
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 109C (2017) 196–203

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2017.05.325

10.1016/j.procs.2017.05.325

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2017) 000–000
www.elsevier.com/locate/procedia

The 8th International Conference on Ambient Systems, Networks and Technologies
(ANT 2017)

Enumerating minimum path decompositions to support route choice
set generation

Irith Ben-Arroyo Hartmana,, Luk Knapenb, Tom Bellemansb

aCaesarea Rothschild Institute for Interdisciplinary Applications of Computer Science, University of Haifa, Haifa 31905, Israel
bTransportation Research Institute (IMOB) Hasselt University, Diepenbeek, Belgium

Abstract

This paper concerns the structure of movements as were recorded by GPS traces and converted to routes by map matching. Each
route in a transportation network corresponds to a collection of directed paths or cycles in a digraph. When considering only
directed paths, corresponding to utilitarian trips, the path is not necessarily a shortest path between its origin and destination, and
can be split up into a small number of segments, each of which is a shortest or least cost path. Two consecutive segments are
separated by split vertices. Split vertices act as intermediate destinations in the mind of travellers who try to hop between them
using minimum cost paths. Hence they provide useful information to build route choice models. In this paper we identify and
enumerate all possible decompositions of a path into a minimum number of shortest segments. This gives us an indication of the
importance of split vertices occurring in particular sets of revealed routes that belong either to a single traveller or to a specific
group. The proposed technique allows for automatic extraction of frequently used intermediate destinations (way-points) from
revealed preference data.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: clique cover, proper interval graph, indifference graph, transportation network, route choice set generation, GPS traces

1. Introduction

We begin with a short background from transportation science and graph theory in order to motivate our problem.
We model a transportation map by a directed graph. where the vertices denote junctions or points of interest such as
a petrol station, shop, restaurant, rest area, or any point where drivers may choose to stop. Each edge of the graph
corresponds to a road segment and represents a set of lanes having the same direction (forward or backward). Travelers
move between locations on the geometries of source and destination segments. Transportation scientists are interested
in modelling route choice behaviour in order to forecast and simulate travellers’ decisions under different conditions
and resources of information. See Bovy3 for a review on route choice set generation and selection. The branch
and bound technique by Prato11,8 generates candidate routes to populate the choice set and removes the ones that do

∗ Corresponding author. Tel.: +972-4-8288370 ;
E-mail address: irith.hartman@gmail.com

1877-0509 c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2017) 000–000
www.elsevier.com/locate/procedia

The 8th International Conference on Ambient Systems, Networks and Technologies
(ANT 2017)

Enumerating minimum path decompositions to support route choice
set generation

Irith Ben-Arroyo Hartmana,, Luk Knapenb, Tom Bellemansb

aCaesarea Rothschild Institute for Interdisciplinary Applications of Computer Science, University of Haifa, Haifa 31905, Israel
bTransportation Research Institute (IMOB) Hasselt University, Diepenbeek, Belgium

Abstract

This paper concerns the structure of movements as were recorded by GPS traces and converted to routes by map matching. Each
route in a transportation network corresponds to a collection of directed paths or cycles in a digraph. When considering only
directed paths, corresponding to utilitarian trips, the path is not necessarily a shortest path between its origin and destination, and
can be split up into a small number of segments, each of which is a shortest or least cost path. Two consecutive segments are
separated by split vertices. Split vertices act as intermediate destinations in the mind of travellers who try to hop between them
using minimum cost paths. Hence they provide useful information to build route choice models. In this paper we identify and
enumerate all possible decompositions of a path into a minimum number of shortest segments. This gives us an indication of the
importance of split vertices occurring in particular sets of revealed routes that belong either to a single traveller or to a specific
group. The proposed technique allows for automatic extraction of frequently used intermediate destinations (way-points) from
revealed preference data.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: clique cover, proper interval graph, indifference graph, transportation network, route choice set generation, GPS traces

1. Introduction

We begin with a short background from transportation science and graph theory in order to motivate our problem.
We model a transportation map by a directed graph. where the vertices denote junctions or points of interest such as
a petrol station, shop, restaurant, rest area, or any point where drivers may choose to stop. Each edge of the graph
corresponds to a road segment and represents a set of lanes having the same direction (forward or backward). Travelers
move between locations on the geometries of source and destination segments. Transportation scientists are interested
in modelling route choice behaviour in order to forecast and simulate travellers’ decisions under different conditions
and resources of information. See Bovy3 for a review on route choice set generation and selection. The branch
and bound technique by Prato11,8 generates candidate routes to populate the choice set and removes the ones that do

∗ Corresponding author. Tel.: +972-4-8288370 ;
E-mail address: irith.hartman@gmail.com

1877-0509 c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.325&domain=pdf

 Irith Ben-Arroyo Hartman et al. / Procedia Computer Science 109C (2017) 196–203 197Available online at www.sciencedirect.com

Procedia Computer Science 00 (2017) 000–000
www.elsevier.com/locate/procedia

The 8th International Conference on Ambient Systems, Networks and Technologies
(ANT 2017)

