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Chapter 1
General introduction

This chapter presents a general introduction to the thesis. It starts by giving a
definition of an infectious disease followed by the epidemiology of malaria infection, the
diagnostics of malaria infection and the key parameters that describe the dynamics of
malaria transmission. Later, a review of the literature on malaria is given followed by
the problem statement, rationale for the thesis and research objectives. The chapter
ends by giving an overview of the thesis.

1.1 What is an infectious disease?

An infectious disease, also known as transmissible disease or communicable disease,
is an illness that results from an infection. The term infection refers to the invasion
of an organism’s body tissues by disease-causing agents, their multiplication, and the
reaction of host tissues to these organisms and the toxins they produce. Infectious
diseases kill millions of people worldwide, which is more than any other single cause.
These diseases are caused by different kinds of germs, which include bacteria, viruses,
fungi, protozoa and parasites. For an infectious disease to multiply, the infecting or-
ganism should be able to leave an existing reservoir and cause infection elsewhere; this
is referred to as infectious disease transmission. There are many potential transmis-
sion routes including droplet contact, faecal-oral, sexual, oral, direct contact, vertical,
and vector-borne transmission, among others. An example of an infectious disease
that results from a vector-borne transmission route is malaria. The work presented
in this dissertation focuses on malaria.

1



2 Chapter 1. General introduction

1.2 Epidemiology of malaria infection

Malaria is a mosquito-borne disease. This potentially lethal infection causes a
wide range of symptoms such as high fever, chills, and flu-like illness symptoms.
It can also cause death. Malaria parasites are microorganisms belonging to the
genus Plasmodium. More specifically, there are five major species of Plasmodium
parasites causing malaria, namely: P. falciparum, P. malariae, P. ovale, P. vivax
and P. knowlesi [73, 75, 118]. P. falciparum is the most severe and prevalent species
in sub-Saharan Africa, and it is responsible for the majority of malaria deaths
globally [122]. It is characterized by various clinical features, including fever, chills,
headache, muscle aches and weakness, vomiting, cough, diarrhoea and abdominal
pain [60, 75, 119]. Other symptoms related to organ failure may supervene, such
as acute renal failure, pulmonary oedema, generalized convulsions, and circulatory
collapse, followed by coma and death [75]. The initial symptoms, which may be mild,
may not be easy to recognize as being due to malaria [122].

In humans, the parasites grow and multiply first in the liver cells and then in the
red blood cells. In the blood, successive broods of parasites grow inside and destroy
the red blood cells, releasing daughter parasites (“merozoites”) that continue the
cycle by invading other red blood cells. Blood stage parasites are those that cause
the symptoms of malaria. See the life cycle for the malaria parasite in Figure 1.1.
When certain forms of blood stage parasites (“gametocytes”) are picked up by a
female Anopheles mosquito during a blood meal, they start another, different cycle of
growth and multiplication in the mosquito. After 10–18 days, the parasites are found
(as “sporozoites”) in the mosquito’s salivary glands. When the Anopheles mosquito
takes a blood meal from another human, sporozoites are injected with the mosquito’s
saliva and start another human infection when they parasitize liver cells. Thus, the
mosquito carries the disease from one human to another (acting as a “vector”). Unlike
the human host, the mosquito vector does not suffer from the presence of the parasites
[14].

1.3 Malaria diagnosis

Malaria infection should be properly detected and treated in time to avoid further
spread of the disease. Delays in detection and inappropriate treatment of malaria
increase morbidity and mortality [41, 108]. Malaria can be detected and confirmed
in the laboratory by one or by a combination of the following diagnostic tools
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Figure 1.1: Life cycle of the malaria parasite showing the various stages of the parasite in
a human host (red arrow) and mosquito vector (white arrow). The cycle begins when an
infected mosquito injects parasites by biting a human.
Credited: National Institute of Allergy and Infectious Diseases (NIAID).
Source: https://www.niaid.nih.gov/diseases-conditions/infectious-diseases

[16, 29, 78], namely: antigen detection, parasite detection, molecular tests and
serology. Microscopic diagnosis, which remains a gold standard [29, 39, 124], involves
identifying malaria parasites using a drop of the patient’s blood, spread out as
a “blood smear” on a microscope slide and examined under a microscope. The
microscopic diagnostic tool was used in the Program for Resistance, Immunology,
Surveillance and Modelling of malaria (PRISM) study for which the data have been
used largely throughout this thesis. Figure 1.2 shows the microscopic examination
for the malaria parasite. Antigen detection test kits, commonly referred to as Rapid
Diagnostic Tests (RDTs), detect antigens derived from malaria parasites and offer the
opportunity for feasible diagnostic capacity in resource-limited areas because they are
easy, fast, inexpensive, and less subjective than microscopy, and they require minimal
personnel training [13, 29, 58]. However, RDTs have several limitations. RDTs cannot
quantitate parasite density or differentiate non-falciparum species; they are less
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Figure 1.2: Left panel: A laboratory technician at one of the PRISM study sites reading
a blood smear under a microscope (field work photo). Right panel: A blood smear from
a patient with malaria; microscopic examination shows Plasmodium falciparum parasites
(arrows) infecting some of the patient’s red blood cells (CDC photo).

specific than microscopy and should not be used to evaluate treatment success [13, 59].

Molecular diagnosis involves detecting parasite nucleic acids using polymerase chain
reaction (PCR). Although this technique is more sensitive than microscopy [39, 78],
it is of limited utility for the diagnosis of acutely ill patients in the standard health-
care setting. PCR results are often not available quickly enough to be of value in
establishing the diagnosis of malaria infection [13], limiting the use of PCR outside of
research studies. PCR is most useful for confirming the species of malarial parasites
or for confirming a negative result after the diagnosis has been established by either
microscopy or RDT [39]. The other molecular diagnostic tool that is increasingly
being used to diagnose submicroscopic parasitemia is loop-mediated isothermal am-
plification (LAMP). It is a very sensitive, easy and time-efficient method that uses a
single tube technique for the amplification of the deoxyribonucleic acid (DNA). For
details on the LAMP technique, the reader is referred to Katrak et al. [45]. Serology,
on the other hand, detects antibodies against malaria parasites, using either indirect
immunofluorescence (IFA) [4, 27] or enzyme-linked immunosorbent assay (ELISA)
[52, 70]. Serology does not detect current infection but rather measures past expo-
sure. Figure 1.3 shows an RDT test kit demonstrating a positive test result (left
panel) and an IFA showing the presence of malaria parasites in a blood serum sample
(right panel).
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Figure 1.3: Left panel: RDT picture demonstrating a positive test for Plasmodium fal-
ciparum (Howden BP et al. [38]). Right panel: Indirect fluorescent antibody (IFA) test.
The fluorescence indicates that the patient serum being tested contains antibodies that are
reacting with the antigen preparation (here, Plasmodium falciparum parasites) (CDC photo).

1.4 Key malaria transmission parameters

The burden of malaria can be quantified using measures of transmission, including
entomological inoculation rate (EIR), force of infection (FOI), clinical incidence,
and parasite prevalence. EIR is defined as the number of infectious bites per person
per unit time [71], and FOI is defined as the number of infections per person per
unit time [97]. Mueller et al. [64] defined the FOI for malaria as the number
of Plasmodium infections acquired over time and devised a way of measuring it
molecularly. The FOI counts all incident (that is, new) human malaria infections in
some time interval regardless of clinical symptoms, and whether or not a person is
already infected [97]. In theory, there should be a close correspondence between EIR
and the FOI in children who have not developed immunity. In practice, however,
there is a discrepancy between the two. The efficiency of transmission can be
estimated by taking the ratio of the two measures, i.e., the ratio of the EIR to the
FOI, the number of infectious bites required to cause an infection. The lower the
number, the higher the efficiency of transmission. Most studies have shown that
malaria transmission is highly inefficient [97]. For example, using annual EIRs of
300, 32 and 2.8 [42] and FOIs of 0.320, 0.108 and 0.152 for children aged <1, which
were assumed symptomatic at the previous visit [65], for Nagongera, Kihihi and
Walukuba, respectively, the ratios between the EIRs and FOIs range from 18.4 to
937.5. While the clinical incidence of malaria looks at the number of clinical episodes
of malaria (defined by symptoms, typically fever; hence symptomatic infections)
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experienced over a given time period, the FOI looks at both symptomatic and
asymptomatic infections acquired over time. The prevalence of infection or parasite
rate (PR) refers to the proportion of people who are patently infected with malaria
parasites. It is used as a measure of how common malaria is within a population
at a point in time. The EIR differs from the FOI since it estimates the number
of bites by infectious mosquitoes (other than the number of infections) per person
per unit time [49]; notably, not every infectious bite causes an infection, and the
bites are distributed unevenly so that not every bite lands on a unique individual
[97]. Intuitively, it is expected that a decrease in the mosquito population would
lower the FOI and, consequently, decrease the disease incidence for malaria [22].
On the other hand, when the incidence is approximately constant for the duration
of the disease, prevalence = incidence × duration [48]. In high intensity settings,
where a person can become superinfected (i.e., infected with many different para-
sites), the duration of infection includes patent infection with any one of the parasites.

The relationship between the EIR (which itself is a product of the proportion of
infectious mosquitos, called the sporozoite rate (SR), and the number of vectors at-
tempting to feed on a human each day, called the human biting rate (HBR)), FOI,
PR and clinical malaria incidence (CMI) can be illustrated as in Figure 1.4 according
to Smith & McKenzie [99]. This relationship implies that a decrease in the mosquito
population leads to a decrease in the HBR, which leads to a reduction in the EIR.
A decrease in the EIR (given the transmission efficiency, the probability that a bite
by an infectious mosquito results in an infection) in turn leads to a decrease in the
FOI, in the PR and, consequently, in CMI. Generally, if the human-host immunity is
increased due to previous exposure to infections or due to maturation of innate im-
munity and gradual specific immune development and/or a specific protection (i.e.,
skin thickness), then the probability that an infectious mosquito bite will result in an
infection will diminish. In other words, an immune human host will require a larger
number of infectious bites (EIR) to get infected, thereby implying a reduced FOI, PR
and CMI. Consequently, the number of infectious humans that can infect mosquitoes
will go down, resulting in a reduced number of infectious mosquitoes, which in the
end can lead to a reduction in malaria disease transmission and malaria cases.

1.5 Review of literature

Despite increased efforts to eliminate malaria worldwide resulting in reductions
in malaria incidence and mortality by 21% and 58% between 2010 and 2015,
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Figure 1.4: Schematic diagram showing the common malaria transmission parameters and
the relationships between them.

respectively, malaria remains a major health problem among children, killing a child
every 2 minutes globally [122]. For example, 212 million cases of malaria and 429,000
malaria deaths were recorded worldwide in 2015, of which 92% were recorded in
the WHO Africa Region [122]. Although there have been substantial reductions
in malaria burden since 2010, the trend indicates an increasing burden between
2014 and 2016, with malaria cases increasing by 5 million in 2016 compared to
those in2015; moreover, the number of deaths remained largely the same [123]. In
Uganda, where the data forming the backbone of this thesis were collected, like in
the rest of the sub-Saharan Africa, malaria is still the leading cause of morbidity and
mortality among children with 6,100 total malaria deaths registered in 2015 [122].
According to the Uganda’s Health Management Information System data from 2014,
malaria accounts for 33% and 30% of the outpatient visits and hospital admissions,
respectively [3]. Malaria is responsible for approximately 22.6% of the total number
of deaths among the under 5 inpatient admissions according to the Uganda Ministry
of Health (MOH) Financial Year Report 2014/2015 [110].

One of the challenges probably hindering the elimination of malaria is that the
disease is linked to poverty [26, 125], which is a characteristic shared by many
people and households in Africa. For example, in Uganda, approximately 20% of the
population, i.e., 8 million people, have been reported to live below the poverty line,
meaning that they earn less than 57 dollars per month (i.e., less than 1.9 dollars per
day) [37]. The other important challenge is that data on malaria-related deaths are
still sparse in many African countries like Uganda, because most deaths are either
unregistered or registered without specifying the cause by the national mortality
registries [12]. Even though the Health Management Information Systems (HMIS)
in Uganda systematically collect data on inpatient malaria admissions and deaths,
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these data are often incomplete, delayed, or inaccurate, restraining the utility of
their use to estimate malaria mortality [105], which is an important gap we wish to
narrow in this dissertation.

Recently, the number of infectious mosquito bites per person per year, or the
entomological inoculation rate (EIR), has been estimated to range from 2.8 to 310
bites for areas of low-to-high transmission intensities in Uganda[42]. In the same
paper, Kamya et al. [42] estimated the malaria parasite prevalence to be 7.4%, 9.3%,
and 28.7% for areas with low, medium and high intensities, respectively. In the past,
Felger et al. [24] reported that the malaria FOI was moderately age-dependent with
children less than two years acquiring less new P. falciparum clones than children
of older ages. They further stated that the FOI was significantly correlated to the
incidence of episodes.

However, it was not clearly stated by the aforementioned authors whether and how
they accounted for several other risk factors when estimating the above parameters,
which could have introduced bias into the estimates. Modelling is a natural choice
for estimating these parameters to adjust for all the risk factors. We, therefore,
intended to address this gap in this dissertation.

A large amount of work has been done thus far to model the parameters of infectious
diseases using mathematical and statistical models. A mathematical model for
malaria transmission was first published in 1908 by Ronald Ross [85]. His model
describes changes in the proportion of infected humans or infectious mosquitoes
during an epidemic. In his paper published in 1916, Ronald Ross recommended
that both the mathematical and statistical modelling frameworks need to be used
to correctly understand infectious diseases transmission [84]. The work by Ross was
not firmly established until 1950 following the work by George Macdonald which was
based on Ross’s concept [96]. The Ross-Macdonald theory has since played a central
role in the development of research on mosquito-borne pathogen transmission and
the development of strategies for mosquito-borne disease prevention [96].

Using the Ross-Macdonald concept, several mathematical models have been proposed
to estimate malaria transmission parameters, e.g., see Smith et al. [97, 98] and Keeling
and Rohani [47]. For example, Smith et al., [97] proposed a nonlinear relationship
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between the EIR and FOI given by equation (1.1).

FOI = log(1 + αbEt)
αt

, (1.1)

where b is the transmission efficiency, E is the EIR, and t is the observation time
(exposure time). In an earlier work, Smith et al. [98] showed that the parasite rate
(PR), assuming heterogeneous biting with gamma-distributed biting rates (with a
mean of one and a variance of 1/k) is given by the equation

PR = 1−
(

1 + bE

rk

)−k
, (1.2)

where PR, b and E are as defined above, and 1/r is the expected time to clear each
infection. Keeling and Rohani [47] give several mathematical models covering a
whole scope of infectious diseases; in particular, they provide a compartmental model
and a system of differential equations linking the transmission dynamics between the
mosquito vector and the human host.

On the other hand, the statistical modelling of infectious disease parameters has
been the standard methodology for analysing data for many decades now. For
example, 84 years have passed since Muench formulated the first catalytic model to
estimate the force of infection (unspecific to infectious agent) from current status
data in 1934, after which several authors addressed the estimation of this parameter
by more advanced statistical methods [35]. A historical overview discussing the
relevance of Muench’s work and a wide array of newer methods with illustrations
on pre-vaccination serological survey data of two airborne infections, rubella and
parvovirus B19, was given by Hens et al. [35]. Other authors, e.g., Shkedy et al. [93]
used fractional polynomials to model the age-dependent FOI from seroprevalence
data. In a different paper, Shkedy et al. [92] used a hepatitis A dataset from
Bulgaria to illustrate the use of local polynomials as a nonparametric method to
estimate both the prevalence and FOI. Hens et al. [36] gave an overview of methods
to estimate both the prevalence and FOI from serological and incidence data.
Elsewhere, Mueller et al. [64] showed that adjusting for individual differences in
molecular FOI completely explained spatial variation, age trends, and the effect of
insecticide-treated nets (ITN) use.

Ideally, the two distinct approaches to data, which have been called a priori (i.e.,
mathematical modelling) and a posteriori (i.e., statistical modelling), could be used
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to understand infectious disease transmission. Mathematical models are based on
facts about the population dynamics, and any lack of knowledge about the underlying
mechanisms can make it difficult to apply this approach, which is a disadvantage
[95]. On the other hand, statistical modelling analyses available observations and
works backward to the underlying cause [36], thus making assumptions about the
process that generates the observations, which is a possible drawback. Because of
these concerns, neither modelling approach is superior, and the two approaches can
be used to complement each other, which is one of the intentions of this dissertation.

Indeed, different infectious diseases are spread differently, and many of the existing
models developed for other infectious diseases do not directly apply to malaria. A
key idea is heterogeneity or frailty, which is defined as intrinsic variability among
individuals in the risk of infection. In particular, malaria is said to be highly
heterogeneous [96, 100]. However, the above two models in (1.1) and (1.2) may
not efficiently estimate the burden of malaria as they do not indicate how several
risk factors and heterogeneity may be accounted for. Due to their flexibility in
accounting for several risk factors and heterogeneity, statistical models can provide a
more efficient way of estimating the burden of malaria in Uganda and the rest of the
world. Therefore, there is a clear need to develop appropriate statistical models for
malaria, i.e., the aim of this project. There is also a need to compare and harmonize
the results of different methodologies. Here, we develop and harmonize statistical
and mechanistic models of the dominant epidemiological and entomological metrics
of malaria. For example, the work by Mugenyi et al. [65], which forms part of
this thesis, harmonizes statistical and mechanistic models when estimating malaria
parasite prevalence and FOI while accounting for both observed and unobserved
heterogeneity. These authors document that the FOI significantly varies with age
and is estimated to be highest among children aged 5–10 years in areas of high and
medium malaria transmission and to be highest in children aged below 1 year in a
low-transmission setting [65]. Mugenyi et al. [65] further show that heterogeneity
in malaria infection is greater between households than within households, and it
increases with decreasing risk of malaria infection.

The other important scenario that if ignored can possibly hinder the proper un-
derstanding, estimation and assessment of malaria control strategies is outcome-
dependent sampling (ODS). Malaria follow-up studies involve routine and clinical
visits where in the latter case, the infection triggers outcome assessment, leading to
ODS [106]. It has been documented that ordinary methods used to analyse longitudi-
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nal data ignore ODS and can lead to biased estimates [65, 86, 106] with a consequence
of making an incorrect assessment and evaluation of the impact of malaria control
strategies. Even though several authors developed methods to accommodate ODS in
various settings (e.g., see [83, 106]), literature on how to account for ODS with data
coming from both routine and clinical malarial visits does not exist. We therefore
intended to narrow this gap.

1.6 Problem statement

Uganda is a country with many factors hindering its development, including diseases
(mainly malaria and HIV/AIDS) and poverty, which are closely linked. Malarial
disease has impacted humans for thousands of years, and it has continued to do so
even though methods for preventing and curing malaria are now available [60, 75].
One of the challenges in properly understanding the dynamics of malaria and in
estimating the transmission parameters is that the disease is highly heterogenous
[65, 96, 100]. Estimating and understanding how these parameters vary with risk
factors while addressing unobserved heterogeneity will allow for the advancement of
knowledge regarding efforts for improving malaria control. Additionally, since limited
information is available on modelling (statistical modelling in particular) infectious
disease parameters, especially in Uganda, the results from this project will form a
great foundation for further research in the field of malaria infection. In particular,
the estimates for the force of infection will be useful in describing the rate at which
susceptible persons acquire an infection that later leads to malaria. The FOI that is
estimated by modelling will act as a key parameter (marker) in estimating the burden
of malaria and the effectiveness and cost-effectiveness of malaria control.

1.7 Rationale for the thesis

To properly understand the burden of malaria and to facilitate financial funding to-
wards its elimination, data should be available not only on its prevalence and incidence
but also on the related mortality. Data on malaria-related mortality are still insuf-
ficient in Uganda, a gap this thesis intended to minimize by estimating age-specific
mortality rates and the determinants. Although Ronald Ross [84] recommended the
use of both the mathematical and the statistical modelling frameworks when estimat-
ing infectious diseases parameters, limited work, particularly for malaria infection,
has been done to estimate transmission parameters while linking the two frameworks,
a gap that is addressed in this dissertation. For example, we derived a methodology
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to estimate the malaria FOI linking the susceptible-infected-susceptible (SIS) (mathe-
matical) and generalized linear mixed model (GLMM) (statistical) models. Estimates
for the malaria FOI are not only lacking, but this parameter has an advantage over
incidence and prevalence because it takes susceptibility into account and because
it can be used to compare the rate of transmission between different groups of the
population for the same infectious disease. On the other hand, it has been noted
that the failure to account for the fact that clinical observations are triggered by the
longitudinal outcome, a scenario referred to as ODS, may lead to biased estimates,
which may lead to the inaccurate measurement of outcomes. This scenario has not
been accounted for in the context of malaria infection, a gap this dissertation aimed
to address. To do this, a joint model has been developed to include both the lon-
gitudinal outcome (parasitemia) and clinical observation times when estimating the
age-dependent malaria FOI and parasite prevalence.

1.8 Research objectives

In this doctoral thesis, I was mainly interested in addressing three major gaps: 1)
the insufficient information about malaria-specific mortality and determinants; 2) the
limited work linking mathematical and statistical modelling frameworks, particularly
when estimating transmission parameters for malaria infection; and 3) the limited
work on accounting for outcome-dependent sampling (ODS), mainly in the context
of malaria infection. Predominantly, we developed models to estimate indicators of
malaria burden, including malaria-related mortality, FOI, parasite prevalence and
parasite clearance rates. We also suggest several mathematical models describing the
various dynamics in malaria transmission and relate these models to the statistical
modelling framework. Emphasis has been placed on estimating these parameters
while accounting for both observed and unobserved heterogeneity. Particularly, 1)
we analyse the determinants of malaria-related death among Ugandan children dying
before the age of 15 years; 2) we derived an expression to link the two modelling
frameworks and used it to estimate age-time dependent malaria FOI and parasite
prevalence, accounting for both observed and unobserved heterogeneity; and 3) we
developed a novel methodology to model longitudinal binary outcomes with outcome-
dependent observation times with application to a malaria cohort study (PRISM
study, see Section 3.1).
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1.9 Overview of the dissertation

The thesis is organized as follows. Chapter 2 presents various mathematical models
for infectious diseases focusing on malaria, whereas Chapter 3 gives a description of
the two data sources used in this dissertation. Chapter 4 presents estimates for the
malaria-related mortality and the determinants among children who died between
the ages of 29 days and 14 years. Though Chapter 4 presents a stand-alone project
using malaria-related mortality data, the results presented in this chapter act as an
ice breaker to the malaria problem in Uganda. In Chapter 5, estimates for age-time
dependent FOI and parasite prevalence accounting for both observed and unobserved
heterogeneity in the acquisition of malaria infection are presented. In this chapter, we
show how mathematical and statistical models can be connected and how estimates
from the latter can be substituted in the former, thus refining malaria spread models.
In clinical study designs, participants often make unscheduled visits triggered by
the study outcome such as malaria symptomatic infections, creating a dependency
between the observation time process and the process that generates the outcome
of interest. If this dependency is not accounted for, there is potential for obtaining
biased estimates. Methods to account for this dependency are presented and applied
to a malaria cohort study in Chapter 6. Chapters 5 and 6 are linked in the sense
that we rely on the same parasitemia data collected routinely and clinically from a
cohort of Ugandan children aged 0.5–10 years from 3 regions of varying transmission
intensities. In particular, Chapters 5 and 6 account for both observed and unobserved
heterogeneity in malaria infection. The dissertation ends with Chapter 7 presenting
a general discussion and recommendations for future research.





Chapter 2
Mathematical models

This chapter presents possible transmission models for infectious diseases focusing on
malaria. The chapter starts by giving a definition of a mathematical model and later
uses schematic diagrams and systems of ordinary differential equations (ODEs) to
illustrate and describe dynamics for the various mathematical transmission models. .

