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Samenvatting

Statistische modellen worden gebruikt om gegevens te analyseren en verbanden tussen
geobserveerde variabelen te beschrijven. Voor sommige modellen is de onderstelling dat
het verband tussen de variabelen monotoon is, een natuurlijke aanname. In dat geval
moet deze monotoniciteitseis ingebouwd worden in de procedure die ontwikkeld wordt
om de data te analyseren. In het eerste deel van deze thesis bespreken we statistische
modellen waarin dergelijke monotoniciteitsvoorwaarden aan de orde zijn. De concrete
problemen worden in detail beschreven in het introductie hoofdstuk van Deel 1.

In Hoofdstuk 2 zijn we geïnteresseerd in een lineair verband tussen een responsvariabele
enerzijds en een groep covariaten anderzijds. De verklarende covariaatvariabelen wor-
den volledig waargenomen maar de responsvariabele wordt niet geobserveerd. We weten
enkel of de responsvariabele voor of na een geobserveerde censureringsvariabele ligt. Een
corresponderende censureringsindicator geeft aan of de responsvariabele groter of kleiner
is dan de censureringsvariabele. Dit censureringsmechanisme wordt het "current status"
model genoemd. Het doel van Hoofdstuk 2 is het schatten van parameters die het lineair
verband tussen de respons en de covariaten beschrijven op basis van observaties voor de
censureringsvariabele, indicator en covariaten.
Een welgekende techniek om de parameters in een regressiemodel te schatten maakt
gebruik van de “maximum likelihood” methode waarbij de schatters voor de regressiepa-
rameters gevonden worden door de aannemelijkheid van de data te maximaliseren. Het
gecensureerde karakter van de observaties leidt tot een monotoniciteitseis voor een func-
tie die voorkomt in de aannemelijkheidsfunctie van de data. Omtrent het gedrag van
deze “maximum likelihood estimators" (MLEs) voor de regressieparameters in het current
status model zijn nog een aantal vragen onopgelost in de statistische literatuur.
Op basis van de aannemelijkheidsfunctie construeren we in Hoofdstuk 2 een scorefunctie
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en bekomen we nieuwe schatters die gedefinieerd zijn via het nulpunt van deze score-
functie. Onze schatters zijn daardoor nog steeds afhankelijkheid van het gedrag van de
MLE. Door de studie van het asymptotisch gedrag van deze schatters, zijn we in staat
om de vragen, nog steeds onopgelost voor de MLE, te beantwoorden voor de nieuwe
scoreschatters die opgebouwd zijn vanuit het maximum likelihood mechanisme.

In Hoofdstuk 3 gaat onze interesse uit naar de verdelingsfunctie van de respons in
afwezigheid van covariaten. De beschikbare informatie zijn de censureringsvariabelen en de
censureringsindicatoren. De verdelingsfunctie bepaalt het gedrag van de responsvariabele
en is per definitie monotoon stijgend. De bedoeling is om puntsgewijze betrouwbaarhei-
dsintervallen te construeren voor de ongekende verdelingsfunctie. Opnieuw kan het maxi-
mum likelihood principe gebruikt worden om deze verdelingsfunctie te schatten (opnieuw
MLE genoemd). Om betrouwbaarheidsintervallen op te stellen rond deze MLE voor de
verdelingsfunctie, kan gebruik gemaakt worden van een bootstrapmethode die gebaseerd
is op het genereren van gegevens door het hertrekken uit de geobserveerde waarnemin-
gen. Uit de bestaande statistische literatuur is bekend dat de MLE in combinatie met
de typische niet-parametrische bootstrapmethode geen goede betrouwbaarheidsintervallen
oplevert. In Hoofdstuk 3 schatten we de verdelingsfunctie via een gladgemaakte versie
van de MLE en tonen we aan dat de klassieke bootstrap wel gebruikt kan worden om
betrouwbaarheidsintervallen op te stellen rond deze gladgemaakte MLE.
We stellen in dit hoofdstuk ook een tweede bootstrapalgoritme voor en vergelijken deze
methode met de klassieke bootstrap. Het verschil tussen beide procedures is dat het
klassieke hertrekken van censureringsvariabelen en indicatoren onafhankelijk van het on-
derliggende model kan uitgevoerd worden terwijl de tweede methode afhankelijk is van
de gladgemaakte schatter voor de verdelingsfunctie en dat enkel indicatoren (en geen
censureringsvariabelen) hertrokken worden.
Uit onze numerieke experimenten volgt er geen uitgesproken voorkeur voor één van beide
bootstraptechnieken en het is opmerkelijk dat voor het construeren van betrouwbaarhei-
dsintervallen voor de verdelingsfunctie, beide bootstrapmethoden het even goed lijken te
doen. De extra informatie omtrent het onderliggende model bij de tweede bootstrapmeth-
ode leidt niet tot een verbetering van de niet-parametrische methode. De eenvoud van
de klassieke procedure is een voordeel van de niet-parametrische bootstrapmethode. Een
voordeel van de tweede bootstrap is dat enkel de indicatoren hertrokken worden, op die
manier blijft de verdeling van de censureringsvariabelen ongewijzigd.
De techniek die gebruikt wordt om de oorspronkelijke MLE glad te maken, is afhankelijk
van een parameter, die de bandbreedte genoemd wordt. In onze simulatiestudies
bestuderen we het effect van deze bandbreedte op de betrouwbaarheidsintervallen. We
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illusteren hoe belangrijk een goede keuze voor deze parameter is en ontwikkelen een
selectieprocedure voor de bandbreedte.

In het laatste hoofdstuk van Deel I bestuderen we het monotoon single index model. In
dit regressiemodel worden zowel de covariaten als de respons volledig geobserveerd. De
gegevens zijn niet gecensureerd. De respons hangt af van een lineaire combinatie van
de covariaten via een ongekende linkfunctie. De enige voorwaarde op deze linkfunctie is
dat ze een monotoon stijgend verloop heeft. Het doel is om de regressieparameters te
schatten, dit zijn de parameters die het lineair verband in de covariaten bepalen. In de
schattingsprocedure moet rekening gehouden worden met het stijgend karakter van de
linkfunctie. We werken met kleinste kwadratenschatters (KKS). Deze minimaliseren de
gekwadrateerde foutensom die ontstaat door de som te nemen van de gekwadrateerde
verschillen tussen de geobserveerde respons en de voorspelde respons in het geschatte
model.
De statistische eigenschappen van de KKS zijn vergelijkbaar met de eigenschappen van
de MLE in het current status lineair regressie model van Hoofdstuk 2. Het asymptotisch
gedrag van de KKS werd tot op heden nog niet helemaal doorgrond.
We construeren vanuit de gekwadrateerde foutensom een scorefunctie die leidt tot
scoreschatters voor de regressieparameters in het monotoon single index model. Uit een
vergelijking van deze scoreschatters met reeds eerder voorgestelde rangschatters in Han
(1987) en in Cavanagh and Sherman (1998), volgt dat beide schatters weliswaar dezelfde
asymptotische convergentiesnelheid hebben maar de scoreschatters hebben een kleinere
variantie dan de rangschatters. Op basis van onze simulatie-experimenten kunnen we geen
overtuigende conclusies trekken omtrent de asymptotische convergentiesnelheid van de
KKS. We kunnen wel besluiten dat scoreschatters een kleinere variantie hebben in eindige
steekproeven dan de KKS die beiden gebaseerd zijn op een kleinste kwadratenprocedure.

In het tweede deel van deze thesis, bestuderen we een model waarbij de regressiecoëf-
ficiënten functies zijn van covariaten (varying coefficients model, VCM) en waarbij
niet alle responsvariabelen geobserveerd worden door de aanwezigheid van rechtse
censurering. De respons is dan voor een aantal observaties niet gekend, er wordt enkel
een ondergrens waargenomen. We ontwikkelen twee datatransformatie technieken waar-
door een nieuwe variabele met dezelfde verwachtingswaarde als de niet-geobserveerde
respons geconstrueerd wordt. De getransformeerde variabele wordt gebruikt in een
gepenaliseerde kleinste kwadratenprocedure waarbij spline schatters gebruikt worden om
de onderliggende variërende coëfficiënten functies te schatten.
De theoretische eigenschappen van deze gepenaliseerde spline schatters maken de schat-
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ters vergelijkbaar met reeds eerder gedefinieerde schatters voor het VCM met rechts gecen-
sureerde observaties. Aan de hand van simulatiestudies en data voorbeelden illustreren
we de kwaliteit van de voorgestelde schattingsprocedure.



Summary

Statistical models are used to analyze data and to search for relationships between
observed variables. In many models, shape constraints are imposed and therefore, the
procedures that are developed to analyze the data need to include the shape restriction.
In the first part of this thesis, we discuss statistical applications that have to take a
monotonicity constraint into account. The specific problems are discussed in more detail
in the Introduction of Part I.

In Chapter 2, we model a linear relationship between a response variable and a
set of covariate variables. The covariates are fully observed but the response variable
is subject to type 1 interval censoring. Instead of observing the response, a censoring
variable is observed together with an indicator informing about whether or not the
unobserved response lies before or after the censoring variable. This type of censored
data is known as current status data. One could say that each observation indicates
the current status of the response at the observed censored value. The objective of
Chapter 2 is to estimate the regression parameters that describe the linear relationship
in the covariates based on observations for the censoring variable, the indicator and the
covariates.
A well-known technique to obtain the estimators in a regression model is the maximum
likelihood approach, where the estimators are defined by the regression parameters that
maximize the likelihood of the observed data. The censored nature of the data results
in a monotonicity constraint for a function that appears in the likelihood function of
the data. Since the eighties, researchers have investigated the behavior of this so-called
maximum likelihood estimator (MLE) of the regression parameters in the current status
linear regression model and a lot of open questions still exist.
We derive a score function from the likelihood function and develop estimators that are
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defined by the root of this score function. Consequently, our score estimators still depend
on the behavior of the MLE. Based on the asymptotic study of the score estimators, we
are able to answer questions for the score estimators, that are still unsolved questions for
the MLE. It is the first time that estimators for the regression parameters are developed
that depend on the behavior of the maximum likelihood procedure and that converge
at the parametric rate to the true regression parameters in the current status linear
regression model.

In Chapter 3, we focus on estimating the distribution function of the response
variable in absence of covariate information. The available data consists of censoring
variables and censoring indicators. The distribution function, which completely defines
the behavior of the response, is a monotone increasing function. The aim of Chapter
3 is to construct pointwise confidence intervals for this unknown distribution function.
The principle of maximum likelihood can again be used to estimate the distribution
function under a monotonicity constraint. We call this estimator the MLE of the
distribution function. Confidence intervals can be centered around this MLE using a
bootstrap procedure which consists of resampling data from the observed sample. It
was proved in Abrevaya and Huang (2005) that a combination of the MLE with the
classical nonparametric bootstrap proposed by Efron (1979) leads to incorrect confidence
intervals for the distribution function under current status data. We propose to estimate
the distribution function by a smoothed version of the MLE (the smoothed maximum
likelihood estimator, SMLE) and show that the nonparametric bootstrap does result in
valid confidence intervals around the SMLE.

We also propose a second model-based bootstrap procedure that depends on the SMLE.
In this procedure, the censoring variables in the bootstrap sample are the same and
only the censoring indicators are resampled. In the nonparameteric bootstrap algorithm,
both censoring variables and indicators are resampled with replacement from the original
observations, independent of the true underlying model. We compare the quality of the
two bootstrap procedures for constructing confidence intervals for the distribution function
under current status data.

In our numerical experiments, it is not clear which of two bootstrap procedures is better
and the most striking finding is the similarity of the results between the smooth and non-
parametric bootstrap. The additional information on the underlying model in the smooth
bootstrap method does not result in an improvement of the nonparametric bootstrap for
the construction of pointwise confidence intervals for the distribution function under cur-
rent status data. An advantage of the purely nonparametric bootstrap is its conceptual
simplicity. An advantage of the smooth bootstrap is that only indicators are resampled
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and that in this sense, one stays closest to the sampling distribution of the censoring
variable.

The smoothing technique used to construct the SMLE from the MLE depends on
a bandwidth parameter. In the simulation studies of Chapter 3, much attention is
given to the effect of the bandwidth on the confidence intervals. We demonstrate the
importance of a proper bandwidth choice and we develop a selection procedure for the
bandwidth parameter that results in good confidence intervals for the distribution function.

In Chapter 4, we extend the findings of Chapter 2 for the current status linear re-
gression model to the monotone single index model. Both covariates and response are
fully observed in this regression model. The response depends on a linear combination
of the covariates, i.e. the single index of the covariates, via an unknown link function.
The only assumption that one makes for this link function is that it has a monotone
increasing behavior. The goal of Chapter 4 is to estimate the regression parameters that
describe the linear combination of the covariates and hence to determine the single index
component in this model. The monotonicty constraint on the link function has to be
taken into account during the estimation process.

We analyze the behavior of the least squares estimator (LSE). In this algorithm, we search
for the regression parameters and the monotone increasing link function that minimize the
sum of squared errors which arises by taking the sum of the squared difference between the
observed responses and the predicted responses in the estimated model. The asymptotic
properties of the LSE of the regression parameters in the monotone single index model
are comparable to the properties of the MLE in the current status linear regression model
and so far, the behavior of this LSE was not yet fully understood.

We derive a score function from the sum of squared errors and define score estimators
by the root of this score function. From a comparison between the score estimators and
the rank estimators proposed in Han (1987) and in Cavanagh and Sherman (1998), we
conclude that both estimators have the same asymptotic convergence rate but the score
estimators have smaller variances than the rank estimators. Based on our simulation
experiments, we did not get conclusive insights into the converge rate of the LSE.
However, even if the LSE has the same convergence rate as the score estimators, our
findings do show a better finite sample behavior of the score estimators.

In Part II of the thesis, we look at a model where the regression coefficients are
functions of the covariates (varying coefficient model, VCM) and where the observed
responses are subject to random right censoring. For some observations, the response
is unknown and only a lower bound is observed. We introduce two data-transformation
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approaches that create a transformed variable which has the same expectation, condi-
tionally on covariates, as the unobserved response variable. This transformed response
variable is used in a penalized least squares procedure where we use splines to estimate
the coefficient functions in the underlying VCM, referred to as P-spline estimates of the
coefficient functions in the VCM. Our theoretical results and our simulations illustrate
the quality of our proposed techniques for estimating a VCM subject to random right
censoring. We also compare our estimates to the estimates proposed in Yang et al.
(2014) and moreover discuss how the finite sample performance of the estimates in Yang
et al. (2014) can be improved.
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Chapter 1
Introduction

Several statistical applications are based on imposing constraints that occur from the
problem under study: monotonicity, convexity or concavity constraints arise naturally with
consumption or production functions, growth curves and dose response models.Therefore,
algorithms for shape constrained regression or density estimation are needed. Research
on nonparametric estimation under shape constraints dates back to the 1950s and the
papers such as the ones by Ayer et al. (1955) and van Eeden (1956) on estimation of
functions under the constraint of monotonicity or unimodality. The classical example of
estimating a monotone decreasing density f0 on [0,∞) based on a sample X1, . . . , Xn of
i.i.d. observations from the unknown density was considered in Grenander (1956). The
Maximum Likelihood Estimator (MLE) f̂n that maximizes

f 7→
n∑
i=1

log f(Xi),

over all decreasing densities f : [0,∞)→ [0,∞), is the left derivative of the least concave
majorant (LCM) of the empirical distribution function, where the LCM of a function
g : [0,∞)→ R is the lowest concave function that lies above g. The estimator is referred
to as the Grenander estimator. For a sample of size n = 20 from the standard exponential
distribution, the empirical distribution function together with its LCM are shown in Figure
1.1a. The resulting estimator f̂n is shown in Figure 1.1b. It was proved in Prakasa Rao
(1969) that the pointwise limit distribution of the Grenander estimator has a nonstandard
limit distribution.

Theorem 1.0.1 (Prakasa Rao, 1969). Let f̂n be the Grenander estimator of the density
f0 under the monotonicity restriction. Suppose that f0 has a strictly negative derivative

3
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Figure 1.1: Left: The empirical distribution function (black, step-function) and its LCM (red,
solid). Right: The Grenander estimator (black, step function) and the standard exponential
density (red, solid) for a sample of size n = 20 from the standard exponential distribution.

f ′0 at the interior point x and f0(x) > 0. Then

n1/3{f̂n(x)− f0(x)}/|4f0(x)f ′0(x)| d→ Z n→∞,

where d→ denotes convergence in distribution and Z = arg maxt{W (t) − t2}, where W
is the two-sided Brownian motion on R starting at zero.

The distribution of the random variable Z in Theorem 1.0.1 is known as the Chernoff
distribution.

The behavior of estimators of increasing functions can often be derived similarly to the
behavior of decreasing functions but involves greatest convex minorants (GCMs) instead
of LCMs. As an example, we consider estimating the isotonic regression model based on
observations (xi, yi), 1 ≤ i ≤ n, where the xi are fixed and the yi are realizations of the
random variable Yi with mean µ0(xi), for some increasing function µ0 : R→ R. Denote
by ȳk the average of the observations with mean µ0(x(k)), where x(1) < . . . < x(m)

are the ordered design points and m is the number of distinct design points. The Least
Squares Estimator (LSE) µ̂n minimizes the weighted sum of squares

µ 7→
m∑
k=1

wk{ȳk − µ(x(k))}2, (1.0.1)

where wk, 1 ≤ k ≤ m are the number of observations with mean µ0(x(k)), over all increas-
ing functions µ : R 7→ R. The LSE µ̂n has the following characterization. Define the cu-
mulative sum diagram consisting of the points Pi =

(∑i
j=1 wj ,

∑i
j=1 wj ȳj

)
, 1 ≤ i ≤ m
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and the point P0 = (0, 0). Let M̂ be the greatest convex function on [0, n] lying
completely below the set of points {Pi : 0 ≤ i ≤ m}. Then the LSE µ̂n(x(i)) is the
left derivative of M̂ evaluated at the point Pi. Since the sum of squares in (1.0.1) only
depends on the values of the function µ evaluated at the observed design points, changing
µ between two observed x(i) does not change the value of the objective function. We
therefore consider functions µ that are piecewise constant between two successive design
points.

In the first part of this thesis, we address two different models that involve a monotonicity
constraint. We first address the current status model where the monotonicity constraint
arises in the expression of the likelihood of the observed data. In the second model, we
look at the monotone single index model. In this regression setting, a response depends
on a linear combination of covariate variables via a link function that is assumed to
be monotone. An introduction to both models is given in Section 1.1 and Section 1.2
respectively.

1.1 The current status model

Survival models are commonly used to characterize the distribution of a variable Y that
is not observed directly. Depending on what information is obtained on Y , different
censoring schemes arise. In the current status model, the variable Y of interest is only
known to lie before or after some random censoring variable T . Each observed sample
consists of a set of n inspection times Ti (independent of the other Tj and all Y ′j s) and n
censoring indicators ∆i = 1{Yi≤Ti}. One could say that the ith observation indicates the
current status of component i at time Ti. This type of censoring is also known as type I
interval censoring and arises naturally in reliability and survival studies when the status of
an observational unit is only checked at one measurement point, which happens especially
when testing is destructive. For example, in carcinogenicity experiments, one is interested
in the time from exposure to a potential carcinogen until the development of the tumor
(Finkelstein and Wolfe, 1985 and Finkelstein, 1986). The presence of the tumor can,
however, only be determined after animal sacrifice. Current status data is also obtained
in epidemiological studies where the age of incidence of a certain disease is of interest
(Keiding, 1991 and Keiding et al., 1996). The exact age at which the disease occurred
is unknown, but a diagnostic test can be used to detect the presence of antibodies and
hence inform about whether or not the disease already occurred in the past, at least if
humoral immunity is preserved for life after infection.
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For this type of data, the log likelihood function for estimating the distribution function
F (ignoring a term that does not depend on F ) is given by

`n(F ) =
n∑
i=1

∆i logF (Ti) + (1−∆i) log{1− F (Ti)}. (1.1.1)

The MLE of the true distribution function F0 of Y maximizes `n over all possible distri-
bution functions F , i.e.

F̂n
def= arg max

F
`n(F ). (1.1.2)

Let wj , 1 ≤ j ≤ m be the weights given by the number of observations at point T(j),
assuming that T(1) < · · · < T(m) are the m order statistics of the sample T1, . . . , Tn

where m is the number of different observations in the sample. Suppose that f1j is the
number of ∆k equal to one at the jth order statistic of the sample. The value of F̂n
at T(i) can be characterized as the left continuous slope of the GCM (evaluated at the
points Pi) of the cumulative sum diagram formed by the points P0 = (0, 0) and

Pi =

 i∑
j=1

wj ,

i∑
j=1

f1j

 , 1 ≤ i ≤ m.

In this thesis we address two different problems related to current status data.

1. The objective in Chapter 2 is to estimate a regression parameter in a linear regression
model if on top of observing (T1,∆1), . . . , (Tn,∆n) also covariate information for
Y is available.

2. In Chapter 3 we investigate the validity of different bootstrap schemes for producing
pointwise confidence intervals for the distribution function under current status data.

Both topics are discussed in more detail in Section 1.1.1 and Section 1.1.2.

1.1.1 Semiparametric regression under current status data

Instead of the completely nonparametric model described above, one can also con-
sider the semiparametric current status regression model where one observes a sam-
ple (X1, T1,∆1), . . . , (Xn, Tn,∆n) from the random vector (X, T,∆) where X =
(X1, . . . , Xd)T is a d−dimensional covariate vector and (T,∆) is defined as above. The
unobserved response variable Y is modeled by

Y = αT0X + ε, (1.1.3)
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with α0 = (α01, . . . , α0d)T being the d−dimensional regression parameter of interest and
with ε being an unobserved random error term independent of T and X with unknown
distribution function F0. Although that the response variable Y in survival studies is
mostly positive, we do not assume that the response Y is a nonnegative random variable
in model (1.1.3) and our estimation techniques are also applicable to negative response
variables (see e.g. Murphy et al. (1999) for a similar definition in the current status
linear regression model).

In the semiparametric current status model, the distribution F0 is no longer the parameter
of interest but merely a nuisance parameter. Hence, model (1.1.3) is parametrized by the
finite dimensional regression parameter α0 ∈ Rd and the infinite dimensional nuisance
parameter F0. The relevant part of the log likelihood for estimating (α0, F0) is given by

n∑
i=1

[
∆i logF0(Ti −αT0Xi) + (1−∆i) log{1− F0(Ti −αT0Xi)}

]
.

The difficulty of the model is that the parametric part is “inside” the nonparametric
part. One has to bypass the nuisance function F0, which cannot be estimated at the
parametric

√
n-rate, to get to the parametric part. The phenomenon is referred to as the

bundled parameters problem in Ding and Nan (2011). This is very different for the Cox
proportional hazards model for current status data defined by

λ(t|X) = lim
dt→0

P (t < Y < t+ dt|Y > t,X)/dt = λ0(t) exp(αT0X),

where Y is assumed to be a nonnegative random variable, for some baseline hazard
function λ0. In this case, the log likelihood is of the form

n∑
i=1

{
∆i log

(
1− exp

{
−Λ0(Ti) exp(αT0Xi)

})
− (1−∆i)Λ0(Ti) exp(αT0Xi)

}
,

where Λ0 is the baseline cumulative hazard function given by Λ0(t) =
∫ t

0 λ0(s)ds. Now,
the regression parameter α0 does not appear in the argument of a function which is not
√
n-estimable and we can estimate Λ0 and α0 separately. In this case, it was shown

in Huang (1996) that one can use the nonparametric MLE of Λ0 and then use profile
likelihood to estimate α0 efficiently at

√
n−rate. However, for the ordinary current

status regression model, it is still unknown whether a similar estimation method gives
a
√
n-consistent estimate of α0. The profile MLE of α0 in model (1.1.3) was proved

to be consistent in Cosslett (1983) and an n1/3−rate (cube-root n) of convergence was
derived in Murphy et al. (1999), but nothing is known about the asymptotic distribution
of this profile MLE.
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The efficient score function for α0 is given by

˜̀
α0,F0(x, t, δ) =

{
E(X|T −αT0X = t−αT0 x)− x

}
f0(t−αT0 x)

·
{

δ

F0(t−αT0 x)
− 1− δ

1− F0(t−αT0 x)

}
, (1.1.4)

where E(Z1|Z2 = z2) denotes the conditional expectation of Z1 given Z2 = z2 for
random vectors Z1 and Z2 and f0 = F ′0 is the density of the underlying model (see
Cosslett (1987), Huang and Wellner (1993) and Murphy et al. (1999) among others).
√
n-consistent estimators of α0 with asymptotic normal limiting distribution where n

times the variance equals the inverse of

E
{˜̀
α0,F0(X, T,∆)˜̀

α0,F0(X, T,∆)T
}
,

are called efficient estimators of α0.
Approaches of efficient estimation of α0 are considered in Murphy et al. (1999)
(for the one-dimensional case) and in Li and Zhang (1998) and Shen (2000) among
others. Proving the asymptotic normal distribution of an efficient estimator is often
complicated due to the fact that the factors F0(t− αT0 x) and 1− F0(t− αT0 x) appear
in the denominator of the efficient score function ˜̀

α0,F0 . To avoid division by zero in
some technical parts of the proofs, additional assumptions on the underlying model or
truncation techniques in the estimation algorithm are needed. The authors of Murphy
et al. (1999) and Shen (2000) assume that the data only provide information about a
part of the distribution function F0. This results in the condition that the support of the
density of the random variable T − αTX is strictly contained in an interval D and that
F0 stays away from zero and one on D for all α in the parameter space. The drawback
of the assumption is that we have no information about the whole distribution function
F0. It also goes against the usual conditions made for the current status model, where
one commonly assumes that the observations provide information over the whole range
of the distribution one wants to estimate. We presume that this assumption is made,
among others, to avoid truncation devices that can prevent the problems arising if this
condition is not made, such as unbounded score functions and numerical difficulties.
Examples of truncation methods can be found in Cosslett (2007) and Klein and Spady
(1993) to name a few, where the authors consider truncation sequences that converge to
zero with increasing sample size.

All efficient estimates proposed in the semiparametric current status linear regression
model are based on smoothing techniques in the estimation procedure. Although smooth-
ing is unavoidable to obtain efficiency, it is not necessary to achieve the parametric

√
n-rate
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of convergence. Sherman (1993) showed that the maximum rank correlation estimator
proposed by Han (1987) is a

√
n-consistent and asymptotically normal estimator. The

estimator is motivated by a correlation argument and does not use an estimate of the un-
derlying distribution function F0. In Chapter 2, we construct a

√
n-consistent estimator

of α0 that is based on the nonparametric MLE of the underlying distribution function F0.
As far as we know, this is the first time that a non-smooth estimator of F0 is used for
constructing

√
n−consistent estimators.

1.1.2 Does the bootstrap work?

Since the introduction of the bootstrap approach by Efron (1979), resampling techniques
have gained a lot of popularity for doing inference about a population based on a random
sample. However, under current status data, several negative results have been published
on the use of the bootstrap for generating the limit distribution of the MLE F̂n of the
distribution function F0, defined in (1.1.2) (Abrevaya and Huang, 2005, Sen and Xu,
2015). From Groeneboom and Wellner (1992) we have the following result for the limiting
distribution of the MLE F̂n:

Theorem 1.1.1 (Groeneboom and Wellner, 1992). Consider the current status model
and let t be such that 0 < F0(t), G(t) < 1, and let F0 and G be differentiable at t with
strictly positive derivatives f0(t) and g(t), respectively. Here, G denotes the distribution
function of the censoring variable T . Furthermore, let F̂n be the MLE of the distribution
function F0 of Y . Then, we have, as n→∞

n1/3
{
F̂n(t)− F0(t)

}
d→ [4F0(t){1− F0(t)}f0(t)/g(t)]1/3Z,

where Z = arg maxt{W (t) − t2} and W (t) is a standard two-sided Brownian motion
process, originating from zero.

For Efron’s nonparametric bootstrap procedure, which consists of resampling n pairs
(Ti,∆i) with replacement from the original sample (T1,∆1), . . . , (Tn,∆n), it follows
from Abrevaya and Huang (2005) that (conditional on the data)

n1/3{4F0(t)(1− F0(t))f0(t)/g(t)}−1/3{F̂ ∗n(t)− F̂n(t)}
d→ arg max

t
(W (t) + Ŵ (t)− t2)− arg max

t
(W (t)− t2), (1.1.5)

where F̂ ∗n is the bootstrap MLE, obtained by maximizing the log likelihood defined by
(1.1.1) but with (Ti,∆i) replaced by the bootstrap observations, and where W and Ŵ
are two independent two-sided Brownian motions originating at zero. A similar result
is obtained in Kosorok (2008) for the Grenander estimator and in Abrevaya and Huang
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(2005) for the maximum score estimator of Manski (1975), which is another example of a
cube-root n statistic (Kim and Pollard, 1990). These results imply that Efron’s bootstrap
cannot generate the correct limiting distribution of the corresponding estimators and
hence leads to inconsistent bootstrap-based confidence intervals.

Constructing asymptotic confidence intervals for the distribution function in the current
status model based on Chernoff’s distribution, defined in Theorem 1.0.1, and the
normalizing constant 4F0(t){1−F0(t)}f0(t)/g(t) is complicated by the need to compute
the critical values of Z and to estimate the density f0 consistently. Accurate density
estimation turns out to be a rather difficult task when relying on current status data and
several alternative methods have been proposed.

Banerjee and Wellner (2005) came up with a likelihood-ratio (LR) based method. Starting
from the likelihood ratio statistic

LR(θ0) = 2
(

log `n(F̂n)− log `n(F̂ θ0
n )
)
,

for testing the null hypothesis F0(t) = θ0, which has asymptotic distribution D charac-
terized in Banerjee and Wellner (2001), the authors estimate the interval by

{θ ∈ (0, 1) : LR(θ) ≤ d1−α} ,

where d1−α is the (1 − α)th percentile of D. Here F̂n denotes the unconstrained MLE
and F̂ θ0

n denotes the MLE of F0, maximizing the log likelihood under the constraint
that F0(t) = θ0. The LR-based method avoids estimation of f0 and g since, under the
null hypothesis, the limiting distribution D does not depend on the underlying parameters.

Instead of Efron’s bootstrap, Sen and Xu (2015) introduced a different model-based re-
sampling scheme and proved the consistency of their bootstrap for constructing pointwise
confidence intervals around the MLE F̂n, under certain smoothness conditions. The boot-
strap algorithm will be referred to as the smooth bootstrap in this thesis and works as
follows:

1. Obtain an initial estimate F̃ of F0.

2. Generate censoring indicators ∆∗i , 1 ≤ i ≤ n from a Bernoulli(F̃ (Ti)) distri-
bution where the Ti, 1 ≤ i ≤ n are kept the same as in the original sample
(T1,∆1), . . . (Tn,∆n).

3. Consider the bootstrap sample (T1,∆∗1), . . . (Tn,∆∗n).
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Consequently, pointwise confidence intervals can be formed by taking[
F̂n(t)− V ∗1−α/2(t), F̂n(t)− V ∗α/2(t)

]
,

where V ∗α is the αth quantile of B values of

F̂ ∗n(t)− F̃ (t),

where B is the number of bootstrap samples taken, and F̂ ∗n(t) is the MLE in the bootstrap
sample (T1,∆∗1), . . . (Tn,∆∗n). The consistency of this method requires the initial estimate
F̃ to satisfy the following smoothness condition for a point t0 in the interior of the support
of F0

lim
n→∞

|F̃ (t0 + n−1/3t)− F̃ (t0)− f0(t0)n−1/3t| = 0 a.s.,

which is not satisfied by the MLE F̂n. Several other bootstrap results for the Grenander
estimator can be found in the literature where similar issues with the lack of smoothness
of the function from which the bootstrap samples are drawn, are illustrated. The
inconsistency of generating Chernoff’s limiting distribution using bootstrap samples from
the empirical distribution function or its LCM is proved in Sen et al. (2010). The authors
suggest other methods for obtaining the cube-root n-consistency, either by smoothing
or by using m out of n subsampling. Kosorok (2008) shows that generating bootstrap
samples from a smoothed Grenander estimator can give consistent L1-confidence bands
for the Grenander estimator.

The Smoothed Maximum Likelihood Estimator (SMLE, Groeneboom et al., 2010), ob-
tained by first estimating the MLE and then smoothing this using a kernel, is an estimate
of the distribution function that does result in consistent confidence intervals via the
smooth bootstrap algorithm. The SMLE is defined as

F̃nh(t) def=
∫

K ((t− x)/h) dF̂n(x),

where K is the integrated kernel

K(u) def=
∫ u

−∞
K(x) dx, (1.1.6)

and where h is a chosen bandwidth. Here dF̂n represents the jumps of the discrete
distribution function F̂n and K is a symmetric and twice continuously differentiable kernel
function with compact support [-1,1]. For a constant c > 0 and h = cn−1/5, the SMLE
has been proved to converge at rate n2/5 to a normal limit distribution.
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Theorem 1.1.2 (Groeneboom et al., 2010). Let the distribution of F0 have support
[0,M ] and let F0 have a density f0 staying away from zero on (0,M). Furthermore, let
G have a density g with a support that contains [0,M ] and let g stay away from zero on
[0,M ], with a bounded derivative g′. Finally, let t be an interior point of [0,M ] such that
f0 has a continuous derivative f ′0 at t. Then, if h = cn−1/5,

n2/5 {F̃nh(t)− F0(t)
} d−→ N(β, σ2),

where

β = c2f ′0(t)
2

∫
u2K(u) du and σ2 = F0(t){1− F0(t)}

cg(t)

∫
K(u)2 du.

In light of Theorem 1.1.2, a drawback of the approach proposed by Sen and Xu (2015)
is the fact that smoothness conditions of F0 are used which allow faster than cube-root
n estimation of F0. This raises the question whether one should really use pointwise
confidence intervals based on the MLE instead of on a faster converging estimate such
as the SMLE. In Chapter 3, we address this question and show that both Efron’s non-
parametric bootstrap and the model-based bootstrap of Sen and Xu (2015) can be used
to generate the asymptotic normal distribution of the SMLE. Nevertheless, for current
status and related models, some research has been reported recommending the use of
the smooth bootstrap procedure. A smooth bootstrap calibration was used in Durot
and Reboul (2010) for a goodness-of-fit-test for monotone functions and in Groeneboom
(2012) for a likelihood ratio type two-sample test for current status data. Durot et al.
(2013) used a similar approach to determine the critical value for testing equality of
functions under monotonicity constraints. The main motivation for recommending the
smooth bootstrap were the negative results by Abrevaya and Huang (2005) and Kosorok
(2008) proving the inconsistency of Efron’s nonparametric bootstrap for generating the
limiting distribution of the MLE. Although Durot and Reboul (2010) conjecture that the
nonparametric bootstrap fails in their setting, the results presented in this thesis, however,
suggest that this conjecture might be incorrect and that applications of the nonpara-
metric bootstrap involving the Grenander estimator are worth studying in further research.

Besides considering the nonparametric or smooth bootstrap, one could moreover consider
resampling the ∆i from the MLE itself. Simulation studies in Durot et al. (2013) for
testing equality of functions under monotonicity constraints even suggest that the smooth
bootstrap does not necessarily perform better than bootstrapping from the non-smooth
functional itself for certain smooth functionals different from the non-smooth functional
F 7→ F (t). (See van der Vaart (1991) for the non-differentiability of the evaluation
mapping F 7→ F (t) in the current status model. A similar result holds for the mapping
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f 7→ f(t) in the estimation of a decreasing density). So far, the theoretical properties of
the latter bootstrap procedure remain an open problem. As a consequence of our positive
result on Efron’s bootstrap (see Chapter 3), we conjecture that bootstrapping from the
MLE might as well work for constructing pointwise confidence intervals in the current
status model, if one uses the right (smooth) functional of the model as a basis for the
intervals.

1.2 The single index model

Single index models (SIMs) are flexible semiparametric regression models used to in-
vestigate the relationship between a response variable Y and a covariate vector X =
(X1, . . . , Xd)T ∈ Rd. The SIM is given by

Y = ψ0(αT0X) + ε, (1.2.1)

where ε ∼ F0 is a random error term satisfying E(ε|X) = 0 and ψ0 is an unknown link
function. These models are more flexible than standard linear regression models and
have, on the other hand, more structure than completely nonparametric models. By
lowering the dimensionality of the classical linear regression problem, determined by the
number of covariates, to a univariate αT0X index, SIMs do not suffer from the “curse of
dimensionality”. They also provide an advantage over the generalized linear regression
models by overcoming the risk of misspecifying the link function ψ0.

Identifiability of the single index regression parameter α0 (up to a scalar constant) has
been discussed in Ichimura (1993) in terms of the distribution of the regressors X. With-
out any further restrictions, the parameter vector (α0, ψ0) can, however, not be estimated
in the SIM. This can be seen as follows. Take a, b ∈ R and let ψ∗ be the function defined
by the relationship ψ∗(a+ bt) = ψ0(t) for all t in the support of αT0X, then

E(Y |X) = ψ∗(a+ bαT0X).

Even if the distribution of (X, Y ) is known, the above model cannot be distinguished
from model (1.2.1) unless restrictions on the location a and scale b are imposed. Location
normalization can be imposed by requiring that all components ofX have a nondegenerate
distribution. A reparametrization of the parameter space to the set

{α ∈ Rd : α1 = 1} or {α ∈ Rd : ‖α‖ = 1, α1 ≥ 0},

where ‖ · ‖ denotes the Euclidean norm and α1 is the first component of α, ensures
scale identification of the model. The first parametrization is used in Sherman (1993),
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examples of the second parametrization are found in Härdle et al. (1993) and Hristache
et al. (2001) among others.

The log likelihood of the model is given by
n∑
i=1

log
{
fε|X

(
Yi − ψ0(αT0Xi)

)
g(Xi)

}
,

where fε|X(·|x) is the conditional density of ε given X = x and g is the density of X.
The efficient score function for α0 is given by

˜̀
α0,ψ0(x, y) =

y − ψ0
(
αT0 x

)
σ2(x) ψ′0

(
αT0 x

){
x−

E
{
σ−2(X)X|αT0X = αT0 x

}
E
{
σ−2(X)|αT0X = αT0 x

} }
,

where σ2(·) = E(ε2|X = ·) (see e.g. Delecroix et al., 2003 and Kuchibhotla and Patra,
2017). In the special case that ε|X ∼ N(0, σ2), the log likelihood of the model is, up to
a term not depending on (α0, ψ0), given by Sn(α0, ψ0)/(2σ2), where Sn is the sum of
squared errors

Sn(α, ψ) def=
n∑
i=1

{
Yi − ψ(αTXi)

}2
.

The LSE (α̂n, ψ̂n) in the SIM, defined by

(α̂n, ψ̂n) def= arg min
α,ψ

Sn(α, ψ), (1.2.2)

therefore coincides with the MLE in the SIM with homoscedastic normal error terms.

Besides the LSE, several other estimators have been proposed in the literature that can
be classified into different groups based on the estimation algorithm. Most estimators
require a nonparametric estimator of ψ0. Often smoothing procedures, such as kernel
smoothers or spline functions are used to avoid discontinuous criterion functions. An
example of this type is the (weighted) semiparametric least squares estimator (SLSE),
which corresponds to minimizing the sum of squares Sn(α, ψ̃α,h) over α, where ψ̃α,h
is a kernel estimator of ψ0 that depends on α and a bandwidth h. Härdle et al.
(1993) extended the SLSE by minimizing this sum of squares over (α, h) simultaneously
to obtain optimal smoothing. Instead of estimating ψ0 by a kernel smoother, spline
smoothing is considered in Yu and Ruppert (2002) and Antoniadis et al. (2004) among
others. The average derivative estimator proposed by Hristache et al. (2001), results
in direct estimation of the regression parameter α0 and therefore avoids solving a hard
optimization problem, which is often the case with M-estimators. The idea of the average
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derivative method is to estimate the gradient αT0 ψ′0(αT0 x) of the link function using
local linear smoothing techniques. A similar approach is considered for the minimum
average variance estimator proposed in Xia and Härdle (2006). Except for the Bayesian
estimation method proposed by Antoniadis et al. (2004), all other methods discussed in
this paragraph are proved to converge at

√
n-rate to the true regression parameter in the

single index model.

