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ABSTRACT
We propose a logical framework, based on Datalog, to study
the foundations of querying JSON data. The main feature
of our approach, which we call J-Logic, is the emphasis on
paths. Paths are sequences of keys and are used to access
the tree structure of nested JSON objects. J-Logic also fea-
tures “packing” as a means to generate a new key from a
path or subpath. J-Logic with recursion is computation-
ally complete, but many queries can be expressed without
recursion, such as deep equality. We give a necessary con-
dition for queries to be expressible without recursion. Most
of our results focus on the deterministic nature of JSON ob-
jects as partial functions from keys to values. Predicates
defined by J-Logic programs may not properly describe ob-
jects, however. Nevertheless we show that every object-to-
object transformation in J-Logic can be defined using only
objects in intermediate results. Moreover we show that it is
decidable whether a positive, nonrecursive J-Logic program
always returns an object when given objects as inputs. Re-
garding packing, we show that packing is unnecessary if the
output does not require new keys. Finally, we show the
decidability of query containment for positive, nonrecursive
J-Logic programs.

1. INTRODUCTION
JSON is a popular semistructured data model used in

NoSQL systems and also integrated in relational systems.
Proposals for expressive query languages for JSON include
JSONiq [17, 18], which is based on XQuery, and SQL++
[29], which is based on SQL. Schema formalisms for JSON
are also being investigated [31]. Hence the time is ripe to
investigate the logical foundations of JSON querying, which
is the goal of the present paper.

A JSON object is a partial function, mapping keys to val-
ues. Here, a value is either an atomic value or an object in
turn. Hence, objects can be nested, and thus can be viewed
as trees, similarly to XML documents. JSON trees have
some special characteristics, however, which form the start-
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ing point of our work. A first difference with XML trees is
that JSON trees are edge-labeled rather than node-labeled;
the keys are the edge labels. More importantly, JSON trees
are deterministic in the sense of Buneman, Deutsch and Tan
[11, 33]. Specifically, since objects are functions, different
edges from a common parent must have different labels.1

Determinism is convenient because paths starting in the
root of a given tree can be identified with key sequences.2

This suggests an alternative view of objects as sets of path–
value pairs, where each path is a path from the root to a
leaf, and the corresponding value is the atomic value of that
leaf. We call such a set of path–value pairs an object de-
scription. Since paths are sequences of keys, we are led to
the conclusion that to query JSON objects, we need a query
language that can work with sets of sequences.

At the same time, the theory of query languages is solidly
grounded in logic [2]. Datalog in particular is a convenient
logic-based language with a long tradition in data manage-
ment research and a wide variety of current applications [23,
15, 7, 20].

We are thus motivated to investigate the logical founda-
tions for JSON querying within a Datalog language for sets
of sequences. Such a language, called sequence Datalog, has
already been introduced by Bonner and Mecca [9, 28, 10].
Bonner and Mecca were primarily interested in expressive
sequence manipulation, of the kind needed in bioinformatics
applications. They reported results on expressiveness, com-
plexity of computations, and on ways to combine recursion
with sequence concatenation while still guaranteeing termi-
nation or tractability.

In this paper, we focus more on questions motivated by
JSON querying and deterministic semistructured data. To
this end, we propose a new approach to sequence Datalog,
called J-Logic. Moreover, J-Logic adds a feature for gener-
ating new keys, called packing. Key generation is necessary
if we want the result of a query over objects to be again an
object. Consider, for example, the Cartesian product of two
objects that have N keys each. The result needs to be a
object with N2 keys. So, we cannot manage by just reusing
the keys from the input; new keys must be generated.

The creation of new data elements (keys, identifiers, nodes,
and so on) in the result of a query has already been consid-
ered in many contexts, such as highly expressive languages

1Buneman, Deutsch and Tan actually considered an exten-
sion of JSON where keys need not be atomic, but can be
objects in turn.
2In JSON Schema [31], key sequences are called “JSON
pointers”.
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T (〈@x.@y〉.r.@x.$x′ : @u)← R(@x.$x′ : @u), S(@y.$y′ : @v)
T (〈@x.@y〉.s.@y.$y′ : @v)← R(@x.$x′ : @u), S(@y.$y′ : @v)

Figure 1: J-Logic program defining T as the Cartesian product of R and S. Here, @x and @y are atomic variables, binding
to the top-level atomic keys of R and S respectively; $x′ and $y′ are path variables, binding to the paths in the subobjects
below @x and @y in R and S respectively. The variables @u and @v bind to atomic values stored in the leaves. The dot
indicates concatenation. We also use constant keys r and s to indicate the R- and S-parts of each pair of the Cartesian
product.

[4, 5], object databases [3, 22, 27], information integration
[21], data exchange [6], and ontology based data access [32].
The popular languages XQuery and SPARQL both have
node creation. In logic based approaches, element creation
is typically achieved through the use of Skolem functions
[24, 25].

In J-Logic, however, we can take advantage of having se-
quences in the language. We can generate new keys simply
by packing a key sequence s into a new key 〈s〉. For example,
consider two objects

R = {a : o1, b : o2} and S = {c : o3, d : o4},

where o1, o2, o3, and o4 are subobjects. We can represent
the Cartesian product of R and S by the object

T = {〈a.c〉 : {r : {a : o1}, s : {c : o3}},
〈a.d〉 : {r : {a : o1}, s : {d : o4}},
〈b.c〉 : {r : {b : o2}, s : {c : o3}},
〈b.d〉 : {r : {b : o2}, s : {d : o4}}}.

The two J-Logic rules in Figure 1 accomplish this.
Packed keys should be seen as an intermediate construct.

We envisage that any packed keys present in the final re-
sult of a query will be replaced by fresh identifiers, as in
the ILOG approach [24]. For example, T above could be
returned in the following form:

T = {t1 : {r : {a : o1}, s : {c : o3}},
t2 : {r : {a : o1}, s : {d : o4}},
t3 : {r : {b : o2}, s : {c : o3}},
t4 : {r : {b : o2}, s : {d : o4}}}.

The aforementioned languages SQL++ and JSONiq do
not have key generation: there, the Cartesian product can
be computed as a bag (or sequence) of objects, but not as
one object itself. Key generation can thus be seen as an al-
ternative to adding an extra collection feature (like bags, or
sequences if we agree on some way to order objects) to the
query language. We admit that a bag of objects could be
easily transformed into one object by generating fresh keys.
Thus the two approaches (key generation, or bags that are
eventually transformed into objects) are largely equivalent.
In J-Logic we have chosen for key generation through pack-
ing, because it is a lightweight addition to sequence Data-
log. Moreover, it allows us to work with just a single kind of
collections, namely, objects (more precisely, object descrip-
tions).

In this paper we will show the following results.

1. J-Logic programs may be recursive, but we are mostly
interested in the nonrecursive case. Nonrecursive pro-
grams have polynomial-time data complexity, and due
to the use of sequence variables, nonrecursive programs

are already quite powerful. We give a necessary condi-
tion on queries computable by nonrecursive programs,
which can serve as a tool to show that certain queries
involving objects of unbounded depth require recur-
sion. (Nonrecursive J-Logic over objects of bounded
depth is essentially equivalent to relational algebra.)

2. We show the technical result that packing, while con-
venient and necessary in general, is not needed to com-
pute queries from flat inputs to flat outputs. Here, flat
means that no packed keys occur in the data. An open
question is whether this can be done without recursion
(our simulation of packing needs recursion). An affir-
mative answer would yield a result analogous to the
“flat–flat theorem”for the nested relational algebra [30]
or calculus [12].