2.1 Definition

A mathematical model is a conceptual tool that uses the language of mathematics
to explain how an object (system or objects) will behave, and it is used to express
quantitative relationships. These models enable us to predict the population-level
epidemic dynamics from individual-level knowledge of epidemiological factors and/or
the impact of external interventions, like vaccination [47]. A mathematical model
translates the infection stages into compartments, also known as classes, describing
how individuals move from one compartment to another at a given rate either
because they are susceptible, infected or recovered. These models are sometimes
referred to as compartmental models. A mathematical model can be classified as
either deterministic or probabilistic (stochastic). Unlike the deterministic model, the
probabilistic model includes elements of randomness.

Mathematical/compartmental models provide a simplification of the disease dynamics
in real-life. Therefore, one needs to understand the disease under investigation in the
sense that the infection profile for the disease at hand should be fairly known (and
potentially simplified). First, one needs to clearly understand the characterization
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of a disease at hand. That is, the infection profile for the disease should be fairly
known and simplified as appropriate. This profile starts from the point (time 0)
when the susceptible hosts encounter an infectious agent (e.g., individual, mosquito
vector, animal or plant) and get infected, after which they become infectious,
diseased (symptomatic), recovered and later may become immune or susceptible
again. Keeling and Rohani [47] give a simplified infection profile in Figure 1.2
of their book. Second, a model that explains the dynamics of the transmission
of an infectious disease needs to be simple but not too simple. That is, tangible
assumptions should be made to simplify the model while retaining key ingredients.
Though all models, even the most complex ones, are essential “wrong”, some are
useful [10, 47]. Third, formulating a model for a particular problem is a trade-off
between three important and often conflicting elements: accuracy, transparency, and
flexibility. Accuracy refers to the ability to reproduce the observed data and reliably
predict the future dynamics, transparency comes from being able to understand
(either analytically or numerically) how the various model components influence the
dynamics and interact, and flexibility measures the ease with which the model can
be adapted to new situations [47]. Finally, models have two distinct roles, prediction
and understanding which are related to the model properties of accuracy and
transparency. Usually, predictive models require a high level of accuracy, whereas
models meant to improve our understanding of the problem require transparency [47].

Throughout this section, capital letters will represent the compartments or classes and
small letters will represent the proportions of individuals in the respective compart-
ments, i.e., S, I, and R will represent the compartments for the susceptible, infected,
and recovered, respectively. Consequently, s, i, and r will represent the corresponding
proportions. The parameters, λ and γ will denote the FOI and the recovery or para-
site clearance rate, respectively. Time will be represented by t with (t) and subscript
t representing the continuous and discrete time frameworks, respectively. The ordi-
nary differential equations (ODEs) will be based on proportions. We represent the
differentials with respect to t; ds(t)

dt , di(t)
dt and dr(t)

dt with s′(t), i′(t) and r′(t), respec-
tively. For simplicity, we ignore the vital dynamics (demography), i.e., birth, death
and migration.

2.2 SIR model without demography

Although the SIR model is not ideal for malaria transmission (because it assumes
permanent immunity after recovery from an infection, which is untenable for malaria
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infection), we consider it here because it is a basic epidemiological model [36]. This
model describes the movement of individuals from the susceptible class (S) to the in-
fected class (I) and then to the recovered class (R), i.e., susceptible-infected-recovered
(SIR). For the SIR model, we assume permanent immunity after recovery from an in-
fection, and reinfection is thus not possible. Therefore, all infections observed in time
period [0, t] are new, with at most one infection per infected individual. Here, (un-
der SIR dynamics), the number of new infections is equal to the number of infected
individuals. However, this does not hold for models where there is no permanent
immunity (e.g., susceptible-infected-susceptible, SIS model) as we shall see in the
following sections. The SIR model is graphically shown in Figure 2.1. Here, λ(t)

S I R
λ(t) γ(t)

Figure 2.1: Schematic diagram of the SIR compartmental model illustrating the dynamics
in transmission of diseases that provide permanent immunity after infection (e.g., measles
and chickenpox).

represents the instantaneous rate at which individuals leave the S-class and move into
the I-class, also known as the FOI; γ(t) denotes the rate at which individuals leave
the I-class and move into the R-class, also known as the recovery rate; s(t) is the pro-
portion of susceptible individuals; i(t) is the proportion infected and r(t) represents
the proportion recovered at time t. The flow of individuals in the deterministic SIR
model can be described using the following system of three ODEs:

s′(t) = −λ(t)s(t),

i′(t) = λ(t)s(t)− γ(t)i(t),

r′(t) = λ(t)i(t),

(2.1)

with initial condition s(t) + i(t) + r(t) = 1.

2.3 SIS model without demography

This model describes the movement of individuals from the S-class to the I-class and
then back to the S-class. This model assumes that individuals regain susceptibility
upon recovery, hence no permanent immunity. A graphical representation of this
model is given in Figure 2.2. By assuming the same parameters as those in the SIR, a
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S I
λ(t)

γ(t)

Figure 2.2: Schematic diagram of the SIS compartmental model illustrating the dynamics
in transmission of diseases that do not provide immunity after infection.

system of ODEs describing transitions in the compartmental SIS model is as follows:

s′(t) = −λ(t)s(t) + γ(t)i(t),

i′(t) = λ(t)s(t)− γ(t)i(t),
(2.2)

where s(t) + i(t) = 1.

2.4 SIRS model without demography

Unlike the SIR model, the SIRS model assumes that individuals stay in the R-class for
a given period, after which they move back into the S-class at some rate σ(t). More
specifically, we can re-write the SIRS model as SIR(T)S to imply that temporary
recovery is due to prior treatment (T). The SIRS compartmental model is graphically
shown in Figure 2.3. Without loss of generality, we represent the rate at which

S I R
λ(t) γ(t)

σ(t)

Figure 2.3: Schematic diagram of the SIRS compartmental model illustrating the dynamics
in transmission of diseases that provide short-lived immunity.

individuals leave the R-class at time t by σ(t). The system in (2.3) describes the
SIRS model.

s′(t) = −λ(t)s(t) + σ(t)r(t),

i′(t) = λ(t)s(t)− γ(t)i(t),

r′(t) = γ(t)i(t)− σ(t)r(t),

(2.3)

where s(t) + i(t) + r(t) = 1.



Chapter 3
Data sources

This chapter presents the two sources of Ugandan data used in this dissertation. The
first data set comes from the Program for Resistance, Immunology, Surveillance and
Modelling of malaria (PRISM) study and the second comes from the Iganga-Mayuge
Health and Demographic Surveillance Site (IMHDSS). Details regarding these data
sources are given in Sections 3.1 and 3.2.

3.1 PRISM data

The PRISM study, which started in August 2011 in Uganda, collected data from
entomological studies, cohort studies, and community & school surveys. This study
was conducted under the Infectious Diseases Research Collaboration (IDRC)-Uganda
and funded by the National Institutes of Health (NIH). The study was conducted
in three sub-counties located in Uganda: the Nagongera sub-county, located in the
Tororo district in eastern Uganda; the Walukuba sub-county, located in the Jinja
district in eastern Uganda; and the Kihihi sub-county, located in the Kanungu district
in south-western Uganda. Nagongera and Kihihi are rural areas, and Walukuba is
peri-urban. These regions are characterized by distinct transmission intensities. The
EIRs were previously estimated to be 310, 32 and 2.8 infectious bites per unit year
for Nagongera, Kihihi, and Walukuba, respectively [42]. A map showing these study
sites is given in Figure 3.1.
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Figure 3.1: A map showing the three study regions for the PRISM study in Uganda.
The colour gradient on the map of Uganda (top left) from green to red corresponds to
an increasing transmission intensity of malaria. The green dot in each region’s boundary
corresponds to the location of the health centre IV clinic where the study participants were
being tested and treated (map by Simon Peter Kigozi).

Data from only the cohort study were used in this dissertation. The study partic-
ipants were recruited from 300 randomly selected households (100 per site) located
within the catchment areas. The screening visit and all subsequent study visits took
place at a designated study clinic in the health centre IV facilities located in each
catchment area. A study clinician assessed the eligibility of potential of the study
participants using the following selection criteria. The inclusion criteria included (1)
the documented age between 6 months to less than 10 years, (2) resident in the sub-
county at the household selected for recruitment, (3) no intention to move out of
the sub-county for the next two years, (4) agreement to come to the study clinic at
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the UMSP health centre sentinel site for any febrile illness, (5) agreement to avoid
antimalarial medications administered outside the study, and (6) provision of written
informed consent. The exclusion criteria included (1) the presence of a chronic med-
ical condition requiring specialized primary health care and (2) enrolment in another
research study. Blood samples were collected at enrolment at each sick (clinical) visit
with suspected malaria and routinely every 3 months, and the samples were tested
for the presence of Plasmodium parasites. All children born into a household dur-
ing the follow-up were recruited into the cohort at the time they were 6 months of
age. The major reasons for doing clinic visits were to measure the overall malaria
incidence, including both asymptomatic and symptomatic infections, and to provide
the recruited children with general medical care for all other illnesses. If a subject
had a history of and/or documented fever (temperature≥ 38.0◦C), a blood sample
was obtained and tested for malaria. Patients who did not have fever and were not
suspected to have malaria received standard-of-care treatment as per local treatment
guidelines. Details of this study can be found in Kamya et al. [42].

3.2 IMHDSS data

Data on all deaths and their causes were collected from the Iganga-Mayuge Health
and Demographic Surveillance Site (IMHDSS) in the Iganga and Mayuge districts
in the East Central region of Uganda. A map showing the IMHDSS study area
is shown in Figure 3.2. According to the Uganda Malaria Indicator Survey (2014-
15), this region has the highest prevalence of anaemia and malaria by microscopy,
estimated at 8% and 37%, respectively. The IMHDSS has conducted 17 individual and
household-level data update cycles since its inception in 2004 (http : //www.indepth−
network.org/Profiles/iganga mayuge hdss 2013.pdf). The IMHDSS is managed
by the Makerere University Centre for Health and Population research (MUCHAP),
which is aimed at strengthening the platform for institutional research and research
training and ensuring a robust research agenda. These data were collected using
standardized VA questionnaires designed by the INDEPTH network (www.indepth-
network.org) with detailed information regarding signs and symptoms that led to
the deceased deaths. These data were collected in 65 villages with a population of
approximately 85,000 people by conducting interviews of close relatives or caretakers
who were present during the period from illness until death. Unlike post-mortem
analyses in clinical research, VA serves the same purpose, and it is an indirect way of
ascertaining the cause of death. The WHO categorizes these questionnaires depending
on the age of the deceased, i.e., a neonatal tool for 0-28-day-old infants, a child tool
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for those aged 29 days to 14 years, and an adult tool for persons aged 15 years and
above [69]. The data used in this thesis were collected using the child tool. These
data were examined afterwards by 2 to 3 physicians, who assigned a cause of death
depending on the reported signs and symptoms prior to death.

Figure 3.2: A map showing the Iganga-Mayuge Health and Demographic Surveillance Site
(IMHDSS) in Iganga and Mayuge districts in the East Central region of Uganda.



Chapter 4
Malaria-related mortality and
determinants

4.1 Summary

Malaria remains a leading cause of disease and death among children in sub-Saharan
Africa. In low-resource countries, many deaths are not captured by routine registra-
tion systems, leading to underreporting of mortality. To better understand the malaria
burden in Uganda, we analysed mortality data extracted from a verbal autopsy (VA)
study conducted in the Iganga and Mayuge districts from 2008 to 2012. Competing
risks models were used to estimate the hazard and determinants of malaria-related
deaths among children (aged 29 days to 14 years) who died. Of 781 deaths, 396
(50.7%) were attributed to malaria; nearly all malaria deaths (93.7%) occurred in
children under five. Of children who died of malaria, 169 (42.7%) died in a hospital
or health facility, 103 (26.0%) died en route, while 124 (31.3%) died at home or else-
where. In these children who died of malaria before 15 years of age, the hazard of
dying was higher in those with fever (adjusted hazard ratio, HRa= 3.72, 95% con-
fidence interval [CI]: 2.81 – 4.92), suggesting that children with fever were younger
when they died compared to those without fever. The hazard of dying due to malaria
was lower in children who died at home (HRa = 0.61, 95% CI: 0.47 – 0.78), suggesting
that those who died at home were older than those who died in a hospital or health
facility. Among children who died before the age of 15 years in Uganda, VA data
suggest that malaria was the leading cause of death, and that over half of children
died outside of health centers. Strengthening malaria surveillance at health facilities
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and within communities to accurately capture data on malaria mortality is essential.
Educating caregivers about the symptoms of malaria and importance of seeking care
promptly, to ensure appropriate diagnosis and effective treatment of malaria, should
continue to be a priority.

4.2 Introduction

Despite recent efforts to scale-up coverage of malaria control interventions, and the
renewed focus on elimination, malaria remains a major global health problem [122].
In Africa, where approximately 91% of malaria deaths occur, the number of malaria
deaths has decreased by 37% since 2010. However, between 2015 and 2016, there was
no significant change in the malaria mortality rate in Africa suggesting progress may
have stalled [2]. In Uganda, malaria is a leading cause of morbidity and mortality
with 28.7 million suspected malaria cases and 5,635 malaria deaths recorded in
2016 [123]. Among children under-five admitted to a hospital in Uganda during
2014/2015, an estimated 22.6% of deaths were attributed to malaria [110]. However,
estimating malaria mortality overall in Uganda is still a challenge because most
deaths occur at home and are not registered, or are recorded in national registries
without specifying the cause of death [12]. Indeed, although information on inpatient
malaria admissions and deaths are systematically collected in the Health Management
Information Systems (HMIS) in Uganda, these data are often incomplete, delayed,
or inaccurate, limiting the utility of HMIS data on malaria-specific mortality [105].
Reliable measures of the burden of malaria mortality in Uganda are needed to more
accurately quantify the burden of malaria and to evaluate the impact of control
interventions.

Verbal autopsy (VA) is an indirect method of determining cause of death based on
an interview with the caretakers of a deceased individual, which has been widely
used to collect information on cause-specific mortality where medical information on
deaths is incomplete [12, 63, 104]. Information about specific signs and symptoms,
and circumstances preceding the terminal event, are used to ascertain the most
likely cause or causes of death. Although the sensitivity of VA for determining
malaria-specific mortality may be low in some settings, and methods used to
interpret VA data can vary substantially between sites [7, 102], VA remains the only
available method for determining cause-specific mortality data in regions where vital
registration systems are deficient [7]. A study of the validity of VA methods for
determining malaria deaths in Uganda concluded that VA had an acceptable level of
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diagnostic accuracy for determining malaria deaths at the population level in high
and medium transmission areas, albeit not in an area with low transmission [62].
To further explore all-cause and malaria-specific mortality, we applied a competing
risk analysis to VA data collected from the Iganga and Mayuge districts in eastern
Uganda. Specifically, we estimated the malaria-specific mortality hazard and related
factors in a population of children aged 29 days to 14 years who died between 2008
and 2012.

4.3 Methods

4.3.1 Data source

In this chapter, we use VA data collected by the Iganga-Mayuge Health and Demo-
graphic Surveillance Site (IMHDSS). Data on all causes of death for children aged 29
days up to 14 years were extracted from the VA database. Other extracted variables
included: age at death, gender, relationship with next of kin, place of death, presence
of comorbidities, symptoms and signs noted, the duration of the final illness that
led to death, and treatment and health service use for the final illness. These data
were analyzed using STATA (version 12.0, College Station, TX) and R (R Core Team
(2015), URL: https://www.R-project.org/). The R code is given in Appendix A.

4.3.2 Statistical analysis

Survival analysis methods were used with the child’s age at death taken as the sur-
vival time variable. In survival analysis, standard Kaplan-Meier (KM) estimates of
survival curves [43] and the Cox proportional hazards (PH) model [19] are commonly
used. These methods deal with only one event type, for example death, and right-
censor all other observations where the event of interest is not experienced by the
end of the study period [30, 76, 81]. The main assumptions of these methods are
that individuals with right-censored observations will experience the event of interest
eventually if followed long enough in time and that censoring is independent implying
that censored individuals should be representative for those still at risk at a spe-
cific time point [25, 76]. If these assumptions are intangible or if the occurrence of
other events prevents the occurrence of the event of interest, then a competing risk
analysis should be preferred [25, 90]. Estimating the marginal survival function us-
ing KM, hence, censoring the competing events, can be interpreted as probabilities
to survive up to a specific time in a hypothetical but unrealistic world in which no
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other competing risks exist [28]. In case the independent censoring assumption is
violated, the KM approach overestimates the event probability yielding misleading
results. Here, causes of death including malnutrition, anemia, pneumonia, diarrhea,
measles, tetanus, road accident and HIV/AIDS are considered as competing against
malaria-related mortality. Therefore, we apply competing risks analysis techniques
to estimate the malaria-specific mortality hazard and study its determinants in the
presence of all other causes of death.

4.3.3 Competing risks analysis

In recent years, competing risks (CR) analysis became an important method in
survival analysis, particularly in situations where interest is in a specific cause of
failure in the presence of other competing causes, which alter the probability of
experiencing the event of interest [25, 76, 89]. In this case, instead of the 1-KM
estimate, from here onwards referred to as the marginal Cumulative Incidence
Function (marginal CIF), the cause-specific CIF, representing the event probability
for one of the competing events in the presence of all others, is estimated [25].
It has been shown that for dependent competing risks, the marginal CIF always
overestimates the cause-specific CIF [76]. A similar observation was made based
on our data (see Figure 4.3). The cause-specific CIF partitions the probability of
failure into probabilities corresponding to each competing event [5, 76, 89]. To assess
statistical significance of a prognostic factor in the competing risks analysis, Gray’s
test [32] was used instead of the log-rank and Wilcoxon tests which are commonly
used in standard survival analyses [89].

In order to determine factors associated with a particular event of interest in the pres-
ence of one or more competing risks, several regression models have been proposed,
including the cause-specific hazards model. For details on these methods, see, e.g.,
Fine and Gray [25], Klein and Anderson [51], Logan et al. [56], and Pintilie [27]. In
particular, Fine and Gray [25] noted that the effect of a covariate on a cause-specific
hazard function of a particular event type may be very different from its effect on
the corresponding CIF. This led to the so-called Fine and Gray proportional hazards
model for the subdistribution of a competing risk [25], which is recommended for
determining the covariate effects in a competing risks setting [76]. Therefore, in this
chapter, the model proposed by Fine and Gray [25], is considered which estimates the
so-called subdistribution hazard of an event following a specific cause in the presence
of competing causes. In their approach, Fine and Gray adopted a semiparametric PH
model for the subdistribution hazard of cause r for a subject with covariate vector X
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as follows [90],
λr(t|X) = λro(t)exp(βTr X), (4.1)

where λr0(t) is the subdistribution hazard of cause r, βr is a vector of coefficients
associated with covariates X. Similar to the estimation of model parameters in the
semiparametric Cox PH model, the estimation follows a partial likelihood approach.
Since this is not a full likelihood approach, the test statistics that are asymptotically
distributed as chi-square (χ2), such as the likelihood ratio test, become invalid and
can therefore not be used for model selection. In a similar way, the commonly used
Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
cannot be used directly. However, differences in AIC and BIC values for models with
respect to the smallest value obtained for model (1) in a set of candidate models
(including the null model), are valid to be used for model comparison [90]. For
example, using AIC = −2l+ 2p where l denotes the log-likelihood and p the number
of model parameters, then AIC difference for model i with respect to the smallest
value of AIC for a set of candidate models is defined as ∆AICi = AICi−min(AIC).
By rule of thumb, it’s argued that ∆AICi > 10 provides very strong evidence against
the candidate model as compared to model (1), whereas 0 < ∆AICi < 2 suggests
that the candidate model has substantial support and should be used to make
inference [44, 90]. Therefore, ∆AICi was used for model selection. In the Appendix
A, we present the fit statistics and describe the steps followed to arrive at a better fit
for which the results are presented as adjusted estimates in Table 4.2 . In the same
appendix, we give a list of candidate models and their fit statistics in Table A.1.

4.4 Results

Of 781 children contributing to the VA data, 404 (51.7%) were males and 490 (62.7%)
were under the care of their biological mothers. The median age at death (all deaths)
was 1.2 years (interquartile range, IQR: 0.8 – 3 years) with 31.2% dying before their
first birthday, and only 13.6% dying after having reached the age of 5 years (i.e.,
between 5 and 14 years of age). The age at death distribution encompassing deaths
due to all causes is given in in Figure 4.1 (A). Of the total number of deaths, 50.7%
(396/781) was attributed to malaria infection followed by malnutrition (12.9%)
according to the VA physicians who reviewed the questionnaires. These proportions
are referred to as cause-specific mortality fractions. See Figure 4.1 (B) for details.

Out of the 396 malaria deaths, 54.0% were males, 64.4% were under the care of their
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Figure 4.1: All-cause mortality among Ugandan children aged 29 days to 14 years.
(A) Frequency distribution of age at time of death. (B) Cause-specific mortality fractions.

mothers with 57.3% dying outside a hospital or health facility. About 78% of the
malaria deaths occurred within the first three years of life with 53.3% dying when
aged one year and below. Of those dying within their first year of life, 79.1% were
aged between six months and one year. The median age at death due to malaria was
1 year (IQR: 0.75 – 2 years). The other summary statistics are given in Table 4.1.

Of the children dying from malaria, 21.7% had convulsions, 79.8% had fever (54.3%
of the fever cases were considered severe by the caretaker), 42.9% experienced
vomiting, 16.2% had diarrhea, 6.8% had headache and 6.6% had comorbidities.
Sickle-cell anemia was the most frequent comorbidity (2.0%) followed by asthma
(1.5%), malnutrition (1%), heart attack (0.8%), congenital malformation (0.8%), tu-
berculosis (0.5%), and epilepsy (0.3%). None of the children dying from malaria had
HIV/AIDS, cancer or diabetes. We refer to Table 4.2 for the other summary statistics.

A plot for the estimated probabilities of dying at a given age for all causes of death
for this study population is given in Figure 4.2, which shows that malaria was the
dominant cause of death among the children dying before the age of 15 years.
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Table 4.1: Baseline characteristics of children dying from malaria at the ages of 29 days to
14 years, in the two study sites in Uganda (Iganga and Mayuge), period 2008 to 2012.

Malaria deaths (N=396)
n (%)

Sex Female 182 (46.0)

Age at death <1 year 131 (33.1)
1-2 years 178 (45.0)
3-4 years 62 (15.7)
5-14 years 25 (6.3)

Caretaker Mother 255 (64.4)
Father 72 (18.2)
Other 69 (17.4)

Place where death Hospital/facility 169 (42.7)
occurred Home 96 (24.2)

On way to hospital/health facility 103 (26.0)
Other 28 (7.1)

The marginal and cause-specific CIF estimates for the probability of dying from
malaria by age are presented in Figure 4.3. The marginal CIF (long-dashed line)
represents the probability of dying in the absence of any other competing cause,
and conditional on dying before the age of 15. As indicated before, Figure 4.3
clearly shows that the marginal CIF is larger than the cause-specific CIF (solid line).
The cause-specific estimator shows that about 40% of the children who died from
malaria before the age of 15 years and in the presence of other competing risks, died
within the first two years of life whereas malaria-specific mortality remains almost
constant at 50% after five years of age. Graphical representations of the factor level
malaria-specific CIF curves are given in Figure 4.4. The CIF was higher on the
way to hospital or health facility and lower at home compared to the CIF at the
hospital or health facility, the CIF was higher for presence of convulsions, and lower
for children with comorbidities. All these differences were significant (Gray’s test:
p-value < 0.001).

Next, the determinants associated with malaria-specific deaths resulting from the
Fine and Gray model are presented. Here forth, the malaria-specific mortality
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Figure 4.2: Estimated cumulative incidence curves showing age-specific probabilities of
dying from all causes among Ugandan children aged 29 days to 14 years.

subdistribution hazard is referred to as the hazard, and the abbreviations, HRc
and HRa are used to represent crude and adjusted (derived from the final fit)
estimates for the hazard ratios, respectively. Table 4.2 shows the number of malaria
deaths for different factor levels, the crude/unadjusted and the adjusted estimates
for the hazard. Factors that had significant crude estimates were subjected to a
multivariable analysis leading to adjusted estimates.

