.100 0.010 *** 0.043 0.016 *** -0.049 0.007 *** 

Tem Autumn 4.013 0.543 *** -0.012 0.676   1.497 0.386 *** 

Tem Autumn² -0.135 0.021 *** 0.088 0.027 *** -0.041 0.015 *** 

Prec Winter 0.058 0.071 

 

-1.075 0.168 *** -0.126 0.061 ** 

Prec Winter² -0.011 0.003 *** 0.057 0.009 *** -0.002 0.003   

Prec Spring -0.864 0.171 *** 0.140 0.284   -0.268 0.136 ** 

Prec Spring² 0.113 0.011 *** 0.052 0.018 *** 0.070 0.009 *** 

Prec Summer 0.138 0.091 

 

-1.175 0.186 *** -0.244 0.076 *** 

Prec Summer² -0.020 0.005 *** 0.068 0.010 *** 0.004 0.004   

Prec Autumn 0.732 0.109 *** 0.895 0.216 *** 0.750 0.085 *** 
Prec Autumn² -0.065 0.007 *** -0.073 0.012 *** -0.055 0.005 *** 

Gravel soil 0.077 0.016 *** 0.349 0.026 *** 0.172 0.013 *** 

Silt soil -0.150 0.011 *** 0.007 0.017   -0.138 0.009 *** 

Sand soil -0.086 0.006 *** 0.053 0.011 *** -0.064 0.005 *** 

pH 0.526 0.075 *** 0.835 0.116 *** 0.829 0.059 *** 

Subsidies 0.635 0.056 *** 0.380 0.124 *** 0.544 0.050 *** 

Intercept -41.16 2.853 *** 9.615 2.998 *** -18.069 1.763 *** 

Log likelihood full 

GSEM -47706     -30051     -82597     

 
 
the amount of precipitation is actually concave; this implies that at a 

certain point, there is enough precipitation in the region and no irrigation 

is necessary. As such, it is clear that precipitation is a substitute for 

irrigation, even though in non-Mediterranean regions the probability to 

irrigate is quite low (lower than 20%). In Mediterranean regions (figure 

15B) – that is, Portugal, Spain, Italy, and Greece – this relationship is less 

clear because most regions did not yet reach the ‘tipping’ point of having  
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Table 7 – GSEM model part crop choice  
(crop category “Fruit” is the base category) 

 

Root crops Rice Wine Olives Cereals Field crops 

  Coef Sg Coef Sg Coef Sg Coef Sg Coef Sg Coef Sg 

Irrigation -1.80 *** 0.54   -4.68 *** -4.54 *** -4.33 *** -3.54 *** 

Tem Winter -0.91 *** 3.45 *** -0.07   2.48 *** 0.78 *** -0.47 *** 

Tem Winter² 0.02   -0.07   0.05 *** -0.11 *** -0.07 *** -0.04 *** 

Tem Spring 3.66 *** -4.03   -0.53   -0.31   -2.08 *** -0.10   

Tem Spring² -0.21 *** 0.34   0.06 *** -0.00   0.11 *** 0.01   

Tem Summer -4.53 *** 11.14 * 1.09 * 5.27 *** 2.62 *** -1.21 ** 

Tem Summer² 0.12 *** -0.19   -0.00   -0.08 *** -0.06 *** 0.02 * 

Tem Autumn 0.01   -6.38   0.88   -5.38 *** -2.22 *** 0.48   

Tem Autumn² 0.05 ** 0.02   -0.10 *** 0.14 *** 0.06 ** 0.03   

Prec Winter 0.96 *** -2.52 *** 0.96 *** 1.56 *** 1.16 *** 1.00 *** 

Prec Winter² -0.05 *** 0.07 ** -0.05 *** -0.07 *** -0.07 *** -0.05 *** 

Prec Spring 2.57 *** 1.99   -0.63 *** 2.25 *** 0.52 *** 0.61 *** 

Prec Spring² -0.18 *** 0.08   0.10 *** -0.12 *** -0.03 * -0.04 *** 

Prec Summer 0.22   1.00   0.64 *** 1.45 *** 0.48 *** 0.47 *** 

Prec Summer² -0.03 *** -0.08   -0.07 *** -0.10 *** -0.05 *** -0.05 *** 

Prec Autumn -3.06 *** -0.35   -0.55 *** -3.51 *** -2.71 *** -2.26 *** 

Prec Autumn² 0.18 *** 0.08 ** 0.04 *** 0.22 *** 0.17 *** 0.14 *** 

Flood occur 0.01   0.1   -0.1 *** -0.06 *** 0.00   0.01   

Motorw leng 0.01 *** -0.15 *** 0.00   0.02 *** -0.02 *** -0.01 *** 

Gravel soil 0.03   0.14   0.17 *** 0.16 *** -0.06 *** 0.05 ** 

Silt soil -0.15 *** 0.30 *** -0.06 *** -0.08 *** -0.11 *** -0.08 *** 

Sand soil -0.01   0.29 *** -0.02 ** -0.11 *** -0.04 *** 0.01   

pH 1.27 *** 0.59   0.69 *** 0.16   0.16 * 0.75 *** 

Distance city 0.91   -15.2 *** -12.1 *** -12.4 *** -8.76 *** -4.51 *** 

Distance port -2.15 *** -9.81 *** 5.50 *** 2.70 *** -0.90 ** 2.04 *** 

GDP / capita 0.03 *** -0.13 ** -0.03 *** -0.11 *** -0.01   -0.01   

Eleva mean 1.307 *** -3.65 * 1.98 *** 0.77 * 1.76 *** 1.55 *** 

Eleva range -0.96 *** 2.35 *** -0.75 *** 0.65 *** -0.27 *** -0.48 *** 

Pop density -1.24 *** 0.28   -1.64 *** -2.08 *** -0.91 *** -0.91 *** 

Subsidies 0.72 *** 1.24 *** -0.87 *** 0.64 *** -0.79 *** -0.02   

Organ carb 0.21 *** 0.14   -0.26 *** -0.47 ** 0.05 * 0.12 *** 

Intercept 19.80 *** -114 ** -17.5 *** -31.8 *** 10.30 *** 9.47 *** 

Log 

likelihood  

full GSEM -82597 

 

enough precipitation. These regions are more dependent on irrigation and 

probabilities to irrigate exceed 60% when sufficient precipitation is 

present. As figure 15B shows, they can only irrigate if there has been 

enough precipitation for them to have sufficient water to use for irrigation 

(for instance, precipitation refills groundwater layers). As such, the more 

precipitation falls, the more they can irrigate. In Southern regions, 
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Table 8 – Marginal effect on probability to irrigate 

Marginal effect on the probability to irrigate for large farms 

 

MEts1 MEts2 MEts3 MEts4 MEt MEps1 MEps2 MEps3 MEps4 MEp 

Austria 0.009 0.020 -0.039 0.048 0.038 -0.017 0.024 0.004 0.000 0.010 
Belgium -0.060 0.046 -0.096 0.126 0.016 -0.023 0.056 -0.012 -0.008 0.013 

Germany -0.002 0.007 -0.014 0.017 0.007 -0.005 0.007 -0.002 0.001 0.001 

Spain -0.288 0.068 -0.133 0.358 0.006 -0.056 0.094 -0.116 0.016 -0.062 

France -0.133 0.053 -0.110 0.195 0.004 -0.026 0.077 -0.039 -0.017 -0.005 

Greece -0.085 0.040 -0.076 0.171 0.051 -0.020 0.050 -0.055 0.007 -0.017 
Ireland -0.047 0.021 -0.049 0.052 -0.023 -0.001 0.026 -0.010 -0.012 0.003 

Italy -0.251 0.084 -0.167 0.385 0.052 -0.038 0.137 -0.060 -0.066 -0.027 

Luxembourg -0.003 0.005 -0.010 0.011 0.004 -0.001 0.006 -0.001 -0.002 0.002 

The Netherlands -0.118 0.098 -0.206 0.248 0.023 -0.052 0.099 -0.033 -0.023 -0.009 
Portugal -0.630 0.064 -0.169 0.579 -0.155 0.002 0.130 -0.192 -0.008 -0.068 

United Kingdom -0.036 0.022 -0.048 0.055 -0.007 -0.011 0.022 -0.012 -0.002 -0.004 

Total -0.09 0.04 -0.08 0.14 0.01 -0.02 0.05 -0.03 -0.01 -0.01 

           
Marginal effect on the probability to irrigate for small farms 

 

MEts1 MEts2 MEts3 MEts4 MEt MEps1 MEps2 MEps3 MEps4 MEp 

Austria -0.028 -0.041 0.023 0.060 0.015 -0.002 0.021 -0.009 -0.001 0.009 

Belgium -0.013 -0.033 0.025 0.037 0.015 -0.003 0.018 -0.005 -0.006 0.004 

Germany -0.013 -0.032 0.018 0.034 0.007 -0.001 0.010 -0.004 -0.001 0.004 
Spain -0.031 0.002 -0.020 0.033 -0.015 -0.008 0.039 0.005 0.009 0.045 

France -0.036 -0.051 0.044 0.079 0.037 -0.013 0.100 -0.012 -0.034 0.041 

Greece -0.026 0.091 -0.059 -0.022 -0.016 -0.019 0.031 0.008 -0.005 0.016 

Ireland 0.000 -0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 
Italy -0.039 0.012 -0.010 0.031 -0.006 -0.017 0.097 -0.010 -0.062 0.007 