Model (1.2.1), when ψ0 is an unknown monotone function is also known as the monotone
SIM and many econometric models, censored regression models as well as various
duration models fit into this framework. Below we describe how the binary choice model
and the current status linear regression model are special cases of the monotone SIM
satisfying E(Y |X) = ψ0(αT0X).

The binary choice model: A widely used econometric model is the binary choice model
which is used to describe a choice probability based on one or more covariates. The model
is given by

Y =
{

1 if αT0X ≥ ε̃
0 else,

where αT0X represents the utility score and ε̃ is the disturbance term, which is assumed
to be independent of X. The model can be used to predict the probability that a person
decides to consume a certain good based on the characteristics of the person. The model
is a special case of the SIM (1.2.1) with ψ0 equal to the (unknown and monotone)
distribution function F0 of ε̃, since

E{Y |X} = P (Y = 1|X) = P (ε̃ ≤ αT0X) = F0(αT0X).

The current status linear regression model: For the current status linear regression
model described in Section 1.1.1, we have

E{∆|X, T} = P (∆ = 1|X, T ) = F0(T −αT0X).

The model is therefore a special case of the monotone SIM with response Ỹ = ∆,
covariate vector X̃ = (T,X)T and α̃0 = (1,αT0 ). Since the first component of the
covariate vector corresponds to the censoring variable T with coefficient equal to one, the
current status regression model is identified without further restrictions on the parameter
space.

The asymptotic properties of the LSE, defined in (1.2.2) for the monotone SIM (Tanaka,
2008) are comparable to the properties of the MLE for the binary choice model (Cosslett,
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1983) and the current status linear regression model (Murphy et al., 1999). All estimators
converge at rate cube-root n, but their limiting distribution is still an open problem. Ex-
amples of M-estimators (that are not based on an estimate of ψ0) are Manski’s maximum
rank estimator (Manski, 1975) for the binary choice model and the maximum rank corre-
lation estimator proposed by Han (1987) and the rank estimators proposed by Cavanagh
and Sherman (1998) for a more general generalized regression model under monotonicity
constraints. In contrast to the other estimators, Manski’s estimator converges somewhat
disappointingly at the cube-root n-rate to a nonstandard limiting distribution instead of at
the usual parametric

√
n-rate to a normal limiting distribution (Kim and Pollard, 1990).

In Chapter 4, we extend the regression estimators for the current status linear regression
model proposed in Chapter 2 to estimators for the more general SIM. The estimators are
derived from a score approach corresponding to the least squares minimization problem.
This is again the first time that

√
n-consistent estimators of the finite dimensional re-

gression parameter in the SIM are constructed based on the monotone LSE of the link
function ψ0.

1.3 Outline of the thesis

This thesis is organized as follows. In Chapter 2, we develop
√
n-consistent and

asymptotically normal estimates of the finite dimensional regression parameter in the
current status linear regression model defined in (1.1.3). These estimates do not require
any smoothing device and are based on MLEs of the infinite dimensional distribution
function parameter. We next construct estimates, again only based on these MLEs,
which are arbitrarily close to efficient estimates if the generalized Fisher information is
finite. This type of efficiency is also derived under minimal conditions for estimates based
on smooth non-monotone plug-in kernel estimates of the distribution function which
are independent of the MLE of the distribution function. Instead of a maximization
approach, where one obtains an estimate as the maximizer of a criterion function, we
take a slightly different angle and define all our estimates by the root of a score function.
Algorithms for computing the estimates and for selecting the bandwidth of the smooth
estimates with a bootstrap method are provided. The research of Chapter 2 is published
in Groeneboom and Hendrickx (2017a).

In Chapter 3, we introduce a new way of constructing pointwise confidence intervals
for the distribution function in the current status model. The confidence intervals are
based on the SMLE, using local smooth functional theory and normal limit distributions.
Two bootstrap methods for constructing the latter intervals are discussed. The methods
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proposed by Banerjee and Wellner (2005) and Sen and Xu (2015) to construct confi-
dence intervals, using the nonstandard limit distribution of the (restricted) MLE, are
compared to our approach via simulations. This chapter covers the material presented in
Groeneboom and Hendrickx (2017b) and in Groeneboom and Hendrickx (2018a). The
method proposed in the first paper is implemented in the R package curstatCI.

Estimation of the regression parameter in the single index model with monotone
link function is considered in Chapter 4. Using the ideas of Chapter 2, we develop
√
n-consistent and asymptotically normal estimates of the finite dimensional regression

parameter which are based on the LSE of the monotone link function. We also review
different “non-smooth” estimates that avoid the standard approach of using smoothing
techniques. We illustrate our score approach via simulations and compare our method
with other methods such as Han’s maximum rank correlation estimate. Chapter 4
summarizes the methods discussed in Balabdaoui et al. (2018) and Groeneboom and
Hendrickx (2018b).

Chapter 5 deals with P-spline smoothing techniques in a varying coefficient regression
model when the response is subject to random right censoring. We introduce two
data-transformation approaches to construct a synthetic response vector that is used in a
penalized least-squares optimization problem. We prove the consistency and asymptotic
normality of the P-spline estimates for a diverging number of knots and show by
simulation studies and real data examples that the combination of a data-transformation
for censored observations with P-spline smoothing leads to good estimates of the varying
coefficient functions. Chapter 5 presents the results given in Hendrickx et al. (2017).

An overview of future research directions is given in Chapter 6. All the proofs and technical
details needed to prove the results presented in Chapters 2-5 are given in the Appendix.





Chapter 2
Current status linear regression

Abstract

We construct
√
n-consistent and asymptotically normal estimates of the finite dimensional re-

gression parameter in the current status linear regression model. The first estimate is obtained
from the root of a score equation which is derived from the likelihood of the observed data and
depends on the maximum likelihood estimator of the infinite dimensional parameter. This score
estimate does not require any smoothing device and is the first

√
n-consistent estimates that

is derived from an estimation algorithm that depends on the piecewise constant MLE of the
distribution function.

We also show that these simple score estimates can be improved when a smoothing device is
implemented to estimate the density of the error term in the current status model. Hence,
we construct estimates, again only based on the MLEs of the distribution function, which are
arbitrarily close to efficient estimates, if the generalized Fisher information is finite. This type of
efficiency is also derived for a third estimate under minimal conditions for smooth non-monotone
kernel estimates of the distribution function instead of the MLEs of the distribution function.
Algorithms for computing the three estimates and for selecting the bandwidth of the second and
third smooth efficient estimates with a bootstrap method are provided. The connection with
results in the econometric literature is also made.

Our simulation results show that all three estimates perform well in finite samples. The second
estimate, depending on the MLE of the distribution function, has a slightly better finite sample
performance in large samples than the asymptotic equivalent third estimate, depending on a
smooth kernel estimate of the distribution function. For the MLE-based estimates, neither the
first nor the second estimate comes out as uniformly best in our simulations with small sample
sizes, even though that the theoretical properties of the second estimate are better than the
properties of the first estimate.

19
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2.1 Model description

Let (Xi, Ti,∆i), 1 ≤ i ≤ n, be independent and identically distributed observations from
(X, T,∆) = ((X1, . . . , Xd)T , T, 1{Y≤T}). We assume that Y is modeled as

Y = αT0X + ε, (2.1.1)

where α0 = (α01, . . . , α0d)T is a d-dimensional regression parameter in the parameter
space Θ ⊂ Rd and ε is an unobserved random error, independent of (X, T ) with unknown
distribution function F0 and E(ε) = µ0. We assume that each component of X is
nondegenerate and that the distribution of (X, T ) does not depend on (α0, F0) which
implies that the relevant part of the log likelihood for estimating (α0, F0) is given by

`n(α, F ) =
n∑
i=1

[
∆i logF (Ti −αTXi) + (1−∆i) log{1− F (Ti −αTXi)}

]
=
∫ [

δ logF (t−αTx) + (1− δ) log{1− F (t−αTx)}
]
dPn(x, t, δ),

(2.1.2)

where Pn is the empirical distribution of the (Xi, Ti,∆i), 1 ≤ i ≤ n. We will denote
the probability measure of (X, T,∆) by P0. Since the efficient score function, defined
in (1.1.4), contains the factors F0(t − αT0 x) and 1 − F0(t − αT0 x) in the denominator,
we introduce a truncated log likelihood to avoid problems arising from division by zero in
some technical steps of the proofs. The truncated log likelihood `ε,n(α, F ) is defined by

`ε,n(α, F ) def=
∫
F (t−αtx)∈[ε,1−ε]

[
δ logF (t−αTx)

+ (1− δ) log
{

1− F (t−αTx)
}]
dPn(x, t, δ),

(2.1.3)

where ε ∈ (0, 1/2) is a truncation parameter. Analogously, let

ψε,n(α, F ) def=
∫
F (t−αTx)∈[ε,1−ε]

φ(x, t, δ){δ − F (t−αTx)} dPn(x, t, δ),

define the truncated score function for some weight function φ. In this chapter, we
consider estimates of α0, derived by the idea of solving a score equation

ψε,n(α, F̂α) = 0,

where F̂α is an estimate of F for fixed α. A motivation for this score approach is
outlined in Section 2.2.
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Before we continue, we introduce the simulation set-up that will be used in the remainder
of this chapter to illustrate our estimation techniques. We consider sampling from the
one-dimensional model Y = α0X + ε where the true regression parameter α0 = 0.5 and
where X and T are independent uniform random variables on [0, 2]. The error term ε has
density f0 given by

f0(e) = 384(e− 3/8)(5/8− e),

if e ∈ [3/8, 5/8] and zero else. Since the expectation of the random error variable equals
µ0 = 0.5, our simulation model contains an intercept, i.e. E(Y |X) = 0.5 + 0.5X.

2.2 Motivation for the score approach

Instead of defining an estimator as the maximizer of a certain criterion function, one
could alternatively define the estimator as the root of a score function. If we consider
the profile maximum likelihood method, we first fix α and estimate F0 by the maximizer
F̂n,α of the likelihood given in (2.1.2). Although F̂n,α is not differentiable, we can still
use this estimate of F0 in the score approach. Smoothing techniques can be used in the
score approach but are not necessary as we will see in the definition of our simple score
estimator in Section 2.4.1. As far as we known, no

√
n-consistent argmax estimator of

α0 has been defined based on the MLE F̂n,α of the distribution function.

The “canonical” approach to proof that argmax estimates of α0 are
√
n-consistent has

been provided in Sherman (1993), where the author gives sufficient conditions to prove
that

‖α̂n −α0‖ = Op(n−1/2), (2.2.1)

where α̂n is defined by
α̂n

def= argmaxΓn(α),

for some criterion function Γn. If Γ is the population equivalent of Γn, Theorem 1 in
Sherman (1993) says that (2.2.1) is satisfied if,

(a) there exists a neighborhood N of α0 and a constant k > 0 such that

Γ(α)− Γ(α0) ≤ −k‖α−α0‖2,

for α ∈ N , and

(b) uniformly over op(1) neighborhoods of α0,

Γn(α)− Γn(α0)

= Γ(α)− Γ(α0) +Op
(
‖α−α0‖/

√
n
)

+ op
(
‖α−α0‖2

)
+Op

(
n−1) .
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Moreover, assuming without loss of generality that α0 = 0,Γ(α0) = 0, and that

Γn(α) = − 1
2α

TV α+ n−1/2αTWn + op
(
n−1) ,

where V is a positive definite matrix and Wn converges in distribution to a normal
distribution,

√
nαn also converges to a normal distribution.

If we try to apply this to the MLE of α0, it is not clear that an expansion of this type
will hold. We seem to get inevitably an extra term of order Op(n−2/3) in (b), which
does not fit into this framework.

On the other hand, in our score approach where we use the MLE F̂n,α to estimate F for
fixed α, our estimator is a kind of hybrid estimator, which requires estimating the argmax
MLE F̂n,α of F for fixed α and is defined as the zero of a non-smooth score function as
a function of α. In the expansion of our score function ψε,n, we now get

ψε,n(α̂n, F̂n,α̂n) = ψ′ε(α0, F0)(α̂n −α0) +Wn + op

(
n−1/2 + ‖α̂n −α0‖

)
,

where ψ′ε is the matrix representing the total derivative of the population equivalent score
function α 7→ ψε(α, Fα) (for some deterministic function Fα satisfying Fα0 = F0) and
Wn is a term of order Op(n−1/2). In contrast to the expansion for the argmax statistic
Γn, extra terms of order Op(n−2/3) do not hurt in the score decomposition since, by
definition of the score estimator, we get

α̂n −α0 ∼ −ψ′ε(α0, F0)−1Wn,

where Z1 ∼ Z2 is Z1 = Z2 +op(1). So we have the remarkable situation that finding the
estimate α̂n by a combination of a maximization approach for F and a score approach
for α, can be proved to give

√
n-consistent estimates of α0, in contrast to the completely

argmax approach, using profile likelihood, for which we even still do not know whether
it is

√
n-consistent. Despite the fact that the limiting distribution of the MLE of α0

is still unknown, our simulation experiments indicate that, even if the MLE would be
√
n-consistent, its variance is clearly bigger than the other estimates we propose in this

chapter.

2.3 Behavior of the maximum likelihood estimator of the distribu-
tion function

For fixed α, the MLE F̂n,α based on `n(α, F ) is a piecewise constant function with
jumps at a subset of {Ti − αTXi : 1 ≤ i ≤ n}. Once we have fixed the parameter
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α, the order statistics on which the MLE is based are the order statistics of the values
Uα1 = T1 − αTX1, . . . , U

α
n = Tn − αTXn and the values of the corresponding ∆i

denoted by ∆α
i . The MLE can be characterized as the left derivative of the GCM of a

cumulative sum diagram consisting of the points (0, 0) andi, i∑
j=1

∆α
(j)

 1 ≤ i ≤ n,

where ∆α
(j) corresponds to the jth order statistic of the Uαi = Ti − αTXi, 1 ≤ i ≤ n

(assuming that no ties are present in the observation times). We have:

P
{

∆α
i = 1

∣∣ Uαi = u
}

=
∫
F0(u+ (α−α0)Tx)fX|T−αTX(x|u) dx,

where fX|T−αTX(·|u) denotes the conditional density of X given that T − αTX = u.
Hence, defining

Fα(u) def=
∫
F0(u+ (α−α0)Tx)fX|T−αTX(x|u) dx, (2.3.1)

we can consider the ∆α
i as coming from a sample in the ordinary current status model,

where the observations are of the form
(
Uαi ,∆α

i

)
, and where the observation times have

density fT−αTX and where ∆α
i = 1 with probability Fα(Uαi ) at observation Uαi .

Remark 2.3.1. Assume that T and X are continuous random variables, then we can
write

F ′α(u) =
∫
f0(u+ (α−α0)Tx)fX|T−αTX(x|u) dx

+
∫
F0(u+ (α−α0)Tx) ∂

∂u
fX|T−αTX(x|u) dx.

Integration by parts on the second term yields:∫
F0(u+ (α−α0)Tx) ∂

∂u
fX|T−αTX(x|u) dx

= −(α−α0)T
∫
f0(u+ (α−α0)Tx) ∂

∂u
FX|T−αTX(x|u) dx,

where FX|T−αTX(·|u) denotes the conditional distribution function of X given that
T −αTX = u. This implies that

F ′α(u) =
∫
f0(u+ (α−α0)Tx)

{
fX|T−αTX(x|u)

− (α−α0)T ∂

∂u
FX|T−αTX(x|u)

}
dx.
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Assuming that u 7→ fX|T−αTX(x|u) stays away from zero on the support of f0, this
implies by a continuity argument that Fα is monotone increasing on the support of F ′α
for α close to α0.
Also note that we get from the fact that F0 is a distribution function with compact
support:

lim
u→−∞

Fα(u) = 0 and lim
u→∞

Fα(u) = 1.

So we may assume that Fα is a distribution function for α close to α0. A similar argument
can be used if X contains discrete random variables.

Pictures of the MLE F̂n,α, based on the values Ti−αXi, and the corresponding function
Fα for the model used in our simulation experiment are shown in Figure 2.1 and compared
with F0. Note that Fα involves both a location shift and a change in shape of F0.
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Figure 2.1: (a) The real F0 (red, solid), the function Fα for α = 0.6 (blue, dashed) and the
MLE F̂n,α (step function), for a sample of size n = 1, 000. (b) The real f0 (red, solid) and the
function F ′α for α = 0.6 (blue, dashed).

For fixed α in a neighborhood of α0 we can now use standard theory for the MLE from
current status theory. The following assumptions are made:

A1. The parameter α0 = (α01, . . . ,α0d) ∈ Rd is an interior point of Θ and the param-
eter space Θ is a compact convex set.

A2. Fα, defined in (2.3.1), has a strictly positive continuous derivative, which stays away
from zero on Aε′,α

def= {u : Fα(u) ∈ [ε′, 1− ε′]} for all α ∈ Θ, where ε′ ∈ (0, ε).

A3. The density u 7→ fT−αTX(u) is continuous and also staying away from zero on
Aε′,α for all α ∈ Θ, where Aε′,α is defined as in A2.
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Remark 2.3.2. Note that the truncation is for the interval [ε, 1 − ε], but that we need
conditions A2 and A3 to be satisfied for the slightly bigger interval [ε′, 1− ε′].

Lemma 2.3.1. If Assumptions A1, A2 and A3 hold, then:

(i)

sup
α∈Θ

∫ {
F̂n,α(t−αTx)− Fα(t−αTx)

}2
dG(x, t) = Op

(
n−2/3

)
.

(ii)

P

(
lim
n→∞

sup
α∈Θ, u∈Aε′,α

∣∣∣F̂n,α(u)− Fα(u)
∣∣∣ = 0

)
= 1,

where ε′ is chosen as in condition A2 and G is the probability measure of the random
variable (X, T ).

The proof of Lemma 2.3.1 is given in Appendix A, Section A.1.

2.4
√
n-consistent regression parameter estimation

2.4.1 A simple estimate based on the MLE F̂n,α without smoothing

We consider the function ψ1ε,n defined by

ψ1ε,n(α) def=
∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
δ − F̂n,α(t−αTx)

}
dPn(x, t, δ). (2.4.1)

Since the vector (F̂n,α(T1−αTX1), . . . , F̂n,α(Tn−αTXn))T will be the same for all α
for which the ranks of the Ti−αTXi are the same, the function ψ1ε,n can have at most n!
different values, for all permutations of the numbers 1, . . . , n. Figure 2.2b gives a picture
of the function ψ1ε,n as a function of α for our simulation model described in Section 2.1.

We would like to define the estimate α̂1n by

ψ1ε,n(α̂1n) = 0,

where 0 is the d−dimensional vector of zeros, but it is clear that we cannot hope to
achieve that due to the discontinuous nature of the score function ψ1ε,n. We therefore
introduce the following definition.

Definition 2.4.1 (zero-crossing). We say that α∗ is a crossing of zero of a real-valued
function C : Θ 7→ R : α 7→ C(α) if each open neighborhood of α∗ contains points
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Figure 2.2: The truncated profile log likelihood `ε,n (a) and the score function ψ1ε,n (b) as a
function of α for a sample of size n = 100 and ε = 0.001.

α1,α2 ∈ Θ such that C̄(α1)C̄(α2) ≤ 0, where C̄ is the closure of the image of the
function.
Furthermore, we say that a d-dimensional function C̃ : Θ 7→ Rd : α 7→ C̃(α) =
(C̃1(α), . . . C̃d(α))T has a crossing of zero at a point α∗ if α∗ is a crossing of zero
of each component C̃j : Θ 7→ R, 1 ≤ j ≤ d.

Figure 2.2b shows a crossing of zero at a point α close to α0 = 0.5. If the number of
dimensions d exceeds one, then a crossing of zero can be thought of as a point α∗ ∈ Θ
such that each component of the score function ψ1ε,n passes through zero in α = α∗.
Before we state the asymptotic result of our estimator in Theorem 2.4.1, we present in
Lemma 2.4.1 below some interesting properties of the population version of the score
function.

Lemma 2.4.1. Let ψ1ε be defined by

ψ1ε(α) def=
∫
Fα(t−αTx)∈[ε,1−ε]

x{δ − Fα(t−αTx)} dP0(x, t, δ),

and define the truncated expectation Eε,α by

Eε,α(w(X, T,∆)) def= E
(

1{Fα(T−αTX)∈[ε,1−ε]}w(X, T,∆)
)
,

for some function w defined on the probability space of the random vector (X, T,∆),
then:

ψ1ε(α0) = 0
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and for each α ∈ Θ we have:

(i) ψ1ε(α) = Eε,α
[
Cov

(
∆,X|T −αTX

)]
(ii) (α−α0)TEε,α

[
Cov

(
∆,X|T −αTX

)]
≥ 0 for all α ∈ Θ,

and α0 is the only value such that (ii) holds. The vector of partial derivatives of ψ1ε at
α = α0 is given by

ψ′1ε(α0) = Eε,α0

[
f0(T −αT0X)Cov(X|T −αT0X)

]
.

The proof of Lemma 2.4.1 is given in Appendix A, Section A.2. An illustration of the sec-
ond result (ii) is given in Figure 2.3, this property is used in the proof of consistency of our
estimator α̂1n also provided in Appendix A, Section A.2, as the first part of Theorem 2.4.1.
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Figure 2.3: The function α 7→ (α − α∗)
∫
Fα(t−αx)∈[ε,1−ε] x

{
δ − Fα(t − αx)

}
dP0(x, t, δ) as a

function of α, with α∗ = 0.45 (black, dashed), α∗ = α0 = 0.50 (red, solid) and α∗ = 0.55 (blue,
dashed-dotted) for ε = 0.001.

The following assumptions are also needed for the asymptotic normality results of our
estimators:

A4. The function Fα is twice continuously differentiable on the interior of the support
Sα of fα = F ′α for all α ∈ Θ.

A5. The density fT−αTX(u) of T −αTX and the conditional expectations E{X|T −
αTX = u} and E{XXT |T − αTX = u} are twice continuously differentiable
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functions w.r.t. u, except possibly at a finite number of points. The functions
α 7→ fT−αTX(u), α 7→ E{X|T −αTX = u} and α 7→ E{XXT |T −αTX = u}
are continuous functions, for u in the definition domain of the functions and for all
α ∈ Θ. The density of (X, T ) has compact support.

Theorem 2.4.1. Let Assumptions A1-A5 be satisfied and suppose that the covariance
Cov(X, F0(u+ (α−α0)TX)|T −αTX = u) is not identically zero for u in the region
Aε,α, for each α ∈ Θ. Moreover, let α̂1n be defined by a crossing of zero of ψ1ε,n.

(i) [Existence of a root] A crossing of zero α̂1n of ψ1ε,n exists with probability tending
to one.

(ii) [Consistency]

α̂1n
p→ α0, n→∞.

(iii) [Asymptotic normality]
√
n
{
α̂1n − α0

}
is asymptotically normal for n→∞, with

mean zero and variance A−1BA−1, where

A
def= Eε

[
f0(T −αT0X)Cov(X|T −αT0X)

]
,

and

B
def= Eε

[
F0(T −αT0X){1− F0(T −αT0X)}Cov(X|T −αT0X)

]
,

defining Eε(w(X, T,∆)) def= E{1{F0(T−αT0 X)∈[ε,1−ε]}w(X, T,∆)} for functions w
and assuming that A is nonsingular.

Remark 2.4.1. Note that Cov(X, F0(u+(α−α0)TX)|T −αTX = u) is not identically
zero for u in the region {u : ε ≤ Fα(u) ≤ 1− ε} if the conditional distribution of X given
T − αTX = u, is nondegenerate for some u in this region if F0 is strictly increasing on
{u : ε ≤ Fα(u) ≤ 1− ε}.

Due to the discontinuous nature of the profiled log likelihood `n and the score function
ψ1ε,n (see Figure 2.2), the MLE and the estimator defined in Theorem 2.4.1 are not
necessarily unique. The result of Theorem 2.4.1 is valid for any α̂1n satisfying Definition
2.4.1. In the remainder of this thesis we will refer to our estimator defined in Theorem
2.4.1 as the simple score estimator (SSE). In the next section we extend this estimator to
an almost efficient estimator of the finite dimensional regression parameter in the current
status linear regression model; this estimator will be referred to as the efficient score
estimator (ESE).
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2.4.2 Efficient estimates involving the MLE F̂n,α

Recall from Section 1.1.1 that the efficient score function for Model (2.1) is given by

˜̀
α0,F0(x, t, δ) =

{
E(X|T −αT0X = t−αT0 x)− x

}
f0(t−αT0 x)

·
{

δ

F0(t−αT0 x)
− 1− δ

1− F0(t−αT0 x)

}
.

The derivation of the efficient score is given in Section 2.4.5. The idea of the ESE which
we will define below, is to obtain an efficient estimate of the regression parameter by
constructing an estimate that resembles the root of this efficient score function. Since the
function ˜̀

α0,F0 depends on the density f0 of the model, we first introduce an estimate
of fα = F ′α based on the MLE F̂n,α. Smoothing is needed to construct our estimate
due to the discontinuous nature of the MLE F̂n,α.

Let K be a probability density function with derivative K ′ satisfying

(K1) The probability density K has support [-1,1], is twice continuously differentiable
and symmetric on R.

Let h > 0 be a smoothing parameter and Kh respectively K ′h be the scaled versions of
K and K ′ respectively, given by

Kh(·) = h−1K
(
h−1(·)

)
and K ′h(·) = h−2K ′

(
h−1(·)

)
. (2.4.2)

Define the density estimate:

fnh,α(u) def=
∫
Kh(u− w) dF̂n,α(w). (2.4.3)

We consider

ψ2ε,nh(α) def=
∫
F̂n,α(t−αTx)∈[ε,1−ε]

xfnh,α(t−αTx) (2.4.4)

· δ − F̂n,α(t−αTx)
F̂n,α(t−αTx){1− F̂n,β(t−αTx)}

dPn(x, t, δ),

and let, analogously to the SSE introduced in the previous section, α̂2n be the estimate
of α0, defined by a zero-crossing of the score function ψ2ε,nh.

Theorem 2.4.2. Suppose that the conditions of Theorem 2.4.1 hold and that the function
Fα is three times continuously differentiable on the interior of the support Sα. Let α̂2n

be defined by a zero-crossing of ψ2ε,nh. Then, as n→∞, and h � n−1/7,

(i) [Existence of a root] A crossing of zero α̂2n of ψ2ε,nh exists with probability tending
to one.
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(ii) [Consistency]

α̂2n
p→ α0, n→∞.

(iii) [Asymptotic normality]
√
n
{
α̂2n − α0

}
is asymptotically normal for n→∞, with

mean zero and variance Iε(α0)−1, where

Iε(α0) def= Eε
{
f0(T −αT0X)2 Cov(X|T −αT0X)
F0(T −αT0X){1− F0(T −αT0X)}

}
, (2.4.5)

which is assumed to be nonsingular.

A picture of the score function ψ2ε,nh is shown in Figure 2.4. Note that the range on the
vertical axis is considerably larger than the range on the vertical axis of the corresponding
score function ψ1ε,n.
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Figure 2.4: The score functions ψ1ε,n (a) and ψ2ε,nh (b) as functions of α for a sample of size
n = 1, 000 with ε = 0.001 and h = 0.5n−1/7.

2.4.3 Efficient estimates not involving the MLE F̂n,α

So far, we defined estimates which depend on the MLE F̂n,α. In this section we show
that the score approach is also suited for defining efficient estimates that do not depend
on the behavior of the MLE F̂n,α. If one starts from the log likelihood and first plugs-in a
smooth estimate F̃n,α of F in `n(α, F ) then, if F̃n,α is differentiable w.r.t. α, the score
can be constructed as the derivative of α 7→ `n(α, F̃n,α).
Define the plug-in estimate of Fα by

Fnh,α(t−αTx) def=
∫
δKh(t−αTx− u+αTy) dPn(y, u, δ)∫
Kh(t−αTx− u+αTy) dGn(y, u)

, (2.4.6)
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where Gn is the empirical distribution function of the pairs (Xi, Ti), 1 ≤ i ≤ n and where
Kh is again a scaled version of a probability density function K, satisfying condition (K1).
The plug-in estimates are not necessarily monotone but we show in Theorem 2.4.4 that
Fnh,α is monotone with probability tending to one as n→∞ and α→ α0. Another way
of writing Fnh,α is in terms of ordinary sums. Let

gnh,1,α(t−αTx) def= 1
n

n∑
i=1

∆iKh(t−αTx− Ti +αTXi),

and

gnh,α(t−αTx) def= 1
n

n∑
i=1

Kh(t−αTx− Ti +αTXi),

then

Fnh,α(t−αTx) = gnh,1,α(t−αTx)
gnh,α(t−αTx) =

∑n
i=1 ∆iKh(t−αTx− Ti +αTXi)∑n
i=1Kh(t−αTx− Ti +αTXi)

,

in which we recognize the Nadaraya-Watson statistic (Nadaraya, 1964 and Watson, 1964).
One could also omit the diagonal term j = i in the sums above when estimating
Fnh,α(Ti − αTXi) which is often done in the econometric literature (see e.g. Härdle
et al. (1993)). In our computer experiments however, this gave an estimate of the distri-
bution function which had a more irregular behavior than the estimator with the diagonal
term included.
If we replace F in the truncated log likelihood `ε,n defined in (2.1.3) by Fnh,α, the
truncated log likelihood becomes a function of α only. Although the log likelihood has
discontinuities if we consider the lower and upper boundaries F−1

nh,α(ε) and F−1
nh,α(1− ε)

of the integral as a function of α, an asymptotic representation of the partial derivatives
of the truncated log likelihood is given by the score function

ψ3ε,nh(α) (2.4.7)

def=
∫
Fnh,α(t−αTx)∈[ε,1−ε]

∂αFnh,α(t−αTx){δ − Fnh,α(t−αTx)}
Fnh,α(t−αTx){1− Fnh,α(t−αTx)} dPn(x, t, δ),

where the vector of partial derivatives of the plug-in estimate Fnh,α(t−αTx), given by
(2.4.6), w.r.t. α has the following form:

∂αFnh,α(t−αTx)

=
∫

(y − x){δ − Fnh,α(t−αTx)}K ′h(t−αTx− u+αy) dPn(y, u, δ)
gnh,α(t−αTx) .
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From here onwards, we will use the notation ∂α to denote the d-dimensional vector of
partial derivatives given by

∂αh(α) =
(
∂h

∂α1
(α), . . . , ∂h

∂αd
(α)
)T

,

for functions h : Θ 7→ R. For functions h : Θ 7→ Rm, ∂αh denotes the corresponding
Jacobian matrix of the map h.
We define the plug-in estimator α̂3n of α0 by

ψ3ε,nh(α̂3n) = 0. (2.4.8)

A picture of the truncated log likelihood α 7→ `n,ε(α, Fnh,α) and score function ψ3ε,nh

for the plug-in method is shown in Figure 2.5. Since Fnh,α(t − αTx) is continuous, we
no longer need to introduce the concept of a zero-crossing to ensure existence of the
estimator and we can work with the zero of the score function ψ3ε,nh instead. Our main
result on the plug-in estimator is given below.
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Figure 2.5: The truncated profile log likelihood lε,n for the plug-in Fnh,α (a) and the score
function ψ3ε,nh (b) as a function of α for a sample of size n = 1, 000 with ε = 0.001 and
h = 0.5n−1/5.

Theorem 2.4.3. If Assumptions A1-A5 hold and

− (α−α0)T
∫
Fα(t−αTx)∈[ε,1−ε]

∂αFα(t−αTx){F0(t−αT0 x)− Fα(t−αTx)}
Fα(t−αTx){1− Fα(t−αTx)} dG(x, t),

(2.4.9)

is nonzero for each α ∈ Θ except for α = α0, then we get for α̂3n being the plug-in
estimator introduced above, as n→∞, and h � n−1/5:
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(i) [Existence of a root] A point α̂3n, satisfying (2.4.8), exists with probability tending
to one.

(ii) [Consistency]

α̂3n
p→ α0, n→∞.

(iii) [Asymptotic normality]
√
n
{
α̂3n − α0

}
is asymptotically normal for n→∞, with

mean zero and variance Iε(α0)−1 where Iε(α0), defined in (2.4.5), is assumed to
be nonsingular.

Remark 2.4.2. Note that using an expansion in α−α0, we can write ∂αFα(t−αTx)
as ∫

(y − x)f0(t−αT0 x+ (α−α0)T (y − x))fX|T−αTX(y|t−αTx)dy

+
∫
F0(t−αT0 x+ (α−α0)T (y − x))∂αfX|T−αTX(y|t−αTx) dy

= f0(t−αTx)E
{
X − x|T −αTX = t−αTx

}
+O(α−α0)

so that the integral defined in (2.4.9) can be approximated by

− (α−α0)T
∫
Fα(u)∈[ε,1−ε]

f0(u)E
{
X − x|T −αTX = u

}
· F0(u+ (α−α0)Tx)− Fα(u)

Fα(u){1− Fα(u)} fX|T−αTX(x|u) dx du

=
∫
Fα(u)∈[ε,1−ε]

f0(u)Cov((α−α0)TX, F0(u+ (α−α0)TX)|T −αTX = u)
Fα(u){1− Fα(u)} du,

which is positive by the monotonicity of F0 (see also the discussion in Li and Zhang (1998)
about this covariance and the proof of Lemma 2.4.1 given in Appendix A, Section A.2).
Figure 2.6 shows the integral in (2.4.9) for our simulation model for α ∈ [0.45, 0.55] and
illustrates that this integral is strictly positive except for α = α0 = 0.5, which is a crucial
property for the proof of the consistency of the plug-in estimator given in Appendix A,
Section A.4.

We also have the following results for the plug-in estimator.

Theorem 2.4.4. Let the conditions of Theorem 2.4.3 be satisfied, then we have on each
interval I contained in the support of fα and for each α ∈ Θ:

P {Fnh,α is monotonically increasing on I} p−→ 1.
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Figure 2.6: The integral defined in (2.4.9), as a function of α, with ε = 0.001.

The proof of Theorem 2.4.4 follows from the asymptotic monotonicity of the plug-in
estimate in the classical current status model (without regression parameters) and is
proved in the same way as Theorem 3.3 of Groeneboom et al. (2010).

Theorem 2.4.5. Let the conditions of Theorem 2.4.3 be satisfied. Then, for α̂3n being
the plug-in estimator of α0,

√
n(α̂3n −α0) = n−1/2Iε(α0)−1

∑
i∈JF0

f0(Ti −αT0Xi){E(Xi|Ti −αT0Xi)−Xi}

· ∆i − F0(Ti −αT0Xi)
F0(Ti −αT0Xi){1− F0(Ti −αT0Xi)}

+ op(1).

where JH = {i : ε ≤ H(Ti −αT0Xi) ≤ 1− ε} for some function H.

The representation of Theorem 2.4.5 plays an important role in determining the variance
of smooth functionals, of which the intercept

∫
u dF0(u) is an example. The proof of

Theorem 2.4.5 is given in Appendix A, Section A.4.1. A similar representation holds for
the estimators defined in Theorem 2.4.1 and Theorem 2.4.2 (see the proofs of Theorem
2.4.1 and 2.4.2 given in Appendix A, Sections A.2 and A.3 respectively).

Remark 2.4.3. The plug-in method also suggests the use of U-statistics. By straightfor-
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ward calculations, we can write the score function defined in (2.4.7) as

ψ3ε,nh(α) = 1
n2

∑
i∈JFnh,α

∂αFnh,α(Ti −αTXi)
{

∆i − Fnh,α(Ti −αTXi)
}

Fnh,α(Ti −αTXi){1− Fnh,α(Ti −αTXi)}

= 1
n2

∑
i∈JFnh,α

∑
j 6=i

∆i∆j(Xj −Xi)K ′h(Ti −αTXi − Tj +αTXj)
gnh,1,α(Ti −αTXi)

+ 1
n2

∑
i∈JFnh,α

∑
j 6=i

(1−∆i)(1−∆j)(Xj −Xi)K ′h(Ti −αTXi − Tj +αTXj)
gnh,0,α(Ti −αTXi)

− 1
n2

∑
i∈JFnh,α

∑
j 6=i

(Xj −Xi)K ′h(Ti −αTXi − Tj +αTXj)
gnh,α(Ti −αTXi)

, (2.4.10)

where gnh,0,α = gnh,α − gnh,1,α. Each of the three terms on the right-hand side of
(2.4.10) can be rewritten in terms of a scaled second order U-statistic. A proof based
on U-statistics requires lengthy and tedious calculations which are avoided in the current
approach for proving Theorem 2.4.3. The representation given in Theorem 2.4.5 also
indicates that the U-statistics representation does not give the most natural approach to
the proof of asymptotic normality and efficiency of α̂3n. For these reasons, we do not
further examine the results on U-statistics.

Remark 2.4.4. We propose the bandwidths h � n−1/7 respectively h � n−1/5 in Theo-
rem 2.4.2 respectively Theorem 2.4.3, which are the usual bandwidths with ordinary second
order kernels for the estimates of a density respectively distribution function. Unfortu-
nately, various advices are given in the literature on what smoothing parameters should be
used. Klein and Spady (1993) have fourth order kernels and use bandwidths between the
orders n−1/6 and n−1/8 for the estimation of F . Note that the use of fourth order kernels
needs the associated functions to have four derivatives in order to have the desired bias
reduction. Cosslett (2007) advises a bandwidth h such that n−1/5 � h � n−1/8. Both
ranges are considerably large and exclude our bandwidth choice h � n−1/5. Murphy et al.
(1999) considers a penalized maximum likelihood estimator where the penalty parameter
λn satisfies 1/λn = Op

(
n2/5) and λ2

n = op
(
n−1/2). Translating this into bandwidth

choice (using hn �
√
λn), the conditions correspond to: n−1/5 . h � n−1/8, suggest-

ing that their conditions do allow the choice h � n−1/5 for estimating the distribution
function.

2.4.4 Truncation

We introduce a truncation device in order to avoid unbounded score functions and
numerical difficulties. If one starts with the efficient score equation or an estimate
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thereof, the solution sometimes suggested in the literature is to add a constant cn,
tending to zero as n→∞, to the factor F (t− αT ){1− F (t− αTx)} which inevitably
will appear in the denominator. This is done in, e.g. Li and Zhang (1998); similar ideas
involving a sequence (cn) are used in Klein and Spady (1993) and Cosslett (2007).

In contrast with the usual approaches to deal with truncation, which imply the selection
of a suitable sequence cn, we do not consider a vanishing truncation sequence but work
with a subsample of the data depending on the ε and (1− ε) quantiles of the distribution
function estimate for small but fixed ε ∈ (0, 1/2). This simple device in (2.1.3) moreover
implies keeping the characterizing properties of the MLE (see Proposition 1.1 on p. 39 of
Groeneboom and Wellner (1992)) which are lost when a vanishing sequence is considered.
It is perhaps somewhat remarkable that we can, instead of letting ε ↓ 0, fix ε > 0 and still
have consistency of our estimators; on the other hand, the estimate proposed by Murphy
et al. (1999) is also identified via a subset of the support of the distribution F0.
Although the truncation area depends on α, we show in Appendix A, Section A.2 (see
the proof of Theorem 2.4.1) that the population version of the score function, given by

ψε(α) =
∫
Fα(t−αTx)∈[ε,1−ε]

φ(x, t, δ){δ − Fα(t−αTx)}dP0(x, t, δ), (2.4.11)

has a derivative at α = α0 that only involves the derivative of the integrand in (2.4.11),
but does not involve terms arising from the truncation limits appearing in the integral.
Using the truncation in the maximum log likelihood approach would not lead to a
derivative of the population version of the log likelihood which ignores the boundaries
and therefore this truncation is less suited for argmax estimators.