3. In J-Logic, a JSON object is described as a mapping
from root-to-leaf paths to atomic values. Accordingly,
predicates defined by J-Logic rules are relations be-
tween paths and atomic values. Not every such rela-
tion properly describes a JSON object, however. Nev-
ertheless, we show the “object–object theorem”: every
query from objects to objects, computable by a J-Logic
program, is computable by a J-Logic program so that
every intermediate relation is a proper object descrip-
tion.

4. The object–object theorem assumes a J-Logic program
that maps objects to objects. But can we check this?
We show that the object–object property is decidable
for positive, nonrecursive programs. We do this by
adapting the chase procedure for equality-generating
dependencies, well known from relational databases
[2]. In our model, however, the chase is not complete
in general. We nevertheless can use it resolve our prob-
lem.

5. Finally, we show that the containment problem for pos-
itive, nonrecursive programs, over flat instances, is de-
cidable. To the best of our knowledge, the contain-
ment problem was not yet addressed in the setting of
sequence Datalog. We solve the problem in our set-
ting by extending the known inclusion test for pattern
languages over an infinite alphabet [19].

This paper is further organized as follows. In Section 2
we introduce our formalization of the JSON data model. In
Section 3 we define J-Logic. In Section 4 we discuss the ex-
pressive power of nonrecursive J-Logic and state the flat–flat
theorem. In Section 5 we discuss the problem of proper ob-
ject descriptions, state the object–object theorem, and study
the object–object decision problem. Section 6 is devoted to
the containment problem. We conclude in Section 7.
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2. A FORMAL DATA MODEL BASED ON
JSON

We begin by defining our formalization of the JSON data
model. From the outset we assume an infinite domain dom
of atomic data elements, which we call atomic keys. In prac-
tice, these would be strings, numbers, or any other type of
data that the database system treats as atomic. Now the
sets of values and objects are defined as the smallest sets
satisfying the following:

• Every atomic key is a value;

• Every object is a value;

• Every mapping from a finite set of atomic keys to val-
ues is an object.

Recall that a mapping is a set of pairs where no two pairs
have the same first component. Thus, an object is a set of
key–value pairs. It is customary to write a key–value pair
(k, v) in the form k : v. For an object o and a key a, we
sometimes use the notation o.a for the a-value of o, i.e., for
o(a).

Example 2.1. Using strings such as ‘name’, ‘age’, ‘anne’,
‘bob’ and ‘chris’, and numbers such as 12, 18 and 24, as
atomic keys, the following are three examples of objects:

o1 = {name : anne, age : 12}
o2 = {name : bob, age : 18}
o3 = {name : chris, age : 24}

Since objects can be nested, the following is also an object:

o = {name : john, children : {1 : o1, 2 : o2, 3 : o3}}

We have o.children.2 = o2. Finally, note that the set {name :
anne, name : bob} is not an object since it is not a well-
defined mapping. The set {anne : name, bob : name}, how-
ever, is perfectly allowed as an object.

Remark 2.2. Some remarks are in order.

1. In the JSON standard [16], the keys in an object can
only be strings, but values can be numbers. In our
formalization we make no distinction between differ-
ent types of atomic data, which explains the example
above where we used the numbers 1, 2 and 3 as keys.
In the language JavaScript, an array may be viewed as
an object with numbers as keys. So, our approach is
not too much at odds with reality.

2. Indeed, the JSON standard also has arrays besides ob-
jects. In this paper we focus on unordered objects. An
extension of our approach, where a total order is as-
sumed on atomic keys (and extended to packed keys,
see later) seems feasible and would be able to model
arrays.

3. The term “atomic key” is a bit misleading, as these
elements may not only be used as keys, but also as
values. Indeed, that keys can occur as data values,
and vice versa, is a characteristic feature of JSON.

anne bob chris12 18 24

31 2

name name nameage age age

name children

john

Figure 2: Object o from Example 2.1 as a tree.

Packed keys.
Until now we have defined an object as a mapping from

atomic keys to values. Since these values can be objects
in turn, we can use sequences of atomic keys to navigate
deeper inside an object. Sequences of keys will be called
paths. Moreover, we also introduce packed keys, as they
can be created by J-Logic rules. Formally, the sets of keys
and paths are defined as the smallest sets such that

• every atomic key is a key;

• if p is a path then 〈p〉 is a key, called a packed key ;

• every nonempty finite sequence of keys is a path.

In our notation, we use dots to separate the elements of a
sequence. At the same time, the dot will be used to denote
concatenation of paths.

Example 2.3. Let a and b be atomic keys. Then a.b is a
path; k = 〈a.b〉 is a packed key; p = b.b.k.a is again a path;
and 〈p〉 is again a packed key. Note that 〈a〉 and 〈〈a〉〉 are
distinct paths.

From now on we allow packed keys in objects. Thereto
we generalize the notion of object by defining an object to
be a mapping from a finite set of keys to values. Thus, keys
need not be atomic but can also be packed. We already
saw an example of an object with packed keys, T in the
Introduction.

Object descriptions.
An object can be visualized as a tree, where edges are la-

beled with keys and leaves are labeled with atomic values:
atomic keys or ∅ (the empty object). Thus, we can com-
pletely describe an object by listing all paths from the root
to the leaves, and, for each such path, giving the label of the
corresponding leaf.

Example 2.4. Recall the object o from Example 2.1. Figure 2
shows o as a tree. Its description as a set of path–value pairs
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is as follows:

name : john

children.1.name : anne

children.1.age : 12

children.2.name : bob

children.2.age : 18

children.3.name : chris

children.3.age : 24

Formally, we define an object description to be any set of
pairs of the form p : v, where p is a path and v is an atomic
value. If o is an object, the object description of o, denoted
by OD(o), is defined inductively as follows:

• If o is ∅, or a singleton object of the form {k : b} with
b an atomic value, then OD(o) = o.

• If o is a singleton object of the form {k : o′}, with o′

an object, then

OD(o) = {k.p : b | (p : b) ∈ OD(o′)}.

• If o is a non-singleton object, then

OD(o) =
⋃
{OD({k : v}) | (k : v) ∈ o}.

Remark 2.5. Not every finite object description is the object
description of some object; those that are, are called proper.
Simple examples of improper object descriptions are {a :
1, a : 2} and {a : 1, a.a : 1}. We will focus on proper object
descriptions in Section 5. For now, we allow arbitrary object
descriptions.

Vocabularies, instances, and queries.
We can finally define the fundamental notions of database

instance and query in our data model. Just like a relational
database instance is a finite collection of named relations,
here we will define an instance as a finite collection of named
object descriptions. Since object descriptions are binary re-
lations (sets of pairs), we refer to their names as “relation
names”.

Formally, a vocabulary V is a finite set of relation names.
An instance I over V assigns to each name R ∈ V an object
description I(R). Given two disjoint vocabularies Vin and
Vout, a query from Vin to Vout is a partial function from
instances over Vin to instances over Vout.

In database theory one often focuses on generic queries
[2]. We can define a similar notion of genericity here. Let f
be a permutation of dom. Then f can be extended to paths,
packed keys, object descriptions, and instances, simply by
applying f to every occurrence of an atomic key. Let C be a
finite subset of dom (these are the atomic keys that would
be explicitly mentioned in a program for the query). Then
a query Q is called C-generic if for every permutation f of
dom that is the identity on C, and for every instance I, we
have Q(f(I)) = f(Q(I)). In particular, if Q(I) is undefined,
then Q(f(I)) must also be undefined.

