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Samenvatting

In het graaf-gestructureerde gegevensmodel staan data-elementen (de knopen) en de on-

derlinge relaties tussen deze data-elementen (de bogen) centraal. Door zijn eenvoud is het

graaf-gestructureerde gegevensmodel breed toepasbaar, en toepassingen zijn onder meer te

vinden in XML-data, RDF-data, sociale netwerken en gen- en proteïnenetwerken. Figuur 1

geeft een voorbeeld van een klein sociaal netwerk gemodelleerd als een graaf.
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Figuur 1: Een typisch voorbeeld van graaf-gestructureerde gegevens: een sociaal netwerk.

De graaf in Figuur 1 representeert de relaties OuderVan, VriendVan en WerktMet, maar

dit zijn niet de enige aanwezige relaties. Zo kunnen we OuderVan gebruiken om de Groot-
ouderVan-relatie samen te stellen en kunnen we VriendVan en WerktMet gebruiken om de

WerkVriendVan-relatie samen te stellen. Deze indirecte relaties, en vele andere, kunnen

eenvoudig uitgedrukt worden door middel van een ondervragingstaal die gespecialiseerd is

in het uitdrukken van graafvragen.

Vele praktische ondervragingstalen voor graaf-gestructureerde gegevens zijn gebaseerd
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op (delen van) Tarski’s relatiealgebra uitgebreid met de Kleene-ster operatie. Voorbeelden

zijn onder andere XPath, SPARQL, de RPQs en GXPath. Vanwege deze centrale rol van

(fragmenten van) de relatiealgebra, hebben we in ons werk twee aspecten van de relatiealgebra

diepgaand bestudeerd:

1. Vele natuurlijke en arti�ciële bronnen van graaf-gestructureerde gegevens bevatten

hiërarchische relaties die via een boomstructuur beschreven kunnen worden. Voorbeel-

den zijn taxonomieën, bedrijfsstructuren, bestand- en directorystructuren, XML-data,

en JSON-data. Het is dan ook verwonderlijk dat er nog geen systematische studie is

geweest naar de uitdrukkingskracht van (fragmenten van) de relatiealgebra—welke

graafvragen wel of niet uitgedrukt kunnen worden—bij het ondervragen van boom-

structuren.

We hebben zo’n systematische studie naar de uitdrukkingskracht van de relatiealgebra

op boom- en ketenstructuren ondernomen. Hierbij hebben we vooral de uitdrukkings-

kracht vergeleken van verschillende fragmenten van de relatiealgebra, dit enerzijds

om een dieper inzicht te krijgen in de rol die iedere operatie in de relatiealgebra ver-

vult, en anderzijds om een dieper inzicht te krijgen in het bevragen van boom- en

ketenstructuren. In onze studie hebben we vijf eigenschappen gevonden waarmee we

de uitdrukkingskracht van elk fragment van de relatiealgebra in grote lijnen kunnen

karakteriseren. Die zijn: (1) of het fragment graafvragen kan uitdrukken waarmee

het ketens, binaire bomen en ternaire bomen van elkaar kan onderscheiden; (2) of

het fragment alleen neergaande uitdrukkingen bevat (die boomstructuren neergaand

bevragen via ouder-kind relaties); (3) of het fragment alleen lokale uitdrukkingen bevat

(die boomstructuren neergaand bevragen via een vast aantal boog-stappen); (4) of het

fragment negatie kan uitdrukken; en (5) of het fragment de Kleene-ster operatie kan

uitdrukken.

Voor fragmenten die voldoen aan (2) of (3), die respectievelijk de neergaande of de lokale

fragmenten worden genoemd, hebben we bovendien ook alle onderlinge verbanden

tussen de uitdrukkingskracht van elk van deze fragmenten kunnen vaststellen en

bewijzen. De belangrijkste bevinding daarbij is dat twee operaties, de doorsnede en het

verschil, of overbodig zijn en geen uitdrukkingskracht toevoegen of maar zeer beperkt

uitdrukkingskracht toevoegen. Tevens hebben we in veel andere gevallen kunnen

aantonen dat fragmenten verschillende uitdrukkingskracht hebben. Om deze gevallen

te bestuderen hebben we verscheidende nieuwe bewijstechnieken ontwikkeld.

2. Centraal in de relatiealgebra staat de compositie, die gebruikt wordt om indirecte

relaties in termen van paden in graafstructuren uit te drukken. Zo kunnen we compo-

sitie gebruiken om alle grootouders te vinden in de graaf van Figuur 1. De standaard

manier om dit te doen is eerst de GrootouderVan-relatie te berekenen: dit doen we door

compositie te gebruiken om de OuderVan-relatie met zichzelf te koppelen. Hiermee

worden alle grootouders aan hun kleinkinderen gekoppeld en dit kunnen al snel zeer

veel grootouder-kleindkind-paren worden. Vervolgens gooien we alle informatie over

de gevonden kleinkinderen weg. Dit is echter zeer ine�ciënt: als we alleen willen

weten wie grootouder is, dan is het berekenen van alle kleinkinderen geheel overbodig

(we hoeven alleen te berekenen of er een kleinkind is, niet wie de kleinkinderen zijn).

Met het oog op e�ciënte beantwoording van graafvragen die uitgedrukt zijn in de

relatiealgebra wensen we dan ook het gebruik van compositie te elimineren in de

gevallen waarin de volledige kracht van compositie overbodig is.
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Om overbodig gebruik van compositie te kunnen elimineren, beschouwen we een

alternatieve ondervragingstaal: de semi-join-algebra. Deze verkrijgen we door de dure

compositie en Kleene-ster operaties te vervangen door semi-join operaties en een

simpele vorm van �xpunt-herhaling. Waar we compositie gebruiken om relaties aan

elkaar te koppelen, controleren we met de semi-join alleen of we zo’n koppeling kunnen

maken. Daarmee is het resultaat van de semi-join veel eenvoudiger te berekenen.

Alhoewel resultaten voor graafvragen uitgedrukt in de semi-join-algebra eenvoudiger

te berekenen zijn dan de resultaten voor graafvragen uitgedrukt in de relatiealgebra, is

de semi-join-algebra in de praktijk minder gebruiksvriendelijk (omdat het moeilijker

is graafvragen in de semi-join-algebra uit te drukken).

Daarom bestuderen we hoe we automatisch graafvragen, uitgedrukt in de relatie-

algebra, geheel of gedeeltelijk kunnen omzetten in eenvoudiger-te-beantwoorden

graafvragen in de semi-join-algebra. Ons belangrijkste resultaat is dat voor elk frag-

ment van de relatiealgebra waarin het gebruik van doorsnede en verschil beperkt is

tot boogrelaties er een fragment van de semi-join-algebra bestaat dat exact dezelfde

graafvragen kan uitdrukken (met betrekking tot graafvragen die beantwoord kunnen

worden met het teruggeven van een verzameling knopen). Om dit resultaat praktisch

relevant te maken, geven we tevens een constructieve methode om (delen van) graaf-

vragen in de relatiealgebra te herschrijven naar graafvragen in de semi-join-algebra.

Niet alleen kunnen we garanderen dat deze constructieve methode enkel een beperkte

toename veroorzaakt in het aantal berekenstappen nodig voor het beantwoorden van

een graafvraag, maar bovendien kan de methode ook meerdere van deze bereken-

stappen signi�cant eenvoudiger maken. Verder bestuderen we hoe de kosten van het

gebruik van andere operaties in de relatiealgebra verlaagd kunnen worden.

Tezamen geven deze twee studies een zeer gedetailleerd beeld van de uitdrukkingskracht

van fragmenten van de relatiealgebra. Tevens geven onze resultaten verscheidene aankno-

pingspunten voor het ontwikkelen van nieuwe technieken om e�ciënt complexe graafvragen

te beantwoorden.
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Abstract

Many practical query languages for graph data are based on fragments of Tarski’s relation

algebra which, optionally, is augmented with the Kleene-star operator. Examples include

XPath, SPARQL, the RPQs, and GXPath. Because of this central role of (fragments of) the

relation algebra, we study two aspects in more detail.

1. Many natural and arti�cial sources of graph data contain hierarchical relations that

can be modeled using tree structures, and these tree structures are frequently queried using

a query language based on a fragment of the relation algebra. Surprisingly, a systematic

study of the relative expressive power of relation algebra fragments on trees has not yet

been undertaken. To address this, we start with a basic relation algebra fragment which

only allows composition and union. We then study how the expressive power of the query

language changes if we add diversity, converse, projections, coprojections, intersections,

di�erence, and/or Kleene-star, this both for path queries and Boolean queries. We do this

both on labeled and unlabeled structures.

Our main contribution is the identi�cation of properties that can be used to categorize

relation algebra fragments according to their expressive power. These are: (1) whether

the fragment can distinguish branching structures; (2) whether the fragment is downward;

(3) whether the fragment is local; (4) whether the fragment has negation; and (5) whether the

fragment can express the Kleene-star. For the downward and local fragments, we did not only

introduced the above characterization, but we also established and proved all relationships in

the relative expressive power of these fragments. Central in this are the roles of intersection

and di�erence, which are either redundant or add only limited expressive power to each

downward and local fragment we consider.

2. Many graph query languages rely on composition to navigate graphs and select nodes

of interest, even though evaluating compositions of relations can be very costly. Often, this

need for composition can be reduced by rewriting such queries towards queries that use

semi-joins instead. In this way, the evaluation cost can be signi�cantly reduced. We study

techniques to recognize and apply such rewritings automatically. Concretely, we study the

relationship between the expressive power of the relation algebra, that relies heavily on

composition and Kleene-star for graph navigation, and the semi-join algebras, that replaces

the expensive composition and Kleene-star operators in favor of the semi-join operators and

a simple form of �xpoint iteration.

Our main result is that each fragment of the relation algebra where intersection and/or

di�erence is used only on edges (and not on complex compositions) is equivalent to a fragment

of the semi-join algebra for queries that evaluate to a set of nodes. For practical relevance,

we exhibit a constructive method for rewriting relation algebra queries to semi-join algebra
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queries. We prove that this method leads to only a well-bounded increase in the number

of steps needed to evaluate the rewritten queries, will never increase the cost of evaluating

individual steps, and can signi�cantly reduce the cost of evaluating individual steps. We also

study how the cost of other expensive operators in the relation algebra can be reduced.

Combined, these two studies give a detailed picture of the expressive power of the

fragments of the relation algebra. Moreover, our results provide several opportunities for

the development of new techniques for the e�cient evaluation of graph queries.



Preface

This doctoral dissertation titled “On Tarski’s Relation Algebra: Querying trees and chains,

and the semi-join algebra” is the culmination of my research at Hasselt University on the

topic of the expressive power of graph query languages based on fragments of Tarski’s

relation algebra.

Organization and scope of this dissertation

The presentation of my results is in four distinct parts. First, Part I serves as an introduction

to the graph data model, to graph query languages based on Tarski’s relation algebra, and to

related terminology and notations used throughout this work. Next, Parts II and III present

the results of our study on two distinct aspects of the relation algebra. Finally, Part IV

provides a short unifying conclusion on our research.

More speci�cally, we study in Part II the relative expressive power of fragments of the

relation algebra with respect to querying tree structures and chain structures. This Part is

based on the following three papers:

1. Jelle Hellings, Yuqing Wu, Marc Gyssens, and Dirk Van Gucht. The power of Tarski’s

relation algebra on trees. In Proceedings of the 10th International Symposium on Foun-
dations of Information and Knowledge Systems, 2018.

2. Jelle Hellings, Marc Gyssens, Yuqing Wu, Dirk Van Gucht, Jan Van den Bussche, Stijn

Vansummeren, and George H. L. Fletcher. Relative expressive power of downward

fragments of navigational query languages on trees and chains. In Proceedings of the
15th Symposium on Database Programming Languages, pages 59–68, 2015.

3. Jelle Hellings, Marc Gyssens, Yuqing Wu, Dirk Van Gucht, Jan Van den Bussche, Stijn

Vansummeren, and George H. L. Fletcher. Comparing downward fragments of the

relational calculus with transitive closure on trees. Technical report, Hasselt University,

2018. URL: https://arxiv.org/abs/1803.01390.

The latter paper is being prepared for submission to a journal.

In Part III, we study the relationships between the expressive power of the relation algebra

and the semi-join algebra. The latter is obtained by replacing composition and Kleene-star

in the relation algebra by semi-joins and a form of �xpoint iteration. We also study how

these relationships can be used to optimize graph query evaluation. This Part is based on

the following paper:

4. Jelle Hellings, Catherine L. Pilachowski, Dirk Van Gucht, Marc Gyssens, and Yuqing Wu.

From relation algebra to semi-join algebra: An approach for graph query optimization.
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In Proceedings of the 16th International Symposium on Database Programming Languages,
pages 5:1–5:10, 2017.

Scope of my research

In this dissertation, I only present my research on Tarski’s relation algebra. My research

focus was not only on the relation algebra, however, but also on various other aspects of

data management. Below is an overview of my published research results that have not been

integrated in this dissertation.

For my Master thesis project I developed e�cient external-memory bisimulation parti-
tioning algorithms. These algorithms can be used for the construction of bisimulation-based

indices of very big directed acyclic graphs. I have also developed specializations of these

algorithms that can deal with large XML documents [45].
1

During my �rst year at Hasselt

University, we worked on publishing these results, resulting in the following paper:

5. Jelle Hellings, George H.L. Fletcher, and Herman Haverkort. E�cient external-memory

bisimulation on dags. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, pages 553–564, 2012.

We have introduced the graph query language walk logic [54]. This novel graph query

language makes it easy to query for path-based structural graph properties. Examples of

such queries include ‘Does the graph have a Hamiltonian cycle?’ and ‘Does the graph have

an Eulerian tour?’. We not only introduced and formalized walk logic; we also studied the

expressive power of walk logic, and the relationships between walk logic and other graph

query languages. This work resulted in the following paper:

6. Jelle Hellings, Bart Kuijpers, Jan Van den Bussche, and Xiaowang Zhang. Walk logic

as a framework for path query languages on graph databases. In Proceedings of the
16th International Conference on Database Theory, pages 117–128, 2013.

We have worked on data dependencies in the setting of semi-structured data. Speci�cally,

we have provided an axiomatization of functional constraints and constant constraints de�ned

on patterns in semi-structured data. This work resolved an open problem stated in Akhtar et

al. [2] and resulted in the following two papers:

7. Jelle Hellings, Marc Gyssens, Jan Paredaens, and Yuqing Wu. Implication and axiom-

atization of functional constraints on patterns with an application to the RDF data

model. In Proceedings of the 8th International Symposium on Foundations of Information
and Knowledge Systems, pages 250–269. Springer International Publishing, 2014.

8. Jelle Hellings, Marc Gyssens, Jan Paredaens, and Yuqing Wu. Implication and axioma-

tization of functional and constant constraints. Annals of Mathematics and Arti�cial
Intelligence, 76(3):251–279, 2016.

We studied the notion of counting-only queries on collections of sets, queries which can

be answered by only looking at the number of sets groups of objects occur in. As it turns

out, many practical queries are counting-only and can be expressed in simple well-behaved

counting-only query languages. This work resulted in the following two papers:

1
We refer to http://jhellings.nl/projects/exbisim/ for more information on the external memory bisim-

ulation partitioning algorithms we developed.



xi

9. Jelle Hellings, Marc Gyssens, Dirk Van Gucht, and Yuqing Wu. First-order de�n-

able counting-only queries. In Proceedings of the 10th International Symposium on
Foundations of Information and Knowledge Systems, 2018.

10. Marc Gyssens, Jelle Hellings, Jan Paredaens, Dirk Van Gucht, Jef Wijsen, and Yuqing

Wu. Calculi for symmetric queries.

The latter paper is being prepared for submission to a journal.

We introduced the context-free graph queries as a generalization of the regular path

queries, and studied this graph query language in detail. This work resulted in a single paper:

11. Jelle Hellings. Conjunctive context-free path queries. In Proceedings of the 17th
International Conference on Database Theory, pages 119–130, 2014.

We have also worked on answering context-free graph queries with short paths instead

of node-pairs. These short paths give insight in the derivation of the traditional node-pair

query answer. We not only developed an e�cient algorithm to compute the shortest paths,

but we have also analyzes the worst-case length of these paths (in terms of the size of the

graph and the query). This work has not yet been published, but preliminary notes have

been made available:

12. Jelle Hellings. Path results for context-free grammar queries on graphs. Technical

report, Hasselt University, 2016. URL: https://arxiv.org/abs/1502.02242.

Finally, we worked on high-performance cache-friendly temporal join algorithms that can

deal with skewed data (in which only few records in the joined relations are part in the join

result). To support the operations needed in such temporal join algorithms, we developed

novel append-only temporal index structures. We are currently preparing our results for

submission to a peer-reviewed conference:

13. Jelle Hellings and Yuqing Wu. Stab-forests: Dynamic data structures for e�cient

temporal query processing.
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Part I

On Tarski’s Relation Algebra

A GENERAL INTRODUCTION
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CHAPTER 1

Graph querying and Tarski’s relation algebra

The graph data model, in which data is represented by labeled binary relations, is a versatile

and natural data model for representing RDF data, social networks, gene and protein networks,

and other types of data. Figure 1.1 shows a graph representing a fragment of a social network

as an example of such data. In this graph, the nodes represent objects corresponding to

persons and the labeled edges represent various semantic relationships between these persons.

The graph represents the binary relationships ParentOf , FriendOf , and WorksWith, shown

in Table 1.1. Indirectly, this graph also express many other binary relationships, including

GrandparentOf , AncestorOf , ChildOf , and WorkFriend shown in Table 1.2.

Alice

Bob

Carol

ParentOf

ParentOf

Dan

ParentOf

Faythe

ParentOf

Grace

ParentOf

Peggy
FriendOf FriendOf

Victor

FriendOf

WorksWith

Wendy
FriendOf

Figure 1.1: An example of social network graph data.
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Table 1.1: Binary relations representing the graph of Figure 1.1.

ParentOf
Alice Carol

Bob Carol

Carol Dan

Carol Faythe

Faythe Grace

FriendOf
Alice Victor

Bob Wendy

Dan Peggy

Faythe Peggy

Peggy Faythe

Victor Alice

WorksWith
Alice Victor

Victor Alice

Table 1.2: Examples of derived relationships represented by the graph of Figure 1.1.

AncestorOf
Alice Carol

Alice Dan

Alice Faythe

Alice Grace

Bob Carol

Bob Dan

Bob Faythe

Bob Grace

Carol Dan

Carol Faythe

Carol Grace

Faythe Grace

GrandparentOf
Alice Dan

Alice Faythe

Bob Dan

Bob Faythe

Carol Grace

ChildOf
Carol Alice

Carol Bob

Dan Carol

Faythe Carol

Grace Faythe

WorkFriend
Alice Victor

Victor Alice

1.1 Formalizing the graph data model

Before we introduce query languages to help express indirect relationships, we formalize the

graph data model used in this work. We use an edge-labeled graph data model:2

De�nition 1.1. A graph is a triple G = (V, Σ,E), withV a �nite set of nodes, Σ a �nite set

of edge labels, and E : Σ→ 2
V×V

a function mapping edge labels to edge relations. A graph

is unlabeled if |Σ| = 1. We use E to refer to the union of all edge relations, and, when the

graph is unlabeled, to the single edge relation. It is said that edge (m,n) ∈ E is an outgoing
edge ofm and an incoming edge of n.

A path of length k is a sequence n1 `1 n2 · · · `k nk+1 with n1, . . . ,nk+1 ∈ V , `1, . . . , `k ∈ Σ,

and, for all 1 ≤ i ≤ k , (ni ,ni+1) ∈ E
(
`j

)
. A path n1 . . .nk+1 forms a cycle if n0 = nk+1 and the

path contains at least one edge. A graph is acyclic if there are no cycles. A tree T = (V, Σ,E)
is an acyclic graph in which exactly one node, the root, has no incoming edges, and all other

nodes have exactly one incoming edge. If (m,n) is an edge in T , then nodem is the parent
of node n and node n is a child of node m. A graph is a forest if it is the union of a set of

disjoint trees. A chain is a tree in which all nodes have at most one child.

2
Various node-labeled graph data models are frequently used in the setting of XML data (see, e.g., [9, 97]). The

results presented in this work can easily be adapted to these node-labeled graph data models.
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Given a tree, and disregarding the direction of its edges, the distance between two nodes

is the number of edges on the unique shortest path between them. We write ‖m ↔ n‖T
to denote the distance between nodes m and n in tree T . In general, the unique shortest

path betweenm and n consists of a sequence of upward child-to-parent edges followed by

a sequence of downward parent-to-child edges. If one of the nodes is an ancestor of the

other, then the unique shortest path between m and n is directed. We de�ne the directed
distance, denoted by ‖m → n‖T , as ‖m → n‖T = ‖m ↔ n‖T ifm is an ancestor of n and as

‖m → n‖T = −‖m ↔ n‖T if n is an ancestor ofm. Finally, the depth of tree T , denoted by

depth(T ), is the maximum distance of the root node to any leaf node.

Example 1.1. Consider the graphs of Figure 1.2. The unlabeled graph on the left is not acyclic,

as there is a path from node u to itself via nodes v and w . The graph in the middle is acyclic,

but not a tree, as node m has two parents. The graph T on the right is a tree with root

node r and three leaf nodes. This tree is not a chain as node r has more than one child.

We have depth(T ) = ‖r → l2‖T = ‖r → l3‖T = 2, ‖l1 ↔ l2‖T = ‖l2 ↔ l1‖T = 3, and

‖l2 → r ‖T = ‖l3 → r ‖T = −2.

u

v w m

r

l1

l2 l3

Figure 1.2: Three directed unlabeled graphs: one cyclic, one acyclic, and one a tree.

1.2 Tarski’s relation algebra

The relationships that are part of a graph are referred to as extensional relationships, whereas

the indirect relationships such as GrandparentOf , AncestorOf , FamilyOf , and WorkFriend are

referred to as intentional relationships.3 Examples of these intentional relationships can be

found in Table 1.2. An important aspect of graph query languages is to provide the necessary

tools to de�ne these intentional relationships. For this purpose, many graph query languages

rely at their core on a fragment of the relation algebra of Tarski [36, 89] augmented with the

Kleene-star operator (re�exive transitive closure).

Central in the relation algebra is graph query navigation, which is primarily supported

by composition (◦). To see this, consider the query

GrandparentOf = ParentOf ◦ ParentOf .

This query de�nes the GrandparentOf relationship by using composition to navigate from a

grandparent to a grandchild via the ParentOf relationship. Where a single composition step

3
The terminology of extensional data (facts) and intentional data (derived rules) is commonly used in the setting

of Datalog [1].
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allows one to take a single step through the graph, the Kleene-plus operator (
+

) allows one to

take one-or-more steps through the graph. As an example, the query

AncestorOf = [ParentOf ]+

de�nes the AncestorOf relationship. Alongside the Kleene-plus operator, one usually also

uses the Kleene-star operator (
∗
), which allows one to take zero-or-more steps. The query

[ParentOf ]∗, for example, de�nes an AncestorOfAndSelf relationship.

The relation algebra not only allows de�ning intentional relationships along directed

paths in the graph, but also along undirected paths. As an example, the relationship FamilyOf
is de�ned by the query

FamilyOf = [ParentOf ∪ ParentOf a]∗,

in which ∪ denotes the union and
a

denotes the converse, the latter of which is used to invert

the ParentOf relationship to obtain the ChildOf relationship.

Not all relationships are de�nable via directed or undirected paths. Using intersection
(∩), the relation algebra allows to express relationships based on more complicated graph

structures. A simple example is

WorkFriend = FriendOf ∩WorksWith,

which de�nes the WorkFriend relationship. The relationships de�ned using intersection

can themselves also be indirect intentional relationships. A clear example is the query

(FriendOf ◦ FriendOf ) ∩ FriendOf that de�nes the relationship of pairs (m,n) such that m is

both a friend of n and a friend-of-a-friend of n.

Using only edge labels, composition, and intersection one can inductively describe series-
parallel graph structures, which are frequently used to model simple electric networks [28].

The most basic series-parallel graphs are edges. To build bigger series-parallel graphs out

of smaller ones, we use composition and intersection. Let e1 and e2 be expressions that

describe series-parallel graph structures connecting nodesm1 and n1 and nodesm2 and n2,

respectively. Intuitively speaking, the composition e1 ◦e2 expresses serial composition of these

series-parallel graph structures by requiring that nodes n1 =m2. Likewise, the intersection

e1 ∩ e2 expresses parallel composition of these series-parallel graph structures by requiring

that n1 = n2 andm1 =m2.

Example 1.2. Consider the three unlabeled graphs in Figure 1.3. The graph on the right is

constructed by taking the parallel composition of the paths of length two and three (left
and middle). The paths themselves are constructed by the serial composition of E-edges.

Consequently, the pair (p,q) is returned by the query E ◦ E ∩ E ◦ E ◦ E.

p q

Figure 1.3: Three simple unlabeled graphs that can be constructed using serial and parallel

composition. These three graphs are all series-parallel graphs.
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Table 1.3: More examples of intentional relationships represented by the graph of Figure 1.1.

The shorthand Ggp stands for great-grandparents.

Ggp
Alice Alice

Bob Bob

GgpAndFriends
Alice Victor

Bob Wendy

NonGgpAndFriends
Dan Peggy

Faythe Peggy

Peggy Faythe

Victor Alice

Besides union and intersection, the relation algebra also provides di�erence. This oper-

ator can be used to eliminate certain structures from relationship de�nitions. Related to

the intersection-queries, we have the query FriendOf −WorksWith which de�nes a Non-
WorkFriend relationship and the query (FriendOf ◦ FriendOf ) − FriendOf which de�nes the

relationship of friend-of-friends that are not friends.

Using the projection operators (π1 and π2), relationships can be limited to either their

begin-node or end-node. The query

Ggp = π1[ParentOf ◦ ParentOf ◦ ParentOf ]

de�nes the great-grandparents relationship of Table 1.3, left, and the query π2[ParentOf ◦
ParentOf ◦ ParentOf ] de�nes a great-grandchildren relationship.

In the relation algebra, projection-expressions result in binary relations and can be used

as a building block in combination with any other expression. In this manner, projections

can be used to represent conditions that should hold on individual nodes that are part of

the graph structure used to de�ne a relationship.
4

To illustrate this usage of projections,

consider the query

GgpAndFriends = π1[ParentOf ◦ ParentOf ◦ ParentOf ] ◦ FriendOf .

In this query, the projection π1[ParentOf ◦ ParentOf ◦ ParentOf ] is used to select great-

grandparents, and the full query de�nes the GgpAndFriends relationship relating great-

grandparents and their friends. This query yields the relationship of Table 1.3, middle.
Intuitively speaking, the projections add the ability to de�ne relationships in terms of tree-

like branching graph patterns.

Example 1.3. Consider the labeled tree in Figure 1.4. The query π1[`1] ◦ `2 ◦ π1[`3] ◦ `4
matches this tree structure, and will return the node pair (m,n).

We have seen that the projections express node conditions. The �nal operator of the

relation algebra, the coprojections (π 1 and π 2), express node conditions which represent the

complement of projections. For example, the query π 1[ParentOf ] de�nes the relationship of

all persons that do not have children, and the query

NonGgpAndFriends = π 1[ParentOf ◦ ParentOf ◦ ParentOf ] ◦ FriendOf

de�nes the NonGgpAndFriends relationship of Table 1.3, right. This query relates non-great-

grandparents and their friends.

4
Several graph query languages opt for a two-sorted design in which node conditions are expressed by unary

relations, see, e.g., [71, 74, 75, 90, 91]. We have chosen for a more uniform approach in which every operator yields

binary relations, this to simplify presentation.
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`1 `2

`3 `4

m

n

Figure 1.4: A labeled tree that matches π1[`1] ◦ `2 ◦ π1[`3] ◦ `4 exactly.

Besides the above operators, Tarski’s relation algebra also uses the atoms ∅, id, and

di. The empty-set atom ∅ can be used to express queries that return an empty result, the

identity atom id represents the set of all nodes (paired with themselves), and the diversity
atom di represents the set of all distinct node pairs. As examples, consider the queries

(FriendOf ◦ FriendOf ) ∩ di and (FriendOf ◦ FriendOf ) − id. Both queries return pairs (m,n)
if n is a friend-of-a-friend of m, excluding the pairs that represent people that are friend-of-

friends with themselves. As another example, consider the queries (ParentOf a◦ParentOf )∩di

and (ParentOf a ◦ ParentOf ) − id, which both return pairs (m,n) of siblings.

1.3 Formalizing the relation algebra

Next, we shall formalize the relation algebra of Tarski as used throughout this work.
5

In our

setting, a queryq maps a graph to a set of node tuples. We write [[q]]G to denote the evaluation
of q on graph G. We can interpret a query q as a Boolean query, in which case [[q]]G , ∅
represents True. For simplicity, we assume that queries always yield binary relations (sets of

node-pairs, [[q]]G ⊆ V ×V). If R is a binary relation, then R|1 = {m | ∃n (m,n) ∈ R} and

R|2 = {n | ∃m (m,n) ∈ R} denote the �rst and second column, respectively, of R.

De�nition 1.2. The relation algebra with the Kleene-star is de�ned by the grammar

e := ∅ | id | di | ` | `a | πj [e] | π j [e] | e ◦ e | e ∪ e | e ∩ e | e − e | [e]
∗,

in which ` ∈ Σ and j ∈ {1, 2}. Let G = (V, Σ,E) be a graph and let e be an expression. The

semantics of evaluation is de�ned as follows:

[[∅]]G = ∅;

[[id]]G = {(m,m) | m ∈ V};

[[di]]G = {(m,n) | m,n ∈ V ∧m , n};

[[`]]G = E (`) ;
[[`a]]G = {(n,m) | (m,n) ∈ E (`)};
[[πj [e]]]G = {(m,m) | m ∈ [[e]]G |j };

[[π j [e]]]G = [[id]]G − [[πj [e]]]G ;

[[e1 ◦ e2]]G = {(m,n) | ∃z (m, z) ∈ [[e1]]G ∧ (z,n) ∈ [[e2]]G};

5
Our formalization of the relation algebra is adapted from the formalization used by Fletcher et al. [31–34, 87].

This also extends to the formalization of relation algebra fragments and the notions of path equivalence and Boolean

equivalence introduced in Section 1.4.
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[[e1 ∪ e2]]G = [[e1]]G ∪ [[e2]]G ;

[[e1 ∩ e2]]G = [[e1]]G ∩ [[e2]]G ;

[[e1 − e2]]G = [[e1]]G − [[e2]]G ;

[[[e]∗]]G =
⋃

i≥0
[[ei ]]G,

with e0 = id and ek = e ◦ ek−1
. We denote the relation algebra, augmented with the Kleene-

star, by N . If an expression always evaluates to a subset of id, as is the case for projections

and coprojections, then it is called a node expression.

We write F ⊆ {di, a,π ,π ,∩,−, ∗} to denote a set of operators in which π represents both

π1 and π2 and, likewise, π represents both π 1 and π 2. By N(F) we denote the fragment of

N that only allows ∅, id, ` ∈ Σ, ◦, ∪, and all operators in F.

We sometimes use the shorthand all = (id ∪ di) and [e]+ = e ◦ [e]∗. Usually, the relation

algebra also has a general converse operator
−1

with

[[[e]−1]]G = {(n,m) | (m,n) ∈ [[e]]G}.

One can easily show that the general converse operator does not provide additional expressive

power over the label-converse operator
a

that we already use, as one can always push the

converse operator down to the level of edge labels by using the following rewrite rules:

[`]−1 = `a;

[`a]−1 = `;

[fj [e]]
−1 = fj [e];

[e1 ◦ e2]
−1 = [e2]

−1 ◦ [e1]
−1

;

[e1 ⊕ e2]
−1 = [e1]

−1 ⊕ [e2]
−1

;

[[e]∗]−1 = [[e]−1]∗,

where f ∈ {π ,π }, j ∈ {1, 2}, and ⊕ ∈ {∪,∩,−}. To simplify notation, we usually only

allow converse at the edge-label level unless stated otherwise, but we will use the shorthand

notation [e]−1
to express the converse of e obtained by pushing the converse operator down

to edge labels. Similarly, we write e−k , k ≥ 0, as a shorthand for [e]−1 ◦ e−(k−1)
.

As an alternative to the relation algebra, we can also consider arbitrary �rst-order logic

formulae to specify graph queries. Let G = (V, Σ,E) be a graph with Σ = {`1, . . . , ` |Σ |}. We

write FO[k] to denote the �rst-order logic over the structure (V; `1, . . . , ` |Σ |) in which `i ,
1 ≤ i ≤ |Σ|, represents the edge relation E (`i ), and in which variables are restricted to a set

of at most k variables. By L
k
∞ω , we denote the standard in�nitary �rst-order logic extension

of FO[k] that allows conjunctions and disjunctions over arbitrary sets. It is well-known that

the relation algebra (excluding the Kleene-star) has the same expressive power as FO[3]

formulae with two free variables [36, 89] and that the Kleene-star operator can be expressed

in L
3

∞ω [39].

1.4 Equivalence notions and language fragments

In this work, we primarily study the expressive power of the relation algebra and its fragments.

To do so, we introduce the appropriate equivalence notions. We consider two such notions:

path equivalence and Boolean equivalence.
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De�nition 1.3. Let q1 and q2 be queries. We say that q1 and q2 are path-equivalent, denoted

by q1 ≡path q2, if, for every graph G, [[q1]]G = [[q2]]G and are Boolean-equivalent, denoted by

q1 ≡bool q2, if, for every graph G, [[q1]]G = ∅ if and only if [[q2]]G = ∅.

In a straightforward way, we can also consider path equivalence and Boolean equivalence

with respect to a subset of all graphs (e.g., labeled chains or unlabeled trees).

Expressions that are path-equivalent are also Boolean-equivalent, but the reverse is

generally not true.

Example 1.4. The equivalence e1 ∩ e2 ≡path e1 − (e1 − e2) is well-known. Hence, also

e1 ∩ e2 ≡bool e1 − (e1 − e2). We also have π1[`] ≡bool ` ≡bool π2[`], but π1[`] .path ` and

` .path π2[`].

The equivalence notions introduced extend naturally to subsumption and equivalence

notions between classes of expressions.

De�nition 1.4. Let z ∈ {path, bool}. We say that the class of queries L1 is z-subsumed by

the class of queries L2, denoted by L1 �z L2, if every query in L1 is z-equivalent to a query

in L2. We say that the classes of queries L1 and L2 are z-equivalent, denoted by L1 ≡z L2,

if L1 �z L2 and L2 �z L1.

In a straightforward way, we can also consider z-subsumption and z-equivalence with

respect to a subset of all graphs (e.g., labeled chains or unlabeled trees).

Example 1.5. We have N(F) ≡path N(F − {∩}) whenever {−} ⊆ F.

Examples 1.4 and 1.5 illustrate that several fragments of the relation algebra can express

exactly the same set of queries: if, for example, intersection is missing from a fragment that

has di�erence, then di�erence can be used instead to express intersection. We observe that

the following rewrite rules can be used to express operators using other operators:

π1[e] = π2[[e]
−1] = π j [π 1[e]] = (e ◦ [e]

−1) ∩ id = (e ◦ all) ∩ id;

π2[e] = π1[[e]
−1] = π j [π 2[e]] = ([e]

−1 ◦ e) ∩ id = (all ◦ e) ∩ id;

π 1[e] = π 2[[e]
−1] = id − π1[e];

π 2[e] = π 1[[e]
−1] = id − π2[e];

e1 ∩ e2 = e1 − (e1 − e2),

with j ∈ {1, 2}. Let F ⊆ {di, a,π ,π ,∩,−, ∗}. By F we denote the set of operators obtained

from F by adding operators to F that can be expressed using the operators already in F

using the above rules.

1.5 Relation algebra and graph querying

The roots of Tarski’s relation algebra can be traced back to the calculus of relation, of which

the underlying theory was developed during the period 1864–1895 by De Morgan, Pierce,

and Schröder. Starting in 1941, interest in the calculus of relations was revitalized by the

work of Alfred Tarski and his students and colleagues, as they showed that the fundamentals

of mathematical theory can be developed within the calculus of relations [36, 89].

The relation algebra is not only of theoretical interest. As we have already demonstrated

in this chapter, the relation algebra can also be used as a simple yet powerful graph query
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π ∩ −

Navigational XPath, GXPath

di

Tarski’s relation algebra augmented with the Kleene-star operator

Figure 1.5: An overview of the relationships between graph query languages and fragments

of the relation algebra.

language. Indeed, many graph query languages are directly related to fragments of the

relation algebra. An overview of these relationships is visualized in Figure 1.5. The �rst

example are the regular path queries (RPQs) that use regular expressions to de�ne the labeling

of paths in the graph that are of interest [27]. The result of a regular path query is a set of

node pairs that are connected by a path of interest. The RPQs are equivalent to the relation

algebra fragment N(∗) and the �rst-order fragment of the RPQs is equivalent to N(). This is

no coincidence: the RPQs with and without the Kleene-star operator are often studied as a

formalization of the “greatest common divisor” of navigation in many practical graph and

tree query languages, which also motivated our choice for the most basic language, N().

The RPQs can only be used to de�ne very simple path-based intentional relationships.

To strengthen the expressive power of the RPQs, several more expressive variants have

been proposed and studied in the literature. The 2RPQs are obtained by adding converse

(
a

) [7] and the nested RPQs are obtained by also adding projections (π1 and π2) [8]. Usually,

expressions in these languages serve as binary predicates in a conjunctive query framework

such as the CRPQs and C2RPQs [15, 25]. The Regular Queries are a particular powerful

CRPQ-based language that can express all queries inN(a,π ,∩, ∗) [81]. The RPQ-based query

languages have been studied in detail with respect to graph querying. To the best of our

knowledge, the expressive power of these languages have not been studied in-depth on the

tree data model and/or with respect to FO[2], however.

The relation algebra and its fragments are also at the core of many other graph query

languages. Examples include the XPath query language (for querying XML data) [9, 10, 13,

20, 74, 75, 90, 91, 97], the SPARQL query language (for querying RDF data) [44, 83], the graph

query language GXPath [71], and languages used for program veri�cation such as PDL and

KAT [30, 65]. Via the connections between the relation algebra and FO[2] we explore in

Part III, there is also a close relation between the relation algebra and logics used in formal

veri�cation such as CTL, LTL, and the µ-calculus [21].

1.6 Overview of this work

Part I served as an introduction to the graph data model, to graph query languages based

on Tarski’s relation algebra, and to related terminology and notations used throughout this

work. Next, in Parts II and III we present the results of our study on two distinct aspects
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concerning the expressive power of fragments of Tarski’s relation algebra in a non-traditional

restricted setting.

More speci�cally, we study in Part II the relative expressive power of fragments of the

relation algebra with respect to querying tree structures and chain structures. The main

contribution presented in Part II is the identi�cation of properties that we use to categorize

relation algebra fragments according to their expressive power. We also prove that the

expressive power of intersection and di�erence are limited: in many fragments, they are

either redundant or add only limited expressive power. To prove these redundancies, we

introduce condition automata and condition tree queries.

In Part III, we study the relationships in the expressive power of the relation algebra and

the semi-join algebra, the latter which is obtained by replacing the expensive composition and

Kleene-star operators in the relation algebra by semi-joins and a form of �xpoint iteration.

The main contribution presented in Part II is that each fragment of the relation algebra

where intersection and/or di�erence is used only on edges, is equivalent to a fragment of the

semi-join algebra for queries that evaluate to a set of nodes. For practical relevance, we show

how to utilize these relationships for optimizing graph query evaluation. We also study how

the cost of other expensive operators in the relation algebra can be reduced.

Finally, in Part IV, we provide a short unifying conclusion on the research presented in

Part II and III.
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CHAPTER 2

Introduction6

The versatile tree data model can be used to model many natural and arti�cial hierarchical

relations, including taxonomies, corporate hierarchies, and �le and directory structures.

It is therefore not surprising that tree data models have been continuously studied since

the 1960s [13, 29, 93]. Modern query languages for querying tree data put heavy reliance

on navigating the tree structure. Prime examples of this are XPath [10, 20, 74, 90] and

the various JSON query languages [58]. Indeed, XPath queries primarily navigate XML

documents via the parent-child and the ancestor-descendant axis. In the JSON data model

most data retrieval is done by explicit top-down single-edge traversal steps of a data structure

representation of the JSON data [58]. Even in more declarative settings, such as within the

PostgreSQL relational database management system, the JSON query facilities primary aim

at navigation [92]. We also �nd this focus on navigation outside the setting of tree data. As

an example, we mention the nested relational database model that uses navigation of the

nested structure as an important tool to query the data (see, e.g., [24]).

In the previous chapter, we argued that fragments of Tarski’s relation algebra form the

basis of many navigation oriented versatile graph and tree query languages including the

regular path queries, XPath, and SPARQL. As such, the relation algebra and its fragments have

already been studied in great detail, including studies that provide a complete characterization

of the relative expressive power of these languages for querying graphs [31–34, 36, 87, 89]

and partial characterizations of the relative expressive power of variants of these languages

for querying unordered trees [9, 97] and sibling-ordered trees [74, 75, 90, 91]. The latter

studies only covered a few fragments of the relation algebra, however, and a comprehensive

study has not yet been undertaken before.

In this part, we undertake a more comprehensive study. More speci�cally, we investigate

path equivalence and Boolean equivalence of fragments of the relation algebra when they are

used to query unlabeled trees and labeled trees. We also present several results for querying

unlabeled chains and labeled chains, as in many cases separations involving diversity are

easier to obtain on chains than on trees. On their own, these results on chains provide

additional insight into the expressive power of relation algebra fragments on strings.

Unfortunately, the relative simplicity of the tree data model and chain data model turns

out to be a curse rather than a blessing: compared to the graph data model [31–34, 36, 87, 89],

this simplicity makes it much more di�cult to establish separation results using strong

brute-force methods. Consequently, the study on trees and chains forces us to search for

6
The results in this chapter are partly based on the papers “Relative expressive power of downward fragments of

navigational query languages on trees and chains” [52, 53] and “The power of Tarski’s relation algebra on trees” [57].
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deeper methods to reach our goals. Therefore, we believe that our study not only gives

insight in the expressive power of the relation algebra and its fragments, but also contributes

to a better understanding of the fundamental di�erences between graph data models, tree

data models, and chain data models.

The main contribution presented in this part is the introduction of several properties

that can be used to categorize relation algebra fragments according to their expressive power.

This in turn yields several separation results on trees and chains:

1. Recognizing branches and siblings. The languageN() can only query trees by navigating

alongside a single path from ancestor to descendant. Consequently, no query in N() can

distinguish between chains and trees. Other query languages support recognizing branching

up to a certain degree, and we can classify these languages accordingly.

To do so, we introduce k-subtree-reductions. Languages that are closed under k-subtree-

reduction steps allow the removal of a child of a node that is structurally equivalent to at

least k other children of that node without changing the outcome of Boolean queries. First,

the query languageN(a,π ,π ,∩) is 1-subtree-reducible and, consequently, can only recognize

siblings if they are not structurally equivalent. Next, query languages N(F) with di ∈ F

and ∩ < F are 2-subtree-reducible and can, in very limited circumstances, distinguish up to

two structurally equivalent children of a node. Finally, the full relation algebra is 3-subtree-
reducible, and query languages N(F) with {a,−} ⊆ F or {di,∩} ⊆ F can always distinguish

between nodes that have one, two, or at least three structurally equivalent children.

2. Downward queries versus non-downward queries. Queries in N(F) with F ⊆ {π ,π ,∩,
−, ∗} yield node pairs (m,n) such that one can navigate from m to n by traversing along a

sequence of parent-child axes. Hence, we call these query languages downward. We observe

that these downward query languages are all 1-subtree-reducible, which puts an upper

bound on their expressive power. Diversity and the converse operator are non-downward in

nature. Based on this observation, it follows that languages with diversity or converse are not

path-equivalent to downward query languages. This can usually be strengthened towards

Boolean inequivalence, as diversity and converse play a signi�cant role in 2-subtree-reducible

languages and 3-subtree-reducible languages.

3. Local queries versus non-local queries. Queries in N(F) with F ⊆ {a,π ,π ,∩,−} yield

node pairs (m,n) such that one can navigate between m and n by traversing a number of

edges, with the number depending only on the length of the query. Hence, we call these query

languages local. Diversity and the Kleene-star operator are non-local in nature. Based on this

observation, it follows that languages with diversity or Kleene-star are not path-equivalent

to local query languages. This can be strengthened towards Boolean inequivalence, as

diversity and Kleene-star can, in many cases, be used to express non-local properties on

which unlabeled trees and labeled chains can be distinguished. We do so by exploiting the

fact that many properties on which simple tree and chains can be distinguished are non-local

and rely on a limited form of counting. A simple example of this are chain queries of the

form “are there k edges in the chain labeled with edge-label `”.

4. Monotonicity and homomorphisms. A query language is monotone if, for every query

q, every graph G, and every graph G′ obtained by adding nodes and edges to G, we have

[[q]]G ⊆ [[q]]G′ . One the one hand, one can show that the query language N(di, a,π ,∩, ∗) is

monotone. To prove this, one can show that N(a,π ,∩, ∗) is closed under homomorphisms



17

1-subtree

reducible

2-subtree

reducible

3-subtree

reducible

downward non-downward

local

non-local,

∗
-free

non-
∗
-free

monotone

non-monotone

monotone

non-monotone

monotone

non-monotone

N(∩, −)
N(π , ∩)

N(π , π , ∩, −)

N(π , ∩, ∗)

N(π , π , ∩, −, ∗)

N(a, π , π , ∩)

N(a, π , ∩)

N(a, π , π , ∩, ∗)

N(a, π , ∩, ∗)

N(di, a, π )

N(di, a, π , π )

N(di, a, π , ∗)

N(di, a, π , π , ∗)

N(a, π , π , ∩, −)

N(di, a, π , ∩)

N(di, a, π , π , ∩, −)

N(di, a, π , ∩, ∗)

N

Figure 2.1: Initial classi�cation of the relative expressive power of fragments of the relation

algebra with respect to path queries on labeled trees. In each box, the largest fragment(s)

that satisfy the classi�cation of that particular box are included. The more to the right and

to the top a certain box is situated, the stronger the expressiveness of the corresponding

fragment(s) become.

and that N(di, a,π ,∩, ∗) is closed under injective homomorphisms. Consequently, these

languages have very limited expressive power, especially with respect to Boolean queries

on unlabeled structures. We show that every query in N(a,π ,∩, ∗) is, on unlabeled trees,

Boolean-equivalent to either ∅ or a query of the form Ek , a query that only puts a lower

bound on the length of the longest path from the root to a leaf node.

On the other hand, the query languages N(F) with π ∈ F are non-monotone. As an

example, one needs only coprojections to construct a Boolean query that puts an upper bound

on the length of a chain. Such queries are not monotone and consequently not expressible in

N(di, a,π ,∩, ∗).

5. The Kleene-star. It is well-known that the transitive closure of a relation cannot

be expressed in �rst-order logic and that the query language N(di, a,π ,π ,∩,−) is path-

equivalent to FO[3] [36, 89]. Consequently, even basic queries using the Kleene-star cannot be

expressed by any expression inN(di, a,π ,π ,∩,−). For Boolean queries on labeled structures,

similar results can be shown. For unlabeled structures, Kleene-star does not always add

expressive power, however. More speci�cally, when querying unlabeled chains, Kleene-star

does not add expressive power to the monotone query languages, and, when querying

unlabeled trees, Kleene-star does not add expressive power to the query languages that are

both monotone and 2-subtree-reducible.

In Figure 2.1, we visualize the above categorization, which yields an initial classi�cation

of the expressive power of the query languages we study on trees. It does not provide all

details, however, which we will start to unravel in this part. For a full index on how speci�c

results are proven, we refer to the reader to Appendix A.
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Our results on the relative expressive power are complete with respect to the downward

fragments and the local fragments of the relation algebra and we have proven that intersection

and di�erence are redundant in many of these fragments. These redundancies are presented

in Chapter 4 for the downward language fragments and in Chapter 5 for the local language

fragments. With respect to querying trees using the non-downward and non-local �rst-order

fragments of the relation algebra, one challenging problem remains open, however: does

adding di�erence yields more expressive power to fragments containing at least diversity,

coprojections, and intersection?

In Chapter 3, the above classi�cation is further formalized and most separations are

proven. In Chapter 4, the redundancies of intersection and di�erence in downward query

fragments are proven. In Chapter 5, the redundancies of intersection and di�erence in local

query fragments are proven. Finally, in Chapter 6, we conclude on our �ndings, discuss the

remaining open problems, and propose avenues for future work.



CHAPTER 3

Characterizations for querying trees and chains7

In this chapter, we formalize the classi�cation of fragments of the relation algebra presented

in Figure 2.1.

3.1 Organization

In Section 3.2, we introduce basic expression simpli�cations that are used throughout this

chapter. Then, in Section 3.3, we introduce the k-subtree-reductions and present the separa-

tion results obtained using these reductions. In Section 3.4, we formalize what downward

queries and local queries are and derive basic path separations based on these de�nitions. In

Section 3.5, we add diversity to local query languages, and show that the resulting languages

can express non-local counting-based structural properties on chains and trees. In Section 3.6,

we compare various non-local query languages by exploiting the simple nature of diversity

on chains. In Section 3.7, we look at queries that are closed under homomorphisms and

injective homomorphisms. In Section 3.8, we look at the expressive power of the Kleene-star

operator by using the relationship between the relation algebra and �rst-order logic. In

Section 3.9, we explorer other remaining cases that can be solved using the relationship

between the relation algebra and �rst-order logic. In Section 3.10, we look at cases that are

solved using brute-force techniques. Finally, in Section 3.11, we look at related work.

3.2 Basic rewriting and expression simpli�cation

In Section 1.4, we have provided equivalences showing that certain operators can be ex-

pressed using other operators, proving redundancies for these operators on graphs. Next,

we provide additional equivalences that only hold on trees or chains, which imply additional

redundancies for certain operators.

Proposition 3.1. Let F1,F2 ⊆ {di, a,π ,π ,∩,−, ∗} with {a, ∗} ⊆ F1 and {di,−, ∗} ⊆ F2.

(i) On labeled trees, we have N(F1 ∪ {di,−}) �path N(F1 ∪ {−}).

(ii) On labeled chains, we have N(F1 ∪ {di}) �path N(F1).

(iii) On labeled chains, we have N(F2 ∪ {
a}) �path N(F2).

7
The results in this chapter are partly based on the papers “Relative expressive power of downward fragments of

navigational query languages on trees and chains” [52, 53] and “The power of Tarski’s relation algebra on trees” [57].
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Proof. On trees, we have the following equivalence

di ≡path ([E
a]∗ ◦ [E]∗) − id.

On chains, the above can be simpli�ed to the following equivalence:

di ≡path [E]
+ ∪ [Ea]+.

Hence, on chains [Ea]+ ≡path di − [E]+. We have

Ea ≡path [E
a]+ −

(
[Ea]+ ◦ [Ea]+

)
.

Using Ea we can also express `a on chains, ` ∈ Σ. We have `a ≡path E
a ◦ ` ◦ Ea. �

Besides the above rewriting results that allows for the elimination of certain operators

altogether, we can also use query rewriting to simplify the structure of queries. For example,

we can simplify usage of the empty-set and identity atoms and the union operator:

Lemma 3.2. Let F ⊆ {di, a,π ,π ,∩,−, ∗} and let e be an expression in N(F).