Enumerating minimum path decompositions to support route choice
set generation

Irith Ben-Arroyo Hartmana,, Luk Knapenb, Tom Bellemansb

aCaesarea Rothschild Institute for Interdisciplinary Applications of Computer Science, University of Haifa, Haifa 31905, Israel
bTransportation Research Institute (IMOB) Hasselt University, Diepenbeek, Belgium

Abstract

This paper concerns the structure of movements as were recorded by GPS traces and converted to routes by map matching. Each
route in a transportation network corresponds to a collection of directed paths or cycles in a digraph. When considering only
directed paths, corresponding to utilitarian trips, the path is not necessarily a shortest path between its origin and destination, and
can be split up into a small number of segments, each of which is a shortest or least cost path. Two consecutive segments are
separated by split vertices. Split vertices act as intermediate destinations in the mind of travellers who try to hop between them
using minimum cost paths. Hence they provide useful information to build route choice models. In this paper we identify and
enumerate all possible decompositions of a path into a minimum number of shortest segments. This gives us an indication of the
importance of split vertices occurring in particular sets of revealed routes that belong either to a single traveller or to a specific
group. The proposed technique allows for automatic extraction of frequently used intermediate destinations (way-points) from
revealed preference data.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: clique cover, proper interval graph, indifference graph, transportation network, route choice set generation, GPS traces

1. Introduction

We begin with a short background from transportation science and graph theory in order to motivate our problem.
We model a transportation map by a directed graph. where the vertices denote junctions or points of interest such as
a petrol station, shop, restaurant, rest area, or any point where drivers may choose to stop. Each edge of the graph
corresponds to a road segment and represents a set of lanes having the same direction (forward or backward). Travelers
move between locations on the geometries of source and destination segments. Transportation scientists are interested
in modelling route choice behaviour in order to forecast and simulate travellers’ decisions under different conditions
and resources of information. See Bovy3 for a review on route choice set generation and selection. The branch
and bound technique by Prato11,8 generates candidate routes to populate the choice set and removes the ones that do

∗ Corresponding author. Tel.: +972-4-8288370 ;
E-mail address: irith.hartman@gmail.com

1877-0509 c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2017) 000–000
www.elsevier.com/locate/procedia

The 8th International Conference on Ambient Systems, Networks and Technologies
(ANT 2017)

Enumerating minimum path decompositions to support route choice
set generation

Irith Ben-Arroyo Hartmana,, Luk Knapenb, Tom Bellemansb

aCaesarea Rothschild Institute for Interdisciplinary Applications of Computer Science, University of Haifa, Haifa 31905, Israel
bTransportation Research Institute (IMOB) Hasselt University, Diepenbeek, Belgium

Abstract

This paper concerns the structure of movements as were recorded by GPS traces and converted to routes by map matching. Each
route in a transportation network corresponds to a collection of directed paths or cycles in a digraph. When considering only
directed paths, corresponding to utilitarian trips, the path is not necessarily a shortest path between its origin and destination, and
can be split up into a small number of segments, each of which is a shortest or least cost path. Two consecutive segments are
separated by split vertices. Split vertices act as intermediate destinations in the mind of travellers who try to hop between them
using minimum cost paths. Hence they provide useful information to build route choice models. In this paper we identify and
enumerate all possible decompositions of a path into a minimum number of shortest segments. This gives us an indication of the
importance of split vertices occurring in particular sets of revealed routes that belong either to a single traveller or to a specific
group. The proposed technique allows for automatic extraction of frequently used intermediate destinations (way-points) from
revealed preference data.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: clique cover, proper interval graph, indifference graph, transportation network, route choice set generation, GPS traces

1. Introduction

We begin with a short background from transportation science and graph theory in order to motivate our problem.
We model a transportation map by a directed graph. where the vertices denote junctions or points of interest such as
a petrol station, shop, restaurant, rest area, or any point where drivers may choose to stop. Each edge of the graph
corresponds to a road segment and represents a set of lanes having the same direction (forward or backward). Travelers
move between locations on the geometries of source and destination segments. Transportation scientists are interested
in modelling route choice behaviour in order to forecast and simulate travellers’ decisions under different conditions
and resources of information. See Bovy3 for a review on route choice set generation and selection. The branch
and bound technique by Prato11,8 generates candidate routes to populate the choice set and removes the ones that do

∗ Corresponding author. Tel.: +972-4-8288370 ;
E-mail address: irith.hartman@gmail.com

1877-0509 c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 Hartman et al. / Procedia Computer Science 00 (2017) 000–000

not meet specific constraints (e.g. number of traffic lights, left turns, and others). We proposed in10 an additional
criterion for route choice set, which is the minimum number of shortest subroutes which constitute a given route. In10

it was claimed that when a traveller considers a choice of route between an origin and a destination, he/she does not
necessarily choose the quickest/fastest/cheapest route, but rather a route which is a concatenation of a small number
of shortest (cheapest) routes. The vertices connecting these shortest routes may have a special significance for the
traveller, they are intermediate destinations which can be quantified by the use frequency of these vertices in the set
of all paths chosen by the travellers. The intermediate destinations support the route choice modeling. Finding these
vertices, and all possible ways of breaking up a path into a minimum number of shortest paths relates to the problem
of finding some minimum clique covers in an indifference graph - as will be shown in the following sections.