3. J-LOGIC
In the syntax of J-Logic, we assume disjoint supplies of

atomic variables (ranging over atomic keys) and path vari-
ables (ranging over paths). The set of all variables is also

disjoint from dom. We indicate atomic variables as @x and
path variables as $x.

Key expressions and path expressions are defined just like
keys and paths, but with variables added in. Formally, we
define the sets of key expressions and path expressions to be
the smallest sets such that

• every atomic key is a key expression, called a constant ;

• every atomic variable is a key expression; constants
and atomic variables are also called atomic key expres-
sions;

• if e is a path expression then 〈e〉 is a key expression,
called a packed key expression;

• every nonempty finite sequence of key expressions and
path variables is a path expression.

Recall that an atomic value is an atomic key or ∅. Now
an atomic term is an atomic value or an atomic variable.

A predicate is an expression of the form P (e : t), with P
a relation name, e a path expression, and t an atomic term.

An equality is an expression of the form e1 = e2, with e1
and e2 path expressions.

Many of the following definitions adapt the standard def-
inition of Datalog [2] to our data model.

An atom is a predicate or an equality. A negated atom is
an expression of the form ¬A with A an atom. A literal is
an atom (also called a positive literal) or a negated atom (a
negative literal).

A body is a finite set of literals.
A rule is an expression of the form H ← B, where H is a

predicate, called the head of the rule, and B is a body. We
define the limited variables of the rule as the smallest set
such that

• every variable occurring in a positive predicate in B is
limited; and

• if all variables occurring in one of the sides of a positive
equality in B are limited, then all variables occurring
in the other side are also limited.

A rule is called safe if all variables occurring in the rule are
limited.

Finally, a program is a finite set of safe rules with strati-
fied negation. We omit the definition of stratified negation,
which is well known [2]. For our purposes in this paper,
stratified negation suffices. A program is called positive if it
does not use negation. We also assume familarity with the
distinction between recursive and nonrecursive programs.

Semantics.
We have defined the notion of instance as an assignment of

object descriptions to relation names. A convenient equiva-
lent view of instances is as sets of facts. A fact is an expres-
sion of the form R(p : v) with R a relation name, p a path,
and v an atomic value. An instance I over vocabulary V is
viewed as the set of facts

I = {R(p : v) | R ∈ V and (p : v) ∈ I(R)}.

A valuation is a function ν defined on a finite set of vari-
ables, that maps atomic variables to atomic keys and path
variables to paths. We say that ν is appropriate for a syn-
tactical construct (such as a path expression, a literal, or
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a rule) if ν is defined on all variables occurring in the con-
struct. We can apply an appropriate valuation ν to a key
or path expression e in the obvious manner: we substitute
each variable by its image under ν and obtain a key or a
path ν(e). Likewise, we can apply an appropriate valuation
to a predicate and obtain a fact.

Let L be a literal, ν be a valuation appropriate for L, and
I be an instance. The definition of when I, ν satisfies L is
as expected: if L is a predicate, then the fact ν(L) must be
in I; if L is an equality e1 = e2, then ν(e1) and ν(e2) must
be the same path. If L is a negated atom ¬A, then I, ν must
not satisfy A.

A body B is satisfied by I, ν if all its literals are. Now
a rule r = H ← B is satisfied in I if for every valuation ν
appropriate for r such that I, ν satisfies B, also I, ν satisfies
H.

The notions of EDB and IDB relation names of a program
are well known: the IDB relation names are the relation
names used in the head of some rules; the other relation
names are the EDB relation names. Given a vocabulary
Vin, a program is said to be over Vin if all its EDB relation
names belong to Vin, and its IDB relation names do not.

Now the semantics of programs with stratified negation is
defined as usual [2]. Recall that a program is called semi-
positive if negative predicates only use EDB relation names.
We first apply the first stratum, which is semipositive, and
then apply each subsequent stratum as a semipositive pro-
gram to the result of the previous stratum. So we only need
to give semantics for semipositive programs.

Let P be a semipositive program over Vin, and let I be an
instance over Vin. Let V be the set of IDB relation names
of P. Then P(I) is the smallest instance over Vin ∪ V that
satisfies all the rules of P, and that agrees with I on Vin.

In the end, a program P over Vin can be used to compute
a query Q from Vin to Vout, for any designated subset Vout
of the IDB relation names of P. Here, Q(I) simply equals
the restriction of P(I) to Vout.

Syntactic sugar.
We have kept the syntax of J-Logic minimal so as to keep

the formal definitions as simple as possible. For writing
practical programs, however, it is convenient to introduce
some syntactic sugar:

• Variables of the form %u range over atomic values,
i.e., atomic keys or ∅. We could always eliminate such
a variable in a rule by splitting the rule in two: one
in which we replace %u by a normal atomic variable
@u, and one in which we replace %u by ∅ (and resolve
equalities accordingly).

• Variables of the form ?z range over paths or the empty
sequence (recall that paths are nonempty). As long as
such a variable is only used concatenated with other
path expressions, we could always eliminate it from
a rule by splitting the rule in two: one in which we
replace ?z by a normal path variable $z, and one in
which we simply delete all occurrences of ?z (resolving
equalities accordingly).

• Variables of the form #z range over keys, atomic as
well as packed. We could always eliminate such a vari-
able in a rule by splitting the rule in one where we
replace #z by an atomic variable @z, and one where
we replace #z by a packed key expression 〈$z〉.

Examples.
We aim to illustrate that J-Logic does not need recur-

sion to express many useful queries involving deeply nested
data. We begin, however, by illustrating why nonrecursive
programs are desirable.

Example 3.1 (Nontermination). Due to the use of concate-
nation in heads of rules, the result of a recursive program
applied to a finite instance may be infinite. A simple ex-
ample is the following: (this program has no EDB relation
names; the body of the first rule is empty)

S(a : ∅)←
S(a.$x : ∅)← S($x : ∅)

We consider such programs to be nonterminating. For lim-
ited forms of recursion that guarantee termination or even
tractability, we refer to the work of Bonner and Mecca [9,
28]. Nonrecursive programs clearly always terminate.

Example 3.2 (Deep equality). The following nonrecursive
program is applied to the object description R of an object
o, assumed to have values o.a and o.b. The program tests
equality of o.a and o.b; if so, it outputs the fact Q(yes : ∅).
Note that o.a and o.b may be atomic values (case handled by
the first and last rule), or may be objects themselves. Thus,
the other rules of the program test set equality of the object
descriptions of o.a and o.b. These rules derive an atomic
key ‘no’ when one of the containments in the two directions
needed for set equality fails.

T (atomic : ∅)← R(a : %u), R(b : %v)
Q′(no : ∅)← R(a.$x : %u),¬R(b.$x : %u)
Q′(no : ∅)← R(b.$x : %u),¬R(a.$x : %u)
Q(yes : ∅)← ¬T (atomic : ∅),¬Q′(no : ∅)
Q(yes : ∅)← R(a : %u), R(b : %u)

Example 3.3 (Unnesting). Let o be the object described by
R. The following single-rule program retrieves all subobjects
of o (at arbitrary depths, but not o itself) that have a ‘name’-
value equal to ‘John’. These objects are returned as top-level
elements of a result object S, with new keys generated by
packing.