(i) Expression e is path-equivalent to a union of ∪-free expressions in N(F).

(ii) If e .path ∅, then e is path-equivalent to an ∅-free expression in N(F).

(iii) If F ⊆ {di, a,π ,π , ∗}, e is ∪-free, and e .path id, then e is path-equivalent to an {id,∪}-
free expression in N(F).

Proof. These three statements can be proven with straightforward rewrite rules, which we

include for completeness. Let e , e1, and e2 be expressions and let j ∈ {1, 2}. For Statement (i),

we have

πj [e1 ∪ e2] ≡path πj [e1] ∪ πj [e2];

π j [e1 ∪ e2] ≡path π j [e1] ◦ π j [e2];

(e1 ∪ e2) ◦ e ≡path (e1 ◦ e) ∪ (e2 ◦ e);

e ◦ (e1 ∪ e2) ≡path (e ◦ e1) ∪ (e ◦ e2);

(e1 ∪ e2) ∩ e ≡path (e1 ∩ e) ∪ (e2 ∩ e);

e ∩ (e1 ∪ e2) ≡path (e ∩ e1) ∪ (e ∩ e2);

(e1 ∪ e2) − e ≡path (e1 − e) ∪ (e2 − e);

e − (e1 ∪ e2) ≡path (e − e1) − e2;

[e1 ∪ e2]
∗ ≡path [[e1]

∗ ◦ [e2]
∗]∗.

For Statement (ii), we have

πj [∅] ≡path ∅;

π j [∅] ≡path id;

∅ ◦ e ≡path e ◦ ∅ ≡path ∅;

∅ ∪ e ≡path e ∪ ∅ ≡path e;
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∅ ∩ e ≡path e ∩ ∅ ≡path ∅;

∅ − e ≡path ∅;

e − ∅ ≡path e;

[∅]∗ ≡path id.

Finally, for Statement (iii), we have

πj [id] ≡path id;

π j [id] ≡path ∅;

e ◦ id ≡path id ◦ e ≡path e;

[id]∗ ≡path id. �

As a �nal simpli�cation, we observe that the Kleene-star operator never adds expressive

power when querying a given graph (with k nodes).

Lemma 3.3. Let G be a graph with k nodes and let e be an expression. Let e ′ be the expression
obtained from e by replacing every subexpressions of the form [д]∗ by

⋃
0≤i≤k дi . We have

[[e]]G = [[e
′]]G .

We can use the above elimination trick to carry over results from language fragments

without the Kleene-star to language fragments with the Kleene-star.

3.3 Detecting branches and subtree-reductions

The obvious way to detect whether or not a tree is a chain is by detecting whether some

node has several children. This is particularly easy when these children are connected to

their parent using distinct edge-label. Next, we show that the most basic language is not

capable of detecting labeled branching.

Lemma 3.4. Let e be an expression in N(∗). If there exists a tree T such that [[e]]T , ∅, then
there exists a chain C such that [[e]]C , ∅.

Proof. Let T = (V, Σ,E). As T is given, we can use Lemma 3.3, and we assume that e is

∗
-free. Using Lemma 3.2 (i), we write e as a union of ∪-free expressions. Due to [[e]]T , ∅,

the union must contain a ∪-free expression e ′ for which [[e ′]]T , ∅. If e ′ ≡path id, then a

chain C with a single node su�ces. Else, we use Lemma 3.2 (iii) and conclude that e ′ can be

written as a composition of edge labels `1 ◦ . . . ◦ `k . In this case, a chain C representing the

path n1 `1 n2 . . .ni `k nk+1 su�ces. �

In contrast, most other languages are able to detect labeled branching, as shown next.

Proposition 3.5. Let F ⊆ {di, a,π ,π ,∩,−, ∗}. If π ∈ F or a ∈ F, then, already on labeled
trees, we have N(F) �bool N(

∗).

Proof. Consider the expressions e1 = `1
a ◦ `2 and e2 = π1[`1] ◦ π1[`2], which are Boolean-

equivalent. Clearly, for any tree T ′, we have [[ei ]]T′ , ∅, i ∈ {1, 2}, only if T ′ has a node

with at least two children, one reachable via an edge labeled `1 and another via an edge

labeled `2. Hence, for the tree T of Figure 3.1, we have [[ei ]]T , ∅ and for all chains C, we

have [[ei ]]C = ∅. Let e be any expression in N(F) with [[ei ]]T , ∅. Due to Lemma 3.4, there

exists a chain C with [[e]]C , ∅. Hence, e is not Boolean-equivalent to ei , and we conclude

that N(∗) cannot express ei . �
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T : `1 `2

Figure 3.1: A tree with two labeled branches.

T1: T2: T3:

Figure 3.2: Tree T1 (a chain) on the left, T2 in the middle, and tree T3 on the right. These trees

can be distinguished by counting the number of children of the root.

Detecting branches in the situation above, where a single node has several structurally

distinct branches, is relatively simple. Next, we look at which language fragments are able

to detect branching when all branches are structurally identical. As a �rst step towards

this goal, we take advantage of the simple structure of trees to exhibit limitations on the

expressive power of relation algebra fragments. Thereto, we introduce subtree-reductions.
Let k > 0. A k-subtree-reduction step on tree T = (V, Σ,E) consists of �rst �nding

di�erent nodes m,n1, . . . ,nk+1 ∈ V and an edge label ` ∈ Σ such that the subtrees rooted

at n1, . . . ,nk+1 are isomorphic and (m,n1), . . . , (m,nk+1) ∈ E (`), and then picking a node ni ,
1 ≤ i ≤ k + 1, and removing the subtree rooted at ni .

De�nition 3.1. We say that a tree isk-subtree-reducible if we can apply ak-subtree-reduction

step.
8

Example 3.1. Consider the unlabeled trees T1, T2, and T3 in Figure 3.2. The tree T1 can be

obtained by a 1-subtree-reduction step on T2 and T2 can be obtained by a 2-subtree-reduction

step on T3. Consequently, T1 can also be obtained by two 1-subtree-reduction steps on T3.

Hence, T2 is 1-subtree-reducible and T3 is 1-subtree-reducible and 2-subtree-reducible.

We now exhibit conditions under which the result of a relation algebra expression is

invariant under subtree-reductions at the Boolean level. Using standard k-pebble-games [37,

39, 70], we conclude the following:

Lemma 3.6. Let T be a tree and let T ′ be obtained from T by a k-subtree-reduction step. For
every query q in L

k
∞ω , we have [[q]]T , ∅ if and only if [[q]]T′ , ∅.

Observe that N �path L
3

∞ω . In Part III we study the relationship between fragments

of the relation algebra and L
2

∞ω . In particular, Theorem 8.6 will show that the language

N(di, a,π ,π ) and its fragments are already Boolean-subsumed by L
2

∞ω on graphs. Combining

this with Lemma 3.6 yields the following:

Proposition 3.7. Let F ⊆ {di, a,π ,π ,∩,−, ∗}, let e be an expression in N(F), let T be a tree,
and let T ′ be obtained from T by a k-subtree-reduction step.

(i) If k ≥ 3, then [[e]]T , ∅ if and only if [[e]]T′ , ∅.

(ii) If k ≥ 2 and ∩ < F, then [[e]]T , ∅ if and only if [[e]]T′ , ∅.
8
The 1-subtree-reduction step bears a close relationship to the F+B-index and the F&B-index used for indexing

the structure of tree data [63]. As with the F+B-index, the 1-subtree-reduction steps will only merge child nodes

when both the forward structure (subtrees rooted at the children) and backward structure (children of a single

parent) “behave equivalently”. The k-subtree-reduction step generalizes their underlying principles by also taking

into account how often (up-to-k ) these structures occur.
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For 1-subtree-reduction steps, we can further strengthen Proposition 3.7:

Proposition 3.8. Let F ⊆ {a,π ,π ,∩, ∗}, let e be an expression in N(F), let T be a tree, and
let T ′ be obtained from T by a 1-subtree-reduction step. We have [[e]]T , ∅ if and only if
[[e]]T′ , ∅.

Proof. Let T = (V, Σ,E) and let T ′ = (V ′, Σ′,E′). We observe that the number of nodes in

T ′ is bounded above by the number of nodes in T . Hence, by Lemma 3.3, we can assume

that e is Kleene-star free.

Let n1,n2 ∈ V be siblings in T such that the subtrees rooted at n1 and n2 are isomorphic

and T ′ is obtained from T by eliminating the subtree rooted atn2. LetV1 andV2 be the nodes

in the subtrees of T rooted at n1 and n2, respectively, and let b : V1 →V2 be the bijection

establishing that these subtrees are isomorphic. Let д be the identity onV − (V1 ∪V2), and

let f = b ∪ b−1 ∪ д. Since f is an automorphism of T , we have

(i) ifm,n ∈ V , then (m,n) ∈ [[e]]T if and only if (f (m), f (n)) ∈ [[e]]T .

By induction on the length of e , one can prove that we have in addition

(ii) ifm ∈ V1,n ∈ V2 orm ∈ V2,n ∈ V1, then (m,n) ∈ [[e]]T implies (f (m),n) ∈ [[e]]T ;

(iii) ifm,n ∈ V ′, then (m,n) ∈ [[e]]T if and only if (m,n) ∈ [[e]]T′ .

Observe that f = f −1
. Hence, Property (ii) also yields (m,n) ∈ [[e]]T implies (m, f (n)) ∈

[[e]]T . The base cases are expressions of the form ∅, id, `, and `a, with ` an edge label, for

which it is straightforward to verify that the Properties (ii) and (iii) hold. Now assume that

the Properties hold for all expressions e of length at most i . Let e be an expression of length

i + 1. We distinguish the following cases:

1. e = π 1[e
′].

(ii) We have (m,n) ∈ [[e]]T only if m = n. Hence, the premise of Property (ii) is not

applicable to e in this case, and we conclude that the Property holds voidly.

(iii) We assumem,n ∈ V ′. If (m,n) ∈ [[e]]T , thenm = n and, for all z, (m, z) < [[e ′]]T . In

this case, we also have, for all z ∈ V ′, (m, z) < [[e ′]]T . By applying Property (iii) on e ′, we

obtain (m, z) < [[e ′]]T′ for all z. Hence, we conclude (m,n) ∈ [[e]]T′ .

If (m,n) ∈ [[e]]T′ , thenm = n and, for all z ′, (m, z ′) < [[e ′]]T′ . By applying Property (iii) on

e ′, we obtain (m, z ′) < [[e ′]]T for all z ′ ∈ V ′. Let z ′′ < V ′. We have z ′′ ∈ V2, f (z ′′) ∈ V ′, and

(m, f (z ′′)) < [[e ′]]T . If m ∈ V1, then we apply Property (ii) on e ′ to obtain (m, z ′′) ∈ [[e ′]]T
implies (m, f (z ′′)) ∈ [[e ′]]T . Else, ifm < V1, then f (m) =m and we apply Property (i) on e ′

to obtain (m, z ′′) ∈ [[e ′]]T implies (m, f (z ′′)) ∈ [[e ′]]T . Hence, in both cases, (m, z ′′) < [[e ′]]T
must hold. We conclude (m,n) ∈ [[e]]T .

2. e = e1 ◦ e2.

(ii) We assume m ∈ V1,n ∈ V2. The case for m ∈ V2,n ∈ V1 is analogous. We have

(m,n) ∈ [[e]]T if there exists z such that (m, z) ∈ [[e1]]T and (z,n) ∈ [[e2]]T . We distinguish

three cases. (a) z ∈ V1. We apply Property (i) on e1 and Property (ii) on e2 to obtain

(f (m), f (z)) ∈ [[e1]]T and (f (z),n) ∈ [[e2]]T . Hence, (f (m),n) ∈ [[e]]T . (b) z ∈ V2. We apply

Property (ii) on e1 to obtain (f (m), z) ∈ [[e1]]T . Hence, (f (m),n) ∈ [[e]]T . (c) z < V1 and
z < V2. We have f (z) = z and we apply Property (i) on e1 to obtain (f (m), z) ∈ [[e1]]T . Hence,

(f (m),n) ∈ [[e]]T .
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(iii) We assume m,n ∈ V ′. If (m,n) ∈ [[e]]T , then there exists z such that (m, z) ∈
[[e1]]T and (z,n) ∈ [[e2]]T . If z ∈ V ′, then we apply Property (iii) on e1 and e2 to obtain

(m, z) ∈ [[e1]]T′ and (z,n) ∈ [[e2]]T′ . Hence, (m,n) ∈ [[e]]T′ . If z < V ′, then z ∈ V2 and

f (z) ∈ V ′. If, additionally, m < V1, then f (m) = m and we apply Property (i) on e ′ to

obtain (m, f (z)) ∈ [[e1]]T . Else, if m ∈ V1, then we apply Property (ii) on e1 to obtain

(m, f (z)) ∈ [[e1]]T . Likewise, we can also obtain (f (z),n) ∈ [[e2]]T . We apply Property (iii) on

e1 and e2 to obtain (m, f (z)) ∈ [[e1]]T′ and (f (z),n) ∈ [[e2]]T′ . Hence, (m,n) ∈ [[e]]T′ .

If (m,n) ∈ [[e]]T′ , then there exists z ′ such that (m, z ′) ∈ [[e1]]T′ and (z ′,n) ∈ [[e2]]T′ .

By applying Property (iii) on e1 and e2, we obtain (m, z ′) ∈ [[e1]]T , (z ′,n) ∈ [[e2]]T , and we

conclude (m,n) ∈ [[e]]T .

3. e = e1 ∪ e2.

(ii) We assume m ∈ V1,n ∈ V2. The case for m ∈ V2,n ∈ V1 is analogous. We have

(m,n) ∈ [[e]]T if (m,n) ∈ [[e1]]T or (m,n) ∈ [[e2]]T . We apply Property (ii) on e1 and e2 to

obtain (f (m),n) ∈ [[e1]]T or (f (m),n) ∈ [[e2]]T . Hence, we conclude (f (m),n) ∈ [[e]]T .

(iii) We assume m,n ∈ V ′. We have (m,n) ∈ [[e]]T if and only if (m,n) ∈ [[e1]]T
or (m,n) ∈ [[e2]]T . By applying Property (iii) on e1 and e2, we have (m,n) ∈ [[e1]]T or

(m,n) ∈ [[e2]]T if and only if (m,n) ∈ [[e1]]T′ or (m,n) ∈ [[e2]]T′ . Hence, we conclude

(m,n) ∈ [[e]]T if and only if (m,n) ∈ [[e]]T′ .

4. e = e1 ∩ e2.

(ii) We assume m ∈ V1,n ∈ V2. The case for m ∈ V2,n ∈ V1 is analogous. We have

(m,n) ∈ [[e]]T if (m,n) ∈ [[e1]]T and (m,n) ∈ [[e2]]T . We apply Property (ii) on e1 and e2 to

obtain (f (m),n) ∈ [[e1]]T and (f (m),n) ∈ [[e2]]T . Hence, we conclude (f (m),n) ∈ [[e]]T .

(iii) We assume m,n ∈ V ′. We have (m,n) ∈ [[e]]T if and only if (m,n) ∈ [[e1]]T
and (m,n) ∈ [[e2]]T . By applying Property (iii) on e1 and e2, we have (m,n) ∈ [[e1]]T and

(m,n) ∈ [[e2]]T if and only if (m,n) ∈ [[e1]]T′ and (m,n) ∈ [[e2]]T′ . Hence, we conclude

(m,n) ∈ [[e]]T if and only if (m,n) ∈ [[e]]T′ .

The case for e = π1[e
′] can be obtained by rewriting π1[e

′] to π 1[π 1[e
′]]. The cases for

e = π2[e
′] and e = π 2[e

′] are analogous to e = π1[e
′] and e = π 1[e

′], respectively, completing

our proof. �

From the limitations imposed by Proposition 3.7 and Proposition 3.8 on the expressive

power of the fragments considered, we deduce the following separation results:

Proposition 3.9. Let F1,F2 ⊆ {di, a,π ,π ,∩, ∗} with di < F1 and ∩ < F2. Already on
unlabeled trees, we have

(i) N(di) �bool N(F1) and N(a,−) �bool N(F1) and

(ii) N(di,∩) �bool N(F2) and N(a,−) �bool N(F2).

Proof. Consider the unlabeled trees T1, T2, and T3 in Example 3.1. Since T1 can be obtained

by a 1-subtree-reduction on T2, we have, by Proposition 3.8, that, for every e in N(F1),

[[e]]T2 , ∅ ⇐⇒ [[e]]T1 , ∅. Now consider the expressions e1 = ` ◦ di ◦ di ◦ ` in N(di) and

e2 = (`
a ◦ `) − id in N(a,−). We have [[e1]]T2 , ∅ and [[e2]]T2 , ∅, while [[e1]]T1 = [[e2]]T1 = ∅.
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Since T2 can be obtained by a 2-subtree-reduction on T3, we have, by Proposition 3.7 (ii),

that, for every e in N(F2), [[e]]T3 , ∅ ⇐⇒ [[e]]T2 , ∅. Now consider the expressions

e3 = (((di◦`)∩di) ◦ ((di◦`)∩di))∩di inN(di,∩) and e4 = (((`
a ◦`)− id) ◦ ((`a ◦`)− id))− id

in N(a,−). We have [[e3]]T3 , ∅ and [[e4]]T3 , ∅, while [[e3]]T2 = [[e4]]T2 = ∅. �

The proof of Proposition 3.9 relies on languages being able to distinguish at least one,

two, or three structurally equivalent children of a node. To do so, the proof uses minimal

languages that satisfy the conditions of Propositions 3.7 and 3.8. Hence, the classi�cation

provided by k-subtree-reductions is strict.

3.4 Downward queries and local queries

Relation algebra expressions without diversity or converse can only inspect a tree downwards

from ancestor to descendant. Likewise, relation algebra expressions without diversity or

Kleene-star can only inspect a local neighborhood around a given node. To study this in

more detail, we �rst de�ne the notions of downward querying and locality:

De�nition 3.2. A query q is downward if, for every tree T , and for all nodes m and n,

(m,n) ∈ [[q]]T only if m is an ancestor of n (i.e., there is a directed path from m to n).
9

A

query q is local if there exists k ≥ 0 such that, for every tree T , and for all nodesm and n,

(m,n) ∈ [[q]]T if and only if (m,n) ∈ [[q]]T′ , with T ′ the smallest subtree of T containing all

nodes at distance at most k from the nearest common ancestor ofm and n.

A straightforward induction on the length of expressions yields the following:

Proposition 3.10. Let F1 ⊆ {π ,π ,∩,−,
∗} and F2 ⊆ {

a,π ,π ,∩,−}.

(i) Every expression in N(F1) is downward.

(ii) Every expression in N(F2) is local.

The queries di and Ea are not downward and the queries di and [E]∗ are not local.

Combined with Proposition 3.10, we derive

Corollary 3.11. Let F1 ⊆ {π ,π ,∩,−,
∗} and F2 ⊆ {

a,π ,π ,∩,−}. Already on unlabeled
chains, we have

(i) N(di) �path N(F1) and N(a) �path N(F1)

(ii) N(di) �path N(F2) and N(∗) �path N(F2).

The behavior of local queries is straightforward to study, especially on chains. To do so,

we use the following technical Lemma.

Lemma 3.12. Let F ⊆ {a,π ,π ,∩,−} and let e be an ∪-free expression in N(F). There exists
an integer k such that, for every chain C and every (m,n) ∈ [[e]]C , we have ‖m → n‖C = k .

9
We do not require m to be a strict ancestor of n, as there is always a directed path of length 0 from a node to

itself. Hence, m and n can be the same node.
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Proof. The value k can be derived directly from the structure of the ∪-free expression e . We

de�ne the function δ (e) inductively by:

δ (∅) = δ (id) = 0;

δ (`) = 1;

δ (`a) = −1;

δ (fj [e
′]) = 0;

δ (e1 ◦ e2) = δ (e1) + δ (e2);

δ (e1 ∩ e2) = δ (e1 − e2) = δ (e1),

with f ∈ {π ,π } and j ∈ {1, 2}. A straightforward induction on the length of expressions

yields k = δ (e). �

Using Lemma 3.12, we prove the following collapse for projection:

Proposition 3.13. On labeled chains, we have N(a) ≡path N(
a,π ).

Proof. Let e be a ∪-free expression in N(a). We show that e1 = e ◦ [e]−1
and e2 = [e]

−1 ◦ e
are path-equivalent to π1[e] and π2[e], respectively. We only prove e1 ≡path π1[e]; the proof

for e2 ≡path π2[e] is analogous.

Observe that δ (e1) = δ (e) + δ ([e]
−1) = δ (e) − δ (e) = 0. Hence, by Lemma 3.12, (m,n) ∈

[[e1]]C only if m = n. We have (m,m) ∈ [[e1]]C if and only if there exists a node z such that

(m, z) ∈ [[e]]C and (z,m) ∈ [[[e]−1]]C . By de�nition of [e]−1
, we have (m, z) ∈ [[e]]C if and only

if (z,m) ∈ [[[e]−1]]C . By de�nition of π1[e], there exists a node z ′ such that (m, z ′) ∈ [[e]]C if

and only if (m,m) ∈ [[π1[e]]]C . Hence, we conclude e1 ≡path π1[e].
To rewrite arbitrary ∪-free expressions, we apply the above rewrite from projection to

converse in a recursive fashion. To deal with expressions that are not ∪-free, we �rst apply

Lemma 3.2 (i) and then rewrite each of the resulting ∪-free expressions. �

3.5 Adding diversity to local query languages

As already noticed, diversity always adds power to a local relation algebra fragment at the

path level, as it can construct non-local relation algebra expressions. We can also use this

property to our advantage to prove that diversity often adds expressive power at the Boolean

level, too. To illustrate this, we strengthen Corollary 3.11 (ii):

Proposition 3.14. Let F ⊆ {a,π ,π ,∩,−}. Already on labeled chains, we have N(di) �bool

N(F).

Proof. Consider the expression e = `′ ◦ ` ◦ `′ ◦ di ◦ `′ ◦ ` ◦ ` ◦ `′ and the chains C, C1, and

C2 of Figure 3.3. We have [[e]]C , ∅, [[e]]C1
= ∅, and [[e]]C2

= ∅, this independent of x . Now,

assume there exists an expression e ′ in N(F) with e ≡bool e
′
. By Proposition 3.10 (ii), e ′ is

local. Hence, we know there exists k ≥ 0 such that e ′ satis�es De�nition 3.2. Consider the

chains C, C1, and C2 of Figure 3.3 with x > k . Notice that every subchain of C containing all

nodes at distance at most k from some given node is isomorphic to some subchain of either

C1 or C2 of length at most 2k . Hence, (m,n) ∈ [[e ′]]C implies either [[e ′]]C1
, ∅, [[e ′]]C2

, ∅, or

both, contradicting e ≡bool e
′
. Hence, no expression in N(F) is Boolean-equivalent to e . �

Next, we use the above techniques to prove a similar result for unlabeled trees:
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C:
``` `′`′`′

C1:
`` `′`′

C2:
` `′`′

Figure 3.3: Chain C at the top, C1 at the middle, and C2 at the bottom. Chain C can be

distinguished from C1 and C2 by detecting the presence of the patterns `′ ◦ ` ◦ `′ and

`′ ◦ ` ◦ ` ◦ `′. The symbol represents a path of x edges, with x as in the proof of

Proposition 3.14.

T :

r

T ′:

r ′

Figure 3.4: Tree T on the left and tree T ′ on the right. These trees can be distinguished

by counting the number of non-root nodes that have two children. The symbol

represents a path of x edges, with x as in the proof of Proposition 3.15.

Proposition 3.15. LetF ⊆ {a,π ,π ,∩,−}. Already on unlabeled trees, we haveN(di,∩) �bool

N(F).

Proof. Observe that {di,∩} = {di,π ,∩} and consider the expression e = P2,¬r ◦ di ◦ P2,¬r
with

P2,¬r = π2[E] ◦ P2;

P2 = π1[S2];

S2 = (E ◦ di) ∩ E .

The expression e is inN(di,π ,∩) and selects node pairs among distinct non-root nodes such

that each node in the pair has at least two distinct children. Now, assume there exists an

expression e ′ in N(F) such that e ≡bool e
′
. Since e ′ is local, we know there exists k ≥ 0

such that e ′ satis�es De�nition 3.2. Consider the trees T and T ′ of Figure 3.4 with x = 2k .

Clearly, [[e]]T , ∅ and [[e]]T′ = ∅. By e ≡bool e
′
, we must have [[e ′]]T , ∅. Let (m,n) ∈ [[e ′]]T .

Since every subtree of T containing all nodes at distance at most k from some given node

is contained in a subtree of T that is isomorphic to T ′, we may conclude that [[e ′]]T′ , ∅.
However, [[e]]T′ = ∅, contradicting e ≡bool e

′
. Hence, no expression in N(F) is Boolean-

equivalent to e . �

3.6 Non-local query languages on chains

The erratic behavior of diversity in the non-local relation algebra fragments (allowing one

to jump from any node to any other node in a tree) makes studying the expressive power

of these fragments inherently di�cult. Luckily, we can obtain several separation results

by studying these fragments on chains. The �rst set of separation results we prove use
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C:
`` `′`′`′

C′:
` `′`′`′`′

m2n2n1m1

Figure 3.5: Chain C at the top and chain C′ at the bottom. These chains can be distinguished

by counting the number of edges labeled with `. The symbol represents a path of x
edges, with x as in the proof of Proposition 3.16.

locality-based arguments on local subexpressions of non-local expressions, which allows us

to prove limits on the expressive power of query languages that utilize diversity:

Proposition 3.16. Let F ⊆ {di, a,π ,π ,∩,−, ∗} with {di, a} ⊆ F or {di,π } ⊆ F. Already on
labeled chains, we have N(F) �bool N(di).

Proof. Consider the path-equivalent expressions

e1 = (` ◦ `
a) ◦ di ◦ (` ◦ `a);

e2 = π1[`] ◦ di ◦ π1[`].

The expression e1 is in N(di, a) and e2 is in N(di,π ). Choose e ∈ {e1, e2}. On the chains

C and C′ of Figure 3.5 we have [[e]]C , ∅ and [[e]]C′ = ∅, independent of x , which will be

determined next.

Now, assume there exists an expression e ′ in N(di) such that e ≡bool e
′
. By Lemma 3.2 (i)

and Lemma 3.2 (iii), we can assume that e ′ is a union of {id,∪}-free expressions. Let S be the

set of these {id,∪}-free expressions in e ′. Choose x such that, for all s ∈ S , x is larger than

the number of compositions in s .
Let s ∈ S be an expression with [[s]]C , ∅. Split s into a sequence of di-free expressions

t1, . . . , tk such that s = t1 ◦ di ◦ . . . ◦ di ◦ tk . First, we show that every term ti , 1 ≤ j ≤ k , is

of the form `′y , with 0 ≤ y < x , or `′z1 ◦ ` ◦ `′z2
, with 0 ≤ z1 + z2 < x and 0 ≤ min(z1, z2).

We do so by contradiction. We only have to consider the existence of a subexpressions of

the form ` ◦ `′z ◦ `. By construction, z < x . Hence, [[` ◦ `′z ◦ `]]C = ∅ and [[s]]C = ∅, a

contradiction.

By induction on the number of terms t1, . . . , ti , 1 ≤ i ≤ k , we shall prove that [[s]]C′ , ∅.
The base case is t1. If t1 is of the form `′y , then there exists a nodem′ in C′ with 0 ≤ ‖m1 →

m′‖C = y < x . Hence, (m1,m
′) ∈ [[t1]]C′ . Else, if t1 is of the form `′z1 ◦ ` ◦ `′z2

, then there

exists nodes n′
1

and n′
2

with 0 ≤ ‖n′
1
→ n1‖C = z1 < x and 0 ≤ ‖n2 → n′

2
‖C = z2 < x . Hence,

(n′
1
,n′

2
) ∈ [[t1]]C′ .

Now assume that, for all j, 1 ≤ j < i , there exists a pair of nodes v,w with (v,w) ∈
[[t1 ◦ di ◦ . . . ◦ di ◦ tj ]]C′ and either 0 ≤ ‖m1 → w ‖C < x , 0 ≤ ‖n2 → w ‖C < x , or

0 ≤ ‖w →m2‖C < x .

Next, we consider t1 ◦di◦ . . . ◦di◦ ti . Let (v,w) ∈ [[t1 ◦di◦ . . . ◦di◦ ti−1]]C′ such thatv,w
satisfy the statement of the induction hypothesis. Based on the form of ti , we distinguish the

following two cases:

1. If ti is of the form `′y , then there exists nodes m′
1

and m′
2

with 0 ≤ ‖m1 → m′
1
‖C =

y < x and 0 ≤ ‖m′
2
→m2‖C = y < x . Hence, (m1,m

′
1
) ∈ [[t1]]C′ and (m′

2
,m2) ∈ [[t1]]C′ . Due

to the length of C,m′
1
,m′

2
. Hence, w ,m′

1
, w ,m′

2
, or both. Pickm′ ∈ {m′

1
,m′

2
} such that
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C:
`

m2n2n1m1

`′`′`′`′`′`′

C′:
`′`′`′`′`′`′

Figure 3.6: Chain C at the top and chain C′ at the bottom; only one has an edge labeled `.
The symbol represents a path of x edges, with x as in the proof of Proposition 3.17.

w ,m′. We conclude (v,m′) ∈ [[t1 ◦ di ◦ . . . ◦ di ◦ ti ]]C′ and either 0 ≤ ‖m1 →m′
1
‖C < x or

0 ≤ ‖m′
2
→m2‖C < x .

2. Else, if ti is of the form `′z1 ◦ ` ◦ `′z2
, then there exists nodes n′

1
and n′

2
with 0 ≤

‖n′
1
→ n1‖C = z1 < x and 0 ≤ ‖n2 → n′

2
‖C = z2 < x . Hence, (n′

1
,n′

2
) ∈ [[ti ]]C′ . Due to the

length of C′, we must have n′
1
, w and we conclude (v,n′

1
) ∈ [[t1 ◦ di ◦ . . . ◦ di ◦ ti ]]C′ and

0 ≤ ‖n2 → n′
2
‖C < x .

We conclude [[e ′]]C′ , ∅, a contradiction. Hence, no expression in N(F) is Boolean-

equivalent to e . �

The above techniques can also be used with path queries, as shown next.

Proposition 3.17. Let F ⊆ {di, a}. Already on labeled chains, we have N(di, a,π ) �path

N(F).

Proof. Consider the expression e = π1[all ◦ `] and chains C and C′ of Figure 3.6. We have

[[e]]C = [[id]]C and we have [[e]]C′ = ∅.
Now, assume there exists an expression e ′ in N(F) such that e ≡path e ′. By Lemma 3.2 (i)

and Lemma 3.2 (iii), we may assume that e ′ is a union of {id,∪}-free expressions. Let S be

the set of these {id,∪}-free expressions in e ′. Choose x such that, for all s ∈ S , x is larger

than the number of compositions in s .
Let s ∈ S be an expression with (m1,m1) ∈ [[s]]C . First, we prove by contradiction that s

is not `-free. Therefore, assume that s is `-free and let s ′ be the expression obtained from s by

replacing di by `′. By construction, we have [[s ′]]C′ ⊆ [[s]]C′ . Observe that s ′ is a composition

of `′ and `′a terms. Hence s ′ is local and, by construction, we have −x < |δ (s ′)| < x . We

conclude [[s ′]]C′ , ∅, a contradiction. Hence, s is not `-free.

Let s = t1 ◦ . . . ◦ tk , with every ti , 1 ≤ i ≤ k , a term of the form `, `a, `′, `′a, or di.

Let tj , 1 ≤ j ≤ k , be the last term of the form ` or `a. Observe that ‖m1 → n1‖C = x and

‖m1 → n2‖C = x + 1. Hence, at least one of the terms ti , j < i ≤ k , must be di. Choose ti ,
j < i ≤ k , to be the �rst such term. Let s ′′ = t1 ◦ . . . ◦ ti ◦ t

′
i+1
◦ t ′k be the expression obtained

from s by replacing all occurrences of di in ti+1 ◦ . . . ◦ tk by `′. By construction, we have

[[t ′i+1
◦ . . . ◦ t ′k ]]C ⊆ [[ti+1 ◦ . . . ◦ tk ]]C . Since (m1,m1) ∈ [[s]]C , there exist nodes v and w such

that −x < ‖n1 → v ‖C < x , −x < ‖n2 → v ‖C < x , (m1,v) ∈ [[t1 ◦ . . . ◦ ti−1]]C , v , w , and

(w,m1) ∈ [[ti+1 ◦ . . . ◦ tk ]]C . Observe that t ′i+1
◦ . . . ◦ t ′k is a composition of `′ and `′a terms.

Hence t ′i+1
◦ . . . ◦ t ′k is local and, by construction, we have −x < |δ (t ′i+1

◦ . . . ◦ t ′k )| < x . We

conclude that there must exist a node m′ with −x < ‖m′ → m2‖C = δ (t
′
i+1
◦ . . . ◦ t ′k ) < x

and, hence, (m′,m2) ∈ [[s
′]]C′ , ∅. Because of the length of C′, we must have v , m′. We

conclude (m1,m2) ∈ [[s]]C , a contradiction. Hence, no expression in N(F) is path-equivalent

to e . �
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Proposition 3.1 (ii) shows that diversity on chains can be expressed using the ancestor
axis, expressed by [Ea]+, and the descendant axis, expressed by [E]+, which in turn allows

us to simplify projection terms which contain diversity, as we show next.

Lemma 3.18. LetF ⊆ {di, a,π } and let πj [e], j ∈ {1, 2}, be an expression inN(F). There exists
a �nite set S of expressions of the form π1[E

v ] ◦ π2[E
w ], v,w ≥ 0, such that πj [e] ≡path

⋃
S .

Proof. By Proposition 3.1 (ii), we have di ≡path [E]
+ ∪ [Ea]+. We also have π2[e] ≡path

π1[[e]
−1]. Hence, every projection expression πj [e], j ∈ {1, 2}, can be written as a union of

expressions of the form π1[e
′] in which e ′ is build over the atoms id, E, Ea, [E]+, and [Ea]+,

using the operators ◦ and π1. We shall call such expressions e ′ normal in the remainder

of this proof. So, it remains to show that Lemma 3.18 holds for expressions π1[e
′], with e ′

normal. We do this by structural induction on e ′. We have the following base cases:

π1[id] ≡path id ≡path π1[E
0] ◦ π2[E

0];

π1[E] ≡path π1[[E]
+] ≡path π1[E

1] ◦ π2[E
0];

π1[E
a] ≡path π1[[E

a]+] ≡path π1[E
0] ◦ π2[E

1].

Now, assume that Lemma 3.18 already holds for expressions π1[e
′′], with e ′′ a normal

expression containing at most i operators, i ≥ 1, and let e = π1[e
′]with e ′ a normal expression

containing i + 1 operators. Then either e ′ = π1[e
′
1
] or e ′ = e ′

1
◦ e ′

2
, with e ′

1
and e ′

2
normal

expressions containing at most i operators. In the �rst case, e = π1[π1[e
′
1
]] ≡path π1[e

′
1
],

and Lemma 3.18 holds for e by the induction hypothesis. In the second case, we have that

e = π1[e
′
1
◦ e ′

2
] ≡path π1[e

′
1
◦ π1[e

′
2
]]. By the induction hypothesis, e ′

2
is path-equivalent to a

�nite union of expressions of the form π1[E
v2 ] ◦ π2[E

w2 ], v2,w2 ≥ 0. For e ′
1
, we distinguish

again two cases:

1. Expression e ′
1
= π1[e

′′
1
], with e ′′

1
again a normal expression containing at most i

operators. Hence, by the induction hypothesis, e ′
1

is path-equivalent to a �nite union of

expressions of the form π1[E
v1 ] ◦ π2[E

w1 ], v1,w1 ≥ 0. It now su�ces to observe that

π1[E
v1 ] ◦ π2[E

w1 ] ◦ π1[E
v1 ] ◦ π2[E

w1 ] ≡path π1[E
max(v1,v2)] ◦ π2[E

max(w1,w2)]

to see that Lemma 3.18 holds for e .

2. In the other case, we can assume without loss of generality that e ′
1

is an atom. Hence,

it su�ces to observe that, for v,w ≥ 0,

π1[id ◦ (π1[E
v ] ◦ π2[E

w ])] ≡path π1[E
v ] ◦ π2[E

w ];

π1[E ◦ (π1[E
v ] ◦ π2[E

w ])] ≡path π1[E
v+1] ◦ π2[E

max(0,w−1)];

π1[E
a ◦ (π1[E

v ] ◦ π2[E
w ])] ≡path π1[E

max(0,v−1)] ◦ π2[E
w+1];

π1[[E]
+ ◦ (π1[E

v ] ◦ π2[E
w ])] ≡path

⋃
1≤i≤max(1,w ) π1[E

v+i ] ◦ π2[E
max(0,w−i)];

π1[[E
a]+ ◦ (π1[E

v ] ◦ π2[E
w ])] ≡path

⋃
1≤i≤max(1,v) π1[E

max(0,v−i)] ◦ π2[E
w+i ],

to see that Lemma 3.18 holds for e in this case, too. �

Example 3.2. Consider the expression e = π1[di ◦ E ◦ E]. We have

e ≡path π1[[E]
+ ◦ π1[E

2] ◦ π2[E
0]] ∪ π1[[[E]

−1]+ ◦ π1[E
2] ◦ π2[E

0]]

≡path π1[π1[E
3] ◦ π2[E

0]] ∪ π1[π1[E
1] ◦ π2[E

1]] ∪ π1[π1[E
0] ◦ π2[E

2]]

≡path π1[E
3] ◦ π2[E

0] ∪ π1[E
1] ◦ π2[E

1] ∪ π1[E
0] ◦ π2[E

2].
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As Example 3.2 shows, we can use Lemma 3.18 to partially eliminate diversity from

non-local expressions on unlabeled chains. Combining Lemma 3.18 and Proposition 3.13

yields the following collapse:

Proposition 3.19. On unlabeled chains, we have N(di, a,π ) �path N(di, a).

Proof. We use Lemma 3.18 to rewrite all expressions of the form πj [e], j ∈ {1, 2}, to a path-

equivalent �nite union of expressions of the form π1[E
v ] ◦ π2[E

w ]. We use Proposition 3.13

to rewrite π1[E
v ] ◦ π2[E

w ] to the path-equivalent expression Ev ◦ E−v ◦ Ew ◦ E−w . �

Using Lemma 3.18, Proposition 3.1, and Lemma 3.3, we can also partially eliminate

diversity from non-local expressions on chains, after which we can use additional distance-

based arguments on subexpressions, as shown next.

Proposition 3.20. Already on unlabeled chains, we have

(i) N(di,∩) �path N(di, a,π ),

(ii) N(a) �path N(di,π , ∗).

Proof. First, we prove Statement (i). Consider the expression e = (di◦E)∩di inN(di,∩). On

a chain, this expression yields all pairs of distinct non-root nodes that are not edges. Now,

assume there exists an expression e ′ in N(di, a,π ) such that, on unlabeled chains, e ≡path e ′.
Since e is non-local, e ′ must be non-local, too, hence, it must contain diversity. Using

Lemma 3.18, we can rewrite e ′ into a union of expressions each of which is a composition of

terms of the form id, di, E, Ea, π1[E
v ], or π2[E

w ], v,w ≥ 0. Let s = t1 ◦ · · · ◦ tn be such an

expression in which at least one term is diversity. By Proposition 3.1 (ii), s is path-equivalent

to the in�nite union ⋃
k1, ...,kn,0

t1,k1
◦ · · · ◦ tn,kn ,

in which ti,ki = ti if ti , di and ti,ki = E
ki

if ti = di, 1 ≤ i ≤ n. Since s contains at least one

diversity term, the set

{δ (t1,k1
◦ · · · ◦ tn,kn ) | k1, . . . ,kn , 0}

covers all integer numbers with at most one exception (if s contains exactly one di term).

We can therefore choose an expression s ′ = t1,k1
◦ · · · ◦ tn,kn for which δ (s ′) = 0 or δ (s ′) = 1.

Observe that s ′ is a local expression in N(a,π ). Now, choose an unlabeled chain C which

is su�ciently long to ensure that [[s ′]]C , ∅. Then, [[s ′]]C contains either an identical node

pair (if δ (s ′) = 0) or an edge (if δ (s ′) = 1), contradicting e ≡path e ′. Hence, no expression in

N(di, a,π ) is path-equivalent to e .

Next, we prove Statement (ii) using a similar argument. Let e = Ea. Assume there

exists an expression e ′ in N(di,π ) such that, on unlabeled chains, e ≡path e ′. Using the

analysis from the previous case, we rewrite e ′ into an in�nite union of expressions of the

form t1,k1
◦ · · · ◦ tn,kn with k1, . . . ,kn , 0. Again, choose an expression s ′ = t1,k1

◦ · · · ◦ tn,kn
for which δ (s ′) = 0 or δ (s ′) = 1. Hence, we conclude that e ′ is not path-equivalent to e .

To complete the proof for N(di, a,π , ∗), we observe that every expression of the form [д]∗

is equivalent to an in�nite union of expressions of the form дk , k ≥ 0. Hence, we simply

replace every subexpression of the form [д]∗ by дk , for some k , k ≥ 0, and continue the

above proof. �
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3.7 Monotone queries and homomorphisms

Only coprojection and di�erence provide a form of negation. As a consequence, all fragments

of N that do not include these two operators are monotone.

De�nition 3.3. A query is monotone if, for every graph G and every graph G′ obtained by

adding nodes or edges to G, we have [[e]]G ⊆ [[e]]G′ .

A query language being monotone puts obvious limits on the expressive power. We can,

however, show more powerful limitations by considering closure results under homomor-
phisms:

De�nition 3.4. Let G1 = (V1, Σ,E1) and G2 = (V2, Σ,E2) be graphs, let F be a class of

functions mapping V1 to V2, and let L be a query language. We say that L is closed
under F if, for every query q in L and every f ∈ F , we have, (m,n) ∈ [[e]]G1

implies

(f (m), f (n)) ∈ [[e]]G2
. We say that a mapping h : V1 →V2 is a homomorphism from G1 to G2

if, for every pair of nodes m,n ∈ V1 and every edge label ` ∈ Σ, we have that (m,n) ∈ E1 (`)
implies (h(m),h(n)) ∈ E2 (`). A homomorphism h : V1 → V2 is called injective if, for all

m,n ∈ V1, n ,m implies h(n) , h(m).

Observe that diversity is a form of inequality. Hence, via a straightforward induction

on the structure of expressions, we can show that the fragments of N that cannot express

coprojection are closed under injective homomorphisms, whereas the languages that can

express coprojections are not closed under injective homomorphisms. Additionally, we can

show that the fragments of N that do not use diversity and cannot express coprojection are

closed under homomorphisms.

Lemma 3.21. Let F ⊆ {di, a,π ,∩, ∗}.

(i) N(F) is closed under injective homomorphisms.

(ii) If di < F, then N(F) is closed under homomorphisms.

We use the above to show that the Boolean expressive power of the monotone query

languages we consider is very limited.

Lemma 3.22. Let F ⊆ {di, a,π ,∩, ∗}.

(i) Let e be an expression inN(F). If e .path ∅, then there exists a k ≥ 0 such that e ≡bool E
k

on unlabeled chains.

(ii) Let e be an expression in N(F − {di}). If e .path ∅, then there exists a k ≥ 0 such that
e ≡bool E

k on unlabeled trees.

Proof (sketch). (i) Let e be an expression in N(F), let C be the unlabeled chain with

minimum depth for which [[e]]C , ∅, let C′ be any unlabeled chain with depth(C′) ≥

depth(C), and let r and r ′ be the root nodes of C and C′, respectively. The functionh that maps

node z in C to the node z ′ in C′ with ‖r → z‖C = ‖r
′→ z ′‖C′ is an injective homomorphism.

Hence, by Lemma 3.21, [[e]]C , ∅ implies [[e]]C′ , ∅. Observe that we have [[Edepth(C)]]C , ∅
and chain C is the smallest chain for which this holds. As depth(C′) ≥ depth(C), we also

have [[Edepth(C)]]C′ , ∅.
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(ii) Let e be an expression in N(F − {di}) and let T be an unlabeled tree with [[e]]T , ∅.
Let C′ be the unlabeled chain with depth(T ) = depth(C) and let r and r ′ be the root nodes

of T and C′, respectively. The function h that maps every node z in T to the node z ′ in C′

with ‖r → z‖T = ‖r
′→ z ′‖C is a homomorphism. Hence, by Lemma 3.21, [[e]]T , ∅ implies

[[e]]C′ , ∅. As e satis�es all conditions of Statement (i), we use Statement (i) to �nd the value

k , 0 ≤ k ≤ depth(T ), for which e ≡bool E
k

. �

Lemma 3.22 has signi�cant consequences for the expressive power of Boolean queries in

N(di, a,π ,∩, ∗) and N(a,π ,∩, ∗). In this light, we remark that the ability to count up-to-2

siblings in N(di) and up-to-3 siblings in N(di,∩), as demonstrated by Proposition 3.9, seem

highly limited, e.g., for every expression in N(di), we can construct a chain on which the

expression evaluates to non-empty.

Corollary 3.23.

(i) On unlabeled chains, we have N(di, a,π ,∩, ∗) �bool N().

(ii) On unlabeled trees, we have N(a,π ,∩, ∗) �bool N().

Finally, we use Lemma 3.22 to conclude the following:

Theorem 3.24. Already on unlabeled chains, we have N(π ) �bool N(di, a,π ,∩, ∗).

Proof. Consider the expression e = π 2[E] ◦ E ◦ π 1[E] and the unlabeled chains C1 and

C2 of depth 1 and 2, respectively. The expression e only evaluates to True if the queried

chain has exactly a single edge. Hence, [[e]]C1
, ∅ and [[e]]C2

= ∅. Observe that for every

expression of the form Ek with [[Ek ]]C1
, ∅, we also have [[Ek ]]C2

, ∅. Hence, no expression

in N(di, a,π ,∩, ∗) is Boolean-equivalent to e . �

3.8 Adding the Kleene-star

It is well-known that Tarski’s relation algebra (N(di, a,π ,π ,∩,−)) is path-equivalent to

FO[3] [36, 89]. For �rst-order logic, well-known bounds on their expressive power are

known [70]. We shall use these results to prove that the Kleene-star usually adds expressive

power when added to a relation algebra fragment. For path queries, we have the following:

Proposition 3.25. Already on unlabeled chains, we have N(∗) �path N(di, a,π ,π ,∩,−).

With respect to Boolean queries on unlabeled trees and chains, Theorem 3.23 already

showed that Kleene-star does, in many cases, not add expressive power. Next, we show the

cases in which Kleene-star does add expressive power to Boolean queries.

Proposition 3.26. Let F ⊆ {di, a,π ,π ,∩,−}.

(i) Already on labeled chains, we have N(∗) �bool N(F).

(ii) Already on unlabeled chains, we have N(π , ∗) �bool N(F).

(iii) Already on unlabeled trees, we have N(di,∩, ∗) �bool N(F) .

Proof. Using well-known results on the expressive power of �rst-order logic, we conclude

that no expression inN(F) is Boolean-equivalent to `1◦[`2◦`2]
∗◦`1, to π 2[E]◦[E◦E]

∗◦π 1[E],

or to X ◦ [E ◦ E]∗ ◦ X , in which X = (E ◦ di) ∩ E yields those edges from parent nodes to

child nodes in which the parent also has other children. �
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Figure 3.7: All non-2-subtree-reducible unlabeled trees of depth up-to-2.

The above does not cover Boolean queries on unlabeled trees expressed in N(F) with

F ⊆ {di, a,π , ∗}. For this case, we will show that we have N(F ∪ {∗}) �bool N(F). To do so,

we �rst use subtree-reductions to obtain limits on the the size of trees of a given depth:

Lemma 3.27. Given a �nite set of edge labels Σ and constants d,k ≥ 0.

(i) There exists only a �nite number of trees T with depth(T ) ≤ d that are not k-subtree-
reducible.

(ii) There exists a constantw ≥ 0 such that, for every tree T = (V, Σ,E) that is not k-subtree-
reducible and with depth(T ) ≤ d , we have |V| ≤ w .

Proof. We can enumerate all trees of depth at-most-d that are not k-subtree-reducible induc-

tively, which proves the Lemma. The base case is d = 0, in which case we only have the

tree with a single node. Now assume we have a set Si of all trees of depth up-to-i , i ≥ 0,

and that these trees satisfy the Lemma. The biggest tree of depth i + 1 we can construct

consists of a root node that has, per edge label ` ∈ Σ and per tree T in Si , k outgoing edges

labeled ` to children that are roots of copies of T . All other trees of depth i + 1 that are not

k-subtree-reducible are equivalent to a tree that can be constructed by taking a subset of the

nodes and edges in this tree. �

Lemma 3.27 does not provide explicit upper bounds on the number of trees and the size of

these trees of a given depth d . It is clear that these upper bounds grow at least exponentially

fast with d , however.

Example 3.3. Figure 3.7 shows all unlabeled trees of depth up-to-2 that are not 2-subtree-

reducible.

Next, we use Lemma 3.22 (i) and Lemma 3.27 to prove the claimed collapse:

Theorem 3.28. Let F ⊆ {di, a,π }. On unlabeled trees, we have N(F ∪ {∗}) �bool N(F).

Proof. Let e be an expression in N(F ∪ {∗}) such that e .path ∅. By Lemma 3.22 (i), there

exists a k ≥ 0 such that e ≡bool E
k

on unlabeled chains. Let T be a tree with depth(T ) ≥ k
and let C be a chain with depth(C) = k . There exists an injective homomorphism from C to

T . Hence, we have [[Ek ]]T , ∅ if and only if [[e]]T , ∅. It remains to �nd an expression e ′

in N(F) such that, for every tree T ′ with depth(T ′) < k , we have [[e]]T′ , ∅ if and only if

[[e ′]]T′ , ∅. By Lemma 3.27 (ii), there exists a constant w ≥ 0 that upper bounds the size of

any tree of depth up-to-k that is not 2-subtree-reducible. Construct e ′ from e by replacing

every subexpression of the form [д]∗ by

⋃
0≤i≤w дi . Let T ′ be a tree with depth(T ′) < k .

We distinguish two cases:

1. T ′ has at mostw nodes. In this case, [[e]]T = [[e
′]]T by Lemma 3.3.
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2. T ′ has more thanw nodes. By Lemma 3.27 (ii), we can perform a sequence of 2-subtree-

reduce steps on T ′ until we end up with a tree T ′′ with at most w nodes. By Lemma 3.3, we

have [[e]]T′′ = [[e
′]]T′′ . By Proposition 3.7 (ii), we have [[e ′]]T′′ , ∅ if and only if [[e ′]]T′ , ∅.

We conclude [[e ′]]T′ , ∅ if and only if [[e]]T′ , ∅.

We conclude Ek ∪ e ′ ≡bool e and, by construction, Ek ∪ e ′ is in N(F). �

3.9 First-order logic and the relation algebra

On simple structures such as chains, we can show that �rst-order logic (and, hence, also

FO[3]) can only distinguish chains in very limited ways, which we show next.

Theorem 3.29. On unlabeled chains, every �rst-order logic query is Boolean-equivalent to an
expression in N(π ).

Proof. Let q be a �rst-order logic formula with quanti�er rank r and let Cd be the chain with

depth(C) = d . We construct e in N(π ) as the union of the following terms:

(i) if [[q]]C
2
r , ∅, then include the term E2

r
; and

(ii) for every 1 ≤ i < 2
r
, if [[q]]Ci , ∅, then include the term π 2[E] ◦ E

i ◦ π 1[E].

To show that q ≡bool e , we show that, for every unlabeled chain C, we have [[q]]C , ∅ if

and only if [[e]]C , ∅. We distinguish two cases:

1. depth(C) ≥ 2
r
. By construction, we have [[e]]C , ∅ if and only if the term E2

r
is

included. By standard results on the expressive power of �rst-order logic [70, Theorem 3.6],

we have [[q]]C , ∅ if and only if [[q]]C
2
r , ∅. Hence, in this case, we have [[e]]C , ∅ if and

only if [[q]]C , ∅.

2. depth(C) < i . By construction, we have [[e]]C , ∅ if and only if the term π 2[E] ◦

Edepth(C) ◦ π 1[E] is included, which is the case if and only if [[q]]C , ∅. Hence, also in this

case, we have [[e]]C , ∅ if and only if [[q]]C , ∅. �

As a consequence of the above, we have

Corollary 3.30. Let F ⊆ {di, a,π ,π ,∩,−}. Already on unlabeled chains, we haveN(F) �bool

N(π ).

As already mentioned, Theorem 8.6 of Part III will show that the language N(di, a,π ,π )
and its fragments are already Boolean-subsumed by FO[2] on graphs. Hence, for these

languages, we can use well-known pebble games to reason about their expressive power [37,

39, 70]. We can use this to establish the following:

Proposition 3.31. Let F ⊆ {di, a,π ,π }. Already on labeled chains, we have N(di,∩) �bool

N(F).

Proof. Observe that π ∈ {di,∩}. Consider the expression

e = (π1[`] ◦ di ◦ π1[`] ◦ di ◦ π1[`]) ∩ di

inN(di,∩). This query returns True on chains that have at least three edges labeled `. Hence,

on the chains C and C′ of Figure 3.8, we have [[e]]C , ∅ and [[e]]C′ = ∅, and this independent
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C:
``` `′`′`′`′

C′:
`` `′`′`′

Figure 3.8: Chain C at the top and chain C′ at the bottom. These chains can be distinguished

by counting the number of edges labeled with `. The symbol represents a path of x
edges, with x as in the proof of Proposition 3.31.

of x . To show that no expression inN(F) can distinguish C from C′, we show that no FO[2]

formula of quanti�er rank k can do so. To do this, we use k-round 2-pebble games [37, 39, 70].