A drawback of our fixed truncation parameter approach is that we get truncated
information. The resulting estimates are therefore not efficient in the classical sense of
efficiency but the difference between the efficient variance and almost (determined by
the size of ε) efficient variance is rather small in our simulation models. A derivation
of the efficient information for the semiparametric current status linear regression
model is given in Section 2.4.5. We also tried to program the fully efficient esti-
mators proposed by Li and Zhang (1998) and compared their performance to the
performance of our almost-efficient estimators. The comparison showed that our
estimates perform better in finite samples. Moreover, the estimates by Li and Zhang
(1998) involve several kernel density estimates (based on 5 double summations over the
data points), resulting in a very large computation time compared to our simple estimates.

The usual conditions in the theory of estimation of F0 under current status and,
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more generally, interval censored data are that F0 corresponds to a distribution with
compact support. Otherwise, certain variances easily get infinite, and similarly, the Fisher
information in our model can easily become infinite. Truncating by keeping the quantiles
between ε and 1 − ε avoids difficulties in this case and allows us to apply the theory
which presently has been developed for the current status model.

Note that the score function defined in (2.4.1) does not contain a factor F (t − αTx)
or 1− F (t− αTx) in the denominator. For simplicity of the proofs, we still impose the
truncation area, since the classical results for the current status model are derived under
the assumption that the density f0 is bounded away from zero . We conjecture however
that the result of Theorem 2.4.1 remains valid when taking ε = 0.

2.4.5 Efficient information in the current status linear regression
model

In this section we give the efficiency calculations for the current status linear regression
model. The density of one observation in the current status linear regression model is

pα,F (x, t, δ) = F
(
t−αTx

)δ {1− F
(
t−αTx

)}1−δ
fX,T (x, t).

We assume that the distribution of (X, T ) does not depend on (α, F ) which implies that
the relevant part of the log likelihood is given by

ln(α, F ) =
n∑
i=1

[
∆i logF (Ti −αTXi) + (1−∆i) log{1− F (Ti −αTXi)}

]
.

If the distribution F is known (parametric case), the information IP for α is given by

IP (α) = E
(

(∂α log pα,F (X, T,∆)) (∂α log pα,F (X, T,∆))T
)
.

Straightforward calculations yield that

IP (α)ij =
∫

E(XiXj |T −αTX = u)
F (u){1− F (u)} f(u)2fT−αTX(u) du,

where f = F ′ and where fT−αTX is the density of T −αTX. When F is unknown, we
need to calculate the efficient score function. Let F and P0 be the probability measures
of ε and (X, T,∆) respectively and let L0

2(Q) be the Hilbert space of square integrable
functions a with respect to the measure dQ satisfying

∫
adQ = 0. The score operator

lF : L0
2(F ) 7→ L0

2(P0) is defined by

[lFa](x, t, δ) = E
(
a(ε)|(X, T,∆) = (x, t, δ)

)
=
δ
∫ t−αTx
−∞ a(s)dF (s)
F (t−αTx) −

(1− δ)
∫ t−αTx
−∞ a(s)dF (s)

1− F (t−αTx) ,
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with adjoint,

[l∗F b](e) = E (b(X, T,∆)|ε = e) .

The information I for α in the semi-parametric model is defined by

I(α) def= E
(˜̀
α,F (X, T,∆)˜̀

α,F (X, T,∆)T
)
,

where ˜̀
α,F (x, t, δ) is the efficient score function defined by

˜̀
α,F (x, t, δ) = `α(x, t, δ)− [`Fa∗](x, t, δ),

where

`α(x, t, δ) = ∂α log pα,F (x, t, δ) = −δxf(t−αTx)
F (t−αTx) + (1− δ)xf(t−αTx)

1− F (t−αTx) ,

and `Fa∗ satisfies

`∗F `Fa∗ = `∗F `α. (2.4.12)

The efficient score ˜̀
α,F can be interpreted as the residual of `α projected in the space

spanned by `Fa for a ∈ L0
2(F ). Note that, as a consequence of (2.4.12), the efficient

information equals

I(α) = E
(˜̀
α,F (X, T,∆)`α(X, T,∆)T

)
.

To find a∗, we have to solve (2.4.12):

`∗F `Fa∗(e) =
∫ ∞
e

φ(u)
F (u)fT−αTX(u) du−

∫ e

−∞

φ(u)
1− F (u)fT−αTX(u) du

= −
∫ +∞

e

E(X|T −αTX = u)f(u)
1− F (u) fT−αTX(u) du

+
∫ e

−∞

E(X|T −αTX = u)f(u)
1− F (u) fT−αTX(u) du

= `∗F `α(e), (2.4.13)

where φ(t) =
∫ t
−∞ a(s)dF (s). Equation (2.4.13) is satisfied with

φ(u) = −E(X|T −αTX = u)f(u).

Any a∗ that satisfies the above equation satisfies (2.4.12) and we get

˜̀
α,F (x, t, δ) =

{
E(X|T −αTX = t−αTx)− x

}
f(t−αTx)

·
{

δ

F (t−αTx) −
1− δ

1− F (t−αTx)

}
,
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and
I(α)ij =

∫ Cov(Xi, Xj |T −αTX = u)
F (u){1− F (u)} f(u)2fT−αTX(u) du. (2.4.14)

Note that I(α)−1−IP (α)−1 equals the minimal increase of the variance of an estimator
of α based on an unknown F (semi-parametric case) compared to the situation where F
is known (parametric). In our simulation example IP (α) = 26.3667 and I(α) = 6.5917.

2.5 Estimation of the intercept

We want to estimate the intercept in model (2.1.1) defined by

µ0 =
∫
u dF0(u). (2.5.1)

We can replace F0 in the expression above by the plug-in estimate Fnh,α̂3n where α̂3n is
the plug-in estimator of α0 defined in (2.4.8). However, to avoid bias in estimating µ0,
we have to estimate F0 with a smaller bandwidth h, satisfying h � n−1/4, for example
h � n−1/3. The matter is discussed in Cosslett (2007), p. 1253.
We have the following result of which the proof can be found in Appendix A, Section
A.4.2.

Theorem 2.5.1. Let the conditions of Theorem 2.4.3 be satisfied, and let α̂3n be the
d-dimensional estimate of α0 as obtained by the score procedure, described in Theorem
2.4.3, using a bandwidth of order n−1/5. Let Fnh,α̂3n be a plug-in estimate of F0, using
α̂3n as the estimate of α0, but using a bandwidth h of order n−1/3 instead of n−1/5.
Finally, let µ̂n be the estimate of µ0, defined by

µ̂n
def=
∫
u dFnh,α̂3n(u).

Then
√
n(µ̂n − µ0) is asymptotically normal, with expectation zero and variance

σ2 = a(α0)′Iε(α0)−1 a(α0) +
∫
F0(v){1− F0(v)}
fT−αT0 X(v) dv, (2.5.2)

where a(α0) is the d-dimensional vector, defined by

a(α0) def=
∫

E{X|T −αT0X = u}f0(u) du,

and Iε(α0) is defined in (2.4.5).

Remark 2.5.1. We choose the bandwidth of order n−1/3, but other choices are also
possible. We can in fact choose n−1/2 � h� n−1/4 (see the proof of Theorem 2.5.1 in
Appendix A, Section A.4.2). The bandwidth of order n−1/3 corresponds to the automatic
bandwidth choice of the MLE of F0, also using the estimate α̂3n of α0.
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Remark 2.5.2. Note that the variance corresponds to the information lower bound for
smooth functionals in the binary choice model, given in Cosslett (2007). The second part
of the expression for the variance on the right-hand side of (2.5.2) is familiar from current
status theory, see e.g. (10.7), p. 287 of Groeneboom and Jongbloed (2014).

Instead of considering the plug-in estimate, we could also consider the SSE or ESE. After
having determined an estimate α̂n in this way, we next estimate µ0 by

µ̂n =
∫
u dF̂n,α̂n(u), (2.5.3)

where F̂n,α̂n is the MLE corresponding to the estimate α̂n. The theoretical justification
of this approach can be proven using the asymptotic theory of smooth functionals given in
Groeneboom and Jongbloed (2014), p.286. Using the MLE F̂n,α̂n instead of the plug-in
Fnh,α̂n as an estimate of the distribution function F0, avoids the selection of a bandwidth
parameter for the intercept estimate. We discuss in the next section how the bandwidth
can be selected by the practitioner in a real data sample.

2.6 Computation and simulations

The computation of our estimates is relatively straightforward in all cases. For the SSE
and the ESE, we first compute the MLE for fixed α by the so-called “pool adjacent
violators” algorithm of Ayer et al. (1955) for computing the convex minorant of the
corresponding cumulative sum diagram. If the MLE has been computed for fixed α, we
can compute the density estimate fnh. The estimate of α0 is then determined by a
root-finding algorithm such as Brent’s method. Computation is very fast. For the plug-in
estimate, we simply compute the estimate Fnh,α as a ratio of two kernel estimators for
fixed α and then compute the derivative w.r.t. α. Next we use again a root-finding
algorithm to determine the zero of the corresponding score function.

Some results from the simulations of our model are available in Table 2.1, which contains
the mean value of the estimate, averaged over N = 10, 000 iterations, and n times the
variance of the estimate of α0 = 0.5 (respectively µ0 = 0.5) for the different methods
described above, as well as for the classical MLE of α0, for different sample sizes n and
a truncation parameter ε = 0.001. We took the bandwidth h = 0.5n−1/7 for the ESE in
Section 2.4.1. The bandwidth h = 0.5n−1/5 for the plug-in estimate of Section 2.4.3
was chosen based on an investigation of the mean squared error (MSE) for different
choices of c in h = cn−1/5. Details on how to choose the bandwidth in practice are
given in Section 2.7. The true asymptotic values for the variance of

√
n(α̂n − α0) in
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our simulation model, obtained via the inverse of the information Iε(α0), are 0.151707
without truncation and 0.158699 for ε = 0.001 and 0.17596 for ε = 0.01. We advise
to use a truncation parameter ε of 0.001 or smaller in practice. The variance defined
in Theorem 2.4.1 for ε = 0.001 is 0.193612. The lower bounds for the variance of
the intercept are 0.257898 for the simple score method and 0.222984 for the efficient
methods. Our results show convergence to these bounds.

Table 2.1 shows that the ESE and the plug-in estimates perform reasonably well.
A drawback of the plug-in method however is the long computing time for large sample
sizes, whereas the computation for the MLE-based estimates is fast even for the larger
samples. Note moreover that the plug-in estimate of the distribution function is only
asymptotically monotone whereas the MLE is monotone by definition. All our proposed
estimates perform better than the classical MLE. The log likelihood for the MLE has a
rough behavior, with a larger chance that optimization algorithms might calculate a local
maximizer instead of the global one.

The performance of the score estimates is worse than the performance of the plug-in
estimates for small sample sizes but increases considerably when the sample size increases.
Although the asymptotic variance of the SSE is larger than the almost (determined by
the truncation parameter ε) efficient variance, the results obtained with this method are
noteworthy seen the fact that no smoothing is involved in this simple estimation technique.

Table 2.1 does not provide strong evidence of/against the
√
n-consistency of the

classical MLE. Considering the drawbacks of the classical MLE, we advise the use of the
plug-in estimate for small sample sizes and the use of the score estimates, based on the
MLE, for larger sample sizes, for estimating the parameter α0. We finally suggest to
estimate the parameter µ0 via the MLE corresponding to this α0 estimate, avoiding in
this way the bias problem for the kernel estimates of µ0.

2.7 Bandwidth selection

In this section we discuss the bandwidth selection for the plug-in estimate. A similar idea
can be used for the selection of the bandwidth used for the second estimate defined in
Section 2.4.2. We define the optimal constant copt in h = cn−1/5 as the minimizer of the
mean squared error (MSE),

copt = arg min
c
MSE(c) def= arg min

c
E‖α̂n,hc −α0‖2,
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Table 2.1: The mean value and n times the variance of the estimates of α0 and µ0 for the
simple score estimator (SSE), the efficient score estimator (ESE), the plug-in estimator (plug-in)
and the maximum likelihood estimator (MLE) for different sample sizes n. hα = 0.5n−1/7 (for
the ESE) and hα = 0.5n−1/5, hµ = 0.75n−1/3 (for the plug-in), ε = 0.001 and N = 10, 000.
The line, preceded by ∞, gives the asymptotic values.

SSE ESE Plug-in MLE
n mean n×var mean n×var mean n×var mean n×var

α 100 0.500212 0.364558 0.502247 0.410449 0.499562 0.245172 0.489690 0.307961
500 0.499845 0.221484 0.499825 0.230178 0.498857 0.191857 0.499315 0.228335
1,000 0.499982 0.211608 0.500353 0.208102 0.499502 0.192223 0.499937 0.228420
5,000 0.499901 0.195294 0.499964 0.184807 0.500314 0.181421 0.499933 0.239898
10,000 0.499988 0.191115 0.499985 0.172758 0.500120 0.172043 0.499994 0.227222
20,000 0.500038 0.187616 0.500023 0.169762 0.500096 0.174197 0.499952 0.238400
∞ 0.500000 0.193612 0.500000 0.158699 0.500000 0.158699 0.500000 ?

µ 100 0.511937 0.468415 0.509679 0.515638 0.495709 0.332949 0.523103 0.425614
500 0.502258 0.293585 0.502506 0.287576 0.498932 0.254040 0.502514 0.304540
1,000 0.500839 0.284958 0.500616 0.262684 0.498385 0.270085 0.500937 0.300201
5,000 0.500345 0.262566 0.500316 0.244892 0.501597 0.241294 0.500270 0.303754
10,000 0.500127 0.256983 0.500134 0.232973 0.501680 0.245993 0.500076 0.289905
20,000 0.500020 0.250720 0.500042 0.230901 0.501660 0.244042 0.500101 0.302824
∞ 0.500000 0.257898 0.500000 0.222984 0.500000 0.222984 0.500000 ?

where α̂n,hc is the estimate α̂3n obtained when the constant c in h = cn−1/5 is chosen
in the estimation method. A picture of the Monte Carlo estimate of MSE as a function
of c is shown for the plug-in method in Figure 2.7, where we estimated MSE(c) on a grid
c = 0.01, 0.05, 0.10, · · · , 0.95, for a sample size n = 1, 000 and truncation parameter
ε = 0.001 by a Monte Carlo experiment with N = 1, 000 simulation runs,

M̂SE(c) = N−1
N∑
j=1
‖α̂jn,hc −α0‖2, (2.7.1)

where α̂jn,hc is the estimate of α0 in the j-th simulation run, 1 ≤ j ≤, N .
Since F0 and α0 are unknown in practice, we cannot compute the actual MSE. We use
the bootstrap method proposed by Sen and Xu (2015) to obtain an estimate of MSE.
Our proposed estimate Fnh,α of the distribution function F0 satisfies the conditions of
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Theorem 3 in Sen and Xu (2015) and the consistency of the bootstrap is guaranteed.
Note that it follows from Kosorok (2008) and Sen et al. (2010) that naive bootstrapping,
by resampling with replacement (Xi, Ti,∆i), or by generating bootstrap samples from
the MLE, is inconsistent for reproducing the distribution of the MLE.
The method works as follows. We let h0 = c0n

−1/5 be an initial choice of the band-
width and calculate the plug-in estimates α̂n,h0 and Fn,hc0

based on the original sample
(Xi, Ti,∆i), 1 ≤ i ≤ n. We generate a bootstrap sample (Xi, Ti,∆∗i ), 1 ≤ i ≤ n where
the (Xi, Ti) correspond to the (Xi, Ti) in the original sample and where the indicator
∆∗i is generated from a Bernoulli distribution with probability Fn,h0(Ti − α̂Tn,h0

Xi), and
next estimate α̂∗n,hc from this bootstrap sample. We repeat this B times and estimate
MSE(c) by

M̂SEB(c) = B−1
B∑
b=1
‖α̂∗bn,hc − α̂n,hc0

‖2, (2.7.2)

where α̂∗bn,hc is the bootstrap estimate in the b-th bootstrap run. The optimal bandwidth
ĥopt = ĉoptn

−1/5 where ĉopt is defined as the minimizer of M̂SEB(c).

We analyze the behavior of the bootstrap method for the simulation model of Section 2.6
in Figure 2.7. We compare the Monte Carlo estimate of MSE, defined in (2.7.1), (based
on N = 1, 000 samples of size n = 1, 000) to the bootstrap MSE defined in (2.7.2) (based
on a single sample of size n = 1, 000 with B = 10, 000). Figure 2.7 shows that the Monte
Carlo MSE and the bootstrap MSE are in line, which illustrates the consistency of the
method. The choice of the initial bandwidth does affect the size of the estimated MSE
but not the behavior of the estimate and we conclude that this bootstrap algorithm can
be used to select an optimal bandwidth parameter in the previously described method.

2.8 Illustration of the limit function Fα

In order to better understand the behavior of the limit function Fα defined in (2.3.1)
we calculate the analytical expression for the function Fα in several models of the type
(2.1.1). We consider the following one dimensional scenarios:

A. X,T ∼ U [0, 2], f0(e) = 384(e− 3/8)(5/8− e)1[3/8,5/8](e) and α0 = 0.5.

B. X,T ∼ U [0, 2], f0(e) = exp(−e)
exp(−3/8)−exp(−3/5) (truncated exponential on [3/8,5/8],

denoted by Exp[3/8,5/8]) and α0 = 0.5.

C. X,T ∼ Exp[0,20],ε ∼ U [5, 10] and α0 = 1.

D. X,T ∼ Exp[0,20],ε ∼Exp[5,10] and α0 = 1.
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Figure 2.7: Estimated MSE(c) plot of α̂3n obtained from N = 1, 000 Monte Carlo simulations
(red, solid) and the bootstrap MSE for c0 = 0.25 (blue, dashed) with B = 10, 000, n = 1, 000
and ε = 0.001.

Scenario A corresponds to the simulation model of Section 2.6. We consider two
different distributions (with compact support) for the observed variables X and T . The
corresponding densities of the variables T −αX for different values of α is given in Figure
2.8a for uniform random variables X and T and in Figure 2.8b for truncated exponential
random variables X and T . Figure 2.8 shows that the density fT−αX is continuous
and staying away from zero on the support of f0 such that Assumption A3 given in
Section 2.4.1 is satisfied in all four scenarios A-D. The above densities are moreover
twice continuously differentiable except at a finite number of points and therefore Figure
2.8 also illustrates the plausibility of Assumption A5.

For each scenario we show figures of Fα for α in a neighborhood of α0 in Figure 2.9.
The function Fα is monotone and twice continuously differentiable with a strictly positive
derivative on a truncated interval determined by the support of f0 for each α considered in
Figure 2.9. The function Fα converges to F0 if the distance between α and α0 decreases
and we conclude that the assumptions in Section 2.4.1 are plausible, in especially for
α→ α0.
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(a) (b)

Figure 2.8: The density fT−αX for (a) X,T∼U [0, 2] and α = α0 = 0.5 (red, solid), α = −1
(blue, dashed) and α = 2 (black, dashed-dotted) and (b) X,T ∼ Exp[0,20] and α = α0 = 1
(red, solid), α = 0 (blue, dashed) and α = −1 (black, dashed-dotted)
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(a) (b)

(c) (d)

Figure 2.9: The function Fα for (a-b) scenario A and B with α = α0 = 0.5 (red, solid),
α = 0.505 (blue, dashed) and α = 0.45 (black, dashed-dotted) and (c-d) scenario C and D with
α = α0 = 1 (red, solid), α = 1.25 (blue, dashed) and α = 0.85 (black, dashed-dotted)



Chapter 3
Bootstrap procedures under
current status data

Abstract

We study the behavior of two different bootstrap algorithms in the current status model and
develop bootstrap procedures for constructing pointwise confidence intervals (CIs) for the distri-
bution function F0 of Y based on censored observations (T1,∆1), . . . , (Tn,∆n) from the random
vector (T,∆ = 1{Y≤T}). In the first approach, we consider a smooth bootstrap procedure that is
based on only resampling the censoring indicators ∆i from a Bernoulli distribution with probability
F̃nh(Ti), where F̃nh is the smoothed maximum likelihood estimator (SMLE) of the distribution
function F0. In the second approach we consider the nonparameteric bootstrap proposed by
Efron (1979).

Asymptotic results show that, given the data, the L2−distance between the bootstrap MLE and
the underlying distribution function is of order n−1/3. This result is in particular noteworthy for
the nonparametric bootstrap given the fact that this bootstrap is inconsistent for generating the
distribution of the MLE.

We construct pointwise CIs around the SMLE and prove the validity of interval estimation in
the current status linear regression model for both bootstrap procedures. A comparison of both
methods through simulation studies does not reveal a clear preference for one of both bootstrap
approaches. The bandwidth parameter used in the smoothing procedure has a considerable
influence on the behavior of the CIs. We show that a data-driven bandwidth parameter based
on minimizing the mean squared error in combination with undersmoothing results in CIs with
good coverage properties.

47
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3.1 The MLE and the SMLE under current status data

Let Z1 = (T1,∆1), . . . , Zn = (Tn,∆n) be the i.i.d. sample from the current status model
described in Section 1.1 where the Yi are interpreted as (nonnegative) survival times
with distribution function F0 and, instead of observing Y , a censoring variable T ∼ G

is observed (with density g) independent of Y . We denote the probability measure of
Z = (T,∆) by P0. The density of Z is given by

pF0(t, δ) = [δF0(t) + (1− δ){1− F0(t)}] g(t).

An important property of the MLE, defined in (1.1.2) as the maximizer of the log likelihood
over all possible distribution functions, is the so-called switch relation: Let Gn be the
empirical distribution function of T1, . . . , Tn and define the process Vn by

Vn(t) def= 1
n

n∑
i=1

∆i1{Ti≤t}, (3.1.1)

and the process Un by

Un(a) def= argmin{t ∈ R : Vn(t)− aGn(t)}. (3.1.2)

Then we get the switch relation

F̂n(t) ≥ a ⇐⇒ Un(a) ≤ t, (3.1.3)

see also Figure 3.1. As a consequence of the switch relation, the study of the MLE F̂n can
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Figure 3.1: The switch relation.

be reduced to the study of the inverse process Un, taking a = F0(t). From Groeneboom
and Jongbloed (2014) we have the following result:

Theorem 3.1.1 (Groeneboom and Jongbloed, 2014, Theorem 11.3). Suppose F0 has a
continuous density f0 with support [0,M] that satisfies,

0 < inf
t∈[0,M ]

f0(t) < sup
t∈[0,M ]

f0(t) <∞.
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Also suppose that the observation distribution G has a continuous derivative g that stays
away form zero and infinity on [0,M ]. Let Un be defined by (3.1.2) and let

U0(a) def= F−1
0 (a),

for every a ∈ [0, 1]. Then there are positive constants K1 and K2, such that, for all
a ∈ (0, 1) and for all x > 0,

P0

{
n1/3 |Un(a)− U0(a)| ≥ x

}
≤ K1e

−K2x
3
. (3.1.4)

It follows from Theorem 3.1.1 and the switch relation (3.1.3) that there exists a positive
constant K > 0 such that

E
∣∣∣F̂n(t)− F0(t)

∣∣∣p ≤ Kn−p/3 for all t ∈ (0,M). (3.1.5)

This can be seen by nothing that

E
[
n1/3{F̂n(t)− F0(t)}+

]p
=
∫ ∞

0
P0

{
n1/3{F̂n(t)− F0(t)} ≥ x

}
pxp−1dx,

where {F̂n(t)− F0(t)}+ denotes the positive part of {F̂n(t)− F0(t)} and that

P0

{
Un

(
a+ n−1/3x

)
≤ t
}

= P0

[
n1/3

{
Un

(
a+ n−1/3x

)
− U0

(
a+ n−1/3x

)}
≤ n1/3

{
t− U0

(
a+ n−1/3x

)}]
.

In this chapter we show that a result analogous to the result of Theorem 3.1.1 holds in
a bootstrap sample obtained from the original sample Z1, . . . , Zn. In Section 3.2 and
Section 3.3 we consider two bootstrap samples, generated by the smooth respectively
nonparametric bootstrap (See Section 1.1.2) and we show how this result is used in
proving the validity of the bootstrap for constructing pointwise CIs for the distribution
function F0(t) when t is an interior point of [0,M ]. We estimate F0(t) by the Smoothed
MLE obtained by first estimating the MLE F̂n and then smoothing this using a smoothing
kernel, i.e.

F̃nh(t) def=
∫

K
(
t− x
h

)
dF̂n(x), (3.1.6)

for some bandwidth h > 0, where K is the integrated kernel (1.1.6) (see Section 1.1.2).
As argued in Section 11.2 in Groeneboom and Jongbloed (2014), the asymptotic normality
of the SMLE, stated in Theorem 1.1.2, can be proved using that∫ t+h

t−h

{
F̂n(x)− F0(x)

}2
dx = Op(hn−2/3),
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which follows from (3.1.5) and an application of Markov’s inequality. Note that this last
statement does not follow from a global L2-distance of order n−1/3 between the MLE
F̂n and the true distribution function F0 and therefore, it is a refinement of the usual
Hellinger distance calculations.

Similarly to the notations used in the previous Chapter 2, we use the notations Kh and
Kh to denote the scaled versions of K and K respectively, given by

Kh(·) = h−1K(·/h) and Kh(·) = K(·/h).

3.2 Pointwise confidence intervals using the smooth bootstrap

We obtain a bootstrap sample (T1,∆∗1), . . . , (Tn,∆∗n) by keeping the Ti in the original
sample fixed and by resampling the ∆∗i from a Bernoulli distribution with probability
F̃nh(Ti). This procedure is referred to as the smooth bootstrap algorithm. The following
bootstrap 1− α interval is suggested:[

F̃nh(t)− Z∗1−α/2(t), F̃nh(t)− Z∗α/2(t)
]
, (3.2.1)

where Z∗α(t) is the αth quantile of B values of

Znh(t) def= F̃ ∗nh(t)−
∫

Kh(t− u) dF̃nh(u),

where B is the number of bootstrap samples. Here F̃ ∗nh(t) is the SMLE in the bootstrap
sample (T1,∆∗1), . . . , (Tn,∆∗n) defined in the same way as in (3.1.6) but with F̂n replaced
by F̂ ∗n , i.e. the MLE in the bootstrap sample.
We have the following main result:

n2/5
{
F̃ ∗nh(t)−

∫
Kh(t− u) dF̃nh(u)

}
d→ N(0, σ2(t)), (3.2.2)

given the data Z1, . . . , Zn, almost surely along sequences Z1, Z2, . . . , where σ is defined
in Theorem 1.1.2 as

σ2(t) def= F0(t){1− F0(t)}
cg(t)

∫
K(u)2 du. (3.2.3)

The proof of (3.2.2) is given in Appendix B, Section B.1.2 and requires first proving a boot-
strap analogue to result (3.1.4) which we describe in more detail below. We first introduce
the following notations: Let P̃n denote the empirical measure of (T1,∆∗1), . . . , (Tn,∆∗n).
We write

1
n

n∑
i=1

f(Ti,∆∗i ) =
∫
f(u, δ∗) dP̃n(u, δ∗),
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for some bounded function f : [0,M ]× {0, 1} → R. Note that for any bounded function
h : [0,M ]→ R holds that

1
n

n∑
i=1

h(Ti) =
∫
h(u) dP̃n(u, δ∗) =

∫
h(u) dGn(u).

Furthermore, let P̃n (respectively Ẽn) denote the conditional probability measure (respec-
tively conditional expectation), given Z1, . . . , Zn and note that

P̃n (∆∗i = 1) = F̃nh(Ti) 1 ≤ i ≤ n.

We next define the process

Ṽn(t) def= 1
n

n∑
i=1

∆∗i 1{Ti≤t} =
∫
u∈[0,t]

δ∗ dP̃n(u, δ∗),

and the processes
Ũ0(a) def= argmin{t : F̃nh(t) ≥ a},

and
Ũn(a) def= argmin{t ∈ R : Ṽn(t)− aGn(t)}.

We have the following result which is the smooth bootstrap version of Theorem 3.1.1.

Lemma 3.2.1. There are positive constants K̃1 and K̃2, such that, almost surely, for all
x > 0 and all large n we have that

P̃n

{
n1/3 ∣∣Ũn(a)− Ũ0(a)

∣∣ ≥ x} ≤ K̃1e
−K̃2x

3
.

Using the smooth bootstrapped switch relation with an = F̃nh(t),

P̃n

{
n1/3{F̂ ∗n(t)− F̃nh(t)} ≥ x

}
= P̃n

{
Ũn(an + n−1/3x) ≤ t

}
,

we get by Lemma 3.2.1, that there exists a positive constant K̃ such that the indicator
of the set {

∃t ∈ [0,M ] : Ẽn
∣∣∣F̂ ∗n(t)− F̃nh(t)

∣∣∣p > K̃n−p/3
}
,

is zero almost surely.

Note that we subtract the convolution SMLE
∫
Kh(t−u) dF̃nh(u) using the original data

instead of the SMLE F̃nh(t) itself in the definition of Znh(t) due to the bias of the SMLE.
This is in line with the method proposed by Sen and Xu (2015) where the authors subtract
the SMLE instead of the MLE of the original data for constructing CIs around the MLE
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(see Section 1.1.2). One needs to introduce an additional level of smoothing in order to
construct valid intervals using the smooth bootstrap procedure. Note that we can write:∫

Kh(t− u) dF̃nh(u) =
∫

Kh(t− u)
{∫

Kh(u− v)dF̂n(v)
}
du.

=
∫ ∫

K{(t− v)/h− w}K(w) dwdF̂n(v).

In practice we therefore have to compute the convolution kernel K̃, defined by

K̃(x) def=
∫

K(x− w)K(w) dw. (3.2.4)

A picture of the functions K, K and K̃ is given in Figure 3.2 using the triweight kernel
given by

K(u) = 35
32
(
1− u2)3 1[−1,1](u),

and the Epanechnikov kernel given by

K(u) = 3
4 (1− u2)1[−1,1](u).
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Figure 3.2: (a) kernel K, (b) integrated kernel K : x 7→
∫ x
−∞K(w) dw and (c) convolution

kernel K̃ : x 7→
∫
K(x − w)K(w) dw for the triweight kernel K : x 7→ 35

32 (1 − x2)31[−1,1](x)
(black, solid) and Epanechnikov kernel K : x 7→ 3

4 (1− x2)1[−1,1](x) (blue, dashed).

In the remainder of this section, we describe techniques to improve the CIs introduced in
(3.2.1) by (a) considering Studentized CIs through estimation of the variance σ2 in (3.2.3)
and (b) taking into account the boundary effects of the kernel estimates. In practice, one
should also correct for the bias defined in Theorem 1.1.2 when constructing CIs around
the SMLE by considering intervals of the type[

F̃nh(t)− Z∗1−α/2(t)− β(t)n−2/5, F̃nh(t)− Z∗α/2(t)− β(t)n−2/5
]
,
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where

β(t) def= c2f ′0(t)
2

∫
u2K(u) du. (3.2.5)

The boundary issue will be discussed in more detail in Section 3.4 where we will illustrate
how a data-driven bandwidth selection procedure can be used to reduce the bias effect
present in the CIs given in (3.2.1).

3.2.1 Studentized confidence intervals

Usually the performance of the bootstrap CIs works best if one uses a pivot, obtained
by Studentizing. In each bootstrap sample we therefore estimate the variance σ2 defined
in (3.2.3), apart from the factor cg(t), which drops out in the Studentized bootstrap
procedure, by

S∗nh(t) def= n−2
n∑
i=1

Kh(t− Ti)2
(

∆∗i − F̂ ∗n(Ti)
)2
. (3.2.6)

The variance estimate defined in (3.2.6) is inspired by the fact that the SMLE F̃nh is
asymptotically equivalent to the toy estimator

F̃ toynh (t) def=
∫

Kh(t− x) dF0(x) + 1
n

n∑
i=1

Kh(t− Ti){∆i − F0(Ti)}2

g(Ti)
, (3.2.7)

which has sample variance

Sn(t) def= 1
n2

n∑
i=1

Kh(t− Ti)2 (∆i − F0(Ti))2

g(Ti)2 . (3.2.8)

We next compute

Q∗nh(t) def=
F̃ ∗nh(t)−

∫
Kh(t− u) dF̃nh(u)√
S∗nh(t)

.

Let Q∗α(t) be the αth quantile of B values of Q∗nh(t). Then the following bootstrap 1−α
interval is suggested:[

F̃nh(t)−Q∗1−α/2(t)
√
Snh(t), F̃nh(t)−Q∗α/2(t)

√
Snh(t)

]
, (3.2.9)

where Snh(t) is the variance estimate in the original sample obtained by replacing ∆∗i −
F̂ ∗n(Ti) in (3.2.6) by ∆i− F̂n(Ti). Note that we do not need an estimate of the density g
in each of the observations Ti as a consequence of the fact that g(u) is close to g(t) for
u ∈ [t− h, t+ h]. On the contrary, estimation of g is inevitable if one wants to consider
Wald-type CIs for the distribution function based on the asymptotic normality result of
the SMLE. More details of the construction of Wald type CIs in given in the simulations
presented in Section 3.4.
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3.2.2 Boundary correction

It is well-known that kernel density and distribution estimators without boundary correc-
tion are generally inconsistent at the boundary of the support [0,M ]. We therefore use
the boundary correction method proposed in Groeneboom and Jongbloed (2014), and
define the SMLE as

F̃
(bc)
nh (t) def=

∫ {
K
(
t− x
h

)
+ K

(
t+ x

h

)
−K

(
2M − t− x

h

)}
dF̂n(x). (3.2.10)

The boundary corrected version of Z∗nh(t) is defined by

Z
(bc)∗
nh (t) def= F̃

(bc)∗
nh (t)−

∫
{Kh(t− x) + Kh(t+ x)−Kh(2M − t− x)} dF̃ (bc)

nh (x).

It is straightforward to show that the asymptotic normality result (3.2.2) remains valid
under this boundary correction. We also have the following lemma.

Lemma 3.2.2. Let the boundary corrected estimate F̃ (bc)
nh be defined by (3.2.10), and let

K̃h be defined by

K̃h(u) = K̃(u/h), u ∈ R,

where the convolution kernel K̃ is defined by (3.2.4). Moreover, let 0 < h ≤M/3. Then:∫
{Kh(t− x) + Kh(t+ x)−Kh(2M − t− x)} dF̃ (bc)

nh (x)

=
∫ {

K̃h(t− x) + K̃h(t+ x)− K̃h(2M − t− x)
}
dF̂n(x). (3.2.11)

From Lemma 3.2.2, it follows that we can write

Z
(bc)∗
nh (t) =

∫
{Kh(t− x) + Kh(t+ x)−Kh(2M − t− x)} d

(
F̂ ∗n − F̃

(bc)
nh

)
(x)

=
∫
{Kh(t− x) + Kh(t+ x)−Kh(2M − t− x)} dF̂ ∗n(x)

−
∫ {

K̃h(t− x) + K̃h(t+ x)− K̃h(2M − t− x)
}
dF̂n(x).

The proof of Lemma 3.2.2 is given in Appendix B, Section B.1. A picture of the MLE,
together with the SMLE, both corrected and uncorrected for boundary effects is shown in
Figure 3.3a for a sample from the truncated exponential distribution on [0, 2] (See Section
3.4 for a detailed description of the model). Figure 3.3b presents the boundary corrected
and uncorrected convolution SMLE and clearly shows the improvement of the boundary
correction. From this point onwards, we will work with the boundary corrected SMLE and
use the notation F̃nh(t) whenever we refer to the SMLE.
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Figure 3.3: Truncated exponential samples: (a) F0 (black, solid), MLE F̂n (blue, dashed-dotted),
SMLE F̃

(bc)
nh with boundary correction (red, solid) and SMLE F̃nh without boundary correction

(red, dashed) and (b) F0 (black, solid), convolution SMLE with boundary correction (red, solid)
and convolution SMLE without boundary correction (red, dashed); n = 1, 000 and h = 2n−1/5.

3.3 Pointwise confidence intervals using the nonparametric boot-
strap

In this section we consider the nonparametric bootstrap proposed by Efron (1979) and
generate a bootstrap sample (T ∗1 ,∆∗1), . . . , (T ∗n ,∆∗n) by resampling with replacement from
the original sample. Denote the empirical probability measure of Z1, . . . , Zn by Pn. The
bootstrap empirical measure is

P̂n = 1
n

n∑
i=1

Mni1Zi ,

where 1Zi denotes the point mass at Zi = (Ti,∆i) and

Mn = (Mn1, . . . ,Mnn) ∼ multinomial(n, n−1, . . . , n−1),

is a vector of multinomial weights, independent of Z1, . . . , Zn. Let P̂n denote the condi-
tional probability measure w.r.t. the weights given the sample Z1, . . . , Zn and define the
process

Ûn(a) def= argmin{t ∈ [0,M ] : V̂n(t)− aĜn(t)} 0 < a < 1,

with processes V̂n and Ĝn defined by

V̂n(t) def=
∫
u∈[0,t]

δ dP̂n(u, δ) and Ĝn(t) def=
∫
u∈[0,t]

dP̂n(u, δ) t ∈ [0, R]. (3.3.1)
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Lemma 3.3.1. There are positive constants K̂1 and K̂2, such that for all large n we have
that {

∃x ∈ [0,M ] : P̂n
{
n1/3

∣∣∣Ûn(a)− U0(a)
∣∣∣ ≥ x} > K̂1e

−K̂2x
3/2
}

= op(1).

Lemma 3.3.1 implies that the probability that for all x ∈ [0,M ], and a = F0(t),

P̂n

{
n1/3

∣∣∣Ûn(a)− U0(a)
∣∣∣ ≥ x} ≤ K1e

−K2x
3/2
,

tends to 1 as n→∞. The proof of Lemma 3.3.1 is given in Appendix B, Section B.2.1.
The proof uses empirical process theory and results on tail probabilities for ‖

√
n(P̂n −

Pn)‖F for classes F with finite entropy integrals (see van der Vaart and Wellner (1996),
p.81 for the notation ‖ · |‖F ). The analogue results in Theorem 3.1.1 and Lemma 3.2.1
are proved using martingale theory in Section 11.2 of Groeneboom and Jongbloed (2014)
for the original sample and in Appendix B, Section B.1.1 for a smooth bootstrap empirical
process respectively. It follows from Lemma 3.3.1 and the bootstrapped switch relation
given by

P̂n

{
n1/3{F̂ ∗n(t)− F0(t)} ≥ x

}
= P̂n

{
Ûn

(
a+ n−1/3x

)
≤ t
}
,

that there exists a positive constant K̂ > 0 such that,{
∃t ∈ [0,M ] : Ên

∣∣∣F̂ ∗n(t)− F0(t)
∣∣∣p > K̂n−p/3

}
= op(1),

where Ên denotes the conditional expectation given Z1, . . . , Zn.

We now continue with the construction of the pointwise CIs. Let F̃ ∗nh(t) be the boot-
strapped SMLE based on replacing F̂n in (3.1.6) by the bootstrapped MLE F̂ ∗n . Then we
have, using Lemma 3.3.1, the following result

n2/5 {F̃ ∗nh(t)− F̃nh(t)
} d→ N(0, σ2), (3.3.2)

given the data (T1,∆1), . . . , (Tn,∆n), in probability, where σ2 is defined by (3.2.3). The
proof of (3.3.2) is given in Appendix B, Section B.2.2. A bootstrap 100(1−α)% interval
is next given by (3.2.9) with Qα(t) replaced by the αth quantile of B values of

F̃ ∗nh(t)− F̃nh(t)√
S∗nh(t)

,

where S∗nh(t) now represents the variance estimate in the nonparametric bootstrap sample.
Note that, in contrast to the smooth bootstrap method described in Section 3.2, we do
not longer need to estimate the convolution SMLE.
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3.4 Simulations

Two different simulation models are considered in this section to study the finite sample
behavior of the CIs introduced in Section 3.2 and Section 3.3. The effect of the choice of
the kernel function on the performance of the intervals is addressed in the first simulation
study. A comparison between the proposed SMLE-based intervals and the MLE-based
intervals of Banerjee and Wellner (2005) and Sen and Xu (2015) and a discussion of the
construction of Wald-type CIs using the quantiles of the asymptotic normal distribution
of the SMLE is also considered. The bias issues that arise when constructing CIs around
the (biased) SMLE instead of the (unbiased) MLE are illustrated in the second simulation
study. A data-driven bandwidth selection procedure is proposed and undersmoothing the
bandwidth is used to take the bias problems into account.

