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Abstract

This paper is concerned with statistically and computationally efficient estimation in a hierar-

chical data setting with unequal cluster sizes and an AR(1) covariance structure. As in Hermans

et al. (2016) for the compound-symmetry model, the pseudo-likelihood and split-sample meth-

ods of Fieuws and Verbeke (2006) and Molenberghs et al. (2011) are used. Maximum likelihood

estimation for AR(1) requires numerical iteration when cluster sizes are unequal. A near opti-

mal non-iterative procedure is proposed. Results show that the method is statistically nearly as

efficient as maximum likelihood, but shows great savings in computation time.

Some Keywords: Maximum Likelihood; Pseudo-likelihood; Unequal cluster size.

1 Introduction

It is common for the number of study units in a design, the sample size, to be fixed a priori . However,

there are many exceptions to this. Molenberghs et al. (2014) provides an overview of such designs.

Some examples are sequential trials, for which the sample size is determined by a stopping rule,
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missing data, and censored time-to-event data. The focus of this paper is hierarchical data where

independent replicates take the form of compound units, generically termed clusters. Clustering

can occur in many settings, for example, longitudinal data, toxicology (Aerts et al., 2002), cluster

randomized trials and, more generally, multi-level designs. The sizes of the resulting clusters can

be fixed by design, or may be random. Random sample sizes can be due to missingness in the

data, governed by a stochastic mechanism. And, in some cases, the cluster sizes may be associated

with the outcomes, often termed ‘informative cluster sizes’, see for example Williamson, Datta, and

Satten (2003); Benhin, Rao, and Scott (2005); Hoffman, Sen, and Weinberg (2001); Cong, Yin,

and Shen (2007); Chiang and Lee (2008); Wang, Kong, and Datta (2011); Aerts et al. (2011).

However, our interest here is not on informative cluster sizes, but rather unequal cluster sizes that

are themselves independent of observed and unobserved outcomes. We concentrate solely on the

non-constant nature of the cluster sizes, for which joint modelling of outcomes and cluster size is

not required.

Hermans et al. (2016) considered the setting of normally distributed clustered data with a

compound-symmetry (CS) structure for the dependency, that is, a three-parameter multivariate

normal model with a common mean µ, a common variance σ2 + d, and a common covariance d.

Hermans et al. (2016) showed that, unless the clusters are of the same size, the sufficient statistics

are incomplete and the maximum likelihood estimators (MLEs) do not have closed-form solutions.

By contrast, if the clusters are all the same size, and hence also within a subset of clusters of

the same size, a closed form solution does exist for the MLEs: sufficient statistics are complete

and the estimators are minimum variance unbiased. Molenberghs et al. (2011) studied the CS

case and proposed a pseudo-likelihood split-sample approach, as follows. The original sample is

divided into subsamples. Maximum likelihood estimation is separately applied to each subsample

and the resulting subsample-specific estimators are averaged using appropriate weights. Appropriate

measures of precision for the combined estimators are then obtained. In the current setting it is

natural, with this approach, to define the subsamples according to the cluster size (Hermans et al.,

2016). When the number of clusters and/or the cluster sizes are very large, standard iterative MLE

computation times can become prohibitive. By contrast, the non-iterative nature of the split sample

approach can lead to much lower computation times. For the CS setting, Hermans et al. (2016)

show that weights proportional to the cluster sizes perform very well for combining the individual

estimators.

Although the CS covariance structure is a natural model for settings that exhibit within-cluster
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symmetry, other settings, such as longitudinal designs, need to be handled. For these we might

consider the first-order autoregressive, AR(1), structure, where it is assumed that the correlation

between two measurements changes exponentially over time, that is, σij = σ2ρ|i−j|. This implies

that the variance of the measurements is a constant σ2 and the covariance decreases with increasing

time lag. In this paper, we apply the split-sample method to the normal AR(1)-model, which has

three parameters, a common mean µ, a common variance σ2, and correlation parameter ρ. An

important question will be the appropriate choice of weights in such a setting.

As a motivating example, we consider five clinical trials in schizophrenia. These data were

collected from five double-blind randomized clinical trials to compare the effects of two treatments

for chronic schizophrenia: risperidone and conventional antipsychotic agents. Subjects who received

doses of risperidone (4–6 mg/day) or an active control (haloperidol, perphenazine, zuclopenthixol)

have been included in the analysis.

Patients were clustered within country, and longitudinal measurements were made on each subject

over time. The number of patients ranges from 9 tot 128 per country with a total of 2039. The

positive and negative syndrome scale (PANSS) was used to asses the global condition of a patient.

This scale is constructed from 30 items, each taking values between 1 and 7, giving an overall range

of 30 to 210. PANSS provides an operationalized, drug-sensitive instrument, which is useful for

both typological and dimensional assessment of schizophrenia. Depending on the trial, treatment

was administered for a duration of 48 weeks with at most 12 monthly measurements. Because not

all subjects received treatment at the same time points and, not the same amount, the final dataset

is unbalanced.

This dataset was also analyzed from a surrogate markers point perspective in Alonso et al.

(2004). The focus here is on the treatment effect, accommodating the longitudinal nature of the

response.

The rest of paper is organised as follows. In Section 2 the model formulation is given. In

Section 3 the estimators for a single constant cluster size are presented. The (in)completeness

property is outlined in Section 4, and in Section 5 various weighting schemes for clusters of unequal

size are explored. In Section 6, a simulation study is described for the investigation of the performance

of the suggested weights and the data are analysed in Section 7. The closing discussion is presented

in Section 8. Some additional background material is available in a separate, web-based appendix1.

1Available at https://ibiostat.be/online-resources.
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2 Model Formulation

Suppose that there is a sample of N independent clusters, among which K different cluster sizes nk

(k = 1, . . . ,K) can be distinguished. Let the multiplicity of cluster size nk be ck. The total number

of clusters is then N =
∑K

k=1 ck. Denote the outcome vector for the ith (i = 1, . . . , ck) replicate

among the clusters of size nk by Y
(k)
i .

All models considered in this paper will be versions of the following general linear mixed model:

Y
(k)
i |bi

(k) ∼ N(X
(k)
i β + Z

(k)
i bi

(k),Σ
(k)
i ), (1)

bi
(k) ∼ N(0,D), (2)

where β is a vector of fixed effects, and X
(k)
i and Z

(k)
i are design matrices. In what follows, we

consider an AR(1) covariance structure, in which case the term Z
(k)
i bi

(k) drops from (1), while

Σ
(k)
i = σ2Cnk

, with entry (r, s) equal to ρ|r−s|. For ease of exposition, the mean structure will often

be taken to be µ1nk
, with 1nk

an nk column vector of ones.

Note that this is very different from the a so-called balanced conditionally independent model.

The contrast between this setting and the AR(1) model holds some useful insight. The interested

reader can find details about this in the separate Appendix A.

3 Estimators

We begin by assuming that there is only one cluster size occurring, that is, nk ≡ n and the index

k will be dropped from notation throughout this section. The resulting expressions are required for

our eventual goal, clusters with variable size, which we reach in Section 5.

Again, for the present, we confine attention to clusters of constant size n. (For the purpose of

identifiability we assume that there are clusters of size at least two.) Consequently, all dimension-

indication subscripts nk on matrices and vectors can be dropped until we reach Section 5. The

AR(1) model of Section 2 can then be written as:

Y i ∼ N
(
Xiβ,Σ = σ2C

)
.

Because C ≡ C(ρ), the parameter vector is θ = (β′, ρ, σ2). When the mean is constant µi =

Xiβ = µ1. It is often stated that the MLE for the AR(1) model, with a constant or more elaborate

mean structure, requires numerical iteration. This is certainly the case when not all clusters are of
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the same size. However, in the constant cluster size case considered here, there is a closed-form

solution. Our development follows, in part, Kenward (1981).

For c clusters of length n, the kernel of the log-likelihood takes the form:

ℓ ∝ −
c

2
ln |Σ| −

1

2

c∑

i=1

(yi − µi)
′Σ−1(yi − µi). (3)

The score equation for the mean produces, as usual:

β̂ =
1

c

c∑

i=1

(X ′
iΣ

−1Xi)
−1(X ′

iΣ
−1Y i). (4)

Consider (4) for the case of a constant mean. If Σ corresponds to independence or compound-

symmetry, the MLE for µ is the ordinary sample average, it does not depend on covariance parame-

ters. For a general design β is estimated by the OLS estimator. However, in our AR(1) case, solving

the score equations leads to:

µ̂ =
1

c[(n − 2)(1 − ρ) + 2]

c∑

i=1




n∑

j=1

Yij − ρ

n−1∑

j=2

Yij


 . (5)

Not only does (5) depend on ρ (hence the MLE for ρ needs to be plugged in), it differs from the

OLS:

µ̃ =
1

cn

c∑

i=1

n∑

j=1

Yij. (6)

It follows easily that, when ρ = 0 both estimators are the same, as it should. Interestingly, when

ρ = ±1:

µ̂(ρ = +1) =
1

c

c∑

i=1

Yi1 + Yin

2
,

µ̂(ρ = −1) =
1

c(n− 1)

c∑

i=1




n∑

j=1

Yij −
Yi1 + Yin

2


 .

Turning to the score equations for the variance components, ∂ℓ/∂σ2 leads to

σ2 =
1

cn

c∑

i=1

(yi − µi)
′C−1(yi − µi). (7)
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Through C, the right-hand side depends on ρ. For ρ, we find:

σ2 2ρ

1− ρ2
=

1

c(n− 1)

c∑

i=1

(yi − µi)
′F (yi − µi), (8)

with

F =
∂C−1

∂ρ
=

1

(1− ρ2)2
tridiag

{
[2ρ, 4ρ, . . . , 4ρ, 2ρ]′ ;

[
−(1 + ρ2), . . . ,−(1 + ρ2)

]′}
, (9)

and with tridiag(v1,v2) a tri-diagonal matrix with v1 along the main diagonal and v2 on the adjacent

diagonals. Both (7) and (8) contain a summation that can be rewritten as tr(S ·Q), with

S =

c∑

i=1

(yi − µi)(yi − µi)
′

and Q either C−1 or F , as in (9), respectively. Using this formulation, and some straightforward

but tedious algebra, produces:

f(ρ) = (n− 1)S2ρ
3 − (n− 2)Rρ2 − (nS2 + S1)ρ+ nR = 0, (10)

the solution of which is the MLE ρ̂. Here,

S1 =
n∑

j=1

sjj, S2 =
n−1∑

j=2

sjj, R =
n−1∑

j=1

sj,j+1. (11)

These can be plugged into (5) to obtain µ̂ and into:

σ̂2 =
1

c
·

1

1− ρ̂2
(
S1 + ρ̂2S2 − 2ρ̂R

)
, (12)

to obtain the MLE for σ2.