Choose x = 2k + 1 and consider k-round 2-pebble games on C and C′. With two pebbles in

play, the possible subgraph represented by the placement of two pebbles is either a graph

with a single node (when the �rst pebble is placed), a graph with two disjoint nodes, a graph

with a single edge labeled `′, or a graph with a single edge labeled `.
Consider the i-th round, 1 ≤ i ≤ k , in a two-pebble game of k rounds. We assume that

the Spoiler played a pebble p at node m in chain S ∈ {C,C′} that already holds a pebble

q at node n, and the Duplicator needs to respond with a pebble p ′ at node m′ in the other

chain S ′ that already holds a pebble q′ at node n′. The strategy for the Duplicator during

this round is as follows:

1. Ifm is a parent of n, then choose nodem′ in S ′ such thatm′ is the parent of n′.

2. Else, ifm is a child of n, then choose nodem′ in S ′ such thatm′ is the child of n′.

3. Else choose a nodem′ that is not the parent of n′, not the child of n′, and such that the

subchain of S consisting of all nodes at distance at most k − i from m is isomorphic to

the subchain of S ′ consisting of all nodes at distance at most k − i fromm′.

For the placement of the �rst pebble, we use the third rule. It is straightforward to verify

that the rules above always apply, proving that the Duplicator has a winning strategy. �

3.10 Brute-force results

Using a brute-force approach in the style of Fletcher et al. [32], we establish several sepa-

rations, both at the path and Boolean levels. At the core of these brute-force results is the

observation that one can e�ectively compute the set of query results obtainable by queries

in some relation algebra fragmentN(F), F ⊆ {di, a,π ,π ,∩,−}, on a given graph.
10

For path

separations between languages L1 and L2, we may conclude that L1 �path L2 if there exists

a query q in L1 and a tree T such that no query in L2 evaluates to [[q]]T .

Proposition 3.32. Let F1 ⊆ {di,π ,π ,∩,−, ∗}, F2 ⊆ {di, a, ∗}, and let F3 ⊆ {di, ∗}.

(i) Already on unlabeled trees, we have N(a) �path N(F1).

10
Originally, we used the brute-force implementation developed by Jan Van den Bussche, which was used to prove

several results in Fletcher et al. [32]. During the course of our research, we implemented a new highly-optimized

brute-force program from scratch. This new brute-force program was tested and adapted by Dimitri Surinx for

his work on containment-based Boolean graph queries [86, 88] and Catherine L. Pilachowski for her work on

the semi-join algebra. At a later moment, we developed a new prototype of the brute-force program that uses

SIMD instructions to further improve performance. We refer to http://jhellings.nl/projects/bruteforce/
for more information on the brute-force programs.
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T : C:

Figure 3.9: The unlabeled tree T and chain C used by the brute-force procedure to determine

path separations.

T1: T ′
1

:

T2: T ′
2

:

T3: T ′
3

:

Figure 3.10: The pairs of unlabeled trees (T1,T
′

1
), (T2,T

′
2
), and (T3,T

′
3
) used by the brute-force

procedure to determine Boolean separations.

(ii) Already on unlabeled trees, we have N(π ) �path N(F2).

(iii) Already on unlabeled chains, we have N(π ) �path N(F3).

Proof. Let T and C be the tree and chain of Figure 3.9. Consider the expressions e1 = E
a

,

e2 = π1[E] ◦ π2[E], and e3 = π1[E ◦ E]. An exhaustive search shows that no expression in

N(F1) evaluates to [[e1]]T , no expression in N(F2) evaluates to [[e2]]T , and no expression in

N(F3) evaluates to [[e3]]C . �

At the Boolean level, the key notion in the brute-force approach is the ability to distinguish
a pair of trees. We say that a query q distinguishes a pair of trees T1 and T2 if [[q]]T1 = ∅ and

[[q]]T2 , ∅, or vice versa. Given two languages L1 and L2, we may conclude that L1 �bool L2

if we can �nd a query q in L1 and a pair of trees T1 and T2, indistinguishable by any query

in L2, but distinguishable by q. Using this approach, we prove the following.

Proposition 3.33. Let F1 ⊆ {di, ∗}, F2 ⊆ {di, a, ∗}, and F3 ⊆ {di,π ,π ,∩,−, ∗}. Already on
unlabeled trees, we have

(i) N(di, a) �bool N(F1);

(ii) N(di,π ) �bool N(F2);

(iii) N(di, a,∩) �bool N(F3).

Proof. Let T1, T ′
1

, T2, T ′
2

, T3, and T ′
3

be the trees of Figure 3.10. Consider the following three

expressions:

e1 = (E
a ◦ Ea ◦ E) ◦ di ◦ (Ea ◦ E ◦ E);

e2 = (E ◦ E ◦ E
a) ◦ di ◦ π1[E

a ◦ E ◦ E] ◦ di ◦ π1[E
a ◦ E ◦ E] ◦ di ◦ (E ◦ Ea ◦ Ea);
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Table 3.1: Path equivalence relationships between language fragments of Xr,[]
↑

and relation

algebra fragments.

Benedikt et al. Fragment of N

Xr,[] N(a,π1)

Xr N(a)

X[] N(π1)

X N()

e3 = (((E
a ◦ E) ∩ di) ◦ ((Ea ◦ E) ∩ di)) ∩ di.

We have [[e1]]T1 = ∅ and [[e1]]T′
1

, ∅. An exhaustive search shows that no expression in

N(F1) can distinguish T1 from T ′
1

. Observe that e2 is in N(di, a,π ). By Proposition 3.34,

e2 is Boolean-equivalent to an expression in N(di,π ). An exhaustive search shows that no

expression inN(F2) can distinguish T2 from T ′
2

. We have [[e3]]T2 = ∅ and [[e3]]T′
2

, ∅. Finally,

an exhaustive search shows that no expression in N(F3) can distinguish T3 from T ′
3

. �

3.11 Related work and results from the literature

On graphs, the relative expressive power of fragments of the relation algebra has been studied

in great detail by Fletcher et al. [31–34, 87]. These results include path queries and Boolean

queries on both labeled and unlabeled graphs, and can be summarized by

Proposition 3.34 (Fletcher et al.). Let F,F1,F2 ⊆ {di, a,π ,π ,∩,−, ∗}.

(i) On labeled and unlabeled graphs, we have N(F1) �path N(F2) if and only if F1 ⊆ F2.

(ii) On labeled and unlabeled graphs, we have N(F ∪ {a}) �bool N(F ∪ {π }) if F ⊆
{di, a,π ,π }.

(iii) On unlabeled graphs, we have N(F ∪ {∗}) �bool N(F) if F ⊆ {di,π }.

Of these results, only the collapse results (Proposition 3.34 (ii) and Proposition 3.34 (iii))

immediately apply to the tree data model. The collapse result of Proposition 3.34 (iii) can, on

trees, be extended to also include the converse operator, as proven in Theorem 3.28.

A close inspection of the individual separation results of Fletcher et al. reveals that none

of separation results directly apply to trees or chains, as the proofs of these separation

results rely on non-tree graph structures. Consequently, our work improves on these results

signi�cantly by showing that many separations already hold on the much simpler tree and

chain data models.

The XPath query language for XML data has several formalizations. The formalization

of Benedikt et al. [9] includes a study of the relative expressive power of fragments of X[]
↑

on node-labeled trees. The fragments of X[]
↑

are closely related to the fragments of N(a,π ).
In Table 3.1, we provide the mapping between the query languages studied by Benedikt et

al. and the query languages we study.

Additionally, the study of Benedikt et al. also considers fragments obtained by adding a

weak form of the Kleene-star operator to the languages: the descendant axis [E]∗ (and the

ancestor axis [Ea]∗ if
a

is included in the fragment). Without much e�ort, we can show that
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Table 3.2: Path-subsumption relationship between language fragments of Path
+

and relation

algebra fragments.

Wu et al. Fragment of N

Path
+ N(a,π ,∩)

Path
+(∩) N(a,∩)

Path
+(π1,π2) N(a,π )

DPath
+(π1) N(π1)

the results of Benedikt et al. on node-labeled trees also apply to the edge-labeled trees we

study.

Proposition 3.35 (Benedikt et al. [9, Proposition 2.1]). Let F1,F2 ⊆ {
a,π , ∗}. Already on

labeled trees, we have N(F1) �path N(F2) if and only if F1 ⊆ F2.

Wu et al. [97] studies the language Path
+

and its fragments on node-labeled trees. These

languages are all path-equivalent to ∪-free fragments of N . In Table 3.2, we provide the

mapping between the query languages studied in Wu et al. and the query languages we

study.

Among other things, Wu et al. showed that the query languages Path
+

, Path
+(∩), and

Path
+(π1,π2) are path-equivalent on labeled trees. These results translate to our setting.

Proposition 3.36 (Wu et al. [97, Theorem 4.1]). On labeled trees, every ∪-free expression in
N(a,π ,∩) is path-equivalent to a ∪-free expression in N(a,π ) and in N(a,∩).

Benedikt et al. and Wu et al. only studied fragments that are monotone and 1-subtree-

reducible. From our results, we conclude that these fragments have only very limited

expressive power, especially with respect to detecting branching structures in trees. Our

work extends the results for these limited fragments to the more expressive full relation

algebra, to Boolean queries, to unlabeled trees, and to chains.

Other XPath formalizations such as Conditional XPath, Regular XPath, and Regular

XPath
≈

[74, 75, 90, 91] study relationships between �rst-order logic and the relation algebra

on sibling-ordered node-labeled trees. The choice of a sibling-ordered tree data model makes

these studies incomparable with our work: on sibling-ordered trees, FO[3] is equivalent to

general �rst-order logic and Conditional XPath is equivalent to FO[3] [74]. In our tree data

model, the relation algebra, which is equivalent to FO[3], is not equivalent to �rst-order

logic, and cannot express simple �rst-order counting queries such as

∃n∃c1∃c2∃c3∃c4 E(n, c1) ∧ E(n, c2) ∧ E(n, c3) ∧ E(n, c4) ∧

(c1 , c2) ∧ (c1 , c3) ∧ (c1 , c4) ∧

(c2 , c3) ∧ (c2 , c4) ∧ (c3 , c4),

which evaluates to True on all trees that have a node with at least four distinct children.

With an ordered sibling axis, as present in the sibling-ordered tree data model, the above

counting query is Boolean-equivalent to

Right ◦ Right ◦ Right,

in which Right is the succeeding-sibling relation.
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CHAPTER 4

Downward queries and condition automata11

In this chapter, we complete the study on the relative expressive power among the downward

relation algebra fragments, the fragments N(F), F ⊆ {π ,π ,∩,−, ∗}. In Figure 4.1, we

visualize these relationships. In Chapter 3, we have already proven the cases in which we

have separations. Hence, the only remaining results to prove are the cases in which we have

redundancy of either intersection or di�erence. To prove these redundancies, we introduce

condition automata, which are a generalization of the well-known �nite automata [72].

4.1 Organization

First, in Section 4.2 we introduce the condition automata. Then, in Section 4.3, we show

that speci�c fragments of the condition automata are path-equivalent to the fragments of

the downward relation algebra that we study in this chapter. In Section 4.4, we develop

techniques to make condition automata id-free (which resembles removing empty-string-

transitions from �nite automata) and use these id-free condition automata to show that, on

labeled trees, condition automata are closed under intersection. In Section 4.5, we develop

techniques to make condition automata deterministic (which resembles the translation from

non-deterministic to deterministic �nite automata) and use these deterministic condition

automata to show that, on labeled trees, condition automata are closed under di�erence. In

Section 4.6, we use these closure results to prove the cases in which either intersection or

di�erence are redundant. Finally, in Section 4.7, we use the condition automata to show the

redundancy of projection in Boolean queries on chains.

4.2 Condition automata

Observe that queries in N(∗) select pairs of nodes m,n such that there exists a directed

path from m to n whose labeling satis�es some regular expression. In the case of trees, this

directed path is unique, which yields a strong connection between N(∗) and the closure

results under intersection and di�erence for regular languages [72]. As a consequence, we

can show, in a relatively straightforward way, that N(∩,−, ∗) �path N(
∗).

Example 4.1. We can rewrite the expressions [`3]+∩[`7]+ and [`3]+−[`7]+ to path-equivalent

11
The results in this chapter are based on the paper “Relative expressive power of downward fragments of

navigational query languages on trees and chains” [52, 53].

41
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Path semantics

N()

N(π )

N(π )

N(∗)

N(π , ∗)

N(π , ∗)

N(∩, −)

N(π , ∩)

N(π , π , ∩, −)

N(∩, −, ∗)

N(π , ∩, ∗)

N(π , π , ∩, −, ∗)

Trees and Chains
(labeled and unlabeled)

Boolean semantics

N()

N(π )

N(π )

N(∗)

N(π , ∗)

N(π , ∗)

N(∩, −)

N(π , ∩)

N(π , π , ∩, −)

N(∩, −, ∗)

N(π , ∩, ∗)

N(π , π , ∩, −, ∗)

Trees
(labeled)

N()

N(π )

N(∗)

N(π , ∗)

N(∩, −)
N(π , ∩)

N(π , π , ∩, −)

N(∩, −, ∗)
N(π , ∩, ∗)

N(π , π , ∩, −, ∗)

Chains
(labeled)

N()

N(π )

N(π , ∗)

N(∩, −, ∗)
N(π , ∩, ∗)

N(π , π , ∩, −)

N(π , π , ∩, −, ∗)

Trees and Chains
(Unlabeled)

Figure 4.1: Hasse diagrams that visualize the relationships between the downward fragments

of the relation algebra (N(π ,π ,∩,−.∗)). Each node represents a minimally sized fragment

and the superscripts on the left-hand side represent all maximally sized fragments that are

equivalent to the fragment represented by the node. Arrows represent strict subsumption

relations.
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s t

Figure 4.2: An acyclic directed graph, which is not a chain, a tree, or a forest. Observe that

`3 ∩ `7 returns the node pair (s, t).

expressions that use neither intersection nor di�erence:

[`3]+ ∩ [`7]+ = [`21]+;

[`3]+ − [`7]+ =
(
`3 ∪ `6 ∪ `9 ∪ `12 ∪ `15 ∪ `18

)
◦ [`21]∗.

Notice that this rewriting does not work on arbitrary graphs. Indeed, on the graph G in

Figure 4.2, we have [[[`3]+ ∩ [`7]+]]G , ∅, whereas [[[`21]+]]G = ∅.

For regular expressions, the closure results under intersection and di�erence are usually

obtained by �rst proving that regular expressions have the same expressive power as �nite

automata, and then proving that �nite automata are closed under intersection and di�erence.

We extend these automata-based techniques to the languages N(F) with F ⊆ {π ,π , ∗}
by introducing conditions on automaton states. We use these extended automata to prove

that, on trees, N(F) is closed under intersection and N(F) is closed under di�erence. The

conditions we consider are node expressions of the form ∅, id, π1[e], π2[e], π 1[e], or π 2[e].

De�nition 4.1. A condition automaton is a 7-tuple A = (S, Σ,C, I , F ,δ ,γ ), where S is a set

of states, Σ a set of transition labels, C a set of node expressions, I ⊆ S a set of initial states,

F ⊆ S a set of �nal states, δ ⊆ S × (Σ ∪ {id}) × S the transition relation, and γ ⊆ S ×C the

state-condition relation. For a state q ∈ S , we denote γ (q) = {c | (q, c) ∈ γ }.
Let F ⊆ {∗,π ,π }. We say that A is F-free if every condition in C is an expression in

N({π ,π , ∗} − F), we say that A is acyclic if the transition relation δ of A is acyclic (viewed

as a labeled graph relation), and we say that A is id-transition-free if δ ⊆ S × Σ × S .

Example 4.2. Consider the condition automaton A = (S, Σ,C, I , F ,δ ,γ ) with

S = {q1,q2,q3,q4};

Σ = {`1, `2, `3};

C = {id,π2[`1
2],π1[`2

3]};

I = {q1,q4};

F = {q3,q4};

δ = {(q1, `1,q2), (q1, `3,q4), (q2, `1,q2), (q2, `2,q3)};

γ = {(q1, id), (q2,π1[`1
2]), (q2,π2[`2

3])}.

This automaton is visualized in Figure 4.3. Using this visualization, it is easy to verify that

the condition automaton is not acyclic (due to the `1 labeled self-loop), is {π , ∗}-free, and is

id-transition-free.

Observe that condition automata are strongly related to �nite automata, the main di�er-

ence being that states in the automata have a set of conditions. In the evaluation of condition

automata on trees, this set of conditions determines in which tree nodes a state can hold,

which we de�ne next.
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`1

`3

`1

`2

q1 q2 q3

q4

{id} {π2[`1

2], π1[`2

3]} {}

{}

Figure 4.3: An example of a condition automaton.

De�nition 4.2. Let G = (V, Σ,E) be a graph, let A = (S, Σ,C, I , F ,δ ,γ ) be a condition

automaton, and let q ∈ S . We de�ne the condition expression conditions(q) of q by

conditions(q) =
⋂

e ∈γ (q)

e

when γ (q) , ∅ and conditions(q) = ∅ otherwise. As every expression in γ (q) is a condition,

the expression conditions(q) is a node expression. Observe that if γ (q) = {e1, . . . , ek }, then

conditions(q) ≡path e1 ◦ . . . ◦ ek . We usually assume that conditions(q) is written as a

composition of terms instead of an intersection of terms.

We say that a node n ∈ V satis�es state q ∈ S if (n,n) ∈ [[conditions(q)]]G . A run of

A on G is a sequence (q0,n0) `0 (q1,n1) `1 . . . (qi−1,ni−1) `i−1 (qi ,ni ), where q0, . . . ,qi ∈ S ,

n0, . . . ,ni ∈ V , `0, . . . , `i−1 ∈ Σ ∪ {id}, and the following conditions hold:

1. for all 0 ≤ j ≤ i , nj satis�es qj ;

2. for all 0 ≤ j < i , (qj , `j ,qj+1) ∈ δ ; and

3. for all 0 ≤ j < i , (nj ,nj+1) ∈ [[`j ]]G .

We say thatA accepts node pair (m,n) ∈ V ×V if there exists a run (q0,m) `0 . . . (qi ,n)
of A on G with q0 ∈ I and qi ∈ F . We de�ne the evaluation of A on G, denoted by [[A]]G ,

as [[A]]G = {(m,n) | A accepts (m,n)}.

Example 4.3. Consider the condition automaton of Example 4.2, shown in Figure 4.3, and the

tree T shown in Figure 4.4. For this combination of a condition automaton and a tree, we can

construct several accepting runs. Examples are the run (q1, r ) `3 (q4,m), which semantically

implies

(r ,m) ∈ [[conditions(q1) ◦ `3 ◦ conditions(q4)]]T = [[id ◦ `3 ◦ id]]T ,

and (q1,n1) `1 (q2,n2) `1 (q2,n3) `2 (q3,n4), which semantically implies

(n1,n4) ∈ [[conditions(q1) ◦ `1 ◦ conditions(q2) ◦ `1 ◦

conditions(q2) ◦ `2 ◦ conditions(q3)]]T =

[[id ◦ `1 ◦ π2[`1
2] ◦ π1[`2

3] ◦ `1 ◦ π2[`1
2] ◦ π1[`2

3] ◦ `2 ◦ id]]T .



4.3. CONDITION AUTOMATA AND DOWNWARD QUERIES 45

T :

`1

`1

`1

`2

`2

`2

`2`2

`2

`3

r

mn1

n2

n3

n4

Figure 4.4: A labeled tree in which six distinct nodes are named.

Table 4.1: Relation algebra fragments and the corresponding classes of condition automata.

Relation algebra Class of condition automata

N() {∗,π ,π }-free and acyclic.

N(π ) {∗,π }-free and acyclic.

N(π ,π ) {∗}-free and acyclic.

N(∗) {π ,π }-free.

N(π , ∗) {π }-free.

N(π ,π , ∗) no restrictions.

4.3 Condition automata and downward queries

Our �rst goal is to show the path equivalence of N(F), F ⊆ {π ,π , ∗}, with a restricted class

of condition automata, as proposed in Table 4.1.

Example 4.4. Consider the condition automaton of Example 4.2, shown in Figure 4.3. By

carefully examining the automaton, one can conclude that it is path-equivalent to the

expression `1 ◦ π2[`1
2] ◦ π1[`2

3] ◦ [`1 ◦ π2[`1
2] ◦ π1[`2

3]]∗ ◦ `2 ∪ `3 ∪ id.

To show the path equivalence proposed in Table 4.1, we �rst adapt standard closure

properties for �nite automata under composition, union, and Kleene-plus to the setting of

condition automata:

Proposition 4.1. Let F ⊆ {π ,π , ∗} and let A1 and A2 be F-free condition automata. There
exists F-free condition automata A◦, A∪, and A+ such that, for every graph G, [[A◦]]G =
[[A1]]G ◦ [[A2]]G , [[A∪]]G = [[A1]]G ∪ [[A2]]G , and [[A+]]G = [[[A1]]G]

+. The condition
automata A◦ and A∪ are acyclic whenever A1 and A2 are acyclic.

Proof. Let A1 = (S1, Σ1,C1, I1, F1,δ1,γ1) and A2 = (S2, Σ2,C2, I2, F2,δ2,γ2) be F-free condi-

tion automata. Without loss of generality, we may assume that S1 ∩ S2 = ∅. We de�ne A◦,

A∪, and A+ as follows:

1. A◦ = (S1 ∪ S2, Σ1 ∪ Σ2,C1 ∪C2, I1, F2,δ1 ∪ δ2 ∪ δ◦,γ1 ∪γ2), in which δ◦ = {(q1, id,q2) |

(q1 ∈ F1) ∧ (q2 ∈ I2)}.

2. A∪ = (S1 ∪ S2, Σ1 ∪ Σ2,C1 ∪C2, I1 ∪ I2, F1 ∪ F2,δ1 ∪ δ2,γ1 ∪ γ2).



46 CHAPTER 4. DOWNWARD QUERIES AND CONDITION AUTOMATA

Table 4.2: Basic building blocks used by the translation from expressions to condition

automata. In the table, ` is an edge label.

e Condition automaton

∅ A = ({v,w}, Σ, ∅, {v}, {w}, ∅, ∅)
id A = ({v,w}, Σ, ∅, {v}, {w}, {(v, id,w)}, ∅)
` A = ({v,w}, Σ, ∅, {v}, {w}, {(v, `,w)}, ∅)
π1[e

′] A = ({v}, Σ, {π1[e
′]}, {v}, {v}, ∅, {(v,π1[e

′])})

π2[e
′] A = ({v}, Σ, {π2[e

′]}, {v}, {v}, ∅, {(v,π2[e
′])})

π 1[e
′] A = ({v}, Σ, {π 1[e

′]}, {v}, {v}, ∅, {(v,π 1[e
′])})

π 2[e
′] A = ({v}, Σ, {π 2[e

′]}, {v}, {v}, ∅, {(v,π 2[e
′])})

3. A+ = (S1 ∪ {v,w}, Σ1,C1, {v}, {w},δ1 ∪ δ
+,γ1), in which v,w < S1 are two distinct

fresh states and δ+ = {(v, id,q) | q ∈ I1} ∪ {(q, id,w) | q ∈ F1} ∪ {(w, id,v)}.

Observe that we did not add new condition expressions to the set of condition expressions in

the proposed constructions. Hence, we conclude that A◦, A∪, and A+ are F-free whenever

A1 and A2 are F-free. In A◦ and A∪, no new loops have been introduced, and, hence, A◦
and A∪ are acyclic whenever A1 and A2 are acyclic. It is straightforward to see that A◦,

A∪, and A+ satisfy the other requirements of the Proposition. �

We can translate relation algebra expressions to condition automata in a recursive manner.

The base cases are expressions that are atoms or node expressions, and are described in

Table 4.2. The recursive cases are compositions, unions, and transitive closures, for which

we use the closure results of Proposition 4.1 in a straightforward manner. We conclude

Proposition 4.2. Let F ⊆ {π ,π , ∗}. On labeled graphs, every expression in N(F) is path-
equivalent to some condition automaton in the class speci�ed for N(F) in Table 4.1.

Finally, to show the other direction, we adapt the translation of �nite automata to regular

expressions to the setting of condition automata.

Proposition 4.3. Let F ⊆ {π ,π , ∗}. On labeled graphs, every condition automaton in the class
speci�ed for N(F) in Table 4.1 is path-equivalent to some expression in N(F).

Proof. Let A = (S, Σ,C, I , F ,δ ,γ ) be a condition automaton. Let v,w < S be two distinct

fresh states. Let A ′ = (S ∪ {v,w}, Σ,C, {v}, {w},δ ∪ δv,w ,γ ) with δv,w = {(v, id,q) | q ∈
I } ∪ {(q, id,w) | q ∈ F } be a condition automaton path-equivalent to A which has only one

initial state and one �nal state. We translate A ′ into an expression using the Algorithm

ToExpression presented in Figure 4.5.

Let G = (V, Σ,E) be a graph. We prove that the expression ev,w returned by Algorithm

ToExpression is path-equivalent toA ′. We do so by proving the following invariants of the

Algorithm:

1. Let q1,q2 ∈ S ∪ {v,w}. If no path exists from state q1 to state q2 with at least a single
transition, then eq1,q2

≡path ∅.

If there exists no path from q1 to q2, then also no transition exists from q1 to q2. Hence,

we initialize eq1,q2
= ∅. After initialization, the value of eq1,q2

only changes at Line 7. As

there exists no path from q1 to q2, we have one of the following three cases:
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Algorithm ToExpression(A = (S, Σ,C, I , F ,δ ,γ )):
1: M[q] := True, q ∈ S ∪ {v,w}
2: for all q ∈ S ∪ {v,w} and r ∈ S ∪ {v,w} do
3: If there are no transitions between q and r , then eq,r := ∅. Otherwise

eq,r :=
⋃

(q, `,r )∈δ∪δv,w

conditions(q) ◦ ` ◦ conditions(r )

4: while ∃q (q ∈ S) ∧ (M[q] = True) do
5: Choose q with (q ∈ S) ∧ (M[q] = True)
6: for p1,p2 ∈ S ∪ {v,w} with q < {p1,p2} do
7: ep1,p2

:= ep1,p2
∪ ep1,q ◦ [eq,q]

∗ ◦ eq,p2

8: If applicable, remove ∅ from ep1,p2
or reduce ep1,p2

to ∅

9: M[q] := False
10: return ev,w

Figure 4.5: Algorithm ToExpression that translates a condition automaton A to a path-

equivalent relation algebra expression.

(a) No path from q1 to q exists and there exists a path from q to q2. In this case, we have

eq1,q2
= ∅ ∪ ∅ ◦ [eq,q]

∗ ◦ eq,q2
after Line 7.

(b) There exists a path from q1 to q and no path from q to q2 exists. In this case, we have

eq1,q2
= ∅ ∪ eq1,q ◦ [eq,q]

∗ ◦ ∅ after Line 7.

(c) No path from q1 to q exists and no path from q to q2 exists. In this case, we have

eq1,q2
= ∅ ∪ ∅ ◦ [eq,q]

∗ ◦ ∅ after Line 7.

In all three cases, eq1,q2
can be simpli�ed to ∅ using Lemma 3.2 (ii).

2. Let q ∈ S ∪ {v,w}. If A ′ is acyclic, then eq,q ≡path ∅.

Observe that A ′ is acyclic if there exists no path from a state to itself with at least a

single transition. Hence, by Invariant 1, we have eq,q = ∅.

3. Let q1,q2 ∈ S ∪ {v,w}. The expression eq1,q2
is in N(F).

We initialize eq1,q2
as either ∅ or a union of expressions of the form conditions(q1) ◦ ` ◦

conditions(q2), with ` an edge label. Clearly, these expressions are in N(F) if all condition

expressions in C are in N(F). After initialization, the value of eq1,q2
only changes at Line 7.

Line 7 does not introduce the operators π and π .

Line 7 introduces the operator
∗
. This is only the case for subexpressions of the form

[eq,q]
∗
. If A ′ is acyclic, which must be the case when

∗< F, then, by Invariant 2, we have

eq,q ≡path ∅ and, using Lemma 3.2 (i), we have [eq,q]
∗ ≡path [∅]

∗
, which is path-equivalent to

id.

4. Let q1,q2 ∈ S ∪ {v,w}. If (m,n) ∈ [[eq1,q2
]]G , then there exists a run (t1,m) . . . (ti ,n) of

A ′ on G with t1 = q1 and ti = q2 that performs at least one transition.

If at Line 3 we have (m,n) ∈ [[eq1,q2
]]G , then, by the initial construction of eq1,q2

at Line 3,

and, by the semantics of ∪, there exists a subexpression conditions(q1) ◦ ` ◦ conditions(q2)
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in eq1,q2
such that (m,n) ∈ [[conditions(q1) ◦ ` ◦ conditions(q2)]]G and (q1, `,q2) ∈ δ ∪ δv,w .

By the semantics of ◦, this implies (m,m) ∈ [[conditions(q1)]]G , (n,n) ∈ [[conditions(q2)]]G ,

and (m,n) ∈ [[`]]G . Hence, we construct the run (q1,m) ` (q2,n) of A ′ on G.

Assume the Invariant holds before execution of Line 7. Now consider the change made

to eq1,q2
when executing Line 7. For distinction, we denote the new value of eq1,q2

by e ′q1,q2

.

If (m,n) ∈ [[e ′q1,q2

]]G , then, by the construction of e ′q1,q2

, there are two possible cases:

(a) (m,n) ∈ [[eq1,q2
]]G , in which case the Invariant can be applied to eq1,q2

to provide the

required run.

(b) (m,n) < [[eq1,q2
]]G and (m,n) ∈ [[eq1,q ◦ [eq,q]

∗ ◦ eq,q2
]]G . By the semantics of ◦, there

exists nodesm′,n′ ∈ V such that (m,m′) ∈ [[eq1,q]]G , (m′,n′) ∈ [[[eq,q]
∗]]G , and (n′,n) ∈

[[eq,q2
]]G . By applying the Invariant on (m,m′) ∈ [[eq1,q]]G and (n′,n) ∈ [[eq,q2

]]G , we

conclude that there exists runs (q1,m) . . . (q,m
′) and (q,n′) . . . (q2,n) ofA on G. Since

[eq,q]
∗ = [eq,q]

+ ∪ id, there are two possible cases:

i. (m′,n′) ∈ [[[eq,q]
+]]G . By the semantics of

∗
, there exists k ≥ 1 such that (m′,n′) ∈

[[ekq,q]]G . By the semantics of ◦, there exists nodes n1, . . . ,nk+1 with m′ = n1

and n′ = nk+1 such that, for 1 ≤ i ≤ k , (ni ,ni+1) ∈ [[eq,q]]G . By applying

the Invariant on every (ni ,ni+1) ∈ [[eq,q]]G , we conclude that there exists runs

(q,ni ) . . . (q,ni+1) of A on G. To construct the required run, we concatenate the

runs (q1,m) . . . (q,m
′), (q,n1) . . . (q,n2), . . . , (q,nk ) . . . (q,nk+1), (q,n

′) . . . (q2,n).

ii. (m′,n′) ∈ [[id]]G . Hence,m′ = n′. To construct the required run, we concatenate

the runs (q1,m) . . . (q,m
′) and (q,n′) . . . (q2,n).

5. Let q1,q2 ∈ S ∪ {v,w} If, at some point during the execution of the algorithm, (m,n) ∈
[[eq1,q2

]]G , then (m,n) ∈ [[eq1,q2
]]G at all later steps.

Follows immediately from inspecting Line 7 of the algorithm.

6. Let (q0,n0) `0 (q1,n1)`1 . . . (qi−1,ni−1) `i−1 (qi ,ni ) be a run ofA ′ on G that performs at
least one transition. IfM[qj ] = False, 1 ≤ j ≤ i − 1, then (n0,ni ) ∈ [[eq0,qi ]]G .

First, we consider the runs that meet the conditions of the Invariant before the execution

of the while-loop starting at Line 4. Initially, at Line 3, all states are marked, and, hence, only

runs of the form (q0,n0)` (q1,n1) ofA ′ on G satisfy the restrictions. By the de�nition of a run,

we have (q0, `,q1) ∈ δ ∪ δv,w . By the initial construction of eq0,q1
at Line 3, eq0,q1

is a union

that includes the subexpression conditions(q0) ◦ ` ◦ conditions(q1). By the de�nition of a run,

we also have (n0,n0) ∈ [[conditions(q0)]]G , (n0,n1) ∈ [[`]]G , and (n1,n1) ∈ [[conditions(q1)]]G .

Hence, (n0,n1) ∈ [[conditions(q0) ◦ ` ◦ conditions(q1)]]G , yielding (n0,n1) ∈ [[eq0,q1
]]G .

Next we consider the runs that meet the conditions of the Invariant due to changes made

during the execution of the while-loop starting at Line 4. Assume the Invariant holds before

execution of Line 5. Now consider that we unmark state q by executing Line 9. Let

(q0,n0) `0 (q1,n1) `1 . . . (qi−1,ni−1) `i−1 (qi ,ni )

be a run of A ′ on G that performs at least one transition with M[q1] = M[q2] = · · · =

M[qi−1] = False. We have two cases.

(a) q < {q1, . . . ,qi−1}. Hence, by the Invariant, we had (n0,ni ) ∈ [[eq0,qi ]]G at Line 5. By

Invariant 5, we conclude that, when executing Line 9, we have (n0,ni ) ∈ [[eq0,qi ]]G .
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(b) q ∈ {q1, . . . ,qi−1}. During an iteration of the while loop at Line 4, the value of eq0,qi
is changed by the execution of Line 7. We denote the new value of eq0,qi by e ′q0,qi for

distinction. We have

e ′q0,qi = eq0,qi ∪ eq0,q ◦ [eq,q]
∗ ◦ eq,qi

= eq0,qi ∪ eq0,q ◦
(
[eq,q]

+ ∪ id

)
◦ eq,qi

= eq0,qi ∪ eq0,q ◦ [eq,q]
+ ◦ eq,qi ∪ eq0,q ◦ id ◦ eq,qi

Based on the number of occurrences of q in {q1, . . . ,qi−1}, we distinguish two cases:

i. There exists exactly one j, 1 ≤ j ≤ i − 1, with qj = q. We split the run into

(q0,n0) . . . (qj ,nj ) and (qj ,nj ) . . . (qi ,ni ). We had M[q1] = · · · = M[qj−1] = False
and M[qj+1] = · · · = M[qi−1] = False at Line 5. Hence, by the Invariant, we

had (n0,nj ) ∈ [[eq0,q]]G and (nj ,ni ) ∈ [[eq,qi ]]G at Line 5. It follows that (n0,ni ) ∈
[[eq0,q ◦ id ◦ eq,qi ]]G . Hence, we have (n0,ni ) ∈ [[e

′
q0,qi ]]G .

ii. There exists several j, 1 ≤ j ≤ i − 1 with qj = q. We split the run

(q0,n0) `0 (q1,n1) `1 . . . (qi−1,ni−1) `i−1 (qi ,ni )

at every (qj ,nj ), 1 ≤ j ≤ i , with qj = q resulting in runs (q1,n1) . . . (q,n
′
1
),

(q,n′
1
) . . . (q,n′

2
), . . . , (q,n′k−1

) . . . (q,n′k ), (q,n
′
k ) . . . (qi ,ni ), with 1 ≤ k . At Line 5

we had M[q′] = False for all q′ ∈ {q1, . . . ,qi−1}−{q}. Hence, by the Invariant, we

had (n1,n
′
1
) ∈ [[eq1,q]]G , (n′l ,n

′
l+1
) ∈ [[eq,q]]G , for 1 ≤ l < k , and (n′k ,ni ) ∈ [[eq,qi ]]G .

It follows that (n′
1
,n′k ) ∈ [[[eq,q]

∗]]G and (n0,ni ) ∈ [[eq0,q ◦ [eq,q]
∗ ◦ eq,qi ]]G . Hence,

we have (n0,ni ) ∈ [[e
′
q0,qi ]]G .

In both cases we use Invariant 5 to conclude that, after the execution of Line 9, we have

(n0,ni ) ∈ [[eq0,qi ]]G .

As v , w , v is the only initial state, and w is the only �nal state, every accepting run of

A ′ performs at least one transition. Hence Invariants 4 and 6 imply thatA ′ and the resulting

expression ev,w are path-equivalent. Invariant 3 implies that the resulting expression is, as

required, in N(F). �

Notice that we did not only prove path equivalence between classes of condition automata

and classes of the expressions on general labeled graphs, but also provided constructive

algorithms to translate between these classes.

4.4 Closure under intersection

In the following, we work towards showing that condition automata, when used as queries

on trees, are not only closed under ◦, ∪, and
∗
, as Proposition 4.1 shows, but also under ∩

and −. We then use this closure result to remove ∩ and − from expressions that are used to

query trees. The standard approach to constructing the intersection of two �nite automata

is by making their cross-product. In a fairly straightforward manner, we can apply a similar

cross-product construction to condition automata, given that they are id-transition-free.

Observe that the id-labeled transitions ful�ll a similar role as empty-string-transitions in

�nite automata and, as such, can be removed, which we show next.
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De�nition 4.3. Let A = (S, Σ,C, I , F ,δ ,γ ) be a condition automaton and q id q1 · · · id qj be

a path in A. We say that the pair (q, {q,q1, . . . ,qj }) is an identity pair of A.

Lemma 4.4. Let F ⊆ {π ,π , ∗} and letA be an F-free condition automaton. On labeled graphs,
there exists an id-transition-free and F-free condition automaton Aid that is path-equivalent to
A. The condition automaton Aid is acyclic whenever A is acyclic.

Proof. Let A = (S, Σ,C, I , F ,δ ,γ ) be an F-free condition automaton. We construct Aid =

(Sid, Σ,C, Iid, Fid,δid,γid) with

Sid = {(q,Q) | (q,Q) is an identity pair of A};

Iid = {(q,Q) | ((q,Q) ∈ Sid) ∧ (q ∈ I )};

Fid = {(q,Q) | ((q,Q) ∈ Sid) ∧ (Q ∩ F , ∅)};

δid = {((p, P), `, (q,Q)) | ((p, P) ∈ Sid) ∧ (` ∈ Σ) ∧

((q,Q) ∈ Sid) ∧ (∃p ′ (p ′ ∈ P) ∧ (p ′, `,q) ∈ δ )};
γid = {((q,Q), c) | ((q,Q) ∈ Sid) ∧ (∃q′ (q′ ∈ Q) ∧ (c ∈ γ (q′)))}.

Let G = (V, Σ,E) be an arbitrary graph. To prove thatAid is path-equivalent toA, we prove

[[Aid]]G = [[A]]G .

1. First, we prove [[Aid]]G ⊆ [[A]]G . Assume (n0,ni ) ∈ [[Aid]]G . Hence, there exists a

run ((q0,Q0),n0) . . . ((qi ,Qi ),ni ) of Aid on G with (q0,Q0) ∈ Iid and (qi ,Qi ) ∈ Fid. By the

de�nition of Fid, we have Qi ∩ F , ∅. Let p ∈ Qi ∩ F . For every j, 0 ≤ j ≤ i , we prove

that there exists a run (qj ,nj ) . . . (p,ni ) of A on G using induction on i − j. The base case

is j = i . Consider ((qi ,Qi ),ni ). For every q ∈ Qi , ni satis�es q by the de�nition of Sid and

γid. Moreover, there exists a path qi id s1 . . . sk id p in A from qi to p with qi , s1, . . . , sk ∈ Qi .

Hence, we conclude that (qi ,ni ) id (s1,ni ) . . . (sk ,ni ) id (p,ni ) is a run of A on G.

Now assume as induction hypothesis that, for all j, 0 < k ≤ j ≤ i , there exists a run

(qj ,nj ) . . . (p,ni ) ofA on G. Consider ((qk−1,Qk−1),nk−1) `k−1 ((qk ,Qk ),nk ), the k-th step in

the run. By the de�nition of a run, we have ((qk−1,Qk−1), `k−1, (qk ,Qk )) ∈ δid, nk−1 satis�es

(qk−1,Qk−1), and nk satis�es (qk ,Qk ). By the construction of Sid and γid, we have, for every

q ∈ Qk−1, nk−1 satis�es q, and, for every q ∈ Qk , nk satis�es q. By the construction of δid,

there exists a state pk−1 ∈ Qk−1 such that (pk−1, `,qk ) ∈ δ and, by the construction of Sid,

there exists a path qk−1 id s1 . . . si′ id pk−1 in A from qk−1 to pk−1 with s1, . . . , si′ ∈ Qk−1.

Hence, we conclude that (qk−1,nk−1) id (s1,nj ) . . . (si′,nj ) id (pk−1,nj ) `j (qk ,nk ) is a run of

A on G. Using the induction hypothesis on k , we also conclude that there exists a run

(qk ,nk ) . . . (p,ni ) of A on G. We concatenate these runs to conclude that there exists a run

(qk−1,nk−1) . . . (p,ni ) of A on G.

By the de�nition of Iid, we have q0 ∈ I . Hence, we conclude that a run (q0,n0) . . . (p,ni )
of A on G with q0 ∈ I and p ∈ F exists, and, as a consequence, (n0,ni ) ∈ [[A]]G .

2. Next, we prove [[Aid]]G ⊇ [[A]]G . Assume (n0,ni ) ∈ [[A]]G . Hence, there exists

a run (q0,n0) . . . (qi ,ni ) of A on G with q0 ∈ I and qi ∈ F . For every j, 0 ≤ j ≤ i ,
we prove that there exists a run ((qj ,Q),nj ) . . . ((p, P),ni ) of Aid on G with qi ∈ P using

induction on i − j. The base case is j = i . Observe that (qi , {qi }) is an identity pair. Hence,

(qi , {qi }) ∈ Sid. By the construction of γid, ni satis�es (qi , {qi }). We conclude that (qi , {qi })
is a run of Aid on G. Now assume as induction hypothesis that, for all k , 0 < k ≤ j ≤ i ,
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there exists a run ((qj ,Q),nj ) . . . ((p, P),ni ) of Aid on G with qi ∈ P . Consider the k-th

step in the run, (qk−1,nk−1) `k−1 (qk ,nk ). By the induction hypothesis, there exists a run

r = ((qk ,Q),nk ) . . . ((p, P),ni ) of Aid on G with qi ∈ P . We distinguish two cases:

(a) `k−1 , id. By the de�nition of a run, we have (nk−1,nk ) ∈ `k−1. By the construc-

tion of Sid, we have (qk−1, {qk−1}) ∈ Sid, by the construction of γid, we have nk−1 satis�es

(qk−1, {qk−1}), and, by the construction of δid, we have ((qk−1, {qk−1}), `k−1, (qk ,Q)) ∈ δid.

Hence, we conclude that ((qk−1, {qk−1}),nk−1) `k−1 ((qk ,Q),nk ) . . . ((p, P),ni ) is a run ofAid

on G.

(b) `k−1 = id. By the semantics of id, we have nk−1 = nk . Let Q = {qk ,p1, . . . ,pi′}.
By the construction of Sid, there exists a path qk id p1 . . .pi′ in A and, by the de�nition

of a run, we have (qk−1, id,qk ) ∈ δ . Hence, we conclude that qk−1 id qk id p1 . . .pi′ is a

path in A, (qk−1,Q ∪ {qk−1}) is an identity pair, and, by the construction of Sid, we have

(qk−1,Q ∪ {qk−1}) ∈ Sid. We again distinguish two cases:

i. r = ((qk ,Q),nk ). In this case, we have qi ∈ Q , and, hence, qi ∈ Q ∪ {qk−1}. We conclude

that ((qk−1,Q ∪ {qk−1}),nk ) is a run of Aid with qi ∈ Q ∪ {qk−1}.

ii. r = ((qk ,Q),nk ) `
′ ((q′,Q ′),n′) . . . ((p, P),ni ). In this case, we have, by the de�nition of a

run, ((qk ,Q), `
′, (q′,Q ′)) ∈ δid. By the de�nition of δid, we have ((qk ,Q), `

′, (q′,Q ′)) ∈ δid

if and only if there exists q′′ ∈ Q such that (q′′, `′,q′) ∈ δ . It follows that q′′ ∈
Q∪{qk−1} and ((qk−1,Q∪{qk−1}), `

′, (q′,Q ′)) ∈ δid. Hence, we conclude that ((qk−1,Q∪
{qk−1}),nk ) `

′ ((q′,Q ′),n′) . . . ((p, P),ni ) is a run of Aid.

By the de�nition of Iid, we have (q0,Q) ∈ Iid and by the de�nition of Fid and qi ∈ P , we have

(p, P) ∈ Fid. Hence, the run ((q0,Q),n0) . . . ((p, P),ni ) is a run of Aid on G with (q0,Q) ∈ Iid
and (p, P) ∈ Fid, and, as a consequence, (n0,ni ) ∈ [[Aid]]G .

We conclude [[Aid]]G = [[A]]G . As we did not add new condition expressions to the set

of condition expressions in the above constructions, it follows that Aid is F-free whenever

A is F-free. As every path in Aid can be translated to a path of at least equal length in A

using the same reasoning as in the proof of [[Aid]]G ⊆ [[A]]G , it �nally follows that Aid is

acyclic whenever A is acyclic. �

Hence, we may assume that condition automata are id-transition-free.

Example 4.5. In Figure 4.6 two condition automata are shown. The condition automaton on

the left is a simple automaton with id-transitions. The id-transition-free condition automaton

on the right is obtained by applying the construction of Lemma 4.4. The main step in

constructing the condition automaton on the right is constructing the identity pairs (as

these are the states of the constructed condition automaton). Observe that the condition

automaton on the left has the following paths consisting of identity-transitions only:

u, u idv, u idv idw, v, v idw, w,

resulting in the identity pairs (u, {u}), (v, {v}), and (w, {w}), the identity pairs (u, {u,v})
and (v, {v,w}), and the identity pair (u, {u,v,w}), which are the states in the condition

automaton on the right.

We now proceed with showing that condition automata, when used to query trees as

opposed to general labeled graphs, are closed under intersection. We already know from

Example 4.1 that, on general graphs standard, automata-techniques cannot be adapted to
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Figure 4.6: Two path-equivalent condition automata. Only the one on the right is id-transition-

free.

obtain these closure results. On trees, however, the situation of Example 4.1 cannot occur, as

a directed path between two nodes in a tree is always unique. This observation is crucial

in showing that the cross-product construction on condition automata works for querying

trees. The lemma below formalizes this observation:

Lemma 4.5. Let A1 and A2 be id-transition-free condition automata and let T = (V, Σ,E)
be a tree. If there exists a run r1 = (p1,n1) `

1

1
· · · `1i1 (q1,ni1+1) ofA1 on T and there exists a run

r2 = (p2,m1) `
2

1
· · · `2i2 (q2,mi2+1) of A2 on T with n1 =m1 and ni1+1 =mi2+1, then i1 = i2 = i

and, for all 1 ≤ j ≤ i , `1j = `
2

j and nj =mj .

Proof. Let m = m1 = m2 and n = n1 = n2. By the semantics of condition automata, the

existence of run r1 implies that (m,n) ∈ [[`1
1
◦ . . . ◦ `1i1 ]]T and the existence of run r2 implies

that (m,n) ∈ [[`2
1
◦ . . . ◦ `2i2 ]]T . As A1 and A2 are id-transition-free, every `1j1 and every `2j2 ,

with 1 ≤ j1 ≤ i1 and 1 ≤ j2 ≤ i2, is an edge label. As there is only a single downward path

from nodem to node n in T , the two runs must traverse the same path, and, hence, follow

the same edge labels. We conclude that i1 = i2 = i and, for all 1 ≤ j ≤ i , `1j = `
2

j . �

This allows us to prove the following:

Proposition 4.6. Let F ⊆ {π ,π , ∗} and let A1 and A2 be F-free condition automata. There
exists an F-free condition automaton A∩ such that, for every tree T , we have [[A∩]]T =
[[A1]]T ∩ [[A2]]T . The condition automaton A∩ is acyclic whenever A1 or A2 is acyclic.

Proof. Let A1 = (S1, Σ1,C1, I1, F1,δ1,γ1) and A2 = (S2, Σ2,C2, I2, F2,δ2,γ2) be condition au-

tomata. By Lemma 4.4, we assume that A1 and A2 are id-transition-free. We construct

A∩ = (S1 × S2, Σ1 ∪ Σ2,C1 ∪C2, I1 × I2, F1 × F2,δ∩,γ∩) where

δ∩ = {((p1,q1), `, (p2,q2)) | (p1, `,p2) ∈ δ1 ∧ (q1, `,q2) ∈ δ2};

γ∩ = {((p,q), c) | (p, c) ∈ γ1 ∨ (q, c) ∈ γ2}.