3.4.1 Simulation study 1: Comparing CIs for the distribution func-
tion under current status data

In the first simulation setting both the event times and censoring times are sampled from
a Uniform(0,2)-distribution. Since the derivative of the uniform density equals zero, the
bias defined in (3.2.5) equals zero thence the SMLE is an unbiased estimate of the uniform
distribution function. No bias correction is needed in the construction of the CIs.
For sample sizes n = 100; 500; 1, 000 and 2, 000 we generated 5, 000 data sets from this
uniform model. The number of bootstrap samples within each simulation run equals
B = 1, 000. We use the bandwidth h = cn−1/5, where the constant c = 2 corresponds to
the length of the interval [0, 2]. Two different choices for the kernel, the triweight kernel
and the Epanechnikov kernel, are considered. The results for our SMLE-based CIs (3.2.9)
and for the MLE-based methods of Banerjee and Wellner (2005) and Sen and Xu (2015)
are compared. Table 3.1 shows the coverage percentage, i.e. the number of times (out
of the 5,000 simulation runs) that F0(t) is in the 95% CIs, and the average length of the
95% CIs around F0(t) for the uniform model and t = 1. For the Studentized SMLE-based
CIs, the results in Table 3.1 correspond to the results for the smooth bootstrap.
For each point t = 0.02, 0.04, . . . , 2, Figure 3.4a presents the proportion of times that
F0(t) is not in the 95% CIs, for the Studentized SMLE-based CIs obtained with the smooth
bootstrap procedure (3.2.9) using the Epanechnikov kernel and the triweight kernel and
illustrates that the choice of the kernel has only a small effect on the coverage proportions.
The comparison between the CIs defined in (3.2.1) and the Studentized CIs defined in
(3.2.9) shown in Figure 3.4b reveals that the non-Studentized SMLE-based CIs are slightly
anti-conservative near the left boundary of the interval and have a coverage that is less
good than the Studentized CIs. In the rest of the simulation section, we therefore use the
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Table 3.1: Uniform samples: Average length (L) and coverage proportion (CP) of the smooth
SMLE-based CIs and the MLE-based CIs proposed by Banerjee and Wellner (2005) and Sen
and Xu (2015) around F0(1) for different choices of the kernel and different sample sizes n.
(h = 2n−1/5, α = 0.05)

Studentized SMLE-based CI Banerjee-Wellner Sen-Xu
Triweight Epanechnikov Triweight Epanechnikov

n CP L CP L CP L CP L CP L

100 0.9674 0.2799 0.9642 0.2376 0.9514 0.3897 0.9432 0.4620 0.9530 0.4625
500 0.9528 0.1473 0.9546 0.1276 0.9496 0.2311 0.9364 0.2532 0.9420 0.2536

1,000 0.9374 0.1072 0.9400 0.0928 0.9502 0.1846 0.9346 0.2024 0.9404 0.2028
2,000 0.9506 0.0827 0.9498 0.0710 0.9586 0.1466 0.9484 0.1598 0.9518 0.1599

Studentized CIs, referred to as the SMLE-based CIs.
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Figure 3.4: Uniform samples: Proportion of times that F0(t), t = 0.02, 0.04, . . . is not in the
95% CIs in N = 5, 000 samples using B = 1, 000 smooth bootstrap samples. (a) Studentized
SMLE-based CIs (3.2.9) with the Epanechnikov kernel (black, solid) and the triweight kernel
(blue, dashed) and (b) Studentized SMLE-based CIs (3.2.9) (black, solid) and classical SMLE-
based CIs (3.2.1) (blue, dashed) with the Epanechnikov kernel. n = 1, 000 and h = 2n−1/5.

The performances of the SMLE-based CIs, illustrated in Figure 3.5a, are comparable.
The bootstrap intervals based on the nonparametric bootstrap procedure avoid however
calculation of the convolution SMLE. The MLE-based CIs obtained via the LR-method
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Figure 3.5: Uniform samples: Proportion of times that F0(t), t = 0.02, 0.04, . . . is not in the
95% CIs in N = 5, 000 samples using the triweight kernel and B = 1, 000 bootstrap samples for
(a) SMLE-based CIs using the nonparametric (black, solid) and smooth (blue, dashed) bootstrap,
(b) Banerjee and Wellner (2005) CIs (blue, dashed) and SMLE-based nonparametric bootstrap
CIs (black, solid) and (c) Sen and Xu (2015) CIs (blue, dashed) and SMLE-based nonparametric
bootstrap CIs (black, solid). (d) The average lengths of the SMLE-based nonparametric (black,
solid) and smooth (blue, dashed-dotted) bootstrap CIs and the MLE-based CIs of Banerjee and
Wellner (2005) (red, dashed) and of Sen and Xu (2015) (green, dotted). n = 1, 000 and
h = 2n−1/5.

of Banerjee and Wellner (2005) (Figure 3.5b) and the smooth bootstrap method of
Sen and Xu (2015) (Figure 3.5c) have similar coverage proportions in the middle
of the interval [0, 2] but have a worse behavior near the boundaries of the interval
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compared to the SMLE-based intervals. Figure 3.5d shows the average length of
both bootstrap intervals around the SMLE in comparison with the average length of
the LR CIs of Banerjee and Wellner (2005) and the smooth MLE-based CIs of Sen
and Xu (2015). The length of the MLE-based intervals is larger than the length of
the SMLE-based intervals due to the fact that the MLE converges at the slower rate n1/3.

The CIs for one sample of size n = 1, 000 are shown in Figure 3.6. The MLE-based CIs of
Sen and Xu (2015) do not have monotone bounds. One may wonder if one really wants
to use the MLE for estimating the distribution function if one resamples from the SMLE
as in Sen and Xu (2015) since one uses smoothness conditions that allow for estimating
the distribution function at a faster rate than the convergence rate of the MLE. The
pointwise CIs around the SMLE change smoothly over the interval whereas MLE-based
intervals change in discrete steps.
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Figure 3.6: Uniform samples: F0 (red solid). (a) Studentized SMLE-based CI, (b) Banerjee and
Wellner (2005) CI and (c) Sen and Xu (2015) CI based on one sample of size n = 1, 000 using
B = 1, 000 smooth bootstrap samples. In (a) the SMLE (blue, solid) using the triweight kernel
is given and in (b,c) the MLE (blue, step function) is given. h = 2n−1/5.

Instead of constructing the Studentized bootstrap intervals where the quantiles of the
limiting distribution of the SMLE are derived from the bootstrap distribution, one can
consider Wald-type CIs using the quantiles of the normal distribution and an estimate
of the asymptotic variance. We compare three different estimates σ̂nh for σ defined in
(3.2.3) and construct CIs given by:[

F̃nh(t)− z1−α/2(n−2/5σ̂nh(t))− n−2/5β(t);

F̃nh(t)− zα/2(n−2/5σ̂nh(t))− n−2/5β(t)
]
, (3.4.1)

where zα is the αth quantile of the standard normal distribution. The bias term β,
defined in (3.2.5), is zero in this simulation study. The effect of β on the behavior of the
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intervals will be discussed in the second simulation study below.

A first estimate for σ̂nh is given by

σ̂2
1,nh(t) def= Fn(t){1− Fn(t)}

cgnh(t)

∫
K(u)2 du, (3.4.2)

where gnh is a classical kernel estimate for the density g of the observation time
T ∼ U(0, 2), using again the triweight kernel with bandwidth h = 2n−1/5.

A second estimate for σ is inspired by the fact that the SMLE is asymptotically equivalent
to the toy-estimator defined in (3.2.7), which has a sample variance given in (3.2.8). This
suggests taking the second estimate n−2/5σ̂2,nh equal to the root of (3.2.8) where F0 is
replaced by the MLE F̂n and g is replaced by the kernel density estimate gnh, i.e.

n−4/5σ̂2
2,nh(t) def= 1

n2

n∑
i=1

Kh(t− Ti)2
(

∆i − F̂n(Ti)
)2

gnh(Ti)2 . (3.4.3)

Contrary to the bootstrap procedure for constructing CIs defined in (3.2.9), both estimates
σ̂1,nh and σ̂2,nh require estimating the density g. A bootstrap based estimate for the
variance is finally given by

σ̂2
3,nh(t) def= 1

B

B∑
b=1

(
F̃ bnh(t)− F̃nh(t)

)2
, (3.4.4)

where F̃ bnh(t) is the SMLE in the bth bootstrap run. We use the nonparametric bootstrap
to estimate σ2

3,nh in our simulations. Figure 3.7 compares the proportion of times that
F0(t) is not in the 95% CIs, between the nonparametric bootstrap CIs with the Wald-
type CIs in (3.4.1) using the triweight kernel and the three different variance estimates
described above. Pointwise confidence bands for the variance estimates are illustrated
in Figure 3.8. The curves show the average variance estimate and the 5% and 95%
empirical quantiles of the variance estimates at points t = 0.02, 0.04, . . . , 2. The best
results for the Wald-type CIs are obtained with the second variance estimate σ̂2

2,nh but
the coverage proportions and average lengths do not outperform the results obtained with
the bootstrap CIs in (3.2.9). Estimating the density g in σ̂1,nh and σ̂2,nh requires an
additional bandwidth selection, whereas the estimate σ̂3,nh is straightforward to obtain
and does not suffer from a wrong bandwidth choice for gnh. The variance of the first
estimate σ̂2

1,nh is larger than the variance of the second and third variance estimates σ̂2
2,nh

and σ̂2
3,nh , especially near the boundaries of the support.
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Figure 3.7: Uniform samples: Proportion of times that F0(t), t = 0.02, 0.04, . . . is not in the
95% CIs for the nonparametric bootstrap CIs defined in (3.2.9) (black, solid) and Wald-type
CIs defined in (3.4.1) using the triweight kernel and (a) the first estimate σ̂2

1,nh (blue, dashed),
(b) the second estimate σ̂2

2,nh (blue, dashed) and (c) the third estimate σ̂2
3,nh (blue,dotted).

n = 1, 000, N = 5, 000, B = 1, 000 and h = 2n−1/5.
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Figure 3.8: Uniform samples: True variance σ2 (black, solid), mean estimate (blue, dashed-
dotted) and the 5% and 95% empirical quantiles of the estimates (red, dashed) using the triweight
kernel for (a) the first estimate σ̂2

1,nh, (b) the second estimate σ̂2
2,nh and (c) the third estimate

σ̂2
3,nh. n = 1, 000, N = 5, 000, B = 1, 000 and h = 2n−1/5.

3.4.2 Simulation study 2: Correcting the asymptotic bias

Although we have shown the validity of the bootstrap for constructing pointwise CIs
around the SMLE, the performance of the CIs is often influenced by bias effects due to
the fact that the SMLE is a biased estimate of the underlying distribution function. The
MLE is an unbiased estimate of F0, consequently, the MLE-based CIs do not suffer from
bias issues. However, the results for the MLE-based CIs, shown in Figure 3.5 and Figure
3.6, indicate that these MLE-based intervals suffer from boundary effects and discreteness
in the CIs.
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To investigate the effect of the bias on the construction of the pointwise CIs in (3.2.9), we
consider a second simulation study where the event times are generated from a truncated
exponential distribution on [0, 2] and the censoring times are uniformly distributed on
[0, 2]. The density of the event times is given by f0(t) = exp(−t)/(1− exp(−2))1[0,2](t)
and therefore the bias β defined in (3.2.5) will influence the performance of the CIs. Since
the bias issue is not due to the bootstrap algorithm used for constructing the CIs, we will
show the results for the nonparametric bootstrap CIs proposed in Section 3.3.
Estimation of the bias is known to be a rather difficult task since it requires estimating the
derivative f ′0 of the density f0 under current status data. Sufficiently accurate estimates
of the bias are hard to obtain by direct estimation of f ′0. Besides estimating the derivative
directly, we therefore also explore the effect of the bandwidth choice on the performance
of the pointwise CIs. We first describe a procedure for selecting the bandwidth and next
examine the quality of (a) a bootstrap based estimate of the bias, (b) a direct estimate of
the bias using an estimate of f ′0 and (c) undersmoothing the bandwidth, on the reduction
of the bias effect present in the pointwise CIs. We first describe a data-driven bandwidth
selection procedure.

3.4.2.1 Bandwidth selection

In the previous simulation study, the bandwidth was equal to h = 2n−1/5, where the factor
2 was based on the size of the support [0, 2] of the density f0. This choice gave satisfactory
results on the performance of the CIs discussed above. A bad choice of the bandwidth
can however seriously affect the performance of the SMLE. It is therefore advisable to use
an approach that selects the bandwidth with respect to some optimization criteria. We
apply the method proposed in Hall (1990) to select the bandwidth which uses bootstrap
subsamples of smaller size from the original sample to estimate the pointwise MSE of
the SMLE. The method works as follows: To obtain an approximation to the optimal
bandwidth minimizing the pointwise MSE, we generate B bootstrap subsamples of size
m = o(n) from the original sample using the subsampling principle and take ct,opt as the
minimizer of

M̂SE(c) def= B−1
B∑
b=1

{
F̃ bm,cm−1/5(t)− F̃nc0n−1/5(t)

}2
, (3.4.5)

where F̃nc0n−1/5 is the SMLE in the original sample of size n using an initial bandwidth
c0n
−1/5 for some constant c0 and F̃ b

m,cm−1/5 is the SMLE in the bth bootstrap run. The
bandwidth used for estimating the SMLE is consequently given by h = ct,optn

−1/5. An
important point is the fact that we have to use subsampling, i.e. bootstrapping with
a smaller sample size, for estimating the right bandwidth in a reasonable fashion, as
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argued convincingly in Hall (1990). In the simulation study below we show the results for
m = 50 when generating subsamples from a sample of size n = 1, 000. Other subsample
sizes m = 30, 100 were considered as well which resulted in similar optimal bandwidth
choices (not shown here).

Figure 3.9 compares the proportion of times that F0(t) is not in the 95% bootstrap CIs for
t = 0.02, 0.04, . . . , 2 with the corresponding proportions in the bias corrected CIs given
by

[F̃nh(t)−Q∗1−α/2(t)
√
Snh(t)− β(t)n−2/5,

F̃nh(t)−Q∗α/2(t)
√
Snh(t)− β(t)n−2/5], (3.4.6)

where β(t) is the true bias of the SMLE at timepoint t defined in (3.2.5). The bandwidth
of the SMLE is selected by the procedure described above. The coverage proportions of
the uncorrected CIs are clearly smaller than the nominal 95%-level at the left endpoint
of the interval [0, 2] in correspondence to the region where β(t) is largest and correcting
for the bias effect is needed to obtain good CIs. Figure 3.9 suggests that the coverage
proportions of the intervals will be satisfying if the bias can be estimated sufficiently
accurate.

Estimation of the bias requires estimating the density f0, which is a rather difficult task
with current status data. A kernel based estimate of f ′0 using the MLE Fn is given by

f̃ ′
nh̄

(t) def= h̄−2
∫
K ′
(
(t− x)/h̄

)
dFn(x), (3.4.7)

where the bandwidth h̄ ∼ n−1/9. In our experiments, we take the bandwidth of the esti-
mate f̃ ′

nh̄
(t) equal to h̄ = c̄t,optn

−1/9 where c̄t,opt is selected by the same bootstrap-MSE
approach discussed in Section 3.4.2.1, but with the SMLE replaced by this derivative
estimate. To obtain good estimates of f ′0 near the boundaries of the support, we consider
the boundary correction method explained in Section 9.2 of Groeneboom and Jongbloed
(2014). A direct estimator of the actual bias is then obtained by first replacing f ′0(t) in
(3.2.5) by the estimate f̃ ′nh(t) and next multiplying with n−2/5, i.e. the order of the
actual bias that has to be taken into account when constructing the CIs.

Similarly to the estimate of the pointwise MSE defined in (3.4.5), we can also construct
a bootstrap method for estimating the bias by using the subsampling principle described
in Hall (1990). Our estimate B̂ias(t) of the actual bias β(t)n−2/5 is given by

B̂ias(t) def=
{
B−1

B∑
b=1

{
F̃ bm,ct,optm−1/5(t)− F̃nc0n−1/5(t)

}}(m
n

)2/5
.
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Figure 3.9: Truncated exponential samples: Proportion of times that F0(t), t = 0.02, 0.04, . . .
is not in the 95% CIs for the nonparametric bootstrap CIs defined in (3.2.9) (black, solid) and the
bias corrected CIs defined in (3.4.6) (blue, dashed). n = 1, 000, N = 5, 000, B = 1, 000,m = 50
and h = ct,optn

−1/5.

Figure 3.10 compares the average true bias effect β(t)n−2/5 and the average bias estimates
obtained by either the direct estimation approach or the bootstrap based bias estimate for
sample sizes n = 1, 000; 5, 000 and n = 10, 000. Note that, since the bandwidth constant
ct,opt used for estimating the SMLE is different in each simulation run, the true bias in
each run is also different and therefore the average true bias is shown in Figure 3.10. The
actual size of the bias decreases with increasing sample size and the results for the direct
bias estimate using the estimate f̃ ′

nh̄
are slightly better than the results for the bootstrap

estimate of β(t)n−2/5.
The proportion of times that F0(t) is not in the 95% bootstrap CIs, shown in Figure
3.11, decreases if one corrects for the bias by one of the discussed bias estimates. The
coverage proportions are however still anti-conservative for points in the left end of the
support. We also considered constructing the bias corrected CIs in the uniform model
used in Section 3.4.1 where the actual bias is zero (results not shown). The results of
the uncorrected CIs in (3.2.9) were slightly better and estimating the bias in this model
has a somewhat negative effect on the coverage proportions of the pointwise CIs around
the SMLE.
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Figure 3.10: Truncated exponential samples: Average true bias (black solid) and average esti-
mated bias for the bootstrap based estimate (blue, dashed) and the direct estimate (red, dashed-
dotted) for samples (and subsamples) of size (a) n = 1, 000,m = 50, (b) n = 5, 000,m = 100
and (c) n = 10, 000,m = 250. N = 5, 000, B = 1, 000 and h = ct,optn

−1/5.

0.5 1.0 1.5

t

0.05

0.15

0.25

0.35

0.45

(a)

0.5 1.0 1.5

t

0.05

0.15

0.25

0.35

0.45

(b)

0.5 1.0 1.5

t

0.05

0.15

0.25

0.35

0.45

(c)

Figure 3.11: Truncated exponential samples: Proportion of times that F0(t), t = 0.02, 0.04, . . .
is not in the 95% CIs defined in (3.2.9) (black, solid) and the bias corrected CIs defined in (3.4.6)
with bootstrap based bias estimate (blue, dashed) and direct bias estimate (red, dashed-dotted)
for samples (and subsamples) of size (a) n = 1, 000,m = 50, (b) n = 5, 000,m = 100 and (c)
n = 10, 000,m = 250. N = 5, 000, B = 1, 000 and h = ct,optn

−1/5.

We next investigate how the choice of the bandwidth can affect the coverage proportions
and average length of our CIs. To this end, we consider the concept of undersmoothing
proposed by Hall (1992) and take ct,optn−1/4 as the bandwidth used in constructing the
CIs defined in (3.2.9). The coverage proportions of the CIs for the exponential model,
illustrated in Figure 3.12, show that the performance of the CIs around the SMLE improves
by undersmoothing the bandwidth. We also observed that if we considered a smaller
bandwidth choice h = (1/3)ct,optn−1/5 , the coverage proportions even improve further
and give satisfactory results in the left end point of the support. This illustrates that a
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smaller bandwidth choice can indeed correct for the bias in the CIs. So far, we did not
find any better bandwidth selection procedure than the one discussed in this paper and
further research on bandwidth selection procedures is still needed. We also combined the
technique of undersmoothing with direct bias estimation by constructing the CIs in (3.4.6)
when using a bandwidth ct,optn−1/4 and an estimate of β(t). This resulted in slightly
better CIs for the exponential model but gave worse results in the uniform model. The
results of the CIs in (3.2.9) in the uniform model with a bandwidth h = ct,optn

−1/4 or h =
(1/3)ct,optn−1/5 are in line with the results obtained with a bandwidth h = ct,optn

−1/5

and similar to the results shown in Figure 3.7. This shows that undersmoothing the
bandwidth in a model without bias has no negative effect on the coverage proportions of
our CIs. By undersmoothing the bandwidth, the length of our SMLE-based CIs increases
but the average length of the CIs remains remarkably smaller than the average length
of the CIs around the MLE proposed by Banerjee and Wellner (2005) and Sen and Xu
(2015) (see Table 3.2 for a comparison in simulation model 1 and 2).
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Figure 3.12: Proportion of times that F0(t), t = 0.02, 0.04, . . . is not in the 95% CIs defined
in (3.2.9) with h = ct,optn

−1/5 (black, solid), h = ct,optn
−1/4 (red, dashed-dotted) and h =

(1/3)ct,optn−1/5 (blue, dashed) for samples (and subsamples) of size (a) n = 1, 000,m = 50,
(b) n = 5, 000,m = 100 and (c) n = 10, 000,m = 250. N = 5, 000, B = 1, 000.

3.5 Real data examples

3.5.1 Hepatitis A

Keiding (1991) considered a cross-sectional serological survey data on the presence of igG
antibodies against Hepatitis A infection conducted in 1964 in Bulgaria. Samples were
collected from school children and blood donors (n = 850), aged between 1 and 86 years
old, and were tested for the presence or absence of such antibodies, thereby indicating
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Table 3.2: Average length of the nonparametric SMLE-based CIs for different bandwidth choices
(SMLE (h ∼ n−1/5) and SMLE (h ∼ n−1/4)) and average length of the MLE-based CIs proposed
by Banerjee and Wellner (2005) (BW) and Sen and Xu (2015) (SX) at timepoints t = 0.5, 1, 1.5.
n = 1, 000 for samples from the uniform and truncated exponential distribution of simulation
studies 1 and 2.

Uniform Exponential
Method t = 0.5 t = 1 t = 1.5 t = 0.5 t = 1 t = 1.5

SMLE (h ∼ n−1/5) 0.064819 0.077020 0.064976 0.085540 0.087565 0.057716
SMLE (h ∼ n−1/4) 0.079671 0.092096 0.079757 0.103828 0.101595 0.067480

MLE (BW) 0.164767 0.184590 0.165699 0.204079 0.161122 0.104002
MLE (SX) 0.183982 0.202430 0.186452 0.225882 0.176159 0.118541

past infection experience and leading to current status data. For Hepatitis A, lifelong
humoral immunity after recovery from infection is presumed. The Hepatitis A virus is
primarily transmitted via feco-oral contact and contact with blood products of infected
individuals. Hepatitis A is a viral liver disease that can cause mild to severe illness upon
contraction. The individual’s age at the cross-sectional sampling is considered as the
censoring time. We are interested in estimating the seroprevalence for Hepatitis A in
Bulgaria. We constructed the Studentized SMLE-based smooth bootstrap CIs using a
local bandwidth h(t) = (0.5M + 1.5t)n−1/5, where M = 86 is the largest observed age.
A picture of the CIs together with the LR-based CIs of Banerjee and Wellner (2005)
and the CIs of Sen and Xu (2015) is given in Figure 3.13. The estimated prevalence
of Hepatitis A at the age of 18 is 0.51, about half of the infections in Bulgaria happen
during childhood. The length of the CIs is smallest for our SMLE-based CIs and largest
for the Sen and Xu (2015) CIs. The latter CIs have left and right end points that are
not monotone increasing in age, a property that is not shared by the other two CIs which
have monotone increasing bounds. In contrast to the CIs of Banerjee and Wellner (2005),
the bounds of our SMLE-based CIs and the CIs proposed by Sen and Xu (2015) are not
increasing by construction. The applicability of the nonparametric bootstrap SMLE-based
CIs on the Hepatitis A dataset can be found in the R-package curstatCI, where also the
data-driven bandwidth procedure is illustrated.

3.5.2 Rubella

Keiding et al. (1996) considered a current status data set on the prevalence of rubella
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Figure 3.13: Hepatitis A data: (a) smooth bootstrap SMLE-based CIs defined in (3.2.9), (b)
Banerjee and Wellner (2005) CIs and (c) Sen and Xu (2015) CIs based on n = 850 observations
using B = 1, 000 bootstrap samples. In (a) the SMLE (red, solid) is given and in (b,c) the MLE
(red, step function) is given. h(t) = (43 + 1.5t)n−1/5 for SMLE-based CIs and h = 86n−1/5 for
the CIs of Sen and Xu (2015).

in 230 Austrian males older than three months. Rubella is a highly contagious childhood
disease spread by airborne and droplet transmission. The symptoms (such as rash, sore
throat, mild fever and swollen glands) are less severe in children than in adults. Since
the Austrian vaccination policy against rubella only vaccinated girls, the male individuals
included in the dataset represent an unvaccinated population and (lifelong) immunity
could only be acquired if the individual got the disease. We are interested in estimating
the time to immunization (i.e. the time to infection) against rubella using the SMLE.
Figure 3.14 shows the CIs obtained with the nonparametric bootstrap and illustrates the
applicability of our method in a real data example.

3.6 Application: The current status linear regression model

As a consequence of Lemma 3.2.1 and Lemma 3.3.1, the bootstrap procedures of Section
3.2 and Section 3.3 can also be used to do inference in the current status linear regres-
sion model described in Chapter 2. In this section we use the nonparametric bootstrap
procedure to construct CIs for the regression parameter α0 in the current status linear
regression model (2.1.1). Recall that the SSE of Section 2.4.1 is defined as a zero-crossing
of ∑

F̂n,α(Ti−αTXi)∈[ε,1−ε]

Xi

{
∆i − F̂n,α(Ti −αTXi)

}
, (3.6.1)
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Figure 3.14: Rubella data: (a) nonparametric bootstrap SMLE-based CIs defined in (3.2.9), (b)
Banerjee and Wellner (2005) CIs and (c) Sen and Xu (2015) CIs based on n = 230 observations
using B = 1, 000 bootstrap samples. In (a) the SMLE (red, solid) is given and in (b,c) the MLE
(red, step function) is given. h = ct,optn

−1/4 (ct,opt is obtained by subsampling with B = 1, 000
bootstrap samples of smaller size m = 50) for SMLE-based CIs and h = 80n−1/5 for the CIs of
Sen and Xu (2015).

where F̂n,α is the MLE for fixedα given in Section 2.3 and ε is a fixed truncation parameter
in (0, 1/2). A bootstrap version α̂∗n based on a nonparemetric bootstrap sample from Pn
is then defined as the zero-crossing of∑

F̂∗n,α(Ti−αTXi)∈[ε,1−ε]

MniXi

{
∆i − F̂ ∗n,α(Ti −αTXi)

}
, (3.6.2)

where F̂ ∗n,α is the MLE in the bootstrap sample and Mni are the bootstrap weights. A
straightforward extension of the results given in Section 3.3 shows that, as n tends to
infinity,

Ên

∣∣∣n−1/3
{
F̂n,α(t−αTx)− Fα(t−αTx)

}∣∣∣p ,
stays bounded in probability for all (x, t) ∈ {(x, t) : Fα(t−αTx) ∈ [ε, 1− ε]} and for all
α in a neighborhood of α0 where Fα is defined by (2.3.1).
The validity of the bootstrap method follows from the fact that, in probability, we have
conditionally on the data (X1, T1,∆1), . . . , (Xn, Tn,∆n) that,

−
√
nA(α̂∗n −αn) =

√
n

∫
F0(t−αT0 x)∈[ε,1−ε]

{x− E(X|T −αT0X = t−αT0 x)}

· {δ − F0(t−αT0 x)} d(P̂n − Pn)(x, t, δ)

+ oP̂ (1 +
√
n‖α̂∗n −αn‖), (3.6.3)
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where the dominant term in the right-hand side of the display above is normally distributed
with mean zero and variance B conditional on (X1, T1,∆1), . . . , (Xn, Tn,∆n), where A
and B are defined in Theorem 2.4.1. The validity of the nonparametric bootstrap is
further analyzed in Appendix B, Section B.2.3.

Remark 3.6.1. The nonparametric bootstrap is also valid for the ESE of α0 proposed
in Section 2.4.2 based on a different score function involving the MLE F̂n,α and the
derivative of the SMLE F̃nh,α. Moreover, by Lemma 3.2.1, the validity of the smooth
bootstrap procedure of Section 3.2 can also be proved along the same lines.

To provide more insight in the finite sample behavior of bootstrap estimators we show in
Tables 3.3 and 3.4 the results of two simulation studies for a one-dimensional regression
model Y = α0X + ε. We only show the results for the nonparametric bootstrap
estimates since the results for the smooth bootstrap estimates are similar. In the first
simulation setting, we consider the simulation study given in Section 2.6 and we take
α0 = 0.5 and consider Uniform(0,2) distributions for the variables T and X; for the
density of the random error ε we take f0(e) = 384(e− 3/8)(5/8− e)1[3/8,5/8](e). In the
second simulation model, T,X and ε are independently sampled from a standard normal
distribution and α0 = 1. A similar model was considered in Abrevaya (1999).

With these simulations we want to point out that it is not necessary to use smoothing
techniques for doing inferences in the current status linear regression model. We compare
the SSE with Han’s maximum rank correlation estimator (Han (1987), MRCE) and
with the ESE. The asymptotic behavior of the MRCE for the current status model, also
obtained without any smoothing techniques, is established in Abrevaya (1999) where
the author also proposes consistent kernel-based estimates of the asymptotic variance of
the MRCE. We use these variance estimates to construct estimates for A,B and the
almost (determined by the truncation parameter ε) efficient variance of the ESE. For
more details about the variance estimation we refer to Abrevaya (1999).

A summary of N = 1, 000 simulation runs from models 1 and 2 for different sample sizes
n is given in Tables 3.3 and 3.4. For each estimator, the mean, n times the variance and
n times MSE is given in columns 3-5. The asymptotic variance of the estimators equals
0.193612 for the SSE, 0.158699 for the ESE and 0.192857 for the MRCE in model 1
using truncation parameter ε = 0.001. The corresponding asymptotic variances in model
2 are equal to 5.046413, 4.994988 and 5.35448 respectively. The asymptotic variance of
the SSE without truncation (i.e. ε = 0) equals the asymptotic variance of the MRCE in
model 1. The efficient variances are 0.151706 in model 1 and 4.994987 in model 2. Note
that the differences between the limiting variances for the different estimation methods
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are tiny and that the effect of the truncation parameter ε on the asymptotic behavior of
the score estimators is small. Tables 3.3 and 3.4 show that n times the variance tends
to converge to the asymptotic variance for all estimators. The ESE performs worse for
small sample sizes and the results suggest to use the SSE for point estimation of the
regression parameter α0. Also note that the results in Table 3.3 are slightly different
than the results in Table 2.1 due to the fact that we redid the simulation study, thereby
sampling new data sets from the underlying simulation model.

We constructed Wald-type CIs, similar to the intervals proposed in Abrevaya (1999),
using the asymptotic normal limiting distribution of the estimators and compared the
coverage proportion and average length of these intervals with bootstrap CIs based on
the nonparametric bootstrap described in this chapter using B = 1, 000 samples from
the original data. For the MRCE, the validity of the nonparametric bootstrap is proved
in Subbotin (2007). The Wald-type CIs remain anti-conservative for the ESE in model 2.

We observed (result not shown) that, in both models, the bias in estimating the efficient
variance of the ESE remains larger than the bias of the asymptotic variance estimates for
the SSE and the MRCE. Tables 3.3 and 3.4 show that the coverage proportion of the
nonparametric bootstrap CIs converges to the nominal 95%−level. The average length of
the CIs obtained by resampling from the original data is smaller than the corresponding
length of the Wald-type CIs for all methods in the first simulation study and for the
SSE in the second simulation study. We also investigated the behavior of Studentized
bootstrap CIs (results not shown) based on the variance estimate used in the construction
of the Wald-type CIs, but no improvement was observed for the behavior of the bootstrap
intervals.
Our results do not indicate better performances corresponding to smoothing techniques
and therefore suggest that smoothing should not be the primary concern in inferences for
the current status linear regression model. Note that the Wald-type CIs are constructed
using smoothing kernel estimation for the variance estimate and that the only results
obtained without any smoothing are the bootstrap CIs for the SSE and the MRCE. It is
noteworthy that the SSE tends to perform better than the MRCE, which is not based
on a nuisance parameter that is not estimable at

√
n−rate. Based on these results,

we recommend the use of the SSE in combination with the nonparametric bootstrap
procedure for doing inference in the current status linear regression model.
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Table 3.3: Simulation model 1: The mean value, n times the variance and n times MSE of the
simple score estimate (SSE), the maximum rank correlation estimate (MRCE) and the efficient
score estimate (ESE). CP: coverage proportion of 95% CIs (Wald-type intervals based on a kernel
variance estimate and nonparametric bootstrap intervals) that contain the true parameter value
α0 = 0.5, AL: Average length of the CIs for different samples sizes n based on N = 1, 000
simulation runs and B = 1, 000 bootstrap samples. ε = 0.001.

Estimate n mean n×var n×MSE Wald-type CI Bootstrap CI
CP AL CP AL

SSE 100 0.498943 0.310723 0.310968 0.978 0.265883 0.824 0.204163
500 0.499717 0.220885 0.220925 0.982 0.097457 0.897 0.080317
1,000 0.500720 0.217415 0.217933 0.977 0.065837 0.924 0.055648
5,000 0.499993 0.195111 0.195112 0.977 0.027159 0.945 0.024423

MRCE 100 0.497996 0.308180 0.308582 0.979 0.268731 0.821 0.205522
500 0.499761 0.251232 0.251260 0.978 0.098028 0.862 0.089143
1,000 0.500553 0.246388 0.246693 0.973 0.063990 0.911 0.053129
5,000 0.499876 0.208386 0.208462 0.965 0.027197 0.922 0.026987

ESE 100 0.500145 0.337755 0.337757 0.964 0.252687 0.824 0.223849
500 0.499671 0.217428 0.217482 0.978 0.094390 0.896 0.080003
1,000 0.500742 0.207401 0.207953 0.973 0.063990 0.911 0.053129
5,000 0.500228 0.185614 0.185874 0.972 0.026396 0.904 0.022285
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Table 3.4: Simulation model 2: The mean value, n times the variance and n times MSE of the
simple score estimate (SSE), the maximum rank correlation estimate (MRCE) and the efficient
score estimate (ESE). CP: coverage proportion of 95% CIs (Wald-type intervals based on a kernel
variance estimate and nonparametric bootstrap intervals) that contain the true parameter value
α0 = 1, AL: Average length of the CIs, for different samples sizes n based on N = 1, 000
simulation runs and B = 1, 000 bootstrap samples. ε = 0.001.

Estimate n mean n×var n×MSE Wald-type CI Bootstrap CI
CP AL CP AL

SSE 100 0.935732 4.525330 4.938096 0.922 1.000283 0.855 0.79952
500 0.966217 4.676249 5.246881 0.926 0.399728 0.902 0.364210
1,000 0.977799 5.032432 5.525339 0.933 0.279928 0.914 0.262449
5,000 0.989466 4.580756 5.135616 0.945 0.124375 0.948 0.121388

MRCE 100 1.038510 8.500588 8.648890 0.925 1.125225 0.889 1.364034
500 1.006050 6.443404 6.461690 0.932 0.429007 0.912 0.473787
1,000 1.002680 6.294143 6.301326 0.939 0.296537 0.903 0.320908
5,000 0.998502 5.160694 5.171915 0.962 0.129512 0.954 0.136487

ESE 100 0.974199 5.722576 5.789144 0.768 0.604649 0.827 0.910229
500 0.998806 5.984291 5.985003 0.823 0.290297 0.902 0.430819
1,000 1.005545 6.032743 6.063495 0.841 0.214280 0.928 0.302124
5,000 1.002462 5.244373 5.274692 0.892 0.104281 0.951 0.131427
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Abstract

We develop an estimation technique for the regression parameter in the single index model,
given by E(Y |X) = ψ0(αT0 X) where the link function ψ0 is monotone increasing and Y is
the response and X are the covariates. For this semiparametric model it has been proposed
to estimate the regression parameter α0 via the profiled least squares method where first the
link function ψ0 is estimated nonparametrically by the monotone least square estimate (LSE)
ψ̂n,α for each α and next the estimate of the regression parameter is obtained by minimizing
the sum of squared deviations

∑n

i=1{Yi − ψ̂n,α(αTXi)}2 over α. Although it is natural to
propose this least squares procedure, it is still unknown whether it will produce

√
n-consistent

estimates. We show that the latter property will hold if we solve a score equation corresponding
to this minimization problem. This is the first time that

√
n-consistent estimates are constructed

based on the piecewise constant LSE of the link function. Our simulation studies do not give
conclusive answers on the behavior of the profiled LSE but show that even if the profiled LSE
of the regression parameter leads at all to a

√
n-consistent estimate, its performance is certainly

inferior to the score procedures we propose in this Chapter. Good performances of our estimation
approach, both asymptotically and numerically, are illustrated by the asymptotic normality of our
score estimates and by simulation studies that show comparable or even better behavior of our
score estimates compared to the rank estimates proposed by Han (1987) and Cavanagh and
Sherman (1998).
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4.1 Model description

Consider the following regression model

Y = ψ0(αT0X) + ε, (4.1.1)

where Y is a one-dimensional random variable, X = (X1, . . . , Xd)T is a d-dimensional
random vector with distribution G and ε is a one-dimensional random variable such that
E[ε|X] = 0 G-almost surely. The function ψ0 is a monotone link function inM, whereM
is the set of monotone increasing functions defined on R and α0 is a vector of regression
parameters belonging to the d− 1 dimensional sphere Sd−1 = {α ∈ Rd : ‖α‖ = 1}.

4.2 Behavior of the least squares estimator of the link function

Let (X1, Y1), . . . , (Xn, Yn) denote n random variables which are i.i.d. like (X, Y ) in
(4.1.1), i.e. E(Y |X) = ψ0(αT0X) G-almost surely and consider the sum of squared
errors

Sn(α, ψ) def= 1
n

n∑
i=1

{
Yi − ψ(αTXi)

}2
, (4.2.1)

which can be computed for any pair (α, ψ) ∈ Sd−1 ×M. The LSE (α̂n, ψ̂n) is defined
by

(α̂n, ψ̂n) def= arg min
α∈Sd−1,ψ∈M

Sn(α, ψ). (4.2.2)

The LSE can be obtained as follows. For a fixed α ∈ Sd−1, order the values
αTX1, . . . ,α

TXn in increasing order and arrange Y1, . . . , Yn accordingly. As ties are
not excluded, let m = mα be the number of distinct projections among αTXi and
Zα1 < . . . < Zαm the corresponding ordered values. For 1 ≤ i ≤ m, let

nαi =
n∑
j=1

1{αTXj=Zα
i
} and Y αi =

n∑
j=1

Yj1{αTXj=Zα
i
}/n

α
i .

Then, well-known results from isotonic regression theory imply that the functional
ψ 7→ Sn(α, ψ) is minimized by the left derivative of the greatest convex minorant of
the cumulative sum diagram{

(0, 0),
( i∑
j=1

nαj ,

i∑
j=1

nαj Y
α
j

)
, 1 ≤ i ≤ m

}
.

See for example Theorem 1.1 in Barlow et al. (1972) or Theorem 1.2.1 in Robertson
et al. (1988). By strict convexity of ψ 7→ Sn(ψ,α), the minimizer is unique at the



4.2. Behavior of the least squares estimator of the link function 77

distinct projections. We denote by ψ̂n,α the monotone function which takes the values of
this minimizer at the distinct projections and is a stepwise and right-continuous function
outside the set of those projections.
We first list below the assumptions needed to prove the asymptotic results stated in the
remainder of the chapter.