It is easy to see that f(ρ) has a single root in [−1, 1]. Indeed, f(−∞) = −∞, f(+∞) = +∞,

f(−1) > 0, and f(1) < 0. The other two real roots are therefore in ] − ∞,−1] and [1,+∞[.

The general solution of a third-degree polynomial follows from Cardano’s method. The polynomial

under study was examined by Kenward (1981) who, using results of Koopmans (1942), derived an

expression for the solution inside [−1, 1]. Alternatively, the method of Shelbey (1975) can be used.
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It takes the following form. Write the polynomial symbolically as f(ρ) = aρ3 + bρ2 + cρ+ d, define

p =
3ac− b2

3a2
, q =

2b3 − 9abc+ 27a2d

27a3
,

and further

C(p, q) = 2

√
−
p

3
cos

[
1

3
arccos

(
3q

2p

√
−
3

p

)]
.

For three real roots t0 ≤ t1 ≤ t2, it follows that t0 = C(p, q), t2 = −C(p,−q), and t1 = −t0 − t2.

Finally, ρ̂ = t1 − b/(3a). While not as simple as the other explicit expressions for estimators, the

key point is that it has a closed-form which, in turn, can be used to obtain a closed form solution

for the mean and the variance, using (5) and (12), respectively. Given that it is unambiguously

clear which of the three cubic solutions is the right one, no comparisons are needed, which enhances

computational efficiency.

We now turn to the second derivatives in view of precision estimation. Denote by I the in-

formation matrix. In the usual fashion: Iββ =
∑c

i=1X
′
iΣ

−1Xi. For a simple common mean µ,

this becomes: Iµµ = c [n− (n− 2)ρ] /[σ2(1 + ρ)]. Algebraic derivations, sketched in separate

Appendix B, lead to:

Iσ2ρ,σ2ρ = c




n
2(σ2)2

−n−1
σ2 · ρ

1−ρ2

−n−1
σ2 · ρ

1−ρ2
(n−1)(1+ρ2)

(1−ρ2)2


 . (13)

It is convenient to slightly change (13) to

Ĩσ2ρ,σ2ρ = c




n−1
2(σ2)2 −n−1

σ2 · ρ
1−ρ2

−n−1
σ2 · ρ

1−ρ2
(n−1)(1+ρ2)

(1−ρ2)2


 , (14)

yielding a very simple inverse:

Ĩ−1
σ2ρ,σ2ρ

=
1

c(n− 1)




2(σ2)2(1+ρ2)
1−ρ2

2σ2ρ

2σ2ρ 1− ρ2


 . (15)

4 Complete and Incomplete Sufficient Statistics

The property of central interest in this section is that of completeness (Casella and Berger, 2001,

pp. 285–286). It means that any measurable function of a sufficient statistic, that has the zero

expectation for every value of the parameter indexing the parametric model class, is the zero function

almost everywhere. As has been shown in the sequential trial context, a lack of completeness does
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not preclude the existence of estimators with desirable properties (Molenberghs et al., 2014).

Liu and Hall (1999) established the incompleteness of the sufficient statistic for a clinical trial

with a stopping rule, for the case of normally distributed endpoints. Liu et al. (2006) generalized

this result to the exponential family. Molenberghs et al. (2014) and Milanzi et al. (2016) broadened

it further to a stochastic rather than a deterministic stopping rule. They showed that, while the

maximum likelihood estimator for the mean exhibits some small-sample bias and is not uniformly

best, it still is consistent and asymptotically normal, in most settings, and it is a very reasonable

choice.

Hermans et al. (2016) studied in detail the compound-symmetry model, which is essentially our

model but with the AR(1) variance-covariance matrix replaced by σ2Ink
+dJnk

, Jnk
being an nk×nk

matrix of ones. They showed that, while the CS model yields a complete sufficient statistic when the

cluster size is constant, this is no longer the case when at least 2 different cluster sizes occur. Rather

than the definition of a complete sufficient statistic, they used a convenient characterization (Milanzi

et al., 2015), stating that a sufficient statistic k is complete for a parameter θ in a exponential family

model if and only if θ cannot be transformed 1-1 to a parameterization η with a proper subset η1

such that η = [η′
1,η2(η1)

′]′. In the type of settings that we consider, the minimal sufficient statistic

is complete if it is of the same dimension as the estimator.

In what follows, we will establish completeness for the balanced conditional independence model,

with the reverse holding for AR(1) model. So, in contrast to the balanced growth curve model and

the compound-symmetry model with constant cluster size, an AR(1) model with constant cluster

size does not allow complete sufficient statistics. This leads to some surprising results in the AR(1)

case, as well as in a number of related settings of a temporal and/or spatial nature. Some of these

have been alluded to in the literature of the interbellum and the early post-war period.

4.1 Balanced Conditionally Independent Model.

This model of which the estimators are spelt out in Section A, obviously admits a complete minimal

sufficient statistic because the numbers of sufficient statistics (A.1)–(A.4) and estimators match

(A.5)–(A.8).
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4.2 AR(1) Model

The mean estimator (5) consists of two sufficient statistics:

K1 =

c∑

i=1

n∑

j=1

Yij , K2 =

c∑

i=1

n−1∑

j=2

Yij , (16)

with the sufficient statistics for σ2 and ρ spelt out in (11). In other words, the three-component vector

θ = (µ, σ2, ρ)′ has a minimal sufficient statistic (K1,K2, S1, S2, R) of dimension 5, establishing

incompleteness.

Even though the AR(1) model has not been studied before from the perspective of incomplete

sufficient statistics, its ramifications have been mentioned in the literature. For example, as described

by Martin (2006), Papadakis proposed, as early as 1937, a correction to the least-squares estimator

for correlated observations arising in such settings as adjoining plots designs (Papadakis, 1937;

Bartlett, 1938, 1976, 1978). The topic was also touched upon by Cochran and Bliss (1948), in

the context of discriminant analysis combined with analysis of covariance. Clearly, the opportunity

for such an ad hoc correction arises from the incompleteness. Martin (2006) and earlier authors

discussing Papadakis’ method refer to the somewhat unusual dependence of the mean estimator on

the variance components. This parallels the property of the MLE for the mean in the AR(1) case,

as in (5). Indeed, because ρ is estimated from solving a third-degree polynomial with coefficients

that are functions of the sums of squares and cross-products matrix, it too is a function of such

deviations. Of course, the ρ in our case is more complex than Papadakis’ correction, which was

more of an ad hoc nature, while our estimator is the solution to the likelihood equations. In essence,

Papadakis’ method builds a covariate from deviations observed from adjacent plots. Especially when

the plots are arranged as a linear array, the connection with AR(1) is strong. Both non-iterative and

iterative versions were proposed by Papadakis. In the iterative case, the covariate is re-built after

every iteration, using the current value of the parameters. In more general settings, the data have

a spatial layout.

In all of these cases, dependency on adjacent observations gives rise to tri-diagonal matrices, like

C−1 in the AR(1) setting.

Cochran and Bliss (1948, p. 172) noted that the relative efficiency of the estimators with or

without the use of covariance is not uniformly larger or smaller than one, but that for sufficiently

large sample sizes the difference between them is small. This is entirely consistent with our findings

for the AR(1) case. For Papadakis’ method, the impact on bias and efficiency is described by Martin
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(2006). We refer to our simulations in Section 6.

Because there is no complete minimal sufficient statistic, the MLE is not a priori guaranteed to

be optimal. Any claims of optimality need to be demonstrated directly.

Proposition 1. In the AR(1) model with constant mean µ and variance-covariance parameters σ2

and ρ, and with constant cluster size, the MLE for µ is optimal (in the sense of asymptotically most

efficient) and linear in the observations, with weights that depend on the parameters only through

ρ.

Note that this is not the ordinary uniform optimality. In case we demand an estimator that does

not depend on the parameters at all, it cannot be uniformly more efficient than the MLE, implying

that there is no such uniform estimator. The proof is given in separate Appendix B.4. This results

offers the opportunity to consider estimators, based on weighting that, while not statistically fully

efficient, have computational advantages such as stability (e.g., by being entirely non-iterative) and

speed.

Proposition 2. The result of Proposition 1 easily generalizes to a mean of the form µ = Xβ, when

the design is constant among clusters.

5 Clusters Of Variable Size

Hermans et al. (2016) studied various weighting schemes for clusters of unequal size in the compound-

symmetry case. Their work was rooted in the pseudo-likelihood and split-sample methods of Fieuws

and Verbeke (2006) and Molenberghs et al. (2011). We will not reproduce their entire argument

here, it suffices to focus on the following two-stage procedure:

1. Consider the MLE estimator for each of the K strata, defined by cluster sizes nk and with ck

replicates. Denote these estimators generically by θ̂k, with variance Vk.

2. Combine the θ̂k in an overall estimator

θ̃
∗

=

K∑

k=1

Akθ̂k, (17)

var(θ̃
∗
) =

K∑

k=1

AkVkA
′
k. (18)

Hermans et al. (2016) showed that the sum of the weight matrices should be the identity matrix,
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an obvious result, and considered, among others, the optimal expression:

Aopt
k =

(
K∑

m=1

V −1
m

)−1

V −1
k . (19)

In the AR(1) case the mean and the variance components are asymptotically independent, hence we

can consider them separately. Of course, the variance components are still dependent among them.

For a general mean structure µ
(k)
i = X

(k)
i β, Vk =

∑ck
i=1X

(k)
i Σ−1

k X
(k)′

i , and the above can be

applied. Note that Σk = σ2Ck with Ck the AR(1) correlation matrix of dimension nk.

Using optimal weights the β coefficients can then be estimated by:

β̃ =

(
K∑

k=1

ck∑

i=1

X
(k)′

i C−1
k X

(k)
i

)−1( K∑

k=1

ck∑

i=1

X
(k)′

i C−1
k Y

(k)
i

)
. (20)

In the special case that the mean is constant, all X
(k)
i are vectors of ones and then

var(µ̂k) = vk =
σ2(1 + ρ)

ck
·

1

[nk − (nk − 2)ρ]
. (21)

The optimal weight is then

ak =
ck [nk − (nk − 2)ρ]∑K

m=1 cm [nm − (nm − 2)ρ]
. (22)

It is insightful to consider (22) in a few special cases:

ak(ρ = 0) =
cknk∑K

m=1 cmnm

,

ak(ρ = 1) =
ck∑K

m=1 cm
,

ak(ρ = −1) =
ck(nk − 1)

∑K
m=1 cm(nm − 1)

.

Note that, even though the matrix C is singular for ρ = ±1, by taking limits, expressions can

be found also for these cases. For every ρ 6= 1, it follows that if the nk are sufficiently large:

ak ≈ ak(ρ = 0). This implies that in a broad range of cases, except when ρ = 1 (or very close to it),

the weights are proportional to the number of observations in a stratum, i.e., cknk. We term these

size-proportional weights. When ρ = 1 (a case where AR(1) and compound-symmetry coincide),

the weights are instead proportional , that is, proportional to ck.