Let T = (V, Σ,E) be a tree and letm,n ∈ V be a pair of nodes. We have (m,n) ∈ [[A1]]T ∩

[[A2]]T if and only if there exists a run (p1,m) `
1

1
· · · `1i1 (q1,n) of A1 on T with p1 ∈ I1 and

q1 ∈ F1 and a run (p2,m) `
2

1
· · · `2i2 (q2,n) of A2 on T with p2 ∈ I2 and q2 ∈ F2. Since A1 and
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A2 are id-transition-free, by Lemma 4.5, and by the construction of A∩, these runs exist if

and only if there exists a run ((p1,p2),m)`1 · · ·`i ((q1,q2),n) ofA∩ on T with (p1,p2) ∈ I1× I2
and (q1,q2) ∈ F1 × F2. Hence, we conclude (m,n) ∈ [[A∩]]T . Observe that we did not add

new condition expressions to the set of condition expressions in the proposed constructions.

Hence, we conclude thatA∩ is F-free wheneverA1 andA2 are F-free. We also observe that

every run r ofA∩ on T can be split into runs ofA1 andA2 on tree T of the same length as

r . Hence, there can only be loops in A∩ if both A1 andA2 have loops and we conclude that

A∩ is acyclic whenever A1 or A2 is acyclic. �

4.5 Closure under di�erence

Next, we show that condition automata, when used as tree queries, are also closed under

di�erence. Usually, the di�erence of two �nite automata A1 and A2 is constructed by �rst

constructing the complement of A2, and then constructing the intersection of A1 with the

resulting automaton. We cannot use such a complement construction for condition automata:

the complement of a downward binary relation (represented by a condition automaton

when evaluated on a tree) is not a downward binary relation. Observe, however, that it is

not necessary to consider the full complement for this purpose: as the di�erence of two

downward binary relations is itself a downward relation, we can restrict ourselves to the

downward complement of a binary relation.

De�nition 4.4. Let T = (V, Σ,E) be a tree. We de�ne the downward complement of a

binary relation R ⊆ V ×V , denoted by R↓, as

R↓ = {(m,n) | (m,n) < R ∧ (m,n) ∈ [[[E]∗]]T}.

If A1 and A2 are condition automata and T is a tree, then we have [[A1]]T − [[A2]]T ≡

[[A1]]T ∩ [[A2]]T↓. Hence, we only need to show that condition automata are closed under

downward complement. Recall that �nite automata are closed under complement and the

complement of an automaton can easily be constructed if the automaton is deterministic [72].

For the construction of the downward complement of a condition automaton, we introduce

notion similar to deterministic �nite automata.

De�nition 4.5. The condition automaton A = (S, Σ,C, I , F ,δ ,γ ) is deterministic if it is id-

transition-free and if it satis�es the following condition: for every tree T = (V, Σ,E) and for

every pair of nodesm,n withm an ancestor of n, there exists exactly one run (q,m)` . . . (p,n)
of A on T with q ∈ I .

We observe that if the condition automaton does not specify any conditions, then De�ni-

tion 4.5 reduces to the classical de�nition of a deterministic �nite automaton. Moreover, the

de�nition of a deterministic condition automaton relies on the automaton being evaluated

on trees, as more general graphs can have several identically-labeled paths between pairs of

nodes.

Example 4.6. The condition automaton in Figure 4.3 is clearly not deterministic: there are

already two di�erent possible runs of length one starting at an initial state. In Figure 4.7 we

exhibit a conditional automaton over Σ = {`1, `2} that is deterministic. This deterministic

condition automaton accepts node pairs (m,n),m , n, ifm satis�es π2[`1
3] and if there exists

a path fromm to n whose labeling matches the regular expression `1[`2]
∗`1. It also accepts

node pairs (n,n) if n does not satisfy π2[`1
3].
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`1

`1, `2

`2

`2

`1

`1, `2

`1, `2

q1 q2 q3

q4 q5

{π2[`1

3]} {} {}

{π 2[`1

3]}

Figure 4.7: An example of a deterministic condition automaton.

In the construction of deterministic condition automata we use the condition complement
of a condition e , denoted by ccompl(e), and de�ned as follows:

ccompl(e) =


∅ if e = id;

id if e = ∅;

π j [e
′] if e = πj [e

′], j ∈ {1, 2};

πj [e
′] if e = π j [e

′], j ∈ {1, 2}.

Observe that the condition complement of a projection expression is a coprojection

expression, and vice-versa. If S is a set of conditions, then we use the notation ccompl(S) to

denote the set {ccompl(c) | c ∈ S}.

Lemma 4.7. Let F ⊆ {π ,π , ∗} and let A be an F-free condition automaton. There exists a
deterministic condition automaton AD that is path-equivalent to A with respect to labeled
trees. The condition automaton AD is {∗}-free if ∗< F and {π ,π }-free if π ,π < F.

Proof. Let A = (S, Σ,C, I , F ,δ ,γ ) be a condition automaton. By Lemma 4.4, we assume that

A is id-transition-free. We constructAD = (SD , Σ,CD , ID , FD ,δD ,γD ), where SD , ID , and δD
are constructed by Algorithm MakeDeterministic, presented in Figure 4.8, and

CD = C ∪ ccompl(C);

FD = {(Q,V ) | (Q,V ) ∈ SD ∧Q ∩ F , ∅};

γD = {((Q,V ), c) | (Q,V ) ∈ SD ∧ (c ∈ V ∨ c ∈ ccompl(C −V ))}.

Let T = (V, Σ,E) be a tree and let m,n ∈ V be nodes. If n′ ∈ V , then ζ (n′) denotes the set

{c | c ∈ C ∧ (n′,n′) ∈ [[c]]T}. Both determinism of AD and path equivalence of AD and A

are guaranteed, as this construction satis�es the following properties:

1. There exists exactly one V ⊆ C with (n,n) ∈ [[conditions(V ∪ ccompl(C − V ))]]T .
Moreover, V = ζ (n).
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Algorithm MakeDeterministic(A = (S, Σ,C, I , F ,δ ,γ )):
1: SD , ID , new,δD := ∅, ∅, ∅, ∅
2: for V ⊆ C do
3: Q := {q | q ∈ I ∧ γ (q) ⊆ V }
4: SD , ID , new := SD ∪ {(Q,V )}, ID ∪ {(Q,V )}, new ∪ {(Q,V )}
5: while new , ∅ do
6: Remove state (Q,V ) from new
7: for ` ∈ Σ do
8: P := {p | ∃q q ∈ Q ∧ (q, `,p) ∈ δ }
9: forW ⊆ C do

10: P ′ := {p | p ∈ P ∧ γ (p) ⊆W }
11: if (P ′,W ) < SD then
12: SD , new := SD ∪ {(P

′,W )}, new ∪ {(P ′,W )}
13: δD := δD ∪ {((Q,V ), `, (P

′,W ))}

Figure 4.8: Algorithm MakeDeterministic that translates a condition automaton A to a

path-equivalent deterministic condition automaton.

By de�nition, ζ (n) is the set of all conditions satis�ed by n, hence, we can choose

V = ζ (n) and we have (n,n) ∈ [[conditions(V ∪ ccompl(C −V ))]]T . To show that no other

choice for V is possible, we consider any V ′ ⊆ C with V , V ′. We show that (n,n) <
[[conditions(V ′ ∪ ccompl(C −V ′))]]T . As V , V ′, there exists c ∈ C such that c ∈ V −V ′ or

c ∈ V ′ −V :

(a) c ∈ V −V ′. By c ∈ V and (n,n) ∈ [[conditions(V ∪ ccompl(C −V ))]]T , we have (n,n) ∈
[[c]]T and (n,n) < [[ccompl(c)]]T . As c < V ′, we have ccompl(c) ∈ V ′ ∪ ccompl(C −V ′).
Hence, (n,n) < [[conditions(V ′ ∪ ccompl(C −V ′))]]T .

(b) c ∈ V ′−V . Since c < V , we have (n,n) < [[c]]T . As c ∈ V ′, we have c ∈ V ′∪ ccompl(C −
V ′). Hence, (n,n) < [[conditions(V ′ ∪ ccompl(C −V ′))]]T .

2. There exists exactly one state (P ,V ) ∈ ID such thatm satis�es (P ,V ).

By Property 1, we have V = ζ (m). By the construction of SD , there exists exactly one set

of states Q ⊆ I such that (Q,V ) ∈ ID and γ ((Q,V )) = V ∪ ccompl(C −V ).

3. Let (P ,V ) ∈ SD be a state such thatm satis�es (P ,V ). If there exists an edge label ` ∈ Σ
such that (m,n) ∈ `, then there exists exactly one transition ((P ,V ), `, (Q,W )) ∈ δ such that n
satis�es (Q,W ).

By Property 1, we haveW = ζ (n). By the construction of SD and δD , there is exactly one

set of states Q ⊆ S such that (Q,W ) ∈ SD and ((P ,V ), `, (Q,W )) ∈ δD . By the choice ofW ,m
must satisfy (Q,W ).

4. Let (P ,V ) ∈ SD be a state such thatm satis�es (P ,V ). If there exists a directed path from
m to n, then there exists exactly one run ((P ,V ),m) . . . ((Q,W ),n) of AD on T .

Repeated application of Property 3.

5. If (p,n) ` (p ′,n′) is a run ofA on T then, for every (P ,V ) with p ∈ P , there exists exactly
one transition ((P ,V ), `, (P ′,V ′)) such that n′ satis�es (P ′,V ′). For this transition, we have
p ′ ∈ P ′.
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By Property 1, we have V = ζ (n) and V ′ = ζ (n′). By the construction of δD , there is

exactly one set of states P ′ ⊆ S such that ((P ,V ), `, (P ′,V ′)) ∈ δD . Observe that we must

have γ (p ′) ⊆ V ′, hence p ′ ∈ P ′.

6. If there exists a run (q1,m) . . . (qi ,n) of A on T with q1 ∈ I , then there exists a run
((Q1,V1),m) . . . ((Qi ,Vi ),n) of AD on T with (Q1,V1) ∈ ID , and, for all j, 1 ≤ j ≤ i , qj ∈ Q j .

By induction on the length of the run. The base cases are runs of length 0, which are

covered by Property 2. The inductive cases are runs of length i ≥ 1, for which Property 5

can be used in a straightforward manner to extend runs of length i − 1 to length i .

7. If there exists a run ((P ,V ),m) ` ((Q,W ),n) ofAD on T withQ , ∅, then, for all q ∈ Q ,
there exists a run (p,m) ` (q,n), with p ∈ P , of A on T .

By the construction of δD , there must be a p ∈ P such that (p, `,q) ∈ δ . By p ∈ P and

q ∈ Q and by the de�nition of SD and γD , we have γ (p) ⊆ V ⊆ γD (P) and γ (q) ⊆W ⊆ γD (Q).
Hencem satis�es p and n satis�es q. Thus (p,m) ` (q,n) is a run of A on T .

8. If there exists a run ((Q1,V1),m) . . . ((Qi ,Vi ),n) of AD on T with Qi , ∅, then, for all
qi ∈ Qi , there exists a run (q1,m) . . . (qi ,n) of A on T with, for all j, 1 ≤ j < i , qj ∈ Q j .

By induction on the length of the run. The base cases involve runs of the form ((Qi ,Vi ),n)
of AD on T with Qi , ∅. We can choose any q ∈ Qi and, by the de�nition of SD and γD , we

have γ (q) ⊆ Vi ⊆ γD ((Qi ,Vi )). Hence, n satis�es qi and we conclude that (qi ,n) is a run of

A on T . The inductive cases are runs of length i ≥ 1, for which Property 7 can be used in a

straightforward manner to extend runs of length i − 1 to length i .

By Property 2 and Property 4 we conclude thatAD is a deterministic condition automaton.

By Property 6 and the construction of ID and FD , [[A]]T ⊆ [[AD ]]T . By Property 8 and the

construction of ID and FD , [[AD ]]T ⊆ [[A]]T . Hence, we conclude that A and AD are

path-equivalent. The construction of C did not add any usage of
∗
, and introduced π only

when π was present. Hence, the condition automata AD is {∗}-free if
∗< F and {π ,π }-free

if π ,π < F. �

Using Lemma 4.7, we can construct the downward complement of a condition automaton.

Proposition 4.8. Let F ⊆ {π ,π , ∗} and let A be an F-free condition automaton. There exists
a condition automatonA ′ such that, for every tree T , we have [[A ′]]T = [[A]]T↓. The condition
automaton A ′ is {∗}-free if ∗< F and {π ,π }-free if π ,π < F.

Proof. Let AD = (SD , ΣD ,CD , ID , FD ,δD ,γD ) be a deterministic condition automaton equiv-

alent to A. We construct A ′ = (SD , ΣD ,CD , ID , SD − FD ,δD ,γD ). Besides those changes

made by constructing a deterministic condition automaton, we did not add new condition

expressions to the set of condition expressions in the proposed constructions. Hence, the

condition automaton A ′ is {∗}-free if
∗< F and {π ,π }-free if π ,π < F. �

We can now conclude the following:

Corollary 4.9. LetF ⊆ {π ,π , ∗} and letA1 andA2 beF-free condition automata. There exists
a condition automaton A− such that, for every tree T , we have [[A−]]T = [[A1]]T − [[A2]]T .
The condition automaton A− is {∗}-free if ∗< F, {π ,π }-free if π ,π < F, and acyclic whenever
A1 is acyclic.

Proof. Since [[A1]]T − [[A2]]T = [[A1]]T ∩ [[A2]]T↓, we can apply Propositions 4.6 and 4.8 to

construct A−. �
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4.6 The collapse of ∩ and − in downward queries

Proposition 4.6 and Corollary 4.9 can be used to remove intersection and di�erence from an

expression at the highest level, but these results ignore expressions inside projections and

coprojections. To fully remove intersection and di�erence, we use a bottom-up construction:

Theorem 4.10. Let F ⊆ {π ,π ,∩,−, ∗}. On labeled trees, we haveN(F) �path N(F − {∩,−}).

Proof. Given an expression e inN(F), we construct the path-equivalent expression inN(F−

{∩,−}) in a bottom-up fashion by constructing a condition automaton A that is path-

equivalent to e and is appropriate, according to Table 4.1, for the class N(F − {∩,−}). Using

Proposition 4.3, the constructed condition automaton A can be translated to an expression

in N(F − {∩,−}).
The base cases are expressions of the form ∅, id, and ` (for ` an edge label), for which

we directly construct condition automata using Proposition 4.2. We use Proposition 4.1 to

deal with the operators ◦, ∪, and
∗
. We deal with expressions of the form fj [e], f ∈ {π ,π },

j ∈ {1, 2} by translating the condition automaton path-equivalent to e to an expression e ′,
which is inN(F−{∩,−}), and then use Proposition 4.2 to construct the condition automaton

path-equivalent to fj [e]. Finally, we use Proposition 4.6 and Corollary 4.9 to deal with the

operators ∩ and −. �

Observe that Theorem 4.10 does not strictly depend on the graph being a tree: indirectly,

Theorem 4.10 depends on Lemma 4.5, which holds for all graphs in which every pair of

nodes is connected by at most one directed path. Hence, the results of Theorem 4.10 can be

generalized to, for example, forests.

4.7 Condition automata on chains

Condition automata as a tool to represent and manipulate expressions can also be used to

simplify Boolean queries. As a step in this direction, we use condition automata to simplify

expressions in N(F), {π } ⊆ F ⊆ {π , ∗}, that are used to query chains. We do this by

providing manipulation steps that reduce the total weight of the projections in an expression:

De�nition 4.6. Let e be an expression inN(π , ∗). We de�ne the condition depth of e , denoted

by cdepth(e), as

cdepth(e) =



0 if e ∈ {∅, id};

0 if e = `, with ` an edge label;

cdepth(e ′) if e = [e ′]∗;

cdepth(e ′) + 1 if e = πj [e
′], j ∈ {1, 2};

max(cdepth(e1), cdepth(e2)) if e = e1 ⊕ e2, ⊕ ∈ {◦,∪}.

We de�ne the condition depth of a {π }-free condition automaton A = (S, Σ,C, I , F ,δ ,γ ),
denoted by cdepth(A), as cdepth(A) = max{cdepth(c) | c ∈ C}. We de�ne the condition
weight of A, denoted by cweight(A), as

cweight(A) = |{c | c ∈ C ∧ cdepth(c) = cdepth(A)}|.

We now prove the following technical lemma:
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Lemma 4.11. LetA be a {π }-free and id-transition-free condition automaton. If cdepth(A) >
0, then there exists a {π }-free and id-transition-free condition automaton Aπ such that

(i) for every labeled chain C, we have [[A]]C = ∅ if and only if [[Aπ ]]C = ∅;

(ii) either cdepth(A) > cdepth(Aπ ) or both cdepth(A) = cdepth(Aπ ) and cweight(A) >
cweight(Aπ ).

The condition automaton Aπ is acyclic and {∗}-free whenever A is acyclic and {∗}-free.

Proof. Let A = (S, Σ,C, I , F ,δ ,γ ) be a {π }-free and id-transition-free condition automaton.

Choose a condition c ∈ C with cdepth(A) = cdepth(c). If c is either ∅ or id, then we can

eliminate it in a straightforward manner. Hence, without loss of generality, we assume

that c is of the form πj [e
′], j ∈ {1, 2}. Let A ′ = (S ′, Σ′,C ′, I ′, F ′,δ ′,γ ′) be a {π }-free and

id-transition-free condition automaton equivalent to e ′ constructed using Proposition 4.2

and Lemma 4.4. It is straightforward to verify that cdepth(A ′) = cdepth(e ′) = cdepth(e) − 1.

We de�ne Aπ = (Sπ , Σπ ,Cπ , Iπ , Fπ ,δπ ,γπ ) as follows:

Sc = {q | c ∈ γ (q)}; (4.1)

S¬c = S − Sc ; (4.2)

S¬1 = {(q,Q) | q ∈ Sc ∧Q ⊆ S ′ ∧Q ∩ I ′ = ∅}; (4.3)

S¬2 = {(q,Q) | q ∈ Sc ∧Q ⊆ S ′ ∧Q ∩ F ′ = ∅}; (4.4)

Sπ = (S × P(S
′)) − S¬j ∪ {ρ} × (P(S

′) − ∅) ; (4.5)

Σπ = Σ; (4.6)

Cπ = (C − {c}) ∪C
′
; (4.7)

I1 = {(q, {q
′}) | q ∈ Sc ∩ I ∧ q

′ ∈ I ′}; (4.8)

I2 = {(q,Q) | q ∈ S¬c ∩ I ∧ ∅ ⊂ Q ⊆ I ′}

∪ {(q,Q) | q ∈ Sc ∩ I ∧ ∅ ⊂ Q ⊆ I ′ ∩ F ′}

∪ {(ρ,Q) | ∅ ⊂ Q ⊆ I ′}; (4.9)

Iπ = {(q, ∅) | q ∈ S¬c ∩ I } ∪ Ij ; (4.10)

F1 = {(q,Q) | q ∈ S¬c ∩ F ∧ ∅ ⊂ Q ⊆ F ′}

∪ {(q,Q) | q ∈ Sc ∩ F ∧ ∅ ⊂ Q ⊆ F ′ ∩ I ′}

∪ {(ρ,Q) | ∅ ⊂ Q ⊆ F ′}; (4.11)

F2 = {(q, {q
′}) | q ∈ Sc ∩ F ∧ q

′ ∈ F ′}; (4.12)

Fπ = {(q, ∅) | q ∈ S¬c ∩ F } ∪ Fj ; (4.13)

δP(S ′) = {(P , `,Q) | P ⊆ S ′ ∧ ` ∈ Σπ ∧Q ⊆ S ′ ∧

(∀p p < P ∨ (∃q q ∈ Q ∧ (p, `,q) ∈ δ ′)) ∧
(∀q q < Q ∨ (∃p p ∈ P ∧ (p, `,q) ∈ δ ′))}; (4.14)

δ1,b = {((p, P ∪ P
′), `, (q,Q)) |

(p, P ∪ P ′) ∈ Sπ ∧ P
′ ⊆ F ′ ∧ (q,Q) ∈ Sπ ∧

((p, `,q) ∈ δ ∨ ((p = ρ ∨ p ∈ F ) ∧ q = ρ)) ∧

(P , `,Q) ∈ δP(S ′)}; (4.15)
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δ2,b = {((p, P), `, (q,Q ∪Q
′)) |

(p, P) ∈ Sπ ∧Q
′ ⊆ I ′ ∧ (q,Q ∪Q ′) ∈ Sπ ∧

((p, `,q) ∈ δ ∨ (p = ρ ∧ (q = ρ ∨ q ∈ I ))) ∧

(P , `,Q) ∈ δP(S ′)}; (4.16)

δ1,c = {((p, P ∪ P
′), `, (q,Q ∪ {q′})) |

(p, P ∪ P ′) ∈ Sπ ∧ (q,Q ∪ {q
′}) ∈ Sπ ∧

(p, `,q) ∈ δ ∧ (P , `,Q) ∈ δP(S ′) ∧

q ∈ Sc ∧ q
′ ∈ I ′ ∧ P ′ ⊆ F ′}; (4.17)

δ2,c = {((p, P ∪ {p
′}), `, (q,Q ∪Q ′)) |

(p, P ∪ {p ′}) ∈ Sπ ∧ (q,Q ∪Q
′) ∈ Sπ ∧

(p, `,q) ∈ δ ∧ (P , `,Q) ∈ δP(S ′) ∧

p ∈ Sc ∧ p
′ ∈ F ′ ∧Q ′ ⊆ I ′}; (4.18)

δπ = δ j,b ∪ δ j,c ; (4.19)

γπ = {((q,Q), c
′) | (q,Q) ∈ Sπ ∧

(c ′ ∈ γ (q) ∨ (∃q′ q′ ∈ Q ∧ c ′ ∈ γ ′(q′)))}, (4.20)

in which ρ < S ∪ S ′ is a fresh state, P(S) = {S ′ | S ′ ⊆ S} is the power set of set S , and we use

the values 1 and 2 and the variable j, j ∈ {1, 2}, to indicate that de�nitions depend on the

type j of the condition c = πj [e
′].

We shall prove that Aπ satis�es the necessary properties.

1. Either d > cdepth(Aπ ) or both d = cdepth(Aπ ) and cweight(A) > cweight(Aπ ).

Observe that cdepth(A ′) < cdepth(A). Hence, the property follows directly from (4.7),

the de�nition of cdepth(·), and the de�nition of cweight(·).

2. Let C = (V, Σ,E) be a labeled chain and let c = π1[e
′]. If (m,n) ∈ [[A]]C , then there

exists v ∈ V such that (m,v) ∈ [[Aπ ]]C .

3. Let C = (V, Σ,E) be a labeled chain and let c = π2[e
′]. If (m,n) ∈ [[A]]C , then there

exists v ∈ V such that (v,n) ∈ [[Aπ ]]C .

We only prove Property 2; Property 3 can be proven in an analogous way. We show that

a single run of A is simulated by a single run of Aπ that, at the same time, also simulates

the runs of A ′ starting at every state q ∈ S with c ∈ γ (q).

Let (q1,n1) . . . (qz ,nz ) be an id-transition-free run with q1 ∈ I and qz ∈ F proving

(n1,nz ) ∈ [[A]]C . Now consider a state qi , 1 ≤ i ≤ z, such that c ∈ γ (qi ). Observe

that, by (4.1), we have c ∈ γ (qi ) if and only if qi ∈ Sc . As ni satis�es qi , we must have

(ni ,ni ) ∈ [[c]]C . Hence, by the semantics of π1[·], there must exist an id-transition-free run

(pi ,ni ) . . . (p
′
i ,mi ) of A ′ on C with pi ∈ I

′
and p ′i ∈ F ′ proving that a node mi exists such

that (ni ,mi ) ∈ [[A
′]]C .

For every state qi with qi ∈ Sc we choose such a run (pi ,ni ) . . . (p
′
i ,mi ) of A ′ on C with

pi ∈ I
′

and p ′i ∈ F . Let d be the maximum distance between, on the one hand, node n1, and,

on the other hand, node nz and the nodesmi in these runs. For every 1 ≤ k ≤ d , we de�ne

Rk = {s | (s,nk ) is part of a run (pi ,ni ) . . . (p
′
i ,mi ) with 1 ≤ i ≤ z and qi ∈ Sc },
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we de�ne rk = qk if k ≤ z and rk = ρ if k > z. Let n1`1 . . .nd be the directed path from node

n1 to the node at distance d in chain C. We prove that ((r1,R1),n1) `1 . . . ((rd ,Rd ),nd ) is a

run of Aπ on C, with (r1,R1) ∈ Iπ and (rd ,Rd ) ∈ Fπ , in the following steps:

(a) For every k , 1 ≤ k ≤ d , we have (rk ,Rk ) ∈ Sπ . If 1 ≤ k ≤ z, then (rk ,Rk ) ∈ S × P(S
′).

If rk ∈ Sc , we have (pk ,nk ) ∈ I
′

and, hence, pk ∈ Rk . By (4.3), we have (rk ,Rk ) < S¬1,

and, hence, (rk ,Rk ) ∈ Sπ . For k > z, we have (rk ,Rk ) ∈ {ρ} × P(S
′). By the de�nition

of Rk , we must have Rk , ∅. Hence, we conclude, (rk ,Rk ) ∈ Sπ .

(b) We have (r1,R1) ∈ Iπ . By construction, we have r1 = q1 and q1 ∈ I . If r1 < Sc , then

R1 = ∅ and, by (4.10), (r1,R1) ∈ Iπ . If r1 ∈ Sc , then R1 = {p1}, with p1 ∈ I
′
, and, by (4.8),

(r1,R1) ∈ Iπ .

(c) For every k , 1 ≤ k ≤ d , nk satis�es (rk ,Rk ). If 1 ≤ k ≤ z, then rk = qk and nk satis�es

qk . Hence, we also have (nk ,nk ) ∈ [[conditions(γ (qk ) \ {c})]]C . By construction of Rk ,

we have, for every s ∈ Rk , that nk satis�es s . Hence, by (4.20), nk satis�es (rk ,Rk ).

(d) For every k , 1 ≤ k < d , ((rk ,Rk ), `k , (rk+1,Rk+1)) ∈ δπ . Construct sets P and Q in the

following way:

P = {p | p ∈ Rk ∧ (∃q q ∈ Rk+1 ∧ (p, `k ,q) ∈ δ
′)};

Q = {q | q ∈ Rk+1 ∧ (∃p p ∈ Rk ∧ (p, `k ,q) ∈ δ ′)}.
Let P ′ = Rk − P . The set of states P contains those states of Rk with a successor state
in Rk+1: for every p ∈ P , there exists a q ∈ Rk+1 such that (p, `k ,q) ∈ δπ . Hence, P ′

contains all states from Rk for which there is no successor state in Rk+1. By (4.15)

and (4.17), the states in P ′ must all be �nal states. We now prove that this restriction

on P ′ holds. Let s ∈ P ′ be a state. By the construction of P , there does not exist a state

s ′ ∈ Rk+1 such that (s, `k , s
′) ∈ δ ′. Hence, s can only be a state used at the end of a run

(pi ,ni ) . . . (p
′
i ,mi ), 1 ≤ i ≤ k , with p ′i ∈ F

′
and s = p ′i . We conclude that P ′ ⊆ F ′.

Let Q ′ = Rk+1 −Q . The set of states Q contains those states of Rk+1 with a predecessor
state in Rk : for every q ∈ Q , there exists a p ∈ Rk such that (p, `k ,q) ∈ δπ . Hence, Q ′

contains all states from Rk+1 for which there is no predecessor state in Rk . By (4.15)

and (4.17), there can only be at most a single state in Q ′, which must be an initial

state. We now prove that these restrictions on Q ′ hold. Let s1, s2 ∈ Q
′

be states. By

the construction of Q , there does not exist a state s ′ ∈ Rk such that (s ′, `k , s1) ∈ δ
′

or

(s ′, `k , s2) ∈ δ
′
. Hence, both s1 and s2 can only be states used at the begin of the run

(pk ,ni ) . . . (p
′
k ,mi ) with pk ∈ I

′
and we have s1 = pk+1 = s2 = pk+1. We conclude that

Q ′ contains at most a single state, which must be an initial state.

If rk+1 = ρ, then, by construction of Rk+1, we have, for every s ∈ Rk+1 and every

1 ≤ i ≤ z with qi ∈ Sc , (s,nk+1) , (pi ,ni ). Hence, s is not at the begin of any run

(pi ,ni ) . . . (p
′
i ,mi ). It follows that there exists a state s ′ ∈ S ′ and a run (pi ,ni ) . . . (p

′
i ,mi )

containing (s ′,nk ) `k (s,nk+1). Hence, s ′ ∈ P , s < Q ′, and Q ′ = ∅. If rk ∈ Sc , then,

by construction, we have pk ∈ Rk and pk ∈ I ′. If 1 ≤ k < z, then rk = qk , rk+1 =

qk+1, and (qk , `,qk+1) ∈ δ . We use (4.15) if Q ′ = ∅ and (4.17) if Q ′ , ∅ to conclude

((rk ,Rk ), `k , (rk+1,Rk+1)) ∈ δπ . Else, if k = z, then rk = qk , rk+1 = ρ, and qk ∈ F . Due

to rk+1 = ρ, we have Q ′ = ∅. We use (4.15) to conclude ((rk ,Rk ), `k , (rk+1,Rk+1)) ∈ δπ .

Finally, if k > z, then rk = ρ = rk+1. Due to rk+1 = ρ, we again have Q ′ = ∅. We

use (4.15) to conclude ((rk ,Rk ), `k , (rk+1,Rk+1)) ∈ δπ .
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(e) We have (rd ,Rd ) ∈ Fπ . If rd , ρ then d = z and qz ∈ F . If Rd = ∅ then, by (4.13),

we have (rd ,Rd ) ∈ Fπ . If Rd , ∅, then, as nz = nd is the node with maximum node

distance d to n1 used in any of the runs (pi ,ni ) . . . (p
′
i ,mi ) with 1 ≤ i ≤ z and qi ∈ Sc ,

we must also have, for every s ∈ Rd , s ∈ F ′. If qz ∈ Sc , then, by construction, pz ∈ Rd
with pz ∈ I

′
. By (4.11) we conclude that, in all these cases, we have (rd ,Rd ) ∈ Fπ .

We conclude that ((r1,R1),n1) `1 . . . ((rd ,Rd ),nd ) is a run of Aπ on C with (r1,R1) ∈ Iπ
and (rd ,Rd ) ∈ Fπ , and, hence (n1,nd ) ∈ [[Aπ ]]C .

4. Let C = (V, Σ,E) be a labeled chain and let c = π1[e
′]. If (m,n) ∈ [[Aπ ]]C , then there

exists a v ∈ V such that (m,v) ∈ [[A]]C .

5. Let C = (V, Σ,E) be a labeled chain and let c = π2[e
′]. If (m,n) ∈ [[Aπ ]]C , then there

exists a v ∈ V such that (v,n) ∈ [[A]]C .

We only prove Property 4; Property 5 can be proven in an analogous way. We show that

a single run ofAπ simulates a single run ofA and, at the same time, also simulates the runs

of A ′ starting at every state q ∈ S with c ∈ γ (q).

Let ((q1,Q1),n1) `1 . . . ((qz ,Qz ),nz ) be an id-transition-free run of Aπ on C proving

(n1,nz ) ∈ [[C]]Aπ . Hence, we have (q1,Q1) ∈ Iπ and (qz ,Qz ) ∈ Fπ . Choose i such that

1 ≤ i ≤ z, qi , ρ, and i = z or qi+1 = ρ. We prove that (q1,n1) `1 . . . (qi ,ni ) is a run of A on

C with q1 ∈ I and qi ∈ F , in the following steps:

(a) We have q1 ∈ I . By (4.8) and (4.10), we have (q1,Q1) ∈ Iπ only if q1 ∈ I .

(b) For all k , 1 ≤ k ≤ i , nk satis�es qk . We have nk satis�es (qk ,Qk ). By (4.20), node nk
satis�es all conditions in γ (qk ) \ {c}. Hence, if qk < Sc , then nk satis�es qk . If qk ∈ Sc ,

then, by (4.3), there exists a state p1 ∈ Qk such that p1 ∈ I
′
. We prove that there are

states p1 ∈ Qk , . . . ,pd ∈ Qk+d such that (p1,nk ) `k . . . (pd ,nk+d ) is a run of A ′ on C

with p1 ∈ I
′

and pd ∈ F ′. We do so by induction on the length of the run. The base

case is (p1,nk ) and, as p1 ∈ Qk , this case is already proven. Thus assume we have a

run (p1,nk ) `k . . . (pe ,nk+e ) of A ′ on C with 1 ≤ e < d and pe < F ′. We show that

we can extend this run to a run of length e + 1. Observe that (4.19) depends on (4.14),

via (4.15) and (4.17). If qe+1 , ρ and pe < F , then (4.15) or (4.17) applies, and, hence,

by (4.14), there must be a state pe+1 ∈ Qk+e+1 such that (pe , `k+e ,pe+1) ∈ δ
′
. Else, if

qe+1 = ρ and pe < F , then (4.15) applies, and, hence, by (4.14), there must be a state

pe+1 such that (pe , `k+e ,pe+1) ∈ δ
′
. We observe that this construction will terminate,

as the original run has a �nite length z. Hence, at some point we encounter a state

pd ∈ F ′. We conclude (nk ,nk+d ) ∈ [[A
′]]C , and, by the semantics of π1[·], we also

conclude (nk ,nk ) ∈ [[c]]C . Hence, nk satis�es all conditions in γ (qk ) and, in particular,

nk satis�es qk .

(c) For all 1 ≤ k < i , (qk , `k ,qk+1) ∈ δ . We have qk , ρ and qk+1 , ρ, and, by the

de�nition of a run, ((qk ,Qk ), `k , (qk+1,Qk+1)) ∈ δπ . When qk , ρ and qk+1 , ρ, then

each of (4.15) and (4.17) guarantees that (qk , `k ,qk+1) ∈ δ .

(d) We have qi ∈ F . We distinguish three cases. If z = i and Qi = ∅, then, by (4.13),

(qi ,Qi ) ∈ Fπ implies qi ∈ F . If z = i and Qi , ∅, then, by (4.11), (qi ,Qi ) ∈ Fπ
implies qi ∈ F and Qi ⊆ F ′. If z , i , then we must have qi+1 = ρ. Hence, by (4.15),

((qi ,Qi ), `i , (qi+1,Qi+1)) ∈ δπ implies qi ∈ F .

Hence, we conclude (n1,ni ) ∈ [[A]]C .
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6. Aπ is a {π }-free and id-transition-free condition automaton. The condition automata
Aπ is acyclic whenever A is acyclic and {∗}-free.

By (4.7) and by (4.19) we immediately conclude that Aπ is a {π }-free and id-transition-

free condition automaton and Aπ is {∗}-free whenever A is {∗}-free. If A is acyclic and

{∗}-free, then we can use the proofs of Property 4 or 5 to translate every run of Aπ into

runs of A and A ′. Using this translation, a run of Aπ can only be unbounded in length if

runs of A or of A ′ can be unbounded in length. Hence, Aπ must be acyclic whenever A

and A ′ are acyclic. �

Lemma 4.11 only removes a single projection operator. To fully remove projections, we

repeat these removal steps until no projections are left. This leads to the following result:

Theorem 4.12. Let F ⊆ {π , ∗}. On labeled chains, we have N(F) �bool N(F − {π }).

Proof. We use Proposition 4.2 to translate an expression to a condition automaton A, then

we repeatedly apply Lemma 4.11 to remove conditions, and, �nally, we use Proposition 4.3

to translate the resultant {π }-free automaton back to an expression in N(F − {π }). Observe

that only a �nite number of condition removal steps on A can be made, as Lemma 4.11

guarantees that either cdepth(A) strictly decreases or else cdepth(A) does not change and

cweight(A) strictly decreases. �

We observed that Theorem 4.10 does not strictly depend on the graph being a tree. A

similar observation holds for Theorem 4.12: for Boolean queries, we can remove a π -condition

whenever the condition checks a part of the graph that does not branch. This is the case

for π2-conditions on trees, as trees do not have branching in the direction from a node

to its ancestors. For π1, this observation does not hold, as is illustrated by the proof of

Proposition 3.5.

Proposition 4.13. Let F ⊆ {∗}. On labeled trees, we have N(F ∪ {π2}) �bool N(F), but
N(F ∪ {π1}) �bool N(F).



CHAPTER 5

Local queries and condition tree queries12

In this chapter, we complete the study on the relative expressive power among the local

relation algebra fragments, the fragments N(F), F ⊆ {a,π ,π ,∩,−}. In Figure 5.1, we

visualize these relationships. In Chapter 3, we have already proven the cases in which we

have separations. In Chapter 4, we have already proven the cases in which either intersection

or di�erence are redundant for the downward local fragments. Hence, the only remaining

results to prove are the redundancy of either intersection or di�erence in various non-

downward local fragments. To prove these redundancies we introduce condition tree queries,
a generalization of the tree queries of Wu et al. [97] (see also Proposition 3.36). The step

from the tree queries of Wu et al. to condition tree queries is similar to the step from, on the

one hand, �nite automata that cannot deal with node expression such as projections and

coprojections, and, on the other hand, the condition automata of Chapter 4 that can deal

with these node expression.

5.1 Organization

First, in Section 5.2 we introduce the condition tree queries and we also prove the close

relationships between these condition tree queries and fragments of N(a,π ,π ). In Sec-

tions 5.3–5.5, we use the condition tree queries to prove several redundancies of intersection

and di�erence for path queries on trees, Boolean queries on trees, and, �nally, path queries

on chains. The results for Boolean queries on chains follow from combining the Boolean

results on trees with the path results on chains.

5.2 Condition tree queries

As outlined, we �rst de�ne condition tree queries syntactically and semantically:

De�nition 5.1. A condition tree query Q is a tuple Q = (T ,C, s, t,γ ), where T = (V, Σ,E)
is a labeled tree, C is a set of node expressions that represent node conditions, s ∈ V is the

source node, t ∈ V is the target node, and γ ⊆ V ×C is the node-condition relation. We write

γ (n) to denote the set {e | (n, e) ∈ γ }.13
Let T ′ = (V ′, Σ,E′) be a tree. Then (m,n) ∈ [[Q]]T′

consists of all the node pairs (m,n) ∈ V ′×V ′ for which there exists a mapping f : V → V ′

satisfying the following conditions:

12
The results in this chapter are partly based on the paper “The power of Tarski’s relation algebra on trees” [57].

13
We observe that the condition tree queries without node conditions are equivalent to the tree queries as de�ned

in Wu et al. [97].
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Path semantics
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N(a, π , π , ∩)
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Boolean semantics
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N(∩, −)
N(a, π , ∩)
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Chains
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Figure 5.1: Hasse diagrams that visualize the relationships between the local fragments of the

relation algebra (N(a,π ,π ,∩,−)). Each node represents a minimally sized fragment and the

superscripts on the left-hand side represent all maximally sized fragments that are equivalent

to the fragment represented by the node. Arrows represent strict subsumption relations.
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`2 `3

`1 `3

`1 `2

s t

{π 2[`3]}

Figure 5.2: A condition tree query with a single condition.

(i) f (s) =m and f (t) = n;

(ii) for all v ∈ V and e ∈ γ (n), (f (v), f (v)) ∈ [[e]]T′ ; and

(iii) for all ` ∈ Σ and (v,w) ∈ E (`), (f (v), f (w)) ∈ E′ (`).

Intuitively speaking, condition tree queries de�ne intentional relationships between pairs

of nodes (m,n) by specifying a tree pattern that connects source nodem and target node n.

Example 5.1. The condition tree query Q in Figure 5.2 selects a node pair (s, t) if the following

tree traversal steps are all successful: (1) from s, go up via two edges labeled `1 and `2;

(2) check if the node where we have arrived satis�es the node expression π 2[`3]; (3) from

there, go down via two edges labeled `3, arriving at t; (4) check if t has outgoing edges

labeled `1 and `2. The condition tree query Q is path-equivalent to the N(a,π ) expression

`1
a ◦ `2

a ◦ π 2[`3] ◦ `3 ◦ `3 ◦ π1[`1] ◦ π1[`2].

In the remainder of this section, we formalize the relationship between condition tree

queries and relation algebra expressions exhibited in Example 5.1. Thereto, let F ⊆ {a,π ,π },
and let Qtree(F) be the class of all condition tree queries in which node conditions are

restricted to ∪-free expressions in N(F). We claim that, for F = {a,π } and F = {a,π ,π },
Qtree(F) and the class of all ∪-free expressions in N(F) path-subsume each other.

First, we show the rewrite from N(F) to a condition tree query:

Proposition 5.1. Let F ⊆ {a,π ,π } and let e be a ∪-free expression in N(F). There exists a
condition tree query Q in Qtree(F) such that e ≡path Q.

Proof. Due to e being ∪-free and in N(a,π ,π ), it is of the form t1 ◦ t2 ◦ · · · ◦ tk , in which

every ti , 1 ≤ i ≤ k , is an expression of the form ∅, id, `, `a, or fj [e
′] with ` an edge label,

f ∈ {π ,π }, and j ∈ {1, 2}. Algorithm produceTQ, presented in Figure 5.3, will construct the

path-equivalent condition tree query from t1 ◦ · · · ◦ tn that satis�es this Proposition. It is

straightforward to prove that the main for-loop satis�es the loop invariant “the structure

((V, Σ,E),C, s, current,γ ) is a condition tree query in Qtree(F) and is path-equivalent to

id ◦ t1 ◦ · · · ◦ ti−1.” Hence, termination of the Algorithm yields the desired query Q. �

For the translation from condition tree queries to ∪-free expressions, we shall assume

that the condition tree queries are restricted to up-down queries.

De�nition 5.2. A condition tree query Q = (T ,C, s, t,γ ) is an up-down query if all edges of

T are on the unique path from s to t not taking into account the direction of the edges.
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Algorithm produceTQ(t1 ◦ · · · ◦ tk , Σ):
1: s := a fresh tree node

2: V,E,C,γ (s), current := {s}, {` 7→ ∅ | ` ∈ Σ}, ∅, ∅, s
3: for ti in [t1, . . . , tk ] do
4: if ti is of the form ` then
5: n := a fresh tree node

6: V, ` (E) , current := V ∪ {n}, ` (E) ∪ {(current,n)},n
7: else if ti is of the form `a then
8: if not ∃n∃`′ with (n, current) ∈ E (`′) then
9: n := a fresh tree node

10: V, ` (E) , current := V ∪ {n}, ` (E) ∪ {(n, current)},n
11: else if ∃n∃`′ with ` = `′ and (n, current) ∈ E (`′) then
12: current := n
13: else #(∃n∃`′ with ` , `′ and (n, current) ∈ E (`′)).
14: return produceTQ(∅, Σ)

15: else #(t is a node expression).

16: C,γ (current) := C ∪ {ti },γ (current) ∪ {ti }
17: return ((V, Σ,E),C, s, current,γ )

Figure 5.3: Algorithm produceTQ that translates ∪-free expressions in N(a,π ,π ) to path-

equivalent condition tree query (provided a set Σ of possible edge labels).

`1

`2

s

t

{π 2[`3]}

`3

`1

`2

`2

`1`2

s

t{π 2[`3]}

`1 `2

`1

s

t

{π2[`3]}

{π1[`2]}{π1[`2 ◦ π 2[`3]]}

Figure 5.4: The condition tree query on the left is up-down. The condition tree query in the

middle is not, but this query is path-equivalent to the up-down query on the right.

Example 5.2. An up-down query can look like a chain if the target node is an ancestor

of the source node, or vice versa, as illustrated by Figure 5.4, left. This up-down query is

path-equivalent to π 2[`3] ◦ `2
a ◦ `1

a
.

The condition tree query in the middle is not up-down, but is path-equivalent to the

up-down tree query on the right. Observe that the right query is obtained by pushing parts

of the tree traversal described by the middle query into node conditions. The middle and

right queries are path-equivalent to π1[`2 ◦ π 2[`3]] ◦ `1
a ◦ π2[`3] ◦ `2 ◦ π1[`2] ◦ `1.

As illustrated in Example 5.2, we can rewrite a condition tree query to an up-down query

by pushing into node conditions those parts of the condition tree query not on the path from

source to target. The �rst step in this is to push all node conditions of a node into a single

expression, for which we de�ne the condition expression.
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De�nition 5.3. Let ((V, Σ,E),C, s, t,γ ) be a condition tree query and let n ∈ V . We de�ne

the condition expression conditions(n) of n by

conditions(n) =
⋂

e ∈γ (n)

e

when γ (n) , ∅ and conditions(n) = id otherwise. As every expression in γ (n) is a node

expression, the expression conditions(n) is also a node expression. Observe that if γ (n) =
{e1, . . . , ek }, then conditions(n) ≡path e1 ◦ · · · ◦ ek . We usually assume that conditions(n) is

written as such a composition of terms instead of an intersection of terms.

We notice that the condition expressions for tree queries are conceptually strongly related

to the condition expressions for condition automata (see De�nition 4.2).

Lemma 5.2. Let {π } ⊆ F ⊆ {a,π ,π } and let Q be a condition tree query in Qtree(F). There
exists an up-down query Q ′ in Qtree(F) such that Q ≡path Q

′.

Proof. Let Q = (T ,C, s, t,γ ) with T = (V, Σ,E). If Q is not up-down, then there must exist

a node n ∈ V − {s, t} such that n is a leaf node or such that n is the root node and has only a

single child. In both cases, we are able to remove n from Q. First, we consider the leaf-prune
of leaf node n. Let m ` n be the edge in T that connects n to its parent m. Remove n from

the tree and add the node expression π1[` ◦ conditions(n)] to C and γ (m). Let Q ′′ be the

result of the leaf-prune. By construction, we have Q ′′ in Qtree(F) and Q ≡path Q
′′

. Next, we

consider the root-prune of root node n. Let n `m be the edge in T that connects n to its single

child m. Remove n from the tree and add the node expression π2[conditions(n) ◦ `] to C and

γ (m). Let Q ′′ be the result of the root-prune. By construction, we have Q ′′ in Qtree(F) and

Q ≡path Q
′′

. By repeatedly applying leaf-pruning and root-pruning until both are no longer

possible, we end up with an up-down query that satis�es the Lemma. �

As illustrated in Example 5.2, an up-down query can be translated straightforwardly into

a path-equivalent relation algebra expression, provided we have the converse operator (
a

) at

our disposal:

Proposition 5.3. Let {a} ⊆ F ⊆ {a,π ,π } and let Q be a condition tree query in Qtree(F).
There exists a ∪-free expression e in N(F) such that e ≡path Q.

Proof. Due to Lemma 5.2, we may assume, without loss of generality, that Q = (T ,C, s, t,γ )
is an up-down query. Hence, we can represent Q by two paths r `s,1 m1 · · · `s,u s and

r `t,1 n1 · · · `t,d t. Observe that if r = s, then the �rst path reduces to just r and if r = t, then

the second path reduces to just r . The expression

conditions(s) ◦ `s,ua ◦ · · · ◦ conditions(m1) ◦ `s,1
a ◦ conditions(r ) ◦

`t,1 ◦ conditions(n1) ◦ · · · ◦ `t,d ◦ conditions(t)

is in N(F) and is path-equivalent to Q. �

5.3 Path queries on trees

First, we show the redundancy of intersection in the presence of projection. Consider the

following example:
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`1 `2

`3

{π1[`2]}

` `

`1 `2

`3

{π 2[`]}

`1 `2

`3

{π2[π 2[`] ◦ `]}

`1 `2

`3

{π2[π 2[`] ◦ `]}

{π1[`2]}

Figure 5.5: The step-by-step intersection of the two up-down queries on the left, resulting in

the up-down query on the right.

Q1:

`s1,1

`s1,2

`s1,u1

`t1,1

`t1,2

`t1,d1

r1

m1,1

m1,2

m1,u1

n1,1

n1,2

n1,d1

Q2:

`s2,1

`s2,2

`s2,u2

`t2,1

`t2,2

`t2,d2

r2

m2,1

m2,2

m2,u2

n2,1

n2,2

n2,d2

Figure 5.6: Up-down queries Q1 and Q2, as used in the proof of Proposition 5.4.

Example 5.3. Suppose we want to compute the intersection of the two up-down queries in

Figure 5.5, left. Since the two up-down queries have di�erent depths, a pair of nodes of a tree

can only be in the result of the intersection of the two queries on that tree if the children

of the root of the second query are mapped to the same node. Hence, we can replace the

second up-down query by the one shown in the middle. Since both queries now have the

same shape and corresponding edges have the same label, the intersection is easily obtained

by merging the node conditions, resulting in the up-down query on the right.

Next, we show that the steps taken in Example 5.3 are sound:

Proposition 5.4. Let {π } ⊆ F ⊆ {a,π ,π } and let Q1 and Q2 be condition tree queries
in Qtree(F). There exists a condition tree query Q such that, for every tree T , [[Q]]T =
[[Q1]]T ∩ [[Q2]]T .

Proof. Let Q1 = (T1,C1, s1, t1,γ1) and Q2 = (T2,C2, s2, t2,γ2) be condition tree queries. By

Lemma 5.2, we can assume, without loss of generality, that Q1 and Q2 are up-down queries.

As Q1 and Q2 are up-down queries, we can represent Q1 by two paths r1 `s1,1m1,1 · · · `s1,u1
s1

and r1 `t1,1n1,1 · · ·`t1,d1
t1 and Q2 by two paths r2 `s2,1m2,1 · · ·`s2,u2

s2 and r2 `t2,1n2,1 · · ·`t2,d2
t2,

as visualized by the two tree queries in Figure 5.6.

LetT ′ be an arbitrary tree. Ifu1−d1 , u2−d2, then [[Q1]]T′∩[[Q2]]T′ = ∅. Ifu1−d1 = u2−d2,

then we distinguish two cases:

1. u1 , u2 and d1 , d2. By symmetry, assume u2 > u1. Let ∆ = d2 − d1 = u2 − u1.
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Now assume that (v,w) ∈ [[Q1]]T′ ∩ [[Q2]]T′ . Consider the mapping f from Q2 to T ′ that

shows (v,w) ∈ [[Q2]]T′ . Due to (v,w) ∈ [[Q1]]T′ , this mapping f must map the �rst ∆
nodes on the paths r2 . . . s2 and r2 . . . t2 to the same ∆ nodes in T ′. Hence, if for some i ,
1 ≤ i ≤ ∆, `s2,i , `t2,i , then [[Q1]]T′ ∩ [[Q2]]T′ = ∅. Thus, assume, for all i , 1 ≤ i ≤ ∆, that

`s2,i = `t2,i . We can embed this restriction on the nodes m2,1, . . . ,m2,∆ and n2,1, . . . ,n2,∆ by

replacing Q2 by the up-down query Q ′
2

represented by two paths r `s2,∆+1 m2,∆+1 · · · `2,u2
s2

and r `t2,∆+1 n2,∆+1 · · · `t2,d2
t2 with

γ (r ) = π2[conditions(r2) ◦ `s2,1 ◦ conditions(m2,1) ◦ conditions(n2,1) ◦

· · · ◦ `s2,∆ ◦ conditions(m2,∆) ◦ conditions(n2,∆)].

