An analysis on the destroy and repair process in
large neighbourhood search applied on the
vehicle routing problem with time windows

J. Corstjens, A. Caris, and B. Depaire
UHasselt, Research Group Logistics

e-mail: jeroen.corstjens@uhasselt.be

For many years experimenters have successfully resorted to heuristic algo-
rithms when solving complex optimisation problems, ranging from construction
methods to high-level metaheuristic frameworks. Whenever such a method is
presented, the added value it delivers is shown in a competitive evaluation con-
text. This means that the algorithm is applied to solve the instances of one
or several well-known benchmark problem sets after which its performance on
these instances is compared to the performance of other algorithms that solved
the same instances. The aim is to show that the presented algorithm performs
better, in the sense of a better solution quality, computation time or trade-off of
both performance measures. One rarely sees a thorough investigation of how an
algorithm establishes its performance. What elements of the algorithm contribute
the most to performance? How does this contribution depend on the problem
characteristics? What can we learn about any performance difference observed
between distinct parameter configurations? Such insights are necessary to truly
understand algorithmic behaviour [5].

In recent years, there has been increased focus on identifying the algorithm
elements that are most relevant to performance ([2, 3, 4]). We want to go a step
further and understand why these elements work well or not, enabling us to ex-
plain why it is that two parameter configurations or two distinct algorithms differ
in the performance they obtain. That is the type of question we aim to address
when experimenting with heuristic algorithms. In a case study we analyse a large
neighbourhood search (LNS) algorithm applied on instances of the vehicle rout-
ing problem with time windows (VRPTW). A first exploratory analysis exposed
several patterns raising questions that are to be answered in new consecutive
experiments [1]. One observed pattern concerns certain combinations of destroy
and repair operators. More specifically, a first experimental analysis showed that
removing customers at random from a solution each iteration leads to a better
performance than removing geographical clusters of customers if these customers
are to be reinserted using a regret measure that takes into account which cus-
tomers are more difficult to insert and should be prioritised. In this follow-up
research we wish to understand why there is a performance difference.

Searching for explanations, the focus shifts from a complete large neighbour-



hood search framework to a single destroy and repair iteration. A data set of
10,000 single iteration observations is generated, consisting of 200 VRPTW in-
stances and 50 parameter settings per problem instance. A parameter setting is
interpreted in this experiment as a combination of a single destroy operator with
a single repair operator. Solutions are destroyed using either random or related
removal, while they are repaired using a regret-k operator with k equal to 2,3 or 4.

The observed performance difference between the destroy operators in the
LNS experiment is also observed in the new experiment. Given this confirma-
tion, the search for explanations started by decomposing the destroy and repair
process. The analysis showed that the removal of a cluster of customers that
are geographically nearby is detrimental for the repair phase as it reduces the
number of alternative routes available. The latter is crucial for a regret operator
if it wants to make the best insert decisions. Even more, some customer no longer
have any feasible alternative in one of the existing routes and are considered to
be isolated cases. It is found that prioritising these customers by inserting them
in individual routes reduces the majority of the performance gap between ran-
dom and related removal. The creation of individual routes early on in the repair
phase benefits all customers that are to be inserted as it increases the number
of available alternatives. Hence, a regret operator will make a better estimation
of customer difficulty and consequently a better prioritisation if each individual
customer has existing routes nearby in which it can be feasibly inserted.

We still observe a small significant performance difference between random
and related removal, but before looking for further explanations we will perform
an experiment on a complete large neighbourhood search algorithm. In this ex-
periment it will be tested whether the findings for the one iteration experiment
also hold when performing a normal LNS experiment that runs many more iter-
ations.

References

[1] Corstjens, J., Depaire, B., Caris, A., & Sorensen, K. (2016). Analysing meta-
heuristic algorithms for the vehicle routing problem with time windows. In
Verolog 2016 proceedings, 89.

[2] Fawcett, C., & Hoos, H. (2015). Analysing differences between algorithm
configurations through ablation. Journal of Heuristics, 22(4), 431-458.

[3] Hutter, F., Hoos, H., & Leyton-Brown, K. (2015). Identifying key algorithm
parameters and instance features using forward selection. Lecture Notes in
Computer Science, 7997, 364-381.

[4] Hutter, F., Hoos, H., & Leyton-Brown, K. (2015). An efficient approach for
assessing hyperparameter importance. International Conference on Machine
Learning, 754-762.

[5] Rardin, R. L., & Uzsoy, R. (2001). Experimental evaluation of heuristic opti-
mization algorithms: A tutorial. Journal of Heuristics, 7(3), 261-304.