How well the approximation works is seen in a few special cases. When ρ = 0.5, ak ∝ ck(nk+2);

for ρ = 0.9 this becomes ak ∝ ck(nk + 18); finally for ρ = 0.99, we find ak ∝ ck(nk + 198). Thus,
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for larger correlations, the size-proportionally matches clusters of sizes much larger than actually

observed. But again, in practice, it is convenient and reasonable to operate under size-proportionality.

When estimating the variance of

µ̃ =

K∑

k=1

akµk, (23)

using (22), the fact that the weights depend on ρk needs to be taken into account. Applying the

delta method to (23), and using the variance expressions in both (21) and (15), we find:

var(µ̃) =

∑K
k=1 a

′
kσ

2
k(1 + ρk)(∑K

k=1 a
′
k

)2 +

∑K
k=1

[
ck(nk − 2)

∑K
m=1 a

′
m(µk − µm)

]2 1−ρ2
k

ck(nk−1)
(∑K

k=1 a
′
k

)4 . (24)

We can plug in the stratum-specific ρ̂k and σ̂2
k, or instead use the overall ρ̂ and σ̂2. In the latter

case, (24) becomes:

var(µ̃) = σ2(1 + ρ)

{
1

∑K
k=1 a

′
k

}
+ (1− ρ2)





∑K
k=1

ck(nk−2)2

(nk−1)

[∑K
m=1 a

′
m(µk − µm)

]2

(∑K
k=1 a

′
k

)4





. (25)

Turning to the variance components, we start from (14), and use V −1
k ck(nk − 1)P with

P =




1
2(σ2)2 − 1

σ2 · ρ
1−ρ2

− 1
σ2 · ρ

1−ρ2
1+ρ2

(1−ρ2)2


 .

Now, clearly, the form of P does not matter because it does not depend on ck and nk, that is, it is

free of stratum-specific quantities. This leads to:

Ak =
ck(nk − 1)∑K

m=1 cm(nm − 1)
P−1P =

ck(nk − 1)∑K
m=1 cm(nm − 1)

I2,

with I2 the identity matrix of dimension 2. There are several implications. First, the two variance

components have a diagonal weight matrix, implying that mean, variance, and correlation can be

treated separately. Second, the variance and correlation have the same sets of weights. Third, they

are identical to the weights for the mean when ρ = −1. Fourth, because these in themselves are

similar to size-proportional weights, we can simplify calculations considerably, especially in large data

sets, as follows:

1. Compute µ̂k, σ̂
2
k, and ρ̂, using the available closed-form expressions for the MLE.

12



Estimation in AR(1) Models Hermans et al.

2. Construct a weighted average of these using size-proportional weights.

Given that the MLE for unequal cluster sizes does not exist in closed form and hence requires

iteration, this two-stage approach is nearly optimal, non-iterative, and hence fast.

Algebraic details on formulas can be found in separate Appendix B.5 and B.6.

6 Computational Considerations and Simulation Study

In the compound-symmetry covariance structure case it has been seen that the proportional weights

perform very well. Due to a constant correlation d, additional observations within a cluster contribute

increasingly less information relative to that already observed. By contrast, with an AR(1) covariance

structure, the roles of ck and nk are quite different.

A first simulation study was carried out to compare the use of proportional and size-proportional

weights with respect to changes in ρ. The number of clusters ck is considered large, but the sizes

nk small. These have been chosen such that equal weights would become identical to the size-

proportional weights. In this way we may see how proportional weights can work even worse in

some cases. In addition, optimal weights and full likelihood were considered in the comparison. The

results are presented together with those obtained for the compound-symmetry case by Hermans et

al. (2016).

For the simulation we took: c1 = 500, c2 = 250, c3 = 250, c4 = 500, and n1 = 5, n2 = 10,

n3 = 10, n4 = 5. Parameters are set as µ = 0, σ = 2 and ρ ∈ {0.01, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99}.

The data are generated 100 times and the model is fitted using PROC MIXED in SAS (for a single

overall intercept).

The results show that, in contrast to the CS case, with an AR(1) covariance structure the size-

proportional weights give acceptable results, implying an important role for the clusters sizes, the

nk’s. Proportional weights perform more poorly than equal weights.

The iterative optimal weights will converge in just one iteration (for both CS and AR(1)), which

means that iterative optimal weights are nothing but approximated optimal weights. Instead of using

θ̂k one could also use θ̃, obtained by using some proper weighting.

In the CS case the iterative optimal weights mainly converge to proportional weights, but with

AR(1), they converge to neither proportional nor size-proportional weights. They rather converge

to approximated optimal weights which are obtained by substituting the unknown parameter by its

estimate using size-proportional weights.

13
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It is observed that, for µ̂ and σ̂2, using θ̃ in optimal weights does not increase the variance to a

noticeable degree, but the effect for ρ̂ is dramatic. Though it seems that for a larger ρ this effect

is diminished. Finding the proper variances when using θ̃ to approximate optimal weights could be

advantageous.

A second simulation study was conducted to compare computation time for closed form solutions

to numerical solutions. Using closed form solutions reduces computation time significantly. Details

can be found in the separate Appendix C.

7 Application: Clinical Trials in Schizophrenia

The data, introduced in Section 1, are analysed here. The active treatments are: risperidone,

haloperidol, perphenazine, and zuclopernthixol. We included for analysis patients with at least

one follow-up measurement. Table A.10 shows the number of patients participating in each trial

for all different time patterns in receiving the treatments. As one may see, there are 26 different

time patterns, therefore, the final dataset is unbalanced. This makes it suitable for examining the

performance of sample splitting according to the cluster size.

For the sake of simplicity, we just take the most frequent cluster pattern for each cluster size.

The model used to study the effect of the treatments on the response variable is as follows:

Yij = µ+ αi + βtij + (αβ)ij + ǫij , i = 1, . . . , 4, j = 1, . . . , n, ǫij ∼ Nn(0, R), (26)

with Rℓm = σ2ρ|ℓ−m| as elements of R, β as the time effect, αi as the treatment effect, (αβ)ij as

the time and treatment interaction, and µ as the overall mean. For dummy coding, perphenazine

has been taken as the reference treatment level.

Table 2 shows the treatment levels which appear in the different splits. Not all the treatments

are present in each split. In other words, not all the splits are contributing to the estimation of

every parameter. This fact should be taken into account for constructing the weights. For example,

for estimating levomepromazine effect, just the first two splits are contributing, therefore, we have

(c1 = 142, n1 = 2) and (c2 = 143, n2 = 3), which give proportional weights as (0.498, 0.502), and

the size-proportional weights as (0.398, 0.602).

Table 3 shows the parameter estimates using sample splitting with proportional and size-proportional

weights, compared to the full sample data. Note that, while the point estimates, for example for

Zuclopenthixol, differ even in signs, this has to be seen against the background of the precision

14
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Table 1: PANSS data. Number of clusters in each trial for each cluster pattern. The pattern
consists of the numbers representing the months after starting point for which a PANSS score
is available.

Trial

n Pattern FIN-1 FRA-3 INT-2 INT-3 INT-7 Total

(0, 1) 17 8 71 43 3 142

2 (0, 2) 0 0 2 0 1 3

(0, 4) 0 0 1 0 0 1

(0, 1, 2) 8 4 83 41 7 143

3 (0, 2, 4) 0 0 2 0 0 2

(0, 1, 4) 1 0 3 1 0 5

(0, 1, 2, 4) 11 0 85 66 5 167

(0, 2, 4, 6) 0 0 1 0 1 2

4 (0, 2, 4, 8) 0 0 1 0 0 1

(0, 1, 2, 6) 0 0 3 0 0 3

(0, 1, 2, 3) 0 4 1 0 0 5

(0, 1, 3, 6) 0 1 0 0 0 1

(0, 2, 6, 8) 0 0 0 0 1 1

(0, 1, 2, 4, 6) 58 0 85 35 6 184

(0, 1, 2, 4, 8) 0 0 8 0 1 9

(0, 1, 4, 6, 8) 0 0 6 0 0 6

5 (0, 1, 2, 6, 8) 0 0 8 0 0 8

(0, 2, 4, 6, 8) 0 0 3 0 2 5

(0, 2, 4, 8, 12) 0 0 1 0 0 1

(0, 1, 2, 3, 4) 0 44 0 0 0 44

(0, 1, 3, 4, 5) 0 1 0 0 0 1

(0, 1, 2, 4, 6, 8) 0 0 986 240 74 1300

(0, 1, 4, 6, 8, 10) 0 0 1 0 0 1

6 (0, 1, 2, 6, 8, 12) 0 0 1 0 0 1

(0, 1, 2, 4, 6, 10) 0 0 1 0 0 1

(0, 1, 2, 4, 5, 6) 0 0 2 0 0 2

estimates; their confidence intervals largely overlap.

As mentioned previously, these data are assembled from 5 trials. It might be useful to include

the trial and its interaction with the variables already in the model (26) to control for the trial effect:

Yijk = µ+ τi + αj + βtij + (τα)ij + (τβ)ik + (αβ)jk + (ταβ)ijk + ǫijk,

i = 1, . . . , 5, j = 1, . . . , 4, k = 1, . . . , n, ǫijk ∼ Nn(0, R), (27)

with Rℓm = σ2ρ|ℓ−m| as elements of R, β as the time effect, αj as the treatment effect, τi as the

trial effect, (τα)ij as the trial and treatment interaction, (τβ)jk as the trial and time interaction,

(αβ)jk as the treatment and time interaction, (ταβ)ijk as the three-way trial, treatment and time
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Table 2: PANSS data. Contributing splits in estimating each parameter. A checkmark signifies
that a split contributes, a hyphen the reverse.

Parameter Split 1 Split 2 Split 3 Split 4 Split 5

Intercept X X X X X

time X X X X X

haloperidol X X X X X

levomepromazine X X - - -

risperidone X X X X X

zuclopenthixol X X X X -

t*haloperidol X X X X X

t*levomepromazine X X - - -

t*risperidone X X X X X

t*zuclopenthixol X X X X -

correlation ρ X X X X X

variance σ2 X X X X X

interaction, and µ as the overall mean.

Table 4 shows the estimates for the parameters of interest in this model.

Justification of the chosen model and further details as confidence limits of the tabulated esti-

mates can be found in separate Appendix D.

8 Concluding Remarks

As an extension to the normal-compound symmetry model, discussed in Hermans et al. (2016), the

normal AR(1) model was studied in the light of computationally effective estimation for clustered

data with unequal cluster sizes.

For constant cluster size there are closed-form solutions but no complete minimal sufficient

statistics. However the MLE is shown to be optimal, with weights depending on ρ for the mean.