On Q1 and Q ′
2

the conditions of the next case apply.

2. u1 = u2 and d1 = d2 In this case, [[Q1]]T′ ∩ [[Q2]]T′ = ∅ whenever `s1,i , `s2,i , 1 ≤ i ≤
u1 = u2, or `t1,i , `t2,i , 1 ≤ i ≤ d1 = d2. In all other cases, we de�neQ = (T1,C1∪C2, s1, t1,γ ′),
in which

γ ′(s1) = γ (s1) ∪ γ (s2);

γ ′(t1) = γ (t1) ∪ γ (t2);

γ ′(r1) = γ (r1) ∪ γ (r2);

γ ′(m1,i ) = γ1(m1,i ) ∪ γ2(m2,i ) with 1 ≤ i ≤ u1 = u2;

γ ′(n1,i ) = γ1(n1,i ) ∪ γ2(n2,i ) with 1 ≤ i ≤ d1 = d2. �

We can use Proposition 5.4 directly to remove intersection at the top level in ∪-free

expressions, this via a translation to condition tree queries. To remove other occurrences of

intersection, a straightforward induction argument on the structure of expressions su�ces.

Theorem 5.5. Let {a,π } ⊆ F ⊆ {a,π ,π ,∩}. On labeled trees, every ∪-free expression in
N(F) is path-equivalent to a ∪-free expression in N(F − {∩}).

Proof. The proof is by induction on the length of e . The base cases are the atoms, which are

all already inN(F − {∩}). We assume that, for all ∪-free expressions e ′ inN(F) of length at

most i , there exists a ∪-free expression e ′′ in N(F − {∩}) such that e ′ ≡path e ′′.
Let e be a ∪-free expression inN(F) and not inN(F−{∩}) of length i+1. We distinguish

the following three cases:

1. e = e1 ◦ e2. Use the inductive hypothesis on e1 and e2 to obtain ∪-free expressions e ′
1

and e ′
2

in N(F − {∩}) with e1 ≡path e ′
1

and e ′
2
, e1 ≡path e ′

2
. Hence, we have e ≡path e ′

1
◦ e ′

2
.

2. e = fj [e
′] with f ∈ {π ,π } and j ∈ {1, 2}. Use the induction hypothesis on e ′ to obtain

a ∪-free expression e ′′ in N(F − {∩}) with e ′ ≡path e ′′. Hence, we have e ≡path fj [e
′′].

3. e = e1 ∩ e2. Use the inductive hypothesis on e1 and e2 to obtain ∪-free expressions e ′
1

and e ′
2

inN(F − {∩}) with e1 ≡path e ′
1

and e2 ≡path e ′
2
. By Proposition 5.1 and Lemma 5.2, we

can construct up-down queries Q1 and Q2 in Qtree(F−{∩})with e ′
1
≡path Q1 and e ′

2
≡path Q2.

By Proposition 5.4, we can construct up-down query Q in Qtree(F − {∩}) such that, for

every tree T , [[Q]]T = [[Q1]]T ∩ [[Q2]]T . Finally, by Proposition 5.3, we can construct a ∪-free

expression e ′ in N(F − {∩}) such that e ′ ≡path Q. By the above construction, we conclude

e ≡path e ′. �
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Combining Theorem 5.5 with Lemma 3.2 (i) yields the redundancy of intersection for

local queries, as presented in Figure 5.1.

Corollary 5.6. Let {a,π } ⊆ F ⊆ {a,π ,π ,∩}. On labeled trees, we have N(F) ≡path N(F −

{∩}).

5.4 Boolean queries on trees

Fletcher et al. [31–34, 87] already showed that, on graphs, the converse operator
a

is in

many cases subsumed by the projection operators (Proposition 3.34). On labeled trees, this

result can be strengthened by showing that projections and the converse operator have

equivalent expressive power in Boolean queries. To prove this, we need an intermediate

result on Qtree():

Proposition 5.7. For every condition tree query Q in Qtree(), there exists a ∪-free expression
in N(a) such that Q ≡bool e .

Proof. Let Q = ((V, Σ,E),C, s, t,γ ) and let r be the root node of tree (V, Σ,E). Construct

Qr = ((V, Σ,E),C, r , r ,γ ). Observe that Qr in Qtree() and we have, for every tree T , [[Q]]T ,
∅ if and only if [[Qr ]]T , ∅. Hence, we have Q ≡bool Qr .

Before we translate Qr to an expression in N(a), we reduce Qr to a single node. We do

so by a leaf-prune construction based on the construction of Lemma 5.2. Let n ∈ V−{r } be a

leaf node and letm ` n be the edge in T that connects n to its parentm. As conditions(n) is a

node expression, we have π1[` ◦ conditions(n)] ≡path ` ◦ conditions(n) ◦ `a. If conditions(n)
in N(a), then also ` ◦ conditions(n) ◦ `a in N(a). Remove n from the tree and add the node

expression ` ◦ conditions(n) ◦ `a to C , γ (m), and let Q ′′ be the result. By construction, we

have Q ′′ in Qtree(
a) and Qr ≡path Q

′′
.

Let Q ′ be a condition tree query in Qtree(
a) obtained by repeating the above leaf-prune

operations on Qr until only the root node r ′ remains. By construction, we have Qr ≡path

Q ′ ≡path conditions(r ′). As Q ′ in Qtree(
a), we have conditions(r ′) inN(a) and we conclude

Q ≡bool conditions(r ′). �

Next, we observe that the class of condition tree queries Qtree(), which consists of all

condition-free condition tree queries, is equivalent to the tree queries of Wu et al. [97,

Theorem 4.1]. Hence, we have

Lemma 5.8 (Wu et al.). For every ∪-free expression inN(π ), there exists a condition tree query
Q in Qtree() with e ≡path Q.

Combining Proposition 5.7, Lemma 5.8, and Lemma 3.2 (i) yields the equivalence of

projection and converse for local queries, as presented in Figure 5.1.

Corollary 5.9. On labeled trees, we have N(π ) ≡bool N(
a).

5.5 Path queries on chains

Figure 5.1 shows two main redundancies on chains that are not present on trees: the equiv-

alence of projection to converse, which we already proved in Proposition 3.13, and the

redundancy of di�erence in the presence of coprojection. For proving the redundancy of

di�erence, we once again use condition tree queries. When querying trees, we have already
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`1

`2 `2

`3

`3

s

t

{π 1[`3]}

`2 `2

`3

s

t

{π2[`1]}

{π1[`3 ◦ π 1[`3]]}

`3

s

t

{π2[π2[`1] ◦ `2]}

{π1[`3 ◦ π 1[`3]]}

Figure 5.7: A condition tree query on the left, a path-equivalent up-down query in the middle,
and a chain query on the right. On chains, the chain query is path-equivalent to the other

two queries.

seen that condition tree queries can be normalized into the up-down queries. On chains, we

can normalize up-down queries further to chain queries:

De�nition 5.4. A condition tree query Q = (T ,C, s, t,γ ) is a chain query if T consists of a

single path from the root node r to the leaf node l such that {r , l} = {s, t}.

Example 5.4. Of course, every chain query is an up-down query, but not every up-down

query is a chain query. The up-down query in Figure 5.4, left, is a chain query, whereas the

up-down query in Figure 5.4, right, is not a chain query. The query in Figure 5.7, left, is a

condition tree query which is neither an up-down query nor a chain query. The query in

the middle is the up-down query path-equivalent to the query on the left. On chains, the

queries on the left and middle are path-equivalent to the chain query on the right. This path

equivalence does not hold on general trees, however. The chain query on the right is obtained

by merging the two paths in the up-down query in the middle, after which root-pruning is

applied.

As observed in Example 5.4, we can rewrite up-down queries to chain queries by merging

the two paths from the root to s and t. Next, we prove soundness of this algorithm.

Lemma 5.10. Let {π } ⊆ F ⊆ {a,π ,π } and let Q be an up-down query in Qtree(F). There
exists a chain query Q ′ in Qtree(F) such that Q ≡path Q

′ on labeled chains.

Proof. Without loss of generality, we assume that Q = (T ,C, s, t,γ ) is not yet a chain query,

but is up-down. We represent Q by two paths r `s,1 ns,1 · · · `s,u ns,u with s = ns,u and

r `t,1 nt,1 · · · `t,d nt,d with t = nt,d . As Q is not a chain query, we have r , s and r , t. Let C′

be a chain. We have [[Q]]C′ = ∅ whenever `s,i , `t,i , 1 ≤ i ≤ min(u,d).
Let ks = u and kt = d and choose z and z ′ out of s, t such that the path from r to z is at

least as long as the path from r to z ′. We have kz = max(u,d) and kz′ = min(u,d). We de�ne

Q ′′ = (C′′,C,nz,u ,nz,d ,γ
′), in which C′′ is the chain r `z,1 nz,1 · · · `z,kz nz,kz and

γ ′(r ) = γ (r );

γ ′(nz,i ) = γ (nz,i ) ∪ γ (nz′,i ) with 1 ≤ i ≤ min(u,d);

γ ′(nz,i ) = γ (nz,i ) with min(u,d) < i ≤ max(u,d).
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Q1:

`2

`2

s

t

Q2:

`2

`2

s

t {π2[`1]}

{π 1[`3]}

Figure 5.8: Two simple chain queries. The query on the left represents the query `2
a ◦ `2

a

and the query on the right represents the query π 1[`3] ◦ `2
a ◦ `2

a ◦ π2[`1].

C1:

`1

`2

`2

`3

n1

m1

C2:

`1

`2

`2

`1

n2

m2

C3:

`3

`2

`2

`3

n3

m3

Figure 5.9: Three labeled chains, each satisfying slightly di�erent conditions.

It is straightforward to verify that Q ′′ ≡path Q. The condition tree query Q ′′ is no longer

an up-down query, as the root is neither s nor t. To construct a chain query out of Q ′′, we

apply the root-prune constructions of Lemma 5.2 until the root is either s or t, resulting in

the query Q ′. By construction, Q ′ in Qtree(F), Q
′ ≡path Q, and Q ′ is a chain query. �

We introduce chain queries to help remove di�erences from expression in N(a,π ,π ,−).
Unfortunately, chain queries are not closed under di�erence, which we illustrate in the

following example.

Example 5.5. Let Q1 and Q2 be the chain queries in Figure 5.8. We can easily construct

a chain C such that [[Q1]]C − [[Q2]]C , ∅. Take, for example, the chains C1, C2, and C3 in

Figure 5.9.

We have (m1,n1) < [[Q1]]C1
− [[Q2]]C1

as m1 satis�es the node condition π 1[`3] and n1

satis�es the node condition π2[`1]. We have (m2,n2) ∈ [[Q1]]C2
− [[Q2]]C2

as m2 does not

satisfy the node condition π 1[`3] and we have (m3,n3) ∈ [[Q1]]C3
− [[Q2]]C3

as n3 does not

satisfy the node condition π2[`1]. Combining these observations leads us to conclude that

(m,n) ∈ [[Q1]]C − [[Q2]]C if the following two conditions are met: (1) (m,n) ∈ [[Q1]]C , which

is the case when a path n `2 v `2 m exists in C; and (2) m does not satisfy the node condition

π 1[`3], n does not satisfy the node condition π2[`1], or both.

Observe that the second condition is a disjunction of conditions. The standard way to

express a disjunction of conditions is by a union of queries. Indeed, the simplest expression

in N(a,π ,π ) path-equivalent to the di�erence of Q1 and Q2 is (π1[`3] ◦ `2
a ◦ `2

a) ∪ (`2
a ◦

`2
a ◦ π 2[`1]). Unfortunately, the chain queries are, by de�nition, not closed under union.

In Example 5.5, we observed that the di�erence of two speci�c chain queries can be

expressed by a �nite union of expressions (or chain queries). Next, we show that this
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observation holds in general.

Proposition 5.11. Let {π } ⊆ F ⊆ {a,π ,π } and let Q1 and Q2 be condition tree queries in
Qtree(F). There exists a �nite set of chain queries S such that, for every chain C,

⋃
Q∈S [[Q]]C =

[[Q1]]C − [[Q2]]C .

Proof. Observe that π ∈ F implies that we can express projections and we assume that π ∈ F.

Due to Lemma 5.10, we can assume, without loss of generality, that Q1 = (T1,C1, s1, t1,γ1) and

Q2 = (T2,C2, s2, t2,γ2) are chain queries. As Q1 and Q2 are chain queries, we can represent

Q1 by the path n1,0 `1,1 n1,1 · · · `1,k1
n1,k1

and Q2 by the path n2,0 `2,1 n2,1 · · · `2,k2
n2,k2

. We

distinguish the following three cases:

1. k1 , k2. Observe that (m,n) ∈ [[Q1]]C only if ‖m ↔ n‖C = k1 and (m,n) ∈ [[Q2]]C
only if ‖m ↔ n‖C = k2. Hence, [[Q1]]C and [[Q2]]C do not overlap for any chain C and we

have S = {Q1}.

2. k1 = k2 > 0 and either n1,0 = s1, n2,0 = t2 or n1,0 = t1, n2,0 = s2. We assume n1,0 = s1,

n2,0 = t2, the other case is analogous. We have (m,n) ∈ [[Q1]]C only if ‖m → n‖C > 0 and

(m,n) ∈ [[Q2]]C only if ‖m → n‖C < 0. Hence, [[Q1]]C and [[Q2]]C do not overlap for any

chain C and we have S = {Q1}.

3. k1 = k2, and either n1,0 = s1, n2,0 = s2 or n1,0 = t1, n2,0 = t2. In this case, [[Q1]]C −

[[Q2]]C = [[Q1]]C for every chain C whenever `1,i , `2,i , 1 ≤ i ≤ k1 = k2 and we have S =
{Q1}. In all other cases, we de�ne the condition tree queriesQj,e = (T1,C∪{π 1[e]}, s1, t1,γj,e )
with 1 ≤ j ≤ k1, e ∈ γ2(n2, j ), and γj,e = γ except that γj,e (n1, j ) = γ (n1, j ) ∪ {π 1[e]}. Let

S = {Qj,e | (1 ≤ j ≤ k1) ∧ (e ∈ γ2(n2, j ))}. Let C = (V, Σ,E) be a chain andm,n ∈ V . From a

straightforward analysis on the cases for which (m,n) ∈ [[Q1]]C holds while (m,n) ∈ [[Q2]]C
not holds, it follows that

⋃
Q∈S [[Q]]C = [[Q1]]C − [[Q2]]C . �

We can use Proposition 5.11 directly to remove di�erence at the top level in ∪-free

expressions, this via a translation to condition tree queries. To remove other occurrences of

di�erence, a straightforward induction argument on the structure of expressions su�ces.

Theorem 5.12. Let {a,π } ⊆ F ⊆ {a,π ,π ,∩,−}. On labeled chains, every ∪-free expression
in N(F) is path-equivalent to a �nite union of ∪-free expressions in N(a,π ).

Proof. We have F ⊆ {a,π ,−}. Hence, we assume F = {a,π ,−}. The proof is by induction

on the length of e . The base cases are the atoms, which are all already inN(a,π ). We assume

that, for all ∪-free expressions e ′ inN(F) of length at most i , there exists a �nite set of ∪-free

expressions S ′ such that

⋃
e ′′∈S ′ e

′′
in N(a,π ) and e ′ ≡path

⋃
e ′′∈S ′ e

′′
.

Let e be a ∪-free expression of length i + 1, in N(F), and not in N(a,π ). We distinguish

the following three cases:

1. e = e1◦e2. Use the inductive hypothesis on e1 and e2 to obtain sets of∪-free expressions

S1 and S2 in N(a,π ) such that e1 ≡path

⋃
e ′

1
∈S1

e ′
1

and e2 ≡path

⋃
e ′

2
∈S2

e ′
2
. Let S = {e ′

1
◦ e ′

2
|

e ′
1
∈ S1 ∧ e

′
2
∈ S2}. The set S is a �nite set of ∪-free expressions in N(a,π ) and we have

e ≡path

⋃
e ′∈S e ′.

2. e = π j [e
′] with j ∈ {1, 2}. Use the induction hypothesis on e ′ to obtain the set

of ∪-free expressions S ′ = {e ′
1
, . . . , e ′k } in N(a,π ) such that e ′ ≡path

⋃
1≤i≤k e ′i . Let S =
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{π j [e
′
1
] ◦ · · · ◦π j [e

′
k ]}.

14
The set S is a �nite set of ∪-free expressions inN(a,π ) and we have

e ≡path

⋃
e ′∈S e ′.

3. e = e1−e2. Use the inductive hypothesis on e1 and e2 to obtain sets of∪-free expressions

S1 and S2 in N(a,π ) such that e1 ≡path

⋃
e ′

1
∈S1

e ′
1

and e2 ≡path

⋃
e ′

2
∈S2

e ′
2
. Observe that

e ≡path

( ⋃
e ′

1
∈S1

e ′
1

)
−

( ⋃
e ′

2
∈S2

e ′
2

)
≡path

⋃
e ′

1
∈S1

(
e ′

1
−

( ⋃
e ′

2
∈S2

e ′
2

))
≡path

⋃
e ′

1
∈S1

( ⋂
e ′

2
∈S2

e ′
1
− e ′

2

)
.

Let e ′
1
∈ S ′

1
and e ′

2
∈ S ′

2
. Use Proposition 5.1 and Lemma 5.10 to translate e ′

1
and e ′

2
to

chain queries Q ′
1

and Q ′
2

and use Proposition 5.11 to construct a �nite set of condition tree

queries S ′ in Qtree(
a,π ) such that, for every chain C,

⋃
Q∈S [[Q]]C = [[Q

′
1
]]C − [[Q

′
2
]]C . Use

Proposition 5.3 to translate every condition tree query in S ′ to a ∪-free expression inN(a,π ).
By d(e ′

1
, e ′

2
), we denote the �nite set of expressions resulting from translating S ′ to ∪-free

expressions in N(a,π ). We have

e ≡path

⋃
e ′

1
∈S1

( ⋂
e ′

2
∈S2

( ⋃
e ′∈d (e ′

1
,e ′

2
)

e ′
))
,

and this expression is in N(a,π ,∩). Using Corollary 5.6, we rewrite the above expression

into a path-equivalent ∩-free expression e ′ in N(a,π ). Finally, using Lemma 3.2 (i), we can

rewrite e ′ into a set S of ∪-free expressions in N(a,π ) such that e ≡path

⋃
e ′′∈S e ′′. �

Finally, combining Theorem 5.12 with Lemma 3.2 (i) yields the following:

Corollary 5.13. Let {a,π } ⊆ F ⊆ {a,π ,π ,∩,−}. On labeled chains, we have N(F) ≡path

N(a,π ).

14
We observe that π j [e′i ], 1 ≤ i ≤ k , is a node expression, hence the composition π j [e′

1
] ◦ · · · ◦ π j [e′k ] is

path-equivalent to π j [e′
1
] ∩ · · · ∩ π j [e′k ]. Observe that this expression is a basic complement-step on a union of

projection-terms.



CHAPTER 6

Conclusion, discussion, and future work

In Part II, we set out to improve our understanding of querying tree data by studying the

relative expressive power of queries in fragments of the relation algebra when used to query

trees. Along the way, we also studied chains to gain additional insights in the hard-to-prove

cases. We settled the relative expressive power of the downward fragments, i.e. fragments of

N(π ,π ,∩,−, ∗), and the local fragments, i.e. fragments ofN(a,π ,π ,∩,−). For these language

fragments, we provided full Hasse diagrams of the relative expressive power (see Figure 4.1

and Figure 5.1, respectively). For both the downward and the local fragments, we were able

to establish several cases in which intersection and di�erence are redundant and do not add

expressive power at all. With respect to Boolean queries, several other redundancies have

been established, especially on unlabeled structures.

While the relative simplicity of the tree data model in comparison with the general graph

data model seems to suggest that the study on trees ought to be a less challenging endeavor,

it turned out that the opposite is the case. Indeed, we can show that the techniques used to

prove relative expressive power results on graphs (see, e.g., [32]), are only applicable in a

few cases when proving results on trees and chains. For queries outside the downward and

local fragments, our e�ort was primarily focused on the tree data model, for which only a

handful of cases remain unsolved. The main open cases involve adding di�erence to already

rich non-downward, non-local fragments of the relation algebra:

Problem 6.1. Let {di,π ,∩} ⊆ F ⊆ {di, a,π ,π ,∩, ∗} and let z ∈ {bool, path}. With respect to
either labeled trees, unlabeled trees, labeled chains, or unlabeled chains, do we have a collapse
N(F ∪ {−}) �z N(F) or not?

Observe that Problem 6.1 describes 32 individual cases. Of these cases, only two cases

have been fully solved: by Theorem 3.29, we have N(di, a,π ,π ,∩,−) �bool N(di, a,π ,π ,∩)
and N(di,π ,π ,∩,−) �bool N(di,π ,π ,∩) on unlabeled chains. Unfortunately, the proof of

Theorem 3.29 does not generalize to any of the other cases.

Besides the above open problem, all other open problems on trees involve the relative

expressive power of fragments N(F1 ∪ {
∗}) and N(F2 ∪ {

∗}) for cases in which we have

already proven either N(F1) �bool N(F2), N(F1) �path N(F2), or both.

Problem 6.2. Let F1,F2 ⊆ {di, a,π ,π ,∩,−} and let z ∈ {path, bool}. With respect to
either labeled trees, unlabeled trees, labeled chains, or unlabeled chains, in which cases does
N(F1) �z N(F2) imply N(F1 ∪ {

∗}) �z N(F2 ∪ {
∗})?

Problem 6.2 has been answered in the positive for all downward fragments. With respect
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G3: GZ :

Figure 6.1: The 3-clique graph G3 and the bow-tie graph GZ . These graphs can be distin-

guished using di�erence, but not without di�erence.

to the non-downward local fragments on trees, four cases remain open for path queries and

eleven cases remain open for Boolean queries, however.

To better understand the di�culty in the remaining open cases, we compare our study on

trees and chains with the study on graphs by Fletcher et al. [31–34, 87]. The main di�erence

is that all Boolean separations on graphs can be proven by strong separations.

6.1 Organization

In Section 6.2, we take a look at the limited applicability of strong separations in our study. In

Section 6.3, we discuss two approaches that can aid in solving the remaining open problems.

Finally, in Section 6.4, we discuss other directions for future research.

6.2 Strong separations on trees and chains

When compared to the study of the relative expressive power of the relation algebra on

graphs [31–34, 87], we see major di�erences. First, we observe that most separation results for

the graph data model are strong Boolean separations: to prove that N(F1) �bool,strong N(F2),

one provides two �nite graphs G1 and G2, and then show that only the language N(F1) has

an expression e with [[e]]G1
= ∅ and [[e]]G2

, ∅. Likewise, we can also consider strong path
separations: to prove that N(F1) �path,strong N(F2), one provides a �nite graph G and query

q in N(F1) and then show that no expression in N(F2) evaluates to [[q]]G .

Example 6.1 (Fletcher et al. [32, Proposition 11]). Consider the expression e = (E ◦ E) −
(E ∪ id), and graphs G3 and GZ of Figure 6.1. We have [[e]]G3

= ∅ and [[e]]GZ , ∅. Let

F ⊆ {di, a,π ,π ,∩, ∗}. By an exhaustive search, one can show that there does not exist an

expression e ′ in N(F) with [[e ′]]G3
= ∅ and [[e ′]]GZ , ∅. Hence, N(−) �bool,strong N(F).

From the de�nition of strong separations, it immediately follows that they can be proven

using brute-force methods. Furthermore, using Lemma 3.3, strong separations carry over

from fragments without the Kleene-star to fragments with the Kleene-star. Unfortunately,

in the setting of querying trees or chains, we can prove that in several cases no strong

separations exist, even when separations exist. First, we shall prove this for chains. To do so,

we use the following properties about querying chains:

Lemma 6.3. Let C, C1, and C2 be labeled chains.

(i) For every expression e inN(F), F ⊆ {di, a,π ,∩, ∗}, with [[e]]C1
, ∅ and [[e]]C2

= ∅, there
exists an expression e ′ in N() such that [[e ′]]C1

, ∅ and [[e ′]]C2
= ∅.

(ii) There exists an expression eC inN(π ) such that, for every chain C′, we have [[eC]]C′ , ∅
if and only if C′ is isomorphic to C.

(iii) For every expression e inN(F), F ⊆ {π ,π ,∩,−, ∗}, there exists an expression e ′ inN(π )
such that [[e]]C = [[e ′]]C .
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(iv) For every expression e inN , there exists an expression e1 inN(a) and an expression e2 in
N(di,π ) such that [[e]]C = [[e1]]C = [[e2]]C .

Proof. First, we prove Statement (i). We represent C1 by the path n1 `1 n2 . . .nk `k nk+1 with

n1 the root of C1 and nk+1 the leaf. Now consider the expression e ′ = `1 ◦ . . . ◦ `k . We

have [[e ′]]C1
, ∅. As [[e]]C1

, ∅ and [[e]]C2
= ∅, Lemma 3.21 guarantees that there does not

exists a homomorphism from C1 to C2. Hence, we conclude [[e ′]]C2
= ∅. For Statement (ii),

we use the expression eC = π 2[E] ◦ e
′ ◦ π 1[E]. Next, we prove Statement (iii). Let r be

the root of chain C, l be the leaf of chain C, let (m,n) ∈ [[e]]C , let dr = ‖r → m‖C and

dl = ‖n → l ‖C . To prove Statement (iii), we observe that e is downward, which implies

that depth(C) > dr + dl . We construct t(m,n) = π2[E
dr ] ◦ Edepth(C)−dr−dl ◦ π1[E

dl ] and we

have [[t(m,n)]]C = {(m,n)}. We construct e ′ =
⋃
(m,n)∈[[e]]C t(m,n), which is in N(π ), and we

conclude [[e]]C = [[e
′]]C . To prove Statement (iv), we construct e1 by replacing every term

t(m,n) in the above by E−dr ◦ Edepth(C) ◦ E−dl and we construct e2 by replacing every term

t(m,n) in the above by π2[E
dr ] ◦ π1[E

depth(C)−dr ] ◦ all ◦ π2[E
depth(C)−dl ] ◦ π1[E

dl ]. �

From Lemma 6.3, the strong Boolean separation of Theorem 3.24, and the strong path sep-

arations of Corollary 3.11 and Proposition 3.32 (iii), the characterization of strong separations

for chains follows:

Theorem 6.4. Let F1,F2 ⊆ {di, a,π ,π ,∩,−}. Already on labeled and unlabeled chains, we
have

(i) N(F1) �bool,strong N(F2) if and only if π ∈ F1 and π < F2.

(ii) N(F1) �path,strong N(F2) if and only if

(ii).1. π ∈ F1 and F2 ⊆ {∩,−} or F2 ⊆ {di};

(ii).2. di ∈ F1 and F2 ⊆ {π ,π ,∩,−};

(ii).3. a ∈ F1 and a < F2, {di,π } ( F2; or

(ii).4. di,π ∈ F1 and a < F2, {di,π } ( F2.

From Theorem 6.4, it immediately follows that none of the open cases on chains can be

answered using strong separations.

With respect to the tree data model, we have several additional strong Boolean separations

beyond the strong Boolean separations for chains (Theorem 6.4 (i)). The Boolean separations

of Propositions 3.5, 3.9, and 3.33 and of Theorem 3.24 are all strong Boolean separations; only

the separation of Proposition 3.15 is not a strong Boolean separation. Unfortunately, also on

the tree data model, we can prove that several remaining open cases cannot be answered

with strong separations. To show this, we use the following properties on querying trees:

Lemma 6.5. Let F ⊆ {di, a,π ,π ,∩,−, ∗} and let T be a tree.

(i) If T is not 2-subtree-reducible, then there exists an expression e in N(di,π ,∩) such that,
for every T ′ that is not 2-subtree-reducible, we have [[e]]T′ , ∅ if and only if T ′ is
isomorphic to T ′.

(ii) If T is not 3-subtree-reducible, then there exists an expression e in N(di, a,π ,∩) such
that, for every T ′ that is not 3-subtree-reducible, we have [[e]]T′ , ∅ if and only if T ′ is
isomorphic to T ′.
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(iii) If T is not 3-subtree-reducible, then there exists an expression e in N(a,−) such that,
for every T ′ that is not 3-subtree-reducible, we have [[e]]T′ , ∅ if and only if T ′ is
isomorphic to T ′.

Proof. We construct expressions e = π 2[E] ◦ s(r ) with r the root node of T and s(n) a

node expression such that (m,m) ∈ [[s(n)]]T′ , with T ′ a tree that is not k-subtree-reducible,

k ∈ {2, 3}, if and only if the subtree rooted at n andm are isomorphic.

The base cases for the construction of s(n) are leaf nodes. Observe that π ∈ {a,−}, hence,

for all three Statements of the Lemma, expressions π 1[E] su�ce. Next, we consider non-leaf

nodes n with childrenm1, . . . ,mj reachable via labels `1, . . . , `j . As no k-subtree-reduction

step is possible on T , this implies that one can �nd at most two (Statement (i)) or three

children (Statement (ii) and Statement (iii)) reachable via label ` such that the subtrees rooted

at these children are isomorphic. To distinguish between one, two, or three such children,

we will de�ne expressions s(m)i = π1[` ◦ s(m) ◦ c(m)
i ]. For Statement (i), we de�ne c(m)i ,

i ∈ {1, 2}, by:

c(m)1 = π 1[c(m)
2];

c(m)2 = π2[(` ◦ s(m) ◦ di) ∩ (` ◦ s(m))].

For Statement (ii), we de�ne c(m)i , i ∈ {1, 2, 3}, by:

c(m)1 = π 1[Sibling(m)];

c(m)2 = π 1[c(m)
=1 ∪ c(m)=3];

c(m)3 = π1[(Sibling(m) ◦ Sibling(m)) ∩ di],

with Sibling(m) = (s(m) ◦ `a ◦ ` ◦ s(m)) ∩ di. Finally, for Statement (iii), we only need to

apply the rewrite e ∩ di ≡path e − id to eliminate usage of di in the expressions constructed

for Statement (ii). �

From Lemma 6.5, Proposition 3.1 (i), and Proposition 3.7 (i) we derive a partial characteri-

zation of strong separations for trees:

Proposition 6.6. Let F ⊆ {di, a,π ,π ,∩,−}.

(i) If di < F and {a,−} ⊆ F, then no strong Boolean separation and no strong path separation
exists between N(F) and N(F ∪ {di}) on labeled or unlabeled trees.

(ii) If {di, a,π ,∩} ⊆ F, then no strong Boolean separation exists between N(F) and N on
labeled or unlabeled trees.

(iii) If {a,−} ⊆ F, then no strong Boolean separation exists between N(F) and N on labeled
or unlabeled trees.

Proof. First, we prove Statement (i). By Proposition 3.1 (ii), we have di ≡path ([E
a]∗◦[E]∗)−id.

As strong Boolean separations are obtained on �nite graphs, we can use Lemma 3.3 to

eliminate this usage of Kleene-star. Consequently, any expression in N(F ∪ {di}) can be

rewritten into an instance-equivalent expression inN(F). Statement (ii) and (iii) are obtained

by combining Proposition 3.7 (i), Lemma 6.5 (ii), and Lemma 6.5 (iii). �



6.3. ON SOLVING THE REMAINING OPEN PROBLEMS 79

Proposition 6.6 only provides a partial characterization of the cases in which strong

Boolean separations or strong path separations exists on labeled and unlabeled trees. We

recognize �nding a full characterization as an interesting avenue for future work:

Problem 6.7. Let F1,F2 ⊆ {di, a,π ,π ,∩,−} and let z ∈ {path, bool}. With respect to labeled
and unlabeled trees, in which cases do we have N(F1) �z,strong N(F2)?

We observe that the study of strong path separations is closely related to the study of the

expressive power of the relation algebra at the instance level. For the tree data model, this

already received some attention in the literature, e.g. [35, 43], although these studies do not

include non-local operators such as diversity.

6.3 On solving the remaining open problems

Theorem 6.4 and Proposition 6.6 unfortunately rule out strong separations for most of the

open cases stated in Problem 6.1 and Problem 6.2. With respect to solving Problem 6.1, we

recognize two other promising avenues.

First, we combine Problem 6.1 with Proposition 3.1 (iii), yielding:

Lemma 6.8. We have N(di,π ,π ,∩,−, ∗) �path N(di,π ,π ,∩, ∗) on labeled and unlabeled
chains only if we also have N(a) �path N(di,π ,π ,∩, ∗).

Hence, by provingN(a) �path N(di,π ,π ,∩, ∗) on unlabeled chains, which is still an open

case, we also solve four of the open cases of Problem 6.1.

Another approach towards solving Problem 6.1 involves the binary complement of ex-

pressions. Let G = (V, Σ,E) be a graph and let e be an expression. We de�ne the semantics

of the complement operator by

[[e]]G = {(m,n) | (m,n ∈ V) ∧ ((m,n) < [[e]]G)}.

If we consider relation algebra fragments extended with the complement operator, then we

observe the following:

Lemma 6.9. Let {di,∩} ⊆ F ⊆ {di, a,π ,π ,∩, ∗}. We have N(F ∪ {−}) ≡path N(F ∪ { }).

Proof. We have e ≡path all − e and we have e1 − e2 ≡path e1 ∩ e2. �

As a consequence of Lemma 6.9, we have

Proposition 6.10. Let {di,π ,∩} ⊆ F ⊆ {di, a,π ,π ,∩, ∗} and let z ∈ {bool, path}. With
respect to either labeled trees, unlabeled trees, labeled chains, or unlabeled chains, we have
N(F ∪ {−}) �z N(F) if and only if N(F ∪ { }) �z N(F).

At �rst sight, Proposition 6.10 seems a bit useless, as it equates two problems without

hinting at a solution for any of these problems. Fortunately, with respect to the complement,

we do already have several useful results. First, we observe the following equivalences:

∅ ≡path all;

id ≡path di;

di ≡path id;
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E ≡path di ◦ E ∪ (all ◦ π 2[E]);

Ea ≡path E
a ◦ di ∪ (π 1[E

a] ◦ all);

πj [e] ≡path π j [e] ∪ di;

π j [e] ≡path πj [e] ∪ di;

e1 ∪ e2 ≡path e1 ∩ e2;

e1 ∩ e2 ≡path e1 ∪ e2.

with e , e1, and e2 expressions, and j ∈ {1, 2}. In the above, only the complement of compo-

sition is missing. For many cases, we have been able to manually express complements of

such compositions, e.g., for k > 0:

E−k ≡path E
−k ◦ di ∪ π 1[E

−k ] ◦ all,

Unfortunately, we have not been able to �nd a way to express general complements. At the

same time, we have also been unsuccessful in proving that the complement of compositions

on either trees or chains is not expressible.

6.4 Other directions for future work

The obvious next step in this line of research is to complete our systematic study of the

relative expressive power of relation algebra fragments on trees and chains, this by solving

Problems 6.1, 6.2, and 6.7. Beyond these obvious next steps, we recognize several avenues of

future work.

It remains open if the collapse results we obtained can be of use for query optimization.

On the one hand, the condition automata of Chapter 4 and the condition tree queries of

Chapter 5 are constructive techniques that can be used to eliminate particular operators, but,

on the other hand, their application will usually result in a signi�cant blow up in the query

size. Hence, it is yet unclear whether elimination of certain operators can always o�set the

increase in query size, and in which cases such optimization strategy would be bene�cial.

Part III brie�y touches upon this topic: Corollary 8.11 shows that elimination of intersection

and di�erence enables the use of query optimization techniques not otherwise available.

We are also interested in extending our study to richer graph query languages. One of

the main limitations of the relation algebra is its inability to count beyond 3. Proposition 3.7

already proved this inability and even simple queries such as “does there exist nodes with

exactly k outgoing edges” can only be expressed in N if k = 1 or k = 2. Unfortunately, there

are plenty real-world graph and tree queries that involve counting. As an example, consider

a social network graph G and the query

PopularPerson = {m | |{n | (n,m) ∈ [[FriendOf ]]G}| ≥ 1 000},

which returns persons with at least a thousand friends. A straightforward way to support

such queries, without changing the language too much, is by introducing counting operators.

As an example, we could add the operators π ≥k
1

and π ≥k
2

with

[[π ≥k
1
[e]]]G = {(m,m) | |{n | (m,n) ∈ [[e]]G}| ≥ k};

[[π ≥k
2
[e]]]G = {(m,m) | |{n | (n,m) ∈ [[e]]G}| ≥ k}.
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From a �rst-order logic point of view, these additions are related to adding counting quan-

ti�ers of the form ∃≥kx e(x). Such counting logics have been studied extensively in the

literature (e.g., [37, 39, 79, 80]).

We can consider the counting operators as a form of aggregation, and, therefore, it is

only natural to also consider using a multiset semantics instead of the set semantics usually

used for the relation algebra and its fragments. As an example, we take a look at the graph

query

FriendOf ◦ FriendOf ,

which returns pairs (n,m) such that m is a friend-of-friend of n. These friend-of-friends

retrieved by this query are at the basis of computing friend suggestions in many social

networks. To limit the number of suggested friends for each person n, we probably want to

select only those friends-of-friendsm that have at least k friends in common with n. This

information is readily available when using multiset semantics, as the pair (n,m) will be in

the output exactly k ′ times if and only if n andm have exactly k ′ friends in common. Using

set semantics, this information is missing entirely. We believe that the study of counting

operators and, based on that, aggregation and multiset semantics is a logical next step in

graph querying, for which not much is known yet.

A last direction of future work we consider is related to the Kleene-star operator. While

this operator does add expressive power beyond FO[3], it remains relatively limited in

its capabilities. In logics, one often considers more general �xpoint iteration instead of

the limited Kleene-star operator, e.g., the logic L
3

∞ω which is obtained by adding the more

powerful �xpoint iteration to FO[3] [39, 79, 80]. Whereas we believe that the relation

algebra is relatively intuitive and user-friendly to use, we do not believe that this remains the

case when we add unrestricted �xpoint iteration. Alternatively, we may therefore consider

replacing the Kleene-star by a form of recursion inspired by context-free grammars:

Example 6.2 (Hellings [46, 47]). Consider the following context-free production rule for a

non-terminal R
R → ParentOf a ParentOf | ParentOf a R ParentOf .

Similar to how the 2RPQs use regular expressions, this context-free grammar will produce

the set of strings S = {ParentOf −iParentOf i | i ≥ 1}, and every string in S would represent

a valid labeling of a path between a node pair (m,n) in a tree (or graph in general). In this

case, the query R will evaluate to node pairs (m,n) such thatm and n share an i-th degree

ancestor, i ≥ 1, a query that is not expressible in the relation algebra.

We can easily combine such context-free style production rules with the monotone

operators of the relation algebra. For the non-monotone operators, we can adopt the usual

approach taken by Datalog with negation [1]. In this sense, the resulting language is a

restricted binary-relation-only variant of Datalog aimed at intuitive but powerful graph

querying and, due to its restricted nature, the resulting query language allows for a simple

variable-free notation. We are interested to see what the exact expressive power of such

language is, what the exact complexity of query evaluation is, and if the restricted nature,

compared to Datalog, allows for more e�cient (distributed) query evaluation on graphs and

trees than usual Datalog queries.
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Part III

On Tarski’s Relation Algebra

THE SEMI-JOIN ALGEBRA
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CHAPTER 7

Introduction15

The relation algebra is, as discussed in Chapter 1, a versatile graph query language in which

it is relatively easy to express complex intentional relationships in terms of graph navigation.

To do so, the relation algebra relies heavily on composition, a relatively expensive operator to

evaluate. This is problematic when the full expressive power of composition is not required.

To illustrate this, we reconsider the query

GgpAndFriends = π1[ParentOf ◦ ParentOf ◦ ParentOf ] ◦ FriendOf ,

from Chapter 1. This query yields pairs (m,n) such that m is a great-grandparent and

a friend of n. A naive evaluation of this query involves using composition to navigate

the graph via the ParentOf edge to check if m is a great-grandparent. Conceptually, this

usage of composition does not neatly �t the intended purpose, however: the subquery

ParentOf ◦ ParentOf ◦ ParentOf yields pairs (m, z) such that m is the great-grandparent

of great-grandchild z and, after computing these pairs, the projection-step will discard all

computed information on the great-grandchildren. Consequently, evaluating the query by

evaluating each of the operators involved is a relative wasteful process, and a more e�cient

approach would be to use a simple breath-�rst-search algorithm to �nd all great-grandparents

without also computing all great-grandchildren.

For relatively simple queries such as GgpAndFriends, we can add operators to the relation

algebra to enable the direct expression of more e�cient query evaluation approaches at a

high level. One way to do so, is by adding the semi-join operators n and o. Rather than

computing the composition of relations, semi-joins instead only determine the pairs that

are involved in such compositions. In particular, if R and S are binary relations, then the

left semi-join R n S determines the pairs in R that can be composed with pairs in S, i.e.,

{(m,n) ∈ R | ∃z (n, z) ∈ S} and the right semi-join Ro S determines the pairs in S that can be

composed with pairs in R, i.e., {(m,n) ∈ S | ∃z (z,m) ∈ R}. By using these semi-joins instead

of compositions, we can rewrite the query GgpAndFriend into the path-equivalent query

π1[ParentOf n (ParentOf n ParentOf )] o FriendOf .

The main advantage of replacing compositions by semi-joins in the above query is easy

to see: evaluation of the resulting query by evaluating each operation involved is possible

in linear time with respect to the size of the edge relations, whereas evaluation of the

15
The results in this chapter are based on the paper “From relation algebra to semi-join algebra: an approach for

graph query optimization”. [55].
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original query takes quadratic time. As social networks and other graph datasets tend to

be extremely large, the original composition-based approach is unacceptably expensive,

whereas the semi-join-based approach might be acceptable. This also holds in general, as

it is well-known that evaluating semi-joins is more e�cient than evaluating compositions,

even in the worst-case [69].

To achieve these improvements in practice, we can add the semi-join operators to ap-

propriate query languages. This does, however, put the burden of e�cient query evaluation

on the users: in the above rewriting, we needed both the left and right semi-join operators.

With respect to the former, we additionally had to insert parenthesis to control the order of

evaluation of this non-associative operator. So, even in this simple example, the resulting

expression becomes less intuitive and harder to write. Therefore, we believe that in mod-

ern graph database systems, which use declarative high-level graph query languages, such

rewritings should be performed for the users, rather than by the users.

Here, we study ways to apply these semi-join optimizations automatically. More con-

cretely, we study how fragments of the relation algebra relate to fragments of the semi-join

algebra, the latter obtained by replacing composition by semi-joins and the Kleene-star by

appropriate less-costly forms of �xpoint iteration.

To the best of our knowledge, we are the �rst to study the relationships between the

expressive power of the relation algebra and the semi-join algebra comprehensively. We

should point out that the study of semi-joins has already received attention in the setting

of Codd’s relational algebra [23, 64, 66–68]. In this setting, the semi-join version of the

relational algebra is studied as a query language that has limited expressive power, cheap

query evaluation, and for which many decision problems are decidable.

In the design and implementation of relational database systems, basic semi-join rewrite

rules are well-known and the automatic usage of semi-join steps plays an important role in

the e�cient evaluation of distributed joins [11] and in Yannakakis algorithm for evaluating

acyclic joins [94, 98]. In both cases, these semi-join steps are used as reducers that provide

a preprocessing step aimed at reducing the size of intermediate relations before joining

them. A similar reducer-based role for the semi-join has also been studied in the context of

the multiset relational algebra [84]. This focus on using the semi-join as a reducer sharply

contrasts with our usage, as we aim at eliminating compositions altogether in favor of

semi-joins.

In Chapter 8, we formalize the semi-join algebra and establish relationships between the

expressive power of the relation algebra and the semi-join algebra. Next, in Chapter 9, we

focus on how these relationships can be utilized practically, by investigating how these semi-

join rewrites contribute to optimizing graph query evaluation of relation algebra expressions.

In Chapter 10, we take a �rst look at Tarski’s relation algebra from a practical-query point

of view. We identify an obvious shortcoming in the relation algebra, and address this

shortcoming by adding node selections. Then, we investigate the impact this addition has

on graph query optimization. Finally, in Chapter 11, we conclude on our �ndings, discuss

e�cient graph query evaluation, and identify directions for future work.



CHAPTER 8

On the expressive power of the semi-join algebra16

In this chapter, we formalize the semi-join algebra and study the relationships between the

expressive power of fragments of the relation algebra and fragments of the semi-join algebra.

Our main results are as follows:

1. We will show that the semi-join algebra has the same expressive power as FO[2], �rst-

order logic in which formulae are restricted to having two variables. It is well-known

that the relation algebra has the same expressive power as FO[3] [36, 89], which already

puts limitations on the expressive power of the semi-join algebra when compared to

the relation algebra [37, 39, 70, 79, 80].

2. To further establish the relationships in the expressive power of the relation algebra and

the semi-join algebra, we investigate how the relative expressive power of fragments

of the relation algebra compares to fragments of the semi-join algebra. We do so by

showing that expressions of the form πj [e], j ∈ {1, 2}, can be rewritten into path-

equivalent expressions in the semi-join algebra whenever the expression is in N(F),

F ⊆ {di, a,π ,π }. We call this path equivalence of projection-expressions projection
equivalence.

3. We extend the above results towards relation algebra augmented with the Kleene-star

operator. We show that expressions inN(F), F ⊆ {di, a,π ,π , ∗}, can be rewritten into

projection-equivalent expressions in the semi-join algebra augmented with a simple

form of �xpoint iteration.

4. The above mentioned rewrites only place restrictions on the usage of intersection

and di�erence. To show that these restrictions are not too severe, we prove that

not all expressions using both composition and intersection are expressible in FO[2].

We identify syntactical restrictions on the usage of intersection and di�erence in the

relation algebra, and show that the resulting language fragments have exactly the same

expressive power, with respect to projection equivalence, as the semi-join algebra.

From these results, it follows that intersection and di�erence only provide limited

expressive power in the semi-join algebra.

5. In the setting of the tree data model used in Part II and the setting of �nite sibling-

ordered trees [74], we can use known redundancies involving the intersection and

16
The results in this chapter are based on the paper “From relation algebra to semi-join algebra: an approach for

graph query optimization”. [55].
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di�erence operators to our advantage. We strengthen the well-known collapse of

�rst-order logic on sibling ordered trees (FO
tree

) to Conditional XPath (a fragment of

the relation algebra), by proving a collapse at the level of Boolean queries of FO
tree

to

the semi-join algebra.

6. Finally, we take a look at how the newly introduced notion of projection equivalence

compares to the standard notions of path equivalence and Boolean equivalence. As a

consequence, we also strengthen the known Boolean equivalences between fragments

of the relation algebra when querying graphs [32] to projection equivalences.

8.1 Organization

In Section 8.2, we formalize the semi-join algebra. In Section 8.3, we show that the semi-join

algebra is path-equivalent to FO[2]. In Section 8.4, we present sound rewrite rules for relation

algebra expressions that aim at substituting composition and Kleene-star operators by semi-

join and �xpoint operators. In Section 8.5, we analyze these rewrite rules in more detail and

formalize the exact relationships between fragments of the relation algebra and corresponding

fragments of the semi-join algebra. In Section 8.6, we analyze cases in which intersection

and di�erence can be properly rewritten. In Section 8.7, we apply the relationships between

FO[3] and FO[2] established in the previous sections and combine them with well-known

results on the expressive power of FO[3] on trees and chains. Finally, in Section 8.8, we

compare the newly introduced notion of projection equivalence to the standard notions of

path equivalence and Boolean equivalence.

8.2 The semi-join algebra

In this section, we formally introduce the semi-join algebra.

De�nition 8.1. The semi-join algebra is de�ned by the grammar

e := ∅ | id | di | ` | `a | πj [e] | π j [e] | e n e | e o e | e ∪ e | e ∩ e | e − e,

in which ` ∈ Σ and j ∈ {1, 2}. Let G = (V, Σ,E) be a graph and let e be an expression. The

semantics of evaluation for ∅, id, di, `, `a, πj [e], π j [e], e1 ∪ e2, e1 ∩ e2, and e1 − e2 is de�ned

in the same way as for the relation algebra (De�nition 1.2). The semantics of evaluation for

e1 n e2 and e1 o e2 is de�ned as follows:

[[e1 n e2]]G = {(m,n) | (m,n) ∈ [[e1]]G ∧ ∃z (n, z) ∈ [[e2]]G};

[[e1 o e2]]G = {(m,n) | (m,n) ∈ [[e2]]G ∧ ∃z (z,m) ∈ [[e1]]G}.

We denote the semi-join algebra byM.

Example 8.1. The expressions

e1 = π1[ParentOf ◦ π 1[OwnsPet] ◦ ResearcherAt];
e2 = π1[ParentOf n (π 1[OwnsPet] n ResearcherAt)]

both return people that are parents of researchers that do not own any pets. The expression

e1 is in N and the expression e2 is inM. Both expressions are node expressions. We have

e1 ≡path e2.



8.2. THE SEMI-JOIN ALGEBRA 89

As an FO[2]-like counterpart of the Kleene-star, which itself is an iterated version of

composition, we introduce a form of �xpoint iteration. We add the operator fpj,N[e union b]
with j ∈ {1, 2}, b an expression, e an expression, and N the single free variable of e . We

do not allow N to occur elsewhere. The semantics of evaluating fpj,N[e union b] on graph

G is de�ned next. Let s0 := [[b]]G |j and de�ne si := si−1 ∪ [[e]]G+si−1
|j in which G + si−1 is

the graph G augmented with the edge relation {(n,n) | n ∈ si−1} labeled with N. Due to

monotonicity of ∪, there exists a k , k ≤ |V|, such that sk = sk+1. We de�ne [[fpj,N[e union
b]]]G = {(n,n) | n ∈ sk }.

Example 8.2. The expression

e1 = π1[[ParentOf ◦ π 1[OwnsPet]]∗ ◦ ResearcherAt]

is in N and returns people that are ancestors of a chain of descendants that do not own pets

and where the youngest descendant is also a researcher. Let e = ParentOf n(π 1[OwnsPet]nN).
This expression has a single free variable N. Consider the expression

e2 = fp
1,N[e union ResearcherAt].

We have e1 ≡path e2. We observe that e1 and e2 do not have free variables.

We only introduce �xpoint iteration here as a less costly alternative to the Kleene-star.

For this purpose, general �xpoints are too strong, however. Therefore, we put additional

restrictions on the expression e used in fpj,N[e union b]: if j = 1, then e must be right-
recursive in N and, if j = 2, then e must be left-recursive in N, which we inductively de�ne

next.

Let x ∈ {left, right}. If N is a variable, then the expression N is x-recursive in N. Ex-

pressions of the form e = e1 ∪ e2 are x-recursive in N if e1 and e2 are x-recursive in N.

Expressions of the form e = e1 n e2 are right-recursive in N if e1 does not have free variables

and e2 is right-recursive in N. Expressions of the form e = e1 o e2 are left-recursive in

N if e2 does not have free variables and e1 is left-recursive in N. Expressions of the form

e = fp
1,N′[e

′ union b ′] are right-recursive in N if b ′ is right-recursive in N. Finally, ex-

pressions of the form e = fp
2,N′[e

′ union b ′] are left-recursive in N if b ′ is left-recursive in

N.
17

Example 8.3. The expression e = ParentOf n (π 1[OwnsPet] n N), as used in Example 8.2, is

right-recursive. The expression e ′ = N o FamilyOf ∪ N o FriendOf is left-recursive. The

expression

e ′′ = fp
2,N[e

′ union OwnsPeta]

yields pet owners and people that are related to pet owners via friend and family relations.