Luxembourg -0.014 -0.033 0.021 0.039 0.013 -0.003 0.019 -0.004 -0.007 0.005 

The Netherlands -0.014 -0.042 0.030 0.041 0.015 -0.003 0.012 -0.005 -0.007 -0.002 

Portugal -0.007 0.088 0.001 -0.015 0.067 -0.031 0.114 0.008 -0.046 0.045 
United Kingdom -0.003 -0.010 0.008 0.009 0.004 0.000 0.002 -0.001 0.000 0.001 

Total -0.03 0.01 -0.01 0.03 -0.02 -0.01 0.05 0.00 -0.01 0.03 

           
Marginal effect on the probability to irrigate for all farms 

 
MEts1 MEts2 MEts3 MEts4 MEt MEps1 MEps2 MEps3 MEps4 MEp 

Austria -0.002 -0.008 0.001 0.024 0.014 -0.005 0.020 -0.006 0.002 0.012 

Belgium -0.020 -0.015 0.007 0.048 0.020 -0.011 0.048 -0.014 -0.001 0.021 

Germany -0.003 -0.008 0.002 0.014 0.005 -0.003 0.010 -0.004 0.003 0.006 

Spain -0.070 0.070 -0.059 0.052 -0.007 -0.023 0.068 -0.036 0.030 0.039 
France -0.041 0.016 -0.011 0.052 0.017 -0.017 0.081 -0.023 -0.009 0.032 

Greece -0.066 0.103 -0.070 0.036 0.003 -0.024 0.060 -0.035 0.017 0.019 

Ireland -0.004 -0.004 0.004 0.007 0.003 -0.002 0.007 -0.002 -0.002 0.001 

Italy -0.066 0.066 -0.050 0.059 0.009 -0.026 0.113 -0.035 -0.035 0.017 
Luxembourg -0.007 -0.012 0.004 0.026 0.012 -0.006 0.026 -0.007 -0.003 0.010 

The Netherlands -0.033 -0.048 0.023 0.085 0.027 -0.019 0.062 -0.025 -0.006 0.012 

Portugal -0.093 0.134 -0.054 0.031 0.018 -0.027 0.105 -0.038 -0.010 0.030 

United Kingdom -0.008 -0.010 0.006 0.017 0.005 -0.004 0.012 -0.005 0.002 0.005 

Total -0.04 0.04 -0.03 0.04 0.00 -0.02 0.05 -0.02 0.00 0.02 

 

Marginal effects are derived from coefficients in Table 6. MEts/ps1: marginal effect 

temperature/precipitation winter, MEts/ps2: marginal effect temperature/precipitation spring, 

MEts/ps3: marginal effect temperature/precipitation summer, MEts/ps4: marginal effect 

temperature/precipitation winter. 
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15A Full sample annual temperature 

 
15B Mediterranean farms prec. 

 
15C Non-Mediterranean farms prec. 

 
Figure 15 – Irrigation probability versus annual climate  
(grey areas are 95% confidence intervals) 

 

therefore, irrigation is somehow dependent on precipitation. With regard 

to the seasonal differences, table 8 shows that less rain in winter and 

summer gives rise to a higher probability to irrigate (a decrease of 1 cm 

precipitation leads to a 2% increase in irrigation probability). This makes 

sense, as winter and summer crops are in their critical growth stages 

during these seasons, implying that they need enough water. Irrigation is 

a clear substitute for precipitation in these seasons. With regard to 

temperature, higher temperatures in winter and summer lead to lower 

probabilities of irrigation (a decrease in probability of up to 4% if 
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temperature increases with one degree). Higher temperatures in winter 

imply that irrigation as a frost protection is less needed. With regard to 

higher temperatures in summer, however, it can be seen that the low 

average irrigation probability is highly influenced by Southern European 

regions such as Spain (-5.2%), Greece (-7%), Italy (-5%), and Portugal 

(-5.4%). This implies that these regions adapt to high temperatures by 

means of their crop choice (for example, cotton and olives are less 

sensitive to higher temperatures and are less likely to need additional 

irrigation). These conclusions should not be generalized to all farms. Large 

and small farmers make different choices in response to temperature and 

precipitation. For instance, large farmers seem to irrigate more when 

there is less precipitation, indicating that they use irrigation as a 

substitute for precipitation. Those large farmers respond less to changes 

in temperature (for instance, when summer temperature increases with 

one degree, the probability to irrigate decreases on average with 8%). 

Instead, small farmers seem to irrigate more when there is more 

precipitation (on average, an increase in precipitation of one cm leads to a 

3% increase in the probability to irrigate), which again points out their 

dependency on precipitation before they can irrigate. This is especially the 

case in Southern European regions (see for instance Spain and Portugal 

which record increases of on average 4.5% in their probability to irrigate 

when precipitation increases with one cm). With regard to annual 

temperature, it seems that small farms in Southern regions are less likely 

to irrigate if temperature increases, indicating that they might rather 

adapt through more drought resistant crop choices. 

 

With regard to the influence of drought on irrigation probability (see table 

6), we controlled both for drought frequency and drought severity. 

Drought frequency has a positive influence on irrigation probability. 

However, if drought occurs with a very high frequency, the probability of 

irrigation is lower than when drought occurs with a high frequency. 

Moreover, the higher the severity of the drought, the less likely it is that 

irrigation will occur. These two last findings can be explained by the fact 
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that periods of severe drought lead to severe pressures on irrigation water 

capacity. In addition, there might be additional regulations that prioritize 

water use for sanitary or drinking water purposes. In case of very severe 

periods of droughts, irrigation costs might no longer be economically 

justifiable or the crops might already be damaged too much. More 

competition for water resources seems to be in line with higher farm 

irrigation probabilities. This could be explained by the fact that regions 

with more competition for water resources are more likely to have a water 

policy or more renewable water sources to solve their water scarcity 

issues. While small and large farms react similarly to drought events, it 

seems that small farmers are more responsive. 

 

5.4.2. Conditional land value 

Depending on the choices the farmer makes in the irrigation-crop decision 

model, the farmer will have a different climate response or conditional 

land value. This article focusses on the difference in climate response 

between farmers that opt for irrigation and farmers that opt for rain-fed 

agriculture. When comparing such climate responses properly, the model 

should account for endogeneity. As can be seen in table 9, in the 

endogenous model, endogenous treatment (𝜆𝑖) is in both cases highly 

significant. This indicates that irrigation is indeed endogenous and 

therefore within the control of the farmer. As such, it is an important 

adaptation strategy as long as enough water is available. For the cross-

sectional climate change impact models, this means that we have proven 

that models that fail to account for endogenous irrigation are biased. For 

comparative purposes, we also include the model that does not correct for 

endogeneity (that is, the exogenous model or the original cross-sectional 

model).  

 

Looking at the endogenous model in table 9, it can be seen that both rain-

fed and irrigated farms are sensitive to climate as most of the climate 

coefficients are significant in both climate response functions. On an 

annual basis and looking at the full dataset (without distinguishing 
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between rain-fed and irrigated farms), for most member states, both 

temperature and precipitation do not have a negative effect on land value 

as negative seasonal effects are offset. However, irrigated farms 

responded significantly differently than rain-fed farms to 11 of the 16 

climate variables. This becomes clearer in table 10 and figures 16 and 17 

who present the marginal effects of temperature and precipitation. It can 

be seen that irrigated crops are more resistant and less sensitive to higher 

temperatures than rain-fed crops in southern regions. Nevertheless, 

irrigation seems to be less beneficial in response to higher temperature in 

northern regions than in more southern regions. Spain for instance has on 

average a 7% increase in rain-fed land value if annual temperature 

increases with one degree, while irrigated land has an increase of 17%. 

On the other hand, in Belgium rain-fed agriculture has a higher benefit 

(34.6%) than irrigated agriculture (11.3%) when temperature increases 

with one degree. This shows the adaptive effect irrigation has in Southern 

Europe. An examination of increases in precipitation suggests that rain-fed 

crops benefit significantly more than irrigated crops (on average they 

benefit from an increase of 25% in their land value if annual precipitation 

increases with 1 cm, while irrigated crops benefit a smaller increase of 

16%). This makes sense because irrigation is a substitute for 

precipitation. Especially Northern Italy, where a lot of rice is cultivated and 

where significant irrigation investments have been done, would suffer 

from increases in precipitation. 

 

Finally, the conditional climate response of large and small farms (figure 

16 and 17) shows that in between irrigated farms, there can still be 

differences in climate responses. For instance, most small farms that 

irrigate are located in southern regions and face highly positive marginal 

effects of temperature. Large irrigated farms face quite negative marginal   
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Table 9 – Conditional Land Value per farm choice 
For each sample, rain-fed and irrigated farms are compared (Diff) to measure their significant 

differences. 