Assumptions A1-A6

A1. The space X is convex, with a nonempty interior. There exists also R > 0 such
that X ⊂ B(0, R).

A2. There exists K0 > 0 such that the true link function ψ0 satisfies |ψ0(u)| ≤ K0 for
all u in {αTx,x ∈ X ,α ∈ Sd−1}.

A3. There exists δ0 > 0 such that the function u 7→ E
[
ψ0(αT0X)|αTX = u

]
is

monotone increasing on Iα = {αTx,x ∈ X} for all α ∈ B(α0, δ0) = {α :
‖α−α0‖ ≤ δ0}.

A4. Let a0 and b0 denote the infimum and supremum of the interval Iα0 =
{
αT0 x, x ∈

X
}
. Then, the true link function ψ0 is continuously differentiable on (a0−δ0R, b0+

δ0R), where R is the same radius of assumption A1 above, and there exists C > 0
such that ψ′0 ≥ C on (a0 − δ0R, b0 + δ0R).

A5. The distribution of X admits a density g, which is differentiable on X . Also, there
exist positive constants c0, c̄0, c1 and c̄1 such that c0 ≤ g ≤ c̄0 and c1 ≤ ∂g/∂xi ≤
c̄1 on X for all 1 ≤ i ≤ d.

A6. There exist a0,M0 > 0 such that E
[
|Y |m |X = x

]
≤ m!Mm−2

0 a0 for all integers
m ≥ 2 and x ∈ X G-almost surely.

Assumption A1 ensures that the support of the linear predictor αTX is an interval for
all α ∈ B(α0, δ0). Assumption A3 is made to enable deriving the explicit limit of the
LSE ψ̂n,α for all α ∈ B(α0, δ0). In Lemma C.5.6, given in Appendix C, Section C.5, we
will show the plausibility of this Assumption A3 by proving that for α in a neighborhood
of α0 the derivative of the function u 7→ E

[
ψ0(αT0X)|αTX = u

]
is indeed strictly

positive if the derivative of the true link function stays away from zero. In order to
prove this result, we hence need Assumption A4 on the positiveness of the derivative
ψ′0. Assumption A6 is needed to show that max1≤i≤n |Yi| = Op(logn). As noted in
Balabdaoui et al. (2016), such an assumption is satisfied if the conditional distribution
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of Y |X = x belongs to an exponential family.

In Figure 4.1 we compare the true link function ψ0 with the function u 7→
E
[
ψ0(αT0X)|αTX = u

]
for the model E(Y |X) = ψ0(α01X1 + α02X1), where

X1, X2
i.i.d∼ U [0, 1], ψ0(x) = x3 and α01 = α02 = 1/

√
2 for α1 = 1/2, α2 =

√
3/2.

Figure 4.1 illustrates the monotonicity of the function introduced in Assumption A3.

Figure 4.1: The real ψ0 (red, solid) and the function u 7→ E
[
ψ0(αT0 X)|αTX = u

]
(blue,

dashed) for ψ0(x) = x3, α01 = α02 = 1/
√

2 and α1 = 1/2, α2 =
√

3/2, withX1, X2
i.i.d∼ U [0, 1].

We have the following results.

Proposition 4.2.1. Suppose that Assumptions A1-A3 hold and let the function ψα be
defined by

ψα(u) def= E
[
ψ0(αT0X)|αTX = u

]
. (4.2.3)

Then, the functional Lα given by,

ψ 7→ Lα(ψ) =
∫
X

(
ψ0(αT0 x)− ψ(αTx)

)2
dG(x), (4.2.4)

admits a minimizer ψ̂α, over the set of monotone increasing functions defined on R,
denoted by M, such that ψ̂α is uniquely given by the function ψα in (4.2.3) on Iα ={
αTx : x ∈ X

}
.

Proposition 4.2.2. Under Assumptions A1-A6, we have,

sup
α∈B(α0,δ0)

∫ {
ψ̂n,α(αTx)− ψα(αTx)

}2
dG(x) = Op

(
(logn)2n−2/3

)
.

The proofs of Proposition 4.2.1 and Proposition 4.2.2 are given in Appendix C.
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4.3
√
n-consistent regression parameter estimation on the unit

sphere

4.3.1 The simple score estimator

Consider the problem of minimizing

1
n

n∑
i=1

{
Yi − ψ̂n,α(αTXi)

}2
, (4.3.1)

over all α ∈ Sd−1 , where ψ̂n,α is the LSE of ψα. Since the parameter space is Sd−1, we
need to estimate the regression parameter α0 in a d− 1 dimensional subspace of Rd. We
therefore introduce a new parameter vector in Rd−1 via a local parametrization mapping
Rd−1 to the sphere Sd−1. For each α ∈ B(α0, δ0) on the sphere Sd−1, there exists a
unique vector β ∈ Rd−1 such that

α = S (β) .

We now construct an estimation algorithm to estimate the parameter β0 defined by
α0 = S (β0) and obtain the final estimate of α0 after applying the parametrization S to
the estimate for β0. The minimization problem given in (4.3.1) is equivalent to minimizing

1
n

n∑
i=1

{
Yi − ψ̂n,α

(
S(β)TXi

)}2
, (4.3.2)

over all β where ψ̂n,α is the LSE of ψα with α = S(β). Analogously to the treatment
of the score approach in the current status regression model proposed in Chapter 2, we
consider the derivative of (4.3.2) w.r.t. β, where we ignore the non-differentiability of the
LSE ψ̂n,α. This leads to the set of equations,

1
n

n∑
i=1

(JS(β))T Xi

{
Yi − ψ̂n,α

(
S(β)TXi

)}
= 0, (4.3.3)

where JS is the Jacobian of the map S and where 0 ∈ Rd−1 is the vector of zeros. Just as
in the analogous case of the simple score equation in Chapter 2, we cannot hope to solve
equation (4.3.3) exactly. Instead, we define the solution in terms of a “zero-crossing” of
the above equation where a zero-crossing is defined in Definition 2.4.1.
Our index score estimator α̂n is defined by,

α̂n
def= S(β̂n), (4.3.4)

where β̂n is a zero crossing of the function

ξ1,n(β) def=
∫

(JS(β))T x
{
y − ψ̂n,α

(
S(β)Tx

)}
dPn(x, y), (4.3.5)
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and Pn denotes the empirical probability measure of (X1, Y1), . . . , (Xn, Yn). The prob-
ability measure of (X, Y ) will be denoted by P0 in the remainder of the chapter.
In addition to Assumptions A1-A6 above, the following assumptions will also be made.

Assumptions A7-A9

A7. For all β 6= β0 such that S (β) ∈ B(α0, δ0), the random variable

Cov
[
(β0 − β)TJS(β)TX, ψ0

(
S(β0)TX

) ∣∣ S(β)TX
]
,

is not equal to 0 almost surely.

A8. The functions J ijS (β), where J ijS (β) denotes the i× j entry of JS(β) for 1 ≤ i ≤ d
and 1 ≤ j ≤ d− 1 are d− 1 times continuously differentiable on C = {β ∈ Rd−1 :
S (β) ∈ B(α0, δ0)} and there exists M > 0 satisfying

max
k.≤d−1

sup
β∈C
|DkJ ijS (β)| ≤M, (4.3.6)

where k = (k1, . . . , kd) with kj an integer ∈ {0, . . . , d− 1}, k. =
∑d−1
i=1 ki and

Dks(β) ≡ ∂k.s(β)
∂βk1 . . . ∂βkd

.

We also assume that C is a convex and bounded set in Rd−1 with a nonempty
interior.

A9. (JS(β0))T E
[
ψ′0(αT0X)Cov(X|αT0X)

]
(JS(β0)) is nonsingular.

Theorem 4.3.1. Let Assumptions A1-A9 be satisfied. Let also α̂n be defined by (4.3.4).
Then

(i) [Existence of a root] A crossing of zero β̂n of ξ1,n(β) exists with probability tending
to one.

(ii) [Consistency]

α̂n
p→ α0, n→∞.

(iii) [Asymptotic normality] Define the matrices,

A
def= E

[
ψ′0(αT0X)Cov(X|αT0X)

]
, (4.3.7)

and

Σ
def= E

[{
Y − ψ0(αT0X)

}2 {
X − E(X|αT0X)

}{
X − E(X|αT0X)

}T ]
.

(4.3.8)
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Then
√
n(α̂n −α0) d→ Nd

(
0,A−ΣA−

)
,

where A− is the Moore-Penrose inverse of A.

Remark 4.3.1. Note that αT0A = 0 and that the normal distribution Nd (0,A−ΣA−)
is concentrated on the (d − 1)-dimensional subspace, orthogonal to α0 and is therefore
degenerate, as is also clear from its covariance matrix A−ΣA−, which is a matrix of rank
d− 1.

To obtain the asymptotic normality result of the score estimator α̂n given in Theorem
4.3.1, we prove in Appendix C the following asymptotic relationship for β̂n:

B
(
β̂n − β0

)
=
∫

(JS(β0))T
{
x− E(X|S(β0)TX = S(β0)Tx)

}{
y − ψ0

(
S(β0)Tx

)}
d
(
Pn − P0

)
(x, y)

+ op

(
n−1/2 + ‖β̂n − β0‖

)
.

where

B = (JS(β0))T E
[
ψ′0(S(β0)TX)Cov(X|S(β0)TX)

]
(JS(β0)) = (JS(β0))T AJS(β0),

(4.3.9)

in R(d−1)×(d−1). We assume in Assumption A9 that B is invertible so that
√
n
(
β̂n − β0

)
=
√
nB−1

∫
(JS(β0))T

{
x− E(X|S(β0)TX = S(β0)Tx)

}{
y − ψ0

(
S(β0)Tx

)}
d
(
Pn − P0

)
(x, y)

+ op

(
1 +
√
n‖β̂n − β0‖

)
d→ Nd−1(0,Π),

where

Π = B−1 (JS(β0))T ΣJS(β0)B−1 ∈ R(d−1)×(d−1). (4.3.10)

The limit distribution of the single index score estimator α̂n defined in (4.3.4) now follows
by an application of the delta method and we conclude that
√
n(α̂n −α0) =

√
n
(
S
(
β̂n
)
− S (β0)

)
= JS(β0)

√
n(β̂n − β0) + op

(√
n(β̂n − β0)

)
d→ Nd

(
0, JS(β0)Π (JS(β0))T

)
= Nd

(
0,A−ΣA−

)
,

where the last equality follows from the following lemma.
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Lemma 4.3.1. Let the matrix A be defined by (4.3.7) and let A− be the Moore-Penrose
inverse of A. Then

A− = JS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T = JS(β0)B−1 (JS(β0))T .

The proof of Lemma 4.3.1 is given in Appendix C. An example of the mapping S and
corresponding matrix JS is given in Section 4.4.

Remark 4.3.2. For each map S and each parameter vector β, we have

(S(β))T S(β) = 1.

Taking derivatives w.r.t. β, we get

(S(β))T JS(β) = 0T ,

so that the columns of JS(β) belong to the space

{α}⊥ ≡ {S(β)}⊥ ≡
{
z ∈ Rd : αT z = 0

}
≡
{
z ∈ Rd : (S(β))T z = 0

}
.

By Lemma 4.3.1 it is now easy to see that also αT0A− = 0. It is shown in Lemma 1 of
Kuchibhotla and Patra (2017) that it is possible to construct a set of “local parametriza-
tion matrices” Hα for each α ∈ B(α0, δ0) with ‖α‖ = 1 satisfying

αTHα = 0T and (Hα)T Hα = Id−1.

Their matrix (Hα)T corresponds to the Moore-Penrose pseudo-inverse of the matrix Hα
and is the analogue of our matrix (JS(β))T in the proof of asymptotic normality of their
estimator. We however show that the orthonormality assumption is not needed in the
proofs.

4.3.2 The efficient score estimator

In this section we extend the score approach of Section 4.3.1 by incorporating an estimate
of the derivative of the link function ψ0 to obtain an efficient estimator of α0. Let ψ̂n,α
denote again the LSE of ψα defined in Section 4.2 and define the estimate ψ̃′nh,α by

ψ̃′nh,α(u) def= 1
h

∫
K

(
u− x
h

)
dψ̂n,α(x),

where h is a chosen bandwidth. Here dψ̂n,α represents the jumps of the discrete function
ψ̂n,α and K is one of the usual symmetric twice differentiable kernels with compact
support [−1, 1], used in density estimation. The estimator α̃n is given by

α̃n
def= S(β̃n), (4.3.11)
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where β̃n is a zero crossing of ξ2,nh defined by

ξ2,nh(β) def=
∫

(JS(β))T x ψ̃′nh,α
(
S(β)Tx

){
y − ψ̂n,α

(
S(β)Tx

)}
dPn(x, y). (4.3.12)

The function ξ2,nh is inspired by representing the sum of squares

1
n

n∑
i=1

{
Yi − ψα(αTXi)

}2
,

in a local coordinate system with d−1 unknown parameters β = (β1, . . . , βd−1)T followed
by differentiation of the re-parametrized sum of squares w.r.t. β where we also consider
differentiation of the function ψα.
We make the following additional assumptions for establishing the weak convergence of
β̃n.
Assumptions A10-A11

A10. The function ψα is two times continuously differentiable on Iα for all α.

A11. (JS(β))T E
[
ψ′0(αT0X)2 Cov(X|αT0X)

]
JS(β) is nonsingular.

Theorem 4.3.2. Let Assumptions A1-A8, A10-A11 be satisfied. Let α̃n be defined by
(4.3.11) and suppose h � n−1/7. Then

(i) [Existence of a root] A crossing of zero β̃n of ξ2,nh(β) exists with probability tending
to one.

(ii) [Consistency]

α̃n
p→ α0, n→∞.

(iii) [Asymptotic normality] Define the matrices,

Ã
def= E

[
ψ′0(αT0X)2 Cov(X|αT0X)

]
, (4.3.13)

and

Σ̃
def= E

[{
Y − ψ0(αT0X)

}2
ψ′0(αT0X)2 {X − E(X|αT0X)

}{
X − E(X|αT0X)

}T ]
,

(4.3.14)

Then
√
n(α̃n −α0) d→ Nd

(
0, Ã−Σ̃Ã−

)
,

where Ã− is the Moore-Penrose inverse of Ã.
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Remark 4.3.3. The asymptotic variance of the estimator α̃n is similar to that obtained for
the “efficient” estimates proposed in Xia and Härdle (2006) and in Kuchibhotla and Patra
(2017). More details on the efficiency calculations can be found in Section 4.3.3, where we
also illustrate that the asymptotic variance equals σ2Ã− in a homoscedastic model with
var(Y |X = x) = σ2. This is the same as the inverse of E(˜̀

α0,ψ0(X, Y )˜̀
α0,ψ0(X, Y )T )

and, therefore, it follows that our estimator defined in (4.3.11), is efficient in the ho-
moscedastic model. As also explained in Remark 2 of Kuchibhotla and Patra (2017), our
estimator has moreover a high relative efficiency with respect to the optimal semiparamet-
ric efficiency bound if the constant variance assumption provides a good approximation
of the truth.

The asymptotic variance is obtained similarly to the derivations of the asymptotic limiting
distribution for the simple score estimator as shown in Section 4.3.1. First the asymptotic
variance is expressed in terms of the parametrization S as in (4.3.10) and next, similar to
Lemma 4.3.1, equivalence to the expression Ã−Σ̃Ã− given in Theorem 4.3.2 is proved.

4.3.3 Efficient information in the single index model

The log likelihood of one observation in the SIM is given by

`α,ψ(x, y) = log
{
fε|X

(
y − ψ(αTx)

)
g(x)

}
,

where fε|X is the conditional density of ε given X = x and g is the density of X. The
partial derivative w.r.t. α of `α,ψ is given by

∂

∂α
`α,ψ(x, y) =

xψ′(αTx)f ′ε|X
(
y − ψ(αTx

)
)

fε|X (y − ψ(αTx)) .

Let {ψη : η ∈ (−1, 1)} be a path in the collection {ψ : ψ is increasing}, differentiable
w.r.t. η at η = 0, and suppose

ψη = ψ for η = 0,

and,

∂

∂η
ψη(t)

∣∣∣
η=0

= a(t).

Then

∂

∂η
`α,ψη (x, y)

∣∣∣
η=0

=
a(αTx)f ′ε|X

(
y − ψ(αTx

)
)

fε|X (y − ψ(αTx)) .
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To obtain the efficient score function, we must solve the equation

E

[{
Xjψ

′(αTX)f ′ε|X
(
Y − ψ(αTX)

)
fε|X(Y − ψ(αTX))

−
aj,∗(αTX)f ′ε|X

(
Y − ψ(αTX)

)
fε|X(Y − ψ(αTX))

}
a(αTX)f ′ε|X

(
Y − ψ(αTX)

)
fε|X(Y − ψ(αTX))

]
= 0,

(4.3.15)

for an Rd-valued function a∗ = (a1,∗, . . . ad,∗)T , where a∗, a ∈ L0
2(F )d and for all 1 ≤

j ≤ d. (see e.g. Huang (1996), p. 558, for similar computations with R-valued function
a∗). This amounts to solving in aj,∗:

E

{Xjψ
′(αTX)− aj,∗(αTX)

}
f ′ε|X

(
Y − ψ(αTX)

)2
fε|X(Y − ψ(αTX))2 a(αTX)

 = 0.

The efficient variance for α in the single index model is derived in Newey and Stoker
(1993), Delecroix et al. (2003) and Kuchibhotla and Patra (2017) among others. For the
general case, we get that the efficient score function is given by

˜̀
α,ψ(x, y) =

y − ψ
(
αTx

)
σ2(x) ψ′

(
αTx

){
x−

E
{
σ−2(X)X|αTX = αTx

}
E {σ−2(X)|αTX = αTx}

}
, (4.3.16)

where σ2(·) = E(ε2|X = ·). We illustrate the derivation of this efficient score function
in case that ε|X ∼ N(0, σ2(X)). We can write

E

{Xjψ
′(αTX)− aj,∗(αTX)

}
f ′ε|X

(
Y − ψ(αTX)

)2
fε|X(Y − ψ(αTX))2 a(αTX)


= E

[{
Xjψ

′(αTX)− aj,∗(αTX)
} {y − ψ(αTX)

}2

σ4(X) a(αTX)
]

= E

[
E

{{
Xjψ

′(αTX)− aj,∗(αTX)
}

σ2(X)

∣∣∣ αTX} a(αTX)
]
.

Note that

E

{{
Xjψ

′(αTX)− aj,∗(αTX)
}

σ2(X)

∣∣∣ αTX}
= ψ′(αTX)E

{
σ−2(X)Xj

∣∣∣ αTX}− aj,∗(αTX)E
{
σ−2(X)

∣∣∣ αTX} ,
such that (4.3.15) is solved for,

a∗(u) = ψ′(u)
E
{
σ−2(X)X

∣∣∣ αTX = u
}

E
{
σ−2(X)

∣∣∣ αTX = u
} .
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We conclude that the efficient score function for the semiparametric single index model
if ε|X ∼ N(0, σ2(X)) is indeed given by

˜̀
α,ψ(x, y) =

y − ψ
(
αTx

)
σ2(x) ψ′

(
αTx

){
x−

E
{
σ−2(X)X|αTX = αTx

}
E {σ−2(X)|αTX = αTx}

}
.

4.4 Computation

In this section we describe how the score estimator α̂n defined in (4.3.4) can be obtained
using a local coordinate system representing the unit sphere in combination with a pattern
search numerical optimization algorithm. An example of such a parameterization is the
spherical coordinate system S : [0, π](d−2) × [0, 2π] 7→ Sd−1 :

(β1, β2, . . . , βd−1) 7→(cos(β1), sin(β1) cos(β2), sin(β1) sin(β2) cos(β3), . . . ,

sin(β1) . . . sin(βd−2) cos(βd−1), sin(β1) . . . sin(βd−2) sin(βd−1))T .

The map parameterizing the positive half of the sphere S : {(β1, β2, . . . , βd−1) ∈
[0, 1](d−1) : ‖β‖ ≤ 1} 7→ Sd−1 :

(β1, β2, . . . , βd−1) 7→
(
β1, β2, . . . , βd−1,

√
1− β2

1 − . . .− β2
d−1

)T
,

is another example that can be used provided αd is positive. Prior knowledge about
the position of α0 can be derived from an initial estimate such as the LSE proposed in
Balabdaoui et al. (2016).
We illustrate the set of equations corresponding to (4.3.3) for dimension d = 3 using the
model

Y = ψ0(αT0X) + ε, , ψ0(x) = x+ x3, α01 = α02 = α03 = 1/
√

3,

X1, X2, X3
i.i.d∼ U [0, 1], ε ∼ N(0, 1),

where ε is independent of the covariate vector X = (X1, X2, X3)T . For this model, we
have

A = (17/180)Q, Σ = (1/36)Q and Ã = Σ̃ = 0.359656Q,

where

Q =


2 −1 −1

−1 2 −1

−1 −1 2

 ,
and where the matrices A,Σ, Ã and Σ̃ are defined in (4.3.7), (4.3.8), (4.3.13) and
(4.3.14) respectively. Note that the rank of the matrices is equal to d − 1 = 2. We
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consider the parametrization

S3 = {(α1, α2, α3) = (cos(β1) sin(β2), sin(β1) sin(β2), cos(β2)) :

0 ≤ β1 ≤ 2π, 0 ≤ β2 ≤ π}, (4.4.1)

in R2 and we solve the problem {
s1(β1, β2) = 0
s2(β1, β2) = 0

(4.4.2)

where

s1(β1, β2) = 1
n

n∑
i=1

(− sin(β1) sin(β2)Xi1 + cos(β1) sin(β2)Xi2)
{
Yi − ψ̂n,α(αTXi)

}
,

and

s2(β1, β2) = 1
n

n∑
i=1

(cos(β1) cos(β2)Xi1 + sin(β1) cos(β2)Xi2 − sin(β2)Xi3)

·
{
Yi − ψ̂n,α(αTXi)

}
.

Note that

S(β0) = (cos(β01) sin(β02), sin(β01) sin(β02), cos(β02))T =
(

1/
√

3, 1/
√

3, 1/
√

3
)T

,

and

JS(β0) =


− sin(β01) sin(β02) cos(β01) cos(β02)

cos(β01) sin(β02) sin(β01) cos(β02)

0 − sin(β02)

 =


− 1√

3
1√
6

1√
3

1√
6

0 −
√

2
3

 ,
where β01 = π/4 and β02 = arctan(

√
2). It can be easily seen from the above expression

for the matrix JS(β0) that the spherical coordinate system satisfies Assumption A8. We
also have,

S(β)TJS(β) = (0, 0) , (4.4.3)

for all β. This implies that the columns of JS(β) are perpendicular to the vectorα = S(β).
Note moreover that the columns are linearly independent and hence form a basis for {α}⊥.
Since the matrix

(JS(β0))T E
[
ψ′0(αT0X)Cov(X|αT0X)

]
(JS(β0)) =

[ 17
90 0

0 17
60

]
,
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Assumption A9 is satisfied. The asymptotic variance of α̂n resp. α̃n defined in Theorem
4.3.1 resp. Theorem 4.3.2 is equal to,

A−ΣA− = (100/289)Q = 0.346021Q and Ã−Σ̃Ã− = Ã− = 0.308937Q.

None of the proposed criterion functions is convex and by the discontinuous nature of the
functions s1 and s2, it is not possible to solve equations (4.4.2) exactly. This makes the
computation of the estimators difficult. Standard optimization methods for convex loss
functions cannot be used. The discreteness of the criterion functions moreover excludes
methods that take derivative information into account since this derivative is often not
defined. We search the crossing of zero (see Definition 2.4.1), by minimizing the sum of
squares s2

1(β)+s2
2(β) over all possible values of β = (β1, β2)T . Note that the crossing of

zero of the score function is equivalent to the minimizer of the sum of squared component
scores so that the minimization procedure is justified.
We use a derivative free optimization algorithm proposed by Hooke and Jeeves (1961).
The method is a pattern-search optimization method that does not require the objective
function to be continuous. The algorithm starts from an initial estimate of the minimum
and looks for a better nearby point using a set of 2d equal step sizes along the coordinate
axes in each direction, first making a step in the direction of the previous move. For the
object function we take the sum of the squared values of the component functions, which
achieves a minimum at a crossing of zero. If in no direction an improvement is found,
the step size is halved, and a new search for improvement is done, with the reduced step
sizes. This is repeated until the step size has reached a prespecified minimum. A very
clear exposition of the method is given in Torczon (1997), section 4.3. In this paper also
convergence proofs for the optimization algorithm are presented.

4.4.1 Lagrange approach

Instead of tackling the fact that our parameter space is essentially of dimension d− 1 by
the parametrization α = S(β) which locally maps Rd−1 into the sphere Sd−1, one can
introduce the restriction ‖α‖ = 1 via a Lagrangian term. We then consider the problem
of minimizing

1
n

n∑
i=1

{
Yi − ψ̂n,α(αTXi)

}2
+ λ

{
‖α‖2 − 1

}
, (4.4.4)

where ψ̂n,α is the LSE defined in Section 4.2 and λ is a Lagrange parameter which
we add to the sum of squared errors to deal with the identifiability of the single-index
model. We consider a Lagrange penalty for solving the optimization problem under the
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constraint that ‖α‖ = 1.

Analogously to the treatment given in Section 4.2, we next consider the derivative of
(4.4.4) w.r.t. α, where we ignore the non-differentiability of the LSE ψ̂n,α. This leads to
the set of equations,

1
n

n∑
i=1

Xij

{
ψ̂n,α(αTXi)− Yi

}
+ λαj = 0, 1 ≤ j ≤ d. (4.4.5)

Here λ has to satisfy

λ = λ

d∑
j=1

α2
j = − 1

n

n∑
i=1

αTXi

{
Yi − ψ̂n,α(αTXi)

}
. (4.4.6)

Plugging in the above expression for λ in (4.4.5), we would consider the score equation

0 = 1
n

n∑
i=1

Xi

{
Yi − ψ̂n,α(αTXi)

}
−αT

(
1
n

n∑
i=1

Xi

{
Yi − ψ̂n,α(αTXi)

})
α

=
(
I −ααT

) ∫
x
{
y − ψ̂n,α

(
αTx

)}
dPn(x, y), (4.4.7)

where I is the d× d identity matrix.

A computer program was implemented to solve (4.4.7). It has the advantage that we do
not have to deal with the parametrization α = S(β), but has the disadvantage that we
cannot assume that α̂n has exactly norm 1 because we again have to deal with crossings of
zero instead of exact equality to zero. One way to circumvent this problem is to normalize
the solution after each iteration by dividing by its norm. This approach seems to provide
reasonable solutions, although it is not entirely satisfactory from a theoretical point of
view. Also note that if the right-hand side of (4.4.6) equals zero, so λ = 0, the equation
does not force the norm of α to be one; it only does so if λ 6= 0. Indeed, in our computer
experiments, λ was never zero, so this problem did actually not occur, but λ will tend to
zero with increasing sample sizes, so some numerical instability is to be expected.
For reasons of space we do not further describe all details of this approach, but instead
restrict ourselves to showing a picture of the simple score estimate of ψ0 for n = 1, 000
and d = 10 for the simulation where all the Xi variables and the random error variable ε
are standard normal and independent, ψ0(x) = x3 and α0 = (1/

√
10, . . . , 1/

√
10)T . It is

clear that the estimate of ψ0 will be rather accurate because of the information provided
by the 10 covariates Xi (instead of, say, just two covariates X1, X2).
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Figure 4.2: The real ψ0 (red, solid) and the function ψ̂n,α̂n (black, step function) for ψ0(x) = x3,
α0i = 1/

√
10, Xi

i.i.d∼ N(0, 1), i = 1 . . . 10 and n = 1, 000.

4.5 Simulations

In this section we illustrate the finite sample behavior of our single index score estima-
tors proposed in Section 4.3.1 and Section 4.3.2. We also discuss in Section 4.5.2 the
performance of other estimators for the SIM that avoid the use of smoothing techniques
in the estimation approach and compare these estimators with our simple score estimator
defined in Section 4.3.1. We use notations SSE and ESE to denote the simple respectively
efficient score estimators of Section 4.3.1 respectively Section 4.3.2.

4.5.1 Finite sample behavior of the score estimators and the LSE

We consider the model

Y = ψ0(α01X1 + α02X2) + ε =
(
αT0X

)3 + ε, (4.5.1)

where α0i = 1/
√

2, i = 1, 2 and ε ∼ N(0, 1), independent of X. We consider two
different distributions for the covariate vector X, Xi

i.i.d∼ U [1, 2] and Xi
i.i.d∼ N(0, 1) for

i = 1, 2.

We consider the parametrization S(β0) = (cos(β0), sin(β0))T for these two-dimensional
models. In each simulation setting, we estimate α0 by the SSE and the ESE and compare
the behavior of our proposed estimates with the LSE discussed in Section 4.2. For
sample sizes n = 100; 500; 1, 000; 2, 000; 5, 000 and n = 10, 000 we generate N = 5, 000
datasets from Model (4.5.1) and show, in Table 4.1 and Table 4.2, the mean and n times
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the covariance of the estimates. Table 4.1 and Table 4.2 also show the asymptotic values
to which the results should converge based on Theorem 4.3.1 and Theorem 4.3.2. The
limiting distribution of the LSE is still unknown and therefore no asymptotic results are
provided for the LSE.

For all simulation studies, the results shown in Table 4.1 and Table 4.2 show con-
vergence of n times the variance-covariance matrices towards its asymptotic values.
The performance of the ESE is slightly better than the performance of the SSE;
the difference between the asymptotic limiting variances is smaller in the model with
Uniform[1, 2] covariates Xi than the difference in the model with standard normal
covariates Xi. Although the model with standard normal covariates violates Assump-
tions A1, A2 and A4 given in Section 4.2, our proposed estimates perform reasonably well.

The behavior of the LSE is rather remarkable. Table 4.1 suggests an increase of n times
the covariance matrix in contrast to Table 4.2 where n times the variance tends to stabilize.
The results presented in Table 4.2 show that the performance of the LSE is clearly better
than the performance of the SSE for small sample sizes when Xi ∼ N(0, 1). For the
model with uniform covariates, summarized in Table 4.1, our proposed score estimates
outperform the LSE. The variances for the LSE presented in Table 4.1 and Table 4.2
suggest that the rate of convergence for the LSE is faster than the cube-root n-rate
proved in Balabdaoui et al. (2016). The asymptotic distribution of the LSE needs to be
addressed in further research.

4.5.2 Other estimators obtained without smoothing

In this section we compare the behavior of regression parameter estimators in the mono-
tone single index model that are based on simple criterion functions and avoid the use
of smoothing techniques. Although smoothing is necessary to obtain efficient estimators
in the single index model, we want to point out that smoothing should not be the
main concern when interest is in estimating the finite dimensional regression parameter.
√
n-consistent estimators with asymptotic normal limiting distribution with asymptotic

variances that exceed the efficient variance have a good finite sample behavior. These
simple estimators are often computationally more attractive than efficient estimators
since efficiency is often based on smoothness conditions that are stronger than the
conditions needed when smoothing techniques are avoided and consequently, efficient
estimation algorithms require choosing one or several smoothing parameters.

The LSE, defined in Section 4.2 and the SSE, defined in Section 4.3.1, are both examples
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Table 4.1: Simulation model (Xi ∼ U [1, 2], d = 2): The mean value (µ̂i = mean(α̂in), i = 1, 2)
and n times the variance-covariance (σ̂ij = n·cov(α̂in, α̂jn),i, j = 1, 2) of the simple score
estimate (SSE), the efficient score estimate (ESE) and the least squares estimate (LSE) for
different sample sizes n with N = 5, 000. The lines, preceded by ∞, give the asymptotic values.

Method n µ̂1 µ̂2 σ̂11 σ̂22 σ̂12

SSE 100 0.707249 0.706389 0.040773 0.040866 -0.040787
500 0.707224 0.706890 0.035018 0.035057 -0.035033
1,000 0.707175 0.706992 0.033262 0.033273 -0.033265
2,000 0.707173 0.707016 0.034017 0.034012 -0.034014
5,000 0.707134 0.707070 0.034011 0.034012 -0.034011
10,000 0.707109 0.707100 0.033344 0.033350 -0.033347
∞ 0.707107 0.707107 0.032439 0.032439 -0.032439

ESE 100 0.707293 0.706359 0.039631 0.039758 -0.039663
500 0.707230 0.706888 0.033888 0.033922 -0.033900
1,000 0.707185 0.706983 0.032302 0.032316 -0.032307
2,000 0.707175 0.707015 0.032992 0.032989 -0.032990
5,000 0.707130 0.707074 0.032925 0.032924 -0.032924
10,000 0.707111 0.707098 0.032278 0.032283 -0.032280
∞ 0.707107 0.707107 0.031516 0.031516 -0.031516

LSE 100 0.706848 0.706624 0.052397 0.052415 -0.052321
500 0.707060 0.707002 0.053547 0.053570 -0.053542
1,000 0.707138 0.707000 0.053513 0.053573 -0.053535
2,000 0.707122 0.707053 0.055502 0.055519 -0.055506
5,000 0.707118 0.707079 0.059731 0.059756 -0.059741
10,000 0.707128 0.707077 0.061843 0.061868 -0.061854
∞ 0.707107 0.707107 ? ? ?

of estimators of the finite dimensional regression parameter α0 that are based on the
nonparametric LSE of the infinite dimensional nuisance parameter ψ0. Inspired by the
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Table 4.2: Simulation model (Xi ∼ N(0, 1), d = 2): The mean value (µ̂i = mean(α̂in), i = 1, 2)
and n times the variance-covariance (σ̂ij = n·cov(α̂in, α̂jn),i, j = 1, 2) of the simple score
estimate (SSE), the efficient score estimate (ESE) and the least squares estimate (LSE) for
different sample sizes n with N = 5, 000. The lines, preceded by ∞, give the asymptotic values.

Method n µ̂1 µ̂2 σ̂11 σ̂22 σ̂12

SSE 100 0.705202 0.706163 0.201378 0.200975 -0.200327
500 0.706395 0.707509 0.109547 0.109291 -0.109371
1,000 0.706824 0.707259 0.092557 0.092464 -0.092494
2,000 0.707100 0.707056 0.080981 0.080966 -0.080967
5,000 0.707026 0.707167 0.072021 0.071947 -0.071982
10,000 0.707091 0.707113 0.067685 0.067665 -0.067674
∞ 0.707107 0.707107 0.055556 0.055556 -0.055556

ESE 100 0.706800 0.706173 0.087513 0.087878 -0.087480
500 0.706905 0.707200 0.038450 0.038468 -0.038453
1,000 0.706978 0.707190 0.031701 0.031672 -0.031685
2,000 0.707061 0.707133 0.027930 0.027924 -0.027926
5,000 0.707079 0.707128 0.023914 0.023907 -0.023911
10,000 0.707104 0.707106 0.022827 0.022828 -0.022827
∞ 0.707107 0.707107 0.018519 0.018519 0.018519

LSE 100 0.706748 0.706135 0.093819 0.094319 -0.093715
500 0.706710 0.707309 0.068561 0.068260 -0.068383
1,000 0.706737 0.707389 0.061614 0.061325 -0.061459
2,000 0.707009 0.707161 0.061123 0.061109 -0.061111
5,000 0.707087 0.707110 0.060759 0.060722 -0.060738
10,000 0.707074 0.707131 0.061708 0.061692 -0.061699
∞ 0.707107 0.707107 ? ? ?

rank estimator proposed in Aragón and Quiroz (1995) for the current status model, we
also propose a new estimator in this class and investigate its behavior via simulation
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studies.

To illustrate the criterion functions associated with the different estimators, we consider
a simulated data sample from the model

Y = exp(X1/
√

2 +X2/
√

2) + ε, X1, X2 ∼ U [−1, 1] and ε ∼ N(0, 1). (4.5.2)

A picture of the LSE ψ̂n,α0 for a sample of size n = 100; 1, 000 and n = 10, 000 is given
in Figure 4.3.
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(c) n = 10, 000

Figure 4.3: The LSE ψ̂n,α0 (black, step-wise) and the true function ψ0(x) = exp(x) (red, solid)
in model (4.5.2) for a sample of size (a) n = 100, (b) n = 1, 000 and (c) n = 10, 000.

For the LSE and the SSE, figures of the criterion functions Sn defined in (4.2.1) and ξ1,n,
defined in (4.3.5), as a function of β, where β is defined by (α1, α2) = (cos(β), sin(β))
are given in Figure 4.4 and Figure 4.5 respectively. In model (4.5.2), the true parameter
value β0 = π/4.

4.5.2.1 The maximum rank correlation estimator (MRCE)

Han’s maximum rank correlation estimator is motivated by the fact that Yi ≥ Yj is more
likely than Yi < Yj when αT0Xi ≥ αT0Xj if ψ0 is increasing. The MRCE is defined by
the maximizer of

Hn(α) def= 1
n(n− 1)

∑
i 6=j
{Yi > Yj}{αTXi > α

TXj}. (4.5.3)

In contrast to the LSE and the SSE, estimation of the unknown link function ψ0 is not
considered with the MRCE.
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Figure 4.4: The map β 7→ Sn((cos(β), sin(β))T , ψ̂n,α) (black, solid) in model (4.5.2) for a
sample of size (a) n = 100, (b) n = 1, 000 and (c) n = 10, 000. The vertical reference lines
indicate the position of the minimizer (black, dotted) and true β0 = π/4 (red, dotted).
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Figure 4.5: The map β 7→ ξ1,n((cos(β), sin(β)T )) (black, solid) in model (4.5.2) for a sample
of size (a) n = 100, (b) n = 1, 000 and (c) n = 10, 000. The vertical reference lines indicate the
position of the zero-crossing (black, dotted) and true β0 = π/4 (red, dotted).

4.5.2.2 The maximum rank estimator (MRE)

Inspired by the MRCE, Cavanagh and Sherman (1998) developed a new class of rank
estimators defined by the maximizer of

Rn(α) def= 1
n(n− 1)

∑
i 6=j

M(Yi){αTXi > α
TXj}, (4.5.4)

where M denotes an increasing function on R. In this section we investigate the behavior
of the estimator when M is equal to the identity function, i.e. M(y) = y, and refer to
this estimator as the maximum rank estimator. Since the responses in the binary choice
model and the current status model are binary, it holds that the MRCE and the MRE are
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Figure 4.6: The map β 7→ Hn((cos(β), sin(β)T )) (black, solid) in model (4.5.2) for a sample
of size (a) n = 100, (b) n = 1000 and (c) n = 10000. The vertical reference lines indicate the
position of the maximizer (black, dotted) and true β0 = π/4 (red, dotted).

equivalent in these models. We illustrate this for the current status (cs) linear regression
model and consider the MRE maximizing

Rn,cs(α) =
∑
i 6=j

∆i{Ti −αTXi > Tj −αTXj}.

This rank estimator is equivalent to Han’s maximum rank correlation estimator, given by
the maximizer of

Hn,cs(α) =
∑
i6=j
{∆i > ∆j}{Ti −αTXi > Tj −αTXj}

=
∑
i6=j

∆i(1−∆j){Ti −αTXi > Tj −αTXj}.

This can be seen as follows. Suppose that the observations are ordered in the Ti−αTXi,
i.e. T1 −αTX1 ≤ T2 −αTX2 ≤ . . . ≤ Tn −αTXn. Then,

Hn,cs(α) =
∑
j<i

∆i(1−∆j) =
∑
j<i

∆i −
∑
j<i

∆i∆j =
∑
j<i

∆i −
1
2
∑
j 6=i

∆i∆j

= Rn,cs(α)− 1
2
∑
j 6=i

∆i∆j .

Since the second term in the expression above is independent of the ordering in
Ti −αTXi, the maximizers of Rn,cs(α) and Hn,cs(α) coincide and both estimators are
equivalent.