The subdistribution hazard was significantly lower at home [HRa = 0.61 (95% CI:
0.47 – 0.78), p-value < 0.001] compared to the hospital or health facility (HF), and
lower among children with comorbidities [HRa = 0.40 (95% CI: 0.28 – 0.58), p-value
< 0.001]. The hazard was significantly higher among children with fever [HRa =
3.72 (95% CI: 2.81 – 4.92), p-value < 0.001] but lower among those presenting with
a headache [HRa = 0.60 (95% CI: 0.45 – 0.81), p-value = 0.001]. Children who had
a longer illness duration, had a lower hazard [HRa = 0.73 (95% CI: 0.67 – 0.80),
p-value < 0.001]. Whereas the crude estimate indicated a higher hazard associated
with convulsions [HRc = 1.60 (95% CI: 1.28 – 2.00), p-value < 0.001], the adjusted
estimate was no longer significant [HRa = 1.23 (95% CI: 0.96 – 1.58)]. Treating a
child within 24 hours (treatment promptness) was found not to be associated with
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Figure 4.3: Estimated cumulative incidence curve for malaria-related death among Ugan-
dan children with 95% pointwise confidence intervals (dotted lines).

the event time of interest ([HRc = 1.10 (95% CI: 0.71 – 1.71)] if treated at home
within 24 hours, and [HRc = 1.12 (95% CI: 0.84 – 1.50)] if treated elsewhere within
24 hours). See Table 4.2 for more details.

4.5 Discussion and conclusion

Accurate estimates of malaria mortality are essential for understanding malaria
burden, assessing the impact of interventions, and targeting resources efficiently.
Given the gaps in HMIS malaria surveillance data, we analysed data from a VA
study to evaluate malaria-specific mortality and its determinants among children
who died in between 29 days and 14 years of age in Iganga and Mayuge. A WHO
standard tool for age group 29 days to 14 years was used to determine causes of
death. Our results suggest that malaria is still the leading cause of death in this
population with over a half of these children dying when aged one year and below,
and of these, more than three-quarters died when aged between six months and one
year. The high mortality within the age group 0.5–1 years, is in line with the work
by Riley et al. [82] that immunity wanes before 6 months of age. Also, more than
half of the malaria deaths occurred outside of a hospital or health facility. In these
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Figure 4.4: Estimated cumulative incidence curves comparing group probabilities of dying
from malaria. Left: By place where death occurred (Gray’s test P<0.001). Middle: By
presence of convulsions (Gray’s test P<0.001). Right: By presence of comorbidities (Gray’s
test P<0.001).

children who died of malaria before 15 years of age, those with fever were younger
when they died compared to those without fever, while those who died at home were
older than those who died in a hospital or health facility. Our results also suggest
that children who had comorbidities, a longer duration of illness, or complained
of headache, were older when they died than their respective comparators. These
findings are likely reflective of treatment seeking behaviors and variation in the
clinical presentation of malaria due to age and naturally acquired immunity. Pro-
grammes aiming to ensure universal coverage of diagnostic testing and antimalarial
treatment, and those promoting prompt effective treatment of malaria, as advocated
by the WHO’s Global Malaria Programme, should continue to be a priority [120, 121].

The results presented here do not differ from those reported by Mpimbaza et
al. [62] who estimated the malaria mortality fraction at 47.8% based on medical
hospitalization records and 35.8% using VA questionnaires in the Tororo district in
Uganda within a similar setting. However, the estimate of about 50% of malaria
deaths among the under 5 years more than doubles the national estimate of 22.6%
reported by the MOH (2014). The difference can be attributed to the fact that
most malaria deaths in regions like Uganda occur outside the hospitals or the health
facilities as noted by Streatfield (2014) and as found in this paper. But, it is also
worthwhile noting that there was a recorded decrease in malaria deaths of 35%
among the under 5 years old between 2010 to 2015 (WHO, 2016) which could at
least partly explain the difference between our estimate and that of the MOH (2014).
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The results on determinants of malaria-specific mortality imply that among children
dying before the age of 15, the disease has potential to kill children faster especially
if the illness involves fever. This is the reason by which the WHO promotes
prompt treatment of fever (within 24 hours) [91]. The lower hazard of dying from
malaria at home in this population can be attributed to the several initiatives like
community health workers (CHWs) that reach households in Uganda performing
malaria diagnostic and treatment [40, 68]. The finding for the decrease in the hazard
after the age of 5 years could be that these children likely will get acquired immunity
due to past illnesses and/or increasing age as discussed by Doolan et al. [21]. We
noted changes between crude and adjusted estimates. For example, the effect of
convulsions changed by 18.1% when fever was introduced into the model. Therefore,
further research is needed to investigate the causal pathway of convulsions and fever.

The results presented in this chapter are restricted to children who died, moreover
from only 2 of the 112 districts in Uganda, thus limiting the ability to generalize our
results to a wider population. Also, the VA data used for the analysis were based
on physician review of records with the existing concerns regarding this method in
terms of repeatability and reliability of the collected data.

In conclusion, the work in this chapter seems to agree with the claim that malaria
is the leading cause of death among children in Uganda, with more than half of the
malaria-related deaths occurring outside hospitals or health facilities and which are
possibly missing in the national registries. However, since our results are limited
to only a small part of the country, it’s possible that elsewhere (e.g., in areas with
low malaria intensity), more children could be dying from other causes than malaria.
Children whose last illness involved fever died at a younger age compared to those
who died without fever. We recommend the strengthening of the malaria surveillance
at health facilities and within communities to accurately capture data on malaria
mortality. In addition, caregivers should continue to receive education about the
symptoms of malaria and importance of seeking care promptly, to ensure appropriate
diagnosis and effective treatment of malaria.
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Table 4.2: Crude/unadjusted and adjusted hazard ratios obtained using the Fine & Gray
subdistribution hazard model.

Factor◦ Malaria Crude estimates Adjusted estimates
deaths

(N=396) p- p-
n (%) HRc (95% CI) value HRa (95% CI) value

Place of death
Hospital/HF 169 (42.68) Reference Reference
Home 96 (24.24) 0.55 (0.43–0.70) <.001 0.61 (0.47–0.78) <.001
On the way 103 (26.01) 1.49 (1.18–1.88) <.001 1.22 (0.94–1.59) 0.130
Unspecified 28 (7.07) 1.06 (0.70–1.61) 0.780 1.35 (0.90–2.02) 0.150
Convulsions
No 310 (78.28) Reference Reference
Yes 86 (21.72) 1.60 (1.28–2.00) <.001 1.23 (0.96–1.58) 0.110
Comorbidities†
Non-comorbid 310 (78.28) Reference Reference
Comorbid 86 (21.72) 0.34 (0.23–0.49) <.001 0.40 (0.28–0.58) <.001
Illness duration,
mean (SD)φ 1.33 (1.15) 0.73 (0.68–0.79) <.001 0.73 (0.67–0.80) <.001
Fever
No 80 (20.20) Reference Reference
Yes 316 (79.80) 3.07 (2.41–3.91) <.001 3.72 (2.81–4.92) <.001
Headache
No 369 (93.18) Reference Reference
Yes 27 (6.82) 0.69 (0.50–0.96) <.001 0.60 (0.45–0.81) 0.001
Hospitalization
history
No 161 (40.66) Reference
Yes 155 (39.14) 0.77 (0.62–0.95) 0.017
Don’t know 80 (20.20) 0.74 (0.57–0.96) 0.025
Vomiting
No 226 (57.07) Reference
Yes 170 (42.93) 1.10 (0.91–1.34) 0.310
Diarrhea
No 332 (83.84) Reference
Yes 64 (16.16) 0.54 (0.41–0.70) <.001
Source of care
Hospital 146 (36.87) Reference
Home 83 (20.96) 0.93 (0.72–1.21) 0.580
Health center 65 (16.41) 1.06 (0.81–1.40) 0.670
Private clinic 71 (17.93) 1.09 (0.82–1.44) 0.550
Drug shop 17 (4.29) 1.00 (0.62–1.60) 0.990
Trad. healer 5 (1.26) 0.77 (0.30–1.99) 0.590
Other 9 (2.27) 1.33 (0.69–2.57) 0.400
Sex
Male 214 (54.04) Reference
Female 182 (45.96) 0.91 (0.75–1.10) 0.310
Caretaker
Mother 255 (64.39) Reference
Father 72 (18.18) 1.05 (0.82–1.35) 0.710
Other 69 (17.42) 0.76 (0.59–0.98) 0.037
†sickle-cell anemia, asthma, malnutrition, heart attack, congenital malformation,
TB and epilepsy; φlog transformed; ◦treatment promptness was not included in the
table because it was making it messy, moreover only crude estimates were available



Chapter 5
Estimating age-time
dependent malaria force of
infection accounting for
unobserved heterogeneity

5.1 Summary

Despite well-recognized heterogeneity in malaria transmission, key parameters such
as the force of infection (FOI) are generally estimated ignoring the intrinsic vari-
ability in individual infection risks. Given the potential impact of heterogeneity on
the estimation of the FOI, we estimate this quantity accounting for both observed
and unobserved heterogeneity. We used cohort data of children aged 0.5–10 years
evaluated for the presence of malaria parasites at three sites in Uganda (see Section
3.1). Assuming a Susceptible-Infected-Susceptible model, we show how the FOI re-
lates to the point prevalence, enabling the estimation of the FOI by modeling the
prevalence using a generalized linear mixed model. We derive bounds for varying par-
asite clearance distributions. The resulting FOI varies significantly with age and is
estimated to be highest among children aged 5–10 years in areas of high and medium
malaria transmission and highest in children aged below 1 year in a low transmission
setting. Heterogeneity is greater between than within households and it increases
with decreasing risk of malaria infection. This suggests that next to the individual’s
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accounting for unobserved heterogeneity

age, heterogeneity in malaria FOI may be attributed to household conditions. When
estimating the FOI, accounting for both observed and unobserved heterogeneity in
malaria acquisition is important for refining malaria spread models.

5.2 Introduction

Estimating the burden of malaria and evaluating the impact of control strategies,
requires reliable estimates of transmission intensities [17]. Measures of malaria
transmission intensity include the entomological inoculation rate (EIR), parasite
prevalence and force of infection (FOI) [17, 42, 50, 71, 97, 98]. The EIR is defined as
the number of infectious bites per person per unit time [71, 72] whereas the FOI is
defined as the number of infections per person per unit time [97] or the per capita
rate at which a susceptible individual acquires infection [18, 35]. The malaria FOI
counts all incident (that is, new) human malaria infections in a specified time interval
regardless of clinical symptoms, and recurrent infections [97]. The EIR and FOI are
related but differ; the EIR considers the number of infective bites delivered by the
mosquito vector, whereas the FOI focuses on the infections acquired by the human
host. In theory, there should be a close relationship between the EIR and the FOI,
especially in children with less developed immunity. In practice, however, there is a
discrepancy between the two because not every infectious bite results in an infection
due to various factors [99]. The efficiency of transmission can be estimated by taking
the ratio of the two measures, i.e., the ratio of the EIR to the FOI, the number of
infectious bites required to cause an infection [99]. A smaller ratio of the EIR to the
FOI implies higher transmission efficiency. Most studies have shown that malaria
transmission is highly inefficient [97]. Whereas more recently malaria FOI has been
estimated from serological data [17, 113] by detecting past exposure to malaria
infection, here we focus on estimating malaria FOI from parasitemia data [8, 87, 94].

Despite well-recognized heterogeneity in malaria transmission [96, 100], the FOI
is often estimated ignoring intrinsic variability in the individual risk of malaria
infection. Heterogeneity in malaria infection arises due to variability in risk factors,
including environmental, vector, and host-related factors [117]. Taking these sources
of heterogeneity into account [100, 117] in population-based epidemiological studies
has been shown to be important [18].

Ronald Ross first published a mathematical model for malaria transmission in 1908
[85, 96]. This model was only firmly established in 1950 by the work of George
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Macdonald who used Ross’s idea [96]. The ”Ross-Macdonald” model describes a
simplified set of concepts that serves as a basis for studying mosquito-borne pathogen
transmission [96]. Using this concept, mathematical methods to estimate the FOI
in relation to the EIR have been proposed by, e.g., Smith et al. [97, 98], Keeling
and Rohani [47] and Aguas et al. [1]. Some of the parameters involved in these
models are often unknown and should be estimated from data [36]. A solution
proposed by Ross in 1916 is to iterate between two modelling frameworks, that
is, mathematical and statistical models [36, 84]. The major difference in these
two is that the mathematical models (priori) are based on differential equations
describing the biological mechanism and causal pathway of transmission, whereas
the statistical models (posteriori) start by the statistical analysis of observations and
work backwards to the underlying cause [36]. These two frameworks complement
each other and, here, we provide an explicit link between them.

In this paper, we use the well-known generalized linear mixed model (GLMM) frame-
work [see, e.g., [61]] to estimate the point prevalence accounting for both observed and
unobserved heterogeneity and show how the FOI can be obtained from the point preva-
lence based on a mathematical Susceptible-Infected-Susceptible model. We derive an
expression and easy-to-calculate bounds of the FOI for varying parasite clearance
distributions. Our results can be used to refine mathematical malaria transmission
models.

5.3 Methods

5.3.1 Data source

The results in this paper are based on cohort data from children aged 0.5 to 10 years
in three regions in Uganda; Nagongera sub-county, Tororo district; Kihihi sub-county,
Kanungu district; and Walukuba sub-county, Jinja district. Data were routinely col-
lected every 3 months (routine visits) and for non-routine clinical (symptomatic) vis-
its. Individuals were tested for the presence of Plasmodium parasites using microscopy
from August 2011 to August 2014 (3 years). All symptomatic malaria infections were
treated with artemether-lumefantrine (AL) anti-malarial medications. A detailed de-
scription of these data are given in Chapter 3, Section 3.1 (also see [42, 65]). Given
that for clinical visits the sampling process is outcome-dependent (see discussion), the
analysis here is restricted to the planned routine visits yielding unbiased estimates
(simulation study shown in Chapter 6). These data were analyzed using R (R Core
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Team (2015), URL: https://www.R-project.org/) and SAS (SAS Institute Inc 2013.
SAS/ACCESS 9.4) statistical software. See Appendix B, Sections B.5 and B.6 for the
R code and the SAS macro, respectively.

5.3.2 The SIS model, point prevalence and FOI

A simplified version of malaria transmission can be described using the so-called
Susceptible (S) - Infected (I) - Susceptible (S), or SIS, compartmental transmission
model. This mathematical model classifies the population into two compartments,
i.e., the susceptible (S) and the infected (I) class, which can be graphically depicted
as shown in Chapter 2, Figure 2.2. Whereas the rate λ(t) is referred to as the force of
infection, γ represents the time-invariant clearance rate at which individuals regain
susceptibility after clearing malaria parasites from their blood. With s(t) denoting
the proportion of susceptible individuals in the population and i(t) the proportion of
infected individuals at calendar time t, i.e., the (point) prevalence, then the set of
ODEs describing transitions in the compartmental SIS model without demography
is given by the system of equations in (2.2). As individuals are either susceptible to
infection or malaria infected (at least in the aforementioned simplified SIS model),
we have s(t) = 1− i(t). Substituting this expression for s(t) in a system of ODEs in
(2.2) yields:

λ(t) = i(t)γ + i′(t)
1− i(t) (5.1)

where i′(t) is the derivative of the point prevalence with respect to t. The force of
infection λ(t) can thus be estimated using an estimate for the prevalence i(t) and the
clearance rate γ. Relaxing the assumption of an exponentially distributed parasite
clearance distribution in the SIS model can be done by dividing the I compartment
into J sub-compartments, such that infected individuals move from the first sub-
compartment I1 to the second I2, and later to the J th sub-compartment IJ during
the different phases of clearing malaria parasites. Using identical rates γ for the
transitions between these sub-compartments and for moving from IJ back to the S
compartment results in an Erlang distribution with shape parameter J and rate γ for
the time spent in all of the sub-compartments [20]. It is easily shown that equation
(5.1) yields an upper bound for the FOI when compared to the aforementioned Er-
lang clearance distribution (see Appendix B, Section B.4). A lower bound is readily
obtained by taking γ = 0 in equation (5.1) (SI model - see Appendix B, Section B.4).
The FOI is thus bounded by [λL(t), λU (t)] =

[
i′(t)

1−i(t) ,
i(t)γ+i′(t)

1−i(t)

]
. Estimates for both

the exponential assumption (upper bound) as well as the lower bound are presented
in this chapter. In order to estimate the prevalence π(t) = i(t), we use a generalized
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linear mixed model to account for individual- and household-specific clustering. This
will enable us to explicitly model the observed and unobserved heterogeneity in the
acquisition of malaria infection.

5.3.3 Generalized linear mixed model

Generalized linear mixed models (GLMMs) extend the well-known generalized linear
models by explicitly taking into account (multiple levels of) clustering of observations
[61]. Let Yijk denote the binary response variable indicating parasitemia in the blood
(1 if parasites are present - malaria infected; and 0 if not - malaria uninfected) for the
ith individual nested in the jth household at the kth visit. Similarly, let Xijk be a (p+
1)×1 vector containing covariate information on p independent variables, and Zijk be a
q×1 vector of information associated with q random effects. Given the subject-specific
random effects bij and the covariate information Xijk, the random variables Yijk|Xijk

are assumed to be conditionally independent with conditional mean π(Xijk|bij) =
E(Yijk|Xijk,bij) = P (Yijk = 1|Xijk, bij). The GLMM relates the conditional mean
to the covariates Xijk and Zijk as follows:

g[π(Xijk|bij)] = g[P (Yijk = 1|Xijk, bij)] = XT
ijkβ + ZTijkbij . (5.2)

Here, g is a monotonic link function (e.g., logit, cloglog and log); η(Xijk, bij) =
XT
ijkβ+ZTijkbij is the linear predictor with β a vector of unknown regression parame-

ters for the fixed effects; bij ∼ N(0,D) a vector of subject-specific random effects for
subject i in household j for which elements are assumed to be mutually independent;
and D a q × q variance-covariance matrix [128]. Using equations (5.1) and (5.2), the
FOI can be obtained using different link functions. Table 5.1 presents the prevalence
and FOI when selecting either the logit, cloglog or log-link function in the GLMM.

Table 5.1: General structures for the FOI according to different link functions in a GLMM
framework.

Link function (g) Prevalence (π) FOI (λ)

Logit eη

1+eη γeη + η′ eη

1+eη

Clog-log 1− e−eη γ
(
ee
η − 1

)
+ η′eη

Log 1− e−η γ(eη − 1) + η′

η refers to the linear predictor η(Xijk|bij) and η′ represents the derivative of
the linear predictor with respect to the predictor of interest.
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5.3.4 Flexible parametric modeling

In a parametric framework such as the GLMM, fractional polynomials provide a very
flexible modelling tool for the linear predictor η(Xijk|bij) [36, 23, 92]. In this paper,
a GLMM using a fractional polynomial of degree one with regard to age, with power
p selected from a grid (−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3) using Akaike’s information cri-
terion (AIC), is used [2]. More precisely, we use

η(Xijk|bij) = η(aijk, lij |bij) = β0 + β1age
p
ijk + β2lij + b0i(j) + b1i(j)age

p
ijk, (5.3)

where b0i(j) is the nested random intercept and b1i(j) is the nested random slope for
age. Nesting is done to explicitly acknowledge that individuals make up households.
Furthermore, shifted year of birth: lij , defined as the child’s birth year minus the birth
year of the oldest child in the cohort (i.e., baseline year 2001), is used in the model
to account for the (calendar) time effect since [calendar time] = [birth year] + [age].
The linear predictor (5.3) can be further extended to include additional covariates.

5.3.5 Age-time dependent force of infection

In equation (5.2), the conditional mean π(Xijk|bij) is the point prevalence conditional
on the random and fixed effects. In this paper, we use the logit-link function, which
enables easy calculation of the intra-cluster correlation coefficient (ICC) through an
approximation indicating how much the elements within a cluster are correlated [61,
66, 126]. The age-time dependent FOI, conditional on random effects, is estimated by
plugging in the parameter estimates obtained from the final fit in equation (5.1). More
specifically, using a logit-link, the conditional age-time dependent FOI is estimated
as follows:

λ̂lij (aijk|bij) = γ̂exp[η̂(aijk, lij |bij)] + η̂′(aijk, lij |bij)π̂lij (aijk, lij |bij), (5.4)

where γ̂ is an estimate for the clearance rate and π̂lij (aijk, lij |bij) is the estimated
age- and time-dependent conditional prevalence. For the lower boundary of FOI,
γ̂exp[η̂(aijk, lij |bij)] is omitted in equation (5.4). In the above expression, an estimate
for the clearance rate γ is required. Previously, Bekessy et al. [8] estimated annual
clearance rates of 1.643, 0.584 and 0.986 years−1 for children aged less than 1 year,
1–4 years and 5–8 years, respectively. Later, Singer et al. [94] estimated these rates
as 1.917, 1.425 and 2.364 years−1 for ages less than 1 year, 1–4 years and 5–8 years,
respectively. Sama et al. [87] estimated a constant annual clearance rate of 1.825
years−1 by assuming an exponential distribution for infection duration or parasite
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clearance. Most recently, Bretscher et al. [11] studied the parametric distributions
of the infection durations using Ghanaian data, and concluded based on AIC that a
Weibull distribution gave a better fit to the data followed by a gamma distribution,
while an exponential one was performing worst. Here, we use both exponential and
Erlang clearance distributions to derive estimates for the malaria FOI obtained based
on the aforementioned clearance rates as distributional parameters.

Often, an investigator may wish to observe population averaged estimates. Under
the random effects framework, this can be achieved by taking the expectation of
the conditional estimates (e.g., the FOI in (5.4)) with regard to the random effects
distribution resulting into unconditional or marginal estimates. Using the logit-link
function, the unconditional (population) force of infection is given by

λlij (aijk) = E
[
λlij (aijk|bij)

]
= E

[
γexp

(
η(aijk|bij )

)
+ η′(aijk, lij |bij) ∗ πlij (aijk, lij |bij)

]
.

(5.5)

Hence, calculation of the marginalized FOI in (5.5), requires integrating out the ran-
dom effects, bij over their fitted distribution. This can be done using numerical
integration techniques or based on numerical averaging [61].

5.3.6 Model selection

Model building was done using both AIC [88] and a likelihood ratio test for the random
effects based on the appropriate mixture of chi-square distributions [112]. Backward
model building was performed starting with the random effects and then the fixed
effects. The covariates considered in the model building process included study site,
age, time since enrolment, shifted birth year (i.e., shifted birth year = birth year -
birth year of the oldest child), previous use of AL treatment, and the infectious status
at the previous visit. The covariates ‘time since enrolment’ and ‘shifted birth year’
were generated to represent the calendar time, albeit we preferred the latter one since
participants were not enrolled at the same time point.

5.4 Results

Of 989 children, recruited between August 2011 to August 2014, 334 (33.8%), 355
(35.9%) and 300 (30.3%) were from Nagongera, Kihihi and Walukuba, respectively.
The baseline parasite prevalence among children aged below 5 years was 38.2%,
12.8% and 9.5% for Nagongera, Kihihi and Walukuba, respectively. The monthly
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parasite prevalence was higher in Nagongera (range: 26.7% to 68.4%) followed by
Kihihi (range: 7.0% to 68.0%) and lastly by Walukuba (range: 0% to 42.9%). Other
summary statistics including the median monthly prevalence and interquartile range
are presented in Table 5.2.