 

Large Small 

 

Rain-fed 

Endo 

Irrigation 

Endo Diff 

Rain-fed 

Endo 

Irrigation 

Endo Diff 

Log Land Value Coef Sig Coef Sig Sig Coef Sig Coef Sig Sig 

T Winter 0.13 *** -0.19 *** *** 0.01 
 

-0.29 *** *** 
T Winter² -0.04 *** -0.00   *** 0.01 *** 0.02 *** *** 

T Spring -1.92 *** 0.24   *** -0.49 *** 0.60 *** *** 

T Spring² 0.14 *** -0.01 * *** 0.04 *** 0.00   *** 

T Summer 0.92 *** -0.82 *** *** -0.18 

 

-1.38 *** *** 

T Summer² -0.05 *** 0.02 *** *** 0.00 

 

0.03 *** *** 

T Autumn 1.08 *** 0.29   *** 0.75 *** 0.92 ***   

T Autumn² -0.03 *** 0.01   *** -0.04 *** -0.04 ***   

P Winter 0.09 *** -0.67 *** *** 0.07 *** -0.10 *** *** 

P Winter² -0.00 ** 0.03 *** *** 0.00 *** 0.01 *** ** 

P Spring 0.37 *** 1.40 *** *** 0.04 
 

0.06     
P Spring² -0.04 *** -0.09 *** *** 0.00 

 

-0.02 *** *** 

P Summer 0.01 

 

-0.60 *** *** 0.03 

 

0.15 *** ** 

P Summer² 0.02 *** 0.05 *** *** 0.00 *** 0.01 **   

P Autumn 0.01 

 

0.28 *** *** 0.04 

 

0.36 *** *** 

P Autumn² 0.00 

 

-0.01 *** ** -0.01 *** -0.02 *** * 

Pop density 0.03 

 

0.13 **   0.35 *** 0.35 ***   

Subsidies 0.01 

 

0.19 *** *** 0.21 *** 0.20 ***   

Distance ports 1.81 *** -1.21 *** *** -0.60 *** -1.32 *** *** 

Distance cities -2.50 *** -2.80 ***   -0.22 * -1.25 *** *** 
Rent land 0.14 *** 0.38 *** *** -0.02 

 

0.04   * 

Elev mean -0.22 ** 0.04   * -0.45 *** 0.16 ** *** 

Elev range 0.17 *** -0.05 *** *** 0.11 *** 0.02   *** 

Gravel soil 0.02 *** -0.02 *** *** -0.04 *** 0.06 *** *** 

pH 0.86 *** 1.98 *** *** -0.24 

 

-0.63 **   

pH squared -0.06 *** -0.14 *** *** 0.04 *** 0.04 *   

Silt soil -0.01 ** -0.02 *** *** -0.02 *** -0.02 ***   

Sand soil -0.01 *** -0.01 ***   -0.03 *** -0.04 *** * 

Austria -2.53 *** -3.04 *** *** -2.21 *** -2.76 ***   
Belgium -0.66 *** 0.00   * 0.06 

 

0.00     

Germany -0.67 *** 0.00     0.20 * 0.00     

Greece -1.66 *** -0.96 *** ** -0.57 *** -0.07     

Spain -1.08 *** -2.12 *** *** -1.12 *** -0.43     

France -2.07 ** -2.26 *** *** -1.33 *** -1.19 ***   

Ireland -0.76 *** 0.00     -0.00 

 

0.00     

Italy -0.05 

 

-0.69 ** *** 0.52 *** 0.53 *   

The Netherlands 0.22 

 

0.48 * * 1.31 *** 1.38 ***   

Portugal -4.63 *** -2.84 *** *** -1.93 *** -2.16 ***   

United Kingdom -0.86 *** -0.75 ***   -0.23 ** 0.00     
𝜆𝑖 -0.21 *** -0.30 ***   -0.23 *** -0.13 *** * 

Intercept 1.47 

 

8.69 *** *** 11.05 *** 17.38 *** *** 

Adj R-squared 0.63 

 

0.74     0.66 

 

0.64     
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Table 9 Continued – Conditional Land Value per farm choice 
For each sample, rain-fed and irrigated farms are compared (Diff) to measure their significant 

differences. 

 

Full 

 

Rain-fed 

Endo 

Irrigation 

Endo Diff 

Rain-fed 

Exo 

Irrigation 

Exo Diff Fulldata Exo 

Log Land Value Coef Sig Coef Sig Sig Coef Sig Coef Sig Sig Coef Sig 

T Winter 0.06 *** -0.32 *** *** 0.05 ** -0.31 *** *** -0.11 *** 

T Winter² -0.02 *** 0.02 *** *** -0.02 *** 0.02 *** *** -0.00 ** 

T Spring -0.29 *** 0.44 *** *** -0.30 *** 0.48 *** *** -0.08 * 

T Spring² 0.04 *** 0.00   *** 0.04 *** -0.00 

 

*** 0.03 *** 

T Summer -0.58 *** -1.32 *** *** -0.60 *** -1.35 *** *** -0.94 *** 

T Summer² 0.00 ** 0.02 *** *** 0.00 ** 0.03 *** *** 0.01 *** 

T Autumn 0.85 *** 1.01 *** 

 

0.88 *** 1.03 ***   1.06 *** 

T Autumn² -0.03 *** -0.03 *** 
 

-0.03 *** -0.03 ***   -0.04 *** 
P Winter 0.03 ** -0.27 *** *** 0.03 * -0.25 *** *** -0.09 *** 

P Winter² 0.00 *** 0.01 *** *** 0.00 *** 0.01 *** *** 0.01 *** 

P Spring 0.31 *** 0.41 *** * 0.31 *** 0.40 ***   0.33 *** 

P Spring² -0.02 *** -0.04 *** *** -0.02 *** -0.04 *** *** -0.02 *** 

P Summer -0.00 

 

-0.03   

 

-0.01   -0.01 

 

  -0.03 

 P Summer² 0.01 *** 0.02 *** ** 0.01 *** 0.02 *** ** 0.01 *** 

P Autumn 0.07 *** 0.30 *** *** 0.08 *** 0.29 *** *** 0.14 *** 

P Autumn² -0.01 *** -0.01 *** 

 

-0.01 *** -0.01 ***   -0.01 *** 

Pop density 0.12 *** 0.25 *** *** 0.12 *** 0.26 *** *** 0.18 *** 
Subsidies 0.15 *** 0.22 *** *** 0.16 *** 0.20 *** ** 0.24 *** 

Distance ports 0.63 *** -1.03 *** *** 0.63 *** -1.04 *** *** 0.05 

 Distance cities -1.72 *** -1.74 *** 

 

-1.71 *** -1.78 ***   -2.04 *** 

Rent land 0.00 

 

0.12 *** *** 0.01   0.13 *** *** 0.06 *** 

Elev mean -0.12 ** 0.16 ** *** -0.11 ** 0.20 *** *** 0.01 

 Elev range 0.04 *** 0.00   ** 0.04 *** 0.00 

 

** 0.06 *** 

Gravel soil -0.02 *** 0.04 *** *** -0.02 *** 0.04 *** *** -0.00 

 pH -0.80 *** 0.17   *** -0.84 *** 0.20 

 

*** -0.52 *** 

pH squared 0.08 *** -0.01   *** 0.09 *** -0.01 

 

*** 0.06 *** 

Silt soil -0.02 *** -0.03 *** *** -0.02 *** -0.03 *** *** -0.02 *** 
Sand soil -0.02 *** -0.03 *** *** -0.02 *** -0.03 *** *** -0.02 *** 

Austria -2.16 *** -3.45 *** *** -2.16 *** -3.48 *** *** -2.51 *** 

Belgium -0.12 

 

0.00   ** -0.10   0.00 

 

** -0.06 

 Germany -0.05 

 

0.00   

 

-0.04   0.00 

 

  -0.16 * 

Greece -0.61 *** -0.97 *** 

 

-0.52 *** -1.02 ***   -0.15 

 Spain -1.13 *** -1.53 *** 

 

-1.10 *** -1.59 ***   -0.90 *** 

France -1.54 *** -2.14 *** 

 

-1.53 *** -2.17 ***   -1.45 *** 

Ireland -0.36 *** 0.00   

 

-0.35 *** 0.00 

 

  -0.34 *** 

Italy 0.30 *** -0.48   *** 0.33 *** -0.53 * ** 0.44 *** 
The Netherlands 0.90 *** 0.08   *** 0.92 *** 0.02 

 

*** 0.86 *** 

Portugal -2.48 *** -2.88 *** 

 

-2.46 *** -2.94 ***   -2.31 *** 

United Kingdom -0.35 

 

-0.85 *** 

 

-0.34 *** -0.93 ***   -0.34 *** 
𝜆𝑖 -0.19 *** 0.18 *** ***     

  

  

  Intercept 13.69 *** 14.56 *** 

 

13.48 *** 14.73 ***   14.39 *** 

Adj R-squared 0.64 

 

0.67   

 

0.64   0.67 

 

  0.63 
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effects of temperature in northern regions. Therefore, it appears that 

small farmers are more adapted to the climate in terms of temperature 

increases. Large farmers might irrigate more as a way to intensify their 

farm and might therefore be less adapted to the temperature of the 

climate they live in. Instead, large irrigated farms seem to respond 

positively to decreases in precipitation, most likely because they have 

made significant investments in irrigation. Small irrigated farms suffer 

from decreases in precipitation, even though irrigation is assumed to be a 

substitute for precipitation. 