The behavior of the map α 7→ Hn(α) and the map α 7→ Rn(α) are similar and we do
not include pictures for the latter mapping.
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4.5.2.3 The maximum rank estimator using the LSE of ψ0 (LS-MRE)

Aragón and Quiroz (1995) proposed two regression parameter estimators for the current
status linear regression model based on the ranks of the observations Ti − αTXi. The
first estimator coincides with the MRE. The second estimator is defined by the maximizer
of ∑

i 6=j
F̂n,α(Ti −αTXi){Ti −αTXi > Tj −αTXj},

where F̂n,α is the MLE (see Chapter 2, Section 2.3) for fixed α. This motivates us to
investigate the behavior of the regression parameter estimator for the monotone single
index model, referred to as the LS-MRE, defined by the maximizer of

An(α) def= 1
n(n− 1)

∑
i 6=j

ψ̂n,α(αTXi){αTXi > α
TXj}, (4.5.5)

where ψ̂n,α is the LSE for fixed α. To the best of our knowledge this estimator has not
been studied before and the asymptotic limiting distribution is still unknown. Since the
LS-MRE is similar to the LSE, an M-estimator that involves the nonparametric LSE of
ψ0, it can be expected that similar theoretical issues appear when deriving the limiting
behavior for both estimators.
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Figure 4.7: The map β 7→ An((cos(β), sin(β)T )) (black, solid) in model (4.5.2) for a sample of
size (a) n = 100, (b) n = 1, 000 and (c) n = 10, 000. The vertical reference lines indicate the
position of the maximizer (black, dotted) and true β0 = π/4 (red, dotted).

4.5.2.4 Asymptotic behavior

It has been shown in Section 4.3.1 for the SSE, in Sherman (1993) for the MRCE and
in Cavanagh and Sherman (1998) for the MRE that these estimators are

√
n-consistent
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and have an asymptotic normal limiting distribution with asymptotic variance that is
larger than the efficient variance. As pointed out in a footnote on p. 361 of Cavanagh
and Sherman (1998) the expression for the asymptotic variance of the MRCE given in
Theorem 4 of Sherman (1993) is only correct up to a factor 4. Unfortunately the same
mistake for the MRE was made in the expression for the asymptotic variance of the MRE
given in Theorem 2 of Cavanagh and Sherman (1998).

Although no proofs for the MRCE and the MRE have been published, we can prove that,
√
n(α̂n −α0) d→ N(0,V −S,V −) (4.5.6)

for specific choices of V and S, where V − is the Moore-Penrose inverse of V . A
sketch of the proof of (4.5.6) is given below. The reason that we again have to consider
generalized inverses is that the normal limiting distributions are concentrated on the
(d−1)-dimensional subspace, orthogonal to α0 and are therefore degenerate. This is also
clear from its covariance matrix V −SV −, which is a matrix of rank d−1. The expressions
for V and S are summarized in Table 4.3 for the monotone single index model and in
Table 4.4 for the current status linear regression model. Here we introduce the notation
g0 to denote the density of the random variable αT0X resp. T −αT0X.

Table 4.3: Asymptotic variances in the monotone single index model.

Method S

SSE E
[{
Y − ψ0(αT0X)

}2 {
X − E(X|αT0X)

}{
X − E(X|αT0X)

}T ]
MRCE E

[{
2F0(Y − ψ0(αTX))− 1

}2 {
X − E(X|αT0X)

}{
X − E(X|αT0X)

}T
g0(αT0X)2

]
MRE E

[{
Y − ψ0(αTX)

}2 {
X − E(X|αT0X)

}{
X − E(X|αT0X)

}T
g0(αT0X)2

]

V

SSE E
[
ψ′0(αT0X)

{
X − E(X|αT0X)

}{
X − E(X|αT0X)

}T ]
MRCE E

[
2ψ′0(αT0X)f0(Y − ψ0(αTX))

{
X − E(X|αT0X)

}{
X − E(X|αT0X)

}T
g0(αT0X)

]
,

MRE E
[
ψ′0(αT0X)

{
X − E(X|αT0X)

}{
X − E(X|αT0X)

}T
g0(αT0X)

]
,
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Table 4.4: Asymptotic variances in the current status linear regression model.

Method S

SSE E
[
F0(T −αT0X){1− F0(T −αT0X)}

{
X − E(X|T −αT0X)

}{
X − E(X|T −αT0X)

}T ]
MR(C)E E

[
F0(T −αT0X){1− F0(T −αT0X)}

{
X − E(X|T −αT0X)

}{
X − E(X|T −αT0X)

}T
g0(T −αT0X)2

]

V

SSE E
[
f0(T −αT0X)

{
X − E(X|αT0X)

}{
X − E(X|αT0X)

}T ]
MR(C)E E

[
f0(T −αT0X)

{
X − E(X|αT0X)

}{
X − E(X|αT0X)

}T
g0(T −αT0X)

]

Asymptotic distribution of the MRCE and MRE:

Here we show that the asymptotic normal distribution for the MRCE is given by,
√
n(α̂n −α0) d→ Nd(0,V −S,V −),

where V and S are defined in Table 4.3. A similar argument can be used to derive the
asymptotic distribution of the MRE in terms of Moore-Penrose inverses. The asymptotic
normality for the MRCE and the MRE are derived in Sherman (1993) and Cavanagh and
Sherman (1998), where the authors restrict the parameter space to a compact subset
{α ∈ Rd : αd = 1}. Each α is represented as (β, 1) and only d − 1 instead of d
components are considered in the proofs of

√
n-consistency and asymptotic normality.

Using the parametrization {α ∈ Rd : ‖α‖ = 1} instead and considering a transformation
S : B ⊂ Rd−1 7→ {α ∈ Rd : ‖α‖ = 1} as in Section 4.3, it follows, by similar arguments
as in Sherman (1993) that for the MRCE we have

0 ≤ Hn(β)−Hn(β0) = 1
2(β − β0)TE {∇2τ((X, Y ),β)} (β − β0) + 1√

n
(β − β0)TWn

+ op(‖β − β0‖2) + op(1/n),

where

τ((x, y),β) = E
(
{y > Y }

{
S(β)Tx > S(β)TX

})
+ E

(
{Y > y}

{
S(β)TX > S(β)Tx

})
,

and where

Wn = 1√
n

n∑
i=1
∇1τ((Xi, Yi),β0),
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converges in distribution to a Normal Nd−1(0,W ) random vector. Here, ∇i represents
the ith partial derivative operator with respect to β. Let Q denote E (∇2τ(X, Y ),β). If
Q is negative definite, than it follows by Theorem 2 in Sherman (1993) that

√
n(β̂n − β0) d→ Nd−1(0,Q−1WQ−1).

Using an application of the delta-method, we conclude that,

√
n(α̂n −α0) d→ Nd

(
0, [∇1S(β0)][Q−1WQ−1][∇1S(β0)]T

)
=
(
0,V −SV −

)
,

where V and S are given in Table 4.3 and where the last equality follows analogously to
the proof of asymptotic normality of the SSE given in Appendix C.

The limiting distributions of the LSE and the LS-MRE are still unknown. Figure 4.4
and Figure 4.7 show a more irregular behavior of the criterion functions for the LSE and
the LS-MRE compared to the smoother criterion functions for the SSE and the MRCE,
shown in Figure 4.5 and Figure 4.6. Deriving the limiting distributions for the LSE and
the LS-MRE is challenging. One of the difficulties arises from the non-differentiability of
the LSE ψ̂n,α̂ for ψ0 appearing in the criterion functions Sn and An. This is, for example
not the case with the efficient semiparametric LSE proposed in Ichimura (1993), where
the criterion function is given by Sn defined in (4.2.1) but with ψ̂nα replaced by a kernel
estimate that is two times continuously differentiable with respect to α. By considering a
Z-estimator instead of an M-estimator, this non-differentiability is somehow circumvented
with the SSE. See also the discussion on the score approach given in Chapter 2, Section
2.2.

4.5.2.5 Finite sample behavior

To evaluate the finite sample behavior of the different estimators introduced in the previous
Sections 4.5.2.1-4.5.2.3, we simulate N = 5, 000 datasets from the model

Y = ψ0(αT0X) + ε, (4.5.7)

where ψ0(x) = x + x3, α0i = 1/
√

3, i = 1, 2, 3 and ε ∼ N(0, 1), independent of X.
We consider two different distributions for the covariate vector X, Xi

i.i.d∼ U [0, 1] and
Xi

i.i.d∼ N(0, 1) for i = 1, 2, 3.

Table 4.5 and Table 4.6 show the mean and n times the covariance matrix of the
estimates for sample sizes n = 100; 500; 1, 000; 5, 000 and n = 10, 0000 for the Uniform
resp. Normal simulation setting. We calculated the asymptotic variances given in Table
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4.3 to which n times the covariance matrix should converge for the SSE, the MRCE
and the MRE. We however note that only the Uniform model satisfies the assumptions
needed to prove (4.5.6). The last column of Table 4.5 and Table 4.6 contains the
distance between n times the covariance matrix of the estimates and the matrix V −SV −

obtained by summing the squared distance of the corresponding matrix elements. The
results for n times the variance of the estimates of α3 are visualized in Figure 4.8.

For both simulation settings, the results show convergence of n times the covariance
matrix towards the asymptotic values for the SSE, MRCE and MRE. The convergence
rate is faster for the SSE than for the MRCE and MRE. We also note that the asymptotic
values are smallest for the SSE in these models, with only a small difference for the
Uniform setting but a larger difference in the Normal setting where the asymptotic values
of the MRCE and MRE are substantially larger than the ones for the SSE.

For the LS-MRE, n times te covariance matrices increase with increasing sample size,
suggesting a slower convergence rate than the parametric

√
n-rate for this estimator.

Table 4.5 also shows a similar increase for the LSE in the Uniform model whereas a
decrease of n times the covariance matrix for the LSE is shown in Table 4.6 for the
Normal setting. The LSE even performs better than the MRCE and the MRE in the
latter simulation model.

Finally, we also compared the inefficient estimates in the model with uniform covariates
with the efficient penalized least squares estimate (PLSE) proposed by Kuchibhotla
and Patra (2017) and the efficient EFM estimate proposed by Cui et al. (2011). The
computation time of these efficient estimates is considerably longer than the time required
for the score methods proposed in Section 4.3 and the estimates discussed in Section
4.5.2. Therefore, we do not report results for sample size n = 10, 000 and simulated
only N=2,500 data sets for the PLSE with n = 5, 000. Boxplots of

∑3
j=0(α̂j − α0j)2/3,

shown in Figure 4.9, illustrate that the PLSE and EFM estimate perform better than the
SSE, MRCE and MRE for smaller sample sizes. As the sample size increases, the results
for the efficient but computational intensive methods are no longer superior and the best
performance is obtained with the SSE. The results for the PLSE and the EFM estimate
depend furthermore on smoothing parameters which need to be selected carefully. Figure
4.8 clearly shows that n times the variance increases for the PLSE with increasing
sample size, in contrast to the efficient convergence rate. This illustrates again that, in
practice, methods that involve smoothing techniques are not necessarily a better choice
than

√
n-consistent parameter-free methods, especially for larger sample sizes where the
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computation cost is enormous.

We conclude that it is worthwhile to consider parameter-free methods for estimation in
the monotone single index model. The additional complexity (due to the smoothing
parameter) does not necessarily result in better performances for efficient estimates. The
increased computation time is only worthwhile when the sample size is small. The SSE
is preferred for larger samples and moreover achieves better performances than the rank
estimators (MRCE and MRE). The experiments in the normal model were in favor of the
parametric

√
n-rate for the LSE whereas the uniform trials suggested a slower convergence

rate. Even if the LSE leads at all to a
√
n-consistent estimate, its performance remains

inferior to the score procedures in Section 4.3. Nevertheless, it remains an interesting
topic to understand the behavior of the the LSE in the monotone single index model.
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Figure 4.8: n times the variance of α3 as a function of the sample size n for the simulation model
with (a) Xi ∼ U [0, 1] and (b) with Xi ∼ N(0, 1) for the LSE (solid, black, ◦), SSE (dashed,
red, 4), MRCE (dotted,green, +), MRE (dashed-dotted, blue, ×), LS-MRE (long-dashed, pink,
�), EFM (two-dashed, light blue, 5) and PLSE (solid, orange, 2 ). The points at ∞ represent
the asymptotic values.



4.5. Simulations 103

Table 4.5: Simulation model (Xi ∼ U [0, 1], d = 3): The mean value (µ̂i = mean(α̂in), i =
1, 2, 3), n times the variance-covariance (σ̂ij = n·cov(α̂in, α̂jn),i, j = 1, 2, 3) and the distance
between n times the covariance matrix estimate and Σ for the least squares estimate (LSE), the
simple score estimate (SSE), the maximum rank correlation estimate (MRCE), the maximum rank
estimate (MRE) and the maximum rank estimate using the LSE of ψ0 (LS-MRE) for different
sample sizes n with N = 5, 000. The lines, preceded by ∞, give the asymptotic values.

Method n µ̂1 µ̂2 µ̂3 σ̂11 σ̂22 σ̂33 σ̂12 σ̂13 σ̂23 d(Σ̂,Σ)

LSE 100 0.567232 0.566927 0.566318 1.201293 1.203355 1.208558 -0.577588 -0.592399 -0.577087 -
500 0.575008 0.575510 0.574969 1.294027 1.227499 1.261569 -0.624327 -0.658712 -0.597269 -

1,000 0.576605 0.575703 0.576451 1.276503 1.271816 1.249995 -0.645524 -0.628822 -0.618845 -
5,000 0.577477 0.576993 0.576840 1.421290 1.446315 1.409902 -0.730242 -0.691148 -0.715894 -
10,000 0.577146 0.577374 0.577146 1.506928 1.473131 1.471213 -0.755098 -0.751517 -0.718229 -
∞ 0.57735 0.57735 0.57735 ? ? ? ? ? ?

SSE 100 0.587614 0.541965 0.532872 1.544919 1.772945 4.386728 -0.955064 -1.496068 0.644483 25.896840
500 0.573818 0.575772 0.576971 0.859601 0.844360 1.458978 -0.498872 -0.665879 -0.148044 4.603239

1,000 0.574333 0.576839 0.579007 0.695695 0.753258 0.700203 -0.368076 -0.322984 -0.381043 2.976074
5,000 0.576343 0.577253 0.578089 0.688215 0.709718 0.707268 -0.344059 -0.341827 -0.366363 2.914229
10,000 0.576838 0.577328 0.577704 0.679286 0.708114 0.700672 -0.342635 -0.335454 -0.365785 2.891139
∞ 0.57735 0.57735 0.57735 0.692042 0.692042 0.692042 -0 .346021 -0.346021 -0.346021

MRCE 100 0.567500 0.567568 0.568074 1.075928 1.137504 1.097447 -0.529870 -0.517154 -0.557786 5.485893
500 0.576217 0.575649 0.575226 0.946660 0.974019 0.938209 -0.489812 -0.453586 -0.479446 4.613869

1,000 0.576239 0.576586 0.576801 0.926655 0.931801 0.938936 -0.458336 -0.465244 -0.472174 4.499525
5,000 0.577250 0.577172 0.577165 0.882133 0.881460 0.911412 -0.426668 -0.454751 -0.455531 4.270952
10,000 0.577441 0.577291 0.577097 0.836557 0.856753 0.859607 -0.416975 -0.419253 -0.439996 4.048597
∞ 0.57735 0.57735 0.57735 0.789576 0.789576 0.789576 -0.394788 -0.394788 -0.394788

MRE 100 0.568537 0.569242 0.568475 0.967113 1.016043 0.974079 -0.490072 -0.456418 -0.492633 4.567802
500 0.576084 0.576064 0.575379 0.865385 0.890822 0.851881 -0.450847 -0.413482 -0.434273 3.977375

1,000 0.576398 0.576643 0.576752 0.865576 0.864699 0.874510 -0.425514 -0.435668 -0.438601 3.978506
5,000 0.577365 0.577191 0.577069 0.814612 0.820094 0.825936 -0.404390 -0.409542 -0.415915 3.729037
10,000 0.577437 0.577292 0.577114 0.781254 0.813925 0.801210 -0.397353 -0.383830 -0.416803 3.623730
∞ 0.57735 0.57735 0.57735 0.753990 0.753990 0.753990 -0.376995 -0.376995 -0.376995

LS-MRE 100 0.567857 0.567102 0.566043 1.158089 1.222715 1.172809 -0.579885 -0.539226 -0.600456 -
500 0.575740 0.574947 0.575144 1.188863 1.194779 1.201250 -0.584415 -0.601986 -0.595143 -

1,000 0.576197 0.575715 0.576921 1.241740 1.235253 1.235171 -0.618252 -0.614218 -0.617806 -
5,000 0.577366 0.577222 0.576750 1.387179 1.379640 1.340894 -0.713591 -0.671955 -0.666950 -
10,000 0.577212 0.577483 0.576991 1.394293 1.402226 1.416547 -0.689486 -0.704229 -0.712122 -
∞ 0.57735 0.57735 0.57735 ? ? ? ? ? ?
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Table 4.6: Simulation model (Xi ∼ N(0, 1), d = 3): The mean value (µ̂i = mean(α̂in), i =
1, 2, 3), n times the variance-covariance (σ̂ij = n·cov(α̂in, α̂jn),i, j = 1, 2, 3) and the distance
between n times the covariance matrix estimate and Σ for the least squares estimate (LSE), the
simple score estimate (SSE), the maximum rank correlation estimate (MRCE), the maximum rank
estimate (MRE) and the maximum rank estimate using the LSE of ψ0 (LS-MRE) for different
sample sizes n with N = 5, 000. The lines, preceded by ∞, give the asymptotic values.

Method n µ̂1 µ̂2 µ̂3 σ̂11 σ̂22 σ̂33 σ̂12 σ̂13 σ̂23 d(Σ̂,Σ)

LSE 100 0.576253 0.575232 0.577442 0.117550 0.121344 0.121273 -0.057846 -0.059679 -0.061917 -
500 0.576764 0.577339 0.577522 0.081738 0.081732 0.082715 -0.040379 -0.041181 -0.041484 -

1,000 0.577343 0.577049 0.577455 0.081122 0.076944 0.076627 -0.040666 -0.040421 -0.036237 -
5,000 0.577349 0.577424 0.577241 0.071714 0.071565 0.070109 -0.036610 -0.035116 -0.034965 -
10,000 0.577243 0.577471 0.577318 0.072255 0.069788 0.073763 -0.034152 -0.038079 -0.035670 -
∞ 0.57735 0.57735 0.57735 ? ? ? ? ? ?

SSE 100 0.575519 0.575019 0.578488 0.113493 0.124740 0.110063 -0.062954 -0.051701 -0.058559 0.053908
500 0.576568 0.577168 0.577949 0.068775 0.072997 0.068783 -0.036351 -0.032285 -0.036606 0.021234

1,000 0.576909 0.577237 0.577743 0.062691 0.062724 0.061552 -0.031817 -0.030782 -0.030871 0.017500
5,000 0.577193 0.577334 0.577497 0.049946 0.051876 0.050206 -0.025787 -0.024146 -0.026080 0.013040
10,000 0.577218 0.577368 0.577452 0.047678 0.050129 0.048718 -0.024534 -0.023131 -0.025597 0.012451
∞ 0.57735 0.57735 0.57735 0.041667 0.041667 0.041667 -0.020833 -0.020833 -0.020833

MRCE 100 0.574988 0.574617 0.575950 0.252922 0.249878 0.245900 -0.127500 -0.123730 -0.120269 0.256494
500 0.577099 0.577073 0.576887 0.187896 0.193914 0.191217 -0.095492 -0.092522 -0.098216 0.165002

1,000 0.577607 0.576964 0.577018 0.176862 0.177429 0.178333 -0.087992 -0.089192 -0.089015 0.147942
5,000 0.577329 0.577313 0.577328 0.155366 0.157960 0.154613 -0.079387 -0.075988 -0.078577 0.124000
10,000 0.577303 0.577355 0.577353 0.149451 0.153579 0.150804 -0.076088 -0.073316 -0.077506 0.119332
∞ 0.57735 0.57735 0.57735 0.128981 0.128981 0.128981 -0.064491 -0.064491 -0.064491

MRE 100 0.575183 0.575212 0.576426 0.199617 0.200877 0.202508 -0.097920 -0.099979 -0.101862 0.177766
500 0.577122 0.577191 0.576892 0.161150 0.166230 0.161093 -0.083228 -0.077936 -0.082881 0.131103

1,000 0.577425 0.577094 0.577126 0.156489 0.156771 0.155526 -0.078799 -0.077816 -0.077693 0.124233
5,000 0.577316 0.577328 0.577332 0.143959 0.145212 0.143865 -0.072627 -0.071307 -0.072569 0.112765
10,000 0.577277 0.577379 0.577359 0.138858 0.144639 0.140865 -0.071304 -0.067543 -0.073327 0.110218
∞ 0.57735 0.57735 0.57735 0.123168 0.123168 0.123168 -0.061584 -0.061584 -0.061584

LS-MRE 100 0.573239 0.575404 0.576779 0.249883 0.255367 0.258162 -0.120959 -0.125660 -0.132383 -
500 0.576666 0.577033 0.577046 0.252064 0.252798 0.249036 -0.127917 -0.123899 -0.124663 -

1,000 0.577145 0.577250 0.576976 0.268550 0.261884 0.255396 -0.137415 -0.131186 -0.124071 -
5,000 0.577358 0.577305 0.577239 0.279751 0.298353 0.280200 -0.148836 -0.130687 -0.149572 -
10,000 0.577360 0.577378 0.577235 0.295791 0.293497 0.308889 -0.140208 -0.155558 -0.153289 -
∞ 0.57735 0.57735 0.57735 ? ? ? ? ? ?
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Figure 4.9: Boxplots of
∑3

j=0(α̂j−α0j)2/3 for the model with Xi ∼ U [0, 1] for sample sizes (a)
n = 100, (b) n = 500, (c) n = 1000 and (d) n = 5000. Red boxes correspond to

√
n-consistent

but ineffcient methods (SSE, MRCE and MRE); blue boxes correspond to
√
n−consistent and

effcient methods (EFM, PLSE) and green boxes correspond to methods with unknown limiting
distribution (LSE, LS-MRE).

4.6 Real data example

In this section we apply the estimation techniques on the Ozone data (Chambers et al.,
1983). The data set contains observations on the ozone concentration for 153 consecutive
days between May 1 and September 30, 1973. We study the relationship of the ozone
concentration (Y) and the meteorological variables: solar radiation (R, Ly), temperature
(T, ◦F ) and wind speed (W, mph) in a subset of the data consisting of 111 complete
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observations. For our data analysis we have scaled the covariates to have mean 0 and
variance 1.
Table 4.7 summarizes the results of the regression parameter estimates for the LSE,
SSE, MRCE, MRE and LS-MRE. The estimate ψ̂n,α̂n of ψ0 together with a scatterplot

Table 4.7: Ozone data: Regression parameter estimates for the least squares estimate (LSE),
the simple score estimate (SSE), the maximum rank correlation estimate (MRCE), the maximum
rank estimate (MRE) and the maximum rank estimate using the LSE of ψ0 (LS-MRE). n = 111.
R = solar radiation, T = temperature and W = wind speed.

Method R T W

LSE 0.261650 0.673180 -0.691641
SSE 0.288573 0.857762 -0.425406
MRCE 0.371694 0.833361 -0.409088
MRE 0.380572 0.835861 -0.395603
LS-MRE 0.269241 0.828638 -0.490783

of (α̂Tnxi, yi) is given in Figure 4.10 for the LSE, SSE and LS-MRE. We see that the
estimates described in this paper result in similar estimated relationships between the
ozone concentration and the meteorological variables.
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Figure 4.10: Ozone data. Scatter plot (α̂Tnxi, yi) and ψ̂n,α̂n (red, step-function) for (a) the
least squares estimate (LSE), (b) the simple score estimate (SSE) and (c) the maximum rank
estimate using the LSE of ψ0 (LS-MRE).
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Chapter 5
Penalized spline estimation in
varying coefficient models with
right censored data

Abstract

We propose a P-spline smoothing technique for the estimation of the varying coefficients in a
varying coefficient model (VCM) with responses that are subject to random right censoring. Using
the mean-preserving principle, we introduce two data-transformation approaches to transform the
original censored observations into ‘synthetic’ observations, which are then used for the P-spline
estimation. The synthetic response vector has the same expectation as the unobserved (due
to censoring) response vector, conditional on covariates. Motivated by the research of Fan and
Gijbels (1994), we first introduce model-independent transformations and later discuss, inspired
by the approach of Buckley and James (1979), transformations that take the underlying regression
model into account.
We give asymptotic support for the behavior of our proposed P-spline estimators and prove the
consistency and asymptotic normality of our P-spline estimators for the coefficient functions
in a VCM subject to random right censoring. Simulation studies compare its finite sample
behavior with that of the smooth-backfitting estimator proposed by Yang et al. (2014) and
illustrate good finite sample performance of our proposed P-spline estimates and moreover suggest
improvements for the method proposed in Yang et al. (2014). Slightly better results are obtained
with data transformations that take the true VCM into account. The latter transformation
formulas require prior knowledge of the VCM which is obtained from the model-independent
transformation methods. Based on simulations and real data examples, we conclude that the
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combination of P-spline smoothing with a data transformation for censored observations is a
good approach for estimating the coefficient functions in a VCM.

5.1 Introduction

Parametric regression models are commonly used for exploring relationships between a
response variable and a set of explanatory variables. Linear models are often a good
first approximation of the underlying association patterns but are sometimes not able to
capture complex dynamic structures. An extension of the classical linear regression model
is the varying coefficient model (VCM, Hastie and Tibshirani, 1993). These models are
still linear in the regressors but with regression coefficients that are smooth functions
in one or more other variables, considered as effect modifiers. VCMs have been used
in a successful way in many applications, among which are longitudinal models (Hoover
et al., 1998; Fan and Zhang, 2008), survival models (Cai et al., 2007; Ma and Wei,
2012), generalized regression models (Cai et al., 1999; Lee et al., 2012) and nonlinear
time series (Cai et al., 2000). The most commonly used estimation methods for VCMs
are kernel regression (Wu et al., 1998), polynomial splines (Huang et al., 2004) and
smoothing splines (Hastie and Tibshirani, 1993). In this paper, we concentrate on the
penalized spline (P-spline) smoothing technique proposed by Eilers and Marx (1996). P-
spline regression is an extension of B-spline regression with a penalty in terms of finite
differences of the coefficients of adjacent B-splines to protect against overfitting. P-splines
are determined by the degree and the number and location of the knot points of the B-
splines, the order of the difference penalty and a smoothing parameter. The consistency
and asymptotic normality of the P-spline estimators for the regression coefficients in a
VCM with longitudinal data was proven by Antoniadis et al. (2012).
Often encountered in the statistical analysis are situations where the response is not fully
observed due to random right censoring, for example in medical and health care studies
where patients leave the study for numerous reasons before the event of interest occurs
(Lagakos et al., 1988, Nahman et al., 1992). Another example of censoring arises in
reliability studies, where the failure time of a device might be censored if the device is
still functional at the end of the experiment (Meeker, 1987). The popular proportional
hazard model for right censored data (Cox, 1972) models the instantaneous risk as a
product of a baseline hazard an an exponential factor. It models the relation between the
response and covariates in an indirect way and is less simple to interpret than classical
mean regression models, where interest is in direct modeling of the mean event time as a
function of covariates. The accelerated failure time model (Wei, 1992) on the other hand
does propose a direct linear relationship between the logarithm of the survival time and
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covariates, but unlike the Cox proportional hazard model, accelerated failure time models
are often parametric and hence require additional assumptions on the underlying survival
distribution. Ordinary least squares regression, which avoid specifying the distribution of
the response variable for estimating the parameters in a linear regression model, needs
however modification when some of the responses are not observed. Extensions of ordinary
least squares to censored data settings were first considered by Buckley and James (1979).
The estimation technique relies on constructing a synthetic response based on a trans-
formation formula that is (conditional) mean preserving. The new response then replaces
the original response in the ordinary least squares regression problem with complete data.
The transformation studied by Buckley and James (1979) uses the underlying regression
model and therefore needs an iterative estimation algorithm (see Jin et al. (2006) for the
implementation of the iterative procedure). When transformed responses deal with trans-
formations not depending on the unknown regression model but only on the censoring
distribution, an iterative procedure is no longer needed at the cost however of increased
variability in the transformed data. Transformations of this type were proposed by Koul
et al. (1981), Zheng (1987), Fan and Gijbels (1994) and Leurgans (1987) among others.
The combination of nonlinear mean regression models with synthetic data approaches
for right censored data has mainly been studied for univariate covariates, see e.g. Fan
and Gijbels (1994) and Heuchenne and Van Keilegom (2007). Recently more attention
to multivariate regression models with right censored data transformation techniques is
given by Yang et al. (2014) for the VCM and by Bravo (2014) for the varying coefficient
partially linear model.

5.2 Model description

Consider the varying coefficient model

Y = m(U,X) + σ(U,X)ε

= β1(U1)X1 + . . .+ βd(Ud)Xd + σ(U1, X1, . . . , Ud, Xd)ε, (5.2.1)

where Y is the response variable, U = (U1, . . . , Ud)T ∈ Ud and X = (X1, . . . , Xd)T ∈ Rd

are associated covariate vectors, where Ud denotes a d-dimensional interval on which
the measurements are taken; ε is a mean-zero error term with variance one and (un-
known) distribution function F , assumed to be independent of U,X. The functions
β1(u1), . . . , βd(ud) are the unknown regression coefficient functions at U = u ≡
(u1, . . . , ud)T and σ(u,x) is the variance of Y conditional on U = u and X = x ≡
(x1, . . . , xd)T . When X1 ≡ 1, the function β1 is a nonzero intercept function represent-
ing the baseline effect.
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We consider the case that the response Y of interest is subject to random right cen-
soring. Let C be the censoring variable with survival function G(·|u,x) conditional
on (U,X) = (u,x) and ∆ be the censoring indicator 1{Y≤C}. We observe a sample
(Zi,∆i,Ui,Xi), 1 ≤ i ≤ n, from (Z,∆,U,X). We assume throughout that Y and C
are independent, nonnegative continuous random variables.
In this paper we focus on estimating the regression curve m(u,x). The estimation pro-
cedure for β(u) = (β1(u1), . . . , βd(ud))T consists of two steps: a mean-preserving data-
transformation followed by P-spline smoothing using the transformed data. We describe
the P-spline smoothing procedure with fully observed responses Yi in Section 5.3 and de-
scribe in Section 5.4 two data-transformation approaches that allow a separation between
the P-spline technique and the censored nature of the data.

5.3 P-spline estimator

Suppose that we have uncensored observations (Yi,Ui,Xi), 1 ≤ i ≤ n. We use P-
spline smoothing to estimate the varying coefficients in model (5.2.1). P-splines are an
extension of regression splines with a penalty on the coefficients of adjacent B-splines.
Each coefficient function βp is approximated by a normalized B-spline basis expansion
βp(up) ≈

∑mp
l=1Bpl(up; qp)αpl, where {Bpl(·; q) : 1 ≤ l ≤ . . . ,Kp + qp = mp} is the qp-

th degree B-spline basis using normalized B-splines such that
∑mp
l=1Bpl(up; qp) = 1, with

Kp+1 equidistant knots ξp = (ξp0, . . . , ξpKp). We use the notation α = (αT1 , . . . ,αTd )T

with αp = (αp1, . . . , αpmp)T for 1 ≤ p ≤ d, to denote the unknown vector of B-spline
regression coefficients and write D =

∑d
p=1mp for the dimension of α.

The P-spline optimization problem is given by

min
α

 n∑
i=1

{
Yi −

d∑
p=1

Xip

mp∑
l=1

Bpl(Ui; qp)αpl
}2

+
d∑
p=1

λp

 mp∑
l=kp+1

(∆k
pαpl)2


= min

α

{
(Y−Rα)T (Y−Rα) + αTQλα

}
, (5.3.1)

where Y = (Y1, . . . , Yn)T , R = (R1| . . . |Rn)T ∈ Rn×D with Ri = (B(Ui))TXi ∈
RD×1 and B(u) ∈ Rd×D given by

B(u) =

 B11(u1; q0) . . . B1m1 (u1; q1) 0 . . . 0 0 . . . 0

0 . . . 0
. . . 0 . . . 0

0 . . . 0 0 . . . 0 Bd1(ud; qd) . . . Bdmd(ud; qd)

 ,

and
Qλ = diag(λ1DT

k1
Dk1 , . . . , λdDT

kd
Dkd) ∈ RD×D,
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is a block diagonal matrix with λpDT
kp

Dkp on the diagonal where Dkp is
the matrix representation of the kp-th order difference operator ∆kp , i.e.
∆kp(αpl) =

∑kp
h=0(−1)h

(
kp
h

)
αp(l−h) (for l ≥ kp), with kp ∈ N; and λ = (λ1, . . . , λd) is

the vector of smoothing parameters satisfying λp > 0, 1 ≤ p ≤ d.

P-splines are computationally attractive since a closed form of the regression coefficient es-
timator exists. Antoniadis et al. (2012) showed that RTR+Qλ is invertible except on a set
with probability tending to zero if m3/2

maxλmax/n = o(1), where mmax = max(m1, . . . ,md)
and λmax = max(λ1, . . . , λd). Therefore the unique minimizer of S(α) is

α̂
def=
(
RTR + Qλ

)−1RTY. (5.3.2)

The P-spline estimator of β(u) is

β̂(u) def= B(u)α̂ = (β̂1(u1), . . . , β̂d(ud))T , with β̂p(up) =
mp∑
l=1

Bpl(up; qp)α̂pl. (5.3.3)

In Section 5.4, we construct, for randomly right censored data, a new response vector Y∗

(the transformed response vector), that will replace Y in (5.3.2).

5.4 Data transformation approaches

We consider a data transformation approach and define the transformed response Y ∗ as

Y ∗
def= ∆ϕ(U,X, Z) + (1−∆)ψ(U,X, Z) =

{
ϕ(U,X, Z) if uncensored
ψ(U,X, Z) if censored,

with transformation functions ϕ and ψ so that

E(Y ∗|U,X) = E(Y |U,X). (5.4.1)

Condition (5.4.1) ensures that inference based on (Y ∗i ,Ui,Xi) preserves the conditional
mean. In Section 5.4.1 we look at transformations that do not depend on the underlying
regression model (5.2.1). Transformations that depend on model (5.2.1) are considered
in Section 5.4.2. When a transformation depends on the unknown regression model,
initial estimates for the regression curve and variance function are needed. In the second
transformation method, we use as initial estimates for m and σ the estimates based on
the model-independent transformation method of Section 5.4.1. We use the notation
ϕ1, ψ1 and ϕ2, ψ2 to denote the transformation functions ϕ,ψ in methods one and two
respectively.
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5.4.1 Transformation method 1: model-independent transforma-
tions

From condition (5.4.1), we obtain the integral equation

ϕ1(u,x, y)G(y|u,x)−
∫ y

0
ψ1(u,x, c)dG(c|u,x) = y. (5.4.2)

A specific class of solutions to (5.4.2), for all y > 0,u ∈ Ud and x ∈ Rd is given in Fan
and Gijbels (1994), with z > 0 and γ ∈ R,

ϕ1(u,x, z) = (1 + γ)
∫ z

0

dt

G(t|u,x) − γ
z

G(z|u,x) ,

ψ1(u,x, z) = (1 + γ)
∫ z

0

dt

G(t|u,x) . (5.4.3)

The transformations only depend on the censoring distribution G(·|u,x) of C conditional
on (U,X) = (u,x). Special cases of (5.4.3) are the methods proposed by Koul et al.
(1981) and Leurgans (1987), taking γ = −1 and γ = 0 respectively. Since the functions
ϕ1 and ψ1 depend on the unknown conditional survival function of C, an estimator
Ĝ(·|u,x) of G(·|u,x) is needed. A well-known problem with right censored data is,
however, the estimation of a distribution function in the tail of the distribution. We
therefore do not transform data points in the tail. As suggested in Fan and Gijbels
(1994), we define

ϕ̂1(u,x, z) def= ϕ̄1(u,x, z)1{z≤τ1(u,x)} + z1{z>τ1(u,x)}

ψ̂1(u,x, z) def= ψ̄1(u,x, z)1{z≤τ1(u,x)} + z1{z>τ1(u,x)}

for some 0 < τ1(u,x) < T (u,x) = sup{t|H(z|u,x) < 1} with H(z|u,x) = P (Z ≤
z|U = u,X = x) representing the distribution function of Z conditional on (U,X) =
(u,x); where ϕ̄1 and ψ̄1 are given by (5.4.3) with G replaced by the estimator Ĝ.
The synthetic response vector is defined as Ŷ∗1 = (Ŷ ∗1i, . . . , Ŷ ∗1n)T with, for 1 ≤ i ≤ n,

Ŷ ∗1i
def= ∆iϕ̂1(Ui,Xi, Zi) + (1−∆i)ψ̂1(Ui,Xi, Zi),

and the P-spline estimator of m(u,x) in method 1 is

m̂1(u,x) def= xT β̂1(u) with β̂1(u) def= B(u)
(
RTR + Qλ

)−1RT Ŷ∗1 (5.4.4)

Remark 5.4.1. In regression analysis, one is often interested in modeling
E(f(Y )|U,X) = mf (U,X). For example, taking f(y) = y gives model (5.2.1), and
f(y) = 1{y≤t} corresponds to estimating the conditional distribution function of Y . It is
possible to modify transformation functions ϕ1 and ψ1 such that we are estimating the
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conditional mean mf , where f is a bounded nondecreasing function on [0, τ1(u,x)], by
defining the functions

ϕ̂1,f (u,x, z) def={
(1 + γ)

∫ z

0

df(t)
Ĝ(t|u,x)

− γ f(z)
Ĝ(z|u,x)

}
1{z≤τ1(u,x)} + f(z)1{z>τ1(u,x)}

and,

ψ̂1,f (u,x, z) def=
{

(1 + γ)
∫ z

0

df(t)
Ĝ(t|u,x)

}
1{z≤τ1(u,x)} + f(z)1{z>τ1(u,x)}

and transformed responses

Ŷ ∗1,f
def= ∆ϕ̂1,f (U,X, Z) + (1−∆)ψ̂1,f (U,X, Z). (5.4.5)

The modified transformation formula is also suited for estimating the conditional variance
of Y , i.e. f(t) = (t − m(u,x))2, when γ = −1, since for γ = −1, the nondecreasing
condition for f is not necessary (see e.g. El Ghouch and Van Keilegom, 2008). As a
consequence, when a (varying coefficient) model for σ2(U,X) is assumed, we can obtain
a consistent estimate of σ2(u,x) by constructing

Ŷ ∗1,σ2
def= ∆(Z − m̂1(U,X))2

Ĝ(Z)
1{Z≤τ1(U,X)} + (Z − m̂1(U,X))21{Z>τ1(U,X)}.

An estimate of σ2(u,x) is given by

σ̂2
1(u,x) def= xTBσ2(u)

(
RT
σ2Rσ2 + Qλ,σ2

)−1RT
σ2Ŷ∗1,σ2 (5.4.6)

where the matrices Bσ2 ,Rσ2 and Qλ,σ2 are the matrices B,R and Qλ (introduced in
Section 5.3) according to the model for σ2. Another approach could be to estimate
E(Y 2|U,X) and considering the difference E(Y 2|U,X)− (E(Y |U,X))2. Note that we
are not restricted to transformations with γ = −1 when we are estimating the conditional
expectation of Y 2 since the function f(t) = t2 in increasing on R+. Although the latter
approach gives a consistent estimator of the variance function, in practice, numerical
difficulties arise by taking the differences, since the difference is not guaranteed to be
positive in finite samples.