S(〈$x〉.$y : %u)← R($x.name : John), R($x.$y : %u)

Example 3.4 (Key lookup, nesting). Like the previous exam-
ple, the following program again considers subobjects, but
now focuses on those that have a key ‘ref’ with an atomic
key k as value. That key k is looked up and all values found
for it are collected in a new subobject created under the
‘ref’ key (and k at that place is removed). As in the previ-
ous example, new keys (for the elements of the collection)
are generated using packing. The output object S is thus
obtained from the input object R by a process similar to
dereferencing pointers.

T ($x.ref : ∅)← R($x.ref : @k)
S($x.ref.〈$y〉.?z : %u)← R($x.ref : @k), R($y.@k.?z : %u)
S($x′ : %u)← R($x′ : %u),¬T ($x′ : ∅)

4. EXPRESSIVENESS AND COMPLEXITY
Nonrecursive J-Logic has polynomial-time data complex-

ity. Since rules are safe, we can find valuations satisfying
the body of a rule through finding valuations of predicates.
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To find the valuations satisfying a predicate P (e : t), note
that the path expression e is a sequence of key expressions
and path variables. Let k be the length of this sequence.
Then we choose a pair (p : v) from P ; the number of pos-
sibilities is linear. We match t to the atomic value v in the
obvious manner, and match e to the path p by splitting p
in k pieces. The number of possible splits is polynomial of
degree k. A piece corresponding to a path variable provides
a binding for that path variable, or must be equal to an al-
ready existing binding. A piece corresponding to an atomic
variable must be an atomic key. A piece corresponding to
a constant must match the constant. Finally, a piece corre-
sponding to a packed key expression 〈e′〉 must be a packed
key 〈p′〉. Then e′ is matched to p′ in turn.

Using positive, recursive, programs we can already sim-
ulate Turing machines [9]. Using general programs, we are
computationally complete: we can express any computable
C-generic query from finite instances to finite instances. Us-
ing an encoding of instances as defined here by relational
database instances, this can be proven following the known
body of work on the computational completeness of query
languages [14, 4, 3, 35, 13].

Nonrecursive programs, relational algebra, and prac-
tical languages.

Let us call a class of instances bounded if there is a fixed
bound on the length of all paths occurring in the instances,
as well as on the nesting depth of packed keys.

On a bounded class of inputs, nonrecursive J-Logic can be
simulated by relational algebra. Indeed, due to the bound,
there are only finitely many nonequivalent predicates, and
each equivalence class can be described using atomic vari-
ables only. Thus, for each equivalence class of predicates we
can keep the bindings in a fixed-arity relation. Given such
a representation the evaluation of a rule can be expressed in
relational algebra. Moreover, the application of a rule to a
bounded instance produces again a bounded instance (with
the new bound depending only on the old bound and the
rule). In this way we can simulate nonrecursive J-Logic over
bounded instances in relational algebra.

Conversely, it is quite clear that we can represent all re-
lational database instances over some fixed schema as a
bounded class of instances in our data model. There are
various ways to do this. One approach is to represent a tu-
ple as an object in the obvious way (each attribute is a key)
and then represent a set of tuples as a set of objects, using
tuple identifiers as top-level keys. Under such a representa-
tion we can easily simulate, say, the relational algebra, using
nonrecursive J-Logic. We use packing to generate new tuple
identifiers, as illustrated in the Introduction for Cartesian
product.

Another approach is to use a (bounded-depth) trie repre-
sentation for relations, as used, for example, in the Leapfrog
Triejoin algorithm [36]. Such tries are naturally represented
as JSON objects. We can then again simulate the relational
algebra using nonrecursive J-Logic, and we would not even
need packing.

Note that practical JSON query languages SQL++ [29]
and JSONiq without recursive functions [18] are mainly ori-
ented towards bounded-depth data. Apart from features
such as aggregation and full-text search, these languages are
fundamentally based on the nested relational algebra or cal-
culus [12]. This calculus can be translated into nonrecursive

J-Logic. As already mentioned in the Introduction, pack-
ing can be used to represent nested collections. The only
caveat (which is also not really mentioned by SQL++ and
JSONiq) is to do duplicate elimination on nested collections.
It follows from known results [34] that a special set-oriented
packing operator would need to be added for this purpose.

Moreover, we feel that the main contribution of J-Logic is
as a language in which nonrecursive programs can also work
well with unbounded inputs, i.e., deeply nested data.

Limitations of nonrecursive programs.
By the above discussion we readily obtain examples of

queries not expressible by nonrecursive programs: any query
over relational instances that is not expressible in the rela-
tional algebra will do, such as the transitive closure of a
binary relation. That does not tell us anything about un-
bounded instances, however. In Proposition 4.2 we will give
a general necessary condition on the output of nonrecursive
programs.

Example 4.1. Let c be some constant and consider the query
Q from {R} to {S} defined by

Q(I) = {S(k1.c.k2.c . . . kn.c : ∅) | R(k1.k2 . . . kn : ∅) ∈ I}

where n is not fixed but ranges over all possible lengths.
Proposion 4.2 will imply that this query is not expressible
by a nonrecursive program.

Bonner and Mecca [9] have proposed mixing transduc-
ers with sequence Datalog, so that manipulations as in the
above example can be easily expressed. They already noted
informally that without recursion through concatenation,
only a fixed number of concatenations can be performed.
The following proposition formalizes this observation and
adapts it to J-Logic.

In order to state the necessary condition, we introduce the
following notations. For a set S of paths, sub(S) denotes
all subpaths of paths occurring in S (also paths occurring
in packed keys). Also, concat(S, i) denotes all paths that
can be built up (using concatenation and packing) from the
paths in S using a total of at most i concatenations. The set
of paths of an instance J is denoted by paths(J), so formally,
paths(J) = {p | R(p : v) ∈ J for some R and v}.

Proposition 4.2. Let P be a nonrecursive program. There
exists a finite set L of paths and a natural number i such
that for every instance I, we have

paths(P(I)) ⊆ concat(sub(paths(I) ∪ L), i).

Proof. By induction on the number of strata. For the base
case, assume P consists of a single stratum. By an obvi-
ous rewriting we may assume without loss of generality that
the body of each rule only mentions EDB relation names.
Consider an element p ∈ paths(P(I)). Then p is produced
by applying a valuation to a path expression, say e, in the
head of some rule. Every variable is mapped to an element
of sub(paths(I)). Let ê denote the sequence obtained by
removing all variables from e, as well as all opening and
closing brackets of packed keys; we refer to these lexical
elements as separators. Let ie denote the number of sepa-
rators; we can view e as chopping ê in ie + 1 pieces. Thus,
p ∈ concat(sub(paths(I) ∪ {ê}), ie + 1). Hence, we can set i
to the maximum ie, and we can set L to the set of ê.

Now assume P has at least two strata. Let P′ be the part
without the last stratum, which we denote by P′′. So, P

142



is the composition of P′′ after P′. By induction, we have
i′ and L′ for P′. Moreover, reasoning as in the base case,
we have i′′ and L′′ for P′′ applied to P′(I). After some
calculations we can see that we can now set i = i′ · i′′ and
L = L′ ∪ L′′.

Flat–flat queries.
An instance is called flat if no packed keys occur in it.

A query Q is called flat–flat if for every flat instance I, if
Q(I) is defined then it is also flat. It may still be convenient
to use packing in the computation of a flat–flat query, as
illustrated next.