We denote the semi-join algebra, augmented with this restricted form of �xpoint iteration,

byMfp
.

17
The concepts of left-recursive and right-recursive expressions are closely related to concepts in formal lan-

guages [72]. Indeed, all expressions we allow can be mapped to concepts in context-free grammars: node variables

map to non-terminals, unions map to individual grammar rules for a non-terminal, and semi-joins map to the

compositions within a single grammar rule. This is no coincidence: it is well known that a context-free grammar

that is left-recursive or right-recursive can always be rewritten into a regular expression (using Kleene-star instead

of recursion) [72].
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8.3 The relationship between FO[2] andMfp

Let G = (V, Σ,E) be a graph with Σ = {`1, . . . , ` |Σ |}. We consider FO[2] as the �rst-order

logic over the structure (V; `1, . . . , ` |Σ |) and where variables are restricted to v and w . We

have the following:

Theorem 8.1. M is path-equivalent to FO[2].

Proof (sketch). Our proof is based on the proof of the equivalence of FO[2] and the multi-

dimensional modal logic MLR2 [76, Section 2.3.1]. For the translation from FO[2] queries of

the form {(v,w) | φ(v,w)}, withφ a FO[2] formula with free variablesv andw , to expressions

inM, we use the following rewriting κ:

κ(v , w) = id; κ(w , v) = id;

κ(v , v) = all; κ(w , w) = all;

κ(`(v,w)) = `; κ(`(w,v)) = `a;

κ(`(v,v)) = (` ∩ id) o all; κ(`(w,w)) = all n (` ∩ id);

κ(¬φ) = all − κ(φ); κ(φ ∨ψ ) = κ(φ) ∪ κ(ψ );

κ(∃v φ) = all n κ(φ[v,w/w,v]); κ(∃w φ) = κ(φ[v,w/w,v]) o all.

In the above, , denotes the equality operator as used in �rst-order logic, and the nota-

tion φ[v,w/w,v], for FO[2] formula φ, denotes the formula based on φ in which we have

simultaneously substituted v for w and w for v (i.e., swapped v and w).

For the translation from expressions inM to FO[2] queries of the form {(v,w) | φ(v,w)},
with φ a FO[2] formula with free variables v and w , we use the following rewriting λ:

λ(id) = v , w ; λ(di) = ¬(v , w);

λ(`) = `(v,w); λ(`a) = `(w,v);

λ(π1[e]) = v , w ∧ ∃w λ(e); λ(π2[e]) = v , w ∧ ∃v λ(e);
λ(π 1[e]) = v , w ∧ ¬∃w λ(e); λ(π 2[e]) = v , w ∧ ¬∃v λ(e);
λ(e1 n e2) = λ(e1) ∧ ∃v (v , w ∧ ∃w λ(e2)); λ(e1 o e2) = λ(e2) ∧ ∃w (v , w ∧ ∃v λ(e1));

λ(e1 ∪ e2) = λ(e1) ∨ λ(e2); λ(e1 ∩ e2) = λ(e1) ∧ λ(e2);

λ(e1 − e2) = λ(e1) ∧ ¬λ(e2).

Correctness of these translations follows from a straightforward induction argument. �

The next example illustrates the rewriting κ as used in the above proof:

Example 8.4. Consider the FO[2] query {(v,w) | φ(v,w)} with

φ = v , w ∧ ∃w ParentOf (v,w).

This query yields parents. Notice that e1 ∧ e2 = ¬(¬e1 ∨ ¬e2). Hence, φ is equivalent to

φ ′ = ¬(¬(v , w) ∨ ¬(∃w ParentOf (v,w))).
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Next, we rewrite φ ′ to an expression inM:

κ(φ ′) = κ(¬(¬(v , w) ∨ ¬(∃w ParentOf (v,w))))
= all − (κ(¬(v , w) ∨ ¬(∃w ParentOf (v,w))))
= all − (κ(¬(v , w)) ∪ κ(¬(∃w ParentOf (v,w))))
= all − ((all − κ(v , w)) ∪ (all − κ(∃w ParentOf (v,w))))
= all − ((all − id) ∪ (all − (κ(ParentOf (w,v)) o all)))

= all − ((all − id) ∪ (all − (ParentOf a o all)))

Some straightforward simpli�cations yield:

= all − (di ∪ (all − (ParentOf a o all)))

= (all − di) ∩ (all − (all − (ParentOf a o all)))

= id ∩ (ParentOf a o all)

= id ∩ (π2[ParentOf a] o all)

= id ∩ (π1[ParentOf ] o all)

= π1[ParentOf ].

We can generalize Theorem 8.1 to also cover �xpoints:

Proposition 8.2. Mfp is path-subsumed by FO[2] to which in�ationary �xpoints have been
added.

Proof (sketch). Observe that the semantics of the �xpoint operator fp we use is based on

the semantics of the usual in�ationary �xpoints [39]. As such, the translation is relatively

straightforward. Let fpj,N[e union b] be a �xpoint expression inMfp
. We translate the

�xpoint as follows

λ(fp
1,N[e union b]) = (v , w) ∧ [ifpv,N ∃w (λ(π1[e]) ∨ λ(π1[b]))](v);

λ(fp
2,N[e union b]) = (v , w) ∧ [ifpw,N ∃v (λ(π2[e]) ∨ λ(π2[b]))](w),

and translate node variables by λ(N) = (v , w) ∧ N(v). �

From Proposition 8.2, we also conclude thatMfp
is path-subsumed by L

2

∞ω , the two-

variable fragment of in�nitary logic [39, 79].

8.4 Rewriting N towards using semi-joins

In this section, we explore ways to automatically rewrite expressions with compositions

and Kleene-stars into expression with semi-joins and �xpoints. We start by identifying two

situations in which the presence of a node expression, as a subexpression of an expression e ,

allows for the elimination of composition from e in favor of semi-joins:

1. The expression e itself is a node expression due to the use of projection or coprojection

at the outer level. An example is the expression π1[e1 ◦ e2], where a straightforward

rewriting yields π1[e1 ◦ e2] ≡path π1[e1 n e2].
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2. The expression e is a composition e1 ◦ e2, in which e1 or e2 is a node expression.

An example is the expression e1 ◦ π1[e2], where a straightforward rewriting yields

e1 ◦ π1[e2] ≡path e1 n π1[e2].

Since the semantics of the Kleene-star is de�ned using composition, similar observations

can be made with respect to the Kleene-star.

The �rst observation above relies on the freedom to rewrite expressions to expressions

that agree on either the �rst or the second column. We formalize this by introducing the

following additional equivalence notions:

De�nition 8.2. Let q1 and q2 be queries. We say that q1 and q2 are left-projection-equivalent,
denoted by q1 ≡π1

q2, if, for every graph G, [[q1]]G |1 = [[q2]]G |1 and are right-projection-
equivalent, denoted by q1 ≡π2

q2, if, for every graph G, [[q1]]G |2 = [[q2]]G |2.

Let z ∈ {π1,π2}. We say that the class of queries L1 is z-subsumed by the class of queries

L2, denoted by L1 �z L2, if every query in L1 is z-equivalent to a query in L2. We say

that the class of queries L1 is projection-subsumed by the class of queries L2, denoted by

L1 �π L2, if L1 �π1
L2 and L1 �π2

L2. Let z ′ ∈ {π1,π2,π }. We say that the classes of

queries L1 and L2 are z ′-equivalent, denoted by L1 ≡z′ L2, if L1 �z′ L2 and L2 �z′ L1.

By de�nition, expressions that are path-equivalent must also be left-projection-equivalent

and right-projection-equivalent. Expressions that are left-projection-equivalent or right-

projection-equivalent must also be Boolean-equivalent. The reverse is generally not true.

(We will look at this in more detail in Section 8.8). To illustrate these equivalence notions,

we extend Example 1.4:

Example 8.5. We have e1 ∩ e2 ≡path e1 − (e1 − e2). Consequently, also e1 ∩ e2 ≡π1
e1 − (e1 − e2)

and e1 ∩ e2 ≡π2
e1 − (e1 − e2). We have π1[`] ≡bool ` ≡bool π2[`]. We have π1[`] ≡π1

`,
but not ` ≡π1

π2[`]. Likewise, we have ` ≡π2
π2[`], but not π1[`] ≡π2

`. Finally, we have

π1[`] ≡bool π2[`], but not π1[`] ≡π1
π2[`] or π1[`] ≡π2

π2[`].

To support the rewriting of compositions and Kleene-stars to semi-joins and �xpoints in

situations similar to the ones discussed above, we will develop ways to rewrite (parts of)

expressions inN to path-equivalent (parts of) expressions inM. As a �rst step, we consider

basic expressions built without using the composition, Kleene-star, semi-join, and �xpoint

operators.

De�nition 8.3. The basic expressions are de�ned by the grammar

e := ∅ | id | di | ` | `a | πj [e] | π j [e] | e ∪ e | e ∩ e | e − e,

in which ` ∈ Σ and j ∈ {1, 2}.

These basic expressions are equally expressible in N , inM, and inMfp
. More precisely,

every basic expression in N(F), F ⊆ {di, a,π ,π ,∩,−}, is also in M(F). To deal with

composition and Kleene-star operators, we propose the rewrite rules of Figure 8.1. We notice

that these rewrite rules do not change basic expressions. We will argue later that τ (e) ≡path e ,

τπ1
(e) ≡π1

e , and τπ2
(e) ≡π2

e .

Not every expression in N can be rewritten to an expressions in either M or Mfp
.

Therefore, the rewrite rules of Figure 8.1 aim at partially rewriting subexpressions to the

semi-join algebra instead of rewriting entire expressions. As such, the rewrite rules yield

expressions that use both relation algebra and semi-join algebra operators. In Section 8.5,

we shall investigate which fragments ofN are fully rewritten intoM orMfp
, and for which

fragments this is only partially possible.
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τ (b) = b τπi (b) = b

τ (fj [e]) = fj [τπj (e)] τπi (fj [e]) = fj [τπj (e)]

τ (e1 ◦ e2) = ◦path(e1; e2) τπi (e1 ◦ e2) = ◦πi (e1; e2)

τ (e1 ∪ e2) = τ (e1) ∪ τ (e2) τπi (e1 ∪ e2) = τπi (e1) ∪ τπi (e2)

τ (e1 ⊕ e2) = τ (e1) ⊕ τ (e2) τπi (e1 ⊕ e2) = τ (e1) ⊕ τ (e2)

τ ([e]∗) = [τ (e)]∗ τπi ([e]
∗) = id

τ◦1
(b; ε) = b n ε τ◦2

(b; ε) = ε o b

τ◦1
(fj [e]; ε) = fj [τπj (e)] n ε τ◦2

(fj [e]; ε) = ε o fj [τπj (e)]

τ◦1
(e1 ◦ e2; ε) = τ◦1

(e1;τ◦1
(e2; ε)) τ◦2

(e1 ◦ e2; ε) = τ◦2
(e2;τ◦2

(e1; ε))

τ◦1
(e1 ∪ e2; ε) = τ◦1

(e1; ε) ∪ τ◦1
(e2; ε) τ◦2

(e1 ∪ e2; ε) = τ◦2
(e1; ε) ∪ τ◦2

(e2; ε)

τ◦1
(e1 ⊕ e2; ε) = (τ (e1) ⊕ τ (e2)) n ε τ◦2

(e1 ⊕ e2; ε) = ε o (τ (e1) ⊕ τ (e2))

τ◦1
([e]∗; ε) = fpN,1[τ◦1

(e;N) union ε] τ◦2
([e]∗; ε) = fpN,2[τ◦2

(e;N) union ε]

◦path(e1; e2) =


τ (e1) ◦ τ (e2) if e1 and e2 are not node expressions;

τ (e1) n τπ1
(e2) if e2 is a node expression;

τπ2
(e1) o τ (e2) if e1 is a node expression.

◦πi (e1; e2) =

{
τ◦1
(e1;τπ1

(e2)) if i = 1;

τ◦2
(e2;τπ2

(e1)) if i = 2.

Figure 8.1: Rewrite rules aimed at rewriting compositions to semi-joins and Kleene-stars

to �xpoints. In these rules, b is a basic expression, ε is an already rewritten expression,

f ∈ {π ,π }, i ∈ {1, 2}, j ∈ {1, 2}, ⊕ ∈ {∩,−}, and N is a fresh variable.

Example 8.6. Consider the expression

e = π1[((WorksOn ◦WorksOna) ∩ FriendOf ) ◦ EditorOf ] ◦ StudentOf .

This expression returns pairs of professors and their students, but only for professors that

are friends with an editor with whom they collaborate on a project. For clarity, we abbreviate

each edge label in e , resulting in π1[((W ◦Wa) ∩ F) ◦ E] ◦ S. We have the following:

τ (e) = τπ2
(π1[((W ◦Wa) ∩ F) ◦ E]) o τ (S)

= π1[τπ1
(((W ◦Wa) ∩ F) ◦ E)] o S

= π1[τ◦1
((W ◦Wa) ∩ F ;τπ1

(E))] o S
= π1[(τ (W ◦Wa) ∩ τ (F)) n E] o S
= π1[((τ (W ) ◦ τ (Wa)) ∩ F) n E] o S
= π1[((W ◦Wa) ∩ F) n E] o S.
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We shall prove (Theorem 8.4) that e and τ (e) are path-equivalent. This rewriting results

in an expression in which two out of three applications of composition are eliminated in

favor of semi-joins. In Proposition 8.9 (Section 8.6), we shall show that the last remaining

composition step is unavoidable.

When applied on expressions with subexpressions of the form [e]∗, the rewrite rules can

introduce �xpoint operators. Consequently, certain rewrite rules yield subexpressions with

free node variables. For these expressions with free node variables, we have not de�ned the

semantics of query evaluation and, hence, we have also not de�ned when such expressions

are left-projection-equivalent or right-projection-equivalent. To enable reasoning about

expressions with free node variables, we generalize De�nition 8.2:

De�nition 8.4. Let e1 and e2 be expressions with a single free node variable N. We say that

e1 and e2 are left-projection-equivalent, denoted by e1 ≡π1
e2, if, for every graph G = (V, Σ,E)

and every s ⊆ V , [[e]]G+s |1 = [[e]]G+s |1 in which G + s is the graph G augmented with the

edge relation {(n,n) | n ∈ s} labeled with N. Likewise, we say that e1 and e2 are right-
projection-equivalent, denoted by e1 ≡π2

e2, if, for every graph G = (V, Σ,E) and every

s ⊆ V , [[e]]G+s |2 = [[e]]G+s |2.

To prove soundness of the rewrite rules of Figure 8.1, we use the following properties:

Lemma 8.3. Let д, h, ϕ, andψ be expressions. We have:

(i) If д ≡πj h with j ∈ {1, 2}, then πj [д] ≡path πj [h] and π j [д] ≡path π j [h].

(ii) Let д ≡path h. If ϕ ≡π1
ψ , then д n ϕ ≡path h nψ , д ◦ ϕ ≡π1

h ◦ψ , and д ◦ ϕ ≡π1
h nψ . If

ϕ ≡π2
ψ , then ϕ o д ≡path ψ o h, ϕ ◦ д ≡π2

ψ ◦ h, and ϕ ◦ д ≡π2
ψ o h.

(iii) Let д ≡path h and let ϕ be a node expression. If ϕ ≡π1
ψ , then д ◦ϕ ≡path hnψ . If ϕ ≡π2

ψ ,
then ϕ ◦ д ≡path ψ o h.

(iv) If д ≡z h and ϕ ≡z ψ with z ∈ {path,π1,π2}, then д ∪ ϕ ≡z h ∪ψ .

(v) If д ≡path h and ϕ ≡path ψ , then д ∩ ϕ ≡path h ∩ψ and д − ϕ ≡path h −ψ .

(vi) id ≡π1
[ϕ]∗ and id ≡π2

[ϕ]∗.

(vii) If д n N ≡π1
h and ϕ ≡π1

ψ , then [д]∗ ◦ ϕ ≡π1
fp

1,N[h union ψ ]. If N o д ≡π2
h and

ϕ ≡π2
ψ , then ϕ ◦ [д]∗ ≡π2

fp
2,N[h union ψ ].

Proof. Statements (i)–(vi) follow from the semantics of the operators involved. We prove the

�rst case of Statement (vii), the second case is analogous. Assume д n N ≡π1
h and ϕ ≡π1

ψ .

We shall prove [д]∗ ◦ ϕ ≡π1
fp

1,N[h union ψ ] using induction on the stages of the evaluation

of the �xpoint operator fp. By si we denote the i-th stage of the evaluation of the �xpoint

and by ei , we denote the expression (д0 ∪ . . . ∪ дi ) ◦ ϕ. By induction, we shall prove that

[[ei ]]G |1 = si . The base case is i = 0. We have e0 = д
0 ◦ ϕ ≡path id ◦ ϕ ≡path ϕ ≡π1

ψ . Hence,

we have [[e0]]G |1 = [[ϕ]]G |1 = [[ψ ]]G |1 = s0. Now assume that, for every j with 0 ≤ j < i ,
[[ej ]]G |1 = sj . Consider the case for ei . We have

ei ≡path (д
0 ∪ . . . ∪ дi ) ◦ ϕ

≡path (д
0 ∪ . . . ∪ дi−1) ◦ ϕ ∪ д ◦ ((д0 ∪ . . . ∪ дi−1) ◦ ϕ)

≡path ei−1 ∪ (д ◦ ei−1)
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≡π1
ei−1 ∪ (д n ei−1).

Due to the induction hypothesis, we have [[ei−1]]G |1 = si−1. Hence, during computation of si ,
we have

si = si−1 ∪ [[h]]G+si−1
|1

= [[ei−1]]G |1 ∪ [[д n N]]G+si−1
|1.

By the semantics of G + si−1 and [[ei−1]]G |1 = si−1, we can replace N by ei−1, resulting in

= [[ei−1 ∪ (д n ei−1)]]G |1

= [[ei ]]G |1.

We conclude [д]∗ ◦ ϕ ≡π1
fp

1,N[h union ψ ]. �

The rules of Figure 8.1 depend on the ability to determine if an expression e is a node

expression. This is, in general, hard to determine without evaluation of e . We can, however,

use the semantics ofN ,M, andMfp
to de�ne a predicate ns(e) that evaluates to true only if

the expression e is a node expression:

ns(∅) = ns(id) = True;

ns(di) = False;

ns(`) = ns(`a) = False;

ns(fj [e]) = True;

ns(e1 ◦ e2) = ns(e1) ∧ ns(e2);

ns(e1 n e2) = ns(e2 o e1) = ns(e1);

ns(e1 ∪ e2) = ns(e1) ∧ ns(e2);

ns(e1 ∩ e2) = ns(e1) ∨ ns(e2);

ns(e1 − e2) = ns(e1);

ns([e]∗) = ns(e);

ns(fpj,N[e union b]) = True,

in which f ∈ {π ,π }, and j ∈ {1, 2}. Using Lemma 8.3 and induction on the length of relation

algebra expressions, we can establish the following main result about the soundness of the

rewrite rules in Figure 8.1:

Theorem 8.4. Let e be an expression in N . We have τ (e) ≡path e , we have τπ1
(e) ≡π1

e , and
we have τπ2

(e) ≡π2
e .

The rewrite rules of Figure 8.1 are sound, as stated in Theorem 8.4, but not complete, as

illustrated by the following example:

Example 8.7. Consider the expression

e = (FriendOf ∩ (FriendOf ◦ FriendOf )) − all.

Due to the presence of intersection, The rewritings τ (e), τπ1
(e), and τπ2

(e) do not result in an

expression inM orMfp
. Since e always evaluates to ∅, however, we have e ≡path ∅, and ∅ is,

by de�nition, inM andMfp
.
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ρ(b) = b;

ρ(fj [e]) = fj [ρ(e)];

ρ(e1 n e2) = ρ(e1) ◦ π1[ρ(e2)];

ρ(e1 o e2) = π2[ρ(e1)] ◦ ρ(e2);

ρ(e1 ∪ e2) = ρ(e1) ∪ ρ(e2);

ρ(e1 ⊕ e2) = ρ(e1) ⊕ ρ(e2);

ρ(fp
1,N[e union b]) = π1[[ρright-N(e)]

∗ ◦ ρ(b)];

ρ(fp
2,N[e union b]) = π2[ρ(b) ◦ [ρleft-N(e)]

∗];

ρz-N(N) = id;

ρz-N(e1 ∪ e2) = ρz-N(e1) ∪ ρz-N(e2);

ρleft-N(e1 o e2) = ρleft-N(e1) ◦ ρ(e2);

ρright-N(e1 n e2) = ρ(e1) ◦ ρright-N(e2);

ρright-N(fp1,N′[e
′ union b ′]) = [ρright-N′(e

′)]∗ ◦ ρright-N(b
′);

ρleft-N(fp2,N′[e
′ union b ′]) = ρleft-N(b

′) ◦ [ρleft-N′(e
′)]∗.

Figure 8.2: Rewrite rules aimed at rewriting semi-joins to compositions and �xpoints to

Kleene-stars. In these rules, b is a basic expression, f ∈ {π ,π }, j ∈ {1, 2}, ⊕ ∈ {∩,−}, and

z ∈ {left, right}.

8.5 Relative expressive power of N andMfp

The rewrite rules of Figure 8.1 do not fully rewrite every expression in N toM orMfp
. To

better understand the limitations of these rewrite rules, we take a look at how they rewrite

fragments of N . As with the relation algebra, we write F ⊆ {di, a,π ,π ,∩,−} to denote a

set of operators. ByM(F) we denote the fragment ofM that only allows ∅, ` ∈ Σ, id, n, o,

∪, and all operators in F and byMfp(F) we denote the fragment ofMfp
that only allows

�xpoint iteration and the operators allowed byM(F).

Observe that we have already provided rewrite rules that can rewrite fragments of the

relation algebra to the semi-join algebra. Before we take an in-depth look at how these rules

operate on fragments of N , we �rst take a look at the reverse: expressing the semi-join

algebra using the relation algebra. To do so, we propose the rewrite rules of Figure 8.2.

Using a straightforward induction on the length of expressions, in which the base cases

are basic expressions and Lemma 8.3 is used to prove the inductive cases, we conclude:

Proposition 8.5. Let {π } ⊆ F ⊆ {di, a,π ,π ,∩,−} and let e be an expression.

(i) If e is inM(F), then e ≡path ρ(e) and ρ(e) is in N(F);

(ii) If e is inMfp(F), then e ≡path ρ(e) and ρ(e) is in N(F ∪ {∗}).

A careful analysis of the rewrite rules of Figure 8.1, Theorem 8.4, and Proposition 8.5

allows us to conclude:
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Theorem 8.6. Let {π } ⊆ F ⊆ {di, a,π ,π }. We have

(i) M(F) �path N(F) andM(F) ≡π N(F);

(ii) Mfp(F) �path N(F ∪ {
∗}) andMfp(F) ≡π N(F ∪ {

∗}).

Proof. The rewrite rules of Figure 8.1 satisfy two basic properties. First, no rewrite rule

introduces operators not yet in the original expressions, except for semi-joins (introduced

when rewriting compositions) and �xpoints (introduced when rewriting Kleene-stars). Be-

sides composition and the Kleene-star operators, rewriting semi-joins and �xpoints only

introduces projections, which are included in every fragment. Second, compositions are only

kept in path-equivalent rewritings. During left-projection-equivalent rewriting using τπ1
(·)

and right-projection-equivalent rewriting using τπ2
(·), path-equivalent rewritings are only

enforced by the usage of intersection and di�erence outside of basic expressions. �

8.6 The role of intersection and di�erence

Observe that Theorem 8.6 excludes the use of intersection or di�erence. This is a very severe

restriction, however, as intersection and di�erence are allowed in the semi-join algebra.

Careful analysis of the rewrite rules of Figure 8.1 reveals that rewriting intersection and

di�erence only causes issues in conjunction with compositions, but not when used in basic

expressions. As a consequence, we can extend Theorem 8.6 slightly.

De�nition 8.5. Let F ⊆ {di, a,π ,π ,∩,−}. We write B(F), B(F∪{∗}),A(F), andAfp(F) to

denote the basic fragments of N(F), N(F ∪ {∗}),M(F), andMfp(F), respectively, in which

intersection and di�erence occur in basic expressions only.

Theorem 8.7. Let {π } ⊆ F ⊆ {di, a,π ,π ,∩,−}. We have

(i) A(F) �path B(F), A(F) ≡π B(F), and A(F) ≡path M(F);

(ii) Afp(F) �path B(F ∪ {
∗}), Afp(F) ≡π B(F ∪ {

∗}), and Afp(F) ≡path M
fp(F).

Proof. It su�ces to observe that in the semi-join algebra we may assume without loss of

generality that intersection and di�erence occur in basic expressions only, since we can push

down intersection and di�erence through projections, coprojections, semi-joins, and unions.

Let f ∈ {π ,π } and let j ∈ {1, 2}. We push down intersection using the following properties:

e ∩ fj [e
′] ≡path fj [e

′] ∩ e ≡path (e ∩ id) n fj [e
′];

e ∩ (e1 n e2) ≡path (e1 n e2) ∩ e ≡path (e ∩ e1) n e2;

e ∩ (e1 o e2) ≡path (e1 o e2) ∩ e ≡path e1 o (e ∩ e2);

e ∩ (e1 ∪ e2) ≡path (e1 ∪ e2) ∩ e ≡path (e ∩ e1) ∪ (e ∩ e2);

e ∩ (e1 − e2) ≡path (e1 − e2) ∩ e ≡path (e ∩ e1) − e2

We push down di�erence using the following properties:

e − fj [e
′] ≡path (e ∩ di) ∪ ((e ∩ id) n π j [fj [e

′]]);

fj [e
′] − e ≡path fj [e

′] n π j [e ∩ id];

e − (e1 n e2) ≡path (e − e1) ∪ ((e ∩ e1) n π 1[e2]);
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G3,3: G4:

Figure 8.3: On the left, a two-3-cycle graph G3,3. On the right, a single-4-cycle graph G4.

(e1 n e2) − e ≡path (e1 − e) n e2;

e − (e1 o e2) ≡path (e − e2) ∪ (π 2[e1] o (e ∩ e2));

(e1 o e2) − e ≡path e1 o (e2 − e);

e − (e1 ∪ e2) ≡path (e − e1) − e2;

(e1 ∪ e2) − e ≡path (e1 − e) ∪ (e2 − e).

We observe that �xpoints are node expressions and we can treat them as if they are projections.

By repeatedly pushing down intersection and di�erence until this is no longer possible, all

intersections and di�erences occur in basic expressions only. �

The above also implies a collapse of semi-join algebra fragments to the corresponding

basic semi-join algebra fragments:

Corollary 8.8. Let {π } ⊆ F ⊆ {di, a,π ,π ,∩,−}. We have

(i) M(F) �path B(F) andM(F) ≡π B(F);

(ii) Mfp(F) �path B(F ∪ {
∗}) andM(F) ≡π B(F ∪ {∗}).

The result of Corollary 8.8 does not generalize to a collapse of relation algebra fragments

to the corresponding basic relation algebra fragments. Indeed, we have already seen in

Part II that intersection and di�erence play crucial roles in the expressive power of the

non-downward and non-local fragments of the relation algebra (e.g., Proposition 3.9). Next,

we will formally show that all basic fragments of N that include intersection have less

expressive power than their non-basic counterparts:

Proposition 8.9. Let F ⊆ {di, a,π ,π ,∩,−} with ∩ ∈ F. We have

(i) N(F) �bool B(F) and N(F) �bool M(F);

(ii) N(F ∪ {∗}) �bool B(F ∪ {
∗}) and N(F ∪ {∗}) �bool M

fp(F).

Proof. Consider the expression e ′ = (E ◦ E) ∩ E. This expression is based on the part of

e in Example 8.6 that could not be rewritten without using composition. The expression

e ′ has an occurrence of intersection beyond the scope of basic expressions. We claim that

no expression in B(F), for any F ⊆ {di, a,π ,π ,∩,−, ∗}, is path-equivalent, left-projection-

equivalent, right-projection-equivalent, or Boolean-equivalent to e ′.
To show this, consider the graphs G3,3 and G4 of Figure 8.3 and observe that [[e ′]]G3,3 , ∅

and [[e ′]]G4
= ∅. To show that no expression in B(F) can distinguish between G3,3 and G4,

we show that no expression inM orMfp
can distinguish between G3,3 and G4. We can do so

using standard two-pebble game results for the FO[2]-variant of the in�nitary �nite variable

logics [39, Example 3.10]. �

On graphs, the intersection and di�erence operators used only within the basic fragments

of N still have useful roles, as shown in the next example.
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Example 8.8. Consider again the relationships FriendOf and WorksWith and consider the

following basic expressions:

e1 = FriendOf ∩WorksWith, e2 = FriendOf −WorksWith,
e3 = WorksWith − id, e4 = WorksWith ∩ di,

Expression e1 yields work-friends, whereas expression e2 yields non-work-friends. These

examples show how intersection and di�erence can be used to select speci�c combinations

of edge labels. Both expression e3 and e4 yields people who work with each other, while

excluding self-loops (people that work with themselves).

The above use cases do rely on graph data models that allow multi-labeled edges and/or

allows self-loops. Although the general graph data model allows these features, this is not

the case for several more restrictive data models. Examples of these restrictive data models

include the trees and chains studied in Part II and other hierarchical and tree data models

such as XML and JSON [29, 58, 74]. For these restrictive data models, intersection and

di�erence do not add any expressive power to the basic fragments of the relation algebra or

the semi-join algebra. Next, we formalize and prove this.

De�nition 8.6. Let G = (V, Σ,E) be a graph. We say that an edge label ` ∈ Σ represents

a node label if ` evaluates to a subset of id. An edge label ` ∈ Σ has self-loops if ` does not

represent a node label and E (`) overlaps with a non-empty subset of [[id]]G . Graph G has

self-loops if there exists an edge label ` ∈ Σ that is a self-loop. Graph G has multi-edges if

there exists a pair of distinct edge labels `1, `2 ∈ Σ, both not being node labels, such that

either [[`1]]G ∩ [[`2]]G , ∅ or [[`1]]G ∩ [[`2
a]]G , ∅.

Proposition 8.10. Let F ⊆ {di, a,π ,π ,∩,−}.

(i) On the class of graphs without self-loops and multi-edges, we haveM(F) ≡path M(F −

{∩,−}) andMfp(F) ≡path M
fp(F − {∩,−}) if either π ∈ F or − < F.

(ii) On the class of graphs without self-loops and multi-edges, and in which no edge labels
represent node labels, we haveM(F) ≡path M(F − {∩,−}) andMfp(F) ≡path M

fp(F −

{∩,−}).

Proof. By Corollary 8.8, we assume that expressionsM(F) andMfp(F) are also expressions in

A(F) and Afp(F). Hence, we only need to consider the usage of intersection and di�erence

within basic expressions. Using the push down rules for intersection and di�erence as

proposed in the proof of Theorem 8.7 and Lemma 3.2 (i), we can push down intersection and

di�erence to the atoms ∅, id, di, `, and `a. Any combination of ∅, ∩, and di using intersection

and/or di�erence is path-equivalent to either ∅, ∩, or di.

Next, we consider expressions utilizing a single edge label `. If ` does not represent node

labels, then, due to the graph not having self-loops, we have

∅ ≡path ` ∩ ∅ ≡path ` ∩ id ≡path ` − di ≡path ` − `;

∅ ≡path `
a ∩ ∅ ≡path `

a ∩ id ≡path `
a − di ≡path `

a − `a;

` ≡path ` − ∅ ≡path ` − id ≡path ` ∩ di ≡path ` ∩ `;

`a ≡path `
a − ∅ ≡path `

a − id ≡path `
a ∩ di ≡path `

a ∩ `a.
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Else, if ` is an edge label that represents a node label, then we have

∅ ≡path ` ∩ ∅ ≡path ` − id ≡path ` ∩ di ≡path ` − `

∅ ≡path `
a ∩ ∅ ≡path `

a − id ≡path `
a ∩ di ≡path `

a − `a;

` ≡path ` − ∅ ≡path ` ∩ id ≡path ` − di ≡path ` ∩ `;

`a ≡path `
a − ∅ ≡path `

a ∩ id ≡path `
a − di ≡path `

a ∩ `a.

Finally, we consider expressions utilizing distinct edge labels `1 and `2. If e1 and e2 do

not both represent node labels, then, due to the graph not having multi-edges, we have

`1 ∩ `2 ≡path ∅ and `1 − `2 ≡path `1. Else, if `1 and `2 represent node labels, then we have

`1∩`2 ≡path `1 ◦`2 and `1−`2 ≡path `1 ◦π 1[`2]. We observe that only when we use di�erences

on edge labels that represent node labels, we introduce the need for coprojections, explaining

why we require coprojections in this case. �

8.7 Results on trees and chains

Part II already presented many results on the expressive power of the relation algebra on trees

and chains. These results can easily be combined with Theorems 8.6 and 8.7 and Corollary 8.8

to draw conclusions on the expressive power of the semi-join algebra on trees and chains.

Corollary 8.11. Let F ⊆ {a,π ,π ,∩,−}. We have the following

(i) On trees, we have N(F) �π M(F) and N(F ∪ {∗}) �π Mfp(F) if N(F) is downward.

(ii) On chains, we have N(F) �π M(F) if N(F) is local.

We can also sharpen the result of Theorem 3.29 signi�cantly:

Corollary 8.12. On unlabeled chains, every �rst-order logic query is Boolean-equivalent to an
expression inM(π ).

Next, we consider the node-labeled sibling-ordered XML data model and the Conditional

XPath query language. On �nite node-labeled sibling-ordered trees, Conditional XPath is

path-equivalent to FO
tree

: �rst-order logic on tree structures represented by a descendant and

a following-sibling relation, unary node-label predicates, and equality [74, Proposition 2.7].

We shall prove that this collapse can be sharpened to a projection equivalence collapse of

FO
tree

queries toMfp
. To prove this, we �rst provide a minimal introduction to Conditional

XPath.

Conditional XPath is a syntactical fragment of Regular XPath, and Regular XPath is a

query language for querying node-labeled sibling-ordered XML data [74]. Regular XPath

distinguishes path formulae, which evaluate to binary relations, and node formulae, which

evaluate to unary relations (sets of nodes). Path formulae are de�ned by the grammar
18

p_w� = Edge | p_w� ◦ p_w� | p_w� ∪ p_w� | [p_w�]∗ | ?n_w�,

in which Edge ∈ {Child, Parent, Left, Right} denotes the edge relations (the parent-child

axis and the ordered sibling axis), n_w� is a node formula, and ?n_w� interprets the node

formulae as a binary relation. Node formulae are de�ned by the grammar

n_w� = ` | id | π1[p_w�] | n_w� | n_w� ∪ n_w� | n_w� ∩ n_w�,
18

We have slightly adapted the Regular XPath syntax to better match the syntax of N where possible.
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in which ` denotes a node label.

As a �rst step towards the collapse of Boolean FO
tree

queries to the semi-join algebra,

we claim that Regular XPath is path-equivalent to N(a,π , ∗). We prove this claim by rewrit-

ing path formulae to expressions in N(a,π , ∗) and node formulae to node expressions in

N(a,π , ∗). We represent node labels using edge labels (see De�nition 8.6). These choices

result in a straightforward rewriting τp_w�(p_w�) for path formulae p_w�. For rewritings

involving node formulae, we have:

τp_w�(?n_w�) = π1[τn_w�(n_w�)];

τn_w�(`) = `;

τn_w�(id) = id;

τn_w�(π1[p_w�]) = π1[τp_w�(p_w�)];

τn_w�(n_w�) = π 1[τn_w�(n_w�)];

τn_w�(n_w�
1
∪ n_w�

2
) = τn_w�(n_w�

1
) ∪ τn_w�(n_w�

2
);

τn_w�(n_w�
1
∩ n_w�

2
) = τn_w�(n_w�

1
) ◦ τn_w�(n_w�

2
).

As Conditional XPath is a restriction of Regular XPath in which the Kleene-star can only

be applied to steps instead of generic expressions,
19

we conclude the following:

Proposition 8.13. With respect to queries yielding binary relations evaluated on �nite node-
labeled sibling-ordered trees, we have Regular XPath ≡path N(

a,π , ∗), Conditional XPath
�path N(

a,π , ∗), and N(a,π , ∗) �bool Conditional XPath.

Proof. To translate from Regular XPath to N(a,π , ∗), we use the rewrite rules τp_w�(p_w�).
For the other direction, we adapt the above rewrite rules. The only di�culty in this are

subexpressions of the form π2[e] and π 2[e]. We deal with these subexpressions by rewriting

them towards π1[e
′] and π 1[e

′], respectively, in which e ′ is obtained from [e]−1
by pushing

down the converse step to the edge labels Child and Right (see Section 1.3). The remainder of

the statement of the Proposition follows from the well-known relationships between Regular

XPath and Conditional XPath [74]. �

We combine Theorem 8.6, Proposition 8.13, and a result from Marx [74]:

Corollary 8.14. With respect to queries yielding binary relations evaluated on �nite node-
labeled sibling-ordered trees, we have Regular XPath ≡π Mfp(a,π ), Conditional XPath �π
Mfp(a,π ), andMfp(a,π ) �bool Conditional XPath.

Finally, we combine Corollary 8.14 with the collapse of FO
tree

to Conditional XPath [74,

Proposition 2.7] to conclude the following:

Proposition 8.15. With respect to queries yielding binary relations evaluated on �nite node-
labeled sibling-ordered trees, we have FO

tree �π M
fp(a,π ).

Unfortunately, it is not possible to strengthen Proposition 8.15 by showing that one

can translate Conditional XPath to the two-variable fragment of FO
tree

viaMfp(a,π ). This

follows from the simple fact that the two-variable fragment of FO
tree

cannot express basic

Conditional XPath constructions, including the edge relationsChild and Right, and step-based

conditional iteration via the descendant and the following-sibling relations.

19
A step is an edge relation to which, optionally, a test is applied of the form ?n_w�.
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u v w

Figure 8.4: An unlabeled chain of length three.

8.8 The role of projection equivalence

In this chapter, we introduced projection equivalence to study rewriting and simplifying

expressions while keeping either the �rst projection or second projection of the rewritten

expression equivalent to the original expression. One can ask how projection equivalence

relates to the more commonly studied path equivalence and Boolean equivalence.

Proposition 8.16. Let F1,F2 ⊆ {di, a,π ,π ,∩,−, ∗}. On labeled graphs, we have N(F1) �π
N(F2) if and only if N(F1) �bool N(F2).

Proof. We always have that N(F1) �π N(F2) implies N(F1) �bool N(F2). To prove that

N(F1) �bool N(F2) implies N(F1) �π N(F2), we distinguish two cases:

1. N(F1) �path N(F2). Then both N(F1) �π N(F2) and N(F1) �bool N(F2).

2. N(F1) �path N(F2) and N(F1) �bool N(F2). In this case, there exists a fragment

F ⊆ {di, a,π ,π } such that F1 = F ∪ {a} and F2 = F ∪ {π }. The proof of N(F1) �bool

N(F2) in Fletcher et al. [31, Proof of Proposition 4.2] reveals that, for every expression

e in N(F1), there exist expressions e1 and e2 in N(F2) such that e1 ≡path π1[e] and

e2 ≡path π2[e]. Hence, by de�nition, N(F1) �π N(F2). �

We observe that Proposition 8.16 implies that we may not conclude from L1 ≡π L2 that

L1 ≡path L2. Next, we show that we may not conclude from L1 ≡bool L2 that L1 ≡π L2.

Proposition 8.17. Let F ⊆ {∗}. On labeled chains, we have N(F ∪ {π }) �bool N(F) and
N(F ∪ {π }) �π N(F).

Proof. By Theorem 4.12, we have N(F ∪ {π }) �bool N(F). We prove N(F ∪ {π }) �π N(F)
via a simple counterexample. Consider the query e = π2[`] ◦ π1[`] evaluated on the chain C

of Figure 8.4. This query will return the node-pair (v,v). An exhaustive search shows that

no expression in N(F) is j-test-equivalent to e , j ∈ {1, 2}. �

Using Proposition 8.16 and Proposition 8.17, we conclude the following:

Corollary 8.18. Let L1 and L2 be query languages. Then L1 ≡bool L2 does not imply
L1 ≡π L2, and L1 ≡π L2 does not imply L1 ≡path L2.



CHAPTER 9

Optimizing graph query evaluation20

In this chapter, we review the composition-to-semi-join rewrite rules presented in Chapter 8

and investigate their usefulness with respect to graph query optimization. To do so, we

�rst provide a simple cost model for graph query evaluation and show why we consider

the composition and Kleene-plus operators to be expensive, and the semi-join and �xpoint

operators to be inexpensive. Our main results are as follows:

1. We propose an e�cient algorithm to evaluate the �xpoint operators we consider.

2. We revisit the analysis of the semi-join rewrite rules (Theorem 8.6) and add to this

analysis by providing strict bounds on the size of rewritten expressions. We show

that if the input of the semi-join rewrite rules is an expression of length s that uses at

most u union-operators, then application of the rewrite rules we proposed yields a

rewritten expression that can be evaluated in at most s + u ≤ 2 · s evaluation steps,

demonstrating the practical feasibility of our rewrite techniques.

3. We show that the semi-join rewrite rules provide strict guarantees on the data com-
plexity—the complexity in terms of the size of the graph—of evaluating queries by

evaluating each of the operators involved. The application of the semi-join rewrite

rules can decrease the data complexity of query evaluation signi�cantly, and will never

increase it.

4. We also identify the identity, diversity, and coprojection operators as expensive to eval-

uate. We show how common usage of these operators can be replaced by specialized,

e�cient to evaluate, operators.

9.1 Organization

In Section 9.2, we introduce a simple cost model for evaluating operators in the relation

algebra and the semi-join algebra. In Section 9.3, we show that �xpoints can be evaluated

e�ciently. In Section 9.4, we apply the developed cost model to the rewrite rules of Chapter 8.

In Section 9.5, we take a look at usages of identity, diversity, and coprojections. Finally, in

Section 9.6, we conclude on the above �ndings by casting them in terms of the impact on the

complexity of query evaluation.

20
The results in this chapter are partly based on the paper “From relation algebra to semi-join algebra: an

approach for graph query optimization” [55].
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9.2 The cost of evaluating operators

The operators in the relation algebra and semi-join algebra can easily and e�ciently be

evaluated using specialized versions of the many query evaluation algorithms that are used

in traditional relational database management systems [16, 38, 60, 62, 69, 73, 85, 94]. The only

exception is evaluation of the �xpoint operators, which we discuss in-depth in Section 9.3.

Here, we focus on giving a cost model for the other operators. A detailed cost model for

the evaluation cost of queries evaluation involves many factors and is outside the scope

of this work. Luckily, the worst-case cost of each operator we consider is almost entirely

determined by the size of the evaluation result of its operands and the size of its result, even

if we use naive algorithms for evaluating these operators [38, 85, 94]. Hence, based on this

observation, we will develop and use a high-level worst-case evaluation cost model in which

the cost of evaluating operators is based on the size of the evaluation results of its operands

and on the size of the evaluation result of the operator. We have the following:

Proposition 9.1. Let G = (V, Σ,E) be a graph and let i ∈ {1, 2}. We have

|[[∅]]G | = 0;

|[[id]]G | = |V|;

|[[di]]G | = |V|
2 − |V|;

|[[πi [e]]]G | = |[[e]]G |i |;

|[[π i [e]]]G | = |V| − |[[e]]G |i |;

|[[e1 ◦ e2]]G | ≤ |[[e1]]G |1 | · |[[e2]]G |2 |;

|[[e1 n e2]]G | ≤ |[[e1]]G |;

|[[e1 o e2]]G | ≤ |[[e2]]G |;

|[[e1 ∪ e2]]G | ≤ |[[e1]]G | + |[[e2]]G |;

|[[e1 ∩ e2]]G | ≤ min(|[[e1]]G |, |[[e2]]G |);

|[[e1 − e2]]G | ≤ |[[e1]]G |;

|[[[e]∗]]G | ≤ |[[e]]G |1 | · |[[e]]G |2 |.

Based on Proposition 9.1, it is tempting to categorize the operators in three complexity

classes.
21

De�nition 9.1. An operator is expression-linear if it guarantees to yield a result linearly

upper-bounded by the size of the evaluation result of its operands. An operator is node-linear
if it is not expression-linear, but still guarantees to yield a result linearly upper-bounded by

the number of nodes (independent of the size of the evaluation result of any operands). An

operator is non-linear if it does not fall in the above two categories.

We deem expression-linear operators to be the least expensive and the non-linear opera-

tors to be most expensive. We classify the relation algebra and semi-join algebra operators

as follows:

Proposition 9.2. The operators π1, π2, n, o, ∪, ∩, and − are expression-linear, the operators
id, π 1, and π 2 are node-linear, and the operators di, ◦, and ∗ are non-linear.

21
The categorization is similar to the categorization of Leinders and Van den Bussche [69].
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Proof. From Proposition 9.1 it already follows that π1, π2, n, o, ∪, ∩, and − are expression-

linear. To show that the operators id, π 1, and π 2 are node-linear, we provide an example

showing that they are not expression-linear. To show that the operators di, ◦, and
∗

are

non-linear, we provide an example showing that they are not expression-linear and node-

linear. Let G = (V, Σ,E) be a graph with V = {m,n1, . . . ,n |V |−1}, Σ = {`, `
′}, E (`) =

{(m,ni ), (ni ,m) | 1 ≤ i ≤ |V| − 1}, and E (`′) = {(m,m)}. We have

[[id]]G = {(n
′,n′) | n′ ∈ V};

[[di]]G = V
2 − {(v,v) | v ∈ V};

[[π 1[`
′]]]G = [[π 2[`

′]]]G = {(ni ,ni ) | 1 ≤ i ≤ |V| − 1};

[[` ◦ `]]G = V
2 − E (`) ;

[[[`]∗]]G = V
2.

Observe that |[[id]]G | = |V|, |[[di]]G | = |V|
2 − |V|, |[[π 1[`

′]]]G | = |V| − 1, and |[[` ◦ `]]G | =
|V|2 − 2 · (|V| − 1). �

Proposition 9.2 illustrates why we consider composition and the Kleene-star to be expen-

sive and why also identity, diversity, and coprojections are to be avoided.

9.3 E�cient evaluation of �xpoints

Due to the restrictions put on �xpoints, they can be evaluated very e�ciently, which we will

show next. Let f = fpj,N[e union b] be an expression without free variables. The complexity

of evaluating f is determined by the recursion steps of f , denoted by R(f ), and the cost of

evaluating the non-recursive terms of f . We denote the non-recursive terms of f by T(f ).
We de�ne R(f ) = R(e) with

R(N) = 1;

R(e1 n e2) = R(e2 o e1) = 1 + R(e1);

R(e1 ∪ e2) = R(e1) + R(e2) + 1;

R(fpj,N′[e
′ union b ′]) = R(b ′) + R(e ′) + 1,

with N a variable, and we de�ne T(f ) to be the multiset T(f ) = [b] + T(e) with

T(N) = [ ]

T (e1 n e2) = T(e2 o e1) = [e2] + T(e1);

T(e1 ∪ e2) = T(e1) + T(e2);

T(fpj,N′[e
′ union b ′]) = T(b ′) + T(e ′).

Proposition 9.3. Let G = (V, Σ,E) be a graph and let f = fpj,N[e union b] be an expression
without free variables. The worst-case cost for evaluating [[f ]]G is O(R(f ) · n + s + c), in which

n = max{|[[t]]G |j | | t ∈ T (f )};

s =
∑
{|[[t]]G | | t ∈ T (f )},

and c is the total cost of evaluating the expressions in T(f ).
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E

C

B

D

A

NN′

Figure 9.1: Graph representing the expression e = fp
1,N[A n e ′ union F] with e ′ =

fp
1,N′[(B n (C n N

′)) ∪ (D n N′) union E n N]. This graph is obtained by applying the graph

representation construction of the proof of Proposition 9.3 on e .

Proof. We observe that, in expression e , there is no negation on the path towards the variable

N: we only allow union, semi-joins, and �xpoints, and we do not allow di�erence and

coprojections. Hence, if we interpret the expressions in T(f ) as pre-computed edge labels,

then the restricted language we consider is expressible in a subset of the alternation-free

µ-calculus, for which very e�cient evaluation algorithms exist [22].

Based on these algorithms, we sketch how to e�ciently evaluate the �xpoint expression

f when j = 1. The case for j = 2 is analogous. To evaluate the �xpoint expression f , we �rst

translate the expression into a graph representation. We do so by making edge-connections

between expressions in the following way.

1. Add an unlabeled connection from the expression e to the expression N.

2. For any right-recursive subexpression e1 n e2, add a connection labeled e1 from the

expression e2 to the expression e1 n e2.

3. For any right-recursive subexpression e1 ∪ e2, add unlabeled connections from the

expressions e1 and e2 to the expression e1 ∪ e2.

4. For any right-recursive subexpression fp
1,N′[e

′ union b ′], add an unlabeled connection

from the expression N′ to the expression fp
1,N′[e

′ union b ′] and from the expression

b ′ to the expression N′.

Figure 9.1 provides an example of the resulting graph representation of a �xpoint expression.

The graph representation is used for a message-passing evaluation algorithm in which

each expression-node maintains a set of received graph-nodes. When an expression-node

receives a graph-node v it has not yet received, then it sends v to every expression-node to

which it has an unlabeled connection and it sends w to every expression-node to which it

has a connection labeled e ′ with (w,v) ∈ [[e ′]]G . We initialize this process by sending each

graph-node in [[b]]G |1 to the expression-node N. Let S be the set of all graph-nodes received

by N after all messages have been processed. We have [[f ]]G = {(v,v) | v ∈ S}.
Over every unlabeled connection, at most n messages are sent and over every connection

labeled with e , at most |[[e]]G | messages are sent. The number of expression-nodes and the

number of unlabeled connections are both worst-case O(R(f )) and for every non-recursive

term in T(f ) there is exactly one labeled connection. Hence, at most O(R(f ) ·n+s)messages

need to be sent. �

Fixpoints do not really suit the classi�cation we used for the other operators, as its

operands cannot be evaluated independently due to the recursion involved. To obtain a
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classi�cation in the spirit of De�nition 9.1, we can view the set of non-recursive terms T(f )
as the operands of a �xpoint. Using this view, we can classify the �xpoint operator as an

expression-linear operator.