Returning to unequal cluster sizes, there are, in general, no closed form solutions. But again

estimators have been obtained using a two-stage procedure. Estimators are calculated separately

within each stratum (typically defined by cluster size) and combined in an overall estimator. Both

theoretical and simulation results show excellent performance of the size-proportional weights, that

is through weighting according to the number of measurements in a cluster (ck · nk), rather than

the number of clusters ck in a subsample, that is, proportional weights. By contrast, the latter are a

good choice for the compound-symmetry structure. Under AR(1) they are worse than equal weights.

Approximate optimal weights can also be used, but this leads to an estimate of ρ with a large sample

variance. In practice, it is convenient and appropriate to use size-proportional weights; these are
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Table 3: PANSS data. Estimating fixed effects and variance components and the standard
deviations of these estimates using sample splitting (combined with proportional (Prop.) and
size-proportional (Size.Prop.) weights) and full likelihood. The model used in here is without
trial effect (26).

Effect Par. Prop. Size Prop. Full

Intercept µ 89.218 (3.036) 88.167 (2.956) 88.532 (2.965)

Haloperidol α1 -1.916 (3.254) -1.868 (3.191) -0.140 (3.181)

Levomepromazine α2 11.823 (14.155) 8.402 (14.366) 32.018 (9.729)

Risperidone α3 -1.474 (3.079) -0.812 (3.000) -0.481 (3.009)

Zuclopenthixol α4 -1.926 (7.245) 0.146 (7.216) 2.647 (4.187)

time β -3.047 (1.057) -2.890 (0.613) -2.928 (0.447)

time×haloperidol (αβ)1 2.146 (1.108) 1.568 (0.652) 1.068 (0.482)

time×levomepromazine (αβ)2 6.466 (9.006) 6.924 (8.668) 3.350 (4.501)

time×risperidone (αβ)3 1.831 (1.070) 1.243 (0.621) 0.842 (0.454)

time×zuclopenthixol (αβ)4 1.551 (3.609) 1.103 (2.655) 0.533 (0.743)

Correlation ρ 0.805 (0.006) 0.818 (0.005) 0.825 (0.005)

Variance σ2 419.782 (10.202) 412.850 (10.018) 429.611 (10.363)

parameter free and simple to use. Simulations show, that in certain large settings, computation time

can be 1000 times faster than with standard maximum likelihood.

There are missing observations in the PANSS data set. One might therefore consider possible

dependencies between cluster size and the outcomes themselves. To handle such informative cluster

sizes it might be of interest to extend the current methodology of this paper to a joint model

including cluster size. This is a topic for further research.

For non-normal data, no corresponding closed-form formulations are possible. While gains will

be less, there might still be computational advantages, in terms of time and stability, in analyzing

the data in cluster-size dependent strata, followed by weighting the so-obtained estimates.
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Table 4: PANSS data. Estimating fixed effects and variance components and the standard
deviations of these estimates using sample splitting (combined with proportional (Prop.) and
size-proportional (Size.Prop.) weights) and full likelihood. The model used in here is with trial
effect (27).

Effect Par. Prop. Size Prop. Full

Intercept µ 89.217 (3.016) 88.165 (2.949) 88.529 (2.950)

Haloperidol α1 2.249 (5.239) 1.491 (5.053) 5.878 (4.779)

Levomepromazine α2 -9.213 (22.578) -12.044 (21.761) 6.673 (15.611)

Risperidone α3 2.353 (4.542) 2.956 (4.216) 3.132 (4.107)

Zuclopenthixol α4 -2.135 (11.617) -0.877 (11.509) 3.144 (5.845)

time β -3.047 (1.049) -2.890 (0.610) -2.929 (0.446)

time×haloperidol (αβ)1 2.170 (1.835) 1.294 (1.056) 0.623 (0.738)

time×levomepromazine (αβ)2 16.104 (15.080) 17.287 (13.763) 13.812 (6.923)

time×risperidone (αβ)3 1.766 (1.716) 0.794 (0.947) 0.176 (0.613)

time×zuclopenthixol (αβ)4 5.218 (5.746) 2.041 (4.188) 0.326 (1.027)

Correlation ρ 0.804 (0.006) 0.818 (0.005) 0.824 (0.005)

Variance σ2 416.190 (10.139) 410.819 (10.006) 425.741 (10.257)
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Appendix

A The Balanced Conditionally Independent Model

In this case, one imposes the following structure on (1):

• X
(k)
i can be rewritten in terms of a first matrix that imposes structure between clusters (e.g.,

treatment effect), termed A
(k)
i , and a second one that imposes structure within clusters (e.g.,

time evolution), T
(k)
i

′
= (Z

(k)
i

′
, Q

(k)
i

′
)′.

• The matrices A
(k)
i , Z

(k)
i , and Q

(k)
i are constant among all clusters of size nk.

• The matrix Σ
(k)
i = σ2Ink

.

This is the general, balanced growth-curve model as studied by Lange and Laird (1989) and Verbeke

and Fieuws (2007). Building on their development, we will now derive sufficient statistics and

associated maximum likelihood estimators for the parameters in this model. This can be expressed

Y = A(β1,β2)




Z

Q


+BZ + ε.

Here, Y is an N × n matrix stacking the outcomes of all clusters of size c, A, Z, and Q group the

designs mentioned in Section 2, the vectors β1 and β2 contain the fixed effects, B contains N rows
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of length q, representing the q-dimensional random-effects vector, and ε shares its dimensions with

Y .

Now, define K the projection matrix such that K ′K = Ir−q, for an appropriate dimension r,

and ZK = 0. Then, set P = QK and consider the projection model:

Y 1 ≡ Y K = Aβ2P + εK.

The variance of a cluster is σ2Ir−q. Next, define H such that H ′H = Iq and QH = 0. A second

projection model emerges:

Y 2 ≡ Y H = Aβ1 +B + εH.

The variance of a cluster is σ2Iq +H ′DH, with D the variance-covariance matrix of the vector of

random effects. Importantly, projections Y 1 ⊥ Y 2.

Conventional algebra leads from these to the following set of sufficient statistics:

T1 = (A′A)−1A′Y 1P
′(PP ′)−1, (A.1)

T2 = tr
{
Y ′

1

[
I −A(A′A)−1A′

]
Y 1

}
, (A.2)

T3 = (A′A)−1A′Y 2, (A.3)

T4 = Y ′
2

[
I −A(A′A)−1A′

]
Y 2. (A.4)

Sufficient statistics (A.1)–(A.4) lead to the maximum likelihood estimators:

β̂1 = T1, (A.5)

β̂2 = T3, (A.6)

σ̂2 =
1

N(n− q)
T2, (A.7)

D̂ =
1

N
T4 − σ̂2Iq. (A.8)

Note that the estimators for the fixed effects do not involve the variance components.

B Algebraic Derivations in the AR(1) Case

Here, we present more detailed derivations of the key algebraic expressions presented in Sections 2

and 3.

A.2
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B.1 Some Useful Expressions

Consider,

C =




1 ρ ρ2 ρ3 . . .

1 ρ ρ2 . . .

. . .
. . .

. . .

1 ρ

1




, (A.9)

then,

Σ = σ2C. (A.10)

It can be shown that:

det(C) =
(
1− ρ2

)n−1
(A.11)

The inverse of C can be calculated as follows:

C−1 =
1

1− ρ2




1 −ρ . . . 0

−ρ 1 + ρ2
. . . . . .

. . .
. . .

. . .

1 + ρ2 −ρ

−ρ 1




, (A.12)

as one may see C−1 is a symmetric-tridiagonal matrix with constant diagonal except for the outer

entries, and constant first off-diagonal.

Consider:

C−1 =
1

1− ρ2
G. (A.13)

Then, by taking the derivative with respect to ρ:

∂C−1

∂ρ
=

2ρ

(1− ρ2)2
G+

1

1− ρ2
H, (A.14)
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where, H = ∂G
∂ρ and has the form:

H =




0 −1 . . . 0

−1 2ρ
. . . . . .

. . .
. . .

. . .
. . .

. . . 2ρ −1

0 −1 0




. (A.15)

Also, considering the fact CC−1 = I, one can derive:

∂C−1

∂ρ
= −C−1∂C

∂ρ
C−1. (A.16)

B.2 The Likelihood Estimators in a Given Cluster

The likelihood function for an nk-dimensional multivariate normal sample of size ck has the following

form:

L =

Ck∏

i=1

1

|Σ|1/2(2π)nk/2
exp

{
−
1

2
(yi − µi)

′Σ−1(yi − µi)

}
. (A.17)

Therefore, the non-constant terms of the log-likelihood are as follows:

ℓ ∝ −
Ck

2
ln |Σ|.

1

2

Ck∑

i=1

(yi − µi)
′Σ−1(yi − µi), (A.18)

which considering (A.11) for AR(1):

|Σ| =
(
σ2
)nk
(
1− ρ2

)nk−1
. (A.19)

As a general case, if we consider the mean as linear model with the form µi = Xiβ, one can derive:

∂ℓ

∂µi
= Σ−1

Ck∑

i=1

(yi − µi) = 0 ⇒ β̂ = (X ′X)−1X ′y. (A.20)

Now expanding the log-likelihood for σ2 and ρ, we have:

ℓ ∝ −
Ck

2
nk lnσ

2 −
Ck

2
(nk − 1) ln(1− ρ2)−

1

2

Ck∑

i=1

(yi − µi)
′Σ−1(yi − µi). (A.21)
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Considering Σ = σ2C and (A.12), the derivative with respect to σ2 is as follows:

∂ℓ

∂σ2
= −

Cknk

2

1

σ2
+

1

2

1

(σ2)2

Ck∑

i=1

(yi − µi)
′C−1(yi − µi). (A.22)

Solving ∂ℓ
∂σ2 = 0 gives:

σ̂2 =
1

Cknk

Ck∑

i=1

(yi − µi)
′C−1(yi − µi). (A.23)

One may notice that C−1 contains the parameter ρ.

Taking the derivative of (A.21) with respect to ρ gives:

∂ℓ

∂ρ
=

Ck(nk − 1)

2

2ρ

1− ρ2
−

1

σ2

Ck∑

i=1

(yi − µi)
′ ∂C

−1

∂ρ
(yi − µi). (A.24)

Setting ∂ℓ
∂ρ = 0 gives:

σ̂2 2ρ̂

1− ρ̂2
=

1

Ck(nk − 1)

Ck∑

i=1

(yi − µi)
′∂C

−1

∂ρ
(yi − µi). (A.25)

Solving (A.23) and (A.25) gives σ̂2 and ρ̂. For any (nk ×nk) matrix Q,
∑

i(yi −µi)
′Q(yi −µi)

equals tr {SQ}, where tr denotes the trace of a matrix, and S =
∑

i(yi − µi)(yi − mi)
′. Hence,

from (A.23), (A.25), (A.13), (A.14), and (A.16), one can write:





(1− ρ̂2)σ̂2 = 1
Cknk

tr{SG},

(1− ρ̂2)σ̂2 = 1
Cknk

tr{SG} + 1−ρ̂2

2ρ̂
1

Ck(nk−1)
1

Ck(nk−1tr{SH}.

