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ABSTRACT

Context. Local gravitational lensing properties, such as convergence and shear, determined at the positions of multiply imaged back-
ground objects, yield valuable information on the smaller-scale lensing matter distribution in the central part of galaxy clusters. Highly
distorted multiple images with resolved brightness features like the ones observed in CL0024 allow us to study these local lensing
properties and to tighten the constraints on the properties of dark matter on sub-cluster scale.
Aims. We investigate to what precision local magnification ratios, J , ratios of convergences, f , and reduced shears, g = (g1, g2), can
be determined independently of a lens model for the five resolved multiple images of the source at zs = 1.675 in CL0024. We also
determine if a comparison to the respective results obtained by the parametric modelling tool Lenstool and by the non-parametric
modelling tool Grale can detect biases in the models. For these lens models, we analyse the influence of the number and location of
the constraints from multiple images on the lens properties at the positions of the five multiple images of the source at zs = 1.675.
Methods. Our model-independent approach uses a linear mapping between the five resolved multiple images to determine the magni-
fication ratios, ratios of convergences, and reduced shears at their positions. With constraints from up to six multiple image systems, we
generate Lenstool and Grale models using the same image positions, cosmological parameters, and number of generated convergence
and shear maps to determine the local values of J , f , and g at the same positions across all methods.
Results. All approaches show strong agreement on the local values of J , f , and g. We find that Lenstool obtains the tightest con-
fidence bounds even for convergences around one using constraints from six multiple-image systems, while the best Grale model is
generated only using constraints from all multiple images with resolved brightness features and adding limited small-scale mass cor-
rections. Yet, confidence bounds as large as the values themselves can occur for convergences close to one in all approaches.
Conclusions. Our results agree with previous findings, support the light-traces-mass assumption, and the merger hypothesis for
CL0024. Comparing the different approaches can detect model biases. The model-independent approach determines the local lens
properties to a comparable precision in less than one second.

Key words. dark matter – gravitational lensing: strong – methods: data analysis – methods: analytical –
galaxies: clusters: individual: CL0024+1654 – galaxies: luminosity function, mass function

1. Motivation and related work

The Frontier Fields Lens Modelling Comparison Project
(Meneghetti et al. 2017) is the most encompassing systematic
comparison of lens modelling approaches so far. It employs
simulated data of unresolved multiple images in two arti-
ficially generated galaxy clusters. From this comparison we
know that the mass enclosed in the critical curves of a galaxy
cluster is determined to only a few percent inaccuracy and
imprecision by any lens modelling approach. In contrast, the
accuracy and precision of local convergence and shear values
strongly depend on the number and positions of the multiple
images observed. This, in turn, sets the limits on the accu-
racy and precision by which the distribution and properties
of small-scale compact dark matter can be determined, for
example, in Diego et al. (2017).

Simulations of multiple images showing distinctive fea-
tures in their brightness distributions are yet to be developed.
So far, real galaxies extracted from deep HST observations
have been employed to model the brightness distributions of
sources in simulations, as, for example, in Meneghetti et al.
(2017). Hence, the multiple images appear unstructured in cur-
rent simulations because the high magnification regions in
the strong lensing regime require a resolution beyond that
of the HST cameras for the sources to obtain images with
resolved brightness features. Thus, we rely on the galaxy clus-
ter CL0024 to compare the model-independent reconstruction of
local ratios of convergences and reduced shear values developed
in Tessore (2017) with the parametric lens modelling approach
Lenstool, and the non-parametric lens modelling approach
Grale. The model-independent approach was tested using sim-
ulations in Wagner & Tessore (2018). Lenstool was developed in
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Kneib et al. (1996); Jullo et al. (2007), and Grale in Liesenborgs
et al. (2006, 2010).

CL0024 is a well-studied cluster, whose strong lensing prop-
erties have been investigated, for example, in Broadhurst et al.
(2000); Colley et al. (1996); Jee et al. (2007); Liesenborgs
et al. (2008); Richard et al. (2011); Umetsu et al. (2010); Zitrin
et al. (2009). Therefore, we do not develop more advanced
models but focus on the model comparison with the model-
independent approach. The cluster contains one system of five
multiple images. Each of them shows six distinctive features in
the brightness distribution which can be used to determine ratios
of convergences and reduced shears at the positions of the mul-
tiple images without the use of a lens model, as described in
Tessore (2017) and Wagner & Tessore (2018). In addition, a mul-
titude of systems of non-resolved multiple images are proposed
in this cluster, for example, in Zitrin et al. (2009), which we also
employ here to set up the Lenstool and Grale lens models.

Using the same cosmological parameter values and posi-
tions of multiple-image systems, we calculate the Lenstool
and Grale lens models. We retrieve the local ratios of conver-
gences and reduced shears from the respective maps at the same
positions to compare them to the same lens properties calcu-
lated from the model-independent approach at these positions.
This direct comparison between the two model-based and the
model-independent local lens properties allows us to investigate
differences and similarities between the different lens recon-
struction ansatzes. Furthermore, we investigate whether or not
the comparison can determine if the light-traces-mass assump-
tion usually employed in parametric lens modelling is fulfilled,
and whether or not we can set a scale below which further refine-
ments of a non-parametric lens model may overfit the model to
the data. This may generate dark matter artefacts, as possibly
found in Jee et al. (2007) and discussed in Ponente & Diego
(2011).

We also investigate the robustness of the local convergence
ratios and reduced shear values of the model-based approaches
when we reduce the number of multiple-image systems that are
used for the lens modelling. This analysis shows how strong
constraints from multiple images of one system influence the
convergence ratios and reduced shear values at the positions of
neighbouring multiple images of other systems. It also deter-
mines whether the multiple-image positions of one system suf-
fice as input constraints for the lens model in order to yield the
local convergence ratios and reduced shears at these positions.

The paper is organised as follows: After the introduction
of the multiple-image systems in CL0024 that we employ in
Sect. 2, we describe how the model-independent information is
calculated in Sect. 3. Then, we generate the Lenstool and Grale
model-based reconstructions of CL0024 in Sect. 4 and extract
the same information from their convergence and shear maps as
can be retrieved from the model-independent approach. Based
on this information, a comparison of all three approaches is
performed in Sect. 5, of which the results are summarised in
Sect. 6.

2. Multiple-image systems in CL0024

In CL0024, a multitude of multiple-image-system candidates
has been detected and used to reconstruct the lensing prop-
erties of the galaxy cluster (see Sect. 1). However, only for
one five-image system has a spectroscopic redshift been mea-
sured so far (Broadhurst et al. 2000), corroborating the lensing
hypothesis for these images. The most systematic collection

of multiple-image-system candidates together with photometric
redshift estimates was published in Zitrin et al. (2009), which
we use in the following. As none of the candidate systems 2–11
of Zitrin et al. (2009) are confirmed spectroscopically, not all
of them need to be true multiple-image systems. Therefore,
we employ only a subset of those candidate systems close to
system 1, guided by an initial Lenstool reconstruction as detailed
in Sect. 4.1.

To make the reconstructed local lens properties as compa-
rable as possible, the model-based approaches employ the same
positions of the six multiple-image systems listed in Table 1. In
addition to the points in system 1 listed in Table 1, the model-
independent reconstruction and Grale use the positions of up to
five additional identifiable bright spots in all images of system 1
listed in Table 2. These points were determined by eye of the
HST ACS/WFC image in the F475W band (PI:Ford 20041), in
which these resolved features are most prominent.

3. Model-independent lens reconstruction

In Tessore (2017), it was shown how properties of strong grav-
itational lenses can be recovered in a model-independent fash-
ion from the mapping of multiple images onto one another.
Given n multiple images, the image maps ϕi are functions that
map the arbitrarily chosen reference image 1 onto the multiple
image i = 2, . . . , n. The Jacobian matrix of the image map ϕi is
the relative magnification matrix Ti = A−1

i A1 between images 1
and i, where A is the usual magnification matrix,

Ai = (1 − κi)
(
1 − gi,1 −gi,2
−gi,2 1 + gi,1

)
, i = 1, . . . , n , (1)

in terms of the convergence κ and the two components of the
reduced shear g

gi,1 =
γi,1

1 − κi
, gi,2 =

γi,2

1 − κi
, i = 1, ..., 5 , (2)

with γi,1 and γi,2 denoting the shear components for each image
i, as defined in the usual notation by Schneider et al. (1992) with
respect to the RA/Dec coordinate system.

Explicitly writing out the entries of Ti, i = 2, . . . , n,

Ti,11 =
1 − κ1

1 − κi

(1 − g1,1)(1 + gi,1) − g1,2 gi,2

1 − g2
i,1 − g

2
i,2

, (3)

Ti,12 =
1 − κ1

1 − κi

(1 + g1,1) gi,2 − (1 + gi,1) g1,2

1 − g2
i,1 − g

2
i,2

, (4)

Ti,21 =
1 − κ1

1 − κi

(1 − g1,1) gi,2 − (1 − gi,1) g1,2

1 − g2
i,1 − g

2
i,2

, (5)

Ti,22 =
1 − κ1

1 − κi

(1 + g1,1)(1 − gi,1) − g1,2 gi,2

1 − g2
i,1 − g

2
i,2

, (6)

the reduced shears g1, j and gi, j, j = 1, 2, are generally recover-
able, while the convergences κ1 and κi only appear in the form of
a convergence ratio,

fi =
1 − κ1

1 − κi
i = 2, . . . , n , (7)

1 Based on observations made with the NASA/ESA Hubble Space
Telescope, and obtained from the Hubble Legacy Archive, which
is a collaboration between the Space Telescope Science Insti-
tute (STScI/NASA), the Space Telescope European Coordinating
Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre
(CADC/NRC/CSA).
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Table 1. Systems of multiple images employed in the model-based lens
reconstructions.