 

5.4.3. Model robustness 

A traditional Ricardian climate response function determines the marginal 

effects of climate conform the formula in equation 4. That is, it determines 

a marginal effect for the full sample, not distinguishing between different 

types of adaptation. However, as can be seen in figure 13, different 

adaptation options do have different climate responses and therefore 

marginal effects. The structural endogenous Ricardian climate response 

function estimated in this article determines the marginal effects of 

climate conform the formula in equation 5. That is, it determines the 

marginal effects per adaptation option and multiplies them with the 

probability this adaptation option takes place. Finally, the sum of these 

multiplications is taken. In table 10 and 11, all the marginal effects for 

temperature and precipitation are presented for both the endogenous and 

the exogenous model. When comparing only the rainfed estimates when 

determined with the exogenous and the endogenous model, it can be seen 

that differences are very small between the exogenous and endogenous 

land value estimates and between the exogenous and endogenous 

irrigation estimates. However, looking at the full climate response function 

(see final column of table 10 and 11), it can be seen that there are 

significant differences between the endogenous estimates (equation 5) 

and the exogenous estimates (equation 4). Comparing the rainfed 

estimates with the full sample estimates shows that the structural 

endogenous Ricardian model that explicitly models adaptation is more 
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robust than the traditional Ricardian estimates. This can be seen by 

looking at countries that do not contain irrigated farmers in the sample. In 

this case, we do not have observations of German, Irish and 

Luxembourgian farmers that irrigate. This means that our marginal effect 

estimates of the Rainfed German, Irish and Luxembourgian farmers, 

should be the same as the marginal effect estimates of the German, Irish 

and Luxembourgian full sample farmers because there is no difference 

between the full and the rain-fed dataset for these countries. For our 

endogenous GSEM model that accounts explicitly for adaptation, this is 

indeed the case. See for instance table 10 where the MEts1 for the 

Rainfed Endogenous model in Germany equals 0.049. This is very close to 

the estimate of MEts1 for the full Endogenous model which equals 0.042. 

However, when adaptation is not explicitly modeled, the full data 

estimates are biased by the adaptation options in other regions. See for 

instance table 10 where the MEts1 for the Rainfed Exogenous model in 

Germany equals 0.038. This is quite different from the estimate of MEts1 

for the full Endogenous model which equals -0.113. Clearly, the 

aggregated effect of irrigation biases the estimates of the original 

Ricardian model. As such, our endogenous estimates are more robust than 

the original Ricardian ones when looking at a seasonal basis. 

 

Furthermore, the analysis goes to great lengths to adjust for unwanted 

variation. The analysis is particularly robust because it accounts for crop 

choice in the irrigation decision, but also because it includes additional 

data on water resources and consumption. In addition, the simultaneous 

estimation of crop and irrigation choice also implies that all unobserved 

farm characteristics that influence both irrigation and crop choice are 

captured by unobserved components. Nevertheless, it is likely that there 

are still variables on a national level, such as agricultural policy, taxes, 

technology and trade, that vary across farms and member states. We 

capture these in the land value regression by including country fixed 

effects. Even though we also have access to data regarding 

evapotranspiration, percentage of clouds, and solar radiation, we did not 
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add these variables, in order to avoid correlation between such control 

variables and our climate variables. Given the significance of most of our 

coefficients, further correlation does not seem to be a problem in our 

analysis. Finally, with regard to the large-small farm categorization, we 

analyzed whether different categorizations based on different thresholds 

of economic farm size influenced the results. This had only limited 

influence on the results. Additional tests with different categorizations 

were done and our main results hold across all of these specifications. The 

descriptive statistics in Appendix G also show that there is a reasonable 

spread of large and small farms all over Western Europe. 

 

5.5. Policy and future research implications 

This article shows that even with cross-sectional data, it is possible to gain 

insights into complicated real-life farm decisions and it even increases the 

robustness of impact estimates. Gaining insights in adaptation is 

important because adaptation to new climatic events leads, in the short 

(and medium) term, to transition and adjustment costs (Kelly et al., 

2005), which often leads to reluctance to implement adaptation plans5 

immediately. More studies on the economic impact of adaptation therefore 

should be conducted to guide policy. 

 

5.5.1. Article findings 

The article shows that irrigation is an endogenous farm choice that is 

influenced by climatic influences. As such, it can be an important 

adaptation strategy in Europe to make crops less vulnerable to climatic 

changes. For instance, results show that, in southern regions (where 

                                                

5 For instance, the EU agreed to spend at least 20 percent of its 2014–
2020 budget on climate-related action (ECA, 2016). Given that almost 40 
percent of the EU budget is spent on agriculture and rural development 
(E.C., 2015), one of the major EU spending programs where climate 

actions should be undertaken is the Common Agricultural Policy (CAP) 
(E.C., 2017). However, according to the ECA (2016), there is no 
significant change in common agricultural policy, or in rural development 
spending, and business as usual prevails. 
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climate is most unfavorable), irrigated crops are more resistant to 

increases in temperature or decreases in precipitation than rain-fed crops. 

  

However, many of the article’s results also point out that water availability 

might be an important restraint, indicating the risk of maladaptation when 

irrigation investments are made in regions that only have limited water 

availability. Overly high summer temperatures decrease the irrigation 

probability, while very severe or frequent periods of droughts decrease 

the probability that farmers will irrigate. On the other hand, the article 

also shows that large farms that irrigate and that do have access to 

sufficient water, might not always adapt properly to climate in terms of 

temperature. This proves that over-specialization in irrigation equipment 

while ignoring adaptation through other means might not always be 

appropriate. In this context, the article shows that irrigation as an 

adaptation option can be substituted by means of different farm crop 

choices as the farm irrigation choice is highly influenced by the farm crop 

choice. As such, crop choice can reduce farm water requirements. For 

policy makers, this implies that, given the significance of crop choice in 

the irrigation decision, policy can guide the irrigation decision of water 

scarce areas towards crops that require less water and thus less irrigation. 

For those crops where irrigation remains, and given the significance of 

water availability in the irrigation decision model, water management 

(such as capture and storage) will likely be an important working point for 

Europe.  

 

5.5.2. Method 

The model presented in this article is unique in the sense that it models 

two farm adaptation decisions simultaneously instead of modeling no, or 

only one, adaptation option explicitly. This is more realistic, as farmers in 

real-life also have to make decisions that simultaneously influence one 

another. In addition, the model’s estimates are more robust than those of 

the traditional cross-sectional model which does not explicitly consider 

adaptation; this increases the model’s value for climate impact estimates. 
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The disadvantage of such a model is that it requires significant 

computational efforts and data, making it less accessible to be 

implemented everywhere.  

 

Furthermore, the model presents numerous opportunities for further 

research. First of all, future research should consider the estimation of an 

even larger simultaneous equation model in which more adaptation 

options are considered explicitly, or in which linkages with other related 

fields are examined (such as the interactions between climate and water 

availability). Furthermore, when studying adaptation behavior, the time 

frame that the farmer considers might have a great influence on his/her 

decisions (Knapp and Huang, 2017). The present study looked at long-

term climate, ignoring short-term fluctuations. However, many farm 

decisions are related to daily changes in management in response to 

short-term changes in various exogenous variables. Therefore, panel data 

studies on decision behavior are also needed in order to further improve 

adaptation understanding. For instance, it would be interesting to examine 

adaptation switchers over time (that is, farmers who switch from one 

adaptation option to another over the years). In this regard, it should also 

be noted that the role of information exchange is very important in terms 

of making and executing adaptation decisions. Evidence shows that word 

of mouth information between farmers represents roughly half of the 

information that farmers use to make economic decisions (Zilberman et 

al., 2012). Also, farmers prefer to ‘wait and see’ in order to learn from the 

early adopters. Therefore, adoption might be slow at the beginning, but 

can speed up fast at later stages (Zhao, 2007), which reduces the 

likelihood of making bad investments. Consequently, alternative decision 

modeling will also be important to model the dynamic multistage process 

(awareness, interest, evaluation, trial, and the final adaptation) (Rogers, 

1962). To increase further understanding on a farmers’ decision to adapt 

to climate change, data modeling can be combined with economic decision 

models. The data and results of the data models can form input to a 

decision tree analysis or an application of the real options theory. Such 
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analyses define the optimal timing for a farmer to adopt a specific 

adaptation strategy under climate change uncertainty. For instance, 

Regan et al. (2015) studied the conversion of land from agriculture to 

biomass. Sanderson et al. (2016) defined the threshold at which a farmer 

switches from a wheat-dominated system to alternative systems. Based 

on these analyses, different adaptation scenarios can be compared. 

 

5.6. Conclusion 

The present article shows that the combination of specific farm types 

(large versus small farms) and adaptation options (crop and irrigation 

choice) leads to very heterogeneous regional farm responses to climate 

change. Appropriate farm adaptation decisions lead to less sensitive farm 

responses to changes in climate. As such, Southern European regions do 

not always suffer from climate change, even though on average, this is 

the case. Nevertheless, the article also shows that adaptation decisions 

and implementations might be hampered by climate constraints. 

Therefore, it is important to model correctly farm adaptation decisions to 

understand potential threats of maladaptation or to reveal good practices. 

This article focused on making adaptation models more realistic in the 

sense that farmers make simultaneous adaptation decisions. This helps to 

gain more insights in the irrigation decision itself, and leads to more 

robust climate change estimates than when compared to their exogenous 

counterparts. 
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Chapter 6. Conclusion and discussion 

“We basically have three choices: mitigation, adaptation and suffering. 