Table 5.2: Recruited number of children, baseline and monthly parasite prevalence, by
study site and age group

.
Nagongera Kihihi Walukuba

< 5 years:
Number 186 188 190
Baseline prevalence† (%) 38.2 12.8 9.5
Monthly prevalence† (%), range 27.4 - 54.7 7.0 - 64.7 0 - 32.0
Monthly prevalence† (%), median (IQR) 40.3 (34.5 - 47.9) 28.2 (18.0 - 43.8) 6.8 (4.4 - 11.9)
5–10 years:
Number 148 167 110
Baseline prevalence† (%) 58.8 18.0 10.9
Monthly prevalence† (%), range 26.7 - 68.4 8.3 - 68.0 0 - 42.9
Monthly prevalence† (%), median (IQR) 39.1 (34.8 - 47.1) 28.0 (21.6 - 40.0) 11.1 (6.9 - 17.6)
Total:
Number 334 355 300
Baseline prevalence† (%) 47.3 15.2 10.0
Monthly prevalence† (%), range 26.7 - 68.4 7.0 - 68.0 0 - 42.9
Monthly prevalence† (%), median (IQR) 39.9 (34.6 - 47.9) 28.1 (21.0 - 42.2) 9.0 (5.6 - 14.6)

† Parasite prevalence

The parasite prevalence increases with age particularly for children less than 3 years
of age and after 7 years of age a decrease is observed (Figure 5.1, panel A). The
prevalence increases with calendar time in Kihihi with increasing variability, while
it decreases in Walukuba, and slightly increases in Nagongera (Figure 5.1, panel B).
These observations suggest a difference in malaria infection risk between the three
study sites. Also, the infection risk seems to vary with age and calendar time and
it tends to take different trends between sites indicating a possibility for a site-time
interaction effect. The relationship with age seems to be non-linear. These observed
effects were taken into consideration when building the GLMM.

The mean structure in our model consists of a fractional polynomial of age with
power -1 (selected based on AIC) and the following covariates (based on significance
testing at 5% significance level): shifted year of birth; infection status at previous
visit and AL use; and study site. Goodness-of-fit of the final model was assessed
using the ratio of the generalized Chi-square statistic to its degrees of freedom. A
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Figure 5.1: Proportion of children infected with malaria parasites (parasitemia) in a cohort
followed for 3 years, by study site (Nagongera, Kihihi and Walukuba) in Uganda based on
data from August 2011 to August 2014 with the size of the dots proportional to the number of
observations. (A) observed parasitemia varying with age; (B) observed parasitemia varying
with calendar time.

value of 0.74 was obtained, which is fairly close to 1, indicating that the variability
in these data seems to be adequately modelled and little residual over-dispersion
remains present [115].

The parameter estimates, standard errors estimates and corresponding test results of
the final GLMM fit are shown in Table 5.3. More details about the candidate models
can be found in Appendix B (Tables B.1 and B.2) together with the fitted conditional
and marginal prevalences for the different AL use categories (Figure B.2). The
results in Table 5.3 show an overall significant effect of age and shifted year of birth;
the effect of age and shifted year of birth is non-significant and borderline significant,
respectively, for Walukuba, whereas the effect of age is significant for Kihihi and
Nagongera. Shifted year of birth is significant for Kihihi and non-significant for
Nangongera. There is significant heterogeneity in the rate of acquiring malaria
infection between households (Walukuba: variance = 2.80; Kihihi: variance = 1.16;
Nagongera: variance = 0.21) and between household members (variance = 0.24).
The intra-household correlation coefficients are 0.44, 0.25 and 0.06 for Walukuba,
Kihihi and Nagongera, indicating moderate, low and very low correlation within
households, respectively. The intra-individual correlation coefficients are 0.04, 0.05
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and 0.06 for Walukuba, Kihihi and Nagongera, respectively, indicating very low
correlation in all sites.

Based on the final model fit and using equations (5.4) and (5.5) both the conditional
(given the random effects) and marginal (population averaged) FOIs can be calcu-
lated provided that γ can be estimated. However, estimating γ from the same data
is not possible due to an identifiability problem: two or more distinct values of γ
give rise to the same (log)likelihood (see Figure B.1 in the Appendix B). Therefore,
we use γ equal to the annual clearance rates given by Bekessy et al. [8] as 1.643,
0.584 and 0.986 years−1 for children aged less than 1 year, 1–4 years and 5–10 years,
respectively, to calculate the conditional and marginal FOIs. We further conduct
a sensitivity analysis by considering different clearance rates ranging from 0 to 3
motivated by the ranges estimated by Bekessy et al. [8], Singer et al. [94], Sama et
al. [87] and Bretscher et al. [11] (see Figure 5.4, top row). As discussed before, we
also provide lower bounds for the FOI.

Figure 5.2 shows estimates for the marginal FOI together with the corresponding
lower bound estimates. We focused on children who were born in the baseline year
for graphical reasons. Similar plots were obtained (not shown) for other birth years.
Estimates for the lower boundary of the FOI were higher in Nagongera followed by
Kihihi and Walukuba. For Nagongera and Walukuba, the lower bound for the FOI
was highest for children aged below 1 year and least in those aged 5–10 years, yet.
In Kihihi, it is highest among those aged 1–4 years.

Figure 5.2 further shows that in Nagongera and Kihihi, the estimates for the marginal
FOI were highest among children aged 5 – 10 years; yet in Walukuba it was highest
among those aged below 1 year. The values for the marginal FOI obtained using the
upper boundary estimator, stratified by site, age group and the previous infection
status and use of AL are given in Table B.3 in the Appendix B. At the extreme, the
previously symptomatic children acquire up to 4 infections per year in Nagongera,
and 8 infections per year both in Kihihi and Walukuba. Overall, the FOI is highest
among the asymptomatic children and smallest among previously symptomatic
children across all age groups and sites (Figure 5.2 and Table B.3 in Appendix B).
Although Figure 5.2 clearly shows the impact of different distributional assumptions
with regard to the clearance time, the lower and upper bound estimates do not fully
capture uncertainty around the point estimates. In Table B.4 of the Appendix B,
we show the 95% confidence bounds for the age- and time-dependent force of infection.
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Table 5.3: Estimates of the fitted GLMM using a fractional polynomial of degree 1 for age
and a logit-link function.

Effect Parameter log OR (SE) t-value P OR (95% CI)
Intercept β0 -3.04 (0.38) -8.09 <0.001
Study site (Ref: Walukuba)

Kihihi β1 0.86 (0.43) 2.01 0.045 2.36 (1.02-5.49)
Nagongera β2 2.19 (0.40) 5.45 <0.001 8.94 (4.08-19.57)

Infection status at previous
visit (Ref: Neg. & No AL)

Negative + AL β3 -0.01 (0.10) -0.05 0.956 0.99 (0.82-1.21)
Symptomatic β4 -0.24 (0.10) -2.30 0.022 0.78 (0.64-0.97)
Asymptomatic β5 1.23 (0.12) 9.94 <0.001 3.43 (2.69-4.37)

Age−1

Walukuba β6 -0.05 (0.83) -0.06 0.948 0.95 (0.19-4.82)*
Kihihi β7 -4.01 (0.87) -4.62 <0.001 0.02 (0.003-0.10)*
Nagongera β8 -1.75 (0.45) -3.89 0.001 0.17 (0.07-0.42)*

Shifted year of birth†

Walukuba β9 -0.13 (0.06) -2.00 0.045 0.88 (0.78-1.00)
Kihihi β10 0.11 (0.04) 2.58 0.010 1.12 (1.13-1.22)
Nagongera β11 0.04 (0.03) 1.33 0.184 1.04 (0.98-1.10)

Variance components Variance Z-value
Intercepts for subjects d11 0.24 (0.07) 3.32 <0.001
Intercepts for households:

Walukuba d22 2.80 (0.88) 3.20 0.001
Kihihi d33 1.16 (0.28) 4.21 <0.001
Nagongera d44 0.21 (0.08) 2.48 0.007

† birth year - min(birth year)
∗ note that the OR here should be interpreted at the Age−1 level

Figure 5.3 (top row) shows the predicted conditional FOIs for 50 randomly selected
individual profiles at each of the three sites based on the lower boundary estimator
for the FOI. For graphical purposes, we focused on subjects who were symptomatic
at the previous visit and who were born in the baseline year. However, similar plots
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Figure 5.2: The lower bound (green) for the marginal annual FOI and the difference
between upper and lower bound (yellow) with full bar showing the upper bound for the FOI,
by study site, age group (A: <1 year, B: 1–4 years, and C: 5–10 years) and the infection
status at the previous visit and past use of AL (negative and no AL in the past (left column),
negative and AL in the past (second left column), symptomatic (second right column) and
asymptomatic (right column)) for children assumed to be born in the baseline year (2001).
Top row: Nagongera, middle row: Kihihi, bottom row: Walukuba.

are obtained for other levels of the infection status at the previous visit and for
different birth years. Figure 5.3 (bottom row) shows the predicted marginal FOIs
again based on the lower boundary estimator, by age (continuous scale) and infection
status at the previous visit and past AL use. In general, the lower boundary estimator
indicates that younger children have the greatest FOI. In all sites, individuals that
were asymptomatic at the previous visit have the highest FOI, regardless of age.
The depicted conditional FOI curves show that individuals have different profiles,
indicating substantial unobserved heterogeneity. The increasing trend in the FOI
from 6 months of age is likely attributed to loss of maternal immunity in infants [82].
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Figure 5.3: Top row: Individual-specific evolutions for the conditional annual FOI obtained
using the lower boundary estimator, by study site for children assumed to be symptomatic
at the previous visit and who were born in the baseline year (2001). Bottom row: The
marginal annual FOI, obtained using the lower boundary estimator, by study site and the
infection status at the previous visit and past use of AL (negative and no AL in the past
(solid lines), negative and AL in the past (dotted lines), symptomatic (dash-dotted lines)
and asymptomatic (long-dashed lines)). Left column: Nagongera, middle column: Kihihi,
right column: Walukuba.

Figure 5.4 (top row) shows the marginal FOIs for different clearance rates from 0
up to 3 years−1 (y-axis). For graphical purposes, and without loss of generality, we
again focused on subjects who were symptomatic at the previous visit and who were
born in the baseline year. The colour gradient from green (dark) to brown (light)
in Figure 5.4 (top row) corresponds to an increasing FOI. The figure indicates that
in Nagongera and Kihihi, children who are below 1 year of age have a lower FOI
(green colour) regardless of the presumed clearance rate. Also, in Nagongera and
Kihihi, the risk for malaria infection increases with increasing clearance rate, except
for the younger children less than 1 to 2 years. In Walukuba, the FOI increases with
increasing clearance rate regardless of age.

Figure 5.4 (bottom row) shows how the FOI varied with age group (A, B and C)
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Figure 5.4: Top row: The marginal annual FOI (contour lines) considering different values
for the clearance rate ranging from 0 to 3 years−1 by study site for individuals assumed to
be symptomatic at the previous visit and were born in the baseline year. Bottom row: The
marginal annual FOI, obtained using the upper boundary estimator, for individuals assumed
to be symptomatic at the previous visit, by study site, birth year (2001, 2004, 2007 and 2010)
and by age group (A: <1 year, B: 1–4 years, and C: 5–10 years). Left panel: Nagongera,
middle panel: Kihihi, right panel: Walukuba.

and calendar time among subjects assumed to be symptomatic at the previous visit.
In Kihihi, the risk of acquiring a new malaria infection is slightly higher for children
born in 2010 compared to those born in earlier years across age groups but not for
Nagongera and Walukuba. This would be expected since children born at a later
year are younger than those born at an earlier year, and hence are at a higher risk of
infection.

5.5 Discussion and conclusion

In this chapter, we use data from a cohort study to estimate the malaria FOI among
Ugandan children while accounting for observed and unobserved heterogeneity.
The results clearly demonstrate the existence of heterogeneity in the acquisition of
malaria infections, which is greater between households than between household
members. These observations emphasize the claim by Smith et al. [96], Smith [100]
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and White et al. [117] that heterogeneity in malaria infection can arise due to several
unobserved factors including environmental, vector, and host-related factors. This
implies that estimating the malaria transmission parameters assuming homogeneity
in the acquisition of infection may yield misleading results.

The findings were based on the use of a readily available statistical method, the
GLMM, which takes into account heterogeneity between individuals and households
in the acquisition of malaria infection. In particular, a fractional polynomial of
age of degree 1 and power of -1, adjusted for the calendar time, by means of the
so-called ‘shifted birth year’ (i.e., shifted birth year = birth year - birth year of the
oldest child), and other covariates, was considered. The fractional polynomial was
chosen because it provides a very flexible modelling tool while retaining the strength
of a parametric function. The random slope effects for the fractional polynomial
function of age resulted in negative estimates for the FOI, which are biologically
implausible and therefore the random slopes were dropped. This could be perceived
as a drawback of using the GLMM in combination with fractional polynomials
and a more mechanistic approach in which heterogeneity is taken into account at
different levels could prove valuable here (further research). When allowing for serial
correlation in the model through the specification of an AR(1) correlation structure,
the model failed to converge, indicating that too little information was available in
the PRISM data to accommodate serial correlation, at least when assuming that the
AR(1) assumption is appropriate. An in-depth investigation thereof is an interesting
topic for further research.

Based on the SIS model, we derived an expression relating the FOI to the prevalence
for infectious diseases such as malaria where we cannot assume lifelong immunity.
This expression is an extension of the one proposed by Hens et al. [36] for a so-called
SIR model assuming lifelong immunity after recovery, an assumption, which is unten-
able for malaria. A compartmental model, which can account for temporally recovery
due to prior use of treatment (induced immunity) or due to previous exposure to
infection (acquired immunity), that is, Susceptible-Infected-Recovered(Treatment)-
Susceptible (SIR(T)S), would potentially offer a better alternative compared to the
more restrictive SIS model. However, an SIR(T)S model does not yield a closed-form
expression for the point prevalence, and hence, for the force of infection. Nevertheless,
the derivations are approximately valid for an SIR(T)S model with short recovery
duration (derivations not included here). Consequently, we focused on the SIS
model, albeit that we adjusted for the previous infection status and treatment in
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our model. The standard SIS compartmental model assumes that the clearance rate
is exponentially distributed. We derived two estimators for the FOI, which provide
a lower and upper boundary for the FOI based on different Erlang distributions
for the clearance rate. The lower boundary approximately holds for a scenario in
which the clearance rate is small compared to the FOI. Although mathematical
models encompassing more complicated and more realistic transmission dynamics
for malaria could be considered, we defer their treatment to future research in
which we will combine Nonlinear Mixed Model (NLMM) methodology and numerical
approaches for the estimation of the model parameters in the presence of unobserved
heterogeneity.

The temporal inhomogeneity observed in the data is not in contradiction with the
SIS model we used. Heterogeneity, age and temporal aspects are addressed in the
GLMM, through the specification of random effects as well as age- and calendar
time variables, whereas derivations from the SIS model under endemic equilibrium
enable the estimation of the age- and time-dependent force of infection from the
estimated age- and time-dependent parasite prevalence. Furthermore, estimation of
the reproduction number can be done when focusing on the underlying mechanistic
modelling of the FOI. However, we deem this to be beyond the scope of this
dissertation. Seasonality is not explicitly modelled here, however, inclusion of a
covariate describing the amount of rainfall, due to the absence of a clear distinction
between the different seasons, and based on additional information (not part of the
PRISM data) would be an interesting topic for further research.

When the clearance rate is considered negligible, the rate at which children get
infected is highest among those between 1 and 2 years. When the clearance rate
is non-negligible, the infection rate is higher among children older than 5 years in
areas with high and medium transmission (e.g., Nagongera and Kihihi) and higher
in children below 1 year in areas with low transmission (e.g., Walukuba). In Kihihi,
the FOI was least for children aged less than 1 year and it is observed to increase as
children grow up from 6 months to 1 year. This could be explained by the fact that
children lose maternal immunity in their first year of life [82], which puts them at
an increased risk of malaria infection. The higher FOI among children aged 5 years
and older could be explained by the fact that these children are often asymptomatic
malaria cases and are rarely treated, which makes them reservoirs for infections.
This finding concurs with the work by Walldorf et al. [114] who reported that
children aged 6–15 years were at higher risk of (asymptomatic) infection compared
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to the younger ones. They concluded that older children represent an underappreci-
ated reservoir of malaria infection and have less exposure to antimalarial interventions.

A higher risk was seen among children in Nagongera compared to those in Kihihi
and Walukuba with no significant difference between the latter two sites. This could
be explained by the fact that Nagongera is a predominantly rural area with many
semi-structured houses and many mosquitoes compared to Walukuba or Kihihi as was
noted by Kilama et al. [50]. Our results also demonstrated the importance of prior
treatment in lowering infection risk due to the post treatment prophylactic effect
of longer acting anti-malarials, such as artemether-lumefantrine (AL). For example,
children who were previously treated with AL (the symptomatic malaria cases) had
a lower risk of getting re-infected compared to those who were asymptomatic or
negative at the previous visit.

This study has two major limitations. First, the analysis was based on results of
parasite prevalence determined by microscopy, which is less sensitive than molecular
methods such as polymerase chain reaction (PCR) or loop-mediated isothermal
amplification method (LAMP) [16, 78]. Thus, sub-microscopic infections would not
have been detected. This could have resulted into lower estimates of the FOI. In
addition, genotyping was not performed to distinguish new and recurrent infections.
As a result, the FOI among individuals who were asymptomatic at the previous
visit could have been overestimated. Secondly, the unscheduled clinical visits by the
symptomatic individuals were triggered by the study outcome (i.e., parasitemia).
This creates a dependency between the observation-time and outcome processes.
This dependence, if not accounted for, has a potential to introduce bias in the model
estimates and hence in the estimation of the FOI. This bias was avoided by dropping
clinical visits and by using only routine data, though the infection status and use of
treatment during clinical visits was accounted for in the model. This implies that the
analysis used less data than was actually available. The latter limitation was later
dealt with in Chapter 6 by modelling both the outcome and the observation-time
processes concurrently using a joint model [83, 106].

To conclude, we have used longitudinal data from a cohort of Ugandan children to
estimate the malaria FOI accounting for both observed and unobserved heterogeneity.
First, we show how the FOI relates to parasite prevalence assuming an SIS compart-
mental model and giving both lower and upper boundaries thereof by relaxing the
exponential assumption with regard to the parasite clearance distribution. We esti-
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mated the parasite prevalence using a GLMM, whose estimates were used to obtain
an estimate for the FOI. The malaria FOI was highest among children aged 1 to 2
years based on the lower boundary estimator, and it was higher among children older
than 5 years in areas of high and medium transmission based on the upper boundary
estimator. In a low transmission setting, the FOI was highest in children aged be-
low 1 year regardless of the boundary estimator for the FOI. The FOI varied between
study sites highest in Nagongera and least in Walukuba. Heterogeneity increases with
decreasing FOI and was greater between households than household members. We
recommend that estimating the malaria FOI should be done accounting for both ob-
served and unobserved heterogeneity to enable refining existing mathematical models
in which the FOI may be unknown.



Chapter 6
Modelling longitudinal binary
outcomes with
outcome-dependent
observation times with an
application to a malaria
cohort study

6.1 Summary

Malaria follow-up studies typically involve routine visits at pre-scheduled time points
and clinical visits upon experiencing malaria-like symptoms. In the latter case, in-
fection triggers outcome assessment, thereby leading to outcome-dependent sampling
(ODS). Ordinary methods to analyse such data ignore ODS potentially leading to
biased estimates of transmission parameters, hence, inducing an incorrect assessment
and evaluation of control strategies. We propose novel methodology to handle ODS
using a joint model for the longitudinal binary outcome measured at routine visits
and the clinical event times. The methodology is applied to parasitemia data from a
cohort of n = 988 Ugandan children aged 0.5–10 years in 3 regions (Walukuba - 300,

53
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Kihihi - 355, Nagongera - 333) with varying transmission intensities (entomological
inoculation rates of 2.8, 32 and 310 infectious bites per unit year, respectively) col-
lected between 2011–2014. The results indicate that parasite prevalence and force of
infection (FOI) increase with age in the high intensity region with highest FOI for
5–10 year olds. For the medium intensity region, the prevalence increases with age
and the FOI for the routinely collected data is highest for 5–10 year olds yet for the
clinical data, the FOI gradually decreases with increasing age. In the low intensity re-
gion, both prevalence and FOI peak at one year of age after which the former remains
constant and the latter decreases with age for the clinical observations. In all study
sites, the prevalence and FOI are highest among previously asymptomatic children
and lowest among their symptomatic counterparts.

6.2 Introduction

Malaria is potentially life-threatening and infections are caused by Plasmodium
parasites that are transmitted through bites of infected female mosquitoes. In spite
of the fact that malaria is a preventable and curable disease for which increased
efforts worldwide dramatically reduced malaria incidence (i.e., a reduction of 21%
between 2010 and 2015 as reported by WHO), African countries still carry a dispro-
portionately high share of the overall malaria burden. In order to reduce the malaria
burden in African countries such as Uganda, a correct assessment and evaluation
of the impact of control strategies is essential. Measures of malaria transmission
intensity such as the entomological inoculation rate (EIR), the parasite prevalence
and the malaria force of infection (FOI) have been used frequently to quantify the
impact of various interventions [42, 97]. In general, malaria transmission has been
reported to be highly inefficient, meaning that the ratio of EIR to FOI is relatively
high [97]. As is the case for other infections, individual- and household-specific
heterogeneity in malaria acquisition is often not accounted for in the estimation of
the aforementioned epidemiological parameters, albeit that it is well-recognised that
variability in environmental and host-related factors, among other sources, has an
important effect thereon [65].

Often in clinical trials with follow-up to study (infectious) disease dynamics, study
participants are asked to come to the clinic and get examined for malaria infection
during scheduled (routine) visits. On top of that, unscheduled (clinical) visits can
occur when participants develop symptoms for the disease under consideration, or
when they experience symptoms similar to those typically observed for the infection
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at hand. If infection triggers outcome assessment in between prescheduled follow-up
visits, the outcome and observation-time processes are said to be dependent, which
in literature is often referred to as outcome-dependent sampling (ODS) (ODS)[106].
Conventional longitudinal methods to analyse repeated measurements for subjects
over time assume independence of both processes. Hence, such unscheduled visits,
and the ODS they induce, could lead to biased estimation of the epidemiological
quantities of interest when it is not appropriately accounted for in the statistical
analysis.

Different models have been proposed to address ODS in different experimental
settings. For example, Ryu et al. [86] considered studies where the measurement
time points are unequally spaced and having a follow-up measurement at any
time depends on the history of past visits and outcomes of that individual. These
authors discussed limitations of previously proposed models and methods for
longitudinal data, such as generalised linear mixed models or generalised estimating
equations (GEE), which do not address the association between the outcome and
observation time process. Furthermore, these authors proposed a joint model
using latent random variables in which the observed follow-up times are described
jointly with the longitudinal response data [86]. More recently, Tan [106] consid-
ered a joint model with a semi-parametric regression model for the longitudinal
outcomes and a recurrent event model for the observation times. Rizopoulos et
al. [83] stated that an attractive paradigm for the joint modelling of longitudi-
nal and time-to-event processes is the shared parameter framework [127] in which
a set of random-effects is assumed to induce the interdependence of the two processes.

Although several authors developed methods to accommodate ODS in various set-
tings, we propose new methodology to cope both with routine and clinical data on
malaria infections from a cohort study in Uganda. More specifically, in this chap-
ter focus is on the estimation of the malaria parasite prevalence in three regions of
Uganda, accounting for observed and unobserved heterogeneity as done previously
[65], while dealing with ODS at the same time. The chapter is organised as follows.
Our motivating example is introduced and briefly discussed in Section 6.3. In Section
6.4, we present the general methodology to estimate malaria FOI from parasitaemia
data. In Section 6.5, we briefly highlight the impact of ignoring ODS after which our
proposed joint model is fitted to the available routine and clinical data on parasite
presence in Ugandan children in Section 6.6. Finally, these results are discussed in
Section 6.7 together with strengths and limitations of our methodology.
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6.3 Motivating example

We consider again longitudinal cohort data from children aged 0.5 to 10 years in
three regions in Uganda; Nagongera sub-county, Tororo district; Kihihi sub-county,
Kanungu district; and Walukuba sub-county, Jinja district as described in Chapter
3, Section 3.1. The data were collected as part of the Program for Resistance, Im-
munology, Surveillance and Modelling of malaria (PRISM) study. The aforementioned
study regions are characterized by distinct transmission intensities, with the highest
intensity reported in Nagongera, followed by Kihihi and with Walukuba having the
smallest intensity [65, 42]. The study participants were recruited from 300 randomly
selected households (100 per region) located within the catchment areas. In total, n
= 988 children were followed over time with 300 children in Walukuba, 355 in Kihihi
and 333 children in Nagongera. Individuals were routinely tested for the presence of
Plasmodium parasites using microscopy every three months from August 2011 to Au-
gust 2014 (3 years). Furthermore, tests were also conducted at unscheduled clinical
visits. More detailed information regarding the study design can be found in Kamya
et al. [42]. Throughout this chapter, the outcome process refers to the occurrence of
the longitudinal binary outcome (parasite presence), and the observation-time pro-
cess relates to the timing of scheduled, i.e., routine, and unscheduled, i.e., clinical
visits over the entire follow-up period of the study. The data in this Chapter were
analyzed using R (R Core Team (2015), URL: https://www.R-project.org/) and SAS
(SAS Institute Inc 2013. SAS/ACCESS 9.4) statistical software. See Appendix C,
Sections C.3 and C.4 for the R code and the SAS macro used in this chapter.