(A.26)

Set g = tr{SG} and h = tr{SH}, it follows that

g

nk
+

1− ρ̂2

2ρ̂
h = 0. (A.27)

Given that both g and h are functions of ρ only, ρ can be estimated using (A.27). Givenρ, one can

use one of equations in (A.26) to estimate σ2.

Let us consider some special cases. For nk = 2:

G =




1 −ρ

−ρ 1


 , H =




0 −1

−1 0


 .
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Therefore, g and h can be computed as:

g = tr






S11 S12

S21 S22







1 −ρ

−ρ 1





 = S11 − 2ρS12 + S22.

h = tr






S11 S12

S21 S22







0 −1

−1 0





 = −2S12.

Now using (A.27):

ρ̂(S11 − 2ρ̂S12 + S22 + (1− ρ̂2)(−2S12),

which gives:

ρ̂ =
2S12

S11 + S22
. (A.28)

Then, using first equation in (A.26):

(1− ρ̂2)σ̂2 =
1

2Ck
(S11 − 2ρ̂S12 + S22),

which gives:

σ̂2 =
S11 + S22

2Ck
. (A.29)

For nk = 3:

g = tr







S11 S12 S13

S21 S22 S23

S31 S32 S33







1 −ρ 0

−ρ 1 + ρ2 − ρ

0 −ρ 1






= S11 + S22 + S33 − 2ρ(S12 + S23) + ρ2S22,

h = tr







S11 S12 S13

S21 S22 S23

S31 S32 S33







0 −1 0

−1 2ρ −1

0 −1 0






= −2(S12 + S23) + 2ρS22.

Let, 



S = S11 + S22 + S33

R = S12 + S23

⇒





g = S + ρ2S22 − 2ρR

h = −2R+ 2ρS22
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Using (A.27):

2S22ρ
3 −Rρ2 − (S + 3S22)ρ+ 3R = 0. (A.30)

Considering the results for nk = 2 and nk = 3, one can calculate (A.27) for the general case

nk = n as follows.

(n− 1)S̃ρ3 − (n− 2)Rρ2 − (nS̃ + S)ρ+ nR = 0 (A.31)

with: 



S = S11 + . . .+ Snn,

S̃ = S22 + . . .+ Sn−1,n−1,

R = S12 + S23 + . . . + Sn−1,n.

Then using (A.26):

σ̂2 =
1

Cn

1

(1− ρ̂2)
(S + ρ̂2S̃ − 2ρ̂R). (A.32)

For nk > 2, (A.31) is a third-degree polynomial. One can show that this equation has only one root

in [−1, 1].

Proof. Consider:

f(ρ) = (n− 1)S̃ρ3 − (n − 2)Rρ2 − (nS̃ + S)ρ+ nR

f ′(ρ) = 3(n − 1)S̃ρ2 − 2(n− 2)Rρ− (nS̃ + S)

f ′′(ρ) = 6(n − 1)S̃ρ− 2(n − 2)R

The discriminant of f ′(ρ) is as follows:

∆f ′(ρ) = (n− 2)2R2 + 3(nS̃ + S)(n − 1)S̃ ≥ 0.

Therefore f ′(ρ) has no root and hence f(ρ) is monotone. One may see f ′(0) ≤ 0, therefore, f(ρ)

is a monotonically decreasing function (I). One can show f(1) ≤ 0 and f(−1) ≥ 0 (II). Considering

(I) and (II) together, one may conclude f(ρ) must necessarily cross the horizontal line only once

between [−1, 1].

This shows the unique ρ̂ can be easily estimated solving (A.31) using Cardano’s formula (Cardano,

1979).

A.7



Estimation in AR(1) Models Hermans et al.

B.3 Hessians, Covariance Matrices, and Optimal Weights

Given the MLEs for the AR(1) covariance structure, the Hessians and covariance matrices of the

MLEs can be derived. Following the general results obtained about optimal weights, they can be

used to compute the exact optimal weights in the case of the AR(1) structure. As mean and variance

parameters are orthogonal in the normal case, we can consider the second derivative for fixed effects

and variance components separately.

B.3.1 Second derivative with respect to fixed effects

As

∂ℓ

∂β
=

Ck∑

i=1

X ′
i Σ

−1(yi − µi),

we have:

E

[
∂ℓ

∂β

(
∂ℓ

∂β

)′]
=

Ck∑

i=1

X ′
iΣ

−1E(yi − µi)(yi − µi)
′Σ−1Xi

=

Ck∑

i=1

X ′
iΣ

−1Xi.

For the special case of just an intercept Xi = 1:

E

[
∂ℓ

∂β

(
∂ℓ

∂β

)′]
=

Ck∑

i=1

1′Σ−11 =
Ck

σ2(1− ρ2)

[
(nk − 2)ρ2 − 2(nk − 1)ρ+ nk

]
. (A.33)

Therefore, the variance for µ̂ can be computed as inverse of (A.33).

B.3.2 Second derivative with respect to variance components

To calculate the derivatives with respect to variance components rather than ∂C−1

∂ρ , we need K =

∂C−1

∂ρ2
. Using these derivatives:





∂
∂ρ2

(
ρ

1−ρ2

)
= 2 1+ρ2

(1−ρ2)2
,

∂
∂ρ

ρ
(1−ρ2)2

= 1+3ρ2

(1−ρ2)3
,

∂
∂ρ

1+ρ2

(1−ρ2)2
= 2ρ(3+ρ2)

(1−ρ2)3
.

(A.34)
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it follows that

∂C−1

∂ρ2
= K =

1

(1− ρ2)3




2(1 + 3ρ2) −2ρ(3 + ρ2) 0

−2ρ(3 + ρ2) 4(1 + 3ρ2)
. . .

. . .

. . .
. . .

. . .

0 −2ρ(3 + ρ2) 2(1 + 3ρ2).




(A.35)

The second-derivatives are:





∂2ℓ
∂(σ2)2

= Cknk

2
1

(σ2)2
− 1

(σ2)3
∑Ck

i=1(yi − µi)
′C−1(yi − µi),

∂2ℓ
∂ρ2

= Ck(nk−1)(1+ρ2)
(1−ρ2)2

− 1
2σ2

∑Ck

i=1(yi − µi)
′K(yi − µi),

∂2ℓ
∂ρ∂σ2 = 1

2(σ2)2
∑Ck

i=1(yi − µi)
′ ∂C−1

∂ρ (yi − µi).

(A.36)

To construct the expected Hessian and covariance matrix, one needs to find the expectations of the

expressions in (A.36).

E

(
∂2ℓ

∂(σ2)2

)
= −

Cknk

2

1

(σ2)2
. (A.37)

This follows from the fact that:

E

(
Ck∑

i=1

(yi − µi)
′C−1(yi − µi)

)
= Cktr

{
E
[
(yi − µi)

′(yi − µi)
]
C−1

}
,

and E [(yi − µi)(yi − µi)
′] = σ2C.

For the second derivative with respect to ρ:

E

[
∂2ℓ

∂ρ2

]
=

Ck(nk − 1)(1 + ρ2)

(1− ρ2)2
−

Ck

2
tr{KS}. (A.38)

Likewise:

E

[
∂2ℓ

∂ρ∂σ2

]
=

Ck

2σ2
tr

{
C
∂C−1

∂ρ

}
. (A.39)

Substituting for tr{KS} and tr
{
C ∂C−1

∂ρ

}
we get:

E

[
∂2ℓ

∂ρ∂σ2

]
=

Ck(nk − 1)

σ2

ρ

1− ρ2
. (A.40)

E

[
∂2ℓ

∂ρ2

]
= −Ck(nk − 1)

1 + ρ2

(1− ρ2)2
. (A.41)
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Using (A.37), (A.40), and (A.41) one obtains the 2× 2 Hessian matrix as follows:

H = −Ck




nk

2(σ2)2
−nk−1

σ2

ρ
1−ρ2

−nk−1
σ2

ρ
1−ρ2

(nk − 1) 1+ρ2

(1−ρ2)2


 . (A.42)

The determinant of the Hessian in (A.42) is as follows:

det(H) =
C2
k(nk − 1)(nk − (nk − 2)ρ2)

2(σ2)2(1− ρ2)2
. (A.43)

So,

−H−1 =
1

Ck(nk − (nk − 2)ρ2)



2(σ2)2(1 + ρ2) 2ρσ2(1− ρ2)

2ρσ2(1− ρ2) nk

nk−1(1 − ρ2)2


 . (A.44)

The Hessian for the unbiased estimator differs slightly from its MLE counterpart:

H̃ = −Ck




nk−1
2(σ2)2

−nk−1
σ2

ρ
1−ρ2

−nk−1
σ2

ρ
1−ρ2

(nk − 1) 1+ρ2

(1−ρ2)2


 , (A.45)

det(H̃) =
C2
k(nk − 1)2

2(σ2)2(1− ρ2)
. (A.46)

Therefore,

−H̃−1 =
1

Ck(nk − (nk − 2)ρ2)



2(σ2)2(1 + ρ2) 2ρσ2(1− ρ2)

2ρσ2(1− ρ2) (1− ρ2)2


 . (A.47)

Having the covariance matrix, one may easily find the optimal weights using

Wopt. =
V −1
k∑K

i=1 V
−1
i

(A.48)

The variance of an estimator obtained using the optimal weights in (A.48) can be calculated as
(∑K

i=1 V
−1
i

)−1
.

B.4 Proof of Proposition 1

Proof. Consider an estimator of the form:

µ̃α =
1

c

c∑

i=1

n∑

j=1

αjYij, (A.49)

for a vector of weights α = (α1, . . . , αn)
′. Because the clusters are i.i.d. it is evident that the
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components of α do not depend on the cluster index i. Clearly, the requirement that E(µ̃α) = µ

implies the condition
n∑

j=1

αj = 1. (A.50)

An expression of the variance of µ̃α combined with this requirement produces the objective function:

Q = σ2




n∑

j=1

α2
j + 2

∑

j<k

αjαkρ
|j−k|


− λ




n∑

j=1

αj − 1


 , (A.51)

with λ a Lagrange multiplier. Taking the derivative of (A.51) w.r.t. α leads to, after rearrangement:

α =
λ

2σ2
C−11.