We’re going to do some of each. The question is what the mix is going to 

be. The more mitigation we do, the less adaptation will be required and 

the less suffering there will be.” David Roberts (2012) 

6.1. Methodological improvements 

Agriculture is the most studied sector with regard to the impact of climate 

change, due to the assumption that it is the sector most affected by 

climate change (Rosenzweig et al., 2014). However, surprisingly few 

studies have explicitly reported on adaptive actions the sector can take to 

improve its climate response or to become less climate-sensitive 

(Berrang-Ford et al., 2011; Berrang-Ford et al., 2015). Knowledge on how 

to adapt is limited, even though there is pressing evidence of climate 

change losses that show that adaptation to climate change is an 

“increasingly urgent concern” (Smith et al., 2011). 

 

Consequently, it is no longer sufficient to estimate the impact of climate 

change on agriculture while simply taking adaptation ‘into account’. 

Instead, the sciences must bring adaptation to the forefront of climate 

change impact studies by explicitly modeling adaptation or its 

components. As such, the results will be more useful for policy as they 

provide direct insights to adaptation. Therefore, this dissertation focused 

on how one of the most frequently used climate change impact 

estimation methods, the Ricardian cross-sectional method, can be 

improved to make its results regarding adaptation more defined 

and explicit for policy use. 

 

The operational definition of this question focuses on four methodological 

weaknesses in the Ricardian method that cause barriers with regard to its 

understanding regarding adaptation: (1) ignorance of adaptive capacity 

and adaptation requirements, (2) ignorance of technological development, 
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(3) disregarding within-adaptation-heterogeneity, and (4) not revealing 

the adaptation decision process. The first and the second set of research 

questions, presented in Chapters 2 and 3, relate to the weakness that the 

Ricardian method does not verify whether all the adaptation strategies 

available in the dataset are accessible to all farmers. The method controls 

for adaptation conditions such as base climate, soil, and some socio-

economic variables. However, these control variables are not sufficient to 

check whether all farmers have the means to acquire and implement the 

most optimal, profit-maximizing adaptation options that the Ricardian 

method assumes they will chose. In practice, farmers might opt or be 

forced to choose less optimal adaptation strategies. As such, the Ricardian 

method is too optimistic regarding the agricultural climate response. It 

gives a false feeling of certainty that farmers will adapt in the most 

optimal way, making the role of policy less important. Therefore, when 

using a large dataset, it is highly possible that the dataset contains 

adaptation strategies that the farmer in practice would not be able to use, 

so this must be controlled for. Chapters 2 and 3 both resolve this 

weakness in different ways.  

 

Chapter 2 suggests clustering farmers or regions based on pre-existing 

historical conditions that are assumed to influence farm ability to adapt. 

As such, it offers a solution for researchers who only have limited access 

to additional variables that reveal farm adaptive capacity. Of course, this 

only works on the condition that the researcher is aware of such regional 

differences (as in our case with Eastern versus Western Europe). In this 

way, if other variables are well controlled for, it is possible in many 

regions to implicitly measure the effect of adaptive capacity. The theory 

behind such clustering of regions is that one limits the number of 

adaptation options available to those that are already within the region. 

Therefore, broadening the dataset with adaptation options from other 

regions expands the range of adaptation options the farm can chose from, 

and will improve the climate response of the first region. As such, it takes 

into account technological development based on existing technologies in 
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other regions. Given that the Ricardian method assumes that each farmer 

has access to the most optimal adaptation strategies available in the 

dataset, this would lead to a climate response that takes into account 

adaptation strategies that are currently unavailable. To take technological 

development into account even further, it should be possible to use 

traditional crop models or experimental simulations to test how more-

developed technologies would behave in these regions. The results of 

these experimental simulations could be used to build a dataset with more 

technological development, which could be used to test how the climate 

response would change if such technological development were taken into 

account. In a similar way, combining experimental simulations and cross-

sectional methods could also be the solution to take future technological 

improvements into account. In the interests of unlocking their potential for 

increased adaptive capacity to lessen the harm and increase the possible 

benefits of climate change, it is important to look at more developed 

regions when examining farm systems in other developing regions. 

Therefore, Chapter 2 also suggests a solution for the methodological 

weakness whereby the traditional Ricardian method cannot take 

technological development into account. 

 

Chapter 3 offers a second solution that takes differences in farmers’ 

abilities to adapt into account by explicitly capturing adaptive capacity as 

an additional explanatory variable in the model. Adaptive capacity is 

influenced by characteristics such as information and skills, institutions, 

equity, technology, and economic wealth (IPCC, 2007a), and therefore 

measures whether the requirements to be able to adapt are present. 

Where possible (that is, if the researcher has access to these data), this 

should be the preferred solution for solving this weakness because it leads 

to more accurate and regional specific estimates on the impact of adaptive 

capacity. Researchers who ignore adaptive capacity must be aware that 

their results are overly optimistic in the sense that farmers are unlikely to 

have full adaptive capacity. In addition, when translating their research 

findings to policy, researchers must point out that adaptation is unlikely to 
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occur autonomously if adaptation requirements are not fulfilled. 

 

Chapters 2 and 3 provide solutions to the failure of the traditional 

Ricardian method to sufficiently capture adaptation requirements. While 

this is done for adaptation in general and not for specific adaptation 

options, it is also, ultimately, necessary to properly understand which 

adaptation options need to be prioritized in which contexts. In this regard, 

it is important to be able to compare adaptation options with one another 

in order to properly select which adaptation options are most appropriate 

in which context. Unfortunately, a major weakness of the Ricardian 

method is that it does not show adaptation itself explicitly, which means it 

does not reveal the adaptation decision process that leads to a conditional 

climate response per adaptation choice. As a result, the Ricardian method 

is often compared to a ‘black box’. A number of studies have attempted to 

model adaptation by estimating separate response functions for different 

types of adaptation (Kurukulasuriya et al., 2006; Mendelsohn and Dinar, 

2003; Schlenker et al., 2007; Seo and Mendelsohn, 2008b; Van Passel et 

al., 2017). However, in doing so, those studies consider adaptation to be 

an exogenous variable. This could lead to endogenous treatment bias if 

one only observes whether or not farms choose a specific adaptation 

option (Kurukulasuriya and Mendelsohn, 2007). A further weakness of the 

Ricardian method is that a farmer does not simply make one adaptation 

decision; instead, he or she can choose from a number of implementation 

decisions related to the main decision. These decisions generate a range 

of adaptation options that give rise to a wide range of climate responses 

depending on the degree of adaptation. This within-adaptation 

heterogeneity might lead to incorrect conclusions about the overall 

successfulness of the adaptation category. Chapters 4 and 5 provide 

solutions for the two abovementioned weaknesses by taking a closer look 

at one important adaptation strategy: irrigation. 

 

Chapter 4 focuses on the weakness whereby within-adaptation 

heterogeneity might cause individual farm climate responses to differ 
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significantly from the overall climate response. Therefore, that chapter 

suggests that researchers should understand the extremes between which 

an adaptation option can vary, and then assess how the farm climate 

response changes when moving from one adaptation extreme to the 

other. This can be done by making subsamples of all the within-adaptation 

differences to identify how their climate responses change when the 

adaptation option is taken to the next level. Alternatively, a continuous 

variable can be used as an interaction term with the climate response to 

measure the degree of adaptation on a scale from “not choosing for this 

adaptation option” (for example, rain-fed agriculture in this case) to 

“using the most extreme form of this adaptation option” (for example, 

irrigating 100 percent of the UAA). 

 

Finally, Chapter 5 models the adaptation decision process explicitly and 

resolves the ‘black box’ weakness of the Ricardian method. It first advises 

researchers to first make an overview of adaptation decisions linked to the 

adaptation decision the researcher aims to model. As such, the researcher 

can clearly define the scope of his adaptation decision model as farmers 

often take numerous decisions jointly. The decision model within this 

scope can then be estimated. This dissertation focuses on the binary 

irrigation decision process (not the subsequent irrigation decisions) and its 

conditional (rain-fed versus irrigated) climate response function. However, 

the irrigation decision itself is crop-specific. Crop choice is a farm 

management decision and should therefore be modeled jointly with the 

irrigation choice. Given that both crop and irrigation choice influence each 

other simultaneously, this dissertation is the first to present a mixed 

simultaneous irrigation-crop choice model. Thus, Chapter 5 provides 

solutions for the endogeneity issues that the Ricardian model faces when 

aiming to reveal adaptation options explicitly. Chapter 5 also proves that 

the Ricardian estimates become more robust when adaptation is modeled 

explicitly. The chapter also provides adaptation insights regarding both the 

farm choice and the effectiveness of the adaptation option compared to 

alternative adaptation strategies. Finally, Chapter 5 shows that it is 
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possible, and of added value, to illicit more complex adaptation decision 

models from the Ricardian method. 

 

6.2. Adaptation insights 

While improving the Ricardian framework to capture adaptation and its 

components more explicitly, this dissertation provides answers to the 

research questions (RQ) introduced in Chapter 1.  

 

In Chapter 2, this dissertation proved that Western and Eastern Europe 

have a different agricultural climate response (RQ 2.1). The results show 

that when both regions rely independently on autonomous profit-

maximizing farm behavior, this leads – depending on the climate change 

scenario – to an almost 50 percent loss in Eastern European land values 

compared to a 2–32 percent loss for Western Europe. This is because the 

two regions do not have the same means to adapt to climate change. 

However, it is possible to improve the agricultural climate response 

function of Eastern Europe by broadening its range of adaptation options 

up to the same level as Western Europe (RQ 2.2). If Eastern Europe were 

to apply and implement the same adaptation options as Western Europe 

by 2100, it could avoid a 50–69 percentage points decrease in land value 

depending on the climate scenario. Indeed, the climate response of 

Western and Eastern Europe could be similar, as long as policy, society, 

and behavior are devoted to bringing forth equal and optimal adjustment 

and adaptation conditions over both regions. 

