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Abstract
For many years metaheuristics have been successfully applied to solve computationally challenging optimisation problems.
�ese general solutions procedures are most commonly evaluated by running them on standard benchmark problems and
comparing performance results with other state-of-the-art methods. �e objective is to be be�er than the competition. A
detailed investigation of the metaheuristic elements responsible for the superior performance is rarely performed. Under-
standing how all the elements impact performance and how they interact with the speci�c problem instance to be solved
is, nevertheless, relevant to gain insight into both metaheuristic and optimisation problem. In this research, the focus is on
gaining a be�er understanding of heuristic algorithm performance. We investigate the performance di�erence between two
con�gurations of a large neighbourhood search algorithm applied on instances of the vehicle routing problem with time
windows and are able to substantially reduce the performance gap a�er a detailed analysis of the destroy and repair process.
We observed that when reinserting customers in the solution, the most isolated ones should be prioritised.

Keywords: Experimental analysis, Metaheuristics, Understanding, Vehicle routing, Large neighbourhood search.

1 Introduction

Metaheuristics are widely employed to solve computationally challenging optimisation problems. �ey are usu-
ally applied in a competitive context: solving standard benchmark instances and then comparing performance
results with those of state-of-art methods. �e goal is to obtain be�er results than the competition. Investigating
which algorithm elements actually contribute to the superior performance is not usually a research goal. Yet,
experimenters control a lot of these elements as metaheuristics can be seen as consisting of several interacting
heuristic mechanisms. Which of these mechanisms are activated, how they behave and interact with other mech-
anism can o�en be controlled by parameters. �e choices made for these parameters substantially impact the
e�cacy with which a heuristic algorithm solves a given problem instance or class of problem instances [1].

Given the impact parameters have on performance, several procedures have been developed that automate the
task of tuning these parameters [2]. �ey do not generally provide information on why one parameter choice
works be�er than another one. What is the contribution of each element to performance? How does the con-
tribution vary when considering di�erent problem instances? Why does a (range of) value(s) work be�er than
other values? Such questions are not commonly addressed when discussing experimental results of heuristic al-
gorithms [3]. �e a�ention usually focuses on achieving be�er performance results than competing algorithms
[4]. However, this approach does not provide much insight into heuristic algorithm behaviour [5]. A competitive
evaluation methodology is useful when the objective is to develop the fastest possible procedure for a speci�c
environment. When the goal is to understand how performance is obtained, to discover which elements in the
heuristic algorithm contribute to its performance and to draw conclusions that are valid beyond the speci�c
problem instances chosen, one has to rely on a statistical evaluation method [6].

�is research focuses on explaining why two con�gurations of a metaheuristic algorithm perform di�erently.
What can be learned about the di�erences in components, strategies or implementations that result in an either
be�er or worse performing heuristic method. Based on an exploratory analysis of the parameters’ impact on
performance, explanations are sought for the observed pa�erns through iterative experimentation. We observe
data, ask questions about it, formulate possible answers and verify the answers in new experiments.

2 Ask a question

An analysis of a large neighbourhood search (LNS) algorithm solving a number of instances for the vehicle
routing problem with time windows (VRPTW) is performed. �e importance of VRPTW in many distribution
systems has spurred intensive research e�orts for both heuristic and exact optimisation approaches. Yet, few
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research articles apply statistical techniques to evaluate heuristics for these problems or seek to understand how
they in�uence heuristic algorithm behaviour. LNS is a popular metaheuristic framework applied to multiple VRP
variants in which an initial solution is gradually improved by iteratively removing and reinserting customers in
a solution until some stopping criterion is met. �is iterative process uses a destroy and repair operator.