2. Definitions and Basics

We begin with some basic standard definitions from graph-theory. We use definitions and notations as in1. We will
then continue to new definitions related to the applications in transportation networks.

Let G = (V, E) be a directed graph with vertex set V and edge set E. The vertices correspond to nodes in a road
network, and the edges correspond to links in the network. Each edge e has a non-negative cost c(e) which is the effort
(e.g. time or money) required to traverse the link in the network. For a subgraph H ⊆ G, let V(H) and E(H) denote
the sets of vertices and edges of H, respectively.

A walk is a sequence of vertices P = (v0, v1, . . . , vl), not necessarily distinct, where (vi, vi+1) ∈ E(G) for all
i = 0, 1, . . . , l−1. Vertices v0 and vl are called initial and terminal vertices, respectively, of P, and vertices v1, . . . , vl−1
are called internal vertices of P. The walk P is said to be connecting v0 and vl, and it is also denoted by P(v0, vl). A
walk Q(v0, vl), is internally-disjoint from P if all the internal vertices of Q, are distinct from the vertices in P.

A path is a walk where all its vertices are distinct. For a path P = (v0, v1, . . . , vl), any subsequence of vertices
vi, vi+1, . . . , v j, where 0 ≤ i ≤ j ≤ l is a subpath of P, and is denoted by P(vi, v j). The length of a path, is the number
of edges in it (i.e. l), the size of a path, denoted by |P|, is the number of vertices in it (i.e. l+1), and the cost of a path,
denoted by c(P) is the sum of the costs of its edges. A path P(v0, vl) is a least cost path between v0 and vl, if there
exists no other path connecting v0 and vl of lower cost.

We remark that if c(e) = 1 for all e ∈ E then the cost of a path coincides with its size. We assume that the vertex
traversal cost is zero. A single edge (u, v), being a path connecting between u and v, may be least cost, or not. If it is
not a least cost path connecting between u and v, then it is called a non-least-cost-edge.

It is easy to see that if P is a least cost path, then any subpath of P is also a least cost path.
The converse of this statement is false since it is possible that all the subpaths of P(v0, . . . , vl) (except P itself) are

least cost paths, but P is not a least cost path connecting v0 and vl and there is another least cost path Q connecting v0
and vl. This fact motivated the following definition, as in10.

Definition 2.1 (P- shortcut, minimal shortcut, fork and join vertices, bypassed vertex set). Let P = (v0, v1, . . . , vl)
be a given path. A P(vi, v j)-shortcut (or for brevity, P - shortcut, or shortcut), is a path Q(vi, v j), internally- disjoint
from P, where vi, v j ∈ V(P), such that c(Q(vi, v j)) < c(P(vi, v j)). The vertices vi and v j are called fork and join of
the shortcut, respectively, and the internal vertices of P between the fork and the join (i.e. vi+1, . . . , v j−1) are called
Q-bypassed vertex set, or bypassed vertex set and denoted by B(Q). A shortcut Q is minimal if B(Q) does not contain
B(Q′) where Q′ is another shortcut to P. (See Figure 1).

We emphasize that B(Q) contains consecutive vertices on P. Therefore, it can be marked by the fork and join of a
shortcut Q, which are the vertices preceding, and following the set B(Q), respectively.

Clearly, a least cost path cannot have any shortcuts.

Definition 2.2 (Basic Path Component (BPC), path splitting, splitVertex). Given a path P, a subpath of P is called
a Basic Path Component, or for short, a BPC, if it is either a least cost path connecting its endpoints, or P is a single
non-least-cost-edge. A path splitting of P is a partition of P into subpaths each of which is a basic path component. A
splitVertex is a vertex separating two consecutive BPC in a path splitting, and is denoted by vs

i .

We remark that there may be many ways to split a path, for example, the trivial partition into edges
(v0, v1), (v1, v2), . . . , (vl−1, vl) is an example of such a partition. We are interested in finding a path splitting with a

198 Irith Ben-Arroyo Hartman et al. / Procedia Computer Science 109C (2017) 196–203
Hartman et al. / Procedia Computer Science 00 (2017) 000–000 3

0v

lv

B(Q)

Fork)vertex

Join)vertex

Edges)of)P

Shortcuts)to)P

Q’)

Q)vi

v j

Fig. 1: Shortcuts: (a) A path P with a minimal P(vi, v j)-shortcut Q. Q′ is a non-minimal shortcut. Vertices vi and v j are fork and join vertices of Q,
respectively, and the dark vertices are the bypassed vertex set B(Q). (b) A path in the road network. The dashed lines represent shortcuts (minimal
in red, non-minimal in blue)

minimum number of basic path components. Such a path splitting is called minimum path splitting. Each non-
shortest-edge is a part in each minimum path splitting since it constitutes a BPC. If we remove the set of non-shortest
edges in a path (each of which is a BPC), we are left with a set of disjoint paths, each of which contains no non-
shortest-edges.