Example 4.3. The query from Example 4.1 is flat–flat. Over
flat inputs, we can compute it by the following program:

T (〈@i〉.?y : ∅)← R(@i.?y : ∅)
T (?x.@i.c.〈@j〉.?y : ∅)← T (?x.〈@i〉.@j.?y : ∅)
S(?x.@i.c : ∅)← T (?x.〈@i〉 : ∅)

We see that packing is conveniently used as a cursor to run
through the sequence. With more effort, however, we can
also compute the query without using packing. The trick is
to use some constant a and to look for the longest consec-
utive sequence of a’s occurring in any path in R. Then a
sequence of a’s one longer than that can be used as a cur-
sor. The program is as follows. Since all predicates in the
program will be of the form P (e : ∅), we abbreviate them as
P (e).

Sub(a.?y)← R(?x.a.?y.?z)
Subnota($x.@i.?y)← Sub($x.@i.?y), @i 6= a
Suba($x)← Sub($x),¬Subnota($x)
A(a.$x)← Suba($x),¬Suba(a.$x)
T ($a.$x)← R($x), A($a)
T (?x.@i.c.$a.?y)← T (?x.$a.@i.?y), A($a)
S($x)← T ($x.$a), A($a)

The above example illustrates a general theorem:

Theorem 4.4 (Flat–flat theorem). For every J-Logic pro-
gram computing a flat–flat query there is equivalent program
without packing, over flat instances.

Proof. (Sketch.) The proof would be easy if we could use two
constants, say a and b, that are never used in any instance.
Then a packed key expression 〈e〉 could be simulated using
a.e.b, where we also would need to write additional rules
checking that e matches a path with balanced a’s and b’s.

If we want a simulation that always works, without an
assumption on the constants used in instances, we can en-
code a path p = k1.k2 . . . kn by its doubled version p′ =
k1.k1.k2.k2 . . . kn.kn. Then 〈e〉 can be simulated using the
sequence a.b.e′.b.a. Doubling can be computed without pack-
ing using the technique illustrated in Example 4.3. When
matching path variables, we make sure we always match a
subpath beginning with @i.@i or a.b and ending with @j.@j
or b.a.

The above proof needs recursion, even if the given pro-
gram is nonrecursive. In general it is fair to say that the
above flat–flat theorem is mainly of theoretical interest. Still
it is an interesting open question whether for every non-
recursive program computing a flat–flat query, there is an
equivalent nonrecursive program without packing, over all
flat instances.

5. PROPER OBJECT DESCRIPTIONS AND
OBJECT–OBJECT QUERIES

In Remark 2.5 we introduced the notion of proper object
description as the object description of an actual object, as
opposed to just any set of path–value pairs. Proper object
descriptions can be characterized as follows.

Proposition 5.1. A finite object description D is proper if
and only if it satisfies the following two constraints:

• the functional dependency from paths to atomic values,
i.e., if (p : u) ∈ D and (p : v) ∈ D, then u = v.

• prefix-freeness, i.e., if p and q are paths, and (p.q :
u) ∈ D for some u, then (p : v) /∈ D for every v.

Example 5.2. D = {a : 1, a.a : 1} is not prefix-free and
indeed D is not proper. In proof, suppose D would be the
description of an object o. Then o.a is the atomic value 1 by
the first pair in D. But by the second pair, o.a is an object
with a-value 1, a contradiction.

Remark 5.3. Only finite object descriptions can be proper,
since objects are always finite. Still, the two constraints
from the above proposition can be taken to be the defini-
tion of properness for infinite instances. Later in this paper,
we will consider the object–object problem, the implication
problem for jaegds (defined in Section 5), and the contain-
ment problem. These three problems ask a question about
all instances. These problems do not change, however, if we
restrict attention to finite instances.

An instance is called proper if it assigns a proper object
description to every relation name. A query Q is called
object–object if for every proper instance I, if Q(I) is defined
then it is also proper.

The object–object property is practically important. In
practice, a JSON processor may accept improper object de-
scriptions, or object syntax that is not well-defined, such as
{a : 1, a : 2} or {a : 1, a : {b : 2}}. However, the proces-
sor will interpret such syntax in an unpredictable manner.
Perhaps it will overwrite a previously read a-value by an
a-value read later. Or, on the contrary, it may keep only
the value that was read first. To avoid depending on such
system-defined behavior, we better write queries having the
object–object property.

One may go further and demand that also all intermedi-
ate relations generated by a J-Logic program hold proper
object descriptions. This may be relevant, for example, if
we implement the query language on top of a JSON store.
We next show that this is always possible. We call the result
the “object–object theorem”, which may be a bit pompous,
as it is proven by a simple trick using packing (thus again
illustrating the utility of packing).

Theorem 5.4 (Object–object theorem). Let P be a pro-
gram expressing an object–object query Q. Then there exists
an equivalent program P′ such that, on any proper input
instance, all IDB relations of P′ hold proper object descrip-
tions. Program P′ has the same number of strata as P, and
is recursive if and only if P is recursive.

Proof. The idea is to encode arbitrary object descriptions
by object descriptions that are always proper. Then the
program is simulated using the encoding. At the end the
output relations are decoded. Such an encoding is easy to
do using packing.
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Formally, fix an arbitrary atomic key b. For any input
relation name R we introduce the following two encoding
rules:

R′(〈$x〉.〈@u〉 : ∅)← R($x : @u)
R′(〈$x〉.〈b.b〉 : ∅)← R($x : ∅)

These rules are added to the first stratum of P.
Furthermore, we modify P by replacing each atom (in

bodies and in heads) of the form P (e : t) by P ′(〈e〉.〈t〉 : ∅)
if t is not ∅, and by P ′(〈e〉.〈b.b〉 : ∅) otherwise.

Finally for every output relation name S we add the fol-
lowing decoding rules to the last stratum:

S($x : @u)← S′(〈$x〉.〈@u〉)
S($x : ∅)← S′(〈$x〉.〈b.b〉)

Example 5.5. The following program begins by eliminating
the top layer from an object R, which brings the second-level
keys to the top level. This intermediate result R1 may well
be improper. We then throw away all “bad” paths (paths
that violate properness). The result, S, is of course proper.
Thus, this program computes an object–object query but is
easiest to write using improper intermediate results. Yet,
the object–object theorem assures us it can be rewritten
using only proper intermediate results.

R1($y : %u)← R(#x.$y : %u)
Bad($y : %u)← R1($y : %u), R1($y : %v),%u 6= %v
Bad($x.$z : %v)← R1($x : %u), R1($x.$z : %v)
S($y : %u)← R1($y : %u),¬Bad($y : %u)

Remark 5.6. Our proof of the object–object theorem uses
packing. Of course there is nothing wrong with packing; we
think it is a versatile tool. Yet, theoretically one may wonder
whether one can also do without. Indeed it turns out one can
prove a combination of the flat–flat theorem and the object–
object theorem. Specifically, for every program computing a
flat–flat object–object query, we can find a program without
packing that is equivalent over flat instances and that only
works with proper intermediate results. The idea is to en-
code a path–value pair a1 . . . an : ∅ by b.a1 . . . b.an.a.a.b : ∅,
and a path–value pair a1 . . . an : c by b.a1 . . . b.an.c.a.a.b : ∅.
It can be verified that an encoding of an object description
is always proper. The program is then modified to work over
encodings. As for the flat–flat theorem, the program without
packing would need recursion. Again we leave open whether
there is a nonrecursive version of the flat–flat object–object
theorem.