Image RA
[
deg

]
DEC

[
deg

]
z zm

1.1 6.65528 17.15463 1.675
1.2 6.65689 17.15678 1.675
1.3 6.65832 17.16154 1.675
1.4 6.64303 17.16495 1.675
1.5 6.64724 17.16173 1.675

3.1 6.65358 17.15675 2.76+0.37
−2.59 2.55+0.45

−0.20

3.2 6.64858 17.17178 2.48 ± 0.34
3.3 6.64475 17.17017 2.51+0.34

−2.19

3.4 6.63717 17.16294 2.58+0.35
−2.38

4.1 6.64413 17.16169 2.13+0.31
−0.33 1.96 ± 0.20

4.2 6.64479 17.16153 2.30+0.34
−0.68

4.3 6.66138 17.16072 2.28+0.36
−2.07

5.1 6.63692 17.16092 0.25+2.44
−0.12 2.02 ± 0.20

5.2 6.65317 17.15886 1.58+0.65
−1.52

8.1 6.65158 17.14886 4.09 ± 0.50 4.03 ± 0.50
8.2 6.64588 17.16744 4.16+0.51

−3.62

10.1 6.65071 17.16175 0.75 ± 0.17 0.96+0.23
−0.20

10.2 6.65046 17.16186 0.58+0.16
−0.15

10.3 6.64021 17.16183 0.85+0.31
−0.26

Notes. The coordinates for system 1 are determined by visual inspec-
tion; this system is the only one with a spectroscopic redshift, the
properties of the remaining systems are determined as described in
Zitrin et al. (2009) with a BPZ photometric redshift estimation accord-
ing to Benítez (2000); Benítez et al. (2004); Coe et al. (2006). For
comparison with Zitrin et al. (2009), we keep their nomenclature (except
for system 1) and also list the redshifts zm determined by their model.

that scales all components of Ti equally. Therefore, neither κ1
nor κi can be recovered individually (this is also implied by the
mass sheet degeneracy), and only the convergence ratios and
reduced shears g1,1, g1,2, f2, g2,1, g2,2, . . . are observable proper-
ties of strong gravitational lenses at first order in the image
mapping and hence second order in the deflection potential.

To reconstruct the values of f and g from a given relative
magnification matrix T, it is useful to construct combinations of
the entries (3)–(6),

ai = Ti,11 − Ti,22 = 2 fi
gi,1 − g1,1

1 − g2
i,1 − g

2
i,2

, (8)

bi = Ti,21 + Ti,12 = 2 fi
gi,2 − g1,2

1 − g2
i,1 − g

2
i,2

, (9)

ci = Ti,21 − Ti,12 = 2 fi
gi,1 g1,2 − g1,1 gi,2

1 − g2
i,1 − g

2
i,2

, (10)

di = Ti,11 + Ti,22 = 2 fi
1 − g1,1 gi,1 − g1,2 gi,2

1 − g2
i,1 − g

2
i,2

. (11)

We note that ci and di are the curl and divergence of the image
map, respectively. When at least three images 1, i, j are observed,

Table 2. Positions of six bright spots, referred to as reference points
(RP), identifiable in each of the five images (I) of system 1 from Table 1.

I RP RA
[
deg

]
DEC

[
deg

]
1 1 6.65452 17.15418
1 2 6.65486 17.15421
1 3 6.65495 17.15453
1 4 6.65505 17.15463
1 5 6.65520 17.15470
1 6 6.65528 17.15463

2 1 6.65700 17.15722
2 2 6.65710 17.15702
2 3 6.65688 17.15700
2 4 6.65684 17.15695
2 5 6.65683 17.15685
2 6 6.65689 17.15678

3 1 6.65800 17.16163
3 2 6.65823 17.16128
3 3 6.65813 17.16178
3 4 6.65815 17.16183
3 5 6.65824 17.16173
3 6 6.65832 17.16154

4 1 6.64345 17.16557
4 2 6.64336 17.16524
4 3 6.64311 17.16524
4 4 6.64304 17.16517
4 5 6.64298 17.16503
4 6 6.64303 17.16495

5 1 6.64756 17.16184
5 2 6.64739 17.16187
5 3 6.64739 17.16175
5 4 6.64736 17.16173
5 5 6.64729 17.16171
5 6 6.64724 17.16173

Notes. Reference point 6 represents system 1 in Table 1.

the system of Eqs. (8)–(11) can be solved for the reduced shear
of the reference image,

g1,1 =
ai c j − a j ci

bi a j − b j ai
, (12)

g1,2 =
bi c j − b j ci

bi a j − b j ai
, (13)

as well as the convergence ratio and shear of multiple image i,

fi =
2 det(Ti)

ai g1,1 + bi g1,2 + di
, (14)

gi,1 =
di g1,1 − ci g1,2 + ai

ai g1,1 + bi g1,2 + di
, (15)
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Fig. 1. CL0024 with detailed pictures of the five multiple images of system 1 (left). The user-defined reference points in the reference image 1 are
marked by red circles, while the red-encircled regions in the remaining images denote 95% confidence bounds of the locations of the transformed
reference points by the best-fit linear transformations. (Image credits: NASA, ESA, M. J. Jee (Johns Hopkins University)). Also shown is a diagram
of the principle of extracting local lens properties from the linear transformation between multiple images from the same source (right).

gi,2 =
ci g1,1 + di g1,2 + bi

ai g1,1 + bi g1,2 + di
, (16)

where det(Ti) is the determinant. The same expressions hold for
multiple image j.

With

Ji ≡ det(Ti) = det(Ai)−1 det(A1) =
µi

µ1
, i = 2, . . . , n , (17)

we relate the determinant of the transformation matrix to the
magnification ratio between image i, µi, and image 1, µ1,
which yields the relative parities between those images and
can be compared to the respective measured flux ratios. Using
Eqs. (3) to (6), the Ji can be expressed in terms of the fi, gi,1,
and gi,2, so that they do not yield additional information.

By constructing the image maps ϕi, i = 2, . . . , n, from obser-
vations and evaluating their Jacobian matrices, it is possible to
measure the relative magnification matrix Ti directly from data.
This in turn makes it possible to reconstruct the magnification
ratios (17), convergence ratios (14), and reduced shears (15)–(16)
– that is, the observable properties – of the gravitational lens in
a completely model-independent manner.

Equations (2), (7), and (17) define lens properties that can
also be extracted from model-based convergence and shear maps
and thus be compared between all three lens reconstruction
methods.

3.1. Linear image mapping by point matching

We assume that an observer has found a family of m points,
also referred to as reference points in the following, individu-
ally labelled from 1 to m, that reliably show the same features
across all multiple images. In addition, we require that conver-
gence and shear do not vary significantly over the area covered
by the family of points in each multiple image. Then, it is possi-
ble to approximate the image maps as linear transformations of
conjugate points between the multiple images.

Let xi j denote the point with index j = 1, . . . ,m in multiple
image i = 2, . . . , n, and x1 j the corresponding point in the refer-
ence image 1. If the assumption of linearity holds, the image
mapping is described by a matrix, which in this case is the
relative magnification matrix Ti. Mapping the observed points

x11, x12, . . . from reference image 1 to multiple image i should
recover the observed points xi j,

xi j − ξi = Ti (x1 j − ξ1) , (18)

where ξi, ξ1 are anchor points for the affine transformation
between multiple images 1 and i. Lens reconstruction by point
matching amounts to finding a relative magnification matrix Ti
that solves this equation for all points j in a given image i.

As the reconstructed Ti is the solution of the linearised map-
ping over the entire area covered by the family of points in a
multiple image, it is not necessarily the same as the relative mag-
nification matrix that would be obtained from a fully non-linear
image map at the points ξi and ξ1. The anchor point ξ1 of the
reference image is arbitrary, since it can be absorbed into the left-
hand side of Eq. (18). However, it makes sense to pick ξ1 within
the observed image, for example as the centroid of the points x1 j.
The locations of the remaining anchor points ξ2, ξ3, . . ., which
are additional free parameters of the reconstruction, can then
be understood as the images of ξ1 under the linearised image
mapping.

In observations, the images xi j of the reference points x1 j
will be localised with some level of uncertainty. The difference
between an observed position xi j and the prediction (18) can be
modelled as a bivariate normal random variable,

∆i j = (xi j − ξi) − Ti (x1 j − ξ1) ∼ N(0,Σi j) , (19)

where the uncertainty in the observed position xi j is described
by a covariance matrix Σi j. No uncertainty is associated with
the reference points x1 j, which are fixed by the observer. For
given relative magnification matrices Ti, the quality of the
reconstruction is then quantified by the χ2-value,

χ2 =

n−1∑
i=1

m∑
j=1

∆>i j Σ−1
i j ∆i j , (20)

where the sum extends over n − 1 multiple images of the ref-
erence image 1 and their m observed points. Minimising the
χ2-term (20) returns best-fit values for the relative magnification
matrices Ti and anchor points ξi, which are the degrees of free-
dom of the reconstruction. Figure 1 visualises the point matching
using the six reference points in system 1 of Table 2 as example
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(left) and it shows a schematic of how the linear transformation
is derived from the magnification matrices of two images with
two reference points and one anchor point in each image (right).