 

In reality, however, it is unlikely that all European regions have a 100 

percent adaptive capacity to immediately respond properly to the 

emerging climatic changes. Indeed, there are large differences in adaptive 

capacity within the entire European Union (RQ 3.1). Not only Eastern 

European regions, but also Southern European regions have an adaptive 

capacity that is significantly lower than the adaptive capacity of North-

Western European regions (Figure 7 in Chapter 3 presents this clearly). As 

such, it is necessary to account for differences in adaptive capacity on a 
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smaller regional scale than when broadly clustering regions in East versus 

West. This dissertation determines that the effect of taking into account 

adaptive capacity when modeling the impact of climate change on 

European agriculture is negative (RQ 3.2). Climate responses that do not 

take into account adaptive capacity are overly optimistic because they 

assume that regions have all the necessary means to adapt. On average, 

the marginal effects of temperature decrease by 2.5–5 percentage points 

in Eastern and Southern European regions once adaptive capacity is 

accounted for. Yet, even in Western Europe, the results clearly showed 

that regions with a lower adaptive capacity suffer more from marginal 

changes in climate than their neighboring regions (such as Eastern versus 

Western Germany). As such, this dissertation quantitatively confirms the 

findings of other researchers who believed that it is important to focus on 

increasing societies capability to deal with climate change (Van Bree and 

van der Sluijs, 2014). There is clearly a positive relationship between 

adaptive capacity and the agricultural climate response (RQ 3.3). If 

adaptive capacity increases from 0.4 to 0.8 on the ESPON index, the 

marginal effect of temperature increases by 0–10 percent on average. 

However, the relationship between marginal effects and adaptive capacity 

appeared to have a concave shape, leveling out at higher levels of 

adaptive capacity. This implies that adaptive capacity only increases 

marginal benefits from changes in climate up to a certain adaptive 

capacity level. 

 

With regard to this dissertation’s focus on irrigation as a climate change 

adaptation strategy, it was highlighted that farmers can consider water 

management options across a spectrum that ranges from purely rain-fed 

farms to purely irrigated farms with in between the extremes practices 

such as supplemental irrigation, water conservation practices, and 

different irrigation techniques. The graphs in Chapter 4 (Figures 11 and 

12) prove that ignoring this continuous spectrum from purely rain-fed to 

purely irrigated agricultural farms influences climate change impact results 

(RQ 4.1). Differences between farmers on both extremes of the irrigation 
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spectrum can reach 30 percent, depending on the size of farmer. 

 

Finally, when eliciting the irrigation decision process, this dissertation 

proved that crop choice has a significant influence on the farm’s irrigation 

choice (RQ 5.1). All crop dummies are significant in the irrigation model, 

implying that farm irrigation decision models should always be crop-

specific and account for the farm crop choice. Currently, however, crop 

choice is hardly ever taken into account when examining the farm 

irrigation decision. Furthermore, the farm irrigation decision is also 

influenced by climatic influences that increase a farm’s probability to opt 

for irrigated farming (RQ 5.2). Some of the main results show that 

Southern European regions show significantly negative irrigation 

probabilities when temperature marginally increases (-5 to -7 percent in 

summer). This shows that those regions adapt through other means than 

irrigation to higher temperatures (for instance through crop choice). 

However, marginal increases in precipitation do increase Southern 

European small farmers’ irrigation probability (by up to 4.5 percent), 

showing that precipitation is needed before irrigation can take place. 

These results imply that irrigation, as an adaptation tool to climate 

change, is often hampered due to climate and water constraints. This 

conclusion could also be derived from the fact that very high drought 

frequencies also had a lower positive influence on the irrigation 

probability. Climate clearly has a significant influence on a farm’s irrigation 

probability. 

 

Having determined the farm’s irrigation decision model, this dissertation 

examined whether irrigated and rain-fed farms have a different climate 

response function (RQ 5.3). Indeed, there is a clear difference between 

irrigated and rain-fed agriculture as irrigated farms responded significantly 

differently than rain-fed farms to 11 of the 16 climate variables. It can be 

seen that irrigated crops are more resistant and less sensitive to higher 

temperatures than rain-fed crops in southern regions. Nevertheless, 

irrigation seems to be less beneficial in response to higher temperature in 
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northern regions than in more southern regions. For instance, Spain has, 

on average, a 7 percent increase in rain-fed land value if annual 

temperature increases by one degree, while irrigated land has an increase 

of 17 percent. In Belgium, on the other hand, rain-fed agriculture has a 

higher benefit (34.6 percent) than irrigated agriculture (11.3 percent) 

when temperature increases by one degree. This shows the adaptive 

effect of irrigation in Southern Europe. An examination of increases in 

precipitation suggests that rain-fed crops benefit significantly more than 

irrigated crops (on average, they benefit from an increase of 25 percent in 

their land value if annual precipitation increases by one cm, while irrigated 

crops benefit a smaller increase of 16 percent). This makes sense because 

irrigation is a substitute for precipitation. Nevertheless, this relationship 

does not account for small farms because they suffer from decreases in 

precipitation due to their greater dependence on water access before they 

can irrigate. 

 

In order to answer the research questions regarding the irrigation decision 

model, this dissertation developed a unique but complicated simultaneous 

irrigation-crop decision model. This model was compared with the 

traditional cross-sectional model to determine whether traditional cross-

sectional models properly capture irrigation (RQ 5.4). The answer is that 

the estimates of the traditional model are biased by the adaptation 

options in the other regions. Therefore, explicitly modeling these 

adaptation options leads to more robust results. 

 

6.3. Implications for policy 

Based on the contents of this dissertation, more specific policy 

suggestions can be formulated with regard to triggering climate change 

adaptation than would have been the case with the traditional Ricardian 

method (Figure 18).  

 

First of all, given that cross-sectional studies are frequently used when 

modeling climate change impacts, it is important for policy to realize that  
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Figure 18 – Dissertation conclusions. 

 

such studies might overestimate farm autonomous adaptation capabilities. 

The degree of adaptation depends heavily on adaptive capacity levels and 

only takes place if the appropriate adaptation requirements are present. 

Therefore, policy makers should intervene and stimulate adaptive capacity 

development as increases in adaptive capacity lead to significant 

improvements in agricultural responses to climate change. Moreover, 

increases in adaptive capacity can also increase current farm productivity 

and will lead to both benefits now and in the future. In addition, 

increasing adaptive capacity takes time and should therefore be started as 

soon as possible. 

 

Secondly, given that there are clear differences in the way different 

adaptation options are implemented, implementation and execution of 

adaptation options should be followed up. Adaptation does not have the 

same cross-national characteristics as mitigation policy where 

photovoltaics can more easily be placed in a similar way in different 
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countries. Scaling-up adaptation policy is not easy as sufficient attention 

to local conditions is necessary. Therefore, it is important to ensure that 

maladaptation does not occur due to the fact that similar adaptation 

options are implemented in different regions without modifications to local 

circumstances. Simply copying adaptation tools from one region to 

another might not always be appropriate and local research is necessary 

to tailor adaptation to specific farm needs. 

 

Thirdly, the EU should ensure sufficient investments in water management 

infrastructure and water regulations. Water will clearly be an issue for 

agriculture, which means that adaptation through irrigation might be an 

issue in case of water scarcity. This dissertation shows that if insufficient 

water is available in certain regions, adaptation through more drought-

resilient crops is possible. Therefore, it is important to properly 

understand farm adaptation choices. Apart from this, investing in more 

water-efficient irrigation technologies or strategies will also help reduce 

water scarcity issues. 

 

In summary, adaptation is a necessary activity in 21st-century agriculture. 

This dissertation highlights the points that policy should increase adaptive 

capacity, that water management policies are highly necessary to 

overcome water shortages, and that it is necessary to make sure 

adaptation is implemented in locally appropriate ways. Arguably, the best 

place to increase adaptive capacity is the European Common Agricultural 

Policy (CAP). Therefore, for the 2020-CAP reform it is important to 

increase funding for Pillar II, not allowing funds to be transferred from this 

pillar to Pillar I. Furthermore, given the clear differences in adaptive 

capacity in the European Union, policy should ensure that there is enough 

room for flexibility when implementing common regulations and when 

obtaining goals. While this flexibility is currently provided, it undermines 

the common objectives and goals. Therefore, the CAP should set clearer 

non-voluntarily and measurable targets for climate action, against which 

member states must deliver in order to receive funding. 
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6.4. Further research suggestions based on comments on data and 

methodology 

The results presented in this dissertation are based on diverse 

assumptions and model limitations. These had to be imposed in order to 

keep the execution of the research realistic within the given timeframe. 

This dissertation only addresses four weaknesses of the Ricardian method 

and hereby zooms in on adaptation itself. However, there are other 

limitations that must be identified. 

 

First of all, because the method is a cross-sectional analysis, it cannot 

take into account variables that do not vary over time. For instance, the 

effect of CO2 fertilization, which is globally almost identical, cannot be 

taken into account. Nevertheless, CO2 fertilization is assumed to increase 

crops yields significantly and should be accounted for. In this dissertation, 

mostly comparative analyses between different regions (Eastern versus 

Western Europe) or between different adaptation options (irrigation versus 

rain-fed) were conducted, due to which the bias is not expected to 

influence conclusions significantly. Nevertheless, if absolute values of the 

analysis are interpreted, the results are generally expected to 

overestimate damages due to the expected positive effect of CO2 

fertilization. 