5.1 Deciding the object–object property
The object–object problem is defined as follows: given a J-

Logic program P and appropriate vocabularies Vin and Vout,
decide whether the query from Vin to Vout computed by P
has the object–object property.

In general, this problem is of course undecidable. It is
undecidable for positive recursive programs, because these
can simulate Turing machines, and also for nonrecursive pro-
grams that can use negation, because these can express first-
order logic (relational algebra).

In this subsection we show:

Theorem 5.7. When restricted to positive, nonrecursive
programs, the object–object problem is decidable in exponen-
tial time.

Our starting point is to note that this problem has similar-
ities with a problem known from relational databases. This
problem is the FD–FD implication problem for (unions of)
conjunctive queries (UCQs) [1, 2]. It is also called the view
dependency problem [26]. This problem asks, given two sets
Σ1 and Σ2 of functional dependencies (FDs) and a query
Q, whether the result of Q, applied to an instance satisfying
Σ1, always satisfies Σ2. The similarity lies in that properness
involves satisfying an FD; moreover, positive nonrecursive J-
Logic programs are the J-Logic analog of UCQs. Of course
there are also differences: J-Logic has packing and path vari-
ables, and the notion of properness is not only about FDs
but also about prefix-freeness.

The decidability of the FD–FD implication problem for
UCQs follows readily from the decidability of the implica-
tion problem for equality-generating dependencies (egds),
using the chase [2, 8]. Hence our approach is to introduce
J-Logic atomic equality-generating dependencies or jaegds,
and investigate the chase for these dependencies.

Syntactically, a jaegd is a rule σ of the form B → E, where
B is a positive body without equalities and E is an atomic
equality, i.e., an equality of the form u = v where u and
v are atomic key expressions (atomic constants or atomic
variables). If u or v is a variable, that variable must occur
in B.

Semantically, note that B consists exclusively of positive
predicates. Hence, for any instance I and valuation ν ap-
propriate for B, we have that I, ν satisfies B if and only if
ν(B) ⊆ I. We denote this by ν : B → I and call ν a match-
ing of B in I. We now define that I satisfies a jaegd σ as
above, denoted by I |= σ, if for every matching ν : B → I,
the atomic keys ν(u) and ν(v) are identical.

Note that dependencies of the form B → a = b, where a
and b are distinct atomic keys, are allowed. Since a = b is
always false, this can be written more clearly as B → false
or also B → ⊥. This is used to express a denial constraint :
it is only satisfied in an instance I if there does not exist any
matching of B in I.

Note that we also allow dependencies of the form B →
u = u. Obviously such dependencies are trivial (satisfied
in any instance), but we allow them because they may be
produced by the chase procedure.

Example 5.8. By Proposition 5.1, an object description D
is proper if and only if it satisfies the jaegds δ1–δ6:

δ1 : D($x : @i), D($x : @j)→ @i = @j
δ2 : D($x : ∅), D($x : @i)→ ⊥
δ3 : D($x : @i), D($x.$y : ∅)→ ⊥
δ4 : D($x : @i), D($x.$y : @j)→ ⊥
δ5 : D($x : ∅), D($x.$y : ∅)→ ⊥
δ6 : D($x : ∅), D($x.$y : @j)→ ⊥

For a set of dependencies Σ, we define I |= Σ to mean that
I satisfies every dependency in Σ. We say that Σ logically
implies a dependency σ if every instance that satisfies Σ
also satisfies σ. The implication problem for jaegds asks to
decide, given a set of jaegds Σ and a jaegd σ, whether Σ
logically implies σ. We actually do not know whether this
problem is decidable in general. We will, however, solve
a special case that is sufficient to solve the object–object
problem.
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The Chase.
We first need the notion of a variable mapping. This is a

function defined on a finite set of variables that maps path
variables to path expressions and atomic variables to atomic
key expressions. Like valuations, we can apply a variable
mapping to a predicate simply by applying it to every vari-
able occurring in the predicate. The result is again a pred-
icate. Thus, the result of applying a variable mapping to
a body is again a body. A homomorphism h from a body
B1 in a body B2, denoted by h : B1 → B2, is a variable
mapping appropriate for B1 such that h(B1) ⊆ B2.

With this notion of homomorphism in place, the notion of
chasing a jaegd σ with a set of jaegds Σ is defined entirely
similarly to the well-known chase for egds in the relational
model [2]. The chase provides a sound proof procedure for
logical implication, as stated in the following proposition.

Proposition 5.9. Assume that either chasing σ with Σ
fails, or the chase succeeds and results in a jaegd whose con-
sequent is a trivial equality. Then Σ logically implies σ.

For egds in the relational model, the converse to the above
proposition holds as well, showing the completeness of the
chase as a proof procedure. In our model, however, the
converse fails, as shown next.

Example 5.10. Consider Σ consisting of the following three
denial constraints:

P (@x : ∅)→ ⊥
P (〈$x〉 : ∅)→ ⊥
P ($x.$y : ∅)→ ⊥

Then Σ is equivalent to the single denial constraint σ ≡
P ($x : ∅)→ ⊥, so certainly Σ logically implies σ. However,
chasing σ with Σ does not fail. Actually, no chase step can
be applied at all and the chase ends immediately on σ itself.
Since the consequent ⊥ is not a trivial equality, this shows
that the converse of Proposition 5.9 fails.

We can still get completeness of the chase in a special
case, which we call unambiguous. We first define the notion
of weak variable mapping. Recall that a variable mapping
must map atomic variables to atomic key expressions. A
weak variable mapping is like a variable mapping, except
that atomic variables may also be mapped to path variables.
A weak morphism from a body B1 in a body B2 is a weak
variable mapping h such that h(B1) ⊆ B2.

Now consider an input (Σ, σ) to the implication problem
for jaegds. We say that (Σ, σ) is unambiguous if either chas-
ing σ with Σ fails, or the chase succeeds, and the following
condition holds. Let B′ be the body of the jaegd resulting
from the chase. Then every weak morphism from a body in
Σ to B′ must actually be a variable mapping.

Example 5.11. Take Σ and σ from the previous example.
We already noted that the chase succeeds immediately. We
see there is a weak morphism from the body {P (@x : ∅)}
of the first dependency in Σ, to the body {P ($x : ∅)} of
σ, namely the mapping @x 7→ $x. This is not a variable
mapping. Hence (Σ, σ) is not unambiguous.

Example 5.12. For another example, consider the set ∆ =
{δ1, . . . , δ6} from Example 5.8. Then (∆, σ) is always un-
ambiguous for any σ. Indeed, atomic variables occur only
in the second component of predicates in ∆, i.e., after the :
sign, and path variables can never occur after the : sign in
any body.

The notion of unambiguity captures the cases where the
usual proof of completeness of the chase applies in our set-
ting. So, we have the following result.

Proposition 5.13. Assume Σ logically implies σ, and (Σ, σ)
is unambiguous. Then chasing σ with Σ fails, or the chase
succeeds and results in a jaegd whose consequent is a trivial
equality.

It follows that the unambiguous cases of the implication
problem for jaegds are decidable by the chase. En route to
solving the object–object problem, it is especially important
that chasing from ∆ is unambiguous, as we saw in Exam-
ple 5.12.