3.2. Parametrisation of the matrices

When more than three multiple images of a source are observed,
the system of constraints for the convergence ratios and reduced
shears is overdetermined, since the n − 1 relative magnifica-
tion matrices have 4n − 4 coefficients, for 3n − 1 lens quan-
tities (Tessore 2017). In this case, the relative magnification
matrices Ti cannot directly be used as the parameters of the
reconstruction: Each pair i, j of images could yield a different
reduced shear over the reference image (12)–(13), leading to an
inconsistent reconstruction.

To circumvent the problem, a suitable parametrisation of the
matrices Ti can be adopted. A natural choice are the convergence
ratio fi and reduced shear components gi,1, gi,2, so that the rela-
tive magnification matrices are given by expressions (3)–(6). In
practice, this leads to a numerically difficult reconstruction: Due
to the non-linear form of the expressions, the parameters fi, gi,1,
gi,2 are strongly correlated, which makes the exploration of the
parameter space difficult with simple numerical methods.

A more practical parametrisation keeps the optimisation
problem as nearly linear as possible. This can be achieved by
noting that for every relative magnification matrix Ti, there exists
a relation between the ai, bi and ci coefficients (8)–(10) and the
reduced shear g1,1, g1,2 over the reference image,

g1,2 ai − g1,1 bi = ci . (21)

Hence it is possible to use the coefficients ai, bi, di for multi-
ple images i = 2, . . . , n, together with the reduced shear g1,1, g1,2
over the reference image as the parameters of the reconstruction
and write the relative magnification matrices as

Ti =
1
2

(
di + ai bi − ci
bi + ci di − ai

)
, (22)

where the coefficient ci must be computed from the relation in
Eq. (21). With this parametrisation, the reconstruction remains
consistent and, at the same time, easy to handle with standard
numerical methods.

3.3. Implementation

An implementation of the image mapping technique presented
here is publicly available2. The ptmatch routine will take a
list of reference points with optional uncertainties and perform
the point matching described above. Also provided are convert-
ers between relative magnification matrices and lens quantities,
as well as utilities for producing mapped images and a source
reconstruction.

The C implementation of the MPFIT routine Markwardt
(2009) is used to minimise the χ2- term (20) and returns the best-
fit values for the reduced shear g1,1, g1,2 of the reference image,
the coefficients ai, bi, di of the relative magnification matrices,
and the components ξi,1, ξi,2 of the anchor points, resulting in a
total number of 5n − 3 parameters. The number of constraints
from m points in n − 1 multiple images is 2 m (n − 1). Hence a
minimum of three points in three images is necessary, in which
case the system is solvable, as expected (Tessore 2017).

2 https://github.com/ntessore/imagemap

MPFIT requires the χ2-term (20) to be the sum of squares of
uncorrelated random deviates x̂i of unit variance,

χ2 =
∑

i

x̂2
i . (23)

To bring the difference terms (19) into the required form, a
whitening transform Wi j with W>i j Wi j = Σ−1

i j is applied to the
random variables,

x̂i j = Wi j ∆i j = Wi j (xi j − ξi) −Wi j Ti (x1 j − ξ1) , (24)

so that the two components of the result are uncorrelated with
unit variance. For a covariance matrix Σ with variances σ2

1, σ2
2

and correlation coefficient ρ, a possible whitening transform is
given by the Cholesky decomposition of the inverse matrix Σ−1,

W =

 1√
1−ρ2 σ1

−ρ
√

1−ρ2 σ2

0 1
σ2

 . (25)

It is clear that the χ2-value of the transformed variables,

χ2 =

n−1∑
i=1

m∑
j=1

x̂>i j x̂i j , (26)

is formally the same as the original term (20), and at the same
time of the required form (23) for MPFIT.

Besides the best-fit values, MPFIT also allows us to estimate
the covariance matrix of the parameters near the minimum by
numerical differentiation3. Both results can be used together to
sample the parameter space using importance sampling from a
normal distribution with the estimated covariance matrix and
centred on the maximum-likelihood parameters. This process
yields a full likelihood distribution and allows for the estimation
of robust confidence bounds for the reconstructed lens quantities.
As examples, Figs. 2 and 3 show these likelihood distribu-
tions for the two model-independent reconstructions of J , f ,
and g using all six and the last four reference points of Table 2,
respectively.

3.4. Testing and application to CL0024

For lensing by a simulated singular isothermal, elliptical lens,
Wagner & Tessore (2018) showed that this approach becomes
inaccurate when the reference points are spread over distances of
10% of the distance between the closest multiple images. Then,
the prerequisite that convergence and shear variations over the
image areas are negligible breaks down. Comparing the spread
of the six reference points for the first image around their centre,
which is approximately 1′′, with the distance of this image to the
second one, which is approximately 10′′, we observe that this
limit may be reached for CL0024.

Therefore, we perform one reconstruction of the local lens
properties using all six reference points in each image and com-
pare it to the results obtained by discarding the first two reference
points in each image. While the former reconstruction may
become inaccurate due to the large area covered by the refer-
ence points, we reduce the area over which the reference points
are spread in the latter reconstruction (see Fig. 1 left).

3 The numerical differentiation is used for the second derivatives of
the χ2-term. First derivatives with respect to the parameters are given
analytically.
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Fig. 2. Likelihood distributions of the model-independently determined Ji, fi, gi,1, and gi,2, i = 1, ..., 5 using all six reference points of Table 2.
Dark-grey shaded areas mark the region between the 16th and 84th percentiles.
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Fig. 3. As in Fig. 2 but using the last four reference points of Table 2. Dark-grey shaded areas mark the region between the 16th and 84th percentiles.
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As the approach assumes that variations of convergence and
shear are negligible over the area covered by the reference points,
all image points in the convex hull of the reference points are
assigned the same f -, g-, and J-values determined by the linear
transformation between the multiple images.

Using all six reference points for all five images listed in
Table 2, we obtain the mean fi-, gi,1-, and gi,2-values and their
standard deviations from 10 000 samples as shown in Table 5
in the ninth column block. Discarding the first two reference
points and repeating the evaluation for another 10 000 samples,
the results are listed in the tenth column block of Table 5. The
likelihood distributions with the median values and the confi-
dence levels from the 16th and 84th percentile determined from
the 10 000 samples are shown in Figs. 2 and 3.

4. Lens models for CL0024

To investigate the influence of the number of strong lensing con-
traints on the local magnification ratios, ratios of convergences,
and reduced shear values (Eqs. (7) to (17)) for the parametric
and non-parametric lens modelling methods, we generate lens
models

– using all six systems of multiple images (as selected accord-
ing to Sect. 4.1.1) with Grale and Lenstool;

– using only the constraints from system 1 of Table 1 with
Grale and Lenstool; and

– using the positions of all six resolved features of system 1 as
constraints4 with Grale.

For the last configuration of the list, we generate one Grale
model with small-scale mass corrections and one without, in
order to also investigate possible overfitting to the multiple
images at the cost of unrealistic mass distributions, as found
in Ponente & Diego (2011) for another non-parametric lens
modelling approach.

As cosmological parameters, both lens modelling methods
use

H0 = 67.80
km/s
Mpc

, Ωm = 0.308 , ΩΛ = 0.692, (27)

for the Hubble constant, the matter, and dark energy density
parameters, respectively, in agreement with the Planck measure-
ments (Planck Collaboration XIII 2016).

To ensure that all models have the least human-induced bias
possible, the parametric and non-parametric models are simul-
taneously and independently generated by two of the authors
based on the multiple image positions determined by Zitrin et al.
(2009) and the positions of the six resolved features in system 1
determined by the third author prior to modelling.

The quality of the lens models can be compared by the root-
mean-square deviations (RMSI) between the model-generated
images and the observed ones, which are calculated in the same
way for both lens model approaches (see Sects. 4.1 and 4.2).

From the analytical models, we produce convergence and
shear maps at the resolution of 0.05′′ per pixel and determine
the Ji-, fi-, gi,1-, and gi,2-values, i = 1, ..., 5, and their confi-
dence bounds at the positions of system 1 listed in Table 1 to
compare these local lens properties for all three lens description
approaches in Sect. 5.

4 An equivalent Lenstool model cannot be generated because the six
resolved features do not suffice to constrain a global large-scale halo and
smaller-scale local substructures of dark matter close to the positions of
the resolved features.

4.1. Parametric reconstruction by Lenstool

Lenstool is a software package that models gravitational lenses
as a superposition of smooth, analytical, large-scale dark matter
halo profiles of a specific type previously selected by the user and
takes into account the luminous cluster member galaxies with
their smaller-scale dark matter halos5. The parameters of the lat-
ter are determined as an ensemble with the same mass profile
from the light-traces-mass assumption and the Tully–Fisher and
Faber–Jackson scaling relations.