Given that we have an explicit form for C−1, it follows that

α =
λ

2σ2(1 + ρ)
ρ(1), (A.52)

with ρ(1) = (1, 1− ρ, . . . , 1− ρ, 1)′. Combining (A.52) with constraint (A.50) leads to λ = 2σ2(1+

ρ)/[2 + (n− 2)(1− ρ)], hence

α =
1

[2 + (n− 2)(1 − ρ)]
ρ(1),

establishing the MLE. This completes the proof.

B.5 Optimal weights in case of a general mean structure X
(k)
i β

Cluster size specific expressions are:

β̂k =

(
ck∑

i=1

X
(k)′

i Σ−1
k X

(k)
i

)−1( ck∑

i=1

X
(k)′

i Σ−1
k Y

(k)
i

)
(A.53)

and

var(β̂k) = Vk =

(
ck∑

i=1

X
(k)′

i Σ−1
k X

(k)
i

)−1

. (A.54)

The combination ruleis

β̃k =

K∑

i=1

Akβ̂k, (A.55)
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with

V −1
k =

1

σ2

ck∑

i=1

X
(k)′

i C−1
k X

(k)
i (A.56)

and Ck is as described in Supplementary Materials B.1.

The first factor in (A.53) can be split into three parts:

(1− ρ2)X
(k)′

i C−1
k X

(k)
i = X

(k)′

i (1 + ρ2)IkX
(k)
i (A.57)

− ρ2X
(k)′

i




1 0 . . . . . . 0

0 0
...

...
. . .

... 0 0

0 . . . . . . 0 1




X
(k)
i (A.58)

− ρX
(k)′

i




0 1 0 . . . 0

1 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 1

0 . . . 0 1 0




X
(k)
i . (A.59)

(A.57) simplifies to (1 + ρ2)X
(k)′

i X
(k)
i , while (A.58) equals

ρ2




x2ki11 + x2kink1
xki11 · xki22 + xkink1 · xkink2 . . . xki11 · xki1p + xkink1 · xkinkp

x2ki12 + x2kink2

. . .

x2ki1p + x2kinkp
.




. (A.60)

Defining X
(k)
i1 = (xki11 . . . xki1p)

t and X
(k)
ink

= (xkink1 . . . xkinkp)
t, (A.58) equals

ρ2[X
(k)
i1 0 . . . 0 X

(k)
ink

]X
(k)
i . (A.61)

For the third term, define X
(k)−
ij = (xki2j . . . xkinkj)

t and X
(k)+
ij = (xki1j . . . xkink−1j)

t. As a
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consequence, (A.59) will equal

−ρ[X
(k)−′

i ·X
(k)+
i +X

(k)+′

i ·X
(k)−
i ]. (A.62)

In summary:

(1− ρ2)X
(k)′

i C−1
k X

(k)
i = (1 + ρ2)X

(k)′

i X
(k)
i

− ρ2[X
(k)
i1 0 . . . 0 X

(k)
ink

]X
(k)
i

− ρ[X
(k)−′

i ·X
(k)+
i +X

(k)+′

i ·X
(k)−
i ]

notation
= F1k. (A.63)

The second factor in (A.53), using the same notations for Y
(k)
i as described above, can be rewritten

as:

(1− ρ2)X
(k)′

i C−1
k Y

(k)
i = (1 + ρ2)X

(k)′

i Y
(k)
i

−ρ2




xki11 · yki1 + xkink1 · ykink

xki12 · yki1 + xkink2 · ykink

...

xki1p · yki1 + xkinkp · ykink




−ρ[X
(k)−′

i · Y
(k)+
i +X

(k)+′

i · Y
(k)−
i ]

not.
= F2k. (A.64)

Combining (A.63) and (A.64) the overall estimate equals:

β̃k =

K∑

i=1

Akβ̂k

=

K∑

i=1

(
K∑

m=1

F1m

)−1

F2k (A.65)

B.6 Delta Method for the Mean Estimator

By plugging in ρk and defining a′k = ck[nk − (nk − 2)ρk], equation (A.66) simplifies to

ak =
a′k∑K

m=1 a
′
m

, (A.66)
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and (21) becomes

var(µ̂k) = vk =
σ2
k(1 + ρk)

a′k
. (A.67)

The first derivatives equal

∂µ̃

∂µk
= ak =

a′k∑K
m=1 a

′
m

,

∂µ̃

∂σ2
k

= 0,

∂µ̃

∂ρk
=

−ck(nk − 2)
∑K

m=1 a
′
m(µk − µm)

(∑K
m=1 a

′
m

)2 , (A.68)

and these can be combined using the delta method, resulting in (24):

var(µ̃) =

K∑

i=1

a
′2
k(∑K

k=1 a
′
k

)2 ·
σ2
k(1− ρ2k)

a′k

+

∑K
k=1

[
ck(nk − 2)

∑K
m=1 a

′
m(µk − µm)

]2

(∑K
k=1 a

′
k

)4 ·
1− ρ2k

ck(nk − 1)
.

B.7 Calculating ρ̂ and σ̂2 in R

In this section, we consider the implementation of the calculations for the variance components in

R. This can be done with a few simple lines of code. For fixed Ck = C and nk = n, and given

the data y, the function est.ar1 estimates the variance components and provides a plot for the

third-degree polynomial in (A.31). This visually underscores that there is only one root in [−1, 1].

Figure A.1 shows (A.31) for 10 simulated data sets; clearly, there is a single root only in [−1, 1]. For

convenience, the R code is given in Supplementary Materials E. Other functions to find variances

and iterated optimal weights are also available.

C Details on Additional Simulations

C.1 Simulations with Proportional and Size-proportional Weights

Here we consider C1 = 500, C2 = 250, C3 = 250, C4 = 500, and n1 = 5, n2 = 10, n3 = 10, n4 = 5.

Parameters are set to µ = 0, σ = 2 and ρ = (0.1, 0.5, 0.8). The data are generated 100 times and

the model is fitted using PROC MIXED in SAS (for a single overall intercept). For combining the
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Figure A.1: The third degree polynomial in (A.31) for 10 different generated data. The red
veertical line shows ρ̂.

results from different sub-samples we have used proportional weights and size-proportional weights:





Prop = Ck∑
l
Cl

,

Size.Prop = Cknk∑
l
Clnl

.

. (A.69)

The results are compared with full likelihood (Table A.5). In contrast to the compound-symmetry

case, the size-proportional weights show much better results than the proportional weights. Further-

more, the size-proportional weights in the current simulation are identical with the equal weights.

The nk’s have a much larger influence in the AR(1) case compared to CS. Figures A.2, A.3, and

A.4 make the comparisons easier.

C.2 Simulations with Proportional and Size-proportional Weights: ρ near

0/1

We now present a comparison between proportional and size-proportional weights. We see that, for

ρ’s near 1 (i.e., near CS), size-proportional weights are worse than proportional weights.

We consider c1 = 500, c2 = 250, c3 = 250, c4 = 500, and n1 = 5, n2 = 10, n3 = 10,

n4 = 5. Parameters are set as µ = 0, σ = 2 and ρ ∈ {0.01, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99}. The data

are generated 100 times and the model is fitted using PROC MIXED in SAS (for a single overall

intercept). For combining results from different sub-samples we have used proportional weights and

size-proportional weights as in (A.69). The results are compared with full likelihood results.
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Table A.5: Comparing proportional, size-proportional and iterated optimal weights with full
likelihood for AR(1) covariance structure.

µ̂ Sd ρ̂ Sd σ̂2 Sd

Prop. -0.00190 0.01615 0.10027 0.01158 1.99642 0.03002

ρ = 0.1 Size.Prop. -0.00207 0.01538 0.10024 0.01080 1.99793 0.02853

It.Opt. -0.00206 0.01538 0.10024 0.00993 1.99792 0.02850

ML -0.00207 0.01538 0.10032 0.01078 1.99793 0.02850

Prop. -0.00212 0.02221 0.49966 0.00954 2.00349 0.03652

ρ = 0.5 Size.Prop -0.00155 0.02156 0.49955 0.00898 2.00257 0.03494

It.Opt. -0.00168 0.02149 0.49956 0.00826 2.00265 0.03486

ML -0.00170 0.02150 0.49986 0.00896 2.00259 0.03488

Prop. 0.00195 0.02890 0.79923 0.00549 1.99529 0.04989

ρ = 0.8 Size.Prop 0.00234 0.02904 0.79911 0.00530 1.99542 0.04907

It.Opt. 0.00213 0.02855 0.79915 0.00486 1.99538 0.04859

ML 0.00212 0.02855 0.79937 0.00527 1.99519 0.04861

In Figure A.5, for ρ = 0.99 and 0.95, the size-proportional weights perform worse than the

proportional weights. This is expected, because in this case AR(1) approaches CS. This result is

clearer in the left panel of Figure A.5, where the standard deviations are shown. For ρ’s near 1, the

proportional weights are as efficient as full likelihood, while as ρ moves further from 1 this would

happen for size-proportional weights.

Figure A.6 shows this phenomenon more clearly, as for some selected ρ’s (0.01, 0.5, 0.95) the

density plot for all 100 simulated datasets is plotted rather than a boxplot. The size-proportional

weights are better than proportional weights if ρ is not very close to 1. As soon as ρ becomes 0.95

or 0.99, the size-proportional weights become worse.

C.3 Simulations With Optimal Weights

Given the covariance matrix of the parameter estimators, finding the optimal weights is straightfor-

ward, but in practice the unknown parameters therein need to be estimated. Here we compare the

iterative weights with size-proportional weights and ML. See Figures A.7, A.8, A.9, and Table A.5.

As expected, the optimal weights lead to estimates very close to the MLE; the difference between

them being numerical.

Size-proportional weights are used as the initial weights to begin the iterative procedure. One

interesting outcome of this simulation is that the iterative procedure always converged after just one

iteration. This means, iterated optimal weights are just like the approximated optimal weights, but

there, instead of using θ̂k from each sub-sample, one may use θ̃ obtained from all sub-samples using

a non-optimal but good weight.

A.16



Estimation in AR(1) Models Hermans et al.

−0.04 −0.02 0.00 0.02 0.04 0.06

0
5

1
0

2
0

Estimate

Mu

D
e
n
s
it
y

Prop.

Size Prop.

Full

0.0150 0.0155 0.0160 0.0165

0
5
0
0

1
5
0
0

Std.

D
e
n
s
it
y

Prop.

Size Prop.

Full

0.06 0.08 0.10 0.12 0.14

0
1
0

2
0

3
0

Estimate

Rho

D
e
n
s
it
y

Prop.

Size Prop.

Full

0.0106 0.0110 0.0114 0.0118

0
4
0
0
0

8
0
0
0

Std.

D
e
n
s
it
y

Prop.

Size Prop.

Full

1.90 1.95 2.00 2.05

0
4

8
1
2

Estimate

Sigma2

D
e
n
s
it
y

Prop.

Size Prop.

Full

0.027 0.028 0.029 0.030 0.031

0
4
0
0

8
0
0

Std.