9.4 Revising the analysis of the semi-join rewriting

We already claimed soundness of the rewrite rules of Figure 8.1. To claim their usability

for query optimization, we will analyze the complexity of the expression resulting from

the rewrite next. We do so in terms of the expression size, the number of steps needed

for evaluation, and the complexity of the operators involved. In this analysis, we use the

following terminology:

De�nition 9.2. The size of an expression e , denoted by ‖e ‖, is the number of operations in

e . We have

‖∅‖ = ‖id‖ = ‖di‖ = ‖`‖ = ‖`a‖ = 0;

‖ fj [e]‖ = 1 + ‖e‖;

‖e1 ⊗ e2‖ = 1 + ‖e1‖ + ‖e2‖;

‖e1 ⊕ e2‖ = 1 + ‖e1‖ + ‖e2‖;

‖[e]∗‖ = 1 + ‖e‖;

‖N‖ = 0;

‖fpj,N[e union b]‖ = 1 + ‖e‖ + ‖b‖,

with f ∈ {π ,π }, j ∈ {1, 2}, ⊗ ∈ {◦,n,o}, and ⊕ ∈ {∪,∩,−}. The subexpression set of e ,

denoted by S(e), is the set of all unique non-atomic subexpressions that must be evaluated:

S(∅) = S(id) = S(di) = S(`) = S(`a) = ∅;

S(fj [e]) = { fj [e]} ∪ S(e);

S(e1 ⊗ e2) = {e1 ⊗ e2} ∪ S(e1) ∪ S(e2);

S(e1 ⊕ e2) = {e1 ⊕ e2} ∪ S(e1) ∪ S(e2);

S([e]∗) = {[e]∗} ∪ S(e);

S(N) = ∅;

S(fpj,N[e union b]) = {fpj,N[e union b]} ∪ S(e) ∪ S(b).

The evaluation size of e is de�ned by eval-steps(e) = |S(e)|.

Example 9.1. Consider the expression

e = ((` ◦ `) ◦ (` ◦ `)) ◦ ((` ◦ `) ◦ (` ◦ `)).

We have ‖e ‖ = 7, whereas we have eval-steps(e) = 3. Indeed, this expression can be evaluated

in three steps, namely by �rst evaluating e1 = ` ◦ `, next e2 = e1 ◦ e1, and, �nally, e = e2 ◦ e2.

Now consider the expression

e ′ = ` ◦ (` ◦ (` ◦ (` ◦ (` ◦ (` ◦ (` ◦ `)))))),

for which we have e ≡path e ′ and ‖e ′‖ = eval-steps(e ′) = 7.
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Next, we characterize the impact of the rewrite rule of Figure 8.1 on the evaluation

size and expression size of rewritten expressions. Observe that the only rewrite rules of

Figure 8.1 that increases the expression size signi�cantly are the rewrite rules τ◦i (e1 ∪

e2; ε) = τ◦i (e1; ε) ∪ τ◦1
(e2; ε), i ∈ {1, 2}, as these rewrite rules duplicate the expression ε . By

u(τ (e)), u(τπj (e)), and u(τ◦j (e ; ε)), j ∈ {1, 2}, we denote the number of times the rewrite rules

τ◦i (e1 ∪ e2; ε) = τ◦i (e1; ε) ∪ τ◦1
(e2; ε), i ∈ {1, 2}, have been applied in the rewriting of e using

τ (e), τπj (e), or τ◦j (e; ε ′), respectively. We have the following:

Theorem 9.4. Let e be an expression in N .

(i) We have τ (e) ≡path e , eval-steps(τ (e)) ≤ u(τ (e))+ ‖e ‖, and ‖τ (e)‖ = Θ(‖e ‖ · 2u(τ (e))) in
the worst case.

(ii) Let i ∈ {1, 2}. We have τπi (e) ≡πi e , eval-steps(τπi (e)) ≤ u(τπi (e))+ ‖e‖, and ‖τπi (e)‖ =
Θ(‖e ‖ · 2u(τπi (e))) in the worst case.

Proof. We �rst prove ‖τ (e)‖ = Ω(‖e ‖ · 2u(τ (e))) in the worst case. In the worst case, we have

u(τ (e)) = Θ(‖e‖). Let e = π1[(`1 ◦ `2∪ `2 ◦ `1)
p ◦ `p+1]. We have ‖(`1 ◦ `2∪ `2 ◦ `1)

p ‖ = 4p − 1,

‖`p+1‖ = p, ‖e ‖ = 5p, and u(τ (e)) = p. This expression is rewritten into e ′ = π1[e1] with, for

i , 1 ≤ i < p, ei = `1 n (`2 n ei+1) ∪ `2 n (`1 n ei+1), and ep = ` n (` n (. . . n `) . . . ). We have

‖e ′‖ = 1 + ‖e1‖ with ‖ei ‖ = 5 + 2 · ‖ei+1‖ and ‖ep ‖ = p. Hence,

‖e ′‖ = 1 + 5 · (20 + 2
1 + · · · + 2

p−2) + p · 2p−1

≥ (p · 2p )/2

= ((‖e‖/5) · 2( ‖e ‖/5))/2 = Ω(‖e ‖ · 2u(τ (e))).

To prove that ‖τπi (e)‖ = Ω(‖e ‖ · 2u(τπi (e))) in the worst case, it now su�ces to observe that

τπi (e) = τ (e).
To prove the remainder of the Theorem, it su�ces to show that τ (e), τπi (e), τ◦1

(e ; ε), and

τ◦1
(e; ε), with e an expression in N and ε an expression, satisfy the following conditions:

1. If x = τ (e) and u = u(τ (e)), then x ≡path e , ‖x ‖ ≤ ‖e‖ · 2u , and eval-steps(x) ≤ u + ‖e ‖.

2. If i ∈ {1, 2}, x = τπi (e), and u = u(τπi (e)), then x ≡πi e , ‖x ‖ ≤ ‖e‖ · 2
u

, and

eval-steps(x) ≤ u + ‖e‖.

3. If ε is non-recursive or right-recursive in variable N, x = τ◦1
(e; ε), and u = u(τ◦1

(e; ε)),
then x ≡π1

e n ε , ‖x ‖ ≤ (‖e‖ + ‖ε ‖ + 1) · 2u , and S(x) = S(ε)∪T with |T | ≤ ‖e ‖ +u + 1.

If ε is right-recursive in variable N, then so is x , else x is non-recursive.

4. If ε is non-recursive or left-recursive in variable N, x = τ◦2
(e; ε), and u = u(τ◦2

(e; ε)),
then x ≡π2

ε oe , ‖x ‖ ≤ (‖e‖ + ‖ε ‖ + 1) · 2u , and S(x) = S(ε)∪T with |T | ≤ ‖e ‖ +u + 1.

If ε is left-recursive in variable N, then so is x , else x is non-recursive.

These properties are straightforward to prove using induction on the length of e . The base

cases are the basic expressions and Lemma 8.3 is used to prove the inductive steps. �

The rules of Figure 8.1 are introduced with the sole purpose of proving relationships

between fragments of the relation algebra and the semi-join algebra. Consequently, these

rewrite rules are not fully designed with respect to optimizing query evaluation, and will not

necessarily improve query evaluation performance at every evaluation step, as illustrated

next.
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Example 9.2. Consider the expression e = π1[`1 ◦ `2]. We have τ (e) = π1[`1 n `2]. Now

consider the graph G = (V, Σ,E) with V = {m,n1, . . . ,n |V |−1}, Σ = {`1, `2}, E (`1) =
{(m,ni ) | 1 ≤ i ≤ |V| − 1}, and E (`2) = {(ni ,m) | 1 ≤ i ≤ |V| − 1}. We shall argue that

evaluation of e by �rst evaluating the composition and then evaluating the projection is less

costly than evaluation of τ (e). Observe that we have

[[`1 ◦ `2]]G = {(m,m)};

[[`1 n `2]]G = E (`1) .

Due to the intermediate result of evaluating `1 ◦ `2 being much smaller than the intermediate

result of evaluating `1 n `2, straightforward projection algorithms will perform the projection

step in e at a much lower cost than the projection step in τ (e). Moreover, in this speci�c

example, algorithms for computing the composition `1 ◦ `2 can easily achieve comparable

performance to algorithms for computing the semi-join `1 n `2.

In the following, we explore how the rewrite rules of Figure 8.1 can be adjusted and used

for graph query optimization. Remember that the cost of all operators is in�uenced primarily

by the size of the evaluation results of its operands. From this observation, the issue shown

in Example 9.2 can easily be explained: the rewrite rules of Figure 8.1 can rewrite expression

e into an expression e ′ such that |[[e]]G | < |[[e
′]]G |.

We change the rewrite rules of Figure 8.1 in such a way that the resulting rules provide

the following strong guarantee: the size of the evaluation results of a rewritten expression

will always be upper bounded by the size of the evaluation results of the original expression.

We do so by modifying τ◦i (e ; ε) by replacing rewritings of the form д n ε by π1[д n ε] and of

the form ε o д by π2[ε o д].

Proposition 9.5. Let G be a graph, let e be an expression in N , and let ε be an expression. If
we use the rewrite rules of Figure 8.1 with the above modi�cations, then τ◦1

(e ; ε) and τ◦2
(e ; ε) are

node expressions and their evaluation yields the smallest possible sets such that [[τ◦1
(e ; ε)]]G |1 =

[[e n ε]]G |1 and [[τ◦2
(e; ε)]]G |2 = [[ε o e]]G |2.

With a minimal modi�cation to the rewrite rules for τπi (e), i ∈ {1, 2}, we can also

guarantee that τπi (e) minimizes intermediate evaluation results in the same way as the

modi�ed version of τ◦i (e; ε) does. We do so by, additionally, applying the following two

changes to τπi (e):

τπi (b) = πi [b];

τπi (e1 ⊕ e2) = πi [τ (e1) ⊕ τ (e2)],

in which b is a basic expression and ⊕ ∈ {∩,−}. Using a straightforward induction argument,

we obtain

Proposition 9.6. Let G be a graph and let e be an expression in N . If we use the rewrite
rules of Figure 8.1 with the above modi�cations, then τπ1

(e) and τπ2
(e) are node expressions

and their evaluation yields the smallest possible sets such that [[τπ1
(e)]]G |1 = [[e]]G |1 and

[[τπ2
(e)]]G |2 = [[e]]G |2.

From Proposition 9.6, we conclude:

Corollary 9.7. Let G be a graph, let e be an expression in N , and i ∈ {1, 2}. If we use the
rewrite rules of Figure 8.1 with the above modi�cations, then we have |[[τπi (e)]]G | ≤ |[[e]]G |.
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We observe that, in practice, the projection-steps introduced by modifying τ◦i (e; ε) and

τπi (e) can easily be integrated into specialized versions of the operators n, o, ∪, ∩, and −.

These specialized single-column operators can be evaluated at least as e�cient as the original

operators. This also holds for single-column specializations of all other operators used by the

relation algebra and the semi-join algebra, which makes an attractive proposition to eliminate

every usage of the projection operators. Hence, even though strictly speaking the number

of evaluation steps slightly increases by the above changes, this does not translate into an

increase in the evaluation cost of the resultant rewritten expressions if these operators are

properly implemented.

9.5 Dealing with other expensive operators

The semi-join rewrite rules introduced are aimed at optimizing query evaluation for common

usages of compositions and Kleene-stars in cases where their full expressive power is un-

necessary. In Section 9.2, we argued that also identity, diversity, and coprojections are to be

avoided. Next, we recognize common usages in which the full expressive power of identity,

diversity, and coprojections is unnecessary. To enable optimization of query evaluation in

these common cases, we introduce the selection operators σ= and σ, and the anti-semi-join

operators n̄ and ō. The semantics of evaluation of these operators is de�ned by:

[[σ=(e)]]G = {(n1,n2) | (n1,n2) ∈ [[e]]G ∧ (n1 = n2)};

[[σ,(e)]]G = {(n1,n2) | (n1,n2) ∈ [[e]]G ∧ (n1 , n2)};

[[e1 n̄ e2]]G = {(m,n) | (m,n) ∈ [[e1]]G ∧ ¬∃z (n, z) ∈ [[e2]]G};

[[e1 ō e2]]G = {(m,n) | (m,n) ∈ [[e2]]G ∧ ¬∃z (z,m) ∈ [[e1]]G}.

Before we use these newly introduced operators, we classify these operators in the style

of Proposition 9.1 and Proposition 9.2.

Proposition 9.8. Let G be a graph and let e , e1, and e2 be expressions. We have:

|[[σ=(e)]]G | ≤ |[[e]]G |;

|[[σ,(e)]]G | ≤ |[[e]]G |;

|[[e1 n̄ e2]]G | ≤ |[[e1]]G |;

|[[e1 ō e2]]G | ≤ |[[e2]]G |.

The operators σ=, σ,, n̄, and ō are expression-linear.

Next, we look at ways to rewrite common usages of identity and diversity. As illustrated in

Section 1.2 and by Example 8.8, common usages of identity and diversity involve intersection

and di�erence. In these usages, identity and diversity are used to restrict query results to

keep only node pairs of the form (n,n) or to restrict query results to �lter out node pairs of

the form (n,n). In these use cases, we can introduce selection operators:

Proposition 9.9. Let e be an expression. We have:

(i) e ∩ id ≡path id ∩ e ≡path e − di ≡path σ=(e);

(ii) e ∩ di ≡path di ∩ e ≡path e − id ≡path σ,(e).
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We observe that expression of the form e − di and σ=(e) are node expressions. Hence,

we can add these cases to the de�nition of ns(·). Besides the above usages of identity, we

observe that Lemma 3.2 (iii) already speci�es how to eliminate redundant id terms from

relation algebra expressions. These elimination rules can easily be extended to also cover

the semi-join algebra operators.

Finally, we look at ways to rewrite common usages of coprojections. In Section 8.3, we

observed that e1 ◦ π1[e2] ≡path e1 n π1[e2] ≡path e1 n e2. We use anti-semi-joins to generalize

these rewritings to also cover coprojections:

Proposition 9.10. Let e and e ′ be expressions. We have

(i) e ◦ π 1[e
′] ≡path e n̄ e ′ and e ◦ π 2[e

′] ≡path e n̄ π2[e
′];

(ii) π 1[e
′] ◦ e ≡path π1[e

′] ō e and π 2[e
′] ◦ e ≡path e ′ ō e .

If, additionally, e is a node expression, then also

(iii) e ∩ π 1[e
′] ≡path e n̄ e ′ and e ∩ π 2[e

′] ≡path e n̄ π2[e
′];

(iv) e − π 1[e
′] ≡path e n e ′ and e − π 2[e

′] ≡path e n π2[e
′].

9.6 Complexity of rewritten expressions

We will consider the complexity of evaluating expressions e and the complexity of evaluating

the rewritten expression τ (e) (using the rewrite rules of Section 9.4). To do so, we use the

usual query evaluation complexity framework [95]. The worst-case complexity of evaluating

any expression e ′ is O(eval-steps(e ′) · c), where eval-steps(e ′) is the number of evaluation

steps and c is the maximum cost for performing a single evaluation step. Hence, the query
complexity—the cost of evaluating an expression in terms of the size of the expression given

a �xed graph—is O(eval-steps(e)) and the data complexity—the cost of evaluating a query in

terms of the size of the graph given a �xed query—is O(c).
We can verify that the rewrite rules τ (e), τπ1

(e), and τπ2
(e) reduce the data-complexity in

two distinct ways. First, the number of expensive non-linear operators (composition and

Kleene-star) is reduced in favor of cheaper expression-linear operators (possibly reducing c ,

but never increasing it). Second, by Corollary 9.7, the size of evaluation results for subex-

pressions is minimized whenever possible, reducing the cost of evaluating non-rewritten

operators.

The cost of the reduction in the data-complexity of evaluating an expression optimized

by τ (e), τπ1
(e), or τπ2

(e) is an increase in the query-complexity of evaluating the optimized

expression. This increase in the query-complexity is caused by an increase in the evaluation

size and, in the worst case, this is an exponential increase:

Example 9.3. Consider the expressions e and e ′ = τπ1
(e) of Example 9.1. By Theorem 8.4, we

have e ′ ≡π1
e ′. During rewriting, the expression size did not increase, while the evaluation

size did sharply increase: we have ‖e ‖ = ‖e ′‖ = 7, eval-steps(e) = 3, and eval-steps(e ′) = 7.

As a consequence, evaluating e and e ′ by evaluating each of the operators involved is possible

in worst-case O(3 · |E (`)|2) and O(7 · |E (`)|), respectively. Hence, any increase in the

query-complexity is accompanied by a sharp decrease in the data-complexity.

Even with a worst-case exponential increase in the query-complexity, Theorem 8.4

guarantees that the query complexity is linearly upper-bounded by the size of the original
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query. Hence, when queries are small and the data graphs are large, which is usually the

case, the increase of the query complexity is a good trade-o� if the data complexity decreases

signi�cantly.



CHAPTER 10

Graph query optimization beyond semi-joins

As motivated in Chapter 1, the relation algebra is an abstract query language that represents

cleanly the core of graph query languages with respect to recognizing structures in graphs.

Unfortunately, this abstract nature does not make the relation algebra directly suited for real

world graph querying. To illustrate this, we consider graph querying in social networks such

as visualized in Figure 1.1.

For users, a core feature of social networks is to �nd and connect with old and new friends.

To support this, several social networks will suggest new friends to users by suggesting

friends-of-friends that are not already friends. These friends-of-friends can be retrieved via

the query

SuggestFriends = (FriendOf ◦ FriendOf ) − (FriendOf ∪ id).

If we want to provide Alice with friend suggestions, we simply evaluate the above query and

then select all nodesm such that the pair (Alice,m) is in the result of query SuggestFriends.
This approach is far from optimal: we ran a complex query on the social network, after which

we selected and used only a very small portion of the retrieved data. As social networks tend

to be extremely large graphs, this approach is unacceptably expensive.

A more practical query language would allow us to select the node Alice within the

query, which allows the query optimizer to take advantage of the selection to simplify query

evaluation. To study the e�ects of selection on optimization of graph query evaluation, we

add a simple node-selection operator to the relation algebra and study how this operator

a�ects query optimization. The node-selection 〈n〉, with n a node in the graph, will return

only the single pair {(n,n)}. For example, we can use the node-selection operator to retrieve

friend suggestions for Alice:

SuggestAliceFriends = 〈Alice〉 ◦ ((FriendOf ◦ FriendOf ) − (FriendOf ∪ id)).

We observe that just evaluating the query SuggestAliceFriends as-is will be as ine�cient as

the original approach. In this chapter, we shall show that the above query does provide

signi�cant opportunities for query optimization. This is not surprising, as selections play a

signi�cant role in query optimization for, e.g., traditional relational database management

systems [85, 94]. For these systems, selections give rise to the frequently used push-down

rewrite rules, which can simplify queries and strongly reduce the size of intermediate results

during query evaluation. Indeed, in the optimizations for node-selections we consider we

can recognize the application of the concepts underlying the push-down rewrite rules.

In this chapter, we highlight query rewrite techniques we believe can aid graph querying

and, at the same time, highlight how existing rewrite techniques from the relational database

113
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world apply to graph querying. In particular, we show that in the setting of the relation algebra

node-selections give rise to expressions that evaluate to relations of a speci�c form, which we

call Cartesian relations. We show that these expressions that evaluate to Cartesian relations

can often be simpli�ed and optimized signi�cantly, while also giving rise to additional

opportunities for applying the semi-join optimizations we studied in Chapters 8 and 9.

10.1 Organization

In Section 10.2, we introduce Cartesian relations, Cartesian expressions, and the Cartesian

product operator that we shall use in optimizing Cartesian expressions. In Section 10.3,

we take a look at basic rewrite rules involving composition, intersection, and di�erence.

In Section 10.4, we show that the Cartesian expressions are closed under composition and

intersection, which can be used to derive that complex expressions are Cartesian. Finally, in

Section 10.5, we give an overview of techniques that can support the rewrites proposed for

Cartesian expressions.

10.2 Cartesian relations and products

In the graph data model, evaluating expressions build using selections will result in relations

that have a distinctive structure:

De�nition 10.1. We say that a binary relation R is Cartesian if and only if there exist sets

U and V such that R = U × V = {(u,v) | u ∈ U ∧ v ∈ V }. We say that an expression e is

Cartesian on graph G if [[e]]G is a Cartesian relation (hence, if [[e]]G = [[e]]G |1 × [[e]]G |2). We

say that an expression e is Cartesian if it is Cartesian on all graphs.
22

Example 10.1. Consider the graph in Figure 1.1. The expression 〈Alice〉 is Cartesian, as we

can choose U = V = {Alice}. Likewise, the expression 〈Alice〉 ◦ [ParentOf ]+ evaluates to a

Cartesian relation, as we can choose U = {Alice} and V = {Carol,Dan, Faythe,Grace}.

If we recognize that an expression is Cartesian, then we can use this to our advantage

during query evaluation. To simplify reasoning on and enable manipulation of Cartesian

expressions, we introduce the Cartesian product operator. If e1 and e2 are expressions, then

e1
Û× e2 denotes the Cartesian product. The semantics of evaluation of the Cartesian product

is de�ned by
23

[[e1
Û× e2]]G = [[e1]]G |1 × [[e2]]G |2.

The Cartesian product operator is non-linear, just like composition. When compared to

composition, the Cartesian product is much easier to evaluate e�ciently, however.

By de�nition, the Cartesian product always yields a Cartesian expression. We also have

e1
Û× e2 ≡path π1[e1] Û× π2[e2]. Hence, we have

Lemma 10.1. Let e1, e2, e ′1, and e ′
2
be expressions with e1 ≡π1

e ′
1
and e2 ≡π2

e ′
2
. We have

e1
Û× e2 ≡path e ′

1
Û× e ′

2
.

22
Let R be the relation represented by a relational database table R(A, B). Observe that R is Cartesian if and only

if the join dependency Z [{A}, {B }] holds, and if and only if the multivalued dependency ∅ � A holds [1, 85].

23
We observe that the Cartesian product is a straightforward specialization of the usual product operator for

relations to the setting in which all relations are binary.
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Example 10.2. Consider the expression e = FriendOf ◦ 〈Alice〉 ◦ FriendOf . We can express

this expression using the Cartesian product, after which we can apply Lemma 10.1:

e ≡path π1[FriendOf ◦ 〈Alice〉] Û× π2[〈Alice〉 ◦ FriendOf ]
≡path (FriendOf n 〈Alice〉) Û× (〈Alice〉 o FriendOf ).

Observe that, in this rewrite, we use the expressions FriendOf n〈Alice〉 and 〈Alice〉oFriendOf
to �nd all nodes that participate in the �rst and second column of the output. The Cartesian

product simply combines these two sets of nodes.

Cartesian expressions do not necessary have to be the result of evaluating some selection,

also speci�c (parts of) relations in a graph can be Cartesian. In particular, every binary

relation can be written as a union of Cartesian relations, which is a special case of factorized
representations. Consequently, Cartesian expressions and edge relations stored as union-of-

Cartesian relations can have signi�cant bene�ts beyond the query rewrite optimizations we

study in this work, both at the storage level and at the query evaluation level [4, 78].

10.3 Cartesian relations and rewritings

As a �rst step to using Cartesian expressions in optimizing graph query evaluation, we

consider composition.

Proposition 10.2. Let e be an expression that is Cartesian on graph G and let e1 and e2 be
arbitrary expressions. We have

(i) [[e1 ◦ e ◦ e2]]G = [[π1[e1 ◦ e] Û× π2[e ◦ e2]]]G ;

(ii) [[e1 ◦ e]]G = [[π1[e1 ◦ e] Û× π2[e]]]G ;

(iii) [[e ◦ e2]]G = [[π1[e] Û× π2[e ◦ e2]]]G .

Proof. We only prove Statement (i), Statements (ii) and (iii) can be derived from Statement (i)

by choosing e1 = id or e2 = id and applying the equivalences id ◦ e ′ ≡path e ′ ≡path e ′ ◦ id.

1. [[e1 ◦e ◦e2]]G ⊆ [[π1[e1 ◦e] Û× π2[e ◦e2]]]G . We have (m,n) ∈ [[e1 ◦e ◦e2]]G if there exists

z1 and z2 such that (m, z1) ∈ [[e1]]G , (z1, z2) ∈ [[e]]G , and (z2,n) ∈ [[e2]]G . Hence, we also have

(m, z2) ∈ [[e1 ◦e]]G and (z1,n) ∈ [[e ◦e2]]G and we conclude (m,n) ∈ [[π1[e1 ◦e] Û× π2[e ◦e2]]]G .

2. [[e1 ◦ e ◦ e2]]G ⊇ [[π1[e1 ◦ e] Û× π2[e ◦ e2]]]G . We have (m,n) ∈ [[π1[e1 ◦ e] Û× π2[e ◦ e2]]]G
if there exists y1 and y2 such that (m,y1) ∈ [[e1 ◦ e]]G and (y2,n) ∈ [[e ◦ e2]]G , which is the

case if there exists z1 and z2 such that (m, z1) ∈ [[e1]]G , (z1,y1) ∈ [[e]]G , (y2, z2) ∈ [[e]]G , and

(z2,n) ∈ [[e2]]G . As [[e]]G is a Cartesian relation, (z1,y1) ∈ [[e]]G and (y2, z2) ∈ [[e]]G imply

(z1, z2) ∈ [[e]]G . We conclude (m,n) ∈ [[e1 ◦ e ◦ e2]]G . �

Next, we look at Cartesian expressions as operands of intersections and di�erences.

Proposition 10.3. Let e be an expression that is Cartesian on graph G and let e ′ be an arbitrary
expression. We have

(i) [[e ∩ e ′]]G = [[e ′ ∩ e]]G = [[π1[e] ◦ e
′ ◦ π2[e]]]G ;

(ii) [[e ′ − e]]G = [[π 1[e] ◦ e
′ ∪ e ′ ◦ π 2[e]]]G .
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Proof. First, we prove Statement (i). We observe that intersection is commutative, hence we

have [[e ∩ e ′]]G = [[e
′ ∩ e]]G . We prove [[e ∩ e ′]]G = [[π1[e] ◦ e

′ ◦ π2[e]]]G :

1. [[e ∩ e ′]]G ⊆ [[π1[e] ◦ e
′ ◦ π2[e]]]G . If (m,n) ∈ [[e ∩ e ′]]G , then (m,n) ∈ [[e]]G and

(m,n) ∈ [[e ′]]G . Hence, we have (m,m) ∈ [[π1[e]]]G and (n,n) ∈ [[π2[e]]]G . We conclude

(m,n) ∈ [[π1[e] ◦ e
′ ◦ π2[e]]]G .

2. [[e∩e ′]]G ⊇ [[π1[e]◦e
′◦π2[e]]]G . If (m,n) ∈ [[π1[e]◦e

′◦π2[e]]]G , then (m,m) ∈ [[π1[e]]]G ,

(m,n) ∈ [[e ′]]G , and (n,n) ∈ [[π2[e]]]G . Hence, there exists z1 and z2 such that (m, z1) ∈ [[e]]G
and (z2,n) ∈ [[e]]G . As [[e]]G is a Cartesian relation, (m, z1) ∈ [[e]]G and (z2,n) ∈ [[e]]G imply

(m,n) ∈ [[e]]G . We conclude (m,n) ∈ [[e ∩ e ′]]G .

Next, we prove Statement (ii).

1. [[e ′ − e]]G ⊆ [[π 1[e] ◦ e
′ ∪ e ′ ◦ π 2[e]]]G . If (m,n) ∈ [[e ′ − e]]G , then (m,n) ∈ [[e ′]]G and

(m,n) < [[e]]G . As [[e]]G is a Cartesian relation, (m,n) < [[e]]G implies either ∀z (m, z) < [[e]]G
or ∀z (z,n) < [[e]]G . Hence, we have (m,m) ∈ [[π 1[e]]]G and (m,n) ∈ [[π 1[e] ◦ e

′]]G or

(n,n) ∈ [[π 2[e]]]G and (m,n) ∈ [[e ′ ◦π 2[e]]]G . We conclude (m,n) ∈ [[π 1[e] ◦ e
′∪ e ′ ◦π 2[e]]]G .

2. [[e ′ − e]]G ⊇ [[π 1[e] ◦ e
′ ∪ e ′ ◦ π 2[e]]]G . If (m,n) ∈ [[π 1[e] ◦ e

′ ∪ e ′ ◦ π 2[e]]]G , then

(m,m) ∈ [[π 1[e]]]G and (m,n) ∈ [[e ′]]G , or (m,n) ∈ [[e ′]]G and (n,n) ∈ [[π 2[e]]]G . By (m,m) ∈
[[π 1[e]]]G or (n,n) ∈ [[π 2[e]]]G , we have ∀z (m, z) < [[e]]G or ∀z (z,n) < [[e]]G . In both cases,

we have (m,n) < [[e]]G . We conclude (m,n) ∈ [[e ′ − e]]G . �

We did not consider the case e − e ′ with e Cartesian. In this case, no general rewriting

exists that eliminates the di�erence operator, as is shown by the following example.

Example 10.3. Observe that the expression all = id ∪ di is Cartesian. Let e be an arbitrary

expression. The expression all − e evaluates to the complement of e (with respect to the set

of all nodes). In the relation algebra, the complement is not expressible without di�erence.

Hence, in this case we cannot use the fact that “all” is Cartesian to eliminate the need for the

di�erence operator.

The rewrite rules of Proposition 10.2 and Proposition 10.3 do not necessary lead to opti-

mizations; no operations are removed and additional operations are added. Proposition 10.2

does, however, push compositions into projections. Likewise, Proposition 10.3 eliminates

intersection and di�erence operators. Hence, these rewrite rules introduce opportunities for

the application of the semi-join rewrite rules:

Example 10.4. Consider the expression

e = 〈Alice〉 ◦ (FriendOf ◦ FriendOf ◦ FriendOf ).

This expression returns pairs (Alice,m) with m a friend-of-friend-of-friend of Alice. The

expression 〈Alice〉 is Cartesian. Hence, we apply Proposition 10.2 (iii) to eliminate the

composition, after which we apply Lemma 10.1 and the semi-join rewrites on the resultant

projection-term, yielding:

e ≡path 〈Alice〉 ◦ (FriendOf ◦ FriendOf ◦ FriendOf )
≡path π1[〈Alice〉] Û× π2[〈Alice〉 ◦ (FriendOf ◦ FriendOf ◦ FriendOf )]
≡path 〈Alice〉 Û× τ (π2[〈Alice〉 ◦ (FriendOf ◦ FriendOf ◦ FriendOf )])
= 〈Alice〉 Û× π2[((〈Alice〉 o FriendOf ) o FriendOf ) o FriendOf ].
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The above rewrite manages to eliminate all compositions in e in favor of semi-joins and a

single usage of the Cartesian product. We observe that, in this case, the Cartesian product

will yield exactly the query result. Hence, due to its simplicity, its usage can be considered

optimal.

In Proposition 10.2 and Proposition 10.3, we looked at binary operators with a single

Cartesian operand. Next, consider binary operators with two Cartesian operands. If both

operands of a composition are Cartesian, then this allows us to choose between applying

Proposition 10.2 (ii) or Proposition 10.2 (iii). For di�erence, we cannot take advantage of the

extra Cartesian operand, and we simply apply Proposition 10.3 (ii). For intersections of two

Cartesian expressions, we have:

Proposition 10.4. Let e1 and e2 be expressions that are Cartesian on graph G. We have
[[e1 ∩ e2]]G = [[e2 ∩ e1]]G = [[π1[e1] ◦ π1[e2] Û× π2[e1] ◦ π2[e2]]]G .

Finally, we look at simplifying Kleene-star and Kleene-plus operators applied on Cartesian

operands:

Proposition 10.5. Let e be an expression that is Cartesian on graph G. We have [[[e]∗]]G =
[[e ∪ id]]G and [[[e]+]]G = [[e]]G .

10.4 Closure results for Cartesian relations

Up till now, we have only seen basic examples of Cartesian expressions. Next, we show that

new Cartesian expressions can be build using such basic Cartesian expressions. First, we

consider compositions with Cartesian operands:

Proposition 10.6. Let e be an expression that is Cartesian on graph G and let e ′ be an arbitrary
expressions. The expressions e ◦ e ′ and e ′ ◦ e are Cartesian on G.

A similar closure result does not hold for intersections, however.

Example 10.5. Consider the expression all∩ e . This expression has at least a single Cartesian

operand (all), but the expression is Cartesian only if e is Cartesian.

For intersections, a weaker result does hold:

Proposition 10.7. Let e1 and e2 be expressions that are Cartesian on graph G. The expression
e1 ∩ e2 is Cartesian on G.

The above results can be used to increase the scope of Cartesian-based rewrites.

Example 10.6. Consider the expression

e = π1[(WorksWith ◦ 〈Alice〉 ◦WorksWith) ∩ (FriendOf ◦MarriedWith)].

This expression returns pairs (m,n) of people that both work with Alice and such that m
is a friend of the partner of n. For brevity, we write e = π1[e1 ∩ e2]. The expression e is

in N and, due to the usage of intersection and composition, the compositions cannot be

eliminated by the semi-join rewrite rules. The expression 〈Alice〉 is Cartesian. Hence, we
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apply Proposition 10.6 to conclude that also e1 is Cartesian. Next, we use Proposition 10.3 (i)

to remove the intersection, after which we apply the semi-join rewrites, yielding

e ≡path π1[e1 ∩ e2]

≡path π1[π1[e1] ◦ e2 ◦ π2[e1]]

≡path τ (π1[π1[e1] ◦ e2 ◦ π2[e1]])

= π1[e1,1 n (FriendOf n (MarriedWith n e1,2))],

with

e1,1 = π1[WorksWith n (〈Alice〉 nWorksWith)];
e1,2 = π2[(WorksWith o 〈Alice〉) oWorksWith].

We observe that this rewrite manages to eliminate the intersection and all compositions in

favor of only semi-joins.

We have shown that compositions and intersections can be used to build Cartesian

expressions. Using Proposition 10.5, we can also directly conclude that [e]+ is Cartesian on

graph G whenever e is Cartesian on G. Next, we show that no such closure results exist for

the cases we did not yet consider:

Example 10.7. We consider projections, coprojections, unions, di�erences, and Kleene-stars.

Let e1 and e2 be expressions with

[[e1]]G = {(α ,u), (α ,v), (β,u), (β ,v)};

[[e2]]G = {(α ,u), (γ ,u)}

on some graph G. Both e1 and e2 are Cartesian on G. Next, consider:

[[π1[e1]]]G = {(α ,α), (β, β)};

[[π 1[e1]]]G = {(γ ,γ ), (u,u), (v,v)};

[[e1 ∪ e2]]G = {(α ,u), (α ,v), (β,u), (β,v), (γ ,u)};

[[e1 − e2]]G = {(α ,v), (β ,u), (β,v)};

[[[e2]
∗]]G = {(α ,α), (α ,u), (β, β), (γ ,γ ), (γ ,u), (u,u), (v,v)}.

By inspection on the above results, one can verify that the expressions π1[e1], π 1[e1], e1 ∪ e2,

e1 − e2, and [e2]
∗

are not Cartesian on G.

10.5 Other practical query optimizations

In the previous sections, we have seen that Cartesian expressions can be used to rewrite

compositions, intersections, and di�erences, and in several cases these rewrites clearly lead

to improvements. Unfortunately, the presented rewrites on their own are not strong enough

to optimize all queries that can bene�t from Cartesian rewrites, semi-join rewrites, or both.

First, the rewrites might not recognize cases where Cartesian expressions can be introduced

and, hence, miss cases where Cartesian rewrites are possible. Second, rewrites can also make

queries unnecessary complicated, especially when intersections or di�erences are involved.

We illustrate both issues with a simple example:
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Example 10.8. Consider the expression

e = 〈Alice〉 ◦ ((FriendOf ◦ FriendOf ) ∩ FriendOf ).

The expressions FriendOf ◦FriendOf and FriendOf are both not Cartesian. The node-selection

〈Alice〉 can be pushed inside the intersection, however, resulting in an intersection of two

Cartesian expressions, after which we can apply Proposition 10.4, and the semi-join rewrites:

e ≡path (〈Alice〉 ◦ FriendOf ◦ FriendOf ) ∩ (〈Alice〉 ◦ FriendOf )
≡path π1[〈Alice〉 ◦ FriendOf ◦ FriendOf ] ◦ π1[〈Alice〉 ◦ FriendOf ] Û×

π2[〈Alice〉 ◦ FriendOf ◦ FriendOf ] ◦ π2[〈Alice〉 ◦ FriendOf ]
≡path τ (π1[〈Alice〉 ◦ FriendOf ◦ FriendOf ] ◦ π1[〈Alice〉 ◦ FriendOf ]) Û×

τ (π2[〈Alice〉 ◦ FriendOf ◦ FriendOf ] ◦ π2[〈Alice〉 ◦ FriendOf ])
= π1[〈Alice〉 n (FriendOf n FriendOf )] n π1[〈Alice〉 n FriendOf ] Û×

π2[(〈Alice〉 o FriendOf ) o FriendOf ] ◦ π2[〈Alice〉 o FriendOf ].

We observe that the left-hand side of the Cartesian product will evaluate to {(Alice,Alice)}

if and only if the right-hand side does not evaluate to the empty-set. Hence, the above query

can signi�cantly be simpli�ed to

〈Alice〉 Û× π2[(〈Alice〉 o FriendOf ) o FriendOf ] ◦ π2[〈Alice〉 o FriendOf ].

The �nal rewrite used in Example 10.8 is a special case of Proposition 10.4, which we

formalize next.

Proposition 10.8. Let e1 and e2 be expressions that are Cartesian on graph G and let e1 = e◦e ′.
We have:

(i) if [[e]]G |1 ≤ 1, then [[e1 ∩ e2]]G = [[e2 ∩ e1]]G = e Û× π2[e1] ◦ π2[e2];

(ii) if [[e ′]]G |2 ≤ 1, then [[e1 ∩ e2]]G = [[e2 ∩ e1]]G = π1[e1] ◦ π1[e2] Û× e
′.

The main technique used in Example 10.8 is the introduction of Cartesian expressions

as operands for the intersection operator. We did so by pushing a node-selection step

downwards, which is possible due to node-selections not only being Cartesian expressions,

but also node expressions. This technique is very similar to the well-known push-down rules

for selection in relational database management systems [85, 94]. For node expressions, we

have the following push-down rules:

Proposition 10.9. Let e be a node expressions, let e ′, e1, and e2 be arbitrary expressions, and
let j, j ′ ∈ {1, 2}. We have:

e ◦ e ′ ≡path e ◦ e ◦ e ′;

e ◦ π1[e
′] ≡path π1[e ◦ e

′];

e ◦ π2[e
′] ≡path π2[e

′ ◦ e];

e ◦ π j′[e
′] ≡path π j′[π j [e] ∪ e

′];

e ∪ π j′[e
′] ≡path π j′[π j [e] ◦ e

′];

e ◦ (e1 ∪ e2) ≡path (e ◦ e1) ∪ (e ◦ e2);
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(e1 ∪ e2) ◦ e ≡path (e1 ◦ e) ∪ (e2 ◦ e);

e ◦ (e1 ∩ e2) ≡path (e ◦ e1) ∩ e2 ≡path e1 ∩ (e ◦ e2);

(e1 ∩ e2) ◦ e ≡path (e1 ◦ e) ∩ e2 ≡path e1 ∩ (e2 ◦ e);

e ◦ (e1 − e2) ≡path (e ◦ e1) − e2 ≡path (e ◦ e1) − (e ◦ e2);

(e1 − e2) ◦ e ≡path (e1 ◦ e) − e2 ≡path (e1 ◦ e) − (e2 ◦ e).

To further reduce the complexity of rewritten expressions, we can attempt to eliminate

subexpressions. Observe that Lemma 3.2 (ii) and 3.2 (iii) already provide basic rewrite rules

for the elimination of super�uous usage of ∅ and id and of subexpressions that contain ∅.

Using the semantics of the relation algebra operators, we can obtain many other cases in

which subexpressions can be eliminated.

Proposition 10.10. Let G be a graph, let e1 and e2 be expressions, let j1, j2 ∈ {1, 2}, and let
⊗ ∈ {◦,n,o}.

(i) If [[e1]]G |j1 ⊆ [[e2]]G |j2 , then

[[πj1 [e1] ⊗ πj2 [e2]]]G = [[πj1 [e1]]]G, [[πj1 [e1] ⊗ π j2 [e2]]]G = ∅;

[[πj1 [e1] ∩ πj2 [e2]]]G = [[πj1 [e1]]]G, [[πj1 [e1] ∩ π j2 [e2]]]G = ∅;

[[πj1 [e1] − π j2 [e2]]]G = [[πj1 [e1]]]G, [[πj1 [e1] − πj2 [e2]]]G = ∅.

(ii) If [[e1]]G |2 ∩ [[e2]]G |1 = ∅, then [[e1 ⊗ e2]]G = ∅.

(iii) If [[e1]]G ∩ [[e2]]G = ∅, then [[e1 ∩ e2]]G = ∅ and [[e1 − e2]]G = [[e1]]G .

(iv) If [[e1]]G ⊆ [[e2]]G = ∅, then [[e1 ∩ e2]]G = [[e1]]G and [[e1 − e2]]G = ∅.

The conditions of Proposition 10.10 are not always straightforward to detect. Observe that

e1 ≡πj e2, j ∈ {1, 2}, implies, for every graph G, [[e1]]G |j = [[e2]]G |j , [[e1]]G |j ⊆ [[e2 ∪ e
′]]G |j ,

[[e1 ∩ e
′]]G |j ⊆ [[e2]]G |j , and [[e1 − e

′]]G |j ⊆ [[e2]]G |j . Likewise, e1 ≡path e2 implies, for every

graph G, [[e1]]G = [[e2]]G , [[e1]]G ⊆ [[e2 ∪ e
′]]G , [[e1 ∩ e]]G ⊆ [[e2]]G , and [[e1 − e]]G ⊆ [[e2]]G .

Finally, [[e1 ◦ e2]]G |1 = [[e1 n e2]]G |1 ⊆ [[e1]]G |1 and [[e1 ◦ e2]]G |2 = [[e1 o e2]]G |2 ⊆ [[e2]]G |2.

To conclude, we show how the techniques discussed in this chapter can be used to rewrite

the query SuggestAliceFriends to a query that is much more e�cient to evaluate:

Example 10.9. Consider the expression

e = 〈Alice〉 ◦ ((FriendOf ◦ FriendOf ) − (FriendOf ∪ id)).

We observe that 〈Alice〉 is a node expression. We use Proposition 10.9 to push 〈Alice〉 through

the di�erence operator. We obtain

e ≡path ((〈Alice〉 ◦ FriendOf ◦ FriendOf ) − (〈Alice〉 ◦ (FriendOf ∪ id))).

We use Proposition 10.6 on 〈Alice〉 to conclude that 〈Alice〉 ◦ (FriendOf ∪ id) is a Cartesian

expression. We apply Proposition 10.3 (ii) to obtain

e ≡path (π 1[〈Alice〉 ◦ (FriendOf ∪ id)] ◦ 〈Alice〉 ◦ FriendOf ◦ FriendOf ) ∪
(〈Alice〉 ◦ FriendOf ◦ FriendOf ◦ π 2[〈Alice〉 ◦ (FriendOf ∪ id)]).
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By Proposition 10.9 and Lemma 3.2 (iii), we have 〈Alice〉 ◦ (FriendOf ∪ id) ≡path (〈Alice〉 ◦
FriendOf )∪ 〈Alice〉. Hence, we have [[〈Alice〉 ◦ (FriendOf ∪ id)]]G |1 ⊇ [[〈Alice〉]]G |1. We apply

Proposition 10.10 to conclude that π 1[〈Alice〉 ◦ (FriendOf ∪ id)] ◦ 〈Alice〉 ≡path ∅. We apply

Lemma 3.2 (ii) to obtain

e ≡path 〈Alice〉 ◦ FriendOf ◦ FriendOf ◦ π 2[(〈Alice〉 ◦ FriendOf ) ∪ 〈Alice〉].

On 〈Alice〉, we apply Proposition 10.2 (iii) to obtain

e ≡path π1[〈Alice〉] Û× π2[〈Alice〉 ◦ FriendOf ◦ FriendOf ◦
π 2[(〈Alice〉 ◦ FriendOf ) ∪ 〈Alice〉]].

Finally, we simplify π1[〈Alice〉] and apply the semi-join rewritings and Proposition 9.10 (i)

on the right-hand side of the Cartesian product. We obtain

e ≡path 〈Alice〉 Û× π2[(〈Alice〉 o FriendOf ) o (FriendOf n̄
π2[(〈Alice〉 o FriendOf ) ∪ 〈Alice〉])].

We observe that in the resulting expression, all usages of the identity, composition, and

di�erence operators have been eliminated in favor of only semi-joins, anti-semi-joins, and a

single simple application of the Cartesian product.
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CHAPTER 11

Conclusion, discussion, and future work

In Part III, we set out to improve our understanding of the relationship between the relation

algebra and the semi-join algebra, this with applications to graph query optimization in mind.

Indeed, we have shown that, in many cases, costly composition and Kleene-star operators

can be rewritten into the less costly semi-join and �xpoint operators. We have also identi�ed

su�cient conditions on relation algebra expressions that allow us to perform these rewrites

automatically. In addition, we have shown that our rewrite rules can signi�cantly lower the

data complexity—the complexity in terms of the size of the graph—of query evaluation, while

never increasing it. Finally, we brie�y looked at optimizations of other expensive operators

and at optimization opportunities arising from the introduction of operators necessary for

practical use cases.

We believe that our work can improve the state of the art in e�cient graph query

evaluation. Our work does not provide a full approach for e�cient query evaluation for the

relation algebra, however. Hence, the design and implementation of graph database systems

and graph query engines deserves further attention in future research.

As a �rst step in the direction of future graph database systems, one can take a look at the

design and implementation of existing graph database systems and at the vast body of work

on relational database management systems. To see what is necessary in this regard, we

will take a brief look in this chapter at established relational database management systems,

and identify challenges relevant to graph database systems. We believe that addressing the

challenges of graph query optimization not only bene�ts graph database systems, but also

relational database management systems, as further advancements in graph query evaluation

can pave the way for further advancements in relational query evaluation. In this regards, a

worthwhile avenue for future research is investigating if and how the semi-join optimizations

presented in this part can be translated to the richer setting of SQL queries (with multiset

semantics and aggregations).

11.1 Organization

In Section 11.2, we argue why traditional relational database management systems and graph

database systems are related, and we argue what the main di�erences are. In Section 11.3,

we take a look at the shortcomings of state-of-the-art database systems with respect to

graph querying, establishing that state-of-the-art database systems struggle to execute even

simple navigation-based graph queries. In Section 11.4, we take a look at the operations of

traditional query engines, and identify directions that need further exploration when applied

to the setting of graph querying. Finally, in Section 11.5, we look at the most important aspect

123
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of e�cient query evaluation, evaluating joins, and discuss what parts of join evaluation need

additional attention in the setting of graph query evaluation.

11.2 Relational data and graph data

It is easy to see parallels between relational database management systems and graph database

systems, be it the formal edge-labeled graphs we use in this work (see De�nition 1.1) or

richer graph data models such as the property graph model [82].

The relational data model boils down to a set of arbitrary named relations. The (edge-

labeled) graph data model of De�nition 1.1 that we used in this work boils down to a set

of many-to-many named binary relations (the edges), as shown in Table 1.1. In richer data

models such as the property graph model, these many-to-many named binary relations are

combined with a node-attribute-value relation. Hence, in essence, both the relational data

model and the graph data model use relations as the main representation of data. This simi-

larity extends to the query language level. Relational database management systems typically

use SQL, whose core is formalized by Codd’s relational algebra [23, 40, 59]. The relation

algebra we studied can be seen as a binary-relation-only specialization of Codd’s relational

algebra. Likewise, the semi-join algebra we introduced can be seen as a binary-relation-only

specialization of the standard semi-join relational algebra [66]. Even the Kleene-star and

�xpoint operators we considered have parallels in modern relational database managements

system via ‘WITH RECURSIVE’ SQL queries [59]. As such, it is not surprising that all example

queries considered in this work can be expressed in SQL in a rather straightforward way.

As just argued, we can identify many similarities between the relational data model

and the graph data model, especially at the data model level (the data they can or cannot

model) and at the query level (the queries they can or cannot express). This does not imply

that these data models are similar, however. We believe that the main distinction between

these data models are found in their practical usage: the type of relationships relational

database management systems and graph database systems are expected to operate on. On

the one hand, typical data in relational database management systems is normalized and

structured around relations representing entities and relationships between these entities [85].

Normalizing relational data usually results in many foreign key constraints that each imply

important many-to-one or one-to-one relationships relating tuples from one relation to a single

tuple from another relation, while only few relationships are many-to-many. On the other

hand, typical graph data is centered around important many-to-many relationships [5, 6, 82],

as is already illustrated by the edge relationships FriendOf , ParentOf , and WorksWith of

Chapter 1.

To further illustrate this di�erence between, on the one hand, a focus on one-to-one and

many-to-one relationships and, on the other hand, many-to-many relationships, we take a

look at the TPC-H benchmark [26]. In this standardized relational database management

system benchmark, we have the relations Part, Supplier , Customer , Nation, Region, and

Order representing entities. Between these entities, there are several many-to-one foreign

key relationships, e.g., suppliers and customers are both located in a single nation, each

nation belongs to a single region, and each order is placed by a single customer. Only the

relations Partsupp—relating parts to suppliers that sell them—and Lineitem—relating orders

to individual parts and suppliers—represent many-to-many relationships. This a�ects the

complexity of typical joins. Indeed, a quick look at the queries in the TPC-H benchmark shows

that only two out of 22 queries (query Q17 and Q21) require many-to-many joins in which
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each tuples of either relation can be joined with several tuples of the other relation.
24

Contrast

this with even the simplest graph queries seen in this work such as FriendOf ◦ FriendOf and

ParentOf ◦ ParentOf ◦ ParentOf , in which many-to-many joins are at the very core of the

query.

Due to the di�erences in the relationships relational database management systems are

expected to operate on and the type of relationships that are central in graph data, one can

expect that relational database management systems have troubles evaluating certain graph

queries e�ciently. In the next section, we shall brie�y look at this expectation and conform

that this is, indeed, the case.

11.3 Graph queries in modern database systems

In the previous section we observed that relational database management systems and graph

database systems are strongly related, but might have a di�erent focus in practice, especially

with regards to many-to-many joins. To illustrate this observed di�erence in focus in practice,

we present a few performance measurements on executing graph queries expressed in SQL.

As the �rst example, we consider the basic expression

q = π1[Edges ◦ Edges ◦ Edges ◦ Edges],

which yields nodes that have outgoing paths of length at-least four. The SQL query

SELECT DISTINCT R.nfrom
FROM edges R, edges S, edges T, edges U
WHERE R.nto = S.nfrom AND

S.nto = T.nfrom AND
T.nto = U.nfrom;

expresses exactly the same query. We have executed the above SQL query on three modern

relational database management systems, namely PostgreSQL 9.6.1, Microsoft SQL Server

2016 (SP1) 13.0.4001.0, and Oracle Database 12c Release 12.1.0.2.0. We constructed a single

Edges table with n = 1 000 nodes and e = 75 000 randomly generated edges connecting these

nodes. Our measurements can be found in the columns labeled (original) in Table 11.1.