As further detailed in Jullo et al. (2007), the optimum lens
model for given ranges of parameter values of the predefined
dark matter halo profiles, the catalogue of the brightest mem-
ber galaxies, and the constraints from the systems of multiple
images is obtained by source plane optimisation or image plane
optimisation.

For all Lenstool lens models, we choose the pseudo-
isothermal mass distribution (PIEMD) as the analytic large-scale
dark matter halo profile, which is also used for the latest Lenstool
reconstruction of CL0024 employing strong lensing constraints
performed by Richard et al. (2011; see references therein). As
catalogue of brightest member galaxies, we use the one from the
Lenstool homepage6, also employed in Richard et al. (2011).

We assess the quality of our Lenstool models by three
goodness-of-fit estimators, as described in Jullo et al. (2007):
the RMSI between the model-generated multiple images and the
observed ones, the logarithm of the evidence for that model,
log(E), and its χ2-value.

The parameters of the optimum lens model and their con-
fidence bounds are determined by a Bayesian Markov-Chain-
Monte-Carlo (MCMC) approach, as detailed in Jullo et al.
(2007). In the same manner, the redshifts for all systems with-
out a spectroscopic redshift are predicted, to be compared with
the measured photometric ones and the ones from the model by
Zitrin et al. (2009).

To obtain magnification ratios, ratios of convergences, and
reduced shear values at the positions of system 1 listed in Table 1
according to Eqs. (7) to (17) with confidence bounds, we gener-
ate 30 convergence and shear maps and use the average of the
retrieved values and their standard deviations for the comparison
in Sect. 5.

4.1.1. Selection of multiple-image systems and number of
dark matter halos

We generate Lenstool models with one, two, and three PIEMD
large-scale dark matter halos employing all multiple-image sys-
tems of Zitrin et al. (2009) and the catalogue of the 85 brightest
member galaxies from the Lenstool homepage. Since these mod-
els are only used for selection purposes, we optimise them using
the fast source plane optimisation. Appendix A shows the con-
figuration file for one PIEMD dark matter halo. In agreement
with Richard et al. (2011), we find that the minimal most likely
number of dark matter halos is two, taking into account the
uncertainty limits of the optimisation procedure. Appendix C
shows the critical curves and caustics of the three models,
their goodness-of-fit measures, and the positions of all multi-
ple images on the HST ACS/WFC image in the F475W band
(PI:Ford 2004).

5 There is a Lenstool version combining parametric and non-
parametric lens modelling (Jullo & Kneib 2009), which is not consid-
ered here, as it is computationally more intensive.
6 https://projets.lam.fr/projects/lenstool/wiki
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Table 3. Degrees of freedom (DOF), average logarithmic evidence
(log(E)), RMSI in arcseconds over all image systems, and total χ2 and
their standard deviations for all lens models.

Model DOF log(E) RMSI χ2

Sect. 4.1.2 18 −158 ± 53 0.60 ± 0.07 176 ± 46
Sect. 4.1.3 0 − 64 ± 20 0.56 ± 0.41 60 ± 53

Sect. 4.2.1 – – 0.93 ± 0.97 –
Sect. 4.2.2 – – 0.03 ± 0.05 –
Sect. 4.2.3 – – 0.25 ± 0.09 –
Sect. 4.2.4 – – 0.13 ± 0.06 –

Notes. Values are obtained from 30 Lenstool models for CL0024 using
the multiple image systems of Table 1 as constraints (second row), or
only system 1 of Table 1 (third row). RMSI in arcseconds over all image
systems for the Grale models generated with the multiple image systems
of Table 1 (fourth row), using system 1 (fifth row), using all points of
Table 2 (sixth row), and using all points of Table 2 including small-scale
mass corrections (last row).

With the same three lens models, we select the set of multiple
image systems to generate the best-fit Lenstool model by con-
sidering the RMSI for all individual multiple image systems and
keep the multiple image systems with the lowest RMSI that sam-
ple the vicinity of system 1. Further details about the selection
process leading to the set of employed multiple image systems in
Table 1 can be found in Appendix C.

4.1.2. Reconstruction with six multiple image systems

The best-fit Lenstool model is thus calculated using the multi-
ple images of Table 1, two PIEMD large-scale dark matter halo
profiles, and the catalogue of the 85 brightest member galax-
ies. Since the model-independent approach employs image plane
observables to retrieve local lens properties at the position of
the multiple images, we optimise this model in the image plane.
Appendix B shows the configuration file to obtain this model.

Lenstool also solves for the unknown redshifts of the five
multiple image systems that have not been analysed spectro-
scopically. We obtain the following mean values and standard
deviations from the implemented MCMC sampling.

z3 = 3.49 ± 0.39 , z4 = 2.04 ± 0.11 , z5 = 1.98 ± 0.14 ,
z8 = 4.64 ± 0.54 , z10 = 0.83 ± 0.04. (28)

Comparing these results to those obtained by Zitrin et al.
(2009) in Table 1, we observe that they agree within their uncer-
tainty bounds except for system 3, which Lenstool estimates as
being much higher. Figure 4 (left) shows the critical curves and
caustics that this best-fit Lenstool model produces.

To determine the quality of the set of 30 lens models, as
shown in Table 3, we determine the average and standard devi-
ation of the total RMSI, log(E), and χ2 over all models. In
addition, we calculate the RMSI per multiple image system as
listed in the second column of Table 4, and observe that all sys-
tems show an RMSI lower than 1

′′

, yielding the overall RMSI
of 0.6

′′

. Subsequently, we extract the lens properties of Eqs. (2),
(7), and (17) from their convergence and shear maps and list the
average and standard deviation in the second column block of
Table 5.

We employ a constant mass-to-light ratio for the catalogue
of brightest cluster member galaxies, as is usually done; see,

Table 4. Average RMSI and standard deviation in arcseconds per mul-
tiple image system of Table 1, for the Lenstool model of Sect. 4.1.2
(second column) and the Grale model of Sect. 4.2.1 (third column)
obtained from 30 individual lens models.

System RMSI RMSI
(Lenstool) (Grale)

1 0.81 ± 0.09 0.68 ± 0.28
3 0.76 ± 0.15 1.52 ± 2.26
4 0.32 ± 0.11 0.09 ± 0.18
5 0.24 ± 0.13 0.04 ± 0.04
8 0.32 ± 0.16 0.02 ± 0.02
10 0.42 ± 0.14 0.41 ± 0.70

for example, Meneghetti et al. (2017). In order to test the influ-
ence of a non-constant mass-to-light ratio, we change the default
slope for the cut radius of the galaxies in the configuration file
of Appendix B from 4 to 2.5 to reproduce the fundamental
plane (see Caminha et al. 2017 and references therein). We gen-
erate one model by image plane optimisation and employ the
bayesMap utility to calculate 30 convergence and shear maps
from the MCMC data of this model.

Compared to the values listed in the second column of
Table 3, log(E) = −193, RMSI = 0.72, and χ2 = 246 indicate
that the quality of the model with non-constant mass-to-light
ratio is worse. Yet, the estimated redshifts,

z3 = 2.47 ± 0.81 , z4 = 1.94 ± 0.11 , z5 = 1.81 ± 0.17 ,
z8 = 3.58 ± 1.19 , z10 = 1.00 ± 0.09, (29)

are closer to the ones found in Zitrin et al. (2009) and are also
in agreement with the photometric measurements within their
ranges of uncertainties. The averages and standard deviations of
Ji, fi, gi,1, and gi,2, i = 1, ..., 5, according to Eqs. (2), (7), and
(17) are shown in the third column block of Table 5.

4.1.3. Reconstruction with system 1

Reducing the number of strong lensing constraints to system 1
listed in Table 1, the free lens model parameters of only one
PIEMD large-scale dark matter halo and of the catalogue of the
brightest member galaxies can be determined, if we additionally
fix the PIEMD cut radius, chosen to be 1000′′. Adapting the con-
figuration file in Appendix B accordingly, we determine the most
likely lens model by image plane optimisation, as in Sect. 4.1.2
and show its critical curves and caustics in Fig. 4 (right). We gen-
erate 30 of these lens models and list the resulting average values
of the quality measures and their standard deviations below the
ones for the model of Sect. 4.1.2 in Table 3. Analogously, the
Ji, fi, gi,1, and gi,2, i = 1, ..., 5, according to Eqs. (2), (7), and
(17) are shown in the fourth column block of Table 5.

4.2. Non-parametric reconstruction by Grale

Contrary to parametric lens reconstruction techniques like
Lenstool, so-called non-parametric or free-form lens reconstruc-
tion algorithms make no assumptions about any correlation
between the dark and luminous matter distributions. Instead of
fitting specific lens models to a given set of multiple image sys-
tems and bright cluster member galaxies, they reconstruct the
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Fig. 4. Lenstool models employing the 85 brightest member galaxies and two large-scale PIEMD dark matter halos and all multiple image systems
of Table 1 detailed in Sect. 4.1.2 (left), or only one large-scale PIEMD dark matter halo and system 1 of Table 1 detailed in Sect. 4.1.3 (right). The
critical curves for zs = 1.675 determined by the marching squares algorithm (see Appendix B) are marked in red, the caustics in yellow and the
multiple images in blue.