6.4 Materials and methods

6.4.1 Malaria dynamics - A simplified transmission model

For the purpose of this paper, we again consider a simplified version of a realistic
transmission model to describe malaria infection dynamics. More specifically, follow-
ing Mugenyi et al. [65], a so-called Susceptible (S) - Infected (I) - Susceptible (S), or
short SIS, compartmental model dividing the population into two mutually exclusive
compartments, i.e., the susceptible (S) and infected(I) class, was used to describe
malaria dynamics within the human host. We refer to the discussion of Mugenyi et
al. [65] for a motivation of the choice of the SIS model and would like to note that
the methodology outlined here is more generally applicable in case of other disease
dynamics. The schematic diagram depicting the flows between the different states is
graphically displayed in Figure 6.1.
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Figure 6.1: A schematic diagram of the SIS compartmental model illustrating the simplified
dynamics for malaria transmission: Individuals are born into the susceptible class S and move
to the infected state I at rate λ(a), after which they become susceptible again at rate γ.

Herein, the force of infection λ(a) represents the instantaneous rate at which individ-
uals flow from the susceptible compartment S to the infected state I at age a (i.e.,
the age-specific rate at which individuals are infected with malaria parasites through
effective mosquito bites). Furthermore, γ represents a time- and age-invariant clear-
ance rate at which individuals regain susceptibility after clearing malaria parasites
from their blood. Let s(a) denote the proportion of susceptible individuals in the
population and i(a) the proportion of infected individuals of age a, i.e., the (point)
parasite prevalence, then the set of ordinary differential equations (ODEs), modifying
the ODEs in (2.2) (see Chapter 2) replacing t by a is described as follows;

s′(a) = −λ(a)s(a) + γi(a),

i′(a) = λ(a)s(a)− γi(a),
(6.1)

Hence, one can easily derive the following expression for the age-dependent force of
infection in terms of the point prevalence i(a):

λ(a) = i(a)γ + i′(a)
1− i(a) , (6.2)

using s(a) + i(a) = 1. Hence, writing down a model for the point prevalence i(a) will
imply a functional form for the underlying force of infection λ(a) depending on the
clearance rate γ.

6.4.2 Parasite prevalence and routine visits

Consider the binary random variable Yij representing an indicator for the presence
of malaria parasites for individual i at (routine) visit j. Consequently, for scheduled
routine visits, (Yij |aij ,xi, bi) ∼ B(1, i(aij |xi, bi)), where aij represents the age of
individual i at visit j, xi represents a (p × 1)-vector of covariate information for
individual i = 1, . . . , n, and bi a (q × 1)-vector of individual-specific random effects.
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In order to model the parasite prevalence, we formulate a generalized linear mixed
model with cloglog-link as follows:

cloglog [i(aij |xi, bi)] = ηij = h(aij ;θ) + βTxi + bTi zi, (6.3)

where β is a vector of unknown regression parameters and zi an individual-specific
(q × 1) design vector for bi which is a vector of individual-specific normally dis-
tributed random effects, i.e., bi ∼ N(µ,D) thereby addressing the association among
repeated measurements over time within the same individual. Here, the variance-
covariance matrix D is assumed to have zero elements, except for the variances on
the main diagonal. Moreover, h(aij ;θ) is a known function describing the age-effect
with parameter vector θ. Note that the calendar time effect can be introduced in the
linear predictor by means of the shifted birth year of the ith individual, implying the
prevalence, and equivalently the FOI, to depend on both age and calendar time [65].
In Table 6.1, we present some common parametric distributions and their implied
functional forms for h(aij ;θ) based on model (6.3) and the corresponding baseline
infection risk λ0(aij) = h′(aij ;θ) exp [h(aij ;θ)] (derived under the assumption of no
parasite clearance). In the absence of unscheduled clinical visits (ni = ni(r), i.e., the

Table 6.1: Distributional assumptions regarding the underlying age-specific malaria force
of infection.

Distribution θ h(aij ; θ) λ0(aij)
Exponential θ1 > 0 log(θ1aij) θ1

Weibull θ1, θ2 > 0 log(θ1a
θ2
ij

) θ1θ2a
θ2−1
ij

Gompertz θ1 > 0,−∞ < θ2 < +∞ log
[
θ1
θ2

(
eθ2aij − 1

)]
θ1e

θ2aij

Log-logistic θ1, θ2 > 0 log
{

log
[
1 + (θ1aij)θ2

]} θ1θ2(θ1aij)θ2−1

1+(θ1aij)θ2

Fractional polynomial θ2 < 0 θ2a
−1
ij

−θ2a
−2
ij
e
θ2a
−1
ij

number of routine visits for individual i), or under the assumption of independence
between the observation time process and the outcome process, we can simply esti-
mate model parameters using maximum likelihood techniques, thereby maximizing a
marginal likelihood function with the following individual likelihood contributions:

L1i(β,θ|yi, aij ,xi) =
∫
bi

f(yi|aij ,xi, bi)g(bi)dbi

=
∫
bi


ni∏
j=1

f(yij |aij ,xi, bi)

 g(bi)dbi,
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with

f(yij |aij ,xi, bi) = i(aij |xi, bi)yij × [1− i(aij |xi, bi)](1−yij) ,

g(bi) = 1√
|2πD|

e−
1
2 (bi−µ)TD−1(bi−µ),

where yij is the observed binary outcome for individual i at routine visit j = 1, . . . , ni,
and i(aij |xi, bi) is the conditional parasite prevalence. Numerical integration tech-
niques are employed to perform integration over the random effects distribution g(bi).
In the following subsection, we specifically focus on clinical visits and how to address
ODS.

6.4.3 Outcome-dependent sampling and clinical visits

As mentioned before, clinical visits due to symptomatic malaria infections, or malaria-
like events giving rise to symptoms similar to those observed for malaria, can not be
treated in the same way as described in Section 6.4.2. Let tij represents the time-at-
risk for an individual i for which the jth visit is clinical, and cij an indicator having
value one for an unscheduled clinical visit and 0 for routine data. For the purpose of
illustration, we assume that tij is known, albeit that this is not the case in practice,
and statistical ways to deal with this are outlined below. The probability density
function for the random variable Tij , suppressing dependence on covariates xi and
cij = 1 for simplicity, is given by:

f(tij |aij , yij , bi) =
[

(1− π0)λ∗(aij + tij |bi)e
−
∫ aij+tij
aij

λ∗(u|bi)du
]yij
× π1−yij

0 ,

where λ∗(u|bi) ≡ λ∗(u|xi, bi) = eb
T
i zi+ζ

Txiλ∗0(u) is the conditional time-varying
malaria force of infection under the proportional hazards assumption (with ζ a
vector of model parameters) and π0 denotes the probability of a malaria-like clinical
visit for which no malaria parasites are present in the blood. For the purpose of
this manuscript, we will not model the dependence of the probability of having a
malaria-like event π0 = P (Yij = 0|Cij = 1) on the observed covariate information aij
and xi. Different distributional assumptions can be made regarding the time-at-risk
distribution, such as, e.g., exponential, Weibull, Gompertz, among others, which also
relates to the selected functional form for h(aij ;θ) in the outcome process model (see
Section 6.4.2 and Table 6.1). In order to align the models for both processes, the
baseline infection risk λ∗0(u) for the observation time process can be of the same type
as λ0(u), albeit that distributional parameters, say ϑ, are allowed to be different.
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Note that more flexible parametric shapes for h(aij ;θ), such as, e.g., using fractional
polynomials, could result in non-standard non-negative distributions for the malaria
infection times, albeit that unconstrained optimisation could lead to negative FOI
estimates. In the statistical analyses, we include parametric fractional polynomials
as an alternative to the standard event time distributions.

For outcomes (ti(c), yi(c)) that are derived from the clinical visits j = 1, . . . , ni(c),
where ni = ni(r) +ni(c) having ni(r) and ni(c) the number of routine and clinical visits
for individual i, respectively, the likelihood function has contributions:

L2i(ζ,ϑ|ti(c),yi(c),ai(c),xi) =
∫
bi


ni(c)∏
j=1

f(tij(c)|aij(c), yij(c),xi, bi)

 g(bi)dbi, (6.4)

where ti(c) and ai(c) are the vectors of time-at-risk and age values at which the individ-
ual becomes at risk for the jth clinical event, respectively. Finally, the likelihood for
the joint model including both information on routine and clinical visits is obtained
by combining likelihood contributions as described before:

L3i(β,θ, ζ,ϑ|ti,yi,ai,xi, ci) =
∫
bi


ni∏
j=1

f(yij |aij ,xi, bi)1−cij×

ni(c)∏
j=1

f(tij |aij , yij ,xi, bi)cij

 g(bi)dbi,

(6.5)

at least under the assumption that each malaria event contributes solely to one of
the two components (i.e., routine or clinical process) in the likelihood.

As mentioned previously, the time-at-risk for a specific clinical event (i.e., a symp-
tomatic malaria infection) is not precisely known. More specifically, malaria infection
times are interval-censored which needs to be taken into account in the statistical
analyses through the modification of the likelihood function. For more details on
how the interval-censoring has been treated in the analyses, the reader is referred to
Appendix C, Section C.2.1.

6.5 Simulation study

In order to study the impact of ignoring ODS, we set up a simulation study which
is inspired by the PRISM data under consideration. More specifically, we generate
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M = 1000 datasets including nm ≡ n = 1000 individuals per simulated dataset
(m = 1, . . . ,M). Furthermore, we consider a simulation setting in which exponen-
tial infection times occur during a follow-up period of 1800 days (≈ 5 years) and
with an average duration until acquiring a new infection of about 365 days (1 year:
λ0 = λ∗0 = exp(−5.9) = 0.0027). Parasite clearance times are exponentially dis-
tributed with a mean duration of infectiousness equal to 50 days (γ = 0.02). Based
on the generated infection histories for the individuals, routine and clinical visits
are obtained. More specifically, routine visits are scheduled every 90 days and para-
site presence is recorded based on the current status at the time of data collection.
Varying probabilities for having a symptomatic malaria episode are considered in
the simulation whereby symptomatic observations at unscheduled time points were
considered as clinical visits (i.e., P = 20%, 40%, 60%, 80%, 100%). Hence, asymp-
tomatic malaria cases were only included when detected during the routine visits. No
malaria-like events were generated such that all clinical visits are due to symptomatic
malaria infections (i.e., π0 = 0). Individual-specific random intercepts bi ∼ N(µ, σ2

b ),
i = 1, . . . , n, with µ = −σ2

b/2 implying a unit mean for the lognormal random terms
ebi , are introduced to induce correlation between repeated measurements for the same
subject (σ2

b = 0.25). If a single infection is contributing to both the routine and clini-
cal process (i.e., consecutive observations C+ and R+, or vica versa), hence leading to
two dependent observations, we drop the second one in Scenario 4. However, without
additional information, we cannot determine whether individuals already recovered
and got re-infected in between such visits, thereby potentially underestimating the
force of infection. We performed a sensitivity analysis given the simulation scenario
at hand in order to deduce the time period in which consecutive positive routine and
clinical observations can be considered to be the result of a single malaria infection.
From this exercise, a period of 35 days is assumed to be optimal (see Appendix C,
Figure C.1 for more details thereon). This observation is supported by the literature
where 100% recovery rate was reported on day 28 following anti-malaria treatment
[57, 67].

Table 6.2: Overview of the different scenarios, corresponding loglikelihood functions to be
maximised (see Section 6.4) and parasitaemia data that is included in the analyses.

Scenario Loglikelihood function Parasitemia data
1 ll1(β, θ|y,X) =

∑n

i=1
log [L1j(β, θ|yi,xi)] Routine

2 ll1(β, θ|y,X) =
∑n

i=1
log [L1j(β, θ|yi,xi)] Routine & clinical†

3 ll2(ζ,ϑ|t,y,a,X) =
∑n

i=1
log [L2i(ζ,ϑ|ti,yi,ai,xi)] Clinical

4 ll3(β, θ, ζ,ϑ|t,y,a,X) =
∑n

i=1
log [L3i(β, θ, ζ,ϑ|ti,yi,ai,xi)] Routine & clinical

† Scenario does not take ODS into account
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6.5.1 Simulation results

Hereunder, we present results from fitting the four scenarios based on the three
different likelihoods in Section 6.4 to the simulated data. All models converged
for all simulation runs. In Table 6.3, we show the simulation results for the four
different scenarios described in Table 6.2 with varying percentages of symptomatic
malaria infections. Scenario 2 including both routine and clinical data without
accounting for ODS performs worse compared to Scenario 1 in which only routine
data is used. Hence, ignoring ODS leads to biased estimates of both the baseline
hazard as well as population-averaged hazard functions. Note that Scenario 1 is not
influenced by the percentage of symptomatic infections, simply since these clinical
infections are not accounted for therein. Our proposed model for the analysis of
both clinical and routine parasitaemia data (Scenario 4) outperforms Scenarios 1
and 2 in terms of bias and precision (and consequently MSE) for the baseline hazard
function and population-averaged hazard λp, at least when P = 60% or higher, and
leads in all cases to a reduction in bias. In Scenario 4, we add clinical information
to the readily available routine data (i.e., larger sample size), resulting in a lower
MSE, bias and empirical variance for the model parameters compared to Scenario
1. The loss of perfomance in Scenario 4 compared to Scenario 3 as P>60% can
be explained by the nature of the data since noise is added by combining time-
to-event data (which is analysed separately in Scenario 3) with interval-censored data.

Table 6.3: Simulaton results for the different models showing mean estimates for the
marginal or population-averaged FOI (λp), variance of the random intercepts (σ2

b ), and the
corresponding mean squared error (MSE), bias and empirical variance. P represents the
percentage of symptomatic infections. †: all data except for positive routine observations
following a positive clinical visit, or positive clinical observations following a positive rou-
tine visit within a 35 day period. N represents the total number of observations over all
individuals averaged over the M datasets.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
routine data all data clinical data all data†

P = 20% n = 20, 000 n = 21, 832 n = 1, 832 n = 21, 781
Population-averaged hazard λp

Mean estimate ¯̂
λp 0.0034 0.0047 0.0020 0.0028

Mean estimate ¯̂σ2
b 0.3806 0.4058 0.4727 0.5228

MSE(λ)x105 0.0078 0.2460 0.1375 0.0111
Bias(λ)x105 23.8252 155.6670 116.2956 9.0705
Var(λ)x105 0.0021 0.0037 0.0023 0.0102
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Table 3 continued.
Scenario 1 Scenario 2 Scenario 3 Scenario 4

routine data all data clinical data all data†

P = 40% n = 20, 000 n = 22, 678 n = 2, 678 n = 22, 576
Population-averaged hazard λp

Mean estimate ¯̂
λp 0.0034 0.0060 0.0026 0.0028

Mean estimate ¯̂σ2
b 0.3806 0.4046 0.3646 0.4402

MSE(λ)x105 0.0078 0.8106 0.0270 0.0093
Bias(λ)x105 23.8252 283.8542 50.4948 7.0972
Var(λ)x105 0.0021 0.0048 0.0016 0.0088

P = 60% n = 20, 000 n = 23, 520 n = 3, 520 n = 23, 370
Population-averaged hazard λp

Mean estimate ¯̂
λp 0.0034 0.0072 0.0029 0.0028

Mean estimate ¯̂σ2
b 0.3806 0.3908 0.3076 0.3861

MSE(λ)x105 0.0078 1.6500 0.0063 0.0081
Bias(λ)x105 23.8252 405.4125 22.5147 5.4008
Var(λ)x105 0.0021 0.0064 0.0012 0.0078

P = 80% n = 20, 000 n = 24, 368 n = 4, 368 n = 24, 169
Population-averaged hazard λp

Mean estimate ¯̂
λp 0.0034 0.0084 0.0030 0.0028

Mean estimate ¯̂σ2
b 0.3806 0.3780 0.2713 0.3496

MSE(λ)x105 0.0078 2.7799 0.0017 0.0072
Bias(λ)x105 23.8252 526.4963 8.4274 4.2648
Var(λ)x105 0.0021 0.0064 0.0012 0.0064

P = 100% n = 20, 000 n = 25, 218 n = 5, 218 n = 24, 971
Population-averaged hazard λp

Mean estimate ¯̂
λp 0.0034 0.0072 0.0029 0.0028

Mean estimate ¯̂σ2
b 0.3831 0.3659 0.2445 0.3265

MSE(λ)x105 0.0083 4.1944 0.0007 0.0065
Bias(λ)x105 23.8252 646.9211 1.0401 3.5431
Var(λ)x105 0.0021 0.0064 0.0012 0.0064

6.6 Data application

In this section, we apply the proposed joint model in Scenario 4 to the observed
Ugandan malaria parasitaemia data presented in Section 6.3. The covariates
considered in the model building process included study site, age, shifted birth year
(i.e., shifted birth year = birth year - birth year of the oldest child), previous use of
Artemether-Lumefantrine (AL) treatment, and the infectious status at the previous
visit. The covariate ’shifted birth year’ was generated to represent the calendar
time (see also [65] for details concerning this modelling strategy). Let Si represent
the study site (1 = Walukuba, 2 = Kihihi, 3 = Nagongera), aij the child’s age in
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years, lij the shifted birth year, Pij the previous infection status and use of AL
(1 = Negative & no AL, 2 = Negative + AL, 3 = Symptomatic, 4 = Asymptomatic)
for individual i at visit j. Different parametric distributional assumptions regarding
the infection times are explored (i.e., leading to various functional forms for h(aij ;θ),
and equivalently, for the underlying malaria force of infection) thereby allowing
for different distributional parameters θ and ϑ for the outcome and infection time
process, respectively. Since malaria transmission intensity differs between the
three sites (see, e.g., [42, 65]), site-stratified analyses were performed, and model
comparison was done based on AIC and BIC in order to select the most appropriate
functiontal form for h(aij ;θ). Table C.2 in Appendix C provides the site-specific fit
statistics for the different models.

In Table 6.4, we show the parameter and standard error estimates (between brackets)
for the joint model under Scenario 4, thereby having Gompertz baseline hazard
functions λ0(a) and λ∗0(a) for the three study sites (see Table C.2 in Appendix C for
more details on the AIC- and BIC-values for the candidate models). A significant
effect of shifted year of birth has been observed for Kihihi and Nagongera in both
processes, and not for the low transmission intensity site Walukuba. The infection
status at previous visit was included only for the outcome process resulting in an
overall significant effect at all sites (p-value <0.001). In total, 35%, 43% and 62%
of the observed visits were classified as clinical visits in Walukuba, Kihihi and
Nagongera, respectively. Of those observed clinical visits, 87%, 48% and 54% are
malaria-like clinical visits implying that no evidence of malaria infection was found
in children coming to the clinic due to malaria-like symptoms. The estimated values
for π0 are equal to 89% (95% confidence interval (CI): 87% – 91%), 58% (95% CI:
56% – 60%) and 65% (95% CI: 63% – 67%) for Walukuba, Kihihi and Nagongera,
respectively, which are quite in line with the observed empirical probabilities.

Figure 6.2 depicts the estimated marginal prevalence by age for children assumed
to be born in the baseline year (2001) which were symptomatic (top row) or
asymptomatic (bottow row) at the previous visit, and by study site (left to right:
Nagongera, Kihihi and Walukuba). The curves are drawn for Scenario 2 (solid blue
line) and Scenario 4 (dashed red line). In general, the parasite prevalence increases
with increasing age in areas with high (Nagongera) and medium (Kihihi) transmission
intensity, though the prevalence is fairly constant for Scenario 4 in the latter case.
In Walukuba, the prevalence first increases to a plateau from 6 months up to 2 years
after the prevalence remains constant. From the graphs, it is clear that small dif-
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ferences exist between the two scenarios in terms of the estimated marginal prevalence.

In Figure 6.3, we show the estimated marginal force of infection for the outcome
(routine) process based on expression (6.2). We consider annual parasite clearance
rates (γ) of 1.643, 0.584 and 0.986 years−1 for children aged less than 1 year, 1–4
years and 5–10 years, respectively [8]. On top of that, the marginal FOI estimated
from the time-to-event process is shown in the bottom row. The marginal FOI for
the outcome process increases with increasing age at least for Nagongera and Kihihi,
and it is highest among children in age group 5–10 years or those that were previously
asymptomatic (gray bars) and least in their symptomatic counterparts (brown bars)
in all study areas. For the time process, the marginal FOI in Nagongera is close to zero
and constant with time at risk, at least for children aged 1 year when becoming at risk.
For children at a higher age, the FOI tends to increase more steeply with increasing
time at risk and age. However, the FOI for the time process is highest among children
aged about one year in medium (Kihihi) and low (Walukuba) transmission intensities,
after which it decreases gradually with increasing time at risk for children of all ages.
More specifically, when children are older, the infection risk is smaller as compared
to their younger counterparts given the specific time at risk.

Figure 6.2: Estimated marginal prevalence for children assumed to be born in the baseline
year (2001) by age, study site and symptomatic (top row) or asymptomatic (bottom row)
at the previous visit. Left to right column: Nagongera, Kihihi and Walukuba.
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Table 6.4: Application to PRISM data: results showing parameter and standard error (s.e.)
estimates from the joint model (scenario 4) assuming Gompertz-distributed infection times
for Walukuba, Kihihi and Nagongera.