�e exploratory analysis in [7] is performed on a data set of 4000 observations. �e data set is generated in two
phases. Problem instances are �rst sampled and then, per generated instance, a number of parameter se�ings
are randomly de�ned. Multilevel regression models are formulated since this type of data structure violates the
assumption of independent error terms made by traditional regression analysis. �e results exposed correla-
tions between algorithm parameters and performance and between algorithm parameters and problem instance
characteristics. One notable observation is that iteratively removing customers at random from a solution is ex-
pected to result in a be�er performance than iteratively removing clusters of customers when in both cases these
customers are reinserted based on a regret measure that prioritises di�cult customers. Since it seems counterin-
tuitive for a destroy operator relying purely on randomisation (i.e., random removal) to perform be�er than an
operator employing a more sophisticated logic (i.e., related removal) given their combination with a certain repair
operator (i.e., regret-2), the question is raised what is special about these speci�c combinations that leads to the
observed result. �erefore, we now focus on these operators and try to explain the performance di�erence.

3 Search for answers

Since the focus of this follow-up research is on analysing individual operators and not a complete metaheuristic,
the operators are extracted from the metaheuristic framework and the solution quality a�er a single destroy and
repair iteration is measured. �is will allow detailed analysis of the destroy and repair process.

First, the selection criteria either to remove or insert customers are examined. Random removal randomly selects
q customers to remove. �e idea is to diversify the search towards a be�er solution. Related removal de�nes
a relatedness criterion to base removals on. We de�ne relatedness in terms of distance as in [8], looking at the
geographical closeness of two customers. �e idea is that customers close to each other can more easily switch
routes and/or positions, while more distanced customers have a higher chance of being inserted back in their
original position. In both removal cases, customers are reinserted using a regret-k operator with k equal to 2,
3 or 4. �is operator prioritises customers that are considered ‘di�cult’. �e di�culty criterion used to decide
which customer to iteratively insert is the additional cost incurred when not inserting a customer in its best
route. �e higher this additional cost, the higher the priority given to the customer. �is measure is also referred
to as the regret value. It is calculated as the sum of the di�erence between a customer’s cheapest insertion route
(i.e., insertion in this route adds the smallest distance to the overall travelled distance) and its second, third, … up
until its k-th cheapest insertion route. Hence, customers with large regret values have large cost gaps between
their best and second, third, fourth, … best insertion route. �erefore, these customers should be considered �rst
for insertion, since they only have a small number of interesting insertion alternatives. Customers having small
regret values do not have to be immediately inserted since they can more easily be inserted in alternative routes
for which the cost of insertion is not a lot higher compared to the best insertion route. Since it is the key measure
used in the repair process and applied for both removal scenarios, a �rst analysis focused on this measure and
how it di�ers for inserting randomly dispersed customers and for a clustered group of customers.

We observed that random removal leads to solutions with similar structure to the initial solution. During the
repair process only small adjustments are made that potentially result in a be�er �nal solution. When removing
a geographical cluster of customers, on the other hand, a (large) part of the solution structure is completely de-
stroyed and has to be rebuilt from scratch (cf. �gure 1). For many of the removed customers, there are not a lot of
existing routes nearby that are potential candidates to be inserted in. Consequently, the number of good alterna-
tives for their cheapest insertion route is expected to be small. A randomly removed customer, however, has more
existing routes nearby and thus be�er alternatives for the cheapest insertion route, resulting in a lower regret
value. �e expectation therefore is that a removed customer who is part of a geographical cluster of removed
customers has less feasible alternatives compared to a randomly removed customer. Further, due to the di�er-
ence in feasible alternatives, it is expected that the average regret value of the selected customer for insertion
is higher for scenarios in which a cluster of customers has been removed. �is is formulated in hypotheses 1 and 2.
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(a) Random removal
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(b) Related removal

Figure 1: Destroyed solution for a problem instance with 100 customers

Hypothesis 1 (H1): When a cluster of geographically nearby customers is removed, each removed customer has on
average the same number of feasible routes to be inserted compared to a customer that was removed at random.

Hypothesis 2 (H2): �e average regret value of the selected customer for insertion per iteration does not di�er when
customers are removed at random compared to when a cluster of geographically nearby customers is removed.