Fig. 5. Grale models employing all multiple image systems of Table 1 detailed in Sect. 4.2.1 (left), and only system 1 of Table 1 detailed in
Sect. 4.2.2 (right). The critical curves for zs = 1.675 determined by the sign change of the determinant of the magnification matrix are marked in
red, the multiple images are marked in blue.

Fig. 6. Grale models employing all reference points of Table 2 as detailed in Sect. 4.2.3 (left), and including small-scale mass corrections as detailed
in Sect. 4.2.4 (right).The critical curves and caustics are analogous to the ones in Fig. 5.
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lensing mass distribution in terms of basis functions whose num-
ber, location, and parameters are determined by the constraints
that the set of multiple image systems provides. For our com-
parison, we employ Grale by Liesenborgs et al. (2006, 2010),
which divides the region of interest into a uniform grid and
assigns a Plummer mass profile (Plummer 1911), as basis func-
tion to each grid cell. Inspired by the work of Brewer & Lewis
(2005), a genetic algorithm determines the weight for each basis
function by maximising the overlap of the back-traced images of
all sets of multiple images in the source plane. Subdividing the
grid into comparably more massive regions, the lens model is
refined iteratively until the desired level of detail is reached, that
is, the highest achievable given the strong lensing constraints.
Hence, similar to Lenstool, the same multiple-image positions
are employed, which set the scale down to which the dark matter
distribution is reconstructed.

Contrary to Lenstool, this method optimises the lens model
only in the source plane and no information on the brightest clus-
ter member galaxies is used. Instead, nullspace information is
employed as a further constraint, that is, the lens model should
not generate images in regions not containing any observed
images.

As goodness-of-fit measure, the overlap of the back-traced
multiple images for all sets of multiple images in the source plane
is used. Furthermore, we check whether a caustic intersects the
back-traced multiple images of system 1 and that the model does
not produce any further images for the source of system 1.

Running the genetic algorithm as further detailed in
Appendix D multiple times produces lens models that differ
from one another due to the dependency of the optimisation
procedure on its initial conditions and due to the lens model
degeneracies in sparsely constrained regions. To obtain the best-
fit Grale lens model, we average over all of these lens models.
The RMSI between the model-generated multiple images and the
observed ones is calculated in the same way as done by Lenstool.
For our comparison in Sect. 5, 30 individual models are used to
determine the average and the standard deviation of their mag-
nification ratios, ratios of convergences, and reduced shear maps
according to Eqs. (2), (7), and (17) at the positions of system 1 in
Table 1. To be consistent with the model-independent approach
and Lenstool, we convert the Grale results from the world coor-
dinate system to the pixel coordinates used by the other methods
by interchanging the sign of gi,2, i = 1, ..., 5.

4.2.1. Reconstruction with six multiple-image systems

Contrary to Lenstool, Grale cannot solve for the unknown red-
shifts of the five multiple-image systems without spectroscopic
redshift, but requires them as input parameters. As the photo-
metric redshift estimates are subject to high uncertainties and a
large scatter between the individual images of one set, we use
the well-constrained model-predicted redshifts of Zitrin et al.
(2009), listed in the right-most column of Table 1. They are
in good agreement with the photometric redshifts. The redshifts
predicted by our Lenstool models are not employed at this stage
in order to keep our lens models independent. After the com-
parison, we investigate the influence of the Lenstool-predicted
redshifts on the Grale modelling in Sect. 5.3.

As the sources of the multiple image systems lie at dif-
ferent redshifts, the mass-sheet degeneracy should be broken
sufficiently by the observations, and therefore the weight of
a mass-sheet basis function is determined in addition to the
weights of the Plummer basis functions. Running Grale 30 times
with these specifications, we obtain the mean values of the

lens properties and their standard deviations at the positions of
system 1 (see Table 1) as listed in the fifth column block of
Table 5.

By considering the magnification ratios, ratios of conver-
gences, and reduced shears, any effect due to breaking the
mass-sheet degeneracy is divided out again. However, including
the mass-sheet component as an overall mass offset is necessary
for the genetic algorithm to achieve the good reconstruction qual-
ity shown in Table 3. Figure 5 (left) shows the critical curves of
the resulting model, analogously to Fig. 4.

To compare the quality of fit for the Grale models with those
of Lenstool, we also list the RMSI for all multiple images in the
fourth row of Table 3 and the RMSI for the individual multiple
image systems in Table 4. As can be observed, both approaches
are able to reconstruct the multiple images with an overall RMSI
below 1′′, which is also true for the individual systems except
system 3.

4.2.2. Reconstruction with system 1

Next, we reduce the six systems of multiple images used in
Sect. 4.2.1 to system 1 of Table 1. Now, the mass-sheet degener-
acy cannot be broken and the additional mass-sheet component
introduced in the optimisation process for the Grale model of
Sect. 4.2.1 is dropped. Using these specifications and running
Grale 30 times, we obtain the results at the positions of system 1
(see Table 1) listed in the sixth column block of Table 5 and
shown in Fig. 5 (right).

As for the previous Grale model, we also determine the
RMSI for system 1 and add it to Table 3. With fewer constraints
to meet, the RMSI drops significantly, as expected.

4.2.3. Reconstruction with all reference points of system 1

As Grale is able to selectively refine the resolution of the lens
model in more massive regions, we also generate a Grale lens
model using all reference points of Table 2, keeping all other
specifications as described in the previous Section, that is, with-
out a mass-sheet basis function. The resulting values for the
magnification ratios, ratios of convergences, and reduced shears
at the positions of system 1 from Table 1 are shown in the seventh
column block of Table 5 and in Fig. 6 (left).

Due to the increasing number of constraints compared to the
Grale model of Sect. 4.2.2, the RMSI of all reference points,
shown in the sixth row of Table 3, increases.

4.2.4. Reconstruction with all reference points of system 1
including small-scale mass corrections

For the last Grale model, we use the same configuration as for
Sect. 4.2.3. But before averaging over all models, we employ a
48× 48 uniform grid to add small-scale mass corrections to each
of the 30 individual solutions generated by the genetic algorithm
(see Liesenborgs et al. 2008 for further details). This causes
the RMSI to decrease compared to the model of Sect. 4.2.3, as
shown in Table 3. In Sect. 5, we analyse whether or not this step
introduces unrealistic small-scale dark matter clumps by com-
paring the local Ji, fi, gi,1, and gi,2, as listed in the eigth column
block of Table 5, to the results from the other approaches. Check-
ing for overfitting is necessary, as, for instance, Ponente & Diego
(2011) discovered that their algorithm generated unphysical dark
matter structures in the lensing mass distribution when forced to
optimally match the constraints from the multiple images. Thus,
they concluded that the ring-like dark matter structure in CL0024
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Fig. 7. Overlay between the observed multiple images of system 1 in
Table 1 (Image credits: NASA, ESA, M. J. Jee (Johns Hopkins Univer-
sity)) and the images generated by the Grale model of Sect. 4.2.4 using
the back-projected first image as source (for visualisation purposes, the
model-generated images are displayed with an offset to the left of the
observed images).

proposed by Jee et al. (2007) might be caused by overfitting. To
avoid overfitting, we limit the total amount of small-scale mass
corrections to 10% of the mass already assigned to the clus-
ter. This procedure is able to reproduce the observed images,
as shown in Fig. 7, in which we overlay the observed multi-
ple images with the multiple images generated by Grale. The
latter are determined by back-projecting the first image of sys-
tem 1 to the source plane and then mapping this source to the
image plane again, using the model discussed in this section.
The model-generated images are shown with an offset to the left
of the observed ones.

The critical curves and caustics for this lens model are shown
in Fig. 6 (right).

5. Comparison of the approaches

The comparison is performed by an automated script after all
data have been collected and the evaluation scheme has been
defined. As detailed in Sects. 3 and 4, all results of the model-
independent and model-based approaches are summarised in
Table 5. First, we compare the different lens reconstructions for
each approach before we compare the reconstructions among the
different approaches. The lens models are of comparable good
quality, which can be read off Tables 3 and 4, meaning that
effects due to varying quality are negligible.

5.1. Comparison of model-independent approaches

Comparing the Ji, fi, gi,1, and gi,2, i = 1, ..., 5, using four and
six reference points, we find that both reconstructions agree
within their standard deviations and the confidence level bounds
set by the 16th and 84th percentiles (see Figs. 2 and 3). This
implies that the convergence and shear can still be approximated
as constant over the area enclosed by the six reference points.
The strong disagreement between the mean values for the sec-
ond image implies steep changes in the convergence and shear
fields in the vicinity of the critical curve. Using the four refer-
ence points, the larger standard deviations occur because these
four reference points cover a smaller area of the image and are

more aligned than all six reference points, which increases the
uncertainty in the transformation between the reference points
that confines the Ji, fi, gi,1, and gi,2. Evidence supporting this
hypothesis can be found in Appendix E, in which we calculate
the Ji, fi, gi,1, and gi,2 using four of the six reference points that
form a tetragon such that the same area is covered. Hence, the
area covered by the reference points and not the number of refer-
ence points is decisive for the width of the confidence bounds of
the local lens properties.