Effect Parameter Estimate (s.e.) t-value p-value
Walukuba (Gompertz):
Infection status at the previous Negative + AL β1 0.12 (0.26) 0.47 0.639

visit (Ref = Negative & No AL Symptomatic β2 −0.66 (0.46) −1.43 0.153
treatment in past): Asymptomatic β3 1.33 (0.26) 5.13 < 0.001

Shifted year of birth β4 −0.09 (0.05) −1.93 0.054
Age θ1 0.16 (0.23) 0.71 0.480

θ2 −1.54 (1.96) −0.78 0.434
Shifted year of birtht ζ −0.23 (0.17) −1.37 0.171
Aget ϑ1 36.68 (63.44) 0.58 0.564

ϑ2 −0.28 (0.14) −2.01 0.046
Probability of a malaria-like clinical visit π0 0.89 (0.01) 102.18 < 0.001
Variance for random intercepts for subjects d11 0.25 (0.18) 1.38 0.167
Variance for random intercepts for households d22 1.22 (0.37) 3.32 0.001

Kihihi (Gompertz):
Infection status at the previous Negative + AL β1 −0.30 (0.06) −5.29 < 0.001

visit (Ref = Negative & No AL Symptomatic β2 −1.08 (0.14) −7.94 < 0.001
treatment in past): Asymptomatic β3 0.65 (0.12) 5.37 < 0.001

Shifted year of birth β4 0.49 (0.04) 13.03 < 0.001
Age θ1 4e-6 (2e-6) 2.61 0.009

θ2 0.56 (0.04) 13.57 < 0.001
Shifted year of birtht ζ −0.25 (0.04) −6.94 < 0.001
Aget ϑ1 18.06 (6.98) 2.59 < 0.001

ϑ2 −0.26 (0.03) −7.91 < 0.001
Probability of a malaria-like clinical visit π0 0.58 (0.01) 53.58 < 0.001
Variance for random intercepts for subjects d11 0.27 (0.05) 9.83 < 0.001
Variance for random intercepts for households d22 4.28 (0.35) 12.30 < 0.001

Nagongera (Gompertz):
Infection status at the previous Negative + AL β1 −0.46 (0.12) −3.80 < 0.001

visit (Ref = Negative & No AL Symptomatic β2 −1.24 (0.13) −9.35 < 0.001
treatment in past): Asymptomatic β3 0.15 (0.13) 1.22 0.222

Shifted year of birth β4 0.19 (0.08) 2.44 0.015
Age θ1 0.02 (0.02) 1.23 0.219

θ2 0.17 (0.11) 1.58 0.115
Shifted year of birtht ζ 0.92 (0.05) 18.31 < 0.001
Aget ϑ1 6e-4 (3e-4) 1.88 0.061

ϑ2 1.03 (0.05) 19.64 < 0.001
Probability of a malaria-like clinical visit π0 0.65 (0.01) 83.81 < 0.001
Variance for random intercepts for subjects d11 0.94 (0.15) 6.42 < 0.001
Variance for random intercepts for households d22 0.37 (0.15) 2.43 0.016
t Time-to-event model effects

6.7 Discussion and conclusion

In this chapter, we have proposed novel methodology to account for outcome-
dependent sampling (ODS) when estimating malaria transmission parameters such
as, for example, the parasite prevalence and the force of infection (FOI) in case
of longitudinal cohort data with routine (scheduled) and clinical (unscheduled)
visits. A simulation study, inspired by parasitemia data from a cohort of Ugandan
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Figure 6.3: Estimated marginal FOI by time at risk and age when becoming at risk for the
next malaria infection based on Scenario 4 and for children assumed to be born in the base-
line year (2001). Top row: marginal FOI based on outcome process†. Bottom row: marginal
FOI based on time process†. Left to right column: Nagongera, Kihihi and Walukuba.
†The terms outcome and time processes are used here to mean that the estimates are re-
spectively obtained from the outcome and the time components of the joint model.

children who were tested for malaria parasites (parasitaemia) during such visits,
was conducted in which different parametric functions were considered to model
the age-specific malaria prevalence and FOI while accounting for both observed and
unobserved heterogeneity. Though the simulation results indicate that scenario 1
and 3 perform as good as scenario 4, we preferred the latter because the former two
use less data than are available, hence affecting precision, moreover scenario 1 was
already applied by Mugenyi et al. [65] (see Chapter 5). The results clearly indicate
that ignoring ODS leads to biased estimates for the marginal force of infection,
hence, leads to an incorrect assessment and evaluation of malaria control strategies.
We demonstrate that the bias can be reduced by using a joint model in which both
outcome (routine) and observation-time (clinical) components are present. In order
to reduce the bias, we propose to treat malaria events within a period of 35 days
after a first malaria infection as being part of the same infection. This is supported
by the results presented by Maiga et al. [57] and Ndiaye et al. [67].

The results show that both the malaria parasite prevalence and the FOI increase
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with increasing age in an area of high (Nagongera) transmision intensity. The FOI is
highest in children aged 5–10 years and it becomes higher as children grow older or
are at risk for a longer time. For an area with medium (Kihihi) transmision intensity,
whereas the parasite prevalence and the FOI for the outcome process increase with
increasing age, the FOI for the clinically observed infections (time process) is highest
among children aged 1 year and it gradually decreases with increasing age and time
at risk. In Walukuba which is an area of low transmission intensity, however, the
prevalence and FOI at least for the time process peak at the age of about one year,
after which the former remains constant while the latter decreases with increasing
age and exposure time at least when based on the time process. Further, both the
prevalence and FOI are highest among the children with asymptomatic infections,
and lower among the symptomatic ones or the previously treated children. These
results are in line with those reported previously by Mugenyi et al. [65]. The high
prevalence and FOI estimated among the older children particularly in area with
high transmission is in agreement with the work by Doolan et al. [21]. These
authors show that children older than 5 years act as reservoirs for malaria parasites
or asymptomatic infections and are rarely treated, hence leading to an increased
infection risk. On the other hand, the decrease in the clinically observed infections
(time process), that is FOI, as age increases in both the medium and low transmission
intensities can be attributed to acquired immunity due to past infections or increase
in age as discussed by Doolan et al. [21]. In our statistical analyses, we also estimated
the probability of a malaria-like event π0 which were quite in line with the empirical
proportions in the three regions. However, π0 also encompasses potential differences
in reporting among the regions as individuals with symptoms will not always visit
the clinic.

One way to avoid bias in estimating the epidemiological parameters of interest is
the use of routine data only. This approach has been demonstrated in the past
[65]. However, our methodology allows for a proper integration of all clinical data,
including malarialike events, in the data analysis, thereby enabling the study of po-
tential varying effects for symptomatic (detected at clinical visits) and asymptomatic
(derived from routine data) infections. From our statistical analyses of the PRISM
data, the hypothesis of differential age-effects for symptomatic and asymptomatic
infections is highly supported as models forcing the effects to be the same are
clearly outperformed by their unrestricted and more flexible counterparts. Though
the estimated parasite prevalence is in line with the observed data, more flexible
parametric or semi-parametric baseline hazard functions could be considered in both
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processes which is an interesting avenue for further research. Furthermore, Mugenyi
et al. [65] used a generalized linear mixed model to model the observed parasite
prevalence after which the force of infection is derived using equation (6.2). One of
the shortcomings in this paper is the simplification of no parasite clearance when
deriving the baseline hazard function for the time process. This could lead to an
underestimation of the respective FOI. We consider this as an interesting avenue for
future research.

The proposed joint model can be extended to have a shared parameter ψ to model the
dependence between the outcome and observation time processes through individual-
and process-specific random effects bi1 and bi2, respectively (see, e.g, Wulfsohn et
al. [127]). In that way, one can allow the process-specific random effects to act
at different levels. However, applying this approach to the PRISM data forced
us to exclude the household-specific random effect for convergence reasons. The
models presented in this manuscript (ψ = 1) outperformed the ones with different
process-specific individual-level random effects in all regions, except for Nagongera,
and the significance of covariates was not altered (not shown here).

In general, symptomatic and asymptomatic infections can be well mapped unto clini-
cal and routine visits albeit with the limitation that whereas clinical visits are symp-
tomatic, routine visits aren’t necessarily all asymptomatic. Using a model in which
we combine both routine and clinical visits, this can be explicitly taken into account.
Admittedly, whereas combining data from both sources yields more efficient estimates
as shown in our simulation study, our simulation study also shows that using routine
and clinical data separately results in moderate to small bias and that the benefit
of combining both seems to be minimal for settings in which the proportion asymp-
tomatic is large compared to when the proportion asymptomatic is small. Ideally,
with our approach (Scenario 4), we are working in between routine data (little infor-
mation on time of exposure) and clinical data (more information on time of exposure)
by nature of the data. Our approach is therefore generally applicable.





Chapter 7
Discussion and further
research

The disease burden, largely due to malaria, in many African countries, including
Uganda, is one of the major factors hindering development. Despite global efforts
to eliminate malaria, less work has been done to estimate and understand how the
various transmission parameters for the disease vary with various risk factors while
accounting for unobserved heterogeneity. In this thesis, we therefore apply both
statistical and mathematical models to estimate infectious disease parameters for the
transmission of malaria among children in a sub-Saharan African country, Uganda.
We focus on estimating the malaria force of infection (FOI), parasite prevalence and
parasite clearance rate. Additionally, we estimated the malaria-related mortality
hazard rate among Ugandan children dying from all causes between the age of 29
days and 14 years. We have described several methods for estimating some of these
parameters while accounting for both observed and unobserved heterogeneity in the
risk of acquiring the malaria infection. Whenever possible, relationships between
mathematical and statistical models are derived, thereby enabling substitution
of parameter estimates from the latter approach into the former, hence refining
estimates in the former models where accounting for various factors and heterogeneity
is rather difficult. The analyses in this thesis have been motivated by two datasets
including data collected from different regions with varying malaria transmission
intensities in Uganda.

According to Talisuna et al. [105], data on malaria death were still lacking in 2015
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to enable future funding towards eradicating malaria in Uganda. The scant data
on malaria death could be due to many deaths in Uganda and probably elsewhere
occurring outside health centres and are thus missing in the national mortality
registries [12]. To improve on the availability of these data, we applied survival
methods using death data extracted from a verbal autopsy study to estimate the
hazard of malaria-related death and the determinants in the presence of other causes
of death among Ugandan children dying between the age of 29 days and 14 years.
This analysis is presented in Chapter 4. The fact that some of these children died
from causes other than malaria implied the use of competing risks analysis. Our
results show that malaria was the leading cause of death, contributing to half of the
total number of deaths in this population. Half of the deaths occurred before the
age of 2 years, approximately 93.7% of the deaths happened in children under five,
and more than half occurred outside hospitals or health facilities. Children who died
at home were older than those who died in hospitals or health facilities, while those
who died on the way to the hospital/HF were younger than those who died while
admitted. This could be because children that are usually taken to the hospitals
or health facilities are very sick, and their chances of dying are thus also higher.
Children without a fever were older when they died compared to their counterparts
who had a fever. For future research, we recommend that malaria surveillance at
healthcare facilities and within communities be strengthened in Uganda to capture
accurate data on malaria mortality. Additionally, educating caregivers about the
symptoms of malaria and the importance of seeking care promptly to ensure ap-
propriate diagnosis and effective treatment of malaria should continue to be a priority.

In Chapter 5, we estimate the age- and time-dependent hazards of acquiring malaria
infection or the malaria force of infection while accounting for both observed and
unobserved heterogeneity. Here, age and time, which represent the child’s age and
calendar time in years, are entered into the model as continuous variables. We used
data from a cohort of children aged 0.5–10 years that was tested for the presence of
malaria parasites at three sites in Uganda (see details of the data in Section 3.1).
By assuming an SIS model, we show how the FOI relates to the point prevalence,
allowing for the estimation of FOI by modelling the prevalence using a generalized
linear mixed model (GLMM). We give two bounds for the FOI by using an Erlang
distribution [20] to describe the clearance of parasites. The findings indicated that
the malaria FOI significantly varied with both age and time, and it was highest
among children aged 5–10 years in an area of high transmission and highest in
those aged below 1 year in an area of low transmission. Additionally, heterogeneity
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was greater between households than within households, and it increased with
decreasing risks of malaria infection. The finding about heterogeneity strengthens
the work by Smith et al. [96], Smith [100] and White et al. [117], who stated
that heterogeneity in malaria infection can arise due to several unobserved factors,
including environmental, vector, and host-related factors. Therefore, estimating the
malaria transmission parameters by ignoring the heterogeneity in acquisition of the
infection may lead to the wrong results and conclusions. One limitation for the
results in this chapter is that only routine data were used to avoid the potential
bias introduced by outcome-dependent sampling (ODS), and less data were used
than were actually available. ODS arises from unscheduled clinical visits which are
triggered by the study outcome. This limitation was later dealt with in Chapter
6 by modelling both the routine and clinical data by using a joint model. For
future research, we recommend that both observed and unobserved heterogeneity
be accounted for when estimating the malaria FOI to refine existing mathematical
models. Additionally, for future research, the methodology presented in this chapter
can be extended to include an estimation of the reproduction number (R0) when
focusing on the underlying mechanistic modelling of the FOI. This could later be
used for example, in guiding the calculation of the proportion of children that will
need malaria vaccination to prevent the sustained spread of the infection. This
proportion is calculated as 1− 1/R0 [31].

In Chapter 6, we extend the work covered in Chapter 5 by accounting for outcome-
dependent sampling (ODS) when estimating the age-specific malaria parasite
prevalence and FOI. In this part of the analysis, we demonstrated that ignoring
ODS in follow-up studies where the outcome triggers clinical observations can lead
to biased estimates, with a consequence of making incorrect conclusions. We have
proposed a methodology that allows for a proper integration of all clinical data,
including malaria-like events, in the data analysis, thereby enabling the study of po-
tential varying effects for symptomatic (detected at clinical visits) and asymptomatic
(derived from routine data) infections. With the help of a simulation study motivated
by malaria data from a cohort of Ugandan children (see data source in Section 3.1),
our methodology gives the smallest bias, especially when positive malaria results
observed within 35 days were considered to be of the same infection, a result that
is supported by Maiga et al. [57] and Ndiaye et al. [67]. We explored different
parametric functions of age to model the age-specific malaria parasite prevalence
and the FOI while accounting for both observed and unobserved heterogeneity.
The results indicate that parasite prevalence and FOI increase with age in the high
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intensity region with highest FOI for 5–10-year olds. For the medium intensity region,
the prevalence increases with age, and the FOI for the routinely collected data is
highest for 5–10-year olds; yet, for the clinical data, the FOI gradually decreases with
increasing age. In the low intensity region, both prevalence and FOI peak at one year
of age, after which the former remains constant, and the latter decreases with age
for the clinical observations. At all study sites, the prevalence and FOI were highest
among the previously asymptomatic children and lowest among their symptomatic
counterparts. These results support the hypothesis of differential age-effects for
symptomatic and asymptomatic infections as models forcing the effects to be the
same were outperformed by their unrestricted and more flexible counterparts. These
findings are in line with those presented by Mugenyi et al. [65] and the possible
explanations for high prevalence and FOI among the olds or the asymptomatic
cases therein, also discussed in Chapter 5, equally apply here. A shortcoming of
the results presented in Chapter 6 is the simplification of no parasite clearance
when deriving the baseline hazard function for the time process, which could lead
to an underestimation of the respective FOI. For future research, a more realistic
baseline hazard function for the time process should be considered, thereby allowing
for the parasite clearance rate. We further recommend that for future research,
ODS in clinical observations should be addressed in addition to heterogeneity when
estimating the malaria transmission parameters. This consideration will lead to
the correct assessment and evaluation of the impact of malaria control strategies,
resulting in elimination of the disease, its burden and hinderance to both socio and
economic development.

The works presented in Chapters 4, 5 and 6 are linked in the sense that they all
use children’s data on malaria in Uganda and that they all describe the burden of
malaria as a function of age in years. Specifically, the age profiles for mortality
presented in Chapter 4 (e.g., see Figure 4.2) are similar to those for the malaria
FOI presented in Chapter 5 (e.g., see Figure 5.3) and in Chapter 6 for the clinical
malaria FOI in areas of medium and low transmission (see Figure 6.3, bottom row).
These figures show that the mortality and FOI both move together and are highest
among young children, which is expected. However, mortality and the FOI from
the routinely collected data or in areas with high transmission intensity tend to be
inversely correlated (e.g., see Figure 4.2 vs Figure 6.3, top row). For example, on
the top row of Figure 6.3, the FOI is highest in older children, yet mortality is lower
among these ages (see Figure 4.2). Ideally, one would expect a higher mortality rate
for a higher FOI. However, it has been documented elsewhere that older children act
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as reservoirs for malaria infection [114], and because of their increased immunity,
they have a higher chance of surviving death due to malaria even if they frequently
get infected.

In this thesis, we have used a binary outcome for the presence of malaria parasites
and we have relied on only the human host when estimating malaria transmission
parameters. Additionally, we have used compartmental models without demographic
characteristics, such as birth, death and migration rates. However, for future research,
the methodologies described in this thesis can be extended to handle other types
of outcome data (e.g., count data) and to estimate transmission parameters in the
mosquito-vector as well as to include demographic parameters.
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Appendix A
Appendix – Chapter 4

Here, we provide fit statistics for selecting a subdistribution hazard model of Fine
and Gray [25] under competing risks analysis and the R code used to generate the
figures presented in Chapter 4 and to fit the subdistribution hazard model which is
described in equation 4.1 of Chapter 4.

A.1 Fit statistics

Under this section, we present the fit statistics for candidate models and the corre-
sponding AIC and ∆AICi estimates (see Table A.1 for details). A model containing
hospitalization history in addition to the rest of the variables that had significant
crude associations (except diarrhea), results in ∆AICi = 1.66 which is within the
recommended range of 0 < ∆AICi < 2. But since the adjusted effect of hospitaliza-
tion history was not significant (p = 0.120), it was dropped from the model. On the
other hand, a model that includes diarrhea in addition to the other candidate vari-
ables resulted in ∆AICi = 2.05 (see Table A.1), which is outside the recommended
range of (0<∆AICi<2), so it was also not considered for making inference. Finally, a
model that included place of birth, convulsion, comorbidity, duration of illness, fever
and headache offered a better fit to the data and was used to make inference.

A.2 R code
library(survival)
## Figure 4.1
proportion=(table(chlddata$causeofdeath)/sum(table(chlddata$causeofdeath)))*100
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Table A.1: Overview of model building (number of observations in each case equal to 8645).

Model Log-likelihood AIC ∆AICi

Null -2525.68 5051.36 961.89

P + Cn + Cm -2478.79 4967.59 878.11

P + Cn + Cm + D -2088.38 4188.77 99.29

P + Cn + Cm + F -2428.35 4868.70 779.23

P + Cn + Cm + H -2476.24 4964.48 875.01

P + Cn + Cm + Hh -2475.25 4964.50 875.04

P + Cn + Cm + D + F + H -2036.74 4089.47 0.00

P + Cn + Cm + D + F + H + Hh -2035.57 4091.13 1.66

P + Cn + Cm + D + F + H + Dr -2034.76 4091.52 2.05
P = Place of death, Cn = Convulsion, Cm = Comorbidity, H = Headache
Hh = Hospitalization history, D = Duration of illness, F = Fever, Dr = Diarrhea
AIC = -2l + 2p, where l=loglikelihood, p=number of model parameters
∆AICi = AICi −min(AIC)

colors=c(”red”, ”yellow”, ”green”, ”violet”,”orange”, ”blue”, ”pink”, ”cyan”, ”black”, ”purple”, ”maroon”)
causeofdeath=c(”Malaria”, ”Malnutrition”, ”Anemia”, ”Diarrhea”, ”Pneumonia”, ”Road accident”,
”Measles”, ”Tetanus”, ”HIV/AIDS”, ”Undetermined”, ”Other causes”)
# Plot settings
angle1 = rep(c(45,45,135), length.out=11)
angle2 = rep(c(45,135,135), length.out=11)
density1 = seq(5,35,length.out=11)
density2 = seq(5,35,length.out=11)
col = 1 # rainbow(7)
par(mfrow=c(1,2))
hist(chlddata$age, col=’gray’,main=”(A)”, ylab=”Number of children dying”, xlab=”Age at death
(years)”, cex.lab=1.5, cex.axis=1.3)
barplot(proportion, beside=TRUE, main=”(B)”,ylim=c(0,60), xlab=”Cause of death”, ylab=”Percent
(%)”,cex.lab=1.5, cex.axis=1.3,xaxt=’n’, col=col, angle=angle1, density=density1) #xaxt=’n’ hides
values on x-axis, and yaxt=’n’ for y-axis
barplot(proportion, add=TRUE, main=””,ylim=c(0,60), xlab=”Cause of death”, ylab=”Percent
(%)”,cex.lab=1.5, cex.axis=1.3,xaxt=’n’, col=col, angle=angle2, density=density2) #xaxt=’n’ hides
values on x-axis, and yaxt=’n’ for y-axis
legend(5,50,inset=c(-0.8,0),bty=’n’, fill=col, legend = causeofdeath, col=col, angle=angle1, den-
sity=density1, cex=1.3)
legend(5,50,inset=c(-0.8,0),bty=’n’, fill=col, legend = causeofdeath, col=col, angle=angle2, den-
sity=density2, cex=1.3)

## Prepare data for Figures 4.2, 4.3 & 4.4
source(”CumIncidence.R”)
fitCIF=CumIncidence(chlddata$age,chlddata$causeofdeath, cencode=0, xlab=”Age in years”, col=”red”,
ylab = ”Probability of dying from malaria”, level=0.95, lwd=2)
anemia=fitCIF$est[1,] #Anemia is row 1
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diarrhea=fitCIF$est[2,] # Malaria is row 2
hivaids=fitCIF$est[3,] #HIV/AIDS is row 3
malaria=fitCIF$est[4,] #Malaria is row 4
malnutrition=fitCIF$est[5,] #malnutrition is row 5
measles=fitCIF$est[6,] #measles is row 6
othercauses=fitCIF$est[7,] #othercauses is row 7
pneumonia=fitCIF$est[8,1:54] #Pneumonia is row 8
roadaccident=fitCIF$est[9,] #roadaccident is row 9
tetanus=fitCIF$est[10,] #tetanus is row 10
undetermined=fitCIF$est[11,] #Undetermined is row 11
#merge vectors into data frame
CIFdata0 = as.data.frame(cbind(anemia, diarrhea, hivaids, malaria, malnutrition, measles, othercauses,
pneumonia, roadaccident, tetanus, undetermined))
#Extract time vector (stored as row labels in CIFdata0 data frame)
time=row.names(CIFdata0)
CIFdata=as.data.frame(cbind(time,CIFdata0))
#95% CI extracted from output for malaria (estimated at time point as in tci vector below)
tci=c(0,2,4,6,8,10,12,14)
lowermal=c(0.0005,0.3529,0.4380,0.4546,0.4611,0.4700,0.4713,0.4713)
uppermal=c(0.0088,0.4204,0.5061,0.5226,0.5290,0.5377,0.5391,0.5391)
## Figure 4.2
plot(CIFdata$time,CIFdata$malaria, type=”n”,xlab = ”Age in years”, ylab = ”Probability of dying”,
cex.lab=1.5, cex.axis=1.3)
lines(CIFdata$time,CIFdata$malaria, lty=1, lwd=3, col=”red”)
lines(CIFdata$time,CIFdata$malnutrition, lty=2.5, lwd=3, col=”blue”)
lines(CIFdata$time,CIFdata$anemia, lty=3, lwd=3, col=”green”)
lines(CIFdata$time,CIFdata$diarrhea, lty=4, lwd=3, col=”violet”)
lines(CIFdata$time,CIFdata$pneumonia, lty=5, lwd=3, col=”orange”)
lines(CIFdata$time,CIFdata$roadaccident, lty=6, lwd=1, col=”black”)
lines(CIFdata$time,CIFdata$measles, lty=7, lwd=1, col=”skyblue”)
lines(CIFdata$time,CIFdata$tetanus, lty=8, lwd=1, col=”cyan”)
lines(CIFdata$time,CIFdata$hivaids, lty=9, lwd=1, col=”black”)
lines(CIFdata$time,CIFdata$undetermined, lty=10, lwd=1, col=”purple”)
lines(CIFdata$time,CIFdata$othercauses, lty=11, lwd=1, col=”maroon”)
legend(6,0.45,lty=c(1,2,3,4,5), col=c(”red”, ”blue”, ”green”, ”violet”,”orange”), c(”Malaria”, ”Malnutri-
tion”, ”Anemia”, ”Diarrhea”, ”Pneumonia”), lwd=3, cex=1.2, title=””, bty=’n’)
legend(10, 0.45, lty=c(6,7,8,9,10,11), col=c(”black”, ”skyblue”, ”cyan”, ”black”, ”purple”, ”maroon”),
c(”Road accident”, ”Measles”, ”Tetanus”, ”HIV/AIDS”, ”Undetermined”, ”Other cause”), lwd=1, cex=1,
title=””, bty=’n’)
## Figure 4.3
library(rms)
deadsurv = npsurv(formula = Surv(age, malaria==1) 1, data = chlddata)
#Extract survival time, survival function, and corresponding 95%CI
t=summary(deadsurv)$time
s=summary(deadsurv)$surv
sL=summary(deadsurv)$lower
sU=summary(deadsurv)$upper
#Marginal CIF (1-KM)
plot(t, 1-s, type=”l”, col=”red”, lwd=2, ylim=c(0:1), xlab = ”Age in years”, ylab = ”Probability of dying
from malaria”, cex.lab=1.5, cex.axis=1.3, lty=5)
lines(tt,1-sL, lty=3, col=”red”, lwd=2)
lines(tt,1-sU, lty=3, col=”red”, lwd=2)
legend(”topleft”, lty=c(5,1),lwd=2,col=c(”red”, ”blue”),cex=1.3, legend=c(”Marginal CIF (1-KM)”,
”Cause-specific CIF”), bty=’n’)
#Cause specific CIF
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lines(CIFdata$time,CIFdata$malaria, type=”l”, col=”blue”, lwd=2, lty=1)
lines(tci,lowermal, lty=3, col=”blue”, lwd=2)
lines(tci,uppermal, lty=3, col=”blue”, lwd=2)
## Figure 4.4
#By Locdied, location of death
fitCIFLocdied=CumIncidence(chlddata$age,chlddata$causeofdeath,chlddata$Locdied,cencode=0,
xlab=”Age in years”, level=0.95, col=”red”, lwd=2)
#Extract estimates
malhome=fitCIFLocdied$est[1,]
malhosp=fitCIFLocdied$est[2,]
malonway=fitCIFLocdied$est[3,]
malother=fitCIFLocdied$est[4,]
#By convulsions/fits
fitCIFconvuls=CumIncidence(chlddata$age,chlddata$causeofdeath,chlddata$convuls,cencode=0,
xlab=”Age in years”, level=0.95, col=”red”, lwd=2)
malconvuls=fitCIFconvuls$est[1,]
malnoconvuls=fitCIFconvuls$est[2,]
#By Comorbidity
fitCIFcomorbid=CumIncidence(chlddata$age,chlddata$causeofdeath,chlddata$comorbid,cencode=0,
xlab=”Age in years”, level=0.95, col=”red”, lwd=2)
malcomorbid=fitCIFcomorbid$est[1,]
malnocomorbid=fitCIFcomorbid$est[2,]
#Ploting
par(mfrow=c(1,3))
#location plot(time,malhome,type=”l”,ylim=c(0:1),lty=1, lwd=2, col=”blue”, xlab = ”Age in years”,
ylab = ”Probability of dying from malaria”, cex.lab=1.5, cex.axis=1.3)
lines(time,malhosp,lty=2, lwd=2, col=”red”)
lines(time,malonway,lty=3, lwd=2, col=”orange”)
lines(time,malother,lty=4, lwd=2, col=”black”)
legend(”topleft”, lty=c(1,2,3,4),lwd=2,col=c(”blue”, ”red”, ”orange”, ”black”), cex=1.3, leg-
end=c(”Home”, ”Hospital/HF”, ”On way”, ”Other”), bty=’n’)
#Convulsions
plot(time,malconvuls,type=”l”,ylim=c(0:1),lty=1, lwd=2, col=”blue”,xlab = ”Age in years”, ylab =
”Probability of dying from malaria”, cex.lab=1.5, cex.axis=1.3)
lines(time,malnoconvuls,lty=2, lwd=2, col=”red”)
legend(”topleft”, lty=c(1,2),lwd=2,col=c(”blue”, ”red”), cex=1.3, legend=c(”Convulsion”, ”No Convul-
sion”), bty=’n’)
#Comorbidity
plot(time,malcomorbid,type=”l”,ylim=c(0:1),lty=1, lwd=2, col=”blue”,xlab = ”Age in years”, ylab =
”Probability of dying from malaria”, cex.lab=1.5, cex.axis=1.3)
lines(time,malnocomorbid,lty=2, lwd=2, col=”red”)
legend(”topleft”, lty=c(1,2),lwd=2,col=c(”blue”, ”red”), cex=1.3, legend=c(”Comorbidity”, ”No Comor-
bidity”), bty=’n’)