5.4.2 Transformation method 2: model-dependent transformations

Based on the expression for the conditional expectation,

E(Y |Z,∆,U,X) = ∆Z

+ (1−∆)

m(U,X) + σ(U,X)
1− F

(
Z−m(U,X)
σ(U,X)

) ∫ ∞
(Z−m(U,X))/σ(U,X)

tdF (t)

 ,



116
Chapter 5. Penalized spline estimation in varying coefficient models with

right censored data

it follows that E
(
Y ∗2[0]|U,X

)
= E

(
Y |U,X

)
, for

Y ∗2[0]
def= ∆ϕ∗2[0](U,X, Z) + (1−∆)ψ∗2[0](U,X, Z),

where ϕ∗2[0](U,X, Z) def= Z and

ψ∗2[0](U,X, Z) def= m(U,X) + σ(U,X)
1− F

(
Z−m(U,X)
σ(U,X)

) ∫ ∞
(Z−m(U,X))/σ(U,X)

tdF (t).

In order to construct an estimator ψ̂2 of ψ∗2[0], we again consider a truncation device that
avoids problems associated with the instability of an estimator for F . We follow the idea
of Heuchenne and Van Keilegom (2007) and define ψ2 and Y ∗2 as follows:

ψ2(U,X, Z) def= m(U,X) + σ(U,X)
1− F (ET )

∫ S

ET
tdF (t),

Y ∗2
def= ∆ϕ2(U,X, Z) + (1−∆)ψ2(U,X, Z), (5.4.7)

where the truncated residual ET = min(E,S) with

E
def= Z −m(U,X)

σ(U,X) and S
def= τ2(U,X)−m(U,X)

σ(U,X) ,

for some τ2(u,x) < T (u,x). Let

Ê
def= Z − m̂1(U,X)

σ̂1(U,X) , Ŝ
def= τ2(U,X)− m̂1(U,X)

σ̂1(U,X) and ÊT
def= min(Ê, Ŝ).

We obtain the estimator ψ̂2 by replacing, in (5.4.7), m and σ by m̂1 and σ̂1, defined in
(5.4.4) and (5.4.6), ET and S by ÊT and Ŝ and by replacing F by the Kaplan-Meier
type estimator F̂ , constructed with residual observations Êi, i.e.

F̂ (t) = 1−
∏

i:Êi≤t

(
1− 1∑n

j=1 1{Êj≥Êi}

)∆i

,

The transformed response vector Ŷ∗2 = (Ŷ ∗21, . . . , Ŷ
∗
2n)T is defined by,

Ŷ ∗2i
def= ∆iZi + (1−∆i)ψ̂2(Ui,Xi, Zi). (5.4.8)

The P-spline estimator β̂2(u) of β(u) in method 2 is obtained by replacing Y in (5.3.3)
by Ŷ∗2.

Remark 5.4.2. Note that, for method 1, E(Y ∗1 |U,X) = E(Y |U,X) if Z ≤ τ1(U,X)
but for method 2 (as in Heuchenne and Van Keilegom (2007)), E(Y ∗2 |U,X) 6=
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E(Y |U,X), since we truncate the integral in (5.4.7) and as a consequence we esti-
mate a truncated mean E(Y 1{ε≤S}|Z,∆,U,X). The conditional expectation of Y ∗2 will,
however, be arbitrarily close to the conditional expectation of Y if S can be chosen arbi-
trarily close to τF = sup{t|F (t) < 1}, which is possible when τF ≤ τJ , where J is the
distribution function of {C −m(U,X)}/σ(U,X) and τJ = sup{t|J(t) < 1}.

5.5 Asymptotic behavior

In Theorem 5.5.1, we show the consistency of the P-spline estimators obtained under
transformation methods 1 and 2. The asymptotic normality of the estimators is considered
in Theorem 5.5.2. Before stating the main results, we first give the following definition.

Definition 5.5.1. Let G(qp, ξp) be the space of spline functions on Up with fixed degree
qp and knot sequence ξp. Let dist(βp,G(qp, ξp)) = infg∈G(qp,ξp) supu∈U | βp(u)− g(u) |
be the L∞-distance between βp and G(qp, ξp). The approximation error due to spline
approximation is given by

ρn
def= max

1≤p≤d
dist(βp,G(qp, ξp)).

We use the notations β̂j = (β̂j1, . . . , β̂jd)T , β∗j = (β∗j1, . . . , β∗jd)T and β̃j =
(β̃j1, . . . , β̃jd)T for methods j = 1, 2, when we replace Y in expression (5.3.3) by
Ŷ∗j = (Ŷ ∗j1, . . . , Ŷ ∗jn)T , Y∗j = (Y ∗j1, . . . , Y ∗jn)T , and M = (Mj1, . . . ,Mjn)T with
Mji = E(Y ∗ji|Ui,Xi) for 1 ≤ i ≤ n respectively. Note that E(β∗j |Xn) = β̃j for j = 1, 2
where Xn = {(UT

i ,XT
i )T , 1 ≤ i ≤ n}. See the Appendix for the definition of the

L2-distance and for Assumptions A-D in Theorems 5.5.1 and 5.5.2.

Theorem 5.5.1. Suppose Assumptions A, B.1 and B.2 hold, then

‖β̂1 − β‖L2 =Op

(
n−1/2m1/2

max + n−1m3/2
maxλmax + ρn

+ sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})
.

where κ(u,x) is given by

max
φ=ϕ1,ψ1

[
E
{

1{Z>τ1(U,X)}|Z − φ(U,X, Z)|
∣∣U = u,X = x

}]
.

If, further Assumptions B.3 and C hold, then

‖β̂2 − β̃2‖L2 = Op

(
n−1/2m1/2

max + n−1/2 logn+ n−1m3/2
maxλmax + ρn+

m−1/2
max

[
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x) + κσ(u,x)

}])
.



118
Chapter 5. Penalized spline estimation in varying coefficient models with

right censored data

where κσ(u,x) is given by

E
{

1{Z>τ1(U,X)} (Z −m(U,X, Z))2 |1−∆/G(Z|U,X)|
∣∣U = u,X = x

}
.

Remark 5.5.1. If supu,x κ(u,x) → 0, the tail-contribution is negligible and the trun-
cation device is justified. This condition was first introduced by Fan and Gijbels (1994)
and suggests taking τ1(u,x) as a sequence converging to T (u,x). If, e.g. conditional
on (U,X) = (u,x), Y ∼Exp(θu,x) and C ∼Exp(ν) are independent exponentially dis-
tributed random variables, then κ(u,x) = O

(
n−θu,x logn

)
by taking τ1(u,x) = logn for

all u,x. As another illustration, suppose Y ∼U[0, θu,x] conditional on (U,X) = (u,x)
and C ∼U[0, ν] are independent uniform random variables. After some tedious calcula-
tions we can show that κ(u,x)→ 0 for τ1(u,x) = n−1(n−1)θu,x and θu,x ≤ ν. κσ arises
similarly when method 1 is used to estimate σ using the transformation with γ = −1.

Remark 5.5.2. Suppose that each βp is an r times continuously differentiable function
(1 ≤ p ≤ d), if q = qp ≥ r−1, mmax � n1/(2r+1) and λmax � nι with ι ≤ (r−1/2)/(2r+
1), then ‖β∗p − βp‖L2 = Op(n−r/(2r+1)) reaches the optimal rate of convergence for
nonparametric regression estimators. (Stone, 1992). The convergence rate of our P-
spline estimator β̂∗p is further influenced by the censored nature of the data.

Theorem 5.5.2 gives the asymptotic normality results of the P-spline estimator. The
variance-covariance matrix of β∗j (u), conditional on Xn = {(UT

i ,XT
i )T , 1 ≤ i ≤ n}, is

given by,

B(u)
(
RTR + Qλ

)−1
( n∑
i=1

σ2
j,iRiRT

i

)(
RTR + Qλ

)−1BT (u), (5.5.1)

where σ2
j,i = Var(Y ∗ji|Ui,Xi).

Theorem 5.5.2. If Assumptions A, B.1, B.2 and D.1 hold, then, for all up ∈ Up, 1 ≤
p ≤ d, (

s.e.
(
β∗1,p(up) | Xn

))−1
(
β̂1,p(up)− βp(up)

)
d→ N(0, 1).

If Assumptions A, B, C and D.2 hold, then, for all up ∈ Up, 1 ≤ p ≤ d(
s.e.

(
β∗2,p(up) | Xn

))−1
(
β̂2,p(up)− β̃2,p(up)

)
d→ N(0, 1).

5.6 Practical aspects

5.6.1 Choice of the truncation points

We estimate the functional regression coefficients in VCM (5.2.1) by a combination of a
data transformation for censored data and the P-spline estimator for complete case data.
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The proposed data transformations involve an estimator of a distribution function. In
the presence of censoring, nonparametric estimators of a distribution function are often
inaccurate in the tail. To control this instability we use a truncation device that avoids
the generation of transformed data in the tail.
In a clinical trial, censoring is often due to the termination of the study and hence not
influenced by patient specific characteristics. In such situations the conditional survival
function of C does not depend on the covariates, i.e. G(·|u,x) ≡ G(·), and the Kaplan-
Meier product-limit estimator can be used to estimate the survival function of the censor-
ing variable C. Note that, when estimating the censoring distribution G, the independent
but not identically distributed event times Yi, 1 ≤ i ≤ n now play the role of censoring
variables. For such situation the uniform strong consistency of the Kaplan-Meier estima-
tor is still valid (see e.g. Zhou, 1991 and Bravo, 2014). If censoring is informative, but Y
and C are conditionally independent given U,X, the conditional (on U,X) distribution
of C, should be estimated in method 1, using, for example, the Beran (1981) estimator.
However this may cause problems with the curse of dimensionality and one may want to
consider a parametric or semi-parametric model for the censoring distribution instead.
In method 1, we do not transform data points when the observed response Z falls within
the truncation area (τ1,∞). Choosing τ1 too small implies that a lot of observations will
not be transformed. On the other hand when τ1 is chosen too large, large transformed
responses are possible. In our numerical results we consider a censoring variable C indepen-
dent of (U,X). We take τ1 = inf{t|Ĝ(t) < 0.01} for method 1 and suggest to consider
all jumps of the Kaplan-Meier estimator F̂ in method 2 by taking Ŝ = max(Ê1, . . . , Ên).

5.6.2 Smoothing parameter selection

Smoothing parameters are needed to control the amount of smoothing in the estimation
process and imply a compromise between bias and variance. Undersmoothing arises by
choosing too small values for the smoothing parameters, as a result, the bias will decrease
at the price of an increased variance. When the smoothing parameters are too large,
oversmoothing leads to a small variance but large bias (see Fahrmeir and Tutz, 2001, p.
187). Cross-validation (CV) is a popular parameter selection technique with complete
case data based on minimizing the prediction error. With censored data, the prediction
error cannot be calculated directly. We suggest to consider the transformed responses
and choose the smoothing parameter λ that minimizes

CV (λ) =
n∑
i=1

{
Ŷ ∗ji −XT

i β̂j(Ui)
1− hii

}2

,
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where hii is the i-th diagonal element of the hat-matrix H = R(RTR +Qλ)−1RT . The
idea of using transformed responses in the prediction error calculation was also considered
in Fan and Gijbels (1994) and Wang et al. (2008) among others. In practice, CV (λ) is
minimized over a d-dimensional grid of λ-values. With P-spline smoothing it is advisable
to first consider a grid of the smoothing parameters on a logarithmic scale, which can
later be fine-tuned when a more accurate smoothing parameter is desirable. Note that
the P-spline estimator of βp depends on the degree of the B-spline basis qp, the number
of knots Kp + 1, the order of the difference penalty kp and the smoothing parameter
λp. Cross-validation can be used to select several parameters, however, a good chosen
smoothing parameter for fixed values of qp,Kp and kp will ensure a good fit. Cubic
splines and a second order difference penalty are frequently used. A change in one of the
parameters influences the choice of the other parameters, as a consequence, it is sufficient
to select the smoothing parameters and keep the other parameters fixed.

5.6.3 Transformation parameter selection in method 1

The transformation parameter γ in method 1 determines the synthetic responses. We
suggest to choose γ in a data-driven way. A cross-validation procedure can simultaneously
select the smoothing parameter λ and transformation parameter γ when we search over
a (d+ 1)-dimensional grid.
A second selection technique for the transformation parameter γ is based on the follow-
ing observation. For γ = −1, all censored observations less than τ1 are set equal to zero
(ψ1 ≡ 0), the uncensored observations are enlarged in order to compensate. If γ increases,
we see that the variance of censored observations increases and that the enlargement of
the uncensored observations is less pronounced (see Table 5.5). Therefore, we propose to
select the transformation parameter γ that minimizes the sample variance of the trans-
formed responses, denoted by the minimal-variance (MV) parameter γMV . Compared
to CV-selection, the MV-selection procedure is appealing for being not computational
intensive.

5.7 Finite sample behavior

In this section, we illustrate the finite sample behavior of our proposed P-spline estimates
for VCMs when the observations are subject to random right censoring. Simulation studies
are used to address the following objectives:

1. Compare our P-spline method with the smooth-backfitting (SBF) approach of Yang
et al. (2014).
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2. Investigate the quality of the data-transformation methods given in Section 5.4.

3. Evaluate the cross-validation selection criterion for the P-spline smoothing param-
eters.

We consider three different simulation scenarios. The first model is also used in Lee
et al. (2012) and in Yang et al. (2014) and contrasts the performance between a spline
smoothing and kernel approach for model-independent data transformation techniques.
The second and third simulation model illustrate how model-dependent transformations
increase the performance of model-independent approaches. The main difference between
the two latter models is the nature of the random error terms which is homoscedastic in
Model 2 and hetereoscedastic in Model 3. Therefore, Model 3 also gives insight in the
quality of the variance estimation discussed in Remark 5.4.1. The simulation scenarios
are as follows:

Model 1: Y = m(U,X) + σ(U,X)ε = β0(U0) + β1(U1)X1 + β2(U2)X2 +
σ(U,X)ε, where β0(u) = 1 + exp(2u − 1), β1(u) = 0.5 cos(2πu), β2(u) = u2

and σ(U,X) = 0.5+(x2
1 +x2

2)/(1+x2
1 +x2

2) exp(−2+(u0 +u1)/2). The variables
U0, U1, and U2 are sampled from a Uniform[0, 1]-distribution, the vector (X1, X2)
is generated from a bivariate normal distribution with mean (0, 0)′ and variance-
covariance matrix

(
1 0.5

0.5 1

)
, and the random error has a normal distribution centered

around 0 with standard deviation ζ = 1 respectively ζ = 1.5. The censoring vari-
ables are generated samples from a N(µc, 1.5)-distribution.

Model 2: Y = m(U,X) + ε = β1(U1)X1 + β2(U2)X2 + ε, where β1(u) =
2 + sin(2πu), β2(u) = 1 + 0.1 exp(4u− 1) with U1, U2 ∼ U[0, 1] and (X1, X2)′ ∼
N2((3, 3)′,

(
0.25 −0.125
−0.125 0.25

)
); ε has a standard normal distribution and the censoring

variable has a uniform distribution on [6.5, Rc].

Model 3: Y = m(U,X) + σ(U)ε = β0(U) + β1(U)X + σ(U)ε, where β0(u) =
2 exp(−2u−u2)) , β1(u) = 1+5(u−0.5)2 and σ2(u) = α exp(−2u−0.4)/4 where
α = 1, 2. We generate U from a Uniform[0, 1]-distribution and X from a normal
distribution with mean 1 and standard deviation 0.25; ε has a standard normal
distribution and C is sampled from a N(µc, 1)-distribution

The parameters µc (in Models 1 and 3) and Rc (in Model 2) are chosen to control the
level of censoring to PC = 10%, 30% and 50%, respectively. No negative responses are
observed in these simulation set-ups in correspondence to our model assumptions. We
simulate 200 times a random sample of size n = 250, 500 from Models 2 and 3. For
Model 1, we consider the exact same simulation settings as in Yang et al. (2014) and
generate 500 samples of sizes n = 200, 400.
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To evaluate the performance of the coefficient function estimates, we generate a uniform
test sample u1, . . . , u101 in [0, 1] for the random variables Uj and calculate the values for
βj and β̂j in each simulation run. We then compute the relative error (RE) defined as
(for β̂j),

RE(β̂j) = ‖β̂j − βj‖2/‖βj‖2,

with βj = (βj(u1), . . . ,βj(u101))′; β̂j = (β̂j(u1), . . . , β̂j(u101))′ and where ‖ · ‖2 is
the Euclidean distance. For the performance of the regression function estimate m̂, we
generate a test sample xj = (x1j , x2j), 1 ≤ j ≤ 101, calculate mj = m(uj ,xj) and
m̂j = m̂(uj ,xj), and compute the relative estimation error RE(m̂) = ‖m̂−m‖2/‖m‖2,
where m = (m1, . . . ,m101) and m̂ = (m̂1, . . . , m̂101). Tables 5.1- 5.2, Table 5.3 and
Table 5.6 report the RE for the three simulation models introduced above.
We smooth each of the coefficient functions βj with B-splines of degree 3 on 10 equidis-
tant knots and use a penalty term with second order finite differences. The smoothing
parameters λj are selected in a grid of size 8d, where d equals the number of coefficient
functions in the different simulation models. The CV-smoothing parameters (Section
5.6.2) are compared with optimal smoothing parameters that minimize the relative esti-
mation error of the regression function m, referred to as the optimal selection criterion.
Moreover, we present results for the smooth-backfitting estimates, where the optimal
selection criterion is used to choose the bandwidths in a grid of equal size 8d.
The simulation results, reported in Tables 5.1-5.6 and Figures 5.1-5.2, are discussed in
the subsections below. The first objective is considered in Section 5.7.1. The importance
of the transformation parameter selection in method 1 and the difference between model-
dependent and model-independent transformations (objective 2) are outlined in Section
5.7.2. Section 5.7.3 addresses objective 3 and deals with the quality of the CV-smoothing
parameter.

5.7.1 Comparison between P-spline and SBF-estimates

Yang et al. (2014) proposed a smoothing estimation approach for the VCMs with right
censored responses. Their technique is a kernel analogue of the model-independent
transformation method of Section 5.4.1 that combines an SBF-estimator with the
transformation method proposed by Koul et al. (1981) using γ = −1. It is reasonable
to compare our P-spline estimates using transformation method 1 with γ = −1 with
the method proposed by Yang et al. (2014) since in both approaches the transformed
response variable and covariates are the same. Table 5.1 and Table 5.2 therefore
contrast the RE of a P-spline and kernel smoothing approach for the simulation scenario
considered in Yang et al. (2014). The SBF-estimates of Yang et al. (2014) (SBF, M1K)
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perform often slightly better than the P-spline estimates with γ = −1 (P-SPLINE, M1K)
in Model 1. In Model 2, the P-spline estimates, however, outperform the SBF-estimates
for PC = 10%, 30% (see Table 5.3).

In addition, we investigate the combination of an SBF-estimate with a data-driven
MV-transformation parameter, instead of with the transformation proposed by Koul
et al. (1981). The relative errors for both the P-spline and SBF-estimates decrease
considerably if γ = −1 is changed to γ = γMV (see Tables 5.1-5.3). We conclude
from this decrease that the method proposed in Yang et al. (2014) can be improved
if a different transformation parameter is considered. Interestingly, the choice between
a P-spline smoothing or kernel smoothing approach has much less influence on the
behavior of the estimates than the transformation parameter that is selected for the
construction of the synthetic response. For the model-independent transformation
methods, both combinations of a P-spline or SBF approach with a data-driven trans-
formation parameter represent good choices for estimating the coefficient functions
in the VCM under right censored observations. As expected, the relative errors
in Tables 5.1-5.3 decrease with increasing sample size. On the contrary, an increase
of the relative errors occurs if the percentages of censoring or the error variability increase.

From a theoretical point of view, both our P-spline and the SBF-estimates of Yang et al.
(2014) converge at rate n2/5 to a normal limiting distribution for suitably chosen smooth-
ing parameters in case the censoring distribution is known and in case the coefficient
functions are twice continuously differentiable (see Remark 5.5.2 and Lemma 1 in Yang
et al., 2014). The difference between the true and estimated coefficient functions depends
further on the approximation error of the censoring distribution for both P-spline and SBF-
estimates. Hence, the choice between our P-spline approach and the SBF method of Yang
et al. (2014) is hardly decided by the theoretical properties of the estimators. From a
practical point of view, we note that P-spline estimates are obtained using simple matrix
algebra whereas SBF-estimates require an iterative estimation procedure. The computa-
tions for the model-independent data transformation approaches took only a few seconds
for the P-spline estimates and the computation time was, on average, 22 times larger for
the SBF method than for the P-spline method in Simulation Model 2 (results not shown).

5.7.2 Findings on the transformation method

For the model-independent transformation method 1 of Section 5.4.1, Tables 5.1-5.3
show that a data-driven choice for the transformation parameter γ decreases the RE of
the estimates compared to the choice γ = −1. Moreover, Table 5.3 shows how the
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estimates for transformation method 1 with the transformation by Koul et al. (1981)
(γ = −1) behave worse than the estimates that are obtained when censoring is ignored
(i.e. Z is considered as the true response). Consequently, we do not advise to use the
transformation approach by Koul et al. (1981). Similar relative errors are obtained with
the proposed data-driven transformations (MV and CV), with a slightly better result for
the CV-method when the percentage of censoring is large. The computation cost for CV-
selection is, however, considerably larger than for MV-selection. Therefore, we recommend
to use the MV-transformation parameter when method 1 is used to obtain the synthetic
response variable.

Table 5.3 and Table 5.6 report the performance of the model-dependent transforma-
tion method of Section 5.4.2 in case the initial starting estimates are obtained from the
model-independent transformation method using γ = γMV . Transformation method 2
outperforms transformation method 1 for both the homoscedastic Model 2 and the het-
eroscedastic Model 3. Pointwise confidence bands of the P-spline estimates in Model 2
are illustrated in Figure 5.1. The curves show the 5% and 95% empirical quantiles at
each grid point uj and expose that the estimates obtained with method 2 are close to
the true coefficient functions, even though in theory, method 2 is estimating a slightly
different model. The results of method 2 are insensitive towards changes of γ in the initial
transformation (results not shown). Additionally, Figure 5.1 shows once more the poor
performance of the model-independent estimates using γ = −1.

5.7.3 Behavior of the smoothing parameter selection techniques

Table 5.4 presents the ratio of the relative error form obtained with CV-selected smoothing
parameters and optimal smoothing parameters in simulation Model 2 and illustrates that
the CV-procedure works reasonably well (the ratio is close to one). Figure 5.2 presents
scaled values of CV(λ1, λ2) and relative error of m for λ1 and λ2 (in Model 2) varying in
10{0.5,0.6,...,2.6} and demonstrates that the size of the CV-selected and optimal smoothing
parameters are comparable. The behavior of both curves is similar. As a consequence the
CV-method tends to select smoothing parameters that minimize the relative regression
error for m. A data-driven bandwidth choice for the bandwidths of the SBF-estimates
was proposed in Yang et al. (2014) and based on their results in Table 4 on p. 243, their
comparison between the performance with optimal and data-driven bandwidth parameters
is similar to our comparison in Table 5.4.
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Table 5.1: Simulation Model 1: Average relative error for the estimates of the functions (F)
β0, β1, β2 and m obtained with the P-spline estimator and the smooth-backfitting estimator
(SBF) with optimal smoothing parameters; using transformation method 1 (M1) (M1MV : M1
with minimal-variability transformation, MK : M1 with transformation by Koul et al. (1981) using
γ = −1). n is the sample size, ζ = s.d.(ε) and PC is the percentage of censoring.

P-SPLINE SBF

n ζ PC F M1MV M1K M1MV M1K

200 1 10 β0 0.0374 0.0728 0.0424 0.0721
β1 0.3303 0.7483 0.3555 0.7711
β2 0.2147 0.5440 0.2074 0.4799
m 0.0742 0.1715 0.0781 0.1631

30 β0 0.0539 0.1517 0.0574 0.1334
β1 0.4443 1.3628 0.4856 1.3090
β2 0.3082 0.9922 0.2910 0.8652
m 0.1039 0.3189 0.1072 0.2853

50 β0 0.0812 0.2594 0.0812 0.2232
β1 0.6312 2.0543 0.6832 1.8961
β2 0.4640 1.4777 0.4276 1.2512
m 0.1543 0.4898 0.1530 0.4208

1.5 10 β0 0.0539 0.1020 0.0574 0.0938
β1 0.4490 0.9118 0.4802 0.9152
β2 0.3028 0.7186 0.2791 0.6345
m 0.1034 0.2223 0.1049 0.2045

30 β0 0.0707 0.1903 0.0714 0.1658
β1 0.5513 1.5512 0.6005 1.4506
β2 0.3918 1.1901 0.3586 1.0379
m 0.1323 0.3792 0.1319 0.3330

50 β0 0.1010 0.3069 0.0938 0.2648
β1 0.7315 2.2477 0.7752 2.0514
β2 0.5446 1.7031 0.4926 1.4363
m 0.1836 0.5545 0.1746 0.4740
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Table 5.2: Simulation Model 1: Average relative error for the estimates of the functions (F)
β0, β1, β2 and m obtained with the P-spline estimator and the smooth-backfitting estimator
(SBF) with optimal smoothing parameters; using transformation method 1 (M1) (M1MV : M1
with minimal-variability transformation, MK : M1 with transformation by Koul et al. (1981) using
γ = −1). n is the sample size, ζ = s.d.(ε) and PC is the percentage of censoring.

P-SPLINE SBF

n ζ PC F M1MV M1K M1MV M1K

400 1 10 β0 0.0265 0.0490 0.0316 0.0529
β1 0.2433 0.5631 0.2693 0.5855
β2 0.1581 0.3923 0.1559 0.3491
m 0.0539 0.1249 0.0583 0.1217

30 β0 0.0374 0.1127 0.0424 0.0990
β1 0.3268 1.0173 0.3599 1.0072
β2 0.2238 0.7260 0.2159 0.6332
m 0.0755 0.2385 0.0794 0.2152

50 β0 0.0592 0.1954 0.0608 0.1706
β1 0.4839 1.4747 0.5142 1.3873
β2 0.3342 1.2063 0.3127 1.0467
m 0.1145 0.3803 0.1145 0.3332

1.5 10 β0 0.0387 0.0700 0.0436 0.0693
β1 0.3360 0.6946 0.3606 0.7205
β2 0.2234 0.5107 0.2066 0.4508
m 0.0762 0.1612 0.0787 0.1530

30 β0 0.0500 0.1459 0.0539 0.1292
β1 0.4177 1.2250 0.4506 1.1785
β2 0.2851 0.9122 0.2627 0.7905
m 0.0975 0.2958 0.0985 0.2627

50 β0 0.0735 0.2421 0.0721 0.2059
β1 0.5633 1.7462 0.5967 1.5620
β2 0.3960 1.4647 0.3561 1.2511
m 0.1364 0.4618 0.1319 0.3909
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Table 5.3: Simulation Model 2: Average relative error for the estimates of the functions (F)
β1, β2 and m obtained with the P-spline estimator and the smooth-backfitting estimator (SBF)
with optimal smoothing parameters; using transformation methods 1 (M1) and 2 (M2). M1CV :
M1 with cross-validation transformation, M1MV : M1 with minimal-variability transformation,
MK : M1 with transformation by Koul et al. (1981) using γ = −1. MZ indicates the estimator
when no transformation is applied to the observed response (Z,∆). n is the sample size, PC is
the percentage of censoring.

P-SPLINE SBF
n PC F M1CV M1MV M1K M2 MZ M1MV M1K

250 10 β1 0.0514 0.0519 0.1718 0.0424 0.0778 0.0806 0.2127
β2 0.0674 0.0680 0.2218 0.0564 0.0876 0.0983 0.2659
m 0.0260 0.0262 0.0740 0.0229 0.0474 0.0355 0.0840

30 β1 0.0856 0.0868 0.3522 0.0546 0.1704 0.1164 0.4003
β2 0.1121 0.1131 0.4621 0.0730 0.1580 0.1430 0.4853
m 0.0414 0.0419 0.1637 0.0303 0.1135 0.0521 0.1675

50 β1 0.1245 0.1322 0.7222 0.0862 0.2741 0.1828 0.7120
β2 0.1612 0.1716 0.9379 0.1137 0.2266 0.2029 0.8216
m 0.0684 0.0742 0.3867 0.0571 0.1820 0.0830 0.3409

500 10 β1 0.0367 0.0366 0.1230 0.0301 0.0641 0.0653 0.1549
β2 0.0482 0.0481 0.1604 0.0394 0.0724 0.0783 0.1961
m 0.0188 0.0190 0.0557 0.0157 0.0433 0.0274 0.0679

30 β1 0.0608 0.0605 0.2713 0.0361 0.1612 0.0914 0.3172
β2 0.0800 0.0796 0.3598 0.0484 0.1493 0.1092 0.3925
m 0.0301 0.0300 0.1276 0.0207 0.1106 0.0411 0.1412

50 β1 0.0997 0.1070 0.6291 0.0667 0.2682 0.1552 0.6224
β2 0.1365 0.1460 0.7931 0.0923 0.2240 0.1722 0.6943
m 0.0539 0.0620 0.3652 0.0465 0.1812 0.0716 0.3146

average relative error based on true (unobserved) responses with the
P-spline estimate for: n = 250: β1: 0.0400; β2: 0.0534, m: 0.0217 and

n = 500: β1: 0.0375; β2: 0.0287, m: 0.0145
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Table 5.4: Simulation Model 2: Average ratio of RE(m̂) based on λCV and λopt for the
P-spline estimates using transformation methods 1 (M1) and 2 (M2). M1CV : M1 with cross-
validation transformation, M1MV : M1 with minimal-variability transformation, MK : M1 with
transformation by Koul et al. (1981) using γ = −1. n is the sample size, PC is the percentage
of censoring.

n = 250 n = 500
PC M1CV M1MV M1K M2 M1CV M1MV M1K M2

10 1.2126 1.2152 1.3705 1.1529 1.2028 1.1959 1.3234 1.1462
30 1.2349 1.2281 1.4376 1.1342 1.2563 1.2560 1.3614 1.1620
50 1.1688 1.1589 1.2220 1.0875 1.1686 1.1354 1.1328 1.0705
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Figure 5.1: Simulation Model 2: Pointwise confidence bands for the P-spline estimates of the
regression parameter functions (black, solid) (a) β1 and (b) β2 obtained with method 1 (γ = −1)
(green, dashed dotted), method 1 and γMV (blue, dotted) and method 2 (red, dashed) for
n = 500 and PC = 30%.

5.8 Real data example: Addict data

In a study by Caplehorn and Bell (1991), data were collected on a cohort of 238 heroin
addicts, who entered maintenance programs between February 1986 and August 1987, to
study retention of patients in methadone treatment. All patients had been referred to
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Table 5.5: Simulation Model 2: Responses transformed with method 1 (M1) for different choices
of γ and method 2 (M2) for PC = 10% and PC = 50% for n = 250. Uncensored observations
are indicated by black dots, censored observations are indicated by red asterisks.
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Figure 5.2: Simulation Model 2: (a) CV (red,solid) and relative regression error (blue, dashed)
curves for λ1 ∈ 10{0.5,0.6,...,2.6} and for λ2 minimizing CV resp. relative error. (b) CV (red, solid)
and relative regression error (blue, dashed) curves for λ2 ∈ 10{0.5,0.6,...,2.6} and for λ1 minimizing
CV resp. relative error. The black asterisk indicates the minimal value. The curves are based on
one simulated data set of size n = 500 and PC =30% using method 1 with MV-transformation
parameter.

one of two methadone treatment clinics for maintenance. Methadone is a drug similar to
heroin which prevents or reduces withdrawal symptoms when a patient stays off heroin.
Patients detoxifying from methadone maintenance soon return to illicit opiate abuse, and
methadone is only beneficial to addicts in treatment. The main objective of the study was
to investigate the effectiveness of treatment programs based on the time an addict spends
in a clinic, the larger this duration time the more effective the therapy is. The response
is the duration time T (in days) of heroin addicts from entry to a clinic until departure or
end of study period; 150 out of the 238 patients left the clinic during the study period,
the remaining 88 patients still in the clinic at the end of the study period are censored
cases. We focus on the effect of clinic (C, 1= clinic 1, 0 = clinic 2) and a history of
imprisonment (P , 1= yes, 0= no) on the time remaining on methadone treatment in a
VCM where the coefficients vary with the maximum methadone dosage (M , in mg/day),
i.e.

E(T |M,C,P ) = β1(M) + β2(M)× C + β3(M)× P.
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Table 5.6: Simulation Model 3: Average relative error for the estimates of the functions (F)
β0, β1,m and σ2 obtained with the P-spline estimator using method 1 with minimal-variability
transformation (M1) and method 2 (M2). n is the sample size, PC is the percentage of censoring.

n : 250 500
PC: 10% 30% 50% 10% 30% 50%
α M F

1 M1 β1 0.1984 0.3393 0.5431 0.1392 0.2731 0.3891
β2 0.1371 0.2502 0.4077 0.0995 0.2021 0.2868
m 0.0411 0.0781 0.1328 0.0306 0.0614 0.0956

M2 β1 0.1494 0.2294 0.3778 0.1024 0.1780 0.2735
β2 0.0983 0.1769 0.3048 0.0694 0.1399 0.2178
m 0.0309 0.0580 0.1063 0.0228 0.0456 0.0775

2 M1 β1 0.2274 0.3647 0.5532 0.1624 0.2787 0.4053
β2 0.1538 0.2682 0.4139 0.1127 0.2045 0.3011
m 0.0468 0.0847 0.1371 0.0355 0.0642 0.1012

M2 β1 0.1899 0.2591 0.3880 0.1336 0.1939 0.2811
β2 0.1224 0.1954 0.3096 0.0874 0.1463 0.2255
m 0.0383 0.0655 0.1109 0.0290 0.0491 0.0819

1 M1 σ2 0.2006 0.3398 0.7071 0.1594 0.2896 0.4480
2 M1 σ2 0.2158 0.3186 0.4803 0.1674 0.2623 0.3658

We present results for a homoscedastic model based on method 2 only, since method 2
outperformed method 1 in our simulation study and since similar results were obtained
with a hetereoscedastic model. We smooth the coefficients by P-splines of degree 3
on 15 equidistant knots with a second order difference penalty. The initial estimate for
the regression coefficients is obtained using the first method and an MV-transformation
parameter (γMV = −0.2). The smoothing parameters (λ1 = 50, λ2 = 250 and λ3 = 100)
were selected by cross-validation on a logarithmic scale. Figure 5.3 presents the resulting
estimated mean survival time obtained with transformation method 2 . Only in the second
clinic doses above 80 mg/day were given to the patients, however our model reveals that
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these doses no longer result in larger duration times. This finding could not be obtained
if a linear term was considered for the methadone effect. For small methadone doses, the
estimated mean survival time is similar for all patients but when the dosage increases, the
second clinic tends to do a better job in retaining its patients under treatment. Figure
5.3 also shows that the length of time in treatment is shorter for patients with a history
of imprisonment.
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Figure 5.3: Addict data. Fitted P-spline regression function with method 2 using method 1 with
γMV = −0.2 and λ1,CV = 50, λ2,CV = 250, λ3,CV = 100.



Chapter 6
Avenues for future research

The algorithms in Part I for modeling a relationship under a monotonicity constraint
all depend on the behavior of a cube-root n statistic. Chapters 2 and 3 focus on the
MLE of the distribution function under current status data. The LSE of the monotone
link function determines the behavior of the regression parameters in the single index
model of Chapter 4. Extensions of our techniques to other cube-root n statistics can
be investigated. In this Chapter, we therefore outline some possible avenues for future
research that are related to Part I and Part II of this thesis.

The most prominent question that arises with this research concerns the asymp-
totic behavior of the MLE in the current status linear regression model and the LSE
of the monotone single index model. In our attempts to understand the theoretical
properties of these estimators, we were always confronted with difficulties that arise when
the non-differentiable cube-root n estimator for the nuisance function appears in the
optimization criterion for an M-estimator. These problems for the maximization approach
were circumvented in the score approach of Chapter 2 and Chapter 4. Simulation
results also gave no clear insight in the convergence rate of the estimators. Some
experiments were in favor of the parametric

√
n-rate whereas other trials suggested a

slower convergence rate. Nevertheless, it remains an interesting topic to understand the
behavior of the classical MLE for the current status linear regression model and the LSE
for the monotone single index model.

The behavior of the MLE of the distribution function under current status data
has been investigated extensively. A lot less is known for the more challenging interval
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censoring type 2 model. In this setting, one observes an inspection interval (T,U)
together with the information whether or not the event time of interest Y lies before
the first inspection time T , inside the interval (T,U) or after the second inspection time
U . The MLE of the distribution function of Y is defined by the maximizer of the log
likelihood given by

`(F ) =
n∑
i=1

[∆i1 logF (Ti) + ∆i2 log{F (Ui)− F (Ti)}+ ∆i3 log{1− F (Ui)}] ,

where ∆i1 = 1{Yi≤Ti},∆i2 = 1{Ti<Yi<Ui} and ∆i3 = 1−∆i1 −∆i2 for 1 ≤ i ≤ n.
A distinction can be made between the separated and the non-separated case. In the
separated case one assumes that T is strictly smaller than U . For this case the asymptotic
limit distribution of the MLE of F0 was derived in Groeneboom (1996). On the other
hand, in the non-separated case, the observation intervals can be arbitrarily small and
the asymptotic distribution of the MLE has only been conjectured without a complete
proof in Groeneboom and Wellner (1992). A transition from the convergence rate n−1/3

for the separated case to the rate (n logn)−1/3 for the (conjectured) non-separated case
quantifies the small gain in performance when observation intervals (Ti, Ui) are allowed
to have arbitrarily short lengths. So far, this conjecture is still not proved and extending
our results for the non-separated case will be more challenging than for the separated
case. Nevertheless, our algorithm to estimate a regression parameter in a linear regression
model under censored data can be implemented for interval censoring type 2 and would
lead to the study of the score function

∑
(Ti,Ui)∈An,α,ε

Xi

{
∆i1f̂n,α(Ti −αTXi)
F̂n,α(Ti −αTXi)

+ ∆i2{f̂n,α(Ui −αTXi)− f̂n,α(Ti −αTXi)}
F̂n,α(Ui −αTXi)− F̂n,α(Ti −αTXi)

− ∆i3f̂n,α(Ui −αTXi)
1− F̂n,α(Ui −αTXi)

}
,

where F̂n,α is the MLE of the distribution function for fixed α, f̂n,α is an estimate of
the density, and An,α,ε is a well-defined truncation interval to avoid division by zero in
the above score expression. Deriving the behavior of score estimators of the regression
parameter in a linear regression model under interval censored data is worth studying in
further research. For the density estimate f̂n,α, a kernel-based smooth version of the
MLE F̂n,α can be considered in the same way as the smoothing approaches introduced
in Chapter 2 and Chapter 3. This immediately points out a possible extension of the
results presented in Chapter 3, namely investigating the behavior of (smooth) bootstrap
procedures for the distribution function under interval censoring type 2. The limiting
distribution of the Smoothed MLE for the separated case, obtained in the same way as
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the SMLE in Chapter 3 is conjectured in Groeneboom and Ketelaars (2011). Proving
that this conjecture holds is the first step towards developing the results of Chapter
3. The quality of the bootstrap procedures for interval censoring type 2 is still unexplored.

Furthermore, the MLE for the separated interval censoring type 2 model is not
the only cube-root n statistic that can be explored in the setting of Chapter 3. In
monotone density estimation, one could define a smoothed version of the Grenander
estimator (introduced in Section 1). The isotonic link function in the monotone single
index model of Chapter 4 can also be extended similarly. Deriving the limiting distribution
of these smoothed monotone estimators or investigating applications of the bootstrap
in order to obtain confidence intervals for the corresponding monotone functions are
interesting avenues for further research. Moreover, the asymptotic behavior of the
smooth derivative estimate introduced in Section 4.3.2 is still unknown. We expect that
the methods introduced in Chapter 3 behave similarly in these monotone density and
single index model settings.

Another interesting extension of the research in Chapter 3 is the construction of
confidence bands for the distribution function instead of the currently proposed pointwise
CIs. Note that our main results do not imply that

E

{
sup

t∈[0,M ]
n1/3∣∣F̂ ∗n(t)− F0(t)

∣∣∣∣∣Z1, . . . , Zn

}
= Op(1).