Thus, the Ji, fi, gi,1, and gi,2 determined from the six refer-
ence points are best suited for the comparison to the model-based
approaches. The model-independent approach makes the least
amount of assumptions about the lensing configuration. The
resulting local lens properties therefore set limits on the preci-
sion of the local J-, f -, and g-values obtainable in a purely
data-driven way. We assume that the true magnification ratios,
ratios of convergences, and reduced shear values lie within
these confidence bounds, as supported by the simulations of
Wagner & Tessore (2018). Further accuracy tests using realis-
tically simulated lenses are currently under development.

5.2. Comparison of Lenstool approaches

The three Lenstool models agree in 13 out of 18 Ji, fi, gi,1, and
gi,2, i = 1, ...5 within their confidence bounds. Comparing the
first two models using all multiple-image systems of Table 1,
we find that they agree in all parameters within their confi-
dence bounds. The first model with constant mass-to-light ratio
for the cluster member galaxies has mostly larger confidence
bounds than the second model. Using only system 1 of Table 1,
we observe larger confidence bounds than when employing all
multiple image systems of Table 1.

Given this high degree of agreement, the parametric lens
modelling approach yields robust local ratios of convergences
and reduced shears, taking into account that the number of con-
straints from system 1 only suffices to determine the parameters
of one large-scale dark matter halo and of the parameters for
the smaller-scale dark matter clumps belonging to the brightest
member galaxies, while the models employing all six multiple-
image systems constrain two large-scale dark matter halos and
the parameters of the smaller-scale dark matter clumps under-
neath the brightest member galaxies. In addition, the low number
of parameters to be adjusted (8 when using system 1 and 21 (22,
when changing the mass-to-light ratio) when using all six mul-
tiple image systems) avoids overfitting to the constraints and the
generation of small-scale mass artefacts.

As the difference in the first two Lenstool models is not sig-
nificant, we compare both of them to the model-independent
approach.

5.3. Comparison of Grale approaches

The Grale models with their many degrees of freedom also have
broad confidence bounds. All Grale models yield highly unre-
liable Ji, fi, gi,1, and gi,2 for i = 2 and 4, for which κ ≈ 1.
To investigate the reason for the broad confidence bounds, we
generate 100 models by the genetic algorithm using only sys-
tem 1 of Table 1 as detailed in Sect. 4.2.2. Averaging over
ns = 10, 25, 50, 75, 100 individual models, five different Grale
models are obtained. If the size of the confidence bounds is
dominated by statistical uncertainties, we expect the standard
deviations to shrink when averaging over an increasing num-
ber of individual models. Plotting the standard deviations for
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Fig. 8. Dependency of the size of the confidence bound, that is, the standard deviation of the fi, gi,1, and gi,2, i = 1, ..., 5, for all multiple images
of system 1 of Table 1 determined by the Grale model detailed in Sect. 4.2.2, on the number of individual models, ns, generated by the genetic
algorithm and averaged over to obtain the final Grale model.

these five Grale models for each of the multiple images of sys-
tem 1 in Fig. 8, we observe that the deviations do not decrease
when averaging over an increasing number of individual models.
Hence, the size of the confidence bounds is mainly determined
by the variation between the different models fulfilling the same
(sparse) constraints set by the multiple images. This hypothesis
is supported by the fact that the Grale models using all six refer-
ence points (see Sects. 4.2.3 and 4.2.4) yield tighter confidence
bounds on the Ji, fi, gi,1, and gi,2 than the models with only one
constraint per multiple image. Hence, to obtain the tightest con-
fidence bounds on local lens properties, Grale requires as many
constraints as possible in the vicinity of the point where the lens
properties are to be determined.

For the comparison shown in Table 5, we employed the red-
shifts from Zitrin et al. (2009) for the Grale model of Sect. 4.2.1
to avoid introducing a bias between the Lenstool and Grale
models. After the independent lens model comparison, we now
investigate the influence of the Lenstool redshifts on the Grale
model. We employ the redshifts determined by Lenstool in the
configuration of Appendix B (see Sect. 4.1.2) and rerun the
model generation procedure detailed in Sect. 4.2.1. The result-
ing overall RMSI is 1.16 ± 0.59 and thus worse than for the
model of Sect. 4.2.1. As further detailed by the RMSI for the
individual multiple image systems and the Ji, fi, gi,1, and gi,2
in Appendix F, the Lenstool redshifts do mainly increase the
size of the confidence bounds compared to the Grale model of
Sect. 4.2.1 and the large overlap of their confidence bounds does
not hint at significant differences between both models. Thus,
the redshifts of additional multiple images used for the Grale
lens modelling have a minor impact on the Ji, fi, gi,1, and gi,2 at
the positions of system 1 of Table 1.

As for the other approaches, all Grale models agree within
their confidence bounds. This is expected because, as stated
in Ponente & Diego (2011), non-parametric lens modelling
approaches can reproduce the multiple images to any accuracy
level. Yet, overfitting is prevented in our models by not adding
any small-scale mass corrections for the models detailed in
Sects. 4.2.1, 4.2.2 and 4.2.3. But, as Table 5 shows, even adding
small-scale mass corrections as detailed in Sect. 4.2.4, does not

significantly change the resulting Ji, fi, gi,1, and gi,2, nor the
overall smooth shape of the critical curves (see Fig. 6). Thus,
we can conclude that local constraints suffice to obtain local lens
properties using Grale. The best Grale model is that of Sect. 4.2.4
due to its tightest confidence bounds.

5.4. Comparison between all approaches

All approaches show confidence bounds as large as the ratios of
convergences and reduced shear values, except for the Lenstool
models generated from six multiple image systems, in which the
largest confidence bound is 83% of g4,1 for the model with con-
stant mass-to-light ratio of the brightest member galaxies and
50% of g4,1 for the model with non-constant mass-to-light ratio.
Hence, Lenstool yields the most robust local lens properties, also
in the vicinity of the critical curve, comparing, for example, the
confidence bounds of f2 among the approaches.

To obtain the Ji, fi, gi,1, and gi,2, i = 1, ..., 5, with the tight-
est confidence bounds, Lenstool requires several multiple image
systems as constraints, while Grale best uses several reference
points from a single resolved multiple image system in the vicin-
ity of the point at which the lens properties are to be retrieved.
For the model-independent approach, the area over which the
reference points are spread is anticorrelated with the size of
the confidence bounds. Hence, the area should be maximised,
adhering to the approximation that J , f , and g are constant.

We thus find that the three methods require complementary
constraints from the multiple images and obtain similar local
lens properties with comparable precision.

Comparing the J-, f -, and g-values of the model-
independent approach from six reference points to the respective
values obtained by the optimum Lenstool models of Sect. 4.1.2
and the optimum Grale model of Sect. 4.2.4, we find that for
Lenstool, 12 (11, for non-constant mass-to-light ratio) of all 18
J-, f -, and g-values agree with the values obtained indepen-
dently from the lens model, within their confidence bounds, and
for Grale, the agreement is found in 17 J-, f - and g-values.
Lenstool deviates in g1,2, g2,1,J3,J4, g4,1, (J5), and g5,1, while
Grale deviates in g5,2.
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Fig. 9. Convergence maps of the Lenstool model of Sect. 4.1.2 (left) and the Grale model of Sect. 4.2.1 (right). The positions of system 1 of Table 1
are marked in red, the yellow curves delineate the isocontour κ = 1.

As the first Lenstool model with constant mass-to-light ratio
agrees to the majority of J-, f - and g-values of the model-
independent approach and only deviates in g1,2 and g5,1 from
the best Grale model, our results are in agreement with the
assumption that light traces mass in CL0024.

The second Lenstool model with non-constant mass-to-light
ratio and tighter confidence bounds disagrees in 8 of the 18
parameters with the best Grale model. Hence, we can conclude
that a non-constant mass-to-light ratio for the cluster member
galaxies is less consistent with the model-independent approach
and the best Grale model, therefore a constant mass-to-light
ratio is favoured in CL0024. The best-fit Lenstool model is
thus the one using six multiple-image systems and a constant
mass-to-light ratio for the brightest member galaxies.

Comparing all results gained in Sects. 4.1.1, 4.1.2, 4.2.1,
and Appendix F, the question arises whether or not system 3
of Table 1 is a real multiple-image system because its RMSI
is higher than the ones of the other multiple image systems
in most of the lens models, and the redshift predicted by the
best-fit Lenstool model is much higher than the one obtained
by Zitrin et al. (2009) and their photometric redshift estimates.
Furthermore, two authors independently arrive at the result
that system 3 is hard to model with Grale and Lenstool.
Hence, spectroscopic measurements are required to corrobo-
rate or reject the lensing hypothesis for this multiple-image
system.

Finally, we use the results obtained in Sects. 4.1.2 and 4.2.1
to investigate the merger hypothesis for CL0024. In the Lenstool
and Grale models discussed in these sections, we find deviations
from a symmetric, relaxed cluster structure, as can be observed in
the convergence maps of the models from Sects. 4.1.2 and 4.2.1
shown in Fig. 9: Inspecting the isocontour κ = 1 (yellow curves)
in both convergence maps, the asymmetric shape is clearly seen.
While the convergence map reconstructed by Grale shows only
a few closed curves of κ = 1, several more are observed in the
convergence map obtained by Lenstool due to the dark matter
halos of the brightest cluster member galaxies. Both convergence
maps show regions of κ = 1 close to image 2, as expected from
the relatively broad confidence bounds for this image and tend
to a similar stretching around the central image 5. The differ-
ences in the shape of the isocontour for the convergence maps of
Lenstool and Grale once again (see also Fig. 8) show the free-
dom lens models have to extend the lens reconstruction beyond
the vicinity of multiple images.