Equality elimination.
There is one final hurdle to overcome. A discrepancy be-

tween bodies of jaegds and bodies of positive J-Logic rules is
that the latter can have equalities. We next show, however,
that equalities can always be removed.

Lemma 5.14. Every J-Logic rule is equivalent to a finite
set of equality-free rules. Also, every jaegd where we would
allow equalities in the body, is equivalent to a finite set of
ordinary jaegds.

We are now ready for the

Proof of Theorem 5.7. Let P be a program that computes
a query Q from Vin to Vout. For the sake of simplicity we
assume Vin = {R} and Vout = {S} consist of a single relation
name. Then P is a set of rules with S in the head predicate
and R as the only EDB relation.

Recall from Example 5.8 the set of six jaegds ∆ = {δ1, . . . ,
δ6} that expresses properness. The main idea is that Q has
the object–object property if and only if the “∆–∆ implica-
tion problem” holds for Q. We then leverage the observation
made in Example 5.12 that chasing from ∆ is unambiguous.

More precisely, for a relation name P and each i = 1, . . . , 6,
let δPi be the version of δi where we substitute P for the
name D. Let ∆R = {δR1 , . . . , δR6 }. Then for each each
i = 1, . . . , 6 and every instance I |= ∆R, we want to check
that Q(I) |= δSi .

Let us begin with δS1 . We consider every pair of rules
(r1, r2) from P, where r1 and r2 can also be the same rule.
Let the head of rj be S(ej : tj), for j = 1, 2. We apply a
variable renaming ρ so that r1 and ρ(r2) have no variables
in common. Now construct a jaegd with equalities from δ1,
r1 and ρ(r2) as follows. Using fresh variables $x, @i and @j,
the body consists of the bodies of r1 and ρ(r2), together with
the equalities $x = e1, $x = ρ(e2), t1 = @i, and ρ(t2) = @j.
The head is (@i = @j). By Lemma 5.14, this jaegd with
equalities is equivalent to a finite set of jaegds, which we
denote by ∆r1,r2

1 . It is now clear that Q(I) |= δS1 for every
I |= ∆R, if and only if every jaegd in ∆r1,r2

1 is logically im-
plied by ∆R. This is a unambiguous case of the implication
problem, so it can be solved by the chase.

Checking implication for δ2–δ5 is similar. For example,
from δ3, r1 and ρ(r2) and fresh variables $x, $y and @i,
we construct a denial constraint with equalities having as
body the bodies of r1 and ρ(r2) together with the equalities
e1 = $x, t1 = @i, and ρ(e2) = $x.$y.
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Computational complexity.
Like the implication problem for egds in the relational

model, the computational complexity of the unambiguous
cases of the implication problem for jaegds is NP-complete.
Note, however, that in the above proof we only need to chase
jaegds from ∆r1,r2

i with the fixed set of jaegds ∆R. Hence
each application of the chase would be polynomial, were it
not for the following caveat. The caveat is that ∆r1,r2

i is
obtained after elimination of equalities, which can result in
exponentially many rules, and these rules may be exponen-
tial in size due to the repeated doubling. Even when the
given program has no equalities, there are still equalities to
be eliminated in the jaegd constructed from r1 and r2. We
thus can only conclude an exponential-time upper bound
on the complexity of the object–object problem for positive
nonrecursive J-Logic programs. We leave the exact com-
plexity open.

6. THE CONTAINMENT PROBLEM OVER
FLAT INSTANCES

Let P1 and P2 be J-Logic programs both expressing a
query from Vin to Vout; let Qj be the query expressed by
Pj .

Let F be a family of instances. The containment problem
over F asks, given P1, P2, Vin and Vout as above, whether
Q1(I) ⊆ Q2(I) for all instances I over Vin belonging to F .
Recall that an instance is flat if no packed keys occur in it.
In this section we show:

Theorem 6.1. Let F be the set of flat instances, and let
PF be the set of proper flat instances. For positive nonre-
cursive programs, containment over F is decidable, and so
is containment over PF .

Note that we restrict attention to flat instances. Indeed,
our current solution does not work with packed keys in the
inputs (see Remark 6.5). It is an interesting topic for further
research to see whether our solution can be extended in the
presence of packing.

To solve the containment problem over F one can take
inspiration from the inclusion problem for pattern languages
over an infinite alphabet [19]. The main additional aspect
here is the distinction between atomic variables and path
variables.

In the field of pattern languages, a pattern is a finite se-
quence of constants and path variables, so, in our terminol-
ogy, a path expression without atomic variables and packed
key expressions. The language of a pattern e is the set L(e)
of all flat paths p for which there exists a valuation h such
that h(e) = p. Here, a flat path is a path in which no packed
keys occur, i.e., a nonempty sequence of atomic keys. Note
that this essentially interprets patterns over an infinite al-
phabet, since our universe dom of atomic keys is infinite.
In this case it is known [19] that L(e1) ⊆ L(e2) if and only
if there exists a variable mapping h such that h(e2) = e1.
When atomic variables come into play, however, this “homo-
morphism property” is no longer necessary for containment.

Example 6.2. Let us allow atomic variables in patterns.
Then consider the following four patterns:

e1 = $x.$y e3 = @x.$y.@z

e2 = @x.$y e4 = $u.@v.$w

Then e1 and e2 describe the same language, namely all flat
paths of length at least two. There is a variable mapping
from e1 to e2 but not from e2 to e1, since a variable mapping
cannot map an atomic variable (in this case @x) to a path
variable (in this case $x). Also e3 and e4 describe the same
language, namely all flat paths of length at least three. Here
there is neither a variable mapping from e3 to e4 nor one
from e4 to e3.

The simplistic idea to just allow weak variable mappings
does not work. For example, there is a weak variable map-
ping from @x to $x but L($x) is not contained in L(@x).

We next develop our general solution to the containment
problem over flat instances. For simplicity, we always con-
sider positive nonrecursive programs expressing a query from
Vin to Vout where Vout = {S} is a single-relation vocabulary.
Since the programs are not recursive, they can be rewrit-
ten as finite sets of rules with S in the head predicate and
relation names from Vin in the bodies.

It is sufficient to solve the containment problem given pro-
grams P1 and P2 where P1 consists of a single rule r1 (since
otherwise we can check containment for all rules of P1 sep-
arately). Moreover, we can make the following proviso:

Proviso. The body of r1 and the bodies of rules in P2 do
not have equalities. Moreover, these bodies are flat, i.e., do
not use packing.

The first part of the proviso is justified by Lemma 5.14.
The second part is justified because we work over flat in-
stances: non-flat bodies can never match anyway. The heads
may still use packing.

We begin by noting that there is a simple homomorphism
theorem when r1 does not have path variables.

Proposition 6.3. Assume r1 does not have path variables.
Then r1 is contained in P2 over F if and only if there exists
a rule r2 ∈ P2 such that there is a homomorphism from B2

to B1, mapping H2 to H1. Here, Bi and Hi denote the body
and the head of ri.

Proof. The if-direction is straightforward. For the only-if
direction, we view B1 as a (flat) instance I by viewing each
variable as an atomic key (called a frozen variable). We
similarly view H1 as a fact. Then clearly H1 ∈ r1(I), so also
H1 ∈ P2(I). Hence there exists r2 ∈ P2 and a valuation
ν such that ν(B2) ⊆ B1 and ν(H2) = H1. Since r1 does
not have path variables, ν can map atomic variables only
to constants or to (frozen) atomic variables. Hence, we can
view ν as a homomorphism from r2 to r1.