From now on we will assume that P does not contain any non-shortest-edges.
In10 we addressed the problem of finding efficiently a minimum path splitting of a given path. Since a minimum

path splitting will contain a minimum number of splitVertices, an equivalent formulation of the problem above is to
find a minimum number of splitVertices in the path, such that any subpath connecting consecutive splitVertices will
be least cost.

Lemma 2.1. Let P = (v0, v1, . . . , vl) be a path connecting v0 and vl. Assume P is not least cost, and let Q(vi, v j) be
a shortcut in P. Then any path splitting of P will contain at least one vertex in B(Q), the Q-bypassed vertex set, as a
splitVertex.

Proof: By contradiction. If no vertex in B(Q) is a splitVertex, then P(vi, v j) is a least cost path, contrary to the fact
that Q(vi, v j) is a shortcut in P.

Corollary 2.2. A minimum path splitting of P is obtained by a minimum set of splitVertices which intersects B(Q) for
all minimal shortcuts Q to P.

Proof: Since every two consecutive BPC are separated by a splitVertex, it is sufficient to minimize the number
of splitVertices. By Lemma 2.1 it is necessary to meet each B(Q), where Q is a shortcut. However, since every
B(Q′) contains a B(Q) where Q is a minimal shortcut, it is sufficient to meet all bypassed sets of minimal shortcuts.
The converse also holds - a minimum set of vertices which intersects the B(Q) of all minimal shortcuts Q, defines a
minimum path splitting of P.

The algorithm described in10 begins with the initial vertex of P, v0, and finds a maximal least cost path beginning
with it, i.e. a path which cannot be extended without repeating vertices. This is done using Dijkstra’s4 least cost path
algorithm. Assume v j1 is the first vertex on P for which P(v0, v j1) is not least cost, then the algorithm marks v j1 as a
join vertex and continues with the subpath of P beginning from the vertex prior to v j1 on P, looking for the next join
vertex in P(v j1−1, vl). The algorithm continues until no more join vertices are found. It was proved that the vertices
preceding the join vertices found on P are splitVertices, and their number is minimal.

In a similar way, a backward pass on P is done, beginning with the end vertex vl and going backwards, to find a
minimum set of fork vertices, whose successors on P are also splitVertices in a minimum path splitting. The algorithm

 Irith Ben-Arroyo Hartman et al. / Procedia Computer Science 109C (2017) 196–203 199
Hartman et al. / Procedia Computer Science 00 (2017) 000–000 3

0v

lv

B(Q)

Fork)vertex

Join)vertex

Edges)of)P

Shortcuts)to)P

Q’)

Q)vi

v j

Fig. 1: Shortcuts: (a) A path P with a minimal P(vi, v j)-shortcut Q. Q′ is a non-minimal shortcut. Vertices vi and v j are fork and join vertices of Q,
respectively, and the dark vertices are the bypassed vertex set B(Q). (b) A path in the road network. The dashed lines represent shortcuts (minimal
in red, non-minimal in blue)

minimum number of basic path components. Such a path splitting is called minimum path splitting. Each non-
shortest-edge is a part in each minimum path splitting since it constitutes a BPC. If we remove the set of non-shortest
edges in a path (each of which is a BPC), we are left with a set of disjoint paths, each of which contains no non-
shortest-edges.

From now on we will assume that P does not contain any non-shortest-edges.
In10 we addressed the problem of finding efficiently a minimum path splitting of a given path. Since a minimum

path splitting will contain a minimum number of splitVertices, an equivalent formulation of the problem above is to
find a minimum number of splitVertices in the path, such that any subpath connecting consecutive splitVertices will
be least cost.

Lemma 2.1. Let P = (v0, v1, . . . , vl) be a path connecting v0 and vl. Assume P is not least cost, and let Q(vi, v j) be
a shortcut in P. Then any path splitting of P will contain at least one vertex in B(Q), the Q-bypassed vertex set, as a
splitVertex.

Proof: By contradiction. If no vertex in B(Q) is a splitVertex, then P(vi, v j) is a least cost path, contrary to the fact
that Q(vi, v j) is a shortcut in P.

Corollary 2.2. A minimum path splitting of P is obtained by a minimum set of splitVertices which intersects B(Q) for
all minimal shortcuts Q to P.

Proof: Since every two consecutive BPC are separated by a splitVertex, it is sufficient to minimize the number
of splitVertices. By Lemma 2.1 it is necessary to meet each B(Q), where Q is a shortcut. However, since every
B(Q′) contains a B(Q) where Q is a minimal shortcut, it is sufficient to meet all bypassed sets of minimal shortcuts.
The converse also holds - a minimum set of vertices which intersects the B(Q) of all minimal shortcuts Q, defines a
minimum path splitting of P.

The algorithm described in10 begins with the initial vertex of P, v0, and finds a maximal least cost path beginning
with it, i.e. a path which cannot be extended without repeating vertices. This is done using Dijkstra’s4 least cost path
algorithm. Assume v j1 is the first vertex on P for which P(v0, v j1) is not least cost, then the algorithm marks v j1 as a
join vertex and continues with the subpath of P beginning from the vertex prior to v j1 on P, looking for the next join
vertex in P(v j1−1, vl). The algorithm continues until no more join vertices are found. It was proved that the vertices
preceding the join vertices found on P are splitVertices, and their number is minimal.