The estimation of redshifts is degenerate with the parameters
of the dark matter halos in Lenstool. Thus, beyond a corrob-
oration of the merger hypothesis, more quantitative statements
about the merger masses and geometry cannot be made without
spectroscopic redshift measurements.

6. Conclusion

We performed the most direct comparison between the model-
independent local lens reconstruction approach for multiple
images with resolved brightness features as described in Tessore
(2017); Wagner & Tessore (2018), the parametric lens modelling
software Lenstool (Kneib et al. 1996; Jullo et al. 2007), and
the non-parametric lens modelling approach Grale (Liesenborgs
et al. 2006, 2010): Using the same positions of multiple images,
the same cosmological parameter values, and the same number
of model-predicted convergence and shear maps for the eval-
uation statistics, we determined magnification ratios, ratios of
convergences, and reduced shears at the positions of the five mul-
tiple images of the source at redshift zs = 1.675 in the galaxy
cluster CL0024 (Colley et al. 1996) from both lens modelling
approaches, and compared these local lens properties to their
model-independent counterparts.

Summarising the results detailed in Sect. 5, we arrive at the
following conclusions:

– The local lens properties, that is, the magnification ratios,
ratios of convergences, and reduced shear values (J-, f -,
and g-values) at the five positions obtained by the model-
independent approach, Lenstool, and Grale coincide in the
majority of cases within their confidence bounds, supporting
the validity of the light-traces-mass assumption in CL0024
and favouring a constant mass-to-light ratio for the brightest
cluster member galaxies.

– Our results are in agreement with the merger hypothesis
assumed in Kneib et al. (1996); Zhang et al. (2005); Zitrin
et al. (2009) because, according to our Lenstool models, the
smallest, most probable number of large-scale dark matter
halos for the strong lensing region is two and the conver-
gence maps generated by Grale also suggest perturbations to
a symmetric, relaxed cluster structure (see Fig. 9).

– Our Lenstool and Grale models mostly encountered high
root-mean square deviations between the observed and
model-predicted positions of the multiple images of system 3
in Table 1 compared to all other multiple image systems
employed. The best-fit Lenstool model also predicted a much
higher redshift for this system (3.49 ± 0.39) than Zitrin et al.
(2009) (2.55+0.45

−0.20) and the photometric redshift estimates
(between 2.48 and 2.76, see Zitrin et al. 2009). Hence, spec-
troscopic observations are necessary to further investigate
whether these observations really originate from the same
source galaxy.

– All three approaches show broad confidence bounds for the
f -, and g-values that can become as large as the values
themselves, especially close to regions where the conver-
gence equals one and the denominator in the f s and gs
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approaches zero. This is in agreement with the findings
made by Meneghetti et al. (2017) employing unresolved
multiple-image systems.

– From a methodological point of view, we discovered that
the model-independent approach yieldsJ-, f -, and g-values
that are of the same quality as the model-generated ones,
if there are at least four resolved brightness features form-
ing a tetragon that covers an image region of approximately
constant convergence and shear. While Lenstool is well-
suited to reconstruct the global cluster structure including
the member galaxies, local lens properties on (sub-)galaxy
scale are better determined by Grale when reconstructing the
local f - and g-values from all resolved brightness features
close to the position of interest and adding limited small-
scale mass corrections. This is very advantageous because,
in this way, no unconfirmed additional multiple image sys-
tems with uncertain photometric redshifts have to be taken
into account. Limiting the mass corrections to 10% of the
total mass, Grale shows no sign of unrealistically oscillating
mass distributions.

– For the run times, we find that the model-independent
approach takes about 0.23 s to determine the values in the
last two column blocks of Table 5 using a Linux-PC with
8 × Intel Core i7-4710MQ CPU @ 2.50GHz and 31.1 GiB
RAM. On the same machine, Lenstool, Version 6.8.1., takes
about 24 h for each of the 40 models of Sect. 4.1.2 and
around 4 h for each of the 40 models of Sect. 4.1.3 includ-
ing the calculations for the convergence and shear maps.
The Grale algorithm takes about 45 min to obtain one
individual model of the genetic algorithm for the speci-
fications of Sect. 4.2.1, 10 min for one individual model
for Sects. 4.2.2 and 4.2.3, and 30 min to determine the
small-scale mass corrections for one individual model in
Sect. 4.2.4, running on a single computing node with 2 × 12-
core “Haswell” processors of type Xeon E5-2680v3. Thus,
the model-independent approach employs the miminum set
of assumptions about the lensing configuration and is by
far the fastest way to extract the local lens properties. This
is to be expected because the model-based approaches pro-
vide a more encompassing picture and require more runtime
for this.
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Appendix A: Lenstool configuration file for the
model in Sect. 4.1.1

runmode
reference 3 6.648555 17.161900
inverse 3 0.3 10
image 3 mult_images_zitrin_deg12.cat
mass 1 12000 0.39 convergence.fits
shear 3 12000 1.675 gamma1.fits
shear 4 12000 1.675 gamma2.fits
end

image
multfile 1 mult_images_zitrin_deg12.cat
mult_wcs 1
sigposArcsec 0.2
z_m_limit 1 P03 1 0.39 5.0 0.1
z_m_limit 1 P04 1 0.39 5.0 0.1
z_m_limit 1 P05 1 0.39 5.0 0.1
z_m_limit 1 P08 1 0.39 5.0 0.1
z_m_limit 1 P10 1 0.39 5.0 0.1
forme 0
end

grille
nombre 128
polaire 0
nlentille 86
nlens_opt 1
end

source
z_source 1.675
end

potentiel 1000
profil 81
x_centre 0.0
y_centre 0.0
ellipticite 0.107
angle_pos 80.60
core_radius_kpc 2.023
cut_radius_kpc 1000.00
v_disp 1201.986
z_lens 0.3900
end

limit 1000
x_centre 1 -50.0 50.00 0.20
y_centre 1 -50.0 50.00 0.20
ellipticite 1 0.0 0.95 0.01
angle_pos 1 0.0 180.00 0.10
core_radius_kpc 1 0.1 500.00 0.10
cut_radius 1 5.0 2000.00 0.10
v_disp 1 100.0 2000.00 1.00
end

potfile
filein 1 galsort.cat
zlens 0.39
type 81
x_centre 1 -100.0 100.0 0.05
y_centre 1 -100.0 100.0 0.05
corekpc 1 0.1 3.0 0.10
mag0 20.500000
sigma 1 0.0 450.0 0.10
cutkpc 1 0.0 500.000.10
end

cline
nplan 1 1.675

algorithm MARCHINGSQUARES
limitHigh 10.0
limitLow 3.0
end

cosmologie
H0 67.800
omegaM 0.308
omegaX 0.692
omegaK 0.000
wX -1.000
end

champ
xmin -300
xmax 300
ymin -300
ymax 300
end

fini

Appendix B: Lenstool configuration file for the
model in Sect. 4.1.2

runmode
reference 3 6.648555 17.161900
inverse 3 0.1 100
image 3 mult_images_zitrin_deg12.cat
mass 1 12000 0.39 convergence.fits
shear 3 12000 1.675 gamma1.fits
shear 4 12000 1.675 gamma2.fits
end

image
multfile 1 mult_images_zitrin_deg12.cat
mult_wcs 1
sigposArcsec 0.2
z_m_limit 1 P03 1 0.39 5.0 0.1
z_m_limit 1 P04 1 0.39 5.0 0.1
z_m_limit 1 P05 1 0.39 5.0 0.1
z_m_limit 1 P08 1 0.39 5.0 0.1
z_m_limit 1 P10 1 0.39 5.0 0.1
forme -1
end

grille
nombre 128
polaire 0
nlentille 86
nlens_opt 2
end

source
z_source 1.675
end

potentiel 1000
profil 81
x_centre 0.0
y_centre 0.0
ellipticite 0.107
angle_pos 80.60
core_radius_kpc 2.023
cut_radius_kpc 1000.00
v_disp 1201.986
z_lens 0.3900
end

limit 1000
x_centre 1 -10.0 10.00 0.20
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Fig. A.1. Lenstool lens models employing the 85 brightest member galaxies, system 1 of Table 1 and systems 2–11 of Zitrin et al. (2009), and one
large-scale PIEMD dark matter halo (left), and two large-scale PIEMD dark matter halos (centre), and three large-scale PIEMD dark matter halos
(right). The critical curves determined by the marching squares algorithm (see Appendix A for its configuration) are marked in red, the caustics in
yellow and the multiple images in the notation of Zitrin et al. (2009) in blue.