 

In a similar manner, the Ricardian model also assumes that the prices of 

inputs and outputs remain constant over time (Cline, 1996). It is hard to 

find data on such variables and prices might not always differ between 

farmers within one country or market. In reality, however, prices do differ 

over years and failure to account for this creates bias. For instance, if 

agriculture is not beneficial enough, farmers would shift to other activities, 

although this could lead to insufficient amounts of food (Cline, 1996). 

Mendelsohn and Nordhaus (1999) noted that it is possible to determine 

the direction of this bias: if climate change decreases yields, and therefore 

supply, and this leads to increases in prices, the method overestimates 

damages. However, food prices depend on the global response to climate 
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change and these prices are not expected to change a lot with climate 

change (Mendelsohn et al., 2009). All depends on the balance between 

how climate change leads to increases of food in one region and losses in 

another region (Reilly et al., 1994). As such, if prices do not change 

easily, the bias in the Ricardian method is assumed to be small. With 

regard to Europe, it should also be recognized that its policies are rather 

protective and that influences with regard to prices can be assumed to be 

limited. 

 

Another important variable that the Ricardian method cannot easily 

account for is the influence of agricultural or trade policies. These policies 

can influence endogenous variables such as inputs and crop choice, so a 

change in such policies could lead to totally different adaptation choices 

which the Ricardian model did not account for (Mendelsohn et al., 2009). 

As explained in Chapter 2, individual farm subsidies are used as a proxy to 

account for such policies. However, this is not a perfect solution and 

further research should focus specifically on the influence that current 

policy has on adaptation itself. As indicated above, this has not been 

studied previously as the influence of European adaptation policy is not 

clear. 

 

Compared to other Ricardian studies, the present dissertation used a large 

dataset with detailed farm-level data. It is important to have such detailed 

data for the Ricardian method because they provide rich results and give 

meaningful policy implications (Wang et al., 2009). A minor weakness of 

these data is that, for privacy reasons, it is not possible to link these farm 

holdings to unique locational coordinates, but they can be linked to the 

different NUTS3 (Nomenclature of Territorial Units for Statistics regions) in 

the EU. These are homogenous geographic units across all European 

countries that are identified by the EU. Numerous data are available on 

NUTS3 level, so the data are accurate to obtain robust results. However, 

as explained in Chapters 4 and 5, more control variables regarding water 

management could further improve the analysis. However, these data are 
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not available on a detailed farm scale or even the NUTS3 scale. 

Nevertheless, Mendelsohn and Dinar (2003) showed that adding, for 

instance, surface water to the analysis does not change the results 

significantly, so its omission possibly only leads to a limited bias. The 

potential omitted variable bias issue can be solved by means of a panel 

approach that focuses on variations over time to see how a region reacts 

to hotter and warmer conditions (see, for instance, Deschenes and 

Greenstone (2007)). 

 

A major weakness of the data, however, is that the results cannot easily 

be compared over different years; this is because, starting in 2008, some 

countries (such as Poland and Italy) changed their sampling collection 

method or some variable definitions. Given that these FADN data are used 

as a basis to establish the Common Agricultural Policy, it is important to 

clearly understand these weaknesses. 

 

With regard to further data collection, it is important that data are 

collected in an even more uniform way. The FADN data are already a good 

example of this, but there are still limitations, as indicated above. 

Furthermore, additional information should be collected from the farmer 

itself regarding specific technologies (for instance, regarding irrigation), 

water use, innovation, and farm knowledge. Such detailed farm data are 

necessary to further examine local adaptation as adaptation demands 

more spatially and temporally detailed information (Füssel and Hildén, 

2014). 

 

Finally, it should be highlighted that this dissertation focused on the 

Ricardian method because it is one of the most frequently used methods 

with regard to climate change impact estimations. Therefore, it is 

important to ensure that its results are valuable for policy decision 

making. We do not argue that the method produces superior results to 

crop simulation or other models. Instead, the weaknesses of the Ricardian 

method are the strengths of the crop simulation models and vice versa 
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(Mendelsohn, 2007). Both methods should be used simultaneously in 

order to fill up weakness of both methods. For instance, crop simulation 

models are strong in isolating the impact of climate change because they 

are executed in controlled environments. They obtain detailed 

understanding about different processes. However, this also makes it 

harder for them to extrapolate the results to higher scales and to the real 

world. The cross-sectional method, on the other hand, cannot as easily 

control for different influences as the crop simulation models do and they 

model a lot of the processes as a black box without giving insights into 

them. Nevertheless, the method can give a good presentation of large 

regions. In addition, the cross-sectional method captures adaptation 

because it measures what farmers have done. Crop simulation models 

cannot easily include adaptation and the researcher must bring them in 

through simulations (Mendelsohn, 2007). As a result, the adaptation 

options that these models examine are arbitrary and not necessarily 

targeted at climate change or motivated by profit maximization 

(Mendelsohn and Dinar, 2009). Therefore, the researcher exogenously 

includes adaptation in crop simulation models. Nevertheless, some of the 

better crop simulation models give a better idea of the benefits of some 

limited adaptation options (see, for instance, Easterling et al. (2003), 

Rosenzweig and Parry (1994), Parry et al. (2004), and Parry et al. 

(2005)). Some models even examine possible real-life responses of 

farmers to climate change (such as Iglesias and Minguez (1997)) and as 

such provide even more detailed and correct results regarding one type of 

adaptation option. I am in favor of combining both the cross-sectional 

method and the crop simulation models when interpreting their results. It 

may even be possible to increase and enlarge the dataset used for the 

cross-sectional method by more advanced adaptation methods, in which 

data are simulated through crop simulation models.  
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Appendix B – Descriptive statistics per country (in ha) (FADN 2007) 
 

Country UAA UAA owned Land represented 

Bulgaria 111,200 14,477 1,322,985 

Czech Republic 643,471 58,183 2,936,164 
Estonia 118,143 42,211 851,698 

Hungary 162,639 75,703 2,563,471 

Lithuania 175,466 49,330 1,951,138 

Latvia 192,106 82,295 1,300,086 

Poland 435,538 284,297 12,404,944 

Romania 192,326 130,987 6,210,678 

Slovenia 14,617 7,673 465,960 

Slovakia 155,401 8,777 599,898 

East 2,200,908 753,932 30,607,023 

    
Country UAA UAA owned Land represented 

Austria 77,906 50,797 2,423,340 
Belgium 47,478 13,714 1,163,564 

Denmark 1,164,091 256,210 13,832,557 

Finland 213,474 150,156 2,291,069 

France 345,511 250,590 18,026,483 

Germany 54,296 34,471 1,977,304 

Greece 273,808 73,850 12,596,828 

Ireland 37,625 17,070 2,851,355 

Italy 63,316 51,414 4,722,952 

Luxembourg 412,512 275,067 10,286,832 

Netherlands 42,346 20,448 129,084 

Portugal 49,136 30,429 1,730,903 

Spain 40,428 33,208 1,615,103 

Sweden 82,051 47,104 1,938,570 

United Kingdom 365,603 256,132 10,150,824 

West 3,269,582 1,560,658 85,736,765 
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Appendix B – continued: distribution of sampled farm land 
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Appendix C – Alternative estimation methods 
 OLS Double Climate-Response Model LMEM with ML estimator 

 East West East West 

 Coef Sig St Er Coef Sig St Er Coef Sig St Er Coef Sig St Er 

(Intercept) -2.210    2.299 2.938 *** 2.350 -0.977    2.327 2.956    2.394 

T Winter -0.513 *** 0.049 -0.018    0.021 -0.511 *** 0.049 -0.017    0.021 

T Winter² -0.021 **  0.009 0.006 *** 0.001 -0.021 **  0.009 0.006 *** 0.001 

T Spring 1.572 *** 0.142 0.082 *  0.044 1.565 *** 0.141 0.082 *  0.044 
T Spring² -0.054 *** 0.009 0.025 *** 0.002 -0.054 *** 0.009 0.025 *** 0.002 

T Summer -2.173 *** 0.349 0.447 *** 0.075 -2.140 *** 0.349 0.446 *** 0.075 

T Summer² 0.043 *** 0.010 -0.018 *** 0.002 0.042 *** 0.01 -0.018 *** 0.002 

T Autumn 1.079 *** 0.305 0.338 *** 0.069 1.064 *** 0.304 0.338 *** 0.069 

T Autumn² -0.031 **  0.015 -0.026 *** 0.003 -0.031 **  0.015 -0.026 *** 0.003 

P Winter -0.025    0.116 0.109 *** 0.016 -0.026    0.115 0.110 *** 0.016 

P Winter² 0.017    0.013 0.000    0.001 0.017    0.013 0.000    0.001 

P Spring -0.201    0.136 -0.200 *** 0.029 -0.197    0.136 -0.202 *** 0.029 

P Spring² -0.005    0.012 0.006 *** 0.002 -0.006    0.012 0.006 *** 0.002 
P Summer -0.435 *** 0.076 0.113 *** 0.020 -0.438 *** 0.076 0.115 *** 0.02 