Having less feasible options and a higher di�culty measure, what does this imply for the way customers are
reinserted in the solution? We notice that the majority of the customers that are inserted �rst are almost all
in near proximity of an existing route, while the more “isolated” customers are all postponed to the �nal inser-
tions. What characterises these “isolated” customers is that they cannot be feasibly inserted in one of the existing
routes. �is means that their regret value is zero and they are thus assigned the lowest priority of all removed
customers. �e single alternative they have is to create a route straight from the depot to the customer and back.
Such an alternative is assigned a regret value of zero since there is no cost loss of postponing the insertion for
that customer. �e customer has no other alternatives, so its insertion is not considered urgent. In addition, as
the solution of routing problems typically not only strives to minimise the total distance travelled, but also doing
so with the fewest number of vehicles necessary, the current priority mechanism does not favour the creation of
additional routes. Nonetheless, this observation raises the question what the impact would be if these isolated
customers are taken into account at the start of the repair process instead of initially being ignored. Perhaps
their prioritisation might bene�t other removed customers as this adds alternative routes in an area with few or
no routes at all, perhaps be�er alternatives than when the isolated customers are postponed to the �nal inser-
tions. �erefore, we hypothesise that removing a cluster of customers results in more customers having no other
feasible insertion option than an individual route from the depot to the customer and back than when removing
customers at random. Secondly, we hypothesise the solution quality for scenarios using related removal to be
be�er when prioritising isolated customers �rst instead of postponing their insertion to the �nal ones.

Hypothesis 3 (H3): �e number of removed customers whose sole feasible option at the start of the repair process
is a route from the depot to the customer and back is the same when the removed customers are chosen randomly or
when they belong to a cluster of customers.

Hypothesis 4 (H4): When a cluster of geographically nearby customers is removed, prioritisation of the customers
with no other feasible insertion option than an individual route from the depot and back does not result in a be�er
solution quality than when these customers are postponed to the �nal insertions.

4 Validate hypotheses

�e hypoteses are validated in a new experiment. A data set of 10,000 observations is generated following the
same multilevel experimental design as employed in [7]. It consists of 200 arti�cial VRPTW instances and 50

3



Geneva, March 22–23, 2018 EU/ME 2018 - Metaheuristics for Industry

random parameter se�ings tested per problem instance. A parameter se�ing is de�ned as a combination of a
single destroy operator — either random or related removal — with a single repair operator — either regret-2,
regret-3 or regret-4.

�e performance data is analysed relying on multilevel regression analyses. All hypotheses are validated in sep-
arate regression analyses using the brms package in R. For hypotheses 1, 2 and 3 statistical evidence is found,
with at least 95% con�dence, to reject them. In other words, scenarios relying on related removal have signi�-
cantly less feasible insert options for a removed customer, have on average a higher regret value than scenarios
relying on random removal and have a signi�cantly higher number of removed customers with no other feasible
insertion option than an individual route from the depot and back.

For the validation of the fourth hypothesis the priority mechanism is modi�ed such that the most isolated cus-
tomers are now prioritised at the start instead of being ignored. �e 10,000 scenarios are run again using the
adjusted prioritisation. �e regression output showed an overall be�er solution quality and, more importantly, a
substantial reduction in the performance di�erence between random and related removal. For problem sizes of
about 200 customers or more, related removal still performs signi�cantly worse than random removal.

5 Conclusion

We are able to explain (part of) the observed performance di�erence between two con�gurations of the same
metaheuristic algorithm. Analysis of a single destroy and repair iteration showed that removing a geographical
cluster of customers results in fewer interesting alternative routes compared to removing customers at random.
�ese customers are therefore assigned a higher di�culty. In such a scenario it is important to prioritise those
customers who can only be inserted in a route straight from the depot to the customer and back. �is results in
a smaller performance gap between scenarios using related removal and scenarios using random removal.

�e experimental data generated to validate the hypotheses is based on a single destroy and repair iteration
performed on an initial solution. Whether our �ndings hold when running multiple iterations as in the large
neighourhood search framework is to be veri�ed in a experiment similar to the one performed by [7] using new
sample data. We await these analysis results before looking to explain the remaining signi�cant performance
di�erence. One possible idea to look into is which isolated customers to prioritise �rst.
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