y_centre 1 -10.0 10.00 0.20
ellipticite 1 0.0 0.95 0.01
angle_pos 1 0.0 180.00 0.10
core_radius_kpc 1 0.1 500.00 0.10
cut_radius 1 5.0 2000.00 0.10
v_disp 1 100.0 2000.00 1.00
end

potentiel 1001
profil 81
x_centre 0.0
y_centre 0.0
ellipticite 0.107
angle_pos 80.60
core_radius_kpc 2.023
cut_radius_kpc 1000.00
v_disp 201.986
z_lens 0.3900
end

limit 1001
x_centre 1 -50.0 50.00 0.20
y_centre 1 -50.0 50.00 0.20
ellipticite 1 0.0 0.95 0.01
angle_pos 1 0.0 180.00 0.10
core_radius_kpc 1 0.1 500.00 0.10
cut_radius 1 0.5 2000.00 0.10
v_disp 1 10 2000.00 1.00
end

potfile
filein 1 galsort.cat
zlens 0.39
type 81
x_centre 1 -100.0 100.0 0.05
y_centre 1 -100.0 100.0 0.05
corekpc 1 0.1 3.0 0.10
mag0 20.500000
sigma 1 0.0 450.0 0.10
cutkpc 1 0.0 500.000.10
end

cline
nplan 1 1.675
algorithm MARCHINGSQUARES
limitHigh 10.0

limitLow 3.0
end

cosmologie
H0 67.800
omegaM 0.308
omegaX 0.692
omegaK 0.000
wX -1.000
end

champ
xmin -300
xmax 300
ymin -300
ymax 300
end

fini

Appendix C: Lenstool models used in Sect. 4.1.1

Using the configuration file of Appendix A with one PIEMD
dark matter halo, system 1 of Table 1 and systems 2–11 of Zitrin
et al. (2009), and the catalogue of the brightest cluster mem-
ber galaxies, we arrive at a lens model whose critical curves
and caustics are shown in Fig. A.1 (left). Adapting the config-
uration file to two and three PIEMD dark matter halos for the
same remaining specifications, we obtain the critical curves and
caustics of Fig. A.1 (centre) and A.1 (right), respectively.

For all models, the results for the goodness-of-fit measures
and the degrees of freedom, that is, the number of constraints
minus the number of lens model parameters, are summarised in
Table C.1.

With the same three lens models considered in Table C.1, we
select the set of multiple image systems to generate the best-fit
Lenstool model by considering the RMSI for the single multiple
image systems, as shown in Table C.2. Systems 6 and 7 are elim-
inated from our set, as they are not real multiple image systems
or require further smaller-scale substructure fine-tuning because
at least two lens models cannot determine their source positions
within the required precision. We also eliminate systems 9 and
11, due to their non-decreasing, high RMSI-values. As the cen-
tral part of the cluster is already probed by systems 4 and 10
and the remaining image of system 2 is far from all images of
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Table C.1. Goodness-of-fit values over all image systems of Lenstool
models for CL0024 for varying numbers of dark matter halo PIEMDs
(# PIEMDs) using system 1 in Table 1 and systems 2–11 of Zitrin et al.
(2009) as constraints.

# PIEMDs DOF log(E) RMSI χ2

1 25 –858 2.58 2025
2 18 –447 1.73 1105
3 11 –332 1.92 901

Table C.2. Individual RMSI in arcseconds for system 1 in Table 1 and
systems 2–11 of Zitrin et al. (2009) in the lens models with one, two,
and three PIEMD dark matter halos.

System RMSI RMSI RMSI
1 PIEMD 2 PIEMDs 3 PIEMDs

1 2.63 1.36 1.17
2 3.51 1.80 1.34
3 5.08 3.14 2.11
4 1.09 1.10 0.79
5 1.86 0.79 1.18
6 0.00 0.00 0.00
7 0.00 0.00 3.26
8 0.99 0.35 1.20
9 3.06 2.28 2.85
10 0.98 1.47 0.00
11 3.46 2.94 3.29

Notes. For multiple image systems with RMSI = 0.00, the barycentre of
their back-traced images is not found at the required precision, that is,
the lens model might not be able to explain those systems.

system 1, it is also discarded from the set. Although system 3
shows high RMSI, it is kept in the set, as its RMSI decreases
quickly with increasing number of PIEMDs and with its far-
spread images 3.2, 3.3, and 3.4, it constrains the lensing potential
around image 1.4. Thus, the set of multiple image systems as
shown in Table 1 is obtained.

Appendix D: Grale configurations for the models
used in Sect. 4.2

We employ a 60′′ squared region around the reference point in
the Lenstool configuration files (see Appendix B). As an initial
grid, 15 × 15 uniformly distributed squared grid cells are gen-
erated and the grid is refined to the level that the number and
positions of the constraints permit. The prediction of images rel-
atively far from the cluster centre is avoided by introducing a
200′′ squared nullspace grid, centred at the same reference point.

For the reconstruction using six multiple image systems,
about 600 basis functions are used, while for the remaining Grale
models, about 300 basis functions are taken into account.

Table E.1. Mean and medianJ-, f -, and g-values with their confidence
bounds using four reference points spanning the same area as the six
reference points.

Mean Std Median Upper Lower
bound bound

g1,1 −0.05 0.03 −0.05 0.02 0.03
g1,2 −0.59 0.06 −0.60 0.06 0.05
J2 −0.43 0.04 −0.43 0.04 0.04
f2 2.15 0.80 2.01 0.57 0.36
g2,1 −0.31 0.13 −0.30 0.11 0.12
g2,2 −2.83 1.11 −2.61 0.44 0.77
J3 0.72 0.06 0.72 0.05 0.05
f3 0.90 0.09 0.90 0.09 0.09
g3,1 −0.51 0.04 −0.51 0.04 0.04
g3,2 0.09 0.09 0.10 0.09 0.09
J4 −0.74 0.06 −0.74 0.07 0.06
f4 1.80 0.34 1.75 0.35 0.26
g4,1 0.28 0.10 0.27 0.11 0.10
g4,2 −1.94 0.31 −1.89 0.22 0.31
J5 0.18 0.03 0.18 0.03 0.03
f5 −0.49 0.05 −0.49 0.05 0.05
g5,1 0.07 0.08 0.07 0.08 0.08
g5,2 −0.38 0.09 −0.38 0.09 0.09

Appendix E: Influence of the area spanned by the
reference points on the confidence bounds in the
model-independent approach

Instead of discarding the first two reference points as done in
Sect. 3, we now discard points 3 and 5 in Table 2 to obtain the
following mean and median J-, f -, and g-values, their confi-
dence intervals set by the 16th and 84th percentiles, and their
standard deviations:

Comparing the size of the confidence intervals with those
using six reference points (eighth column block of Table 5) we
see that they are of comparable size and smaller than the ones
using four reference points spanning a smaller area (last column
block of Table 5).

Appendix F: Influence of redshifts in the Grale
model of Sect. 4.2.1

Instead of employing the model-predicted redshifts of Zitrin
et al. (2009), we now use the model-predicted redshifts as deter-
mined by Lenstool in Sect. 4.1.2 to generate the Grale model
detailed in Sect. 4.2.1. The RMSI per multiple image system are
as follows, for comparison, we list the RMSI for the Grale model
of Sect. 4.2.1 in the last column of Table F.1.

From the convergence and shear maps, we obtain the fol-
lowing mean J-, f -, and g-values and their standard devi-
ations; for comparison, we add the respective values for the
model of Sect. 4.2.1 in the fourth and fifth columns of
Table F.2.
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Table F.1. Comparison of RMSI obtained by Grale per multiple image
system when using the Lenstool redshifts of Sect. 4.1.2 as input (second
column) and the RMSI per multiple image system using the model-
predicted redshifts by Zitrin et al. (2009).

System RMSI RMSI
(LT z) (Sect. 4.2.1)

1 0.91 ± 0.36 0.68 ± 0.28
3 2.05 ± 1.46 1.52 ± 2.26
4 0.22 ± 0.38 0.09 ± 0.18
5 0.11 ± 0.14 0.04 ± 0.04
8 0.07 ± 0.15 0.02 ± 0.02
10 0.24 ± 0.65 0.41 ± 0.70

Table F.2. Comparison of local lens properties using the Lenstool red-
shifts determined in Sect. 4.1.2 (second and third columns) and using
the model-predicted redshifts from Zitrin et al. (2009) as input for Grale
(last two columns).

Mean Std Mean Std
(LT z) (Sect. 4.2.1)

g1,1 −0.26 0.23 −0.13 0.13
g1,2 −0.53 0.12 −0.63 0.11
J2 −0.78 0.97 −0.28 2.34
f2 4.62 51.58 −17.41 49.18
g2,1 0.14 21.15 6.89 17.48
g2,2 −5.52 53.06 14.25 41.82
J3 0.51 0.23 0.52 0.21
f3 0.80 0.11 0.82 0.07
g3,1 −0.39 0.08 −0.47 0.07
g3,2 0.23 0.09 0.15 0.07
J4 −0.64 0.45 −0.54 0.28
f4 1.58 2.17 1.43 1.82
g4,1 −0.33 0.74 0.11 0.65
g4,2 −1.90 2.36 −1.78 1.77
J5 0.28 0.16 0.36 0.30
f5 −0.57 0.15 −0.59 0.15
g5,1 0.21 0.22 0.06 0.26
g5,2 −0.28 0.30 −0.48 0.41
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