In a similar way, a backward pass on P is done, beginning with the end vertex vl and going backwards, to find a
minimum set of fork vertices, whose successors on P are also splitVertices in a minimum path splitting. The algorithm

4 Hartman et al. / Procedia Computer Science 00 (2017) 000–000

Fig. 2

is efficient since it uses Dijkstra’s algorithm no more than N times, where N is the minimum number of BPC’s used
to partition P.

Since the bypassed vertex sets may contain points of interest for the traveller (otherwise a minimum cost path
would have been chosen), we are interested in enumerating all splitVertices and all minimum partitions into BPC’s.

We remark that the algorithm in10 is highly efficient, but it does not find all the shortcuts to P. This fact does not
allow us to enumerate all possible minimum path splittings, as was demonstrated in the example in10, Figure 3. We
depict this example here, for the sake of completeness. In Figure 2 the shortcut from v5 to v8 is not found using the
algorithm described above.

3. Path Decomposition Enumeration Technique

Assume that a path P in a graph is given. Without loss of generality we assume it is free of non-least-cost edges.
The enumeration of all minimum partitions of P into BPC’s is done in three steps (see also9):

1. Finding all minimal shortcuts to P.
2. Defining the intervals and the proper interval graph GI derived from the shortcuts to P.
3. Enumerating all minimum decompositions of P

(a) Finding all sequential cliques in GI

(b) Constructing the directed sequential -clique-graph GC

(c) Enumerating all shortest source-sink paths in GC

(d) Enumerating all minimum decompositions of P

3.1. Finding all minimal shortcuts to P

In this stage we find all minimal shortcuts to P. We do not need the shortcut paths to P, but rather their endpoints,
the fork and join vertices of each shortcut. The output is a list of pairs < v f , v j > corresponding to the fork and join
vertices of all minimal shortcuts.

Without loss of generality, we assume a traveller moves from point v0 to point vl along a path P = (v0, v1, . . . , vl).
If this path is the least-cost path between v0 to vl then it has no shortcuts, it is a BPC, and we have nothing to do.
Otherwise, we use Dijkstra’s4 shortest path algorithm to find the first vertex on P, say v j for which P(v0, v j) is not the
shortest path connecting v0 and v j. We mark v j as a join vertex, and continue, by applying a backward search starting
at v j, to find the last vertex in the subpath P(v0, v j), say v f for which P(v f , v j) is not a least-cost path. We output the
shortcut < v f , v j > and continue with the subpath of P beginning with v f+1 . The process ends when we reach vl, the
terminal vertex of P. (See Figure 3-Stage 1).

200 Irith Ben-Arroyo Hartman et al. / Procedia Computer Science 109C (2017) 196–203
Hartman et al. / Procedia Computer Science 00 (2017) 000–000 5

Stage 1 (Transportation graph GT) Stage 2 (Interval graph GI)

Qa

Qb

Qc

Qd

Qe
Qf

Qg

v0 = S

vl = T

v2
v1

vx

vw

vy

vz

a

b

c

d

e

f

g

a

b

c

d

e

g

f

Stage 3-a Stage 3-b (directed-clique-graph GC)

a
ab

abc
bc

bcd

ef

cde
de

e

1 2 3 4 5 6 7 8 9

bcde

efg
fg

g

a

b

c

d

e

f

g

10 11 12 13

vzvw vx vy

ab a abc

bc cde bcd debcde

fgefge ef

g

(a)

Incomplete set of minimum clique covers: 4 out of 15 cases

a

b

c

d

e

g

f

a

b

c

d

e

g

f

a

b

c

d

e

g

f

a

b

c

d

e

g

f

Fig. 3: Overview of graphs used to enumerate minimum path decompositions.

3.2. Defining the intervals and the proper interval graph GI

Once we know all minimal shortcuts to P, we use the corresponding bypassed vertex sets to define a set of intervals
and a corresponding interval graph. Since the vertices of P are labeled v0, v1, v2, . . . , vl, then every shortcut Q with

 Irith Ben-Arroyo Hartman et al. / Procedia Computer Science 109C (2017) 196–203 201
Hartman et al. / Procedia Computer Science 00 (2017) 000–000 5

Stage 1 (Transportation graph GT) Stage 2 (Interval graph GI)

Qa

Qb

Qc

Qd

Qe
Qf

Qg

v0 = S

vl = T

v2
v1

vx

vw

vy

vz

a

b

c

d

e

f

g

a

b

c

d

e

g

f

Stage 3-a Stage 3-b (directed-clique-graph GC)

a
ab

abc
bc

bcd

ef

cde
de

e

1 2 3 4 5 6 7 8 9

bcde

efg
fg

g

a

b

c

d

e

f

g

10 11 12 13

vzvw vx vy

ab a abc

bc cde bcd debcde

fgefge ef

g

(a)

Incomplete set of minimum clique covers: 4 out of 15 cases

a

b

c

d

e

g

f

a

b

c

d

e

g

f

a

b

c

d

e

g

f

a

b

c

d

e

g

f

Fig. 3: Overview of graphs used to enumerate minimum path decompositions.