D
e
n
s
it
y

Prop.

Size Prop.

Full

Figure A.2: Comparing proportional and size-proportional weights with full likelihood for 100
replications with µ = 0, σ2 = 2 and ρ = 0.1.

C.4 Simulations on Computation Time

Here, some summary tables are presented to summarize the results which are already presented via

figures earlier. Furthermore, a table and a figure are added to compare computation time for closed

form solutions to numerical ones.

In each table the mean of the estimated parameter and its standard deviation using the 100

replications are given, together with the standard deviation of those 100 numbers (in parentheses).

If θ is the parameter of interest, θ̂ is its estimate and θ0 is its real value, then the MSE is computed
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Figure A.3: Comparing proportional and size-proportional weights with full likelihood for 100
replications with µ = 0, σ2 = 2 and ρ = 0.5.

as follows:

MSE(θ̂) =
1

100

100∑

i=1

(θ̂ − θ0)
2. (A.70)

Table A.6 summarizes the results for µ. The sample splitting estimates are computed using propor-

tional and size-proportional (identical to equal weights in this case) weights. The results using the

full sample are also given. The third column in Table A.6 presents the averaged (over 100 replica-

tions) estimated µ and its standard deviation. The fourth column presents the averaged estimated

standard deviation for µ̂ (over 100 replications) and its standard deviation. The last column shows

the MSE computed using (A.70) for µ0 = 1. Tables A.7 and A.8 shows the same results for ρ and
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Figure A.4: Comparing proportional and size-proportional weights with full likelihood for 100
replications with µ = 0, σ2 = 2 and ρ = 0.8.

σ2 (σ2
0 = 2), respectively.

Table A.9 compares the computation time between closed-form and interative methods. The

closed-form solutions are implemented in R and for the numerical methods the MIXED procedure

in SAS is used, with error covariance structure set to AR(1).

The data are generated using n = 10 for all clusters, with c is varying from 100 to 1000000.

Therefore, the design is balanced and the point of this comparison is to see how the computation

time is reduced in each split.

As one may see in Table A.9 and Figure A.10, using closed form solutions significantly reduces

the computation time. This means, as well as the computation time reduction due to splitting the
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Figure A.5: Simulation study. Boxplots comparing proportional and size-proportional
weights with full likelihood for 100 replications with µ = 0, σ2 = 2 and ρ =
0.99, 0.95, 0.9, 0.8, 0.5, 0.2, 0.01. In every section of the boxplots (which are separated by dashed
lines) the first out of three represents the proportional weights, the middle of is size-propotional
weights and the one on the right shows the results for the full likelihood. The first row presents
the estimates while the second row shows the standard deviations of these estimates.

data, using closed form solutions within each split the computation time reduction is also huge:

for example, for a million clusters, the reduction is from almost one hour to less than 5 seconds.

Figure A.10 shows that computation time using closed form solution changes linearly with the number

of clusters, while this will be exponential using an iterative solution.

To assess the effect of the overall size of the dataset, the model is fitted to two concatenated

copies of the same set. Computation time results are presented in Table A.9 and Figure A.10. The

data are generated with µ = 0, σ2 = 2, and ρ = 0.25.
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Figure A.6: Simulation study. Comparing proportional, size-proportional and full likelihood
results via their empirical density for the 100 replications. In all of the figures µ = 0 and
σ2 = 2. The first row is for ρ = 0.01, the middle one is for ρ = 0.5 and last one corresponds to
ρ = 0.99. In each figure the ticker dotted line corresponds to full likelihood, the dashed line is
for size-proportional weights and the solid line is for proportional weights.

D Details on PANSS Data Analysis

As one may see from Table A.10, by far the majority of the study subjects have complete data and

hence belong to the first pattern.

Figure A.11 presents boxplots for the entire set of data, for the subjects from the first pattern

only, and for various split samples.

To examine the choice of an AR(1) covariance structure, Table A.11 shows three model selection
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Figure A.7: Comparing iterated optimal and size-proportioanl weights with full likelihood for 100
replications with µ = 0, σ2 = 2 and ρ = 0.1.

criteria to compare different error covariance structures. Changing from independence structure

(R = σ2I) to compound-symmetry (R = σ2I) the criteria decrease with a large amount, and

the same when changing to AR(1). The step to an unstructured covariance does not make a

big difference (considering that the unstructured covariance would has 21 parameters to estimate

compared to 2 parameters in the AR(1) model). Therefore, AR(1) seems to be a good choice.

The 95% confidence intervals, accompanying (26), are presented in Figure A.12. In order to give

more insight in these results, Figure A.13 shows the 95% confidence interval in each split, comparing

with the full sample splits (the horizontal dashed line in the figure).

The 95% confidence intervals, accompanying (27), are presented in Figure A.14. Figure A.15
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Figure A.8: Comparing iterated optimal and size-proportioanl weights with full likelihood for 100
replications with µ = 0, σ2 = 2 and ρ = 0.5.

shows the 95% confidence intervals for the parameter estimates in each split comparing with the full

sample estimate (the horizontal dashed-like in the figure.)

E R Code

Estimating variance components

est.ar1 <- function(C,n,Y,Plot=1){

# making a matrix out of the response vector
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Figure A.9: Comparing iterated optimal and size-proportioanl weights with full likelihood for 100
replications with µ = 0, σ2 = 2 and ρ = 0.8.

Resp=matrix(Y,n,C)

# Computing cross products

SS=crossprod(t(Resp))

# Computing S, \tilde{S} and R

S=sum(diag(SS))

S.tilde=sum(diag(SS)[2:(n-1)])

tmp.R=SS
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Table A.6: Simulation study. Estimating µ and its standard deviation. The mean (stan-
dard deviation) of the 100 replications are given together with mean squared errors for ρ =
0.01, 0.2, 0.5, 0.8, 0.9, 0.99 using proportional and size-proportional weights comparing with the
full likelihood results.

ρ0 method mean(µ̂) (s.d.) mean(s.e.(µ̂)) (s.d.) MSE×104

Prop. -0.00271 (0.01462) 0.01503 (0.00020) 2.19000

0.01 Size Prop. -0.00277 (0.01320) 0.01429 (0.00018) 1.80172

Full -0.00275 (0.01319) 0.01428 (0.00018) 1.79828

Prop. 0.00158 (0.01677) 0.01752 (0.00025) 2.81056

0.2 Size Prop. 0.00085 (0.01616) 0.01673 (0.00021) 2.59147

Full 0.00090 (0.01615) 0.01672 (0.00021) 2.58880

Prop. 0.00391 (0.02244) 0.02217 (0.00037) 5.13770

0.5 Size Prop. 0.00397 (0.02191) 0.02155 (0.00035) 4.91201

Full 0.00396 (0.02182) 0.02148 (0.00034) 4.87038

Prop. 0.00130 (0.02790) 0.02894 (0.00050) 7.72450

0.8 Size Prop. -0.00049 (0.02710) 0.02912 (0.00045) 7.27464

Full 0.00053 (0.02713) 0.02862 (0.00045) 7.29130

Prop. -0.00828 (0.03006) 0.03221 (0.00056) 9.63393

0.9 Size Prop. -0.00727 (0.03145) 0.03306 (0.00070) 10.3224

Full -0.00803 (0.02998) 0.03207 (0.00057) 9.54258

Prop. 0.00162 (0.03663) 0.03597 (0.00064) 13.3123e

0.99 Size Prop. -0.00007 (0.03930) 0.03797 (0.00088) 15.2876

Full 0.00156 (0.03666) 0.03597 (0.00064) 13.3305

diag(tmp.R)=NA

tmp.R2 = (matrix(tmp.R[which(!is.na(tmp.R))],nrow=n,ncol=n-1))

R=sum(tmp.R2[1,])

# Finding the coefficients of the 3rd degree polynomial and its roots

P1=(n-1)*S.tilde

P2=(n-2)*R

P3=((n*S.tilde)+S)

P4=n*R

PP=polynomial(c(P4,-P3,-P2,P1))

roots=polyroot(PP)

Roots=Re(roots)[abs(Im(roots)) < 1e-6]

rho.hat=Roots[abs(Roots)<1]
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Table A.7: Simulation study. Estimating ρ and its standard deviation. The mean (stan-
dard deviation) of the 100 replications are given together with mean squared errors for ρ =
0.01, 0.2, 0.5, 0.8, 0.9, 0.99 using proportional and size-proportional weights comparing with the
full likelihood results.

ρ0 method mean(ρ̂) (s.e.) mean(s.e.(ρ̂)) (s.e.) MSE

Prop. 0.01077 (0.01237) 0.01165 (0.00006) 1.52178e-04

0.01 Size Prop. 0.01115 (0.01200) 0.01087 (0.00004) 1.43974e-04

Full 0.01123 (0.01203) 0.01084 (0.00004) 1.44675e-04

Prop. 0.19960 (0.01213) 0.01133 (0.00007) 1.45806e-04

0.2 Size Prop. 0.19973 (0.01145) 0.01058 (0.00005) 1.29974e-04

Full 0.19986 (0.01142) 0.01056 (0.00005) 1.29174e-04

Prop. 0.49956 (0.00963) 0.00954 (0.00011) 9.19119e-05

0.5 Size Prop. 0.49965 (0.00904) 0.00898 (0.00008) 8.11057e-05

Full 0.49990 (0.00904) 0.00896 (0.00008) 8.08877e-05

Prop. 0.79973 (0.00541) 0.00548 (0.00012) 2.90660e-05

0.8 Size Prop 0.79990 (0.00483) 0.00529 (0.00009) 2.31132e-05

Full 0.80018 (0.00489) 0.00525 (0.00009) 2.36726e-05

Prop. 0.90017 (0.00286) 0.00321 (0.00008) 8.14862e-06

0.9 Size Prop. 0.90013 (0.00297) 0.00318 (0.00008) 8.76257e-06

Full 0.90040 (0.00292) 0.00312 (0.00008) 8.60114e-06

Prop. 0.98994 (0.00038) 0.00039 (0.00001) 1.45292e-07

0.99 Size Prop. 0.98992 (0.00042) 0.00041 (0.00002) 1.77848e-07

Full 0.98997 (0.00037) 0.00039 (0.00001) 1.37289e-07

# Plotting the 3rd degree polynomial if requested

if (Plot==1){

plot(PP,xlim=c(-1.5,1.5),xlab="rho",ylab="3rd degree polynomial")

abline(h=0,col=2)

abline(v=Roots[abs(Roots)<1],lty=2,lwd=2,col=2)

abline(v=-1,lty=2)

abline(v=1,lty=2)

}

# Estimating \sigma2

tmp1=1/(C*n)

tmp2=1/(1-(rho.hat^2))

tmp3=S+((rho.hat^2)*S.tilde)
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Table A.8: Simulation study. Estimating σ2 and its standard deviation. The mean (stan-
dard deviation) of the 100 replications are given together with mean squared errors for ρ =
0.01, 0.2, 0.5, 0.8, 0.9, 0.99 using proportional and size-proportional weights comparing with the
full likelihood results.