P Summer² 0.024 *** 0.004 0.002 *  0.001 0.024 *** 0.004 0.002 *  0.001 

P Autumn -0.020    0.095 0.127 *** 0.015 -0.022    0.095 0.127 *** 0.015 

P Autumn² 0.002    0.007 -0.011 *** 0.001 0.002    0.007 -0.011 *** 0.001 

Elev range 0.004    0.036 -0.011    0.012 0.002    0.036 -0.011    0.012 

Elev mean 0.739 *** 0.176 0.022    0.049 0.732 *** 0.175 0.018    0.049 

Subsidies -0.005    0.050 0.464 *** 0.017 -0.003    0.05 0.464 *** 0.017 

Distance ports -1.101 *** 0.106 -0.566 *** 0.072 -1.104 *** 0.106 -0.563 *** 0.072 

Distance cities 0.063    0.178 -0.951 *** 0.085 0.056    0.178 -0.953 *** 0.085 

Pop density -0.366 **  0.159 0.476 *** 0.034 -0.366 **  0.159 0.476 *** 0.034 
GDP/inhabitant 0.046 *** 0.005 0.001    0.001 0.046 *** 0.005 0.001    0.001 

Frei transport 0.011 **  0.004 0.003 *** 0.001 0.011 **  0.004 0.003 *** 0.001 

Rented land 0.485 *** 0.023 -0.084 *** 0.018 0.485 *** 0.023 -0.084 *** 0.018 

pH 5.301 *** 0.302 0.159    0.121 5.293 *** 0.301 0.163    0.121 

pH squared -0.411 *** 0.023 0.010    0.010 -0.410 *** 0.023 0.010    0.010 

Gravel 0.022 **  0.009 -0.037 *** 0.003 0.022 **  0.009 -0.037 *** 0.003 

Silt 0.018 *** 0.004 -0.022 *** 0.002 0.017 *** 0.004 -0.022 *** 0.002 

Sand 0.004 **  0.002 -0.022 *** 0.001 0.004 *  0.002 -0.022 *** 0.001 

Bulgaria 1.166 *** 0.110   
  

  
 

  
  

  
Czech Republic 1.388 *** 0.079   

  

  

 

  

  

  

Estonia 2.138 *** 0.137   

  

  

 

  

  

  

Hungary 1.213 *** 0.074   

  

  

 

  

  

  

Lithuania 1.592 *** 0.090   

  

  

 

  

  

  

Latvia 1.696 *** 0.106   

  

  

 

  

  

  

Poland 1.717 *** 0.084   

  

  

 

  

  

  

Romania 0.060    0.087   

  

  

 

  

  

  

Slovenia 2.740 *** 0.150   

  

  

 

  

  

  

Austria   

 

  -2.450 *** 0.053   

 

  

  

  

Belgium   
 

  0.183 *** 0.052   
 

  
  

  
Germany   

 

  0.134 *** 0.037   

 

  

  

  

Denmark   

 

  1.436 *** 0.047   

 

  

  

  

Spain   

 

  -0.205 *** 0.054   

 

  

  

  

Finland   

 

  0.393 *** 0.090   

 

  

  

  

France   

 

  -0.946 *** 0.040   

 

  

  

  

Greece   

 

  0.496 *** 0.073   

 

  

  

  

Ireland   

 

  0.948 *** 0.032   

 

  

  

  

Italy   

 

  1.087 *** 0.052   

 

  

  

  

Luxembourg   
 

  -0.396 *** 0.069   
 

  
  

  
Netherlands   

 

  1.120 *** 0.039   

 

  

  

  

Portugal   

 

  -2.275 *** 0.066   

 

  

  

  

Sweden   

 

  0.667 *** 0.060   

 

  

  

  

Adjusted R²  0.7532    

AIC      192,772 

BIC      193,349 

***p<0.01,**p<0.05,*p<0.1 
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Appendix F – OLS regressions for irrigation threshold 50%.  
Note that this implies that countries that have no values, have no farms that irrigate more than 

50% of the UAA. Greece for instance does have a lot of farms that 'irrigate' but they all irrigate 

less than 50% of their farm land in our sample. 

 

 

2007 Irrigation 2007 Rainfed 2012 Irrigation 2012 Rainfed 

 

Coef St Er Sig Coef St Er Sig Coef St Er Sig Coef St Er Sig 

Intercept -4.579 2.077 ** 2.979 0.779 *** 7.601 2.629 *** 11.876 0.800 *** 

T Winter -0.123 0.076 
 

-0.017 0.031   -0.288 0.116 ** 0.088 0.031 *** 

T Winter² -0.010 0.007 
 

0.008 0.002 *** -0.014 0.009 
 

0.003 0.002 
 

T Spring -1.182 0.190 *** -0.535 0.075 *** 0.301 0.252 
 

-0.446 0.073 *** 

T Spring² 0.066 0.007 *** 0.056 0.004 *** -0.005 0.010 
 

0.046 0.004 *** 

T Summer 1.429 0.302 *** -0.049 0.119   -0.269 0.406 
 

-0.278 0.114 ** 

T Summer² -0.040 0.007 *** -0.004 0.003   -0.002 0.009 
 

0.001 0.003 
 

T Autumn 0.305 0.316 
 

0.927 0.118 *** -0.228 0.438 
 

0.714 0.119 *** 

T Autumn² -0.003 0.011 
 

-0.051 0.005 *** 0.032 0.015 ** -0.040 0.005 *** 

P Winter -0.480 0.044 *** 0.066 0.027 ** -0.620 0.060 *** 0.057 0.025 ** 

P Winter² 0.028 0.002 *** 0.000 0.001   0.031 0.003 *** -0.001 0.001 
 

P Spring 1.256 0.092 *** 0.078 0.048   0.802 0.135 *** 0.432 0.051 *** 

P Spring² -0.080 0.005 *** -0.015 0.003 *** -0.054 0.007 *** -0.027 0.003 *** 

P Summer -0.361 0.051 *** -0.065 0.033 * -0.219 0.079 *** -0.052 0.033 
 

P Summer² 0.029 0.003 *** 0.015 0.002 *** 0.022 0.005 *** 0.013 0.002 *** 

P Autumn -0.233 0.055 *** 0.168 0.034 *** 0.255 0.085 *** 0.004 0.031 
 

P Autumn² 0.011 0.003 *** -0.009 0.002 *** -0.009 0.004 
 

-0.005 0.002 *** 

Pop density 0.716 0.074 *** 0.377 0.035 *** 0.366 0.082 *** 0.199 0.028 *** 

Distance ports -1.381 0.175 *** -0.324 0.097 *** -1.136 0.222 *** 0.047 0.093 
 

Distance cities -0.395 0.198 ** -1.270 0.118 *** -1.390 0.280 *** -1.437 0.117 *** 

Rented land -0.022 0.041 
 

-0.219 0.024 *** 0.073 0.048 
 

-0.009 0.024 
 

Subsidies -0.067 0.019 *** 0.201 0.027 *** 0.096 0.023 *** 0.267 0.025 *** 

Elev mean -0.282 0.104 *** 0.537 0.075 *** -0.144 0.147 
 

-0.149 0.076 ** 
Elev range 0.135 0.020 *** -0.044 0.016 *** -0.023 0.029 

 
-0.008 0.016 

 
Gravel soil 0.029 0.008 *** -0.055 0.005 *** 0.085 0.013 *** -0.011 0.005 ** 

pH 0.960 0.445 ** 0.751 0.178 *** 0.818 0.440 * -1.161 0.176 *** 

pH squared -0.092 0.034 *** -0.042 0.014 *** -0.078 0.034 ** 0.108 0.014 *** 

Silt soil -0.008 0.006 
 

-0.016 0.003 *** -0.012 0.009 
 

-0.024 0.003 *** 

Sand soil -0.018 0.004 *** -0.022 0.002 *** -0.022 0.005 *** -0.023 0.002 *** 

Austria (base) 
  

(base) 
 

  (base) 
  

(base) 
  

Belgium 2.691 0.373 *** 2.328 0.099 *** 3.396 0.675 *** 2.206 0.091 *** 

Denmark 2.800 0.206 *** 3.211 0.071 *** 3.429 0.277 *** 3.597 0.069 *** 
Spain 1.357 0.157 *** 1.322 0.080 *** 2.074 0.212 *** 1.327 0.082 *** 

France 0.800 0.146 *** 1.073 0.069 *** 1.380 0.194 *** 0.825 0.071 *** 

Greece 1.530 0.155 *** 2.087 0.088 *** 
   

2.435 0.080 *** 

Ireland 
   

3.139 0.132 *** 
   

1.956 0.129 *** 

Finland 
   

2.262 0.131 *** 
   

3.264 0.121 *** 

Luxembourg 
   

2.311 0.196 *** 
   

2.028 0.180 *** 

Netherlands 
   

3.171 0.073 *** 
   

3.189 0.071 *** 

Italy 2.529 0.150 *** 2.688 0.072 *** 2.831 0.201 
 

2.910 0.072 *** 

Portugal -1.187 0.181 *** 0.040 0.099   0.452 0.236 
 

-0.064 0.100 
 

Sweden 1.595 0.268 *** 2.841 0.086 *** 2.254 0.705 
 

3.291 0.084 *** 

Germany 3.016 0.276 *** 2.242 0.051 *** 
   

2.116 0.051 *** 

U. Kingdom 2.678 0.208 *** 1.970 0.083 ***       1.941 0.084 *** 

***p<0.01,**p<0.05,*p<0.1 
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