Cardiopulmonary exercise performance in critical aortic valve stenosis: early impact of minimally invasive aortic valve replacement

Hajar Boujemaa, MSc^a; Guido Claessen, MD^b; Elise Bakelants, MD^b; Allaadin Yilmaz, MD^c; Boris Robic, MD^c; Ines Frederix, MD^{a,b,d}; Paul Dendale, MD, PhD, FESC^{a,b}; Dominique Hansen, PhD, FESC^{a,b}

aREVAL (Rehabilitation Research Centre), and BIOMED (Biomedical Research Centre), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department of Cardiothoracic Surgery, Jessa Hospital, Hasselt, Belgium; Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium; dFaculty of Medicine and Health Sciences, Antwerp University, Antwerp, Belgium

Background

Minimally invasive aortic valve replacement (mini-AVR) is more often executed during last decade because of many clinical advantages. To improve optimized post-operative care and treatment after mini-AVR, the focus in previous studies is laid on hard endpoints (mortality and adverse cardiovascular events) only.

However, 'softer' endpoints and functional outcome parameters should be considered often during follow-up after more cardiothoracic surgery. This makes intervention possible in case of anomalous recovery.

Objectives

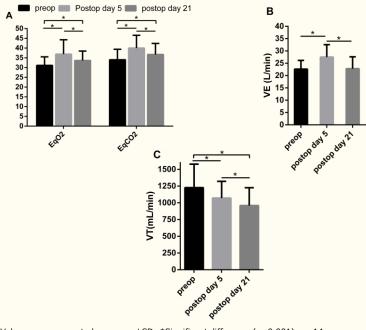
To investigate, for the first time, changes in cardiopulmonary and muscular function during endurance exercise early after mini-AVR \rightarrow greater understanding of how recovery is manifested.


Past physical activity (Baecke guestionnaire)

Transthoracic echocardiography Cardiopulmonary

Submaximal

exercise testing


Results

Variable	Healthy controls	AS patients	p-value
	n = 22	n = 22	
Cycling power output (W)	26±5	26±6	0,848
RER	0,87±0,10	0,92±0,04	0,002*
Lactate (mmol/L)	3,2±0,9	3,1±1,4	0,257
Borg ratings of perceived exertion	9,1±1,5	9,9±2,4	0,392
VO2 (mL/min)	884±125	736±126	0,001*
VCO2 (mL/min)	772±138	678±129	0,061
O2 pulse (ml/beat)	9,8±2,0	8,5±1,2	0,049*
VE (L/min)	22,8±4,8	22,6±3,5	0,884
Equivalent O2	25,7±2,9	31,1±4,4	0,002*
Equivalent CO2	30,6±7,6	34,0±5,3	0,004*
Vt (mL)	1186±320	1053±352	0,274

Values are represented as means±SD. RER: respiratory gas exchange ratio; VO2: Oxygen uptake; VCO2: Carbon dioxide output; VE: Expiratory volume; Vt: Tidal volume. *Significant difference between healthy controls and AS patients (p<0,05).

Figure 1: Changes in pulmonary response to exercise in AS patients after mini-AVR

Values are represented as means \pm SD; *Significant difference (p<0,001); n=14

Conclusion

Despite improved aortic valve area, early postoperative treatment should be optimized to specifically improve ventilatory function