We directly conclude that the above SQL query is evaluated impractically slow in mod-

ern relational database management systems. Fortunately, it is well-known that manually

applying semi-join rewritings of natural joins into ‘WHERE IN’ or ‘WHERE EXISTS’ clauses

(see, e.g., [77]) can improve query evaluation performance drastically. As an illustration, we

have rewritten the above query to

SELECT DISTINCT nfrom FROM edges
WHERE nto IN (

SELECT nfrom FROM edges
WHERE nto IN (

SELECT nfrom FROM edges
WHERE nto IN (

SELECT nfrom FROM edges)));

24
Queries Q1 and Q6 do not involve joins at all. The queries Q9, Q17, Q20, and Q21 involve multiple many-to-many

relations. Of these four queries, queries Q9 and Q20 join the many-to-many relations Lineitem and Partsupp on a

many-to-one foreign key relationship between Lineitem and Partsupp, e�ectively making these joins many-to-one

joins. The remaining 16 queries all only involve one-to-one and many-to-one joins.



126 CHAPTER 11. CONCLUSION, DISCUSSION, AND FUTURE WORK

Table 11.1: Performance measurements on executing the SQL-version of query q and the

manually optimized semi-join SQL version of query q. The columns labeled t (ms) shows

the time it takes to execute the speci�ed query (executing the query and retrieving all rows

in the result, queries where aborted after 20 minutes). The columns labeled #Z/n show the

number of joins in the underlying query plan, and how many of these joins are performed

using semi-join-like algorithms.

(original) (rewritten)

Relational Database Management System t (ms) #Z/n t (ms) #Z/n

PostgreSQL 9.6.1 ∞ 3/0 376 3/3

SQL Server 2016 (SP1) 13.0.4001.0 312 783 3/1 278 3/3

Oracle Database 12c Release 12.1.0.2.0 264 373 3/1 269 815 3/1

This rewritten query yields the same result and most tested relational database management

systems are able to evaluate this rewritten query in less than a second, as shown in Table 11.1,

columns labeled (rewritten). To see if a dedicated modern graph database system would

perform signi�cantly better, we have also implemented the query q in Neo4j using the Cypher

query language [82]. The query q is equivalent to the Cypher query

MATCH (a)-[:edge]->(b)-[:edge]-(c)-[:edge]->(d)-[:edge]->(e)
RETURN DISTINCT (a)

We ran this query in Neo4j 3.3.2 and, as with PostgreSQL, this query did not �nish executing

in any reasonable amount of time.

Also with respect to graph-like aggregation queries, our initial experience shows that

there is still signi�cant room for improvement. Consider the following SQL query, based on

query q of the previous section, that yields, per node, the number of distinct outgoing paths

of length three.

SELECT R.nfrom, COUNT(*) AS n
FROM edges R, edges S, edges T
WHERE R.nto = S.nfrom AND S.nto = T.nfrom
GROUP BY R.nfrom;

Alternatively, this query can be rewritten in a more semi-join optimized fashion as follows:

SELECT R.nfrom, SUM(SS.n) AS n
FROM edges R,

(SELECT S.nfrom, SUM(TT.n) AS n
FROM edges S,

(SELECT T.nfrom, COUNT(*) AS n
FROM edges T
GROUP BY T.nfrom) TT

WHERE S.nto = TT.nfrom
GROUP BY S.nfrom) SS

WHERE R.nto = SS.nfrom
GROUP BY R.nfrom;
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Table 11.2: Performance measurements on executing an SQL implementation of the aggre-

gated version of query q and the manually optimized version of this SQL query. The columns

labeled t (ms) show the time it takes to execute the speci�ed query (executing the query and

retrieving all rows in the result).

(original) (rewritten)

Relational Database Management System t (ms) t (ms)

PostgreSQL 9.6.1 411 200 397

SQL Server 2016 (SP1) 13.0.4001.0 1 636 230

Oracle Database 12c Release 12.1.0.2.0 10 280 2631

Also this rewrite results in signi�cant performance gains in several relational database

management systems, as shown in Table 11.2. Also in this case, we implemented the query

in Neo4j using the Cypher query language; yielding the query

MATCH (a)-[:edge]->(b)-[:edge]-(c)-[:edge]->(d)
RETURN a, COUNT(a)

We ran this query in Neo4j 3.3.2 and although it did yield the proper result, it only did so

after 118s.

Although the above measurements are limited in scope, they do underline that modern

relational database management systems and modern graph database systems have severe

limitations with respect to evaluating even basic graph queries. At the same time, we see

that manual rewriting of queries can improve the performance signi�cantly. The need

for this manual �ne-tuning of queries is unfortunately, as we believe that these kind of

rewritings should be performed for the users, rather than by the users. We believe that in the

construction of practical high-performance graph query engines, our semi-join optimizations

can play a crucial role in reducing the need for this type of manual �ne-tuning. Additionally,

we believe that our semi-join optimizations can be adapted to the setting of relational database

management systems. This will require extending our results to the relation algebra with

counting operators, aggregations, multiset semantics, and richer forms of iteration (see also

Section 6.4), and study how these extensions interact with our semi-join-based rewrite rules.

As a starting point in this direction, we observe that basic forms of aggregation rewrite rules

in the multiset relational algebra have received some attention (e.g., [18, 19, 84]).

11.4 Query evaluation in relational database management systems

There exists a vast literature on query optimization and evaluation for traditional relational

database management systems (e.g., [16, 38, 60, 62, 73, 85, 94]). Query evaluation of SQL

queries can be summarized in three steps:

1. Parsing, validation, and view resolution. First, the SQL query is parsed into an internal

form and the used relations, attributes, and views are veri�ed against the schema of

the database.

2. Query planning and optimization. Then, the query optimizer translates the internal

representation of the query into an execution plan that describes exactly how the query

needs to be executed. These plans include speci�cations where data should be read
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from (e.g., relations, indices), which algorithms are used to perform each operator (e.g.,

hash-joins or merge-joins), how intermediate results are passed between operators

(e.g., pipelining results or via result materialization), and the order in which operations

are performed.

Finding a good or optimal query plan with respect to query execution time (or other

cost measurements such as memory usage, disk IOs, or network communication) often

involves a costly and complex search procedure. Usually, the �rst step in this search

process is to put the query into a normal form in which selection and projection

operators are performed as early as possible with the aim to reduce the size and cost

to compute intermediate results (not unlike the aim of the semi-join rewrite rules we

study in this part). Next, the most important step in this search process is determining

the order in which joins are performed. To do so, di�erent join orders are enumerated

and, using a cost estimation for each join order, a join order is selected that should

minimize query execution time. These cost estimations are usually based on available

metadata, sampling, and other techniques [73].

3. Plan compilation and execution. Finally, after constructing the query plan, the plan is

translated into an executable format and executed.

E�cient evaluation of joins is central to high-performance query evaluation of SQL

queries in relational database management systems: joins of many-to-many relationships

can signi�cantly blow up the size of intermediate query results, especially when the query

plan performs joins in a sub-optimal order. Luckily, query planning and optimization usually

leads to a decent query plan, especially for typical joins involving mainly many-to-one

relationships.

Unfortunately, as we have presented in the previous section, we cannot rely on the current

state-of-the-art query optimizers to always generate optimal query plans for graph queries.

Especially for complex and large graph queries involving many-to-many relationships, the

quality of the resultant query plan seems insu�cient, which can have many causes (e.g., a

lack of considered query alternatives, an insu�cient cost model, or an inaccurate cost model

that deviates signi�cantly from the real costs).

For relational systems, several techniques have been proposed to deal with such issues [17,

99]. In contrast, we believe that cost estimation for graph database systems is especially

challenging and deserves more in-depth research. An obvious challenge in cost estimation

for graph data is the lack of schema information, primary keys, and foreign keys. Hence, cost

estimators need to rely more on collected summaries and samples of the data.
25

Furthermore,

typical big graph datasets have signi�cant data skew, as the evolution of real-world graph

usually adheres to a power law [5, 6].
26

In such real-world graph data sets, the number of

incoming edges and outgoing edges of nodes is not uniformly distributed: a few nodes are

expected to participate in many edges, whereas most nodes only participate in a few edges.

This skew can negatively in�uence the usability of collected summaries and samples of the

data.

25
Summaries of the data distribution in edge relations can also directly aid the semi-join rewrites. Using this

information, we can determine whether an edge label is a node expression; which would enable additional rewrite

opportunities.

26
Graphs whose evolution adhere to a power law are referred to as scale-free networks. A recent study on many

real-world graphs shows that the assumption that many real-world graphs are scale-free is an oversimpli�cation [14].

Still, it remains true that most real-world graphs have signi�cant data skew.
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Taking into account the typical structure of real-world graph data will not only improve

the accuracy of cost estimation, but can also be exploited in the design and implementation

of specialized algorithms for evaluating complex operators. It is, for example, well-known

that the diameter of real-world graphs is typically low [5, 6]. This strongly limits the number

of steps necessary to evaluate Kleene-star and �xpoint operators. Hence, algorithms for

evaluating these operators can assume that they only need to perform a few steps, and

optimize their evaluation approach accordingly.

11.5 E�cient graph query evaluation and joins

As already noted, the e�cient evaluation of joins is central to high-performance query

evaluation. To conclude our overview of, on the one hand, available techniques for query

evaluation, and, on the other hand, necessary directions of future work for high-performance

graph database systems and graph query engines, we take a closer look at the types of joins

resulting from relation algebra operators. In the relation algebra, where joins are primarily

the result of composition steps, we can distinguish the following types of joins:

1. Necessary sequential composition (acyclic joins). We cannot rule out legitimate use of

the composition operator, such as in the query GrandparentOf = ParentOf ◦ ParentOf
of Chapter 1. Consequently, the only real way to deal with these acyclic joins is by

�nding a good query plan and execute it. As acyclic joins have a central role in dealing

with normalized relations in relational databases, there is a vast collection of query

planning strategies, query optimizations, query heuristics, and query algorithms to

aid in answering these kinds of composition e�ciently (e.g., [98]). Hence, with respect

to these joins, graph database systems can rely largely on established query planning

strategies and join algorithms.

2. Unnecessary sequential composition. As seen in Chapter 8, usages of compositions

within projections and coprojections are wasteful, as computed information is thrown

out later during evaluation. For these forms of sequential composition, we have

presented in this part techniques to replace these unnecessary compositions by semi-

joins. These rewrite rules can yield complex subexpressions that are repeatedly used at

several places in the �nal expression. Hence, proper implementation needs to take this

into account, which can complicate query planning and (pipelined) query evaluation

beyond what is normally seen in relational database management systems.

3. Parallel compositions (cyclic joins). The only relation algebra queries that involve

cyclic joins are queries that rely on compositions and intersections or compositions

and di�erences. Take, for example, the non-basic expression (FriendOf ◦ FriendOf ) ∩
FriendOf that yields pairs (m,n) such thatm is both a friend and a friend-of-a-friend

of n. Let R(A,B) be a relational database table representing the edge relation FriendOf .

The above relation algebra query is equivalent to the relational algebra query

πR .A,S .B (σR .A=T .A∧R .B=S .A∧T .B=S .B (R Z ρS (R) Z ρT (R))),

which is a classic example of a cyclic join [3].

We observe that these cyclic joins prevent application of the semi-join rewrite rules

of Figure 8.1. It it also well-known that these cyclic joins do not have full semi-

join reducers [11, 12], limiting applicability of distributed join evaluation techniques.
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Recently, it was proven that cyclic joins cannot be answered optimally by a sequence of

binary join steps, whereas multi-way join algorithms can answer these optimally [3, 96].

Hence, to fully support intersection and compositions e�ciently, beyond the use cases

of Proposition 9.9, such multi-way join algorithms need to be incorporated in graph

query engines. The development of relational database management systems that

incorporate these multi-way join algorithms is still ongoing. Therefore, developing

graph query engines that successfully incorporate these multi-way algorithms during

query planning and query evaluation is a clear avenue of future work that can bene�t

not only graph database systems, but also relational database management systems.

As seen in Chapter 10, certain queries that appear cyclic can still be optimized heavily.

Take, for example, the relation algebra query

〈Alice〉 ◦ ((FriendOf ◦ FriendOf ) ∩ FriendOf ).

The above query is equivalent to the relational algebra query

πR .A,S .B (σR .A=‘Alice’∧R .A=T .A∧R .B=S .A∧T .B=S .B (R Z ρS (R) Z ρT (R))).

By transitivity, we haveT .A = ‘Alice’ after which we can eliminate the term R.A = T .A,

breaking the cycle. We observe that breaking up cycles is a well-known technique in

relational database management systems that, unfortunately, can only be applied in

rather limited cases (e.g., [12, 61]).
27

Fortunately, we have already been able to establish in this work two cases in which

cyclic graph queries can be made acyclic. First, for several restricted graph data models,

redundancy of intersection and di�erence can be exploited to break up cyclic joins by

eliminating intersection and di�erence (see e.g., [74], Corollary 5.6, and Theorems 5.12

and 4.10). Second, in Chapter 10, we have explored using node selections to break up

cycles. Unfortunately, both techniques can blow up the size of queries signi�cantly,

and we have not yet determined in which cases these techniques make graph query

evaluation more e�cient. Still, it is worthwhile to investigate further opportunities

for eliminating cyclic joins and to explorer when such cycle-elimination techniques

have practical applications.

Overall, the above join classi�cation does imply that one can rely on established tech-

niques used in relational database management systems for most of the join requirements

of graph database systems. At the same time, we also identi�ed important roles for the

semi-join rewrite rules we proposed, the node selection optimizations we brie�y looked at,

for multi-way join algorithms, and for cost estimation of graph queries. To integrate all these

aspects in the query optimizers of future graph database systems is in itself challenging.

This is especially the case if the query optimizer not only has to �nd an e�cient query plan,

but also needs to do so fast. Hence, as stated at the begin of this chapter, the design and

implementation of high-performance graph database systems and graph query engines will

require future research.

27
Cyclic joins not only have a huge e�ect on the complexity of query evaluation and the complexity of distributed

query evaluation [3, 11], but also on many other related problems that conceptually involve joins, e.g. checking

integrity of relational data with respect to join dependencies [41].
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On Tarski’s Relation Algebra

A GENERAL CONCLUSION
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CHAPTER 12

Conclusion

Super�cially, Parts II and III present results on two seemingly unrelated formal aspects of

Tarski’s relation algebra. Looking more in depth, however, one can see that the two studied

aspects are actually closely related. Indeed, both parts concern the expressive power of

fragments of Tarski’s relation algebra in a non-traditional restricted setting.

In Part II, we focus on the expressive power of the relation algebra if we restrict the

types of the structures we query. Speci�cally, we restrict ourselves to querying labeled and

unlabeled trees and chains rather than graphs. Compared to querying graphs, as studied

by Fletcher et al. [31–34, 87], this restriction has a dramatic in�uence on the expressive

power of several fragments of the relation algebra. Indeed, many typical tree queries can be

expressed in downward or local fragments for which we have shown that the intersection

and di�erence operators are redundant. This is due to the structural limitations of trees and

chains, which proved to be both a blessing and a curse, the latter because separations results

turned out to be much harder to establish on trees and chains than on graphs. We can apply

the results of Part II for query optimization, as we have shown that graph queries can often

be simpli�ed when evaluated over simpler structures.

In Part III, we focus on the expressive power of the relation algebra if we restrict ourselves

to projection equivalence rather than path equivalence or Boolean equivalence of fragments.

In this way, we were able to relate the expressive power of many fragments of the relation

algebra with fragments of the semi-join algebra, showing that the complexity of these

fragments is very limited. We translated these results to query optimization techniques

that can simplify the evaluation of relation algebra queries, especially of queries that use

projections.

In conclusion, we study in both Parts II and III the e�ects on the expressive power

of fragments of the relation algebra (and, consequently, of many practical graph query

languages), if we either restrict the graph structures we query or simplify the semantics of

evaluation. In both cases, we observe that these restrictions in�uence the expressive power

of the query language under consideration. Hence, in both cases, these restrictions can be

used for optimizing graph query evaluation. Unfortunately, we could only touch brie�y on

the practical applications within the scope of this work. Hence, we believe that the further

development of graph query evaluation and optimization techniques based on our results is

a prime avenue for future work.
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APPENDIX A

Index on the relative expressive power

In Part II, we study the relative expressive power of fragments of the relation algebra when

querying unlabeled chains, labeled chains, unlabeled paths, or labeled paths. We study the

relative expressive power with respect to Boolean semantics and path semantics. To make

it easier to locate speci�c results, the following pages consist of index tables to the results

presented in Part II.

There are eight tables in total. Each table is an index to the separation and collapse results

discussed in Part II. Consider the table titled “z semantics on s” with z ∈ {bool, path} and

s ∈ {unbaled chains, labeled chains, unlabeled paths, labeled paths}, and let (N(F), op) be a

�eld in this table. This �eld has one of the following forms:

. Indicates non-applicability, as op ∈ F.

3.24 7 . The cross 7 indicates that already on s , we have N(F ∪ {op}) �z N(F).
We refer to Reference 3.24 for details.

3.35 7• . The cross 7 indicates that already on s , we have N(F ∪ {op}) �z N(F).
This result is provided by related work and we refer to Reference 3.35 for details.

4.10 3 . The check mark 3 indicates that on s , we have N(F ∪ {op}) �z N(F).
We refer to Reference 4.10 for details.

3.36 3• . The check mark 3 indicates that on s , we have N(F ∪ {op}) �z N(F).
This result is provided by related work and we refer to Reference 3.36 for details.

? . The question mark ? indicates an open problem.

The referenced result identi�es either a theorem, corollary, proposition, or lemma, which

all use a single chapter-based continuous counter. For example, Reference 3.1 uniquely

references the �rst result in Chapter 3.

For brevity, some results are only obtained by combining the referenced result with

a general collapse result such as Theorem 4.10 or Corollary 5.6. As an example, we state

N(π ) �bool N(∩,−,
∗) by Reference 3.24. This result is not directly proven by Theorem 3.24:

by Theorem 4.10, we have N(∩,−, ∗) �path N(
∗), after which Theorem 3.24 shows that

N(π ) �bool N(
∗).
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A.1 Boolean semantics on unlabeled chains

di
a π π ∩ − ∗

N() 3.23 3 4.12 3 4.12 3 3.24 7 4.10 3 4.10 3 3.34 3•

N(∩) 3.23 3 4.12 3 4.12 3 3.24 7 4.10 3 3.23 3
N(∩, −) 3.24 7 3.24 7 3.24 7 3.24 7 3.23 3
N(π ) 3.23 3 3.34 3• 3.24 7 4.10 3 3.24 7 3.34 3•

N(π , ∩) 3.23 3 3.23 3 3.24 7 3.24 7 3.23 3
N(π , π ) 3.30 3 3.34 3• 4.10 3 4.10 3 3.26 7
N(π , π , ∩) 3.30 3 3.30 3 4.10 3 3.26 7
N(π , π , ∩, −) 3.30 3 3.30 3 3.26 7
N(a) 3.23 3 3.13 3 3.24 7 3.13 3 3.24 7 3.23 3
N(a, π ) 3.23 3 3.24 7 3.36 3• 3.24 7 3.23 3
N(a, π , ∩) 3.23 3 3.24 7 3.24 7 3.23 3
N(a, π , π ) 3.30 3 5.6 3 5.13 3 3.26 7
N(a, π , π , ∩) 3.30 3 5.13 3 3.26 7
N(a, π , π , ∩, −) 3.30 3 3.26 7
N(di) 3.23 3 3.23 3 3.24 7 3.23 3 3.24 7 3.34 3•

N(di, π ) 3.34 3• 3.24 7 3.23 3 3.24 7 3.34 3•

N(di, π , ∩) 3.23 3 3.24 7 3.24 7 3.23 3
N(di, π , π ) 3.34 3• 3.30 3 3.30 3 3.26 7
N(di, π , π , ∩) 3.30 3 3.30 3 3.26 7
N(di, π , π , ∩, −) 3.30 3 3.26 7
N(di, a) 3.23 3 3.24 7 3.23 3 3.24 7 3.23 3
N(di, a, π ) 3.24 7 3.23 3 3.24 7 3.23 3
N(di, a, π , ∩) 3.24 7 3.24 7 3.23 3
N(di, a, π , π ) 3.30 3 3.30 3 3.26 7
N(di, a, π , π , ∩) 3.30 3 3.26 7
N(di, a, π , π , ∩, −) 3.26 7

di
a π π ∩ − ∗

N(∗) 3.23 3 3.23 3 3.23 3 3.24 7 4.10 3 4.10 3
N(∩, ∗) 3.23 3 3.23 3 3.23 3 3.24 7 4.10 3
N(∩, −, ∗) 3.24 7 3.24 7 3.24 7 3.24 7
N(π , ∗) 3.23 3 3.23 3 3.24 7 4.10 3 3.24 7
N(π , ∩, ∗) 3.23 3 3.23 3 3.24 7 3.24 7
N(π , π , ∗) ? ? 4.10 3 4.10 3
N(π , π , ∩, ∗) ? ? 4.10 3
N(π , π , ∩, −, ∗) ? ?
N(a, ∗) 3.23 3 3.23 3 3.24 7 3.23 3 3.24 7
N(a, π , ∗) 3.23 3 3.24 7 3.23 3 3.24 7
N(a, π , ∩, ∗) 3.23 3 3.24 7 3.24 7
N(a, π , π , ∗) 3.1 3 ? ?
N(a, π , π , ∩, ∗) 3.1 3 ?
N(a, π , π , ∩, −, ∗) 3.1 3
N(di, ∗) 3.23 3 3.23 3 3.24 7 3.23 3 3.24 7
N(di, π , ∗) 3.23 3 3.24 7 3.23 3 3.24 7
N(di, π , ∩, ∗) 3.23 3 3.24 7 3.24 7
N(di, π , π , ∗) ? ? ?
N(di, π , π , ∩, ∗) ? ?
N(di, π , π , ∩, −, ∗) 3.1 3
N(di, a, ∗) 3.23 3 3.24 7 3.23 3 3.24 7
N(di, a, π , ∗) 3.24 7 3.23 3 3.24 7
N(di, a, π , ∩, ∗) 3.24 7 3.24 7
N(di, a, π , π , ∗) ? ?
N(di, a, π , π , ∩, ∗) ?
N(di, a, π , π , ∩, −, ∗)

di
a π π ∩ − ∗
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A.2 Boolean semantics on labeled chains

di
a π π ∩ − ∗

N() 3.14 7 4.12 3 4.12 3 3.24 7 4.10 3 4.10 3 3.26 7
N(∩) 3.14 7 4.12 3 4.12 3 3.24 7 4.10 3 3.26 7
N(∩, −) 3.24 7 3.24 7 3.24 7 3.24 7 3.26 7
N(π ) 3.14 7 3.34 3• 3.24 7 4.10 3 3.24 7 3.26 7
N(π , ∩) 3.14 7 5.6 3 3.24 7 3.24 7 3.26 7
N(π , π ) 3.14 7 3.34 3• 4.10 3 4.10 3 3.26 7
N(π , π , ∩) 3.14 7 5.6 3 4.10 3 3.26 7
N(π , π , ∩, −) 3.14 7 5.13 3 3.26 7
N(a) 3.14 7 3.13 3 3.24 7 3.13 3 3.24 7 3.26 7
N(a, π ) 3.14 7 3.24 7 3.36 3• 3.24 7 3.26 7
N(a, π , ∩) 3.14 7 3.24 7 3.24 7 3.26 7
N(a, π , π ) 3.14 7 5.6 3 5.13 3 3.26 7
N(a, π , π , ∩) 3.14 7 5.13 3 3.26 7
N(a, π , π , ∩, −) 3.14 7 3.26 7
N(di) 3.16 7 3.16 7 3.24 7 3.16 7 3.24 7 3.26 7
N(di, π ) 3.34 3• 3.24 7 3.31 7 3.24 7 3.26 7
N(di, π , ∩) ? 3.24 7 3.24 7 3.26 7
N(di, π , π ) 3.34 3• 3.31 7 3.31 7 3.26 7
N(di, π , π , ∩) ? ? 3.26 7
N(di, π , π , ∩, −) ? 3.26 7
N(di, a) ? 3.24 7 3.31 7 3.24 7 3.26 7
N(di, a, π ) 3.24 7 3.31 7 3.24 7 3.26 7
N(di, a, π , ∩) 3.24 7 3.24 7 3.26 7
N(di, a, π , π ) 3.31 7 3.31 7 3.26 7
N(di, a, π , π , ∩) ? 3.26 7
N(di, a, π , π , ∩, −) 3.26 7

di
a π π ∩ − ∗

N(∗) ? ? 4.12 3 3.24 7 4.10 3 4.10 3
N(∩, ∗) ? ? 4.12 3 3.24 7 4.10 3
N(∩, −, ∗) 3.24 7 3.24 7 3.24 7 3.24 7
N(π , ∗) ? ? 3.24 7 4.10 3 3.24 7
N(π , ∩, ∗) ? ? 3.24 7 3.24 7
N(π , π , ∗) ? ? 4.10 3 4.10 3
N(π , π , ∩, ∗) ? ? 4.10 3
N(π , π , ∩, −, ∗) ? ?
N(a, ∗) 3.1 3 ? 3.24 7 ? 3.24 7
N(a, π , ∗) 3.1 3 3.24 7 ? 3.24 7
N(a, π , ∩, ∗) 3.1 3 3.24 7 3.24 7
N(a, π , π , ∗) 3.1 3 ? ?
N(a, π , π , ∩, ∗) 3.1 3 ?
N(a, π , π , ∩, −, ∗) 3.1 3
N(di, ∗) ? ? 3.24 7 ? 3.24 7
N(di, π , ∗) ? 3.24 7 ? 3.24 7
N(di, π , ∩, ∗) ? 3.24 7 3.24 7
N(di, π , π , ∗) ? ? ?
N(di, π , π , ∩, ∗) ? ?
N(di, π , π , ∩, −, ∗) 3.1 3
N(di, a, ∗) ? 3.24 7 ? 3.24 7
N(di, a, π , ∗) 3.24 7 ? 3.24 7
N(di, a, π , ∩, ∗) 3.24 7 3.24 7
N(di, a, π , π , ∗) ? ?
N(di, a, π , π , ∩, ∗) ?
N(di, a, π , π , ∩, −, ∗)

di
a π π ∩ − ∗
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A.3 Boolean semantics on unlabeled trees

di
a π π ∩ − ∗

N() 3.9 7 3.23 3 3.23 3 3.24 7 4.10 3 4.10 3 3.34 3•

N(∩) 3.9 7 3.23 3 3.23 3 3.24 7 4.10 3 3.23 3
N(∩, −) 3.24 7 3.24 7 3.24 7 3.24 7 3.23 3
N(π ) 3.9 7 3.34 3• 3.24 7 4.10 3 3.24 7 3.34 3•

N(π , ∩) 3.9 7 5.6 3 3.24 7 3.24 7 3.23 3
N(π , π ) 3.9 7 3.34 3• 4.10 3 4.10 3 3.26 7
N(π , π , ∩) 3.9 7 5.6 3 4.10 3 3.26 7
N(π , π , ∩, −) 3.9 7 3.9 7 3.26 7
N(a) 3.9 7 3.23 3 3.24 7 3.23 3 3.24 7 3.23 3
N(a, π ) 3.9 7 3.24 7 3.36 3• 3.24 7 3.23 3
N(a, π , ∩) 3.9 7 3.24 7 3.24 7 3.23 3
N(a, π , π ) 3.9 7 5.6 3 3.9 7 3.26 7
N(a, π , π , ∩) 3.9 7 3.9 7 3.26 7
N(a, π , π , ∩, −) 3.15 7 3.26 7
N(di) 3.33 7 3.33 7 3.24 7 3.9 7 3.24 7 3.34 3•

N(di, π ) 3.34 3• 3.24 7 3.9 7 3.24 7 3.34 3•

N(di, π , ∩) 3.33 7 3.24 7 3.24 7 3.26 7
N(di, π , π ) 3.34 3• 3.9 7 3.9 7 3.26 7
N(di, π , π , ∩) 3.33 7 ? 3.26 7
N(di, π , π , ∩, −) 3.33 7 3.26 7
N(di, a) 3.33 7 3.24 7 3.9 7 3.24 7 3.28 3
N(di, a, π ) 3.24 7 3.9 7 3.24 7 3.28 3
N(di, a, π , ∩) 3.24 7 3.24 7 3.26 7
N(di, a, π , π ) 3.9 7 3.9 7 3.26 7
N(di, a, π , π , ∩) ? 3.26 7
N(di, a, π , π , ∩, −) 3.26 7

di
a π π ∩ − ∗

N(∗) 3.9 7 3.23 3 3.23 3 3.24 7 4.10 3 4.10 3
N(∩, ∗) 3.9 7 3.23 3 3.23 3 3.24 7 4.10 3
N(∩, −, ∗) 3.24 7 3.24 7 3.24 7 3.24 7
N(π , ∗) 3.9 7 3.23 3 3.24 7 4.10 3 3.24 7
N(π , ∩, ∗) 3.9 7 3.23 3 3.24 7 3.24 7
N(π , π , ∗) 3.9 7 ? 4.10 3 4.10 3
N(π , π , ∩, ∗) 3.9 7 ? 4.10 3
N(π , π , ∩, −, ∗) 3.9 7 3.9 7
N(a, ∗) 3.9 7 3.23 3 3.24 7 3.23 3 3.24 7
N(a, π , ∗) 3.9 7 3.24 7 3.23 3 3.24 7
N(a, π , ∩, ∗) 3.9 7 3.24 7 3.24 7
N(a, π , π , ∗) 3.9 7 ? 3.9 7
N(a, π , π , ∩, ∗) 3.9 7 3.9 7
N(a, π , π , ∩, −, ∗) 3.1 3
N(di, ∗) 3.33 7 3.33 7 3.24 7 3.9 7 3.24 7
N(di, π , ∗) ? 3.24 7 3.9 7 3.24 7
N(di, π , ∩, ∗) 3.33 7 3.24 7 3.24 7
N(di, π , π , ∗) ? 3.9 7 3.9 7
N(di, π , π , ∩, ∗) 3.33 7 ?
N(di, π , π , ∩, −, ∗) 3.33 7
N(di, a, ∗) 3.33 7 3.24 7 3.9 7 3.24 7
N(di, a, π , ∗) 3.24 7 3.9 7 3.24 7
N(di, a, π , ∩, ∗) 3.24 7 3.24 7
N(di, a, π , π , ∗) 3.9 7 3.9 7
N(di, a, π , π , ∩, ∗) ?
N(di, a, π , π , ∩, −, ∗)

di
a π π ∩ − ∗
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A.4 Boolean semantics on labeled trees

di
a π π ∩ − ∗

N() 3.9 7 3.5 7 3.5 7 3.24 7 4.10 3 4.10 3 3.26 7
N(∩) 3.9 7 3.5 7 3.5 7 3.24 7 4.10 3 3.26 7
N(∩, −) 3.24 7 3.24 7 3.24 7 3.24 7 3.26 7
N(π ) 3.9 7 3.34 3• 3.24 7 4.10 3 3.24 7 3.26 7
N(π , ∩) 3.9 7 5.6 3 3.24 7 3.24 7 3.26 7
N(π , π ) 3.9 7 3.34 3• 4.10 3 4.10 3 3.26 7
N(π , π , ∩) 3.9 7 5.6 3 4.10 3 3.26 7
N(π , π , ∩, −) 3.9 7 3.9 7 3.26 7
N(a) 3.9 7 5.9 3 3.24 7 5.9 3 3.24 7 3.26 7
N(a, π ) 3.9 7 3.24 7 3.36 3• 3.24 7 3.26 7
N(a, π , ∩) 3.9 7 3.24 7 3.24 7 3.26 7
N(a, π , π ) 3.9 7 5.6 3 3.9 7 3.26 7
N(a, π , π , ∩) 3.9 7 3.9 7 3.26 7
N(a, π , π , ∩, −) 3.15 7 3.26 7
N(di) 3.33 7 3.33 7 3.24 7 3.9 7 3.24 7 3.26 7
N(di, π ) 3.34 3• 3.24 7 3.9 7 3.24 7 3.26 7
N(di, π , ∩) 3.33 7 3.24 7 3.24 7 3.26 7
N(di, π , π ) 3.34 3• 3.9 7 3.9 7 3.26 7
N(di, π , π , ∩) 3.33 7 ? 3.26 7
N(di, π , π , ∩, −) 3.33 7 3.26 7
N(di, a) 3.33 7 3.24 7 3.9 7 3.24 7 3.26 7
N(di, a, π ) 3.24 7 3.9 7 3.24 7 3.26 7
N(di, a, π , ∩) 3.24 7 3.24 7 3.26 7
N(di, a, π , π ) 3.9 7 3.9 7 3.26 7
N(di, a, π , π , ∩) ? 3.26 7
N(di, a, π , π , ∩, −) 3.26 7

di
a π π ∩ − ∗

N(∗) 3.9 7 3.5 7 3.5 7 3.24 7 4.10 3 4.10 3
N(∩, ∗) 3.9 7 3.5 7 3.5 7 3.24 7 4.10 3
N(∩, −, ∗) 3.24 7 3.24 7 3.24 7 3.24 7
N(π , ∗) 3.9 7 ? 3.24 7 4.10 3 3.24 7
N(π , ∩, ∗) 3.9 7 ? 3.24 7 3.24 7
N(π , π , ∗) 3.9 7 ? 4.10 3 4.10 3
N(π , π , ∩, ∗) 3.9 7 ? 4.10 3
N(π , π , ∩, −, ∗) 3.9 7 3.9 7
N(a, ∗) 3.9 7 ? 3.24 7 ? 3.24 7
N(a, π , ∗) 3.9 7 3.24 7 ? 3.24 7
N(a, π , ∩, ∗) 3.9 7 3.24 7 3.24 7
N(a, π , π , ∗) 3.9 7 ? 3.9 7
N(a, π , π , ∩, ∗) 3.9 7 3.9 7
N(a, π , π , ∩, −, ∗) 3.1 3
N(di, ∗) 3.33 7 3.33 7 3.24 7 3.9 7 3.24 7
N(di, π , ∗) ? 3.24 7 3.9 7 3.24 7
N(di, π , ∩, ∗) 3.33 7 3.24 7 3.24 7
N(di, π , π , ∗) ? 3.9 7 3.9 7
N(di, π , π , ∩, ∗) 3.33 7 ?
N(di, π , π , ∩, −, ∗) 3.33 7
N(di, a, ∗) 3.33 7 3.24 7 3.9 7 3.24 7
N(di, a, π , ∗) 3.24 7 3.9 7 3.24 7
N(di, a, π , ∩, ∗) 3.24 7 3.24 7
N(di, a, π , π , ∗) 3.9 7 3.9 7
N(di, a, π , π , ∩, ∗) ?
N(di, a, π , π , ∩, −, ∗)

di
a π π ∩ − ∗
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A.5 Path semantics on unlabeled chains

di
a π π ∩ − ∗

N() 3.11 7 3.11 7 3.32 7 3.24 7 4.10 3 4.10 3 3.25 7
N(∩) 3.11 7 3.11 7 3.32 7 3.24 7 4.10 3 3.25 7
N(∩, −) 3.24 7 3.24 7 3.24 7 3.24 7 3.25 7
N(π ) 3.11 7 3.11 7 3.24 7 4.10 3 3.24 7 3.25 7
N(π , ∩) 3.11 7 3.11 7 3.24 7 3.24 7 3.25 7
N(π , π ) 3.11 7 3.11 7 4.10 3 4.10 3 3.26 7
N(π , π , ∩) 3.11 7 3.11 7 4.10 3 3.26 7
N(π , π , ∩, −) 3.11 7 3.11 7 3.26 7
N(a) 3.11 7 3.13 3 3.24 7 3.13 3 3.24 7 3.25 7
N(a, π ) 3.11 7 3.24 7 3.36 3• 3.24 7 3.25 7
N(a, π , ∩) 3.11 7 3.24 7 3.24 7 3.25 7
N(a, π , π ) 3.11 7 5.6 3 5.13 3 3.26 7
N(a, π , π , ∩) 3.11 7 5.13 3 3.26 7
N(a, π , π , ∩, −) 3.11 7 3.26 7
N(di) 3.20 7 3.32 7 3.24 7 3.20 7 3.24 7 3.25 7
N(di, π ) 3.20 7 3.24 7 3.20 7 3.24 7 3.25 7
N(di, π , ∩) ? 3.24 7 3.24 7 3.25 7
N(di, π , π ) ? ? ? 3.26 7
N(di, π , π , ∩) ? ? 3.26 7
N(di, π , π , ∩, −) ? 3.26 7
N(di, a) 3.19 3 3.24 7 3.20 7 3.24 7 3.25 7
N(di, a, π ) 3.24 7 3.20 7 3.24 7 3.25 7
N(di, a, π , ∩) 3.24 7 3.24 7 3.25 7
N(di, a, π , π ) ? ? 3.26 7
N(di, a, π , π , ∩) ? 3.26 7
N(di, a, π , π , ∩, −) 3.26 7

di
a π π ∩ − ∗

N(∗) 3.11 7 3.11 7 3.32 7 3.24 7 4.10 3 4.10 3
N(∩, ∗) 3.11 7 3.11 7 3.32 7 3.24 7 4.10 3
N(∩, −, ∗) 3.24 7 3.24 7 3.24 7 3.24 7
N(π , ∗) 3.11 7 3.11 7 3.24 7 4.10 3 3.24 7
N(π , ∩, ∗) 3.11 7 3.11 7 3.24 7 3.24 7
N(π , π , ∗) 3.11 7 3.11 7 4.10 3 4.10 3
N(π , π , ∩, ∗) 3.11 7 3.11 7 4.10 3
N(π , π , ∩, −, ∗) 3.11 7 3.11 7
N(a, ∗) 3.1 3 ? 3.24 7 ? 3.24 7
N(a, π , ∗) 3.1 3 3.24 7 ? 3.24 7
N(a, π , ∩, ∗) 3.1 3 3.24 7 3.24 7
N(a, π , π , ∗) 3.1 3 ? ?
N(a, π , π , ∩, ∗) 3.1 3 ?
N(a, π , π , ∩, −, ∗) 3.1 3
N(di, ∗) 3.20 7 3.32 7 3.24 7 ? 3.24 7
N(di, π , ∗) 3.20 7 3.24 7 ? 3.24 7
N(di, π , ∩, ∗) ? 3.24 7 3.24 7
N(di, π , π , ∗) ? ? ?
N(di, π , π , ∩, ∗) ? ?
N(di, π , π , ∩, −, ∗) 3.1 3
N(di, a, ∗) ? 3.24 7 ? 3.24 7
N(di, a, π , ∗) 3.24 7 ? 3.24 7
N(di, a, π , ∩, ∗) 3.24 7 3.24 7
N(di, a, π , π , ∗) ? ?
N(di, a, π , π , ∩, ∗) ?
N(di, a, π , π , ∩, −, ∗)

di
a π π ∩ − ∗
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A.6 Path semantics on labeled chains

di
a π π ∩ − ∗

N() 3.11 7 3.11 7 3.32 7 3.24 7 4.10 3 4.10 3 3.25 7
N(∩) 3.11 7 3.11 7 3.32 7 3.24 7 4.10 3 3.25 7
N(∩, −) 3.24 7 3.24 7 3.24 7 3.24 7 3.25 7
N(π ) 3.11 7 3.11 7 3.24 7 4.10 3 3.24 7 3.25 7
N(π , ∩) 3.11 7 3.11 7 3.24 7 3.24 7 3.25 7
N(π , π ) 3.11 7 3.11 7 4.10 3 4.10 3 3.26 7
N(π , π , ∩) 3.11 7 3.11 7 4.10 3 3.26 7
N(π , π , ∩, −) 3.11 7 3.11 7 3.26 7
N(a) 3.11 7 3.13 3 3.24 7 3.13 3 3.24 7 3.25 7
N(a, π ) 3.11 7 3.24 7 3.36 3• 3.24 7 3.25 7
N(a, π , ∩) 3.11 7 3.24 7 3.24 7 3.25 7
N(a, π , π ) 3.11 7 5.6 3 5.13 3 3.26 7
N(a, π , π , ∩) 3.11 7 5.13 3 3.26 7
N(a, π , π , ∩, −) 3.11 7 3.26 7
N(di) 3.20 7 3.32 7 3.24 7 3.20 7 3.24 7 3.25 7
N(di, π ) 3.20 7 3.24 7 3.20 7 3.24 7 3.25 7
N(di, π , ∩) ? 3.24 7 3.24 7 3.25 7
N(di, π , π ) ? 3.31 7 3.31 7 3.26 7
N(di, π , π , ∩) ? ? 3.26 7
N(di, π , π , ∩, −) ? 3.26 7
N(di, a) ? 3.24 7 3.20 7 3.24 7 3.25 7
N(di, a, π ) 3.24 7 3.20 7 3.24 7 3.25 7
N(di, a, π , ∩) 3.24 7 3.24 7 3.25 7
N(di, a, π , π ) 3.31 7 3.31 7 3.26 7
N(di, a, π , π , ∩) ? 3.26 7
N(di, a, π , π , ∩, −) 3.26 7

di
a π π ∩ − ∗

N(∗) 3.11 7 3.11 7 3.32 7 3.24 7 4.10 3 4.10 3
N(∩, ∗) 3.11 7 3.11 7 3.32 7 3.24 7 4.10 3
N(∩, −, ∗) 3.24 7 3.24 7 3.24 7 3.24 7
N(π , ∗) 3.11 7 3.11 7 3.24 7 4.10 3 3.24 7
N(π , ∩, ∗) 3.11 7 3.11 7 3.24 7 3.24 7
N(π , π , ∗) 3.11 7 3.11 7 4.10 3 4.10 3
N(π , π , ∩, ∗) 3.11 7 3.11 7 4.10 3
N(π , π , ∩, −, ∗) 3.11 7 3.11 7
N(a, ∗) 3.1 3 ? 3.24 7 ? 3.24 7
N(a, π , ∗) 3.1 3 3.24 7 ? 3.24 7
N(a, π , ∩, ∗) 3.1 3 3.24 7 3.24 7
N(a, π , π , ∗) 3.1 3 ? ?
N(a, π , π , ∩, ∗) 3.1 3 ?
N(a, π , π , ∩, −, ∗) 3.1 3
N(di, ∗) 3.20 7 3.32 7 3.24 7 ? 3.24 7
N(di, π , ∗) 3.20 7 3.24 7 ? 3.24 7
N(di, π , ∩, ∗) ? 3.24 7 3.24 7
N(di, π , π , ∗) ? ? ?
N(di, π , π , ∩, ∗) ? ?
N(di, π , π , ∩, −, ∗) 3.1 3
N(di, a, ∗) ? 3.24 7 ? 3.24 7
N(di, a, π , ∗) 3.24 7 ? 3.24 7
N(di, a, π , ∩, ∗) 3.24 7 3.24 7
N(di, a, π , π , ∗) ? ?
N(di, a, π , π , ∩, ∗) ?
N(di, a, π , π , ∩, −, ∗)

di
a π π ∩ − ∗
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A.7 Path semantics on unlabeled trees

di
a π π ∩ − ∗

N() 3.9 7 3.11 7 3.32 7 3.24 7 4.10 3 4.10 3 3.25 7
N(∩) 3.9 7 3.11 7 3.32 7 3.24 7 4.10 3 3.25 7
N(∩, −) 3.24 7 3.24 7 3.24 7 3.24 7 3.25 7
N(π ) 3.9 7 3.11 7 3.24 7 4.10 3 3.24 7 3.25 7
N(π , ∩) 3.9 7 3.11 7 3.24 7 3.24 7 3.25 7
N(π , π ) 3.9 7 3.11 7 4.10 3 4.10 3 3.26 7
N(π , π , ∩) 3.9 7 3.11 7 4.10 3 3.26 7
N(π , π , ∩, −) 3.9 7 3.9 7 3.26 7
N(a) 3.9 7 3.32 7 3.24 7 3.32 7 3.24 7 3.25 7
N(a, π ) 3.9 7 3.24 7 3.36 3• 3.24 7 3.25 7
N(a, π , ∩) 3.9 7 3.24 7 3.24 7 3.25 7
N(a, π , π ) 3.9 7 5.6 3 3.9 7 3.26 7
N(a, π , π , ∩) 3.9 7 3.9 7 3.26 7
N(a, π , π , ∩, −) 3.15 7 3.26 7
N(di) 3.33 7 3.33 7 3.24 7 3.9 7 3.24 7 3.25 7
N(di, π ) 3.20 7 3.24 7 3.9 7 3.24 7 3.25 7
N(di, π , ∩) 3.33 7 3.24 7 3.24 7 3.26 7
N(di, π , π ) 3.32 7 3.9 7 3.9 7 3.26 7
N(di, π , π , ∩) 3.33 7 ? 3.26 7
N(di, π , π , ∩, −) 3.33 7 3.26 7
N(di, a) 3.33 7 3.24 7 3.9 7 3.24 7 3.25 7
N(di, a, π ) 3.24 7 3.9 7 3.24 7 3.25 7
N(di, a, π , ∩) 3.24 7 3.24 7 3.26 7
N(di, a, π , π ) 3.9 7 3.9 7 3.26 7
N(di, a, π , π , ∩) ? 3.26 7
N(di, a, π , π , ∩, −) 3.26 7

di
a π π ∩ − ∗

N(∗) 3.9 7 3.11 7 3.32 7 3.24 7 4.10 3 4.10 3
N(∩, ∗) 3.9 7 3.11 7 3.32 7 3.24 7 4.10 3
N(∩, −, ∗) 3.24 7 3.24 7 3.24 7 3.24 7
N(π , ∗) 3.9 7 3.11 7 3.24 7 4.10 3 3.24 7
N(π , ∩, ∗) 3.9 7 3.11 7 3.24 7 3.24 7
N(π , π , ∗) 3.9 7 3.11 7 4.10 3 4.10 3
N(π , π , ∩, ∗) 3.9 7 3.11 7 4.10 3
N(π , π , ∩, −, ∗) 3.9 7 3.9 7
N(a, ∗) 3.9 7 3.32 7 3.24 7 3.32 7 3.24 7
N(a, π , ∗) 3.9 7 3.24 7 ? 3.24 7
N(a, π , ∩, ∗) 3.9 7 3.24 7 3.24 7
N(a, π , π , ∗) 3.9 7 ? 3.9 7
N(a, π , π , ∩, ∗) 3.9 7 3.9 7
N(a, π , π , ∩, −, ∗) 3.1 3
N(di, ∗) 3.33 7 3.33 7 3.24 7 3.9 7 3.24 7
N(di, π , ∗) 3.20 7 3.24 7 3.9 7 3.24 7
N(di, π , ∩, ∗) 3.33 7 3.24 7 3.24 7
N(di, π , π , ∗) 3.32 7 3.9 7 3.9 7
N(di, π , π , ∩, ∗) 3.33 7 ?
N(di, π , π , ∩, −, ∗) 3.33 7
N(di, a, ∗) 3.33 7 3.24 7 3.9 7 3.24 7
N(di, a, π , ∗) 3.24 7 3.9 7 3.24 7
N(di, a, π , ∩, ∗) 3.24 7 3.24 7
N(di, a, π , π , ∗) 3.9 7 3.9 7
N(di, a, π , π , ∩, ∗) ?
N(di, a, π , π , ∩, −, ∗)

di
a π π ∩ − ∗
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A.8 Path semantics on labeled trees

di
a π π ∩ − ∗

N() 3.9 7 3.35 7• 3.35 7• 3.24 7 4.10 3 4.10 3 3.35 7•

N(∩) 3.9 7 3.5 7 3.5 7 3.24 7 4.10 3 3.26 7
N(∩, −) 3.24 7 3.24 7 3.24 7 3.24 7 3.26 7
N(π ) 3.9 7 3.35 7• 3.24 7 4.10 3 3.24 7 3.35 7•

N(π , ∩) 3.9 7 3.11 7 3.24 7 3.24 7 3.26 7
N(π , π ) 3.9 7 3.11 7 4.10 3 4.10 3 3.26 7
N(π , π , ∩) 3.9 7 3.11 7 4.10 3 3.26 7
N(π , π , ∩, −) 3.9 7 3.9 7 3.26 7
N(a) 3.9 7 3.35 7• 3.24 7 3.32 7 3.24 7 3.35 7•

N(a, π ) 3.9 7 3.24 7 3.36 3• 3.24 7 3.35 7•

N(a, π , ∩) 3.9 7 3.24 7 3.24 7 3.26 7
N(a, π , π ) 3.9 7 5.6 3 3.9 7 3.26 7
N(a, π , π , ∩) 3.9 7 3.9 7 3.26 7
N(a, π , π , ∩, −) 3.15 7 3.26 7
N(di) 3.33 7 3.33 7 3.24 7 3.9 7 3.24 7 3.26 7
N(di, π ) 3.20 7 3.24 7 3.9 7 3.24 7 3.26 7
N(di, π , ∩) 3.33 7 3.24 7 3.24 7 3.26 7
N(di, π , π ) 3.32 7 3.9 7 3.9 7 3.26 7
N(di, π , π , ∩) 3.33 7 ? 3.26 7
N(di, π , π , ∩, −) 3.33 7 3.26 7
N(di, a) 3.33 7 3.24 7 3.9 7 3.24 7 3.26 7
N(di, a, π ) 3.24 7 3.9 7 3.24 7 3.26 7
N(di, a, π , ∩) 3.24 7 3.24 7 3.26 7
N(di, a, π , π ) 3.9 7 3.9 7 3.26 7
N(di, a, π , π , ∩) ? 3.26 7
N(di, a, π , π , ∩, −) 3.26 7

di
a π π ∩ − ∗

N(∗) 3.9 7 3.35 7• 3.35 7• 3.24 7 4.10 3 4.10 3
N(∩, ∗) 3.9 7 3.5 7 3.5 7 3.24 7 4.10 3
N(∩, −, ∗) 3.24 7 3.24 7 3.24 7 3.24 7
N(π , ∗) 3.9 7 3.35 7• 3.24 7 4.10 3 3.24 7
N(π , ∩, ∗) 3.9 7 3.11 7 3.24 7 3.24 7
N(π , π , ∗) 3.9 7 3.11 7 4.10 3 4.10 3
N(π , π , ∩, ∗) 3.9 7 3.11 7 4.10 3
N(π , π , ∩, −, ∗) 3.9 7 3.9 7
N(a, ∗) 3.9 7 3.35 7• 3.24 7 3.32 7 3.24 7
N(a, π , ∗) 3.9 7 3.24 7 ? 3.24 7
N(a, π , ∩, ∗) 3.9 7 3.24 7 3.24 7
N(a, π , π , ∗) 3.9 7 ? 3.9 7
N(a, π , π , ∩, ∗) 3.9 7 3.9 7
N(a, π , π , ∩, −, ∗) 3.1 3
N(di, ∗) 3.33 7 3.33 7 3.24 7 3.9 7 3.24 7
N(di, π , ∗) 3.20 7 3.24 7 3.9 7 3.24 7
N(di, π , ∩, ∗) 3.33 7 3.24 7 3.24 7
N(di, π , π , ∗) 3.32 7 3.9 7 3.9 7
N(di, π , π , ∩, ∗) 3.33 7 ?
N(di, π , π , ∩, −, ∗) 3.33 7
N(di, a, ∗) 3.33 7 3.24 7 3.9 7 3.24 7
N(di, a, π , ∗) 3.24 7 3.9 7 3.24 7
N(di, a, π , ∩, ∗) 3.24 7 3.24 7
N(di, a, π , π , ∗) 3.9 7 3.9 7
N(di, a, π , π , ∩, ∗) ?
N(di, a, π , π , ∩, −, ∗)

di
a π π ∩ − ∗