ρ0 method mean(σ̂2) (s.e.) mean(s.e.(σ̂2)) (s.e.) MSE

Prop. 1.99964 (0.02960) 0.02981 (0.00049) 8.67280e-04

0.01 Size Prop. 2.00165 (0.02836) 0.02834 (0.00040) 7.98842e-04

Full 2.00167 (0.02832) 0.02832 (0.00040) 7.97002e-04

Prop. 2.00581 (0.02907) 0.03093 (0.00055) 8.70077e-04

0.2 Size Prop. 2.00484 (0.02778) 0.02936 (0.00044) 7.87298e-04

Full 2.00473 (0.02772) 0.02933 (0.00044) 7.83248e-04

Prop. 1.99783 (0.03860) 0.03638 (0.00097) 1.47960e-03

0.5 Size Prop. 1.99890 (0.03747) 0.03488 (0.00085) 1.39116e-03

Full 1.99897 (0.03748) 0.03481 (0.00085) 1.39152e-03

Prop. 2.00013 (0.04900) 0.05002 (0.00166) 2.37744e-03

0.8 Size Prop. 2.00136 (0.04423) 0.04930 (0.00137) 1.93881e-03

Full 2.00101 (0.04569) 0.04880 (0.00142) 2.06754e-03

Prop. 2.00122 (0.05767) 0.05872 (0.00196) 3.29407e-03

0.9 Size Prop. 2.00089 (0.06037) 0.05915 (0.00230) 3.60829e-03

Full 2.00115 (0.05876) 0.05793 (0.00198) 3.41986e-03

Prop. 1.99683 (0.06941) 0.07117 (0.00254) 4.77911e-03

0.99 Size Prop. 1.99527 (0.07598) 0.07484 (0.00344) 5.73813e-03

Full 1.99641 (0.06940) 0.07093 (0.00253) 4.78099e-03

tmp4=2*rho.hat*R

sigma2.hat=(tmp1*tmp2)*(tmp3-tmp4)

return(list(rho.hat=rho.hat,sigma2.hat=sigma2.hat))

}

Computing variance of parameter estimates

cov.ar1 <- function(ck,nk,rho,sigma2){

num.split=length(ck)

var.mu1=(ck/(sigma2*(1-(rho^2))))* (((nk-2)*rho^2)-(2*((nk-1)*rho))+nk)

var.mu=1/var.mu1

w.mu=var.mu1/sum(var.mu1)

# Note that the unbiased version of the covariance is used here
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Table A.9: Simulation study. The computation time for a sample with n = 10 and c =1e+02,
1e+03, 1e+04, 5e+04, 1e+05, 3e+05, 5e+05, 7e+05, 9e+05, 1e+06. The closed form solution
is obtained by implementing the results of this paper in R, and the numerical solution is obtained
using PROC MIXED in SAS to estimate a repeated measurement model with AR(1) covariance
structure.

time (s) 1e+02 1e+03 1e+04 5e+04 1e+05 3e+05 5e+05 7e+05 9e+05 1e+06

Closed form 0.00 0.00 0.03 0.23 0.34 1.45 2.07 3.37 4.40 4.89

Numerical 0.08 0.13 1.04 10.45 34.74 268.96 770.74 1611.43 2724.31 3399.47
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Figure A.10: Simulation study. Comparing computation time using closed form (left) and
numerical (right) solutions. The horizontal axis shows number of clusters (c) and the vertical
axis shows the computation time in seconds.

v22=2*(sigma2^2)*(1+(rho^2))

v12=2*sigma2*(1-(rho^2))

v11=(1-rho^2)^2

var.varcomp1=matrix(c(v11,v12,v12,v22),2,2)

varcomp.coef=1/(ck*(nk-((nk-2)*(rho^2))))

var.varcomp=outer(var.varcomp1,varcomp.coef)

W.total=0

for (i in 1:num.split){
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Table A.10: PANSS data. Number of clusters in each trial for each cluster pattern.

Trial

n Pattern FIN-1 FRA-3 INT-2 INT-3 INT-7 Total

∗ ∗ · · · · · · · · 17 8 71 43 3 142

2 ∗ · ∗ · · · · · · · 0 0 2 0 1 3

∗ · · · ∗ · · · · · 0 0 1 0 0 1

∗ ∗ ∗ · · · · · · · 8 4 83 41 7 143

3 ∗ · ∗ · ∗ · · · · · 0 0 2 0 0 2

∗ ∗ · · ∗ · · · · · 1 0 3 1 0 5

∗ ∗ ∗ · ∗ · · · · · 11 0 85 66 5 167

∗ · ∗ · ∗ · ∗ · · · 0 0 1 0 1 2

4 ∗ · ∗ · ∗ · · ∗ · · 0 0 1 0 0 1

∗ ∗ ∗ · · · ∗ · · · 0 0 3 0 0 3

∗ ∗ ∗ ∗ · · · · · · 0 4 1 0 0 5

∗ ∗ · ∗ · · ∗ · · · 0 1 0 0 0 1

∗ · ∗ · · · ∗ ∗ · · 0 0 0 0 1 1

∗ ∗ ∗ · ∗ · ∗ · · · 58 0 85 35 6 184

∗ ∗ ∗ · ∗ · · ∗ · · 0 0 8 0 1 9

∗ ∗ · · ∗ · ∗ ∗ · · 0 0 6 0 0 6

5 ∗ ∗ ∗ · · · ∗ ∗ · · 0 0 8 0 0 8

∗ · ∗ · ∗ · ∗ ∗ · · 0 0 3 0 2 5

∗ · ∗ · ∗ · · ∗ · ∗ 0 0 1 0 0 1

∗ ∗ ∗ ∗ ∗ · · · · · 0 44 0 0 0 44

∗ ∗ · ∗ ∗ ∗ · · · · 0 1 0 0 0 1

∗ ∗ ∗ · ∗ · ∗ ∗ · · 0 0 986 240 74 1300

∗ ∗ · · ∗ · ∗ ∗ ∗ · 0 0 1 0 0 1

6 ∗ ∗ ∗ · · · ∗ ∗ · ∗ 0 0 1 0 0 1

∗ ∗ ∗ · ∗ · ∗ · ∗ · 0 0 1 0 0 1

∗ ∗ ∗ · ∗ ∗ ∗ · · · 0 0 2 0 0 2

W.total=W.total+solve(var.varcomp[,,i])

}

w.varcomp=array(0,c(2,2,num.split))

for (i in 1:num.split){

w.varcomp[,,i]=solve(W.total)%*%solve(var.varcomp[,,i])

}

return(list(var.mu=var.mu,var.varcomp=var.varcomp

,w.mu=w.mu,w.varcomp=w.varcomp))

}
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Figure A.11: PANSS data. Boxplots for the entire set of data, for the subject from the first
pattern only, and for various split samples.

Table A.11: PANSS data. Comparing different error covariance structures using three model com-
parison criteria for model (26) (residual log-likelihood value; AIC; BIC). Three R structures: Ind.
: independence structure (R = σ2I), CS: compound-symmetry structure (R = σ2I + dJ), AR(1):
AR(1) structure (Rij = σ2ρ|i−j|), UN: unstructured (Rij = σ2

ij).

Model -2 Res.log.lik. AIC BIC

Unstructured 80005.1 80047.1 80164.1

AR(1) 80522.6 80526.6 80537.8

Compound symm. 82683.1 82687.1 82698.3

Independence 89546.1 89548.1 89553.7

Computing iterated optimal weights

iterate.optimal.ar1 <- function(ck,nk,u.split,var.comp.split,tol){

num.split=length(ck)

W.size.prop=(nk*ck)/sum(nk*ck)

rho.hat= sum(var.comp.split[1,]*W.size.prop)

sigma2.hat=sum(var.comp.split[2,]*W.size.prop)

diff=10

var.comp.hat=matrix(c(rho.hat,sigma2.hat),2,1)

count=0
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while (diff>tol){

WW=cov.ar1 (ck,nk,var.comp.hat[1,1],var.comp.hat[2,1])

W.mu=WW$w.mu

W.varcomp=WW$w.varcomp

var.comp.hat=0

for (i in 1:num.split){

var.comp.hat=var.comp.hat+W.varcomp[,,i]%*%var.comp.split[,i]

}

W.mu.old=W.mu

W.varcomp.old=W.varcomp

WW=cov.ar1 (ck,nk,var.comp.hat[1,1],var.comp.hat[2,1])

W.mu=WW$w.mu

W.varcomp=WW$w.varcomp

diff1=norm(as.matrix(W.mu-W.mu.old))

diff2=sum(apply(W.varcomp-W.varcomp.old,3,norm))

diff=max(c(diff1,diff2))

count=count+1

}

var.comp.hat=0

for (i in 1:num.split){

var.comp.hat=var.comp.hat+W.varcomp[,,i]%*%var.comp.split[,i]

}

W.total=0

WW=cov.ar1 (ck,nk,var.comp.hat[1,1],var.comp.hat[2,1])

for (i in 1:num.split){

W.total=W.total+solve(WW$var.varcomp[,,i])

}

mu.hat=sum(W.mu*mu.split)

return(list(W.mu=W.mu,W.varcomp=W.varcomp,mu.hat=mu.hat

A.31



Estimation in AR(1) Models Hermans et al.

,varcomp.hat=var.comp.hat, var.mu.hat=1/sum(1/WW$var.mu),

var.varcomp.hat=solve(W.total),num.iterate=count))

}
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Figure A.12: PANSS data. 95% confidence intervals for fixed effects and variance components
estimates and the standard deviations of these estimates using sample splitting, combined with
proportional (Pr - first) and size-proportional (S-Pr - second) weights, and full likelihood (Fl -
third). The dashed horizontal line shows the full likelihood estimate. The model used in here is
without trial effect (26).
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Figure A.13: PANSS data. 95% confidence intervals for fixed effects and variance components
estimates and the standard deviations of these estimates within each split. The dashed horizontal
line shows the full likelihood estimate. The model used in here is without trial effect (27).
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Figure A.14: PANSS data. 95% confidence intervals for fixed effects and variance components
estimates and the standard deviations of these estimates using sample splitting, combined with
proportional (Pr - first) and size-proportional (S-Pr - second) weights, and full likelihood (Fl -
third). The dashed horizontal line shows the full likelihood estimate. The model used in here is
with trial effect (27).
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Figure A.15: PANSS data. 95% confidence intervals for fixed effects and variance components
estimates and the standard deviations of these estimates within each split. The dashed horizontal
line shows the full likelihood estimate. The model used in here is with trial effect (27).
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