## Fine and Gray model

require(cmprsk)

require(lme4)

#load required function

source(”factor2ind.R”)

# First, we need to create a data matrix with dummy variables for all categorical variables as follows,

yet continuous retained.
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# Start by creating a vector of variables to be used in modelling

causeofdeath=chlddata$causeofdeath

age=chlddata$age

place=chlddata$Locdied

fits=chlddata$fits

comorbid=chlddata$comorbid

logdaysick=chlddata$logdaysick

hospitaliz=chlddata$hospitaliz

fev=chlddata$fev

head=chlddata$head

vomi=chlddata$vomi

gender=chlddata$gender

rel=chlddata$rel

promptrt=chlddata$promptrt

whereseektrt=chlddata$whereseektrt

diarrhea=chlddata$diarr

# Create a matrix of fixed covariates, with reference level of categorical variables in double quotes(””)

x=cbind(factor2ind(place,”Hosp/health facility”), factor2ind(fits, ”0”), comorbid2, logdaysick, fac-

tor2ind(hospitaliz, ”No”), factor2ind(fev, ”0”), factor2ind(head, ”0”), factor2ind(vomi, ”0”), fac-

tor2ind(gender, ”Male”), factor2ind(rel, ”MOTHER”), factor2ind(promptrt, 1), factor2ind(whereseektrt,

”hospital”), diarrhea)

# To fit models we need function crr() which is inbuilt in package ”cmprsk”

# FINAL FIT considered for the adjusted analysis. Note: the values in c(1:3,4,5,6,10,11) below

represent the selected columns in matrix x

model=crr(age,causeofdeath, x[,c(1:3,4,5,6,10,11)])

summary(model)





Appendix B
Appendix – Chapter 5

In this appendix, we provide additional methods and results plus both the R code
and the SAS macro supporting the work presented in Chapter 5. Section B.1 of this
appendix acknowledges the problem of getting a negative FOI and it provides possible
solutions for avoiding this problem when using a flexible fractional polynomial, which
we used in Chapter 5, to estimate age-time parasite prevalence and FOI. In Section
B.2, we describe a methodology to estimate the subject-specific FOI and prevalence
(hence accounting for unobserved heterogeneity), which we graphically present in
Figure 5.3 (top row) of Chapter 5 and in Figure B.2 (top row) of this appendix. In
Section B.3, we describe an approach to estimate the marginal FOI and prevalence
using numerical averaging method for integrating out random effects. A SAS macro
used to perform the numerical averaging is given in Section B.6 of this appendix.
The results for the marginal FOI are presented in Figures 5.2, 5.3 and 5.4 in Chapter
5, and the results for the marginal prevalence are presented in Figure B.2 of this
appendix. In Section B.4, we derive the lower and the upper bounds for the FOI and
we present results for the marginal FOI using these two bounds in Figure 5.2. The
rest of the results in this appendix are clearly referred to in Chapter 5.

B.1 Fractional polynomial and non-negative FOI

Though, fractional polynomials are very flexible, they can result into negative es-
timates for the FOI whenever the estimated probability to be infected before age
a is a non-monotone function [36, 92]. A solution to this is to define a non-
negative FOI, λl(aijk|bi) ≥ 0 for all a and to estimate πl(aijk|bi) under these con-
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straints [92]. From Table 5.1 in Chapter 5, for a logit link function, the condition
η
′(aijk|bi) ≥ −γ/(1 − πl(aijk|bi)) should be satisfied as to estimate a positive FOI.

One option is to fit a constrained FP to ensure the above condition holds by applying
a constraint on parameter estimates depending on the functional relationship with
age. However, this approach becomes challenging especially if it involves constraining
random effects. An alternative option is to find a probability of estimating a negative
FOI using the model results. If this probability is considerably small, say less than
0.01, then one can consider the first option unnecessary. In this paper, the second
option was applied. Indeed, all site-specific coefficients for age effect were negative
(see Table 5.3), meaning that the site-specific derivatives for the linear predictors,
η
′(aijk|bi) = [−(β̂6)a−2

ijk,−(β̂7)a−2
ijk,−(β̂8)a−2

ijk] > 0. This implies that the above con-
dition always holds in our case since a−2

ijk, γ and (1− πl(aijk|bi)) are always positive.
Therefore, the probability to estimate a negative FOI was zero.

B.2 Conditional FOI and prevalence

For example, based on model results in Table 5.3, the conditional age-time dependent
FOI for a subject from Walukuba, born in the baseline year (2001, that is, shifted
year of birth = 0) and was symptomatic at the previous visit can be estimated as
follows,

λ̂0(aijk|bi) = γ̂exp(β̂0 + β̂6a
−1
ijk + β̂4 + b1ij + b21j)− β̂6a

−2
ijkπ̂0(aijk|bi), (B.1)

where β̂0 = −3.04, β̂6 = −0.05, β̂4 = −0.24, and π̂0(aijk|bi) is the corresponding
age-time conditional prevalence given as,

π̂0(aijk|bi) =
exp(β̂0 + β̂6a

−1
ijk + β̂4 + b1ij + b21j)

1 + exp(β̂0 + β̂6a
−1
ijk + β̂4 + b1ij + b21j)

, (B.2)

and γ̂ is an estimate for the clearance rate. The conditional FOI for other sites given
the infection status at the previous visit and past use of AL can be estimated in a
similar way.

B.3 Marginalisation

A sample of M = 1000 of the random affects vector bi = (b1i, b2sj)T , s = 1, 2, 3
(sites), was generated from a multi-variate normal distribution,N(0, L̂L̂T ), where for
example, for Walukuba, L̂ = (0.49, 1.67)T whose elements are the square roots of d̂11
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and d̂22, respectively as given in Table 5.3. A fine grid of age, a = 0.5 to 11 with
interval 0.1 years (the age range in the data, though extrapolation is possible) was
considered. For example, the marginalized FOI at each age value in the grid, again
considering a subject from Walukuba, born in the baseline year and was symptomatic
at the previous visit is calculated as in (6.8).

λ̂0(a) = 1
1000

1000∑
i=1

(
γ̂exp(β̂0 + β̂6a

−1 + β̂4 + b1i + b21i)
)
− β̂6a

−2π̂0(a), (B.3)

where π̂0(a) is the corresponding marginalized prevalence given by

π̂0(a) = 1
1000

1000∑
i=1

( exp(β̂0 + β̂6a
−1 + β̂4 + b1i + b21i)

1 + exp(β̂0 + β̂6a−1 + β̂4 + b1i + b21i)

)
. (B.4)

Extensions to estimate the marginal averages at different birth years, for different
study sites and for different infection statuses at the previous visit, are straightfor-
ward. The SAS macro performing the numerical averaging for a case of γ̂ = 1.643 is
given in Section B.6 of this appendix.

B.4 A general S(I)J(R)S system

Let s, i and r represent the proportion susceptible, infected and recovered, respec-
tively. Also, let µ represent the natural birth rate assumed to be equal to the natural
death rate, β the transmission rate, γ the clearance rate and σ the recovery rate.
System:

s′(t) = µ− βsi+ σr − µs,

i′1(t) = βsi− γi1 − µi1,

i′2(t) = γi1 − γi2 − µi2,

...

i′J(t) = γiJ−1 − γiJ − µiJ ,

r′(t) = γiJ − σr − µr,

(B.5)
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where i =
∑J
J=1 iJ . Rewriting the system collapsing the infectious classes into i:

s′(t) = µ− βsi+ σr − µs,

i′(t) = βsi− γiJ − µi,

r′(t) = γiJ − σr − µr.

(B.6)

Simplifying the model to an S(I)JS system:

s′(t) = µ− βsi+ γiJ − µs,

i′(t) = βsi− γiJ − µi,
(B.7)

yields (replacing λ = βi and s = 1− i)

i′ = λ(1− i)− γiJ − µi (B.8)

thus
λ = i′ + γiJ + µi

1− i ≈ i′ + γiJ
1− i , (B.9)

expressing time dependency,

λ(t) = i′(t) + γiJ(t) + µi(t)
1− i(t) ≈ i′(t) + γiJ(t)

1− i(t) , (B.10)

since µi(t) << γiJ(t). Let’s look at the factor γiJ(t). In case J = 1, γiJ(t) = γi(t).
In case J > 1, γiJ(t) < γi(t). This gives us a lower and upper boundary for our force
of infection.

[λL(t), λU (t)] =
[ i′(t)

1− i(t) ,
i′(t) + γi(t)

1− i(t)

]
(B.11)

These formulas readily extend to the age-heterogeneous case since we do not explicitly
model the underlying transmission mechanism.

Table B.1: Overview of the fractional polynomial model selection.

Power -3 -2 -1 -0.5 0 0.5 1 2 3

AIC 7202.3 7178.6 7150.0 7152.9 7154.4 7160.9 7171.2 7190.6 7204.9
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Table B.2: Overview of model building (number of observations in each case equal to 8645).

Model Log-likelihood AIC BIC

a−1 ∗ S + l ∗ S + S + PT + PT ∗ S + b1ij + b2j ∗ S -3199.09 6442.17 6525.75

a−1 ∗ S + l ∗ S + S + PT + PT ∗ S + b2j ∗ S -3208.24 6458.48 6538.26

a−1 ∗ S + l ∗ S + S + PT + PT ∗ S + b1ij + b2j -3213.90 6467.80 6543.78

a−1 ∗ S + l ∗ S + S + PT + b1ij + b2j ∗ S -3204.93 6441.86 6502.64

a−1 + l ∗ S + S + PT + b1ij + b2j ∗ S -3210.56 6449.12 6502.31

a−1 ∗ S + l + S + PT + b1ij + b2j ∗ S -3209.73 6447.45 6500.64

a−1 + l + S + PT + b1ij + b2j ∗ S -3211.87 6447.74 6493.32

S= study site, P=Infection status at previous visit, T=treatment with AL at
previous infection, PT=combination of P and T. Note that P and T were collinear
(sign of T changes whenever P is included with T)

Table B.3: Maximum values for the marginal annual FOI by study site, previous infection
status and use of AL, and by age group.

Site Previous infection Maximum annual FOI

status and use of AL < 1 year 1-4 years 5-10 years

Nagongera Negative, No AL 3.99 4.21 8.49

Negative, AL 4.45 4.80 9.69

Symptomatic 2.21 2.07 4.14

Asymptomatic 7.73 9.21 18.70

Kihihi Negative, No AL 5.35 24.95 64.82

Negative, AL 1.46 4.64 11.78

Symptomatic 1.06 3.23 8.11

Asymptomatic 4.62 20.25 52.56

Walukuba Negative, No AL 18.01 6.65 11.28

Negative, AL 20.07 7.41 12.58

Symptomatic 8.02 2.95 5.01

Asymptomatic 98.24 36.34 61.66



102 Bibliography

Figure B.1: Plots for log-likelihood verses the clearance rate (left panel) and force of
infection verses the clearance rate (right panel) obtained after fitting 1000 models to the
data according to π = λ

λ+γ e
−(λ+γ)a as given by Pull and Grab (1974) [80] by choosing

values for the annual clearance rate on a grid of 0.1 to 2.0 with a step size of 0.0019.

Figure B.2: Top row: Individual-specific evolutions for the conditional prevalence, by
study site for children assumed to be symptomatic at the previous visit and were born in the
baseline year (2001). Bottom row: Average evolutions for marginalized prevalence, by study
site and the infection status at the previous visit and past use of AL (negative and no AL in
the past (solid lines), negative and AL in the past (dotted lines), symptomatic (dash-dotted
lines) and asymptomatic (long-dashed lines)). Left panel: Nagongera, middle panel: Kihihi,
right panel: Walukuba.
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Table B.4: Marginal FOI and the 95% confidence bounds for the age- and time-dependent
marginal annual FOI by study site, previous infection status and use of AL, and by age
group for children born in the baseline year (2001).

Infection status at Nagongera Kihihi Walukuba

the previous visit Age in Marg. annual FOI Marg. annual FOI Marg. annual FOI

and past use of AL years (95% CI)x1000 (95% CI)x1000 (95% CI)x1000

Lower bound:

Negative and no < 1 143.8 (141.2 - 146.4) 9.3 (8.5 - 10.0) 10.2 (9.8 - 10.7)
AL in the past 1-4 53.7 (53.2 - 54.2) 22.7 (22.3 - 23.0) 1.0 (0.9 - 1.1)

5-10 8.6 (8.5 - 8.6) 7.2 (7.2 - 7.3) 0.1 (0.1 - 0.1)

Negative and AL < 1 137.4 (134.8 - 139.9) 7.6 (7.3 - 8.0) 10.7 (10.3 - 11.2)
the past 1-4 51.7 (51.2 - 52.1) 20.1 (19.8 - 20.4) 1.0 (1.0 - 1.0)

5-10 8.3 (8.2 - 8.3) 6.6 (6.5 - 6.7) 0.1 (0.1 - 0.1)

Symptomatic < 1 105.6 (103.7 - 107.5) 6.3 (6.0 - 6.5) 9.6 (9.2 - 10.0)
1-4 41.4 (41.0 - 41.8) 16.9 (16.7 - 17.1) 0.9 (0.9 - 0.9)
5-10 6.8 (6.8 - 6.9) 5.7 (5.7 - 5.8) 0.1 (0.1 - 0.1)

Asymptomatic < 1 426.7 (420.3 - 433.1) 24.9 (23.7 - 26.1) 22.9 (22.1 - 23.6)
1-4 123.3 (122.2 - 124.4) 55.2 (54.6 - 55.8) 2.1 (2.1 - 2.1)

5-10 16.9 (16.8 - 16.9) 15.7 (15.6 - 55.8) 0.2 (0.2 - 0.2)

Upper bound:

Negative and no < 1 234.5 (229.7 - 239.3) 12.2 (11.2 - 13.3) 309.3 (285.2 - 333.5)
AL in the past 1-4 225.0 (223.3 - 226.7) 61.7 (60.1 - 63.2) 112.8 (109.4 - 116.3)

5-10 445.7 (442.8 - 448.6) 161.2 (157.3 - 165.1) 191.4 (186.6 - 196.2)

Negative and AL < 1 223.7 (219.2 - 216.4) 10.0 (9.5 - 10.5) 322.9 (298.1 - 347.7)
in the past 1-4 214.8 (213.2 - 216.4) 51.7 (50.9 - 52.4) 117.8 (114.2 - 121.3)

5-10 424.5 (421.7 - 427.3) 131.3 (129.7 - 132.9) 199.7 (194.8 - 204.7)

Symptomatic < 1 170.7 (167.3 - 174.0) 8.2 (7.8 - 8.6) 246.6 (232.0 - 261.1)
1-4 164.2 (163.0 - 165.3) 42.7 (42.2 - 43.3) 89.5 (87.5 - 91.6)
5-10 320.1 (318.2 - 322.1) 107.7 (106.5 - 108.9) 151.6 (148.8 - 154.5)

Asymptomatic < 1 741.4 (728.1 - 754.6) 32.8 (31.2 - 34.5) 1134.5 (1034.6 - 1234.4)
1-4 717.4 (712.3 - 722.3) 159.8 (157.6 - 162.1) 417.9 (403.5 - 432.4)
5-10 1532.8 (1523.4 - 1542.1) 429.1 (423.7 - 434.6) 711.1 (691.0 - 731.3)

B.5 R code

## Figure 5.1
prevmidage=ddply(cohortdata, c(”siteid”, ”midage”), summarise, N = length(siteid), Total-
pos=sum(parasitemia), observedPR = (Totalpos/N)*100)
prevmonthyear=ddply(cohortdata, c(”siteid”, ”year”, ”month”), summarise, N = length(siteid), Total-
pos=sum(parasitemia), observedPR = (Totalpos/N)*100)
plotdata=subset(prevmidage, siteid==3)
par(mfrow=c(1,2))
# By age
plot(plotdata$midage, plotdata$observedPR, type=”n”, ylim=c(0,70), xlim=c(0,11), main=”(A)”,
ylab=”Proportion infected (%)”, xlab=”Age in years”, cex.lab=1.3)
points(subset(prevmidage, siteid==3, select = c(midage, observedPR ) ), pch=c(16), col=”blue”,
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cex=0.006*nagsize)
points(subset(prevmidage, siteid==2, select = c(midage, observedPR ) ), pch=c(16), col=”orange”,
cex=0.006*kihsize)
points(subset(prevmidage, siteid==1, select = c(midage, observedPR ) ), pch=c(16), col=”maroon”,
cex=0.006*walsize)
legend(-0.5,75, c(”Nagongera”, ”Kihihi”, ”Walukuba”), col=c(”blue”, ”orange”, ”maroon”),
pch=c(16,16,16), bty=’n’, cex=1.1)
# By calendar time
plotdata2=subset(prevmonthyear, siteid==3)
plot(plotdata2$monthyear, plotdata2$observedPR, type=”n”, ylim=c(0,100), main=”(B)”,
ylab=”Proportion infected (%)”, xlab=NA, cex.lab=1.3, xaxt=”n”)
axis(1, at=plotdata2$monthyear, labels=c(”Aug-11”, ””, ””, ”Nov-11” ,””, ””, ”Feb-12”, ””,””,”May-
12”,””,””,”Aug-12”,””,””,”Nov-12”,””,””,”Feb-13”,””,””,”May-13”,””,””,”Aug-13”,””,””,”Nov-
13”,””,””,”Feb-14”,””,””,”May-14”,””,””,”Aug-14”), cex.axis=0.8, las=2)
points( subset( prevmonthyear, siteid==3, select = c( monthyear, observedPR ) ), pch=c(16), col=”blue”,
cex=0.01*nagsize0)
points( subset( prevmonthyear, siteid==2, select = c( monthyear, observedPR ) ), pch=c(16),
col=”orange”, cex=0.01*kihsize0 )
points( subset( prevmonthyear, siteid==1, select = c( monthyear, observedPR ) ), pch=c(16),
col=”maroon”, cex=0.01*walsize0)
legend(0,105, c(”Nagongera”, ”Kihihi”, ”Walukuba”), col=c(”blue”, ”orange”, ”maroon”),
pch=c(16,16,16), bty=’n’, cex=1.1)
## Figure 5.2
datlowerdiffnag1= read.table(text = ”A B C
1 0.144 0.050 0.009
2 0.091 0.175 0.437”, header = T)
barplot(as.matrix(datlowerdiffnag1), col=terrain.colors(4), ylim=c(0,0.5), ylab=”Marginal annual FOI”,
cex.lab=1.3, cex.axis=1.2, xlab=”Negative, No AL”)
## Figure 5.3 (Nagongera site)
nsymp=subset(condprevfoi, L==0 & site==3 & pinfect==3)
# Conditional annual FOI
plot(nsymp$a, nsymp$foiL, type=”n”, xlab=”Age (years)”, ylim=c(0, 0.5), ylab=”Conditional annual
FOI”, main=””, cex.axis=1, cex.lab=1.5)
for (i in unique(nsymp$subject)) lines(nsymp[nsymp$subject==i, c(”a”)], nsymp$foiL[nsymp$subject==i])
# Marginalized FOI
plot(margprevfoi$a, margprevfoi$foiL, ylim=c(0,0.5), xlim=c(0,11), xlab=”Age (years)”, ylab=”Marginal
annual FOI”, main=””, type=”n”, cex.axis=1.3, cex.lab=1.5)
lines(subset(margprevfoi, L==0 & site==3 & pinfect==1, select = c(a, foiL)), lwd=2, lty=1)
lines(subset(margprevfoi, L==0 & site==3 & pinfect==2, select = c(a, foiL)), lwd=2, lty=3)
lines(subset(margprevfoi, L==0 & site==3 & pinfect==3, select = c(a, foiL)), lwd=2, lty=4)
lines(subset(margprevfoi, L==0 & site==3 & pinfect==4, select = c(a, foiL)), lwd=2, lty=5)
legend(”top”, c(”Negative, No AL”, ”Negative, AL”, ”Symptomatic”, ”Asymptomatic”), lty=c(1,3,4,5),
lwd=2, cex=1.5, title=”Previous status”, bty=’n’)

## Figure 5.4 (Nagongera site)

# Contour plot

# Start by forming matrix data

nagongera = subset(margfoigammasymp, site==3)

nagmatrix = xtabs(foi∼gamma+a, data=nagongera) # specify the variable to be put to vector using

[[’varname’]]

y1=subset(margfoigammasymp, site==1 & a==0.5, select=c(gamma))[[’gamma’]]
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x1=subset(margfoigammasymp, site==1 & gamma==0, select=c(a))[[’a’]]

# Make sure length(x1) times length(y1)=length(nagmatrix)

length(x1)*length(y1); length(nagmatrix)

# Now define scale for x and y axis

x.at = seq(0, 11, by=1); x.at2 = seq(0, 5, by=1)

y.at = seq(0, 3, by=0.1)

# Now produce image plot

image(x1, y1, t(nagmatrix), ylim=c(0,3), xlim=c(0,11), col=terrain.colors(100),ylab=”Clearance

rate”,xlab=”Age (years)”, cex.lab=1.4, axes=FALSE)

contour(x1, y1, t(nagmatrix), levels=seq(0.02, 1.09, by=0.1), add=TRUE, col=”brown”)

axis(1, at=x.at, cex.axis=1.3)

axis(2, at=y.at, cex.axis=1.3)

box()

title(main=””)