We now reduce the containment problem where r1 has
path variables, to infinitely many calls to the containment
problem where r1 does not have path variables. Thereto,
we associate to every path variable $x an infinite sequence
@x1, @x2, . . . of atomic variables. Obviously, for distinct
path variables $x and $y we assume @xi and @yj are distinct
for all i and j.

A variant of r1 is a rule obtained from r1 as follows. For
every path variable $x in r1, choose a natural number n$x.
We call n$x the chosen length for $x. Now replace each oc-
currence of $x in r1 by the sequence @x1 . . .@xn$x . Thus, as
soon as r1 has at least one path variable, there are infinitely
many variants of r1.

The following is now clear:

146



Proposition 6.4. r1 is equivalent, over F , to the infinite
union of its variants. In particular, r1 is contained in P2

over F if and only if every variant of r1 is contained in P2

over F .

Remark 6.5. The above proposition only works over flat in-
stances. Consider, for example, the rules

r2 = S(c : ∅)← R(@u.$z : ∅)
r1 = S(c : ∅)← R($x.$y : ∅)

Rule r2 tests if R contains a path of length at least two,
starting with an atomic key, and with the empty value at the
leaf. If so, the fact S(c : ∅) is returned (c is some constant).
An example of a variant of r1, with 2 as chosen length for
$x and 3 for $y, is

S(c : ∅)← R(@x1.@x2.@y1.@y2.@y3 : ∅).

We see that this variant, and indeed every variant, of r1 is
contained in r2. Nevertheless r1 is not contained in r2 over
all instances, as witnessed by the instance I = {R(〈a〉.b :
∅)}.

The above proposition gives us infinitely many variant
containments to check. Our final step reduces this to a finite
number.

Proposition 6.6. Let m be the number of atomic variables
used in P2. Assume all variants of r1 with chosen lengths
up to m+1 are contained in P2 over F . Then every variant
of r1 is contained in P2 over F .

Proof. By Proposition 6.3, it is sufficient to show the fol-
lowing claim. Let r be a variant of r1 with a chosen length
k ≥ m + 1 for some path variable $x. Assume there is a
homomorphism h from a rule r2 ∈ P2 to r. Let r′ be the
same variant as r, except that the chosen length for $x is
increased to k′ > k. Then there is still a homomorphism
from r2 to r′.

We argue the claim as follows. Since k > m, one of the
variant variables for $x, say @xj , is not in the image of h ap-
plied to any atomic variable from r2. Hence it only occurs in
the images of some path variables. Each such path variable
is mapped by h to a flat path expression in which @xj occurs.
Now for each such variable $z, modify h($z) by inserting

the sequence @xk+1 . . .@xk
′

behind each occurrence of @xj .
The resulting variable mapping h′ gives us the desired homo-
morphism from r2 to r′. (The only detail is that the variant

sequence for $x is permuted a bit, instead of @x1 . . .@xk
′

it

is now @x1 . . .@xj@xk+1 . . .@xk
′
@xj+1 . . .@xk.)

We conclude that containment of r1 in P2 over F is de-
cidable with ΠP

2 complexity. Indeed, instead of trying all
variants of r1, as given by Proposition 6.4, it suffices to try
all variants of r1 with chosen length bounds as given by
Proposition 6.6. For each variant we test the existence of a
homomorphism as given by Proposition 6.3. We leave open
whether the problem is actually ΠP

2 -hard.

Containment over proper flat instances.
For simplicity, let us assume that Vin consists of a single

relation name D. Recall from Example 5.8 the set ∆ of
jaegds that expresses properness. We can chase a rule with
∆ in much the same way as we chase a jaegd. We establish:

Proposition 6.7. r1 is contained in P2 over PF if and
only if either chasing r1 with ∆ fails, or it succeeds and
results in a rule r such that r is contained in P2 over F .

Proof. For the if-direction, first assume the chase fails. Then
r1(I) is empty on all proper instances so containment holds
trivially. Next assume the chase succeeds and results in the
rule r. Let I be a proper flat instance. By the soundness of
the chase, we have r1(I) = r(I). By the given, r(I) ⊆ P2(I)
and we are done.

For the only-if direction, suppose the chase succeeds and
results in the rule r = H ← B. By Proposition 6.4, we have
to show that every variant r′ = H ′ ← B′ of r is contained in
P2. We can view B as an instance I by viewing each vari-
able as an atomic key (I is called a frozen body). Because
chasing from ∆ is unambiguous, we obtain as in the proof
of Theorem 5.13 that I |= ∆, i.e., I is proper.

But then I ′, the frozen variant body B′, is also proper.
Indeed, by replacing each frozen path variable by a sequence
of frozen atomic variables, the functional dependency from
paths to atomic values remains satisfied. Moreover, I ′ is
also still prefix-free. In proof, suppose D(p′ : v) ∈ I ′. The
last element s of p′ is either a constant or a frozen atomic
variable from r, or a frozen atomic variable @xn coming
from a path variable $x in r. In the latter case, n must be
the chosen length for $x. Now suppose there would exists
D(p′.q′ : u) ∈ I ′. Since the first symbol of q′ follows the last
symbol of p′, it is either again a constant or frozen atomic
variable from r, or a frozen atomic variable y1 coming from
a path variable $u in r. We conclude that the presence of
D(p′ : v) and D(p′.q′ : u) in I ′ would imply the presence
of some D(p : v) and D(p.q : u) in I, which is impossible
because I is prefix-free.

Clearly, H ′ ∈ r′(I ′), so also H ′ ∈ r(I ′) since r′ is a variant
of r. Furthermore, since r was obtained from r1 by applying
chase steps, which are applications of homomorphisms, also
H ′ ∈ r1(I ′). By the given, then H ′ ∈ P2(I ′). This means
there exists r2 ∈ P2 and a matching ν : B2 → I ′ such that
ν(B2) ⊆ I ′ and ν(H2) = H ′. Since r′ does not have path
variables, ν can be viewed as a homomorphism from r2 to
r′. Hence, r′ is contained in P2 as desired.

7. CONCLUSION
Thanks to the deterministic nature of JSON objects, it

is very convenient to view objects as sets of key sequences
paired with atomic values. We recommend the use of path
variables, ranging over key sequences, in languages for JSON
querying for accessing deeply nested data. While the data
complexity is polynomial-time, it would be interesting to
investigate practical query processing issues involving path
variables.

Furthermore, packing is a versatile tool not only for ex-
pressive power and the generation of new keys, but also for
marking parts of sequences, duplicate elimination, and other
tricks. We recommend that practical JSON query processors
support packed keys.

Our technical results have shown that the proposed ap-
proach is workable. Much further work can be done: Is there
a nonrecursive flat–flat theorem? Is the implication problem
for jaegds decidable in general? What is the exact complex-
ity of the object–object problem for nonrecursive programs?
Is the containment problem for nonrecursive programs de-
cidable in the presence of packing? How does the complexity
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of the containment problem change when equalities are al-
lowed in rules?

During our research we also encountered the following in-
triguing puzzle. Consider the extreme case where there ex-
ists only one atomic key, and there is no packing. Then
J-Logic amounts to monadic Datalog with stratified nega-
tion over sets of sequences of a’s, with path variables and
atomic variables. This corresponds to monadic Datalog with
stratified negation over sets of natural numbers, with natu-
ral number constants and variables, and addition as the only
operation. Which functions on sets of natural numbers are
expressible in this language?
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