3.2. Defining the intervals and the proper interval graph GI

Once we know all minimal shortcuts to P, we use the corresponding bypassed vertex sets to define a set of intervals
and a corresponding interval graph. Since the vertices of P are labeled v0, v1, v2, . . . , vl, then every shortcut Q with

6 Hartman et al. / Procedia Computer Science 00 (2017) 000–000

fork and join vertices v f , v j, respectively has a consecutive set of bypassed vertices B(Q) = {v f+1, v f+2, . . . , v j−1}. We
construct an interval on the real line corresponding to each bypassed vertex set in the following way: IQ = [f +1, j−1].
(see Figure 3-Stage 2) Note that the integral points on the interval [f + 1, j − 1] (i.e. the points f + 1, f + 2, . . . , j − 1
correspond to the vertices v f+1, v f+2, . . . , v j−1 on P). Since the shortcuts found in Stage 1 are minimal shortcuts, no
two intervals contain each other. The intersection graph of such a set of intervals, where no two intervals contain each
other, is called a proper interval graph, or equivalently, unit interval graph, or indifference graph (see7). We denote
it by GI = (VI , EI), where each v ∈ VI corresponds to B(Q) of some shortcut Q, and two vertices are adjacent if and
only if the corresponding intervals intersect.

We note that if we order all the intervals representing VI by their left hand endpoint, in increasing order, then, being
a proper interval graph, their right hand endpoints will also be in increasing order (otherwise one interval will contain
another). We label the ordered set of intervals as a, b, c, . . . (see Figure 3-Stage 2).

3.3. Enumerating all minimum decompositions of P

Let GI be a proper interval graph and assume it is represented by intervals a, b, c, . . . ordered by their left hand
endpoints. (See Figure 3-Stage 2). We remind the reader that a clique in a graph is a subset of vertices all of which
are adjacent to each other, i.e. a complete subgraph. A clique cover is a set of cliques which cover all the vertices in
the graph. A minimum clique cover is a clique cover which contains a minimum number of cliques. For any point on
the real line, the set of intervals which contain that point, mutually intersect each other, and therefore correspond to a
clique in GI . A minimum set of points which meet all the intervals will correspond to a minimum clique cover of GI .
In order to enumerate all minimum decompositions of P, we need to enumerate all the minimum sets of integer points
which cover all the intervals.

3.3.1. Finding all sequential cliques in GI

Assume we have a collection of intervals, as was found in section 3.2. For any point on the real line, the set of
intervals which contain that point, mutually intersect each other, and therefore correspond to a clique in GI . (See
Figure 3-Stage 3a). (The converse is also true: every set of intervals which mutually pairwise intersect, by the Helly
property, intersect in a point, or a subinterval of the real line.) Moreover, we can assume, without loss of generality,
that this point is an endpoint of at least one interval. The set of all intervals contains at most 2|VI | endpoints, since each
interval has exactly two endpoints (the inequality comes from the fact that some right hand endpoint may coincide
with a left hand endpoint). They partition the real line into at most 2|VI | − 1 segments which correspond to non-
empty intersections of the intervals, ordered linearly in increasing order of the intersecting points (see Figure 3-Stage
3-a). (When two intervals have identical endpoints the segment will consist of a single point). Each such interval
intersection is a clique in GI , which consists of a set of consecutive intervals which mutually intersect each other, and
no other intervals. We call such a clique a sequential clique, or for short, s-clique. For example, in Figure 3 intervals
{b, c, d} are an s-clique, but {c, d} is a clique but not an s-clique since there are no points on the real line which meet
b and d but no other interval. The s-cliques are naturally ordered so that each interval belongs to consecutive cliques,
and each s-clique consists of consecutive intervals. This is a known property of proper interval graphs2,5,6.

3.3.2. Constructing the directed-s-clique-graph GC

Given the clique family found in 3.3.1, denoted by C(GI), we are interested in finding all possible minimum
coverings of VI by s- cliques. To do that we construct a directed graph GC = (VC, EC), where the vertex set corresponds
to the s-cliques Ci ∈ C(GI). (There are at most 2|VI | − 1 s-cliques). We construct a directed edge from a Ci to C j

according to the following rule: Assume clique Ci contains the consecutive set of intervals labeled Ii, Ii+1, . . . , Ii+k and
clique C j contains the consecutive set of intervals labeled I j, I j+1, . . . , I j+t. There is a directed edge from Ci to C j if
and only if

i < j ≤ i + k + 1 and i + k < j + t (1)

See example in Figure 3- Stage 3-b. By the definition above, GC is acyclic, i.e. it contains no directed cycles. All
the source vertices (i.e. vertices with indegree zero) are the vertices in GC whose label contains I1 (or a as in Figure
3-Stage 3-b) and the sink vertices (i.e. vertices with outdegree zero) are the vertices whose label contains In (or g as
in Figure 3-Stage 3-b). The source and sink vertices are marked in Figure 3-Stage 3-b as dark vertices.