# Upper bound

datsympuppernag = read.table(text = ”A B C

1 0.171 0.164 0.320

2 0.192 0.184 0.361

3 0.215 0.206 0.406

4 0.241 0.231 0.458”, header = TRUE)

barplot(as.matrix(datsympuppernag), col=terrain.colors(4), ylim=c(0,1.6), ylab=”Marginal annual FOI”,

cex.lab=1.4, cex.axis=1.2)

text(2, -0.3, cex=1.3, paste(”A:”, ’<1 year ’, ”B:”, ’1-4 years ’, ”C:”, ’5-10 years ’))

legend(”top”, inset=c(-0.2,0), legend = c(”2001”, ”2004”, ”2007”, ”2010”), fill=terrain.colors(4), cex=1.3,

title=”Birth year”, bty=’n’)

## Figure 5.5 (Nagongera site)

library(stats4)

y=cohortdata$parasitemia[cohortdata$siteid==3]

datagamma=NULL

gamma=seq(0.11,2.11,0.002) #grid of step=0.002 from 0.11 to 2.11

for (i in 1:length(gamma))

{ cdat=NULL

levi1=function(w, I)

{pi=(1/(1+exp(-w)))+(I-(1/(1+exp(-w))))*exp(-gamma[i]*((1/exp(-w))+1)*t1)

ll=y*log(pi) + (1-y)*log(1-pi)

return(-sum(ll))

}
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fit=mle(levi1,start=list(w=0.01,I=0.05))

# Store model estimates for each value of gamma in the sequence/grid loglikelihood=logLik(fit)

estw¡-coef(fit)[”w”]

estI¡-coef(fit)[”I”]

# Estimate FOI for each value of gamma in the sequence/grid

FOI=(gamma[i]/(exp(-estw)))

# Print estimates for w, I, FOI,loglikelihood for each value of gamma in the sequence/grid

cat(i,gamma[i],estw,estI,FOI,loglikelihood,”\n”)

cdat=cbind(i,gamma[i],estw, estI, FOI,loglikelihood)

datagamma=rbind(datagamma,cdat)

}

nonlineardata=as.data.frame(datagamma)

{# rename variables}

colnames(nonlineardata)[2] = ”gamma”

# Plot loglik vs gamma grid

par(mfrow=c(1,2))

plot(nonlineardata$gamma,nonlineardata$loglikelihood, ylab=”Log-likelihood”, xlab=”Clearance rate

(gamma)”,cex.axis=1, cex.lab=1)

lines(nonlineardata$gamma, nonlineardata$loglikelihood, col=”blue”)

plot(nonlineardata$gamma,nonlineardata$FOI, ylab=”Force of infection”, xlab=”Clearance rate

(gamma)”,cex.axis=1, cex.lab=1)

lines(nonlineardata$gamma, nonlineardata$FOI, col=”blue”)

## Figure 5.6

This can be produced in a similar way as Figure 6.3 but now for prevalence instead of FOI

B.6 SAS macro

*GLIMMIX code
proc glimmix data=cohortdata method=laplace NOCLPRINT;
class hhid id siteid(ref=”1”) pinfectstatusandAL(ref=”0”);
model parasitemia = fpcohortage*siteid yearshift*siteid siteid pinfectstatusandAL/ dist=bin
oddsratio link=logit solution;
random intercept/ subject = hhid group=siteid solution;
random intercept / subject = id(hhid) solution;
COVTEST/ WALD;
run;

*Numerical averaging

**Considering children born between 2001 to 2014 as they appear in the data;
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data numaveragingprevfoinc;

do site =1 to 3 by 1; *study sites 1(walukuba),2(kihihi),3(nagongera);

do pinfect =1 to 4 by 1; *infection status 1(negative+no AL), 2(negative+AL), 3(symptomatic),

4(asymptomatic);

do subject=1 to 1000 by 1; *generate 1000 samples;

bi1=rannor(123); bi2=rannor(123); bi3=rannor(123); bi4=rannor(123); *used seed=123 to generate from

standard normal;

d11=0.24;d22=2.80;d33=1.16;d44=0.21;*variances from the final fit, elements in D;

rd11=d11**0.5;rd22=d22**0.5;rd33=d33**0.5;rd44=d44**0.5; *sqrt(S2) to be used in Cholesky decom-

position;

r1=rd11*bi1; r2=rd22*bi2; r3=rd33*bi3; r4=rd44*bi4; *using U+sqrt(S2)*rannor(seed): Note elements in

here are sqrt of elements in D;

do a=0.5 to 11 by 0.1; *generate 1000 samples at each age point in the grid;

do L=0 to 13 by 1; *Repeat the above process for each value of birth year shift (L=year of birth - 2001);

*Parameter estimates;

B0=-3.04;B1=0.86;B2=2.19;B3=-0.01;B4=-0.24;B5=1.23;B6=-0.05;B7=-4.01;B8=-1.75;B9=-

0.13;B10=0.11;B11=0.04;

ap=1/a; *Power of age, age-1;

*Linear Predictors;

lp11=B0+B6*ap+B9*L+r1+r2; lp12=B0+B6*ap+B9*L+B3+r1+r2;

lp13=B0+B6*ap+B9*L+B4+r1+r2;lp14=B0+B6*ap+B9*L+B5+r1+r2;

lp21=B0+B7*ap+B10*L+B1+r1+r3; lp22=B0+B7*ap+B10*L+B1+B3+r1+r3;

lp23=B0+B7*ap+B10*L+B1+B4+r1+r3;lp24=B0+B7*ap+B10*L+B1+B5+r1+r3;

lp31=B0+B8*ap+B11*L+B2+r1+r4; lp32=B0+B8*ap+B11*L+B2+B3+r1+r4;

lp33=B0+B8*ap+B11*L+B2+B4+r1+r4;lp34=B0+B8*ap+B11*L+B2+B5+r1+r4;

*Derivative of linear predictor;

lpder1=-(B6)*(ap*ap); lpder2=-(B7)*(ap*ap); lpder3=-(B8)*(ap*ap);

*Prevalence;

if site=1 and pinfect=1 then pi=exp(lp11)/(1+exp(lp11));

if site=1 and pinfect=2 then pi=exp(lp12)/(1+exp(lp12));

if site=1 and pinfect=3 then pi=exp(lp13)/(1+exp(lp13));

if site=1 and pinfect=4 then pi=exp(lp14)/(1+exp(lp14));

if site=2 and pinfect=1 then pi=exp(lp21)/(1+exp(lp21));

if site=2 and pinfect=2 then pi=exp(lp22)/(1+exp(lp22));

if site=2 and pinfect=3 then pi=exp(lp23)/(1+exp(lp23));

if site=2 and pinfect=4 then pi=exp(lp24)/(1+exp(lp24));

if site=3 and pinfect=1 then pi=exp(lp31)/(1+exp(lp31));
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if site=3 and pinfect=2 then pi=exp(lp32)/(1+exp(lp32));

if site=3 and pinfect=3 then pi=exp(lp33)/(1+exp(lp33));

if site=3 and pinfect=4 then pi=exp(lp34)/(1+exp(lp34));

**FOI;

*Clearance rate of 1.643 for children <1 year as given by Bekessy et al.(1976) is demonstrated, a similar

code can easily be adopted for ages 1-4 years and 5-10 years.;

if site=1 and pinfect=1 and a<1 then foi=1.643*exp(lp11)+ lpder1*exp(lp11)/(1+exp(lp11));

if site=1 and pinfect=2 and a<1 then foi=1.643*exp(lp12)+ lpder1*exp(lp12)/(1+exp(lp12));

if site=1 and pinfect=3 and a<1 then foi=1.643*exp(lp13)+ lpder1*exp(lp13)/(1+exp(lp13));

if site=1 and pinfect=4 and a<1 then foi=1.643*exp(lp14)+ lpder1*exp(lp14)/(1+exp(lp14));

if site=2 and pinfect=1 and a<1 then foi=1.643*exp(lp21)+ lpder2*exp(lp21)/(1+exp(lp21));

if site=2 and pinfect=2 and a<1 then foi=1.643*exp(lp22)+ lpder2*exp(lp22)/(1+exp(lp22));

if site=2 and pinfect=3 and a<1 then foi=1.643*exp(lp23)+ lpder2*exp(lp23)/(1+exp(lp23));

if site=2 and pinfect=4 and a<1 then foi=1.643*exp(lp24)+ lpder2*exp(lp24)/(1+exp(lp24));

if site=3 and pinfect=1 and a<1 then foi=1.643*exp(lp31)+ lpder3*exp(lp31)/(1+exp(lp31));

if site=3 and pinfect=2 and a<1 then foi=1.643*exp(lp32)+ lpder3*exp(lp32)/(1+exp(lp32));

if site=3 and pinfect=3 and a<1 then foi=1.643*exp(lp33)+ lpder3*exp(lp33)/(1+exp(lp33));

if site=3 and pinfect=4 and a<1 then foi=1.643*exp(lp34)+ lpder3*exp(lp34)/(1+exp(lp34));

output;

end; end; end; end; end; run;

*sort data;

proc sort data= numaveragingprevfoinc; by a site pinfect L;run;

*Get means;

proc means data= numaveragingprevfoinc; var pi foi; by a site pinfect L; output out=outpifoinc; run;

*Keep data for marginalized means;

data marginalizedprevandfoinc; set outpifoinc; where stat =’MEAN’; run;



Appendix C
Appendix – Chapter 6

In this appendix, we present additional results and methods plus the R code and the
SAS macro for the work covered in Chapter 6. In particular, Section C.1 presents ex-
tra results for the simulation study described in Section 6.5 of Chapter 6. Section C.2
presents a methodology accounting for interval-censored infection times with appli-
cation to the PRISM study (see Section 3.1 in Chapter 3). Subsection C.2.2 presents
the fit statistics (Table C.2) for the models fitted to the PRISM data by assuming
different parametric distributions for the underlying age-specific malaria FOI. The
rest of the content in this appendix is clearly referred to in Chapter 6.

C.1 Simulation study

Table C.1: Average number of malaria episodes, by varying percentage of assumed symp-
tomatic infections (P). The labels C+R+ and R+C+ represent positive results at two near-by
visits (C = clinical and R = routine) with the second observation deleted.

All data Data for scenario 4
Clinical C+R+ R+C+ Clinical

P N % % % N %
20% 21832 8.4 0.2 0.03 21781 8.3
40% 22678 11.8 0.4 0.05 22576 11.8
60% 23520 15.0 0.6 0.07 23370 15.1
80% 24368 17.9 0.7 0.09 24169 18.2
100% 25218 20.7 0.9 0.10 24971 21.2
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Figure C.1: Sensitivity analysis for bias, MSE and variance obtained using scenario 4 by
considering different number of days (1 week interval) between two consecutive visits with
positive results. Bias and MSE are minimal if positive results observed within 35 days are
considered to be of the same infection. C+ and R+ represent positive result/infection at
clinical and routine visits, respectively.

C.2 Data application

C.2.1 Interval-censored infection times

Interval censoring occurs if the time at risk TAR is only known to lie between two time
points. In the PRISM study, the time to the second, third or the n-th infection is
only known to lie between the point the child is tested positive and the point he/she
first tested negative after recovering from the previous infection. Generally, if the
real time at risk tAR for the n-th infection of an individual of age a when becoming
susceptible again at calendar time t(n−1), lies between tL and tU , then the probability
density function for the time at risk is given by

fIC(tAR|a) = P (tL ≤ TAR ≤ tU |a) = F (tU |a)− F (tL|a)

= S(tL|a)− S(tU |a), (C.1)

where fIC(tAR|a) is the modified density function for interval-censored data (tAR, a);
S(tL|a) and S(tU |a) are the conditional survival functions evaluated in tL and tU ,
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respectively, i.e., for tL,

S(tL|a) = e
−
∫ a+tL
a

λ∗(u)du
,

where λ∗(u) is the infection hazard (for symptomatic infections). In case of expo-
nential infection times, we have λ∗(u) ≡ λ∗(u|x) = ϑ1e

ζ′x and S(t|a) = e−ϑ1e
ζ′xt,

which implies

fIC(t|a) = e−ϑ1e
ζ′xtL − e−ϑ1e

ζ′xtU .

Alternatively, for the Weibull and Gompertz distributions, it is straightforward to
obtain similar expressions based on the expressions for the hazard functions in Table
6.1 in the main text. Finally, in case of the fractional polynomial model, we have
λ∗(u) ≡ λ∗(u|x) = −ϑ2u

−2eϑ2u
−1
eζ
′x and

S(t|a) = e
−eζ

′x
[
eϑ2(a+t)−1

−eϑ2a−1]
.

Note that in case the first event recorded for an individual of age a is a clinical
malaria infection, the time at risk lies in the interval [tL, tU ] = [toAR, (a − ν) + toAR]
where toAR is the observed time at risk, a is the age of the individual at the entry
of the study, and 0 ≤ ν ≤ a is the age of the individual when becoming susceptible
after the last infection prior to the inclusion into the study, thereby giving rise to
a contribution S(toAR|a, ν = 0) − S((a − ν) + tAR|a, ν) to the likelihood function.
Since ν is unknown, we need to marginalize over the probability density function
of the random variable ν. However, this leads to complicated expressions for the
likelihood function, hence, in this manuscript, we take S(toAR|a) − S(a + toAR|0) as
likelihood contribution, implying that [tL, tU ] = [toAR, a + toAR], and we consider the
aforementioned marginalization strategy as further research which is beyond the
scope of this paper. Hereunder, we describe 4 possible situations for the treatment of
interval censoring in the PRISM study. First, let t(n) be the calendar time at which
one tests positive for the n-th infection (n > 1), t(n−1) the point at which one first
tests negative from the (n− 1)-th infection, and t∗(n−1) be the calendar time one was
last observed positive for the (n− 1)-th infection.

Situation 1: If t(n−1) and t(n) are exactly the points when one becomes susceptible
and infected, respectively, then time at risk, tAR = t(n) − t(n−1). In this case there
is no interval censoring and the contribution to the likelihood is simply f(tAR|a),
where a is the age of the individual at time t(n−1).
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Situation 2: If t(n−1) is exactly the point when one becomes susceptible, then the
time at risk, tAR ∈ [0, t(n) − t(n−1)], meaning that tL = 0 and tU = t(n) − t(n−1).
Consequently, a represents the age of the individual at time t(n−1) in likelihood
contribution (C.1).

Situation 3: If t(n) is exactly the point when one becomes infected, then the
time at risk, tAR ∈ [t(n) − t(n−1), t(n) − t∗(n−1)], meaning that tL = t(n) − t(n−1),
tU = t(n) − t∗(n−1) and a represents the age of the individual at calendar time t∗(n−1).

Situation 4: If t∗(n−1) is exactly the point when one becomes susceptible, then the
time at risk, tAR ∈ [0, t(n) − t∗(n−1)], meaning that tL = 0, tU = t(n) − t∗(n−1) and a

represents the age of the individual at calendar time t∗(n−1).

The statistical analysis presented in this paper is based on Situation 2, though the
other situations are also plausible and worth considering, albeit that these scenarios
are all approximations of the thruth. The impact of assumming Scenarios 3–4 on
inference was found to be minor and the conclusions did not change.

C.2.2 Fit statistics

Table C.2: Fit statistics for models fitted to PRISM data based on scenario 2 and 4 by
study site. Better fits for each site and scenario based on AIC are indicated in bold.

Site Fit statistic Exponential Weibull Gompertz Fractional polynomial
SCENARIO 2:
Walukuba: AIC 1902.6 1867.7 1867.0 1867.8

BIC 1921.9 1889.8 1889.1 1889.8
Kihihi: AIC 6446.5 6440.1 6411.1 6492.6

BIC 6465.2 6461.5 6432.5 6513.9
Nagongera: AIC 9864.8 9863.0 9866.0 9889.1

BIC 9883.6 9884.4 9887.4 9910.5
SCENARIO 4:
Walukuba: AIC 2012.0 2008.3 1992.4 2092.3

BIC 2039.6 2049.0 2025.6 2122.7
Kihihi: AIC 6683.8 6028.1 5975.8 7345.5

BIC 6710.5 6060.2 6007.9 7384.1
Nagongera: AIC 9554.4 9327.2 9304.6 10373

BIC 9581.1 9359.3 9336.6 10403
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C.3 R code

## Figure 6.2 (top left)

plot(subset(margprevfoiSc2Nag, L==0 & pinfect==3, select = c(a, pi)), ylim=c(0,1), type=’l’, lwd=2.,

xlab=”Age (years)”, ylab=”Marginal Prevalence”, col=”blue”, cex.axis=1.3, cex.lab=1.5)

lines(subset(margprevfoiSc4Nag, L==0 & pinfect==3, select = c(a, pi)), lwd=2, lty=2, col=”red”)

legend(”topleft”, c(”Scenario 2”, ”Scenario 4”), lty=c(1,2), col=c(”blue”, ”red”), lwd=2, cex=1.5, bty=’n’)

## Figure 6.3 (Nagongera)

# Top left figure

# Store data of mean FOI by age group

datmeansNag = read.table(text = ”A B C

1 0.086 0.330 5.184

2 0.053 0.137 2.285

3 0.024 0.045 0.577

4 0.100 0.407 6.817”, header = TRUE)

barplot(as.matrix(datmeansNag), col=terrain.colors(4), ylim=c(0,15), ylab=”Marginal annual FOI”,

cex.lab=1.4, cex.axis=1.2)

legend(”topleft”, legend = c(”Negtive, no AL”, ”Negative, AL”, ”Symptomatic”, ”Asymptomatic”),

fill=terrain.colors(4), cex=1.3, title=””, bty=’n’)

text(0.8, 6, cex=1.3, paste(”A:”, ’<1 year ’))

text(0.8, 4.8, cex=1.3, paste(”B:”, ’1-4 years ’))

text(0.8, 3.6, cex=1.3, paste(”C:”, ’5-10 years’))

# Bottom left figure

maxfoitNag=max(subset(margfoiSc4Nag, select = c(foit)))

plot(subset(margfoiSc4Nag, select = c(t, foit)), ylim=c(0,maxfoitNag), type=”n”, lwd=2, xlab=”Time at

risk (years)”, ylab=”Marginal annual FOI”, cex.axis=1.3, cex.lab=1.5)

lines(subset(margfoiSc4Nag3, a==1, select = c(t, foit)),lwd=2, lty=1, col=”green”)

lines(subset(margfoiSc4Nag3, a==2, select = c(t, foit)),lwd=2, lty=1, col=”red”)

lines(subset(margfoiSc4Nag3, a==3, select = c(t, foit)),lwd=2, lty=1, col=”blue”)

lines(subset(margfoiSc4Nag3, a==4, select = c(t, foit)),lwd=2, lty=1, col=”orange”)

legend(0, 10, c(”1 year”, ”2 years”,”3 years”, ”4 years”), col=c(”green”,”red”,”blue”,”orange”),lwd=2,

cex=1.5, bty=’n’)

legend(-0.2,11.5, ”Age”, bty = ”n”, cex=1.4)
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C.4 SAS macro

**Scenario 2: Gompertz distribution, Walukuba site;
proc nlmixed data=Cohortfulldata1 maxiter=100 NOAD;
where siteid=1;
parms B3=-0.3514 B4=-0.4549 B5=1.1101 B9=0.1079 logalpha = -4.3486 beta = -0.1 logsigma12=-2.1711
logsigma22=0.4327;
alpha = exp(logalpha);
sigma12 = exp(logsigma12);
sigma22 = exp(logsigma22);
b=bi1+bi2;
ha = log((alpha/beta)*(exp(beta*cohortage)-1));
fBX= B3*PT3 + B4*PT1 + B5*PT2 +B9*yearshift;
eta=ha + fBX;
p=1-exp(-exp(eta+b));
if p=0 then p=1e-10;
if p=1 then p=0.9999999;
ll = parasitemia*log(p) + (1-parasitemia)*log(1-p);
model parasitemia ∼ general(ll);
random bi1 ∼ normal(-sigma12/2,sigma12) subject = id(hhid);
random bi2 ∼ normal(-sigma22/2,sigma22) subject = hhid;
estimate ’alpha’ alpha;
estimate ’B0’ logalpha;
run;

**Scenario 4: Gompertz distribution, Walukuba site;
proc nlmixed data=PRISMdatamodel MAXITER=1000 lognote = 3 ITDETAILS;
where siteid=1;
parms logalpha1=-2.2623 logalpha2=1.2151 B3=0.08546 B4=-0.4951 B5=1.3604 B9=0.07841 E9=0.03941
logsigma12=-1.3128 logsigma22=-0.05639
beta1=-1 beta2=-0.1 logp0=-0.1;
sigma12 = exp(logsigma12);
sigma22 = exp(logsigma22);
alpha1=exp(logalpha1);
alpha2=exp(logalpha2);
p0=exp(logp0)/(1+exp(logp0));
*Random effects vector;
b=bi1+bi2;
*Outcome model;
ha=log(alpha1/beta1*(exp(beta1*cohortage)-1));
fBX= B3*PT3 +B4*PT1 +B5*PT2 +B9*yearshift;
eta=ha + fBX;
p=1-exp(-exp(eta+b));
if p=0 then p=1e-10; *Correction for termination in case of log(0) while maximizing the likelihood;
if p=1 then p=0.9999999; *Correction for termination in case of log(1-1) while maximizing the
likelihood;
*Time model;
fEX= E9*yearshift;
fLT=exp(-alpha2/beta2*exp(fEX+b)*(exp(beta2*(cohortage + timeyrsatrisk))-exp(beta2*cohortage))) -
exp(-alpha2/beta2*exp(fEX+b)*(exp(beta2*(cohortage + timeyrsatrisk))-1));
fIC=1-exp(-alpha2/beta2*exp(fEX+b)*(exp(beta2*(cohortage + timeyrsatrisk))-exp(beta2*cohortage)));
if delta=0 then
ll = parasitemia*log(p) + (1-parasitemia)*log(1-p);
else if delta=1 and parasitemia=0 then
ll = (1-parasitemia)*log(p0);
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else if delta=1 and tau=1 then
ll = log(1-p0)+log(fLT);
else
ll = log(1-p0)+log(fIC);
model parasitemia general(ll);
random bi1 ∼ normal(-sigma12/2,sigma12) subject = id(hhid);
random bi2 ∼ normal(-sigma22/2,sigma22) subject = hhid;
estimate ’alpha1’ alpha1;
estimate ’alpha2’ alpha2;
estimate ’B0’ logalpha1;
estimate ’p0’ p0;
estimate ’sigma12’ sigma12;
estimate ’sigma22’ sigma22;
run;

**Numerical averaging: Scenario 4: Gompertz distribution, Nagongera site;
**For the outcome process, a SAS macro similar to that in Section 6.8.6 was used
*Time process;
data numavgfoiSc4Nag;
*Add global parameters; zeta=0.92; vartheta1=0.0006; vartheta2=1.03; d11=0.94; d22=0.37;
do subject=1 to 1000 by 1;
bi1=rannor(123); bi2=rannor(123); *randomise from standard normal, for cholesky decomposition;
rd11=d11**0.5; rd22=d22**0.5; *For cholesky decomposition;
r1=rd11*bi1; r2=rd22*bi2; *cholesky decomposed variances;
do L=0 to 13 by 1;
do a=1 to 10 by 1;
do t=0.1 to 5.0 by 0.1;
*random effects;
b=r1+r2;
*Time component of the model;
lambda0at=vartheta1*exp(vartheta2*(a+t));
lp=zeta*L+b;
*FOI, lambdai(a+t—XB)=lambda0(a+t)Exp(XB);
foit=lambda0at*exp(lp);
output;end;end;end;end;
run;
*sort data;
proc sort data= numavgfoiSc4Nag; by t a L;run;
*Get means;
proc means data= numavgfoiSc4Nag; var foit; by t a L; output out=outfoitNag;
run;
*Keep data for marginalized means;
data margfoiSc4Nag; set outfoitNag; where stat =’MEAN’; run;