202 Irith Ben-Arroyo Hartman et al. / Procedia Computer Science 109C (2017) 196–203
Hartman et al. / Procedia Computer Science 00 (2017) 000–000 7

ab a abc

bc cde bcd debcde

fgefge ef

g

(a)

ab a abc

bc cde bcd debcde

fgefge ef

g

1 1

2 221

5 3 7

(b)

00

0

0

Fig. 4: The graph GC constructed in stage 3-b: diagram (a): before pruning, diagram (b) after pruning lower layer sinks and deleting edges not on
a shortest source-sink path. The numbers beside each vertex represents the number of shortest paths from the vertex to a sink vertex.

3.3.3. Enumerating all shortest source-sink paths in GC

We look for all minimum length paths in GC which connect between some source vertex to some sink vertex. The
easiest, most efficient way to find shortest paths is to perform a breadth-first search (BFS) on GC starting with the
source vertices. Recall that BFS search divides a graph into layers, starting with the source vertices, in which all the
nodes in layer d have distance d from the source vertices. We say that layer d is above layer d′ if d < d′. Since we are
looking for the shortest paths from sources to sinks, we consider only the closest sink vertices, i.e. sink vertices with
the highest layers; other sink vertices we can ignore, as well as their incoming edges. We also ignore edges which
connect two vertices at the same layer of the BFS tree, and edges which do not lead to any highest-level sinks. (See
Figure 4).

To count the number of shortest source-sink paths, we begin with the sinks in the highest layers, and label them 1.
(since there is a unique shortest path beginning at them and ending at them - the trivial path consisting of one vertex).
As we move up through the BFS layers, we see that the number of shortest paths to sinks from each node is the sum
of the number of shortest paths from all nodes directly below it to sinks in the BFS search. Working upwards through
the layers, we get the number of shortest paths from each source vertex to sink vertices. It is quite easy to construct
these paths layer-by-layer, as in Figure 4-(b).

3.3.4. Enumerating all minimum path decompositions
In Section 3.3.3 we have found all shortest source-sink paths in the clique graph GC of the interval graph GI . We

recall that each vertex in such a path corresponds to a s-clique in the interval graph, in other words, to some interval
of the real line, whose integer points represented a set of vertices in the original path P traveled by the user, which are
bypassed by a unique set of shortcuts. If Ci, j denotes the s-clique containing intervals Ii, Ii+1, . . . , I j, denote byK(Ci, j)
the set of integer points of the real line contained in those intervals only, and in no other intervals1.

For example, in Figure 3K(e f) contains the integer w corresponding to the bypassed vertex vw,K(e f g) contains x
which corresponds to the bypassed vertex vx and K(f g) contains the points which correspond to vy and vz. Each one
of these bypassed vertices is a potential splitVertex and its choice is independent of the selection of bypassed vertices
corresponding to the other s-cliques on the same source-sink path. (see Figure 3-Stage 3). The number of possible
path splittings is therefore,

∑
P∈PC

∏
C∈P
|K(C)|

 (2)

1 In 9 K(Ci, j) is called the core of a clique

 Irith Ben-Arroyo Hartman et al. / Procedia Computer Science 109C (2017) 196–203 203
Hartman et al. / Procedia Computer Science 00 (2017) 000–000 7

ab a abc

bc cde bcd debcde

fgefge ef

g

(a)

ab a abc

bc cde bcd debcde

fgefge ef

g

1 1

2 221

5 3 7

(b)

00

0

0

Fig. 4: The graph GC constructed in stage 3-b: diagram (a): before pruning, diagram (b) after pruning lower layer sinks and deleting edges not on
a shortest source-sink path. The numbers beside each vertex represents the number of shortest paths from the vertex to a sink vertex.

3.3.3. Enumerating all shortest source-sink paths in GC

We look for all minimum length paths in GC which connect between some source vertex to some sink vertex. The
easiest, most efficient way to find shortest paths is to perform a breadth-first search (BFS) on GC starting with the
source vertices. Recall that BFS search divides a graph into layers, starting with the source vertices, in which all the
nodes in layer d have distance d from the source vertices. We say that layer d is above layer d′ if d < d′. Since we are
looking for the shortest paths from sources to sinks, we consider only the closest sink vertices, i.e. sink vertices with
the highest layers; other sink vertices we can ignore, as well as their incoming edges. We also ignore edges which
connect two vertices at the same layer of the BFS tree, and edges which do not lead to any highest-level sinks. (See
Figure 4).

To count the number of shortest source-sink paths, we begin with the sinks in the highest layers, and label them 1.
(since there is a unique shortest path beginning at them and ending at them - the trivial path consisting of one vertex).
As we move up through the BFS layers, we see that the number of shortest paths to sinks from each node is the sum
of the number of shortest paths from all nodes directly below it to sinks in the BFS search. Working upwards through
the layers, we get the number of shortest paths from each source vertex to sink vertices. It is quite easy to construct
these paths layer-by-layer, as in Figure 4-(b).

3.3.4. Enumerating all minimum path decompositions
In Section 3.3.3 we have found all shortest source-sink paths in the clique graph GC of the interval graph GI . We

recall that each vertex in such a path corresponds to a s-clique in the interval graph, in other words, to some interval
of the real line, whose integer points represented a set of vertices in the original path P traveled by the user, which are
bypassed by a unique set of shortcuts. If Ci, j denotes the s-clique containing intervals Ii, Ii+1, . . . , I j, denote byK(Ci, j)
the set of integer points of the real line contained in those intervals only, and in no other intervals1.

For example, in Figure 3K(e f) contains the integer w corresponding to the bypassed vertex vw,K(e f g) contains x
which corresponds to the bypassed vertex vx and K(f g) contains the points which correspond to vy and vz. Each one
of these bypassed vertices is a potential splitVertex and its choice is independent of the selection of bypassed vertices
corresponding to the other s-cliques on the same source-sink path. (see Figure 3-Stage 3). The number of possible
path splittings is therefore,

∑
P∈PC

∏
C∈P
|K(C)|

 (2)

1 In 9 K(Ci, j) is called the core of a clique

8 Hartman et al. / Procedia Computer Science 00 (2017) 000–000

where PC is the set of shortest source-sink paths in GC and each C ∈ P represents a s-clique in GI corresponding to a
vertex on P.

Theorem 3.1. Stages 1-4 allow us to enumerate all minimum decompositions into BPC’s of a path, and Equation 2
counts the total number of such decompositions.

Proof: We have seen by Lemma 2.1 that any minimum path decomposition of P into BPC’s requires finding a
minimum set of vertices in P which meet all the bypassed vertex sets B(Q) . In section 3 we represented each B(Q)
by an interval with distinct (integer) points which correspond to the vertices in B(Q). Every potential splitVertex
on P belongs to a unique s-clique, so in fact we need to enumerate the number of minimum s-clique covering of
the interval graph. We now claim that any directed path from a source vertex to a sink vertex in GC corresponds to
covering of the vertices of GI by s-cliques. This follows from definition (1) of the edge set of GC: The first part
of the condition in equation (1) means that Ci ∪ C j contains all intervals Ii, . . . , I j+t; the second part implies that
Ci � C j. As a consequence, Ci and C j can be potential members of a minimum clique cover of GI . The condition
in equation (1) thus guarantees that any directed path from a source vertex to a sink vertex will cover all the intervals
{Ii; i = 1, 2, . . . , n}. Furthermore, the converse also holds: any s-clique cover of GI will necessarily correspond to some
source-sink path in GC . The size of the source-sink path is the size of the clique cover, therefore a shortest source-sink
path in GC corresponds to a minimum clique cover of the indifference graph GI , which corresponds to a minimum
path decomposition into BPC’s.

4. Conclusion

The path decomposition technique described in10 finds sets of splitVertices which decompose a given path in a
graph into a minimum number of basic path components (least cost subpaths or non-least-cost edges). Enumerating all
possible decompositions, and finding in how many decompositions each splitVertex participates is more challenging,
and was done efficiently in this paper. This results in a method to automatically determine the network nodes that
are used as intermediate destinations. The technique is applicable to large sets of routes revealed by GPS traces;
hence it allows to determine the importance of intermediate destinations by frequency counting. This in turn provides
way-points for use in route choice modeling.

References

1. J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate texts in Mathematics, vol. 244, Springer, 2008, doi:10.1007/978-1-84628-970-5.
2. K. Booth and G. Lueker, Linear Algorithms Test to Recognize Interval Graphs and Test for the Consecutive Ones Property, (1975).
3. P. H. L Bovy, On Modelling Route Choice Sets in Transportation Networks: A Synthesis, Transport Reviews 29 (2009), no. 1, 43–68,.
4. E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik 1 (1959), no. 1, 269–271 (English).
5. D. R. Fulkerson and O. Ross, Incidence Matrices and Interval Graphs, Pacific Journal of Mathematics 15 (1965), no. 3, 835–855.
6. F. Gardi, The Roberts characterization of proper and unit interval graphs, Discrete Mathematics 307 (2007), no. 22, 2906 – 2908.
7. M.C. Golumbic, Algorithmic graph-theory and perfect graphs, Graduate texts in Mathematics, ??, 2004.
8. K. Halldórsdóttir, N. Rieser-Schüssler, K. W. Axhausen, O. A. Nielsen, and C. G. Prato, Efficiency of choice set generation methods for

bicycle routes, EJTIR European Journal of Transport and Infrastructure Research 14 (2014), no. 4, 332–348.
9. L. Knapen, Refined tools for micro-modeling in transportation research for micro-modeling in transportation research, Doctoral Thesis,

Hasselt University, Diepenbeek, Belgium, October 2015.
10. L. Knapen, I. Ben-Arroyo Hartman, D.l Schulz, T. Bellemans, D. Janssens, and G. Wets, Determining Structural Route Components from

GPS Traces, Transportation Research Part B Methodological (2016), no. 90, 156–171.
11. C. G. Prato and S. Bekhor, Modeling Route Choice Behavior: How Relevant Is the Composition of Choice Set?, TRB Research Record 2003

(2007), 64–73.