A bound on supt∈[0,M ] n
1/3
∣∣F̂ ∗n(t)− F0(t)

∣∣∣∣∣ would be needed for confidence bands
instead of our pointwise CIs. Such bounds would, without a doubt, contain logarith-
mic factors. The idea is that the process t 7→ n1/3{F̂ ∗n(t) − F0(t)

}
will fall apart

into asymptotically independent pieces, and that we therefore expect Gumbel-type
distributions to enter, via the maximum of independent random variables. The
theory for this still has to be developed, however. What strike us in the present
simulation studies is how comparatively well the global behavior of our pointwise CIs
still was, indicating that the extra logarithmic factors do not have such a very large impact.

Instead of kernel smoothing techniques, we used P-spline smoothing in Part II. It
is therefore interesting to develop theory for smoothed versions of the monotone
estimators of Part I using splines and to contrast the performance between kernel and
spline estimators of the monotone functions.

For data subject to right censoring, the synthetic data approach discussed in Chapter 5
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is considered for heteroscedastic models. We did not consider variance-based weighting
in the estimation of the mean regression curve. Although it is common practice to use
weighted least squares when heterogeneity is present in the data (e.g. for non-censored
data, Shen et al. (2016) use reweighting for heteroscedastic VCMs), Antoniadis et al.
(2012) show the good performance of P-spline estimators in VCMs with non-censored
data even if the heteroscedasticity is ignored in the estimation process. How to bring
in variance-based reweighting in the estimation process and studying the impact of
reweighting on the quality of the P-spline estimators in heteroscedastic VCMs is a
challenging open problem.

Finally we note that the VCM of Part II for right censored observations can be
considered for interval censored observations as well. For the data transformations
that require estimation of the underlying error distribution, the cube-root n MLE
can be considered. The Kaplan-Meier estimator (Kaplan and Meier, 1958), which is
the MLE for right censored data, converges however at a faster

√
n-rate because of

the fact that one has actual observations in addition to the censored ones. Since all
observations are censored in the current status model and the interval censoring type 2
model, additional complexities are to be expected. The method proposed by Buckley
and James (1979), which is the second transformation method in Chapter 5, has been
implemented for interval censored data by Rabinowitz et al. (1995) but more work is still
needed to understand the theoretical properties of this estimator. The construction of
model-independent data transformations has also been considered in Zheng (2008) for a
linear regression model under interval censored data. Finding, for interval censored data,
appropriate transformations for inference in VCMs is an unexplored interesting open
question.



Appendices

137





Appendix A
Current status linear regression
- Appendix

We give the proofs of the results stated in Chapter 2 on the asymptotic behavior of the
simple score estimator α̂1n (SSE), the efficient score estimator α̂2n (ESE) and the plug-
in estimator α̂3n for the regression parameter α0 in the current status linear regression
model (1.1.3). The proofs for each method are given in Sections A.2, A.3 and A.4. To
simplify the notations we drop the index j = 1, 2, 3 in αjn, representing the different
techniques.
Entropy results are used in our proofs. Before we prove the results we first give some
definitions and an equicontinuity lemma needed in the proofs.
Consider a class of functions F on R and let L2(Q) be the L2−norm defined by a
probability measure Q on R, i.e. for g ∈ F ,

‖g‖L2 =
∫
g2dQ.

For any probability measure Q on R let NB(ζ,F , L2(Q)) be the minimal number N for
which there exists pairs of functions {[gLj , gUj ], 1 ≤ j ≤ N} such that ‖gUj − gLj ‖L2 ≤ ζ

for all 1 ≤ j ≤ N and such that for each g ∈ F there is a j ∈ {1, . . . , N} such that
gLj ≤ g ≤ gUj . The ζ−entropy with bracketing of F (for the L2(Q)−distance) is defined
as HB(ζ,F , L2(Q)) = log(NB(ζ,F , L2(Q))).

Lemma A.0.1 (Equicontinuity Lemma, Theorem 5.12, p.77 in van de Geer (2000)). Let
F be a fixed class of functions with envelope F in L2(P ) = {f :

∫
f2dP <∞}. Suppose
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that ∫ 1

0
H

1/2
B (u,F , L2(P )) du ≤ ∞,

where HB is the entropy with bracketing of F for the L2-norm. Then, for all η > 0 there
exists a δ > 0 such that

lim sup
n→∞

P

(
sup[δ]|

√
n

∫
(f − g)d(Pn − P0)| > η

)
< η,

where

[δ] = {(f, g) : ‖f − g‖ ≤ δ}.

A.1 The maximum likelihood estimator F̂n,α

In this section we prove Lemma 2.3.1. We first prove in Lemma A.1.1 some entropy
bounds needed in the proofs.

Lemma A.1.1. Let

F = {(x, t) 7→ F (t−αTx) : F ∈ F0,α ∈ Θ},

where F0 is the set of subdistribution functions on [a, b], where [a, b] contains all values
t−αTx for α ∈ Θ, and (x, t) in the compact neighborhood over which we let them vary.
Then,

sup
ε>0

εHB (ε,F , L2(P0)) = O(1),

Furthermore, let
G = {(x, t) 7→ g(t−αTx) : g ∈ G0,α ∈ Θ},

where G0 is a set functions of uniformly bounded variation, then

sup
ε>0

εHB (ε,G, L2(P0)) = O(1). (A.1.1)

Proof. We only prove the result for the class F since the proof for the class G can be
obtained similarly.
Fix ε > 0. We first note that Θ can be covered by N neighborhoods with diameter at
most ε2 where N is of order ε−2d. Let {α1, . . . ,αN} denote elements of each of these
neighborhoods. Consider an ε-bracket [FLj , FUj ], 1 ≤ j ≤ N ′ covering the class F0 such
that {∫

{FUj (u)− FLj (u)}2fT−αTX(u) du
}1/2

< ε.
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for 1 ≤ j ≤ N ′. The existence of such an ε-net is assured by the fact that fT−αTX is
bounded above (uniformly in α). The number N ′ is of order exp(C/ε) for some constant
C (See e.g. van de Geer (2000), p. 18). Let αj be chosen such that ‖αj − α‖ < ε2,
where ‖ · ‖ denotes the Euclidean norm. Then:

t−αTj x− ε2R ≤ t−αTx = t−αTj x− (α−αj)Tx ≤ t−αTj x+ ε2R,

where R is the maximum of the values ‖x‖. This implies that for each F ∈ F0 and
α ∈ Θ,

FLi (t−αTj x− ε2R) ≤ F (t−αTx) ≤ FUi (t−αTj x+ ε2R),

for some 1 ≤ i ≤ N ′ and 1 ≤ j ≤ N . The result of Lemma A.1.1 follows if we can show
that {∫

{FUi (t−αTj x+ ε2R)− FLi (t−αTj x− ε2R)}2dG(x, t)
}1/2

. ε. (A.1.2)

By the triangle inequality we get that the left-hand side of the above equation is bounded
by {∫

{F (t−αTj x− ε2R)− FLi (t−αTj x− ε2R)}2 dG(x, t)
}1/2

+
{∫
{FUi (t−αTj x+ ε2R)− F (t−αTj x+ ε2R)}2 dG(x, t)

}1/2

+
{∫
{F (t−αTj x+ ε2R)− F (t−αTj x− ε2R)}2 dG(x, t)

}1/2

. ε+
{∫
{F (u+ ε2R)− F (u− ε2R)}2fT−αT

j
x(u)

}1/2
.

Let u0 = a − ε2R < u1, · · · < um = b + ε2R, be points such that uk − uk−1 = ε2,
1 ≤ k ≤ m− 1, um − um−1 ≤ ε2. Then:∫

{F (u+ ε2R)− F (u− ε2R)}2fT−αT
j
X(u) du

≤
∫
{F (u+ ε2R)− F (u− ε2R)}fT−αT

j
X(u) du

≤M
∫
{F (u+ ε2R)− F (u− ε2R)} du

= M

∫ b+ε2R

a+ε2R

F (u) du−M
∫ b−ε2R

a−ε2R

F (u) du

≤M
∫ a+ε2R

a−ε2R

F (u) du+M

∫ b+ε2R

b−ε2R

F (u) du . ε2,
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where M is an upper bound for fT−αT
j
X , and where we extend the function F by a

constant value outside [a, b]. This completes the proof of (A.1.2) since we have shown
that there exist positive constants A1, A2, A3 and C such that

HB (ε,F , L2(P0)) ≤ logN + logN ′ ≤ d log(A1/ε
2) +A2 log(exp(C/ε))

≤ A3/ε

= O(log(1/ε)) +O(1/ε) = O(1/ε), ε ↓ 0.

Proof of Lemma 2.3.1. Let h denote the Hellinger distance on the class of densities P
defined by

P =
{
pα,F (x, t, δ) = δF (t−αTx) + (1− δ){1− F (t−αTx)} : F ∈ F0,α ∈ Θ

}
,

w.r.t. the product of counting measure on {0, 1} and the measure dG of (X, T ), where
F0 is the class of right-continuous subdistribution functions.

We have (see e.g. the “basic inequality” Lemma 4.5, p. 51 of van de Geer (2000)):

h2
(
pα,F̂n,α , pα,Fα

)
≤
∫ 2pα,F̂n,α
pα,F̂n,α + p

α,Fα

d (Pn − P0) ,

where we use the convexity of the set of densities of this type for (temporarily) fixed α.
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Hence we get, for ε ∈ (0, 1]:

P
{

sup
α∈Θ

h
(
pα,F̂n,α , pα,Fα

)
≥ ε
}

= P

{
sup
α∈Θ,

h
(
pα,F̂n,α , pα,Fα

)
≥ε

{∫ { 2pα,F̂n,α
pα,F̂n,α + p

α,Fα

− 1
}
d (Pn − P0)

− h2
(
pα,F̂n,α , pα,Fα

)}
≥ 0, sup

α∈Θ
h
(
pα,F̂n,α , pα,Fα

)
≥ ε

}

≤ P

{
sup
α∈Θ,

F∈F0, h
(
p
α,F

, p
α,Fα

)
≥ε

{∫ { 2p
α,F

p
α,F

+ p
α,Fα

− 1
}
d (Pn − P0)

− h2(p
α,F

, p
α,Fα

)}
≥ 0
}

≤
∞∑
s=0

P

{
sup

α∈Θ, F∈F0,

2sε≤h
(
p
α,F

, p
α,Fα

)
≤2s+1ε

√
n

∫ { 2p
α,F

p
α,F

+ p
α,Fα

− 1
}
d (Pn − P0)

≥
√
n 22sε2

}
,

We can now use Theorem 5.13 in van de Geer (2000), taking ε = Mn−1/3, α = 1, β = 0
and T =

√
n 22sε2 = M22sn−1/6, together with Lemma A.1.1 for the entropy of the set

of densities to conclude:

∞∑
s=0

P

{
sup

α∈Θ, F∈F0,

2sε≤h
(
p
α,F

, p
α,Fα

)
≤2s+1ε

√
n

∫ { 2p
α,F

p
α,F

+ p
α,Fα

− 1
}
d (Pn − P0)

≥
√
n 22sε2

}
,

≤
∞∑
s=0

c1 exp(−c2M22s)

for constants c1, c2 > 0. Since the sum can be made arbitrarily small for M sufficiently
large, we find:

sup
α∈Θ

h
(
pα,F̂n,α , pα,Fα

)
= Op

(
n−1/3

)
.
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We have:

h
(
pα,F̂n,α , pα,Fα

)2
= 1

2

∫ {
p

1/2
α,F̂n,α

(x, t, 1)− p1/2
α,Fα

(x, t, 1)
}2

dG(x, t)

+ 1
2

∫ {
p

1/2
α,F̂n,α

(x, t, 0)− p1/2
α,Fα

(x, t, 0)
}2

dG(x, t)

= 1
2

∫ {
F̂n,α(t−αTx)1/2 − Fα(t−αTx)1/2

}2
dG(x, t)

+ 1
2

∫ {(
1− F̂n,α(t−αTx)

)1/2
−
(
1− Fα(t−αTx)

)1/2}2
dG(x, t),

and ∫ {
F̂n,α(t−αTx)− Fα(t−αTx)

}2
dG(x, t)

=
∫ {

F̂n,α(t−αTx)1/2 − Fα(t−αTx)1/2
}2

·
{
F̂n,α(t−αTx)1/2 + Fα(t−αTx)1/2

}2
dG(x, t)

≤ 4
∫ {

F̂n,α(t−αTx)1/2 − Fα(t−αTx)1/2
}2

dG(x, t)

≤ 8h
(
pF̂n,α , pFα

)2
.

So we find:

sup
α∈Θ

∫ {
F̂n,α(t−αTx)− Fα(t−αTx)

}2
dG(x, t) = Op

(
n−2/3

)
.

A.2 Asymptotic behavior of the SSE

This section contains the proof of Theorem 2.4.1 stated in Section 2.4.1 of the thesis.
The proof is decomposed into three parts: (a) proof of existence of a root of ψ1ε,n, (b)
proof of consistency of α̂n and (c) proof of asymptotic normality of

√
n(α̂n − α0). We

first prove the properties given in Lemma 2.4.1 of the population version of the statistic
ψ1ε,n defined by

ψ1ε(α) =
∫
Fα(t−αTx)∈[ε,1−ε]

x{δ − Fα(t−αTx)} dP0(x, t, δ)

=
∫
Fα(t−αTx)∈[ε,1−ε]

x{F0(t−αT0 x)− Fα(t−αTx)} dG(x, t). (A.2.1)
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Proof of Lemma 2.4.1 . We first note that

ψ1ε(α0) =
∫
F0(t−αT0 x)∈[ε,1−ε]

x
{
E{∆|(X, T ) = (x, t)} − F0(t−αT0 x)

}
dG(x, t)

= 0,

since E{∆|(X, T ) = (x, t)} = F0(t − αT0 x). We next continue by showing result (i).
Since

E
(
∆|T −αTX = t−αTx

)
= Fα(t−αTx),

we get:

Eε,α
[
Cov

(
∆,X|T −αTX

)]
def=
∫
Fα(u)∈[ε,1−ε]

Cov
(
∆,X|T −αTX = u

)
fT−αTX(u) du

=
∫
Fα(u)∈[ε,1−ε]

Cov
{
X, F0(u+ (α−α0)TX)

∣∣∣ T −αTX = u
}
fT−αTX(u) du

=
∫
Fα(t−αTx)∈[ε,1−ε]

x
{
F0(t−αTx+ (α−α0)Tx)− Fα(t−αTx)

}
dG(x, t)

=
∫
Fα(t−αTx)∈[ε,1−ε]

x
{
F0(t−αT0 x)− Fα(t−αTx)

}
dG(x, t) = ψ1ε(α).

For the second result (ii), we write:

(α−α0)TCov
(
∆,X|T −αTX = u

)
= Cov

(
F0(T −αTX + (α−α0)TX), (α−α0)TX|T −αTX = u

)
,

which is positive for all α, following from the fact that F0 is an increasing function.
Indeed, using Fubini’s theorem, one can prove that for any random variables X and Y
such that XY,X and Y are integrable, we have:

Cov {X,Y } = EXY − EXEY

=
∫
{P(X ≥ s, Y ≥ t)− P(X ≥ s)P(Y ≥ t)} ds dt.

Denote Z1 = (α−α0)TX and Z2 = F0(u+ (α−α0)TX) = F0(u+Z1). For simplicity
of notation we no longer write the condition T − αTX = u but note that the results
below hold conditional on T −αTX = u. Using the monotonicity of the function F0, we
have:

P(Z1 ≥ z1, Z2 ≥ z2) = P(Z1 ≥ max{z1, z̃2})

≥ P(Z1 ≥ max{z1, z̃2})P(Z1 ≥ min{z1, z̃2})

= P(Z1 ≥ z1)P(Z2 ≥ z2),
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where

z̃2 = F−1
0 (z2)− u.

We conclude that

Cov
(
F0(T −αTX + (α−α0)TX), (α−α0)TX|T −αTX = u

)
=
∫
{P(Z1 ≥ z1, Z2 ≥ z2)− P(Z1 ≥ z1)P(Z2 ≥ z2)} dz1 dz2 ≥ 0,

and hence (ii) follows from the assumption that the covariance Cov(X, F0(u + (α −
α0)TX)|T −αTX = u) is not identically zero for u in the region Aε,α, for each α ∈ Θ,
implying:

Eε,α
[
Cov

(
∆,X|T −αTX

)]
=
∫
Fα(u)∈[ε,1−ε]

Cov
(
F0(T −αTX + (α−α0)TX), (α−α0)TX|T −αTX = u

)
· fT−αTX(u)du

≥ 0.

[Uniqueness of α0:]
We next show that α0 is the only value α∗ ∈ Θ such that Eε,α[(α−α∗)TCov(∆,X|T −
αTX)] ≥ 0 for all α ∈ Θ. We start by assuming that, on the contrary, there exists
α1 6= α0 in Θ such that

(α−α0)Tψ1ε(α) ≥ 0 and (α−α1)Tψ1ε(α) ≥ 0 for all α ∈ Θ,

and we consider the point α̃ ∈ Θ given by

α̃ = 1
2{α0 +α1}.

The existence of the point α̃ is ensured by the convexity of the set Θ. For this point, we
have:

(α̃−α0)Tψ1ε(α̃) = −(α̃−α1)Tψ1ε(α̃),

which is not possible since both terms should be positive and ψ1ε(α̃) is not equal to zero
(since, by the assumption that the covariance Cov(X, F0(u+(α−α0)TX)|T−αTX = u)
is not identically zero for u in the region Aε,α, ψ1ε(α) is only zero at α = α0.)
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We now calculate the derivative of ψ1ε at α = α0. We have:

ψ′1ε(α) = ∂

∂α

∫
F−1

α (ε)≤t−αTx≤F−1
α (1−ε)

x{δ − Fα(t−αTx)}dP0(x, t, δ)

= ∂

∂α

∫
F−1

α (ε)≤t−αTx≤F−1
α (1−ε)

x{F0(t−αT0 x)− Fα(t−αTx)} dG(x, t)

= ∂

∂α

∫ F−1
α (1−ε)

u=F−1
α (ε)

∫
x
{
F0(u+ (α−α0)Tx)− Fα(u)

}
fX|T−αTX(x|u)

· fT−αTX(u) dx du

=
∫ F−1

α (1−ε)

u=F−1
α (ε)

∫
∂

∂α
{x
{
F0(u+ (α−α0)Tx)− Fα(u)

}
fX|T−αTX(x|u)

· fT−αTX(u)} dx du

+
{
∂

∂α
F−1
α (1− ε)

}∫
x
{
F0(F−1

α (1− ε) + (α−α0)Tx)− (1− ε)
}

· fX|T−αTX(x|F−1
α (1− ε))fT−αTX(F−1

α (1− ε)) dx

−
{
∂

∂α
F−1
α (ε)

}∫
x
{
F0(F−1

α (ε) + (α−α0)Tx)− ε
}

· fX|T−αTX(x|F−1
α (ε))fT−αTX(F−1

α (ε)) dx.

Note that if α = α0, we get:

ψ′1ε(α0) =
∫ F−1

0 (1−ε)

F−1
0 (ε)

∫
∂

∂α

{
x
{
F0(u+ (α−α0)Tx)− Fα(u)

}
· fX|T−αTX(x|u)fT−αTX(u)

}∣∣∣
α=α0

du dx.

Since the last two terms vanish because the integrands become zero in that case. Note
that

∂

∂α
Fα(u) =

∫
yf0(u+ (α−α0)Ty)fX|T−αTX(y|u) dy

+
∫
F0(u+ (α−α0)Ty) ∂

∂α
fX|T−αTX(y|u) dy,

implying that, at α = α0,
∂

∂α
Fα(u)

∣∣∣
α=α0

= f0(u)E(X|T −αT0X = u).

Since∫ F−1
0 (1−ε)

u=F−1
0 (ε)

∫
x
{
x− E(X|T −αT0X = u)

}T
fX|T−αT0 X(x|u) f0(u)fT−αT0 X(u)dx du

= Eε
[
X{X − E(X|T −αT0X)}T f0(T −αT0X)

]
,

Lemma 2.4.1 now follows.
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A.2.1 Proof of existence of a crossing of zero

Proof of Theorem 2.4.1, Part 1 (Existence of a root). Consider the score function

ψ1ε,n(α) =
∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
δ − F̂n,α(t−αTx)

}
dPn(x, t, δ),

where F̂n,α is the nonparametric maximum likelihood estimator (MLE) of the error dis-
tribution. According to the discussion in Section 2.4.1 we have to show that there exists
a point α̂n such that

ψ1ε,n(α) =
∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
δ − F̂n,α(t−αTx)

}
dPn(x, t, δ),

has a zero-crossing at α = α̂n. We have:

ψ1ε,n(α) =
∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
δ − Fα(t−αTx)

}
dPn(x, t, δ)

+
∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
Fα(t−αTx)− F̂n,α(t−αTx)

}
dPn(x, t, δ)

=
∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
δ − Fα(t−αTx)

}
dPn(x, t, δ)

+
∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
Fα(t−αTx)− F̂n,α(t−αTx)

}
d(Pn − P0)(x, t, δ)

+
∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
Fα(t−αTx)− F̂n,α(t−αTx)

}
dP0(x, t, δ).

(A.2.2)

Let F be the set of piecewise constant distribution functions with finitely many jumps
(like the MLE F̂n,α̂n), and let, for α ∈ Θ, K be the set of functions

K =
{

(x, t, δ) 7→ x
{
δ − Fα(t−αTx)

}
1[ε,1−ε]

(
F (t−αTx)

)
: F ∈ F ,α ∈ Θ

}
.

We add the function

(x, t, δ) 7→ x
{
δ − Fα(t−αTx)

}
1[ε,1−ε]

(
Fα(t−αTx)

)
,

to K. We denote by HB(ζ,K, L2(P0)) the bracketing ζ-entropy w.r.t. the L2-distance d,
defined by

d(k1, k2)2 =
∫
‖k1 − k2‖2 dP0, k1, k2 ∈ K.

Note that

x
{
δ − Fα(t−αTx)

}
1[ε,1−ε]

(
F (t−αTx)

)
= f1,α(x, t, δ)f2,α(x, t, δ),
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where

f1,α(x, t, δ) = x
{
δ − Fα(t−αTx)

}
,

and

f2,α(x, t, δ) = 1[ε,1−ε]
(
F (t−αTx)

)
.

Since t and x vary over a bounded region and, by Assumption A4, Fα is of bounded
variation, f1,α is of bounded variation. Moreover,

f2,α(x, t, δ) = 1[ε,1−ε]
(
F (t−αTx)

)
= 1[ε,1]

(
F (t−αTx)

)
− 1(1−ε,1]

(
F (t−αTx)

)
.

Since F is monotone, we have:

1[ε,1]
(
F (t−αTx)

)
− 1(1−ε,1]

(
F (t−αTx)

)
= 1[aε,F ,M ](t−αTx)− 1(bε,F ,M ](t−αTx), (A.2.3)

for points aε,F ≤ bε,F , where M is an upper bound for the values of t − αTx. Hence
f2,α is also a function of uniformly bounded variation.
We therefore get, using Lemma A.1.1, that

sup
ζ>0

ζHB (ζ,K, L2(P0)) = O(1),

which implies that∫ ζ

0
HB (u,K, L2(P0))1/2

du = O
(
ζ1/2

)
, ζ > 0.

This implies:∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
δ − Fα(t−αTx)

}
dPn(x, t, δ)

=
∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
δ − Fα(t−αTx)

}
dP0(x, t, δ)

+
∫
F̂n,α(t−αTx)∈[ε,1−ε]

x
{
δ − Fα(t−αTx)

}
d
(
Pn − P0

)
(x, t, δ)

=
∫
Fα(t−αTx)∈[ε,1−ε]

x
{
δ − Fα(t−αTx)

}
dP0(x, t, δ)

+
∫
Fα(t−αTx)∈[ε,1−ε]

x
{
δ − Fα(t−αTx)

}
d
(
Pn − P0

)
(x, t, δ) + op(1)

= ψ1ε(α) + op(1),
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uniformly in α ∈ Θ, by the convergence in probability (and almost surely) of F̂n,α to
Fα, where we use Lemma A.0.1 for the second term on the right-hand side of the first
equality to make the transition of the integration region F̂n,α(t − αTx) ∈ [ε, 1 − ε] to
Fα(t−αTx) ∈ [ε, 1− ε].
For the second term of (A.2.2) we argue similarly, this time using the function class

K′ =
{

(x, t, δ) 7→ x
{
Fα(t−αTx)− F (t−αTx)

}
1[ε,1−ε]

(
F (t−αTx)

)
:

F ∈ F , α ∈ Θ
}
,

to which we add the function that is identically zero. This implies that these terms are
op(1). For the third term of (A.2.2) we get by an application of the Cauchy-Schwarz
inequality that, uniformly in α,∫

F̂n,α(t−αTx)∈[ε,1−ε]
x
{
Fα(t−αTx)− F̂n,α(t−αTx)

}
dP0(x, t, δ)

≤

(∫
F̂n,α(t−αTx)∈[ε,1−ε]

‖x‖2dP0(x, t, δ)

·
∫
F̂n,α(t−αTx)∈[ε,1−ε]

{
Fα(t−αTx)− F̂n,α(t−αTx)

}2
dP0(x, t, δ)

)1/2

= Op(n−1/3).

The conclusion is that

ψ1ε,n(α) = ψ1ε(α) + op(1),

uniformly in α ∈ Θ.
[Existence of α̂n:] Let ψ1ε be the population version of the statistic ψ1ε,n defined by
(A.2.1). We have:

ψ1ε(α0) = 0.

Furthermore,

ψ1ε,n(α) = ψ′1ε(α0)(α−α0) +Rn(α), (A.2.4)

where Rn(α) = op(1) + o(α−α0), and where the op(1) term is uniform in α ∈ Θ. Note
that ψ′1ε(α0) is by definition nonsingular.
We now define, for h > 0, the functions

R̃n,h(α) = h−d
∫
Kh(u1 − α1) . . .Kh(ud − αd)Rn(u1, . . . , ud) du1 . . . dud,
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where d is the dimension of Θ and

Kh(x) = h−1K(x/h), x ∈ R,

letting K be one of the usual smooth kernels with support [−1, 1], like the Triweight
kernel that we used in the simulations.
Furthermore, we define:

ψ̃1ε,n,h(α) = ψ′1ε(α0)(α−α0) + R̃nh(α).

Clearly:

lim
h↓0

ψ̃1ε,n,h(α)) = ψ1ε,n(α) and lim
h↓0

R̃nh(α) = Rn(α),

for each continuity point α of ψ1ε,n.
We now reparametrize, defining

γ = ψ′1ε(α0)α and γ0 = ψ′1ε(α0)α0.

This gives:

ψ′1ε(α0)(α−α0) + R̃nh(α) = γ − γ0 + R̃nh
(
ψ′1ε(α0)−1γ

)
.

By (A.2.4), the mapping

γ 7→ γ0 −Rn
(
ψ′1ε(α0)−1γ

)
,

maps, for each η > 0, the ball Bη(γ0) = {γ : ‖γ − γ0‖ ≤ η} into Bη/2(γ0) = {γ :
‖γ − γ0‖ ≤ η/2} for all large n, with probability tending to one, where ‖ · ‖ denotes the
Euclidean norm, implying that the continuous map

γ 7→ γ0 − R̃nh
(
ψ′1ε(α0)−1γ

)
,

maps Bη(γ0) = {γ : ‖γ − γ0‖ ≤ η} into itself for all large n and small h. So for large n
and small h there is, by Brouwer’s fixed point theorem a point γnh such that

γnh = γ0 − R̃nh
(
ψ′1ε(α0)−1γnh

)
.

Defining αnh = ψ′1ε(α0)−1γnh, we get:

ψ̃1ε,n,h(αnh) = ψ′1ε(α0)(αnh −α0) + R̃nh(αnh) = 0. (A.2.5)

By compactness, (αn,1/k)∞k=1 must have a subsequence (αn,1/ki) with a limit α̃n, as
i→∞. We show that each component of ψ1ε,n has a crossing of zero at α̃n.
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Suppose that the jth component ψ1ε,n,j of ψ1ε,n does not have a crossing of zero at α̃n.
Then there must be an open ball Bδ(α̃n) = {α : ‖α− α̃n‖ < δ} of α̃n such that ψ1ε,n,j

has a constant sign in Bδ(α̃n), say ψ1ε,n,j(α) > 0 for α ∈ Bδ(α̃n). Since ψ1ε,n,j only
has finitely many values, this means that

ψ1ε,n,j(α) ≥ c > 0, for all α ∈ Bδ(α̃n),

for some c > 0. This means that the jth component ψ̃1ε,n,h,j of ψ̃1ε,n,h satisfies

ψ̃1ε,n,h,j(α) = [ψ′1ε(α0)(α−α0)]j + R̃nh,j(α)

= h−d
∫ {

[ψ′1ε(α0)(α−α0)]j +Rnj(u1, . . . , ud)
}

·Kh(u1 − α1) . . .Kh(ud − αd) du1 . . . dud

≥ h−d
∫ {

[ψ′1ε(α0)(u−α0)]j +Rnj(u1, . . . , ud)
}

·Kh(u1 − α1) . . .Kh(ud − αd) du1 . . . dud − c/2

≥ c h−d
∫
Kh(u1 − α1) . . .Kh(ud − αd) du1 . . . dud − c/2

= c/2,

for α ∈ Bδ/2(α̃n) and sufficiently small h, contradicting (A.2.5), since αnh, for h = 1/ki,
belongs to Bδ/2(α̃n) for large ki.

A.2.2 Proof of consistency of the SSE

Proof of Theorem 2.4.1, Part 2 (Consistency). We assume that α̂n is contained in the
compact set Θ, and hence the sequence (α̂n) has a subsequence (α̂nk = α̂nk(ω)),
converging to an element α∗. If α̂nk = α̂nk(ω) −→ α∗, we get by Lemma 2.3.1,

F̂nk,α̂nk (t− α̂Tnkx) −→ Fα∗(t−αT∗ x),

where Fα is defined in (2.3.1). In the limit we get therefore the relation:

lim
k→∞

∫
F̂nk,α̂nk

(t−α̂Tnkx)∈[ε,1−ε]
x
{
δ − Fnk,α̂nk (t− α̂Tnkx)

}
dPnk(x, t, δ)

=
∫
Fα∗ (t−αT∗ x)∈[ε,1−ε]

x
{
F0(t−αT0 x)− Fα∗(t−αT∗ x)

}
dG(x, t) = 0,
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using that, in the limit, the crossing of zero becomes a root of the continuous limiting
function. Consider:∫

Fα∗ (t−αT∗ x)∈[ε,1−ε]
x
{
F0(t−αT0 x)− Fα∗(t−αT∗ x)

}
dG(x, t)

=
∫
Fα∗ (t−αT∗ x)∈[ε,1−ε]

x
{
F0(t−αT∗ x+ (α∗ −α0)Tx)− Fα∗(t−αT∗ x)

}
dG(x, t).

Since

Fα∗(t−αT∗ x)

=
∫
F0(t−αT∗ x+ (α∗ −α0)Ty)fX|T−αT∗X(y|T −αT∗X = t−αT∗ x) dy,

we get:

(α∗ −α0)T
∫
Fα(t−αTx)∈[ε,1−ε]

x
{
F0(t−αT∗ x+ (α∗ −α0)Tx)− Fα∗(t−αT∗ x)

}
· dG(x, t)

=
∫
Fα∗ (t−αT∗ x)∈[ε,1−ε]

(α∗ −α0)Tx
{
F0(t−αT∗ x+ (α∗ −α0)Tx)

−
∫
F0(t−αT∗ x+ (α∗ −α0)Ty)fX|T−αT∗X(y|T −αT∗X = t−αT∗ x) dy

}
· dG(x, t)

=
∫
Fα∗ (u)∈[ε,1−ε]

Cov
{

(α∗ −α0)TX, F0(u+ (α∗ −α0)TX)
∣∣∣ T −αT∗X = u

}
· fT−αT∗X(u) du

= 0.

We first note that by Lemma 2.4.1 the integrand is positive for all α∗ ∈ Θ. Suppose
that α∗ 6= α0, then this integral can only be zero if Cov((α∗ − α0)TX, F0(u + (α∗ −
α0)TX)|T−αT∗X = u) is zero for all u such that Fα∗(u) ∈ [ε, 1−ε], if fT−αT∗X(u) stays
away from zero on this region (Assumptions A3), using continuity of the functions in the
integrand (Assumptions A5) and the nonnegativity of the conditional covariance function
(see also Remark 2.4.2). Since this is excluded by the condition that the covariance
Cov(X,F0(u+ (α−α0)TX)|T −αTX = u) is continuous in u and not identically zero
for u in the region {u : ε ≤ Fα(u) ≤ 1−ε}, for each α ∈ Θ, we must have: α∗ = α0.

A.2.3 Proof of asymptotic normality of the SSE

Proof of Theorem 2.4.1, Part 3 (Asymptotic Normality). Before working out the details,
we give a kind of “road map” for the proof of Theorem 2.4.1, Part 3.
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1. We define ψ1ε,n at α̂n by putting

ψ1ε,n(α̂n) = 0. (A.2.6)

Note that, with this definition, ψ1ε,n(α̂n) is in dimension 1 just the convex combi-
nation of the left and right limit at α̂n:

ψ1ε,n(α̂n) = γψ1ε,n(α̂n−) + (1− γ)ψ1ε,n(α̂n+) = 0, (A.2.7)

where we can choose γ ∈ [0, 1] in such a way that (A.2.7) holds. In dimension
d higher than one, we can also define ψ1ε,n at α̂n by (A.2.6) and use the repre-
sentation of the components as a convex combination since we have a crossing of
zero component wise. Since the following asymptotic representations are also valid
for one-sided limits as used in (A.2.7) we can use Definition (A.2.6) and assume
ψ1ε,n(α̂n) = 0.

We show:

ψ1ε,n(α̂n) =
∫
F0(t−αT0 x)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}
·
{
F0(t−αT0 x)− Fα̂n(t− α̂Tnx)

}
dP0(x, t, δ)

+
∫
F0(t−αT0 x)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}{
δ − F0(t−αT0 x)

}
d
(
Pn − P0

)
(x, t, δ)

+ op

(
n−1/2 + α̂n −α0

)
, (A.2.8)

where

φ0(u) = φα0(u),

and where φα is defined by

φα(u) = E
{
X|T −αTX = u

}
. (A.2.9)

Since α̂n
p→ α0 and∫

F0(t−αT0 x)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}
·
{
F0(t−αT0 x)− Fα̂n(t− α̂Tnx)

}
dP0(x, t, δ)

= ψ′1ε(α0) (α̂n −α0) + op (α̂n −α0) ,
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this yields, using the invertibility of ψ′1ε(α0),

√
n(α̂n −α0)

= −ψ′1ε(α0)−1

{
√
n

∫
F0(t−αT0 x)∈[ε,1−ε]

{
x− φα0(t−αT0 x)

}
·
{
δ − F0(t−αT0 x)

}
d
(
Pn − P0

)
(x, t, δ)

}
+ op

(
1 +
√
n(α̂n −α0)

)
.

As a consequence, the result of Theorem 2.4.1 follows, since

√
n

∫
F0(t−αT0 x)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}{
δ − F0(t−αT0 x)

}
d
(
Pn − P0

)
(x, t, δ)

d→ N(0,B).

2. To show that (A.2.8) holds, we need entropy results for the functions u 7→ F̂n,α(u)
and u 7→ φ̄α,F̂n,α(u) (see (A.2.10) below). We also have to deal with the simpler
parametric functions Fα and φα, parametrized by the finite dimensional parameter
α, which are the population equivalents of F̂n,α and φ̄α,F̂n,α .

3. The result will then follow from the properties of Fα and φα, together with the
closeness of F̂n,α to Fα and φ̄α,F̂n,α to φα, respectively, and the convergence of
α̂n to α0.

Let φ̄α̂n,F̂n,α̂n be a (random) piecewise constant version of φα̂n , where, for a piecewise
constant distribution function F with finitely many jumps at τ1 < τ2 < . . . , the function
φ̄α,F is defined in the following way.

φ̄α,F (u) =


φα(τi), if Fα(u) > F (τi), u ∈ [τi, τi+1),
φα(s), if Fα(u) = F (s), for some s ∈ [τi, τi+1),
φα(τi+1), if Fα(u) < F (τi), u ∈ [τi, τi+1).

(A.2.10)
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We can write:

ψ1ε,n(α̂n) =
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

x
{
δ − F̂n,α̂n(t− α̂Tnx)

}
dPn(x, t, δ)

=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}{
δ − F̂n,α̂n(t− α̂Tnx)

}
· dPn(x, t, δ)

+
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
φα̂n(t− α̂Tnx)− φ̄α̂n,F̂n,α̂n (t− α̂Tnx)

}
·
{
δ − F̂n,α(t− α̂Tnx)

}
dPn(x, t, δ)

= I + II,

using∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

φ̄α̂n,F̂n,α̂n
(t− α̂Tnx)

{
δ − F̂n,α̂n(t− α̂Tnx)

}
dPn(x, t, δ)

= 0,

by the definition of the MLE F̂n,α̂n as the slope of the greatest convex minorant of
the corresponding cusum diagram, based on the values of the ∆i in the ordering of the
Ti − α̂TnXi (see also Lemma A.5 on p.380 of Groeneboom et al. (2010)).
We first show that

II = op

(
n−1/2 + (α̂n −α0)

)
.

Since the function u 7→ φα(u) has a totally bounded derivative (as a consequence of
(A.2.9) and Assumption A5), we can bound the Euclidean norm of the differences φα(u)−
φ̄α,F̂n,α(u) above by a constant times |F̂n,α(u)− Fα(u)|, for u ∈ Aε,α (see Assumption
A2), i.e.,

‖φα(u)− φ̄α,F̂n,α(u)‖ ≤ Kα|F̂n,α(u)− Fα(u)|,

for some constant Kα > 0 where the constant Kα depends on α through fα (see for this
technique for example (10.64) in Groeneboom and Jongbloed (2014)). By Assumption
A2 we know that fα is continuous for all αn ∈ Θ such that we can find a constant K > 0
not depending on α, satisfying,

‖φα(u)− φ̄α,F̂n,α(u)‖ ≤ K|F̂n,α(u)− Fα(u)|, (A.2.11)

uniformly in αn ∈ Θ. Note that we also need fα(u) > 0 for applying this, which is
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ensured by Assumption A2. We have:

II =
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
φα̂n(t− α̂Tnx)− φ̄α̂n,F̂n,α̂n (t− α̂Tnx)

}
·
{
δ − F̂n,α̂n(t− α̂Tnx)

}
dPn(x, t, δ)

=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
φα̂n(t− α̂Tnx)− φ̄α̂n,F̂n,α̂n (t− α̂Tnx)

}
·
{
δ − F̂n,α̂n(t− α̂Tnx)

}
d(Pn − P0)(x, t, δ)

+
∫
F̂n,α̂n (u)∈[ε,1−ε]

{
φα̂n(u)− φ̄α̂n,F̂n,α̂n (u)

}{
Fα̂n(u)− F̂n,α̂n(u)

}
· fT−α̂TnX(u) du

+
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
φα̂n(t− α̂Tnx)− φ̄α̂n,F̂n,α̂n (t− α̂Tnx)

}
·
{
F0(t−αT0 x)− Fα̂n(t− α̂Tnx)

}
dP0(x, t, δ)

= IIa + IIb + IIc.

First consider IIa. Let F be the set of piecewise constant distribution functions with
finitely many jumps (like the MLE F̂n,α̂n), and let K1 be the set of functions

K1 =
{

(x, t, δ) 7→
(
φα(t−αTx)− φ̄α,F (t−αTx)

)(
δ − F (t−αTx)

)
·1[ε,1−ε](F (t−αTx)) : F ∈ F , α ∈ Θ

}
,

where φ̄α,F is again defined by (A.2.10). We add the function which is identically zero
to K1.
The functions u 7→ F (u), for F ∈ F and (as argued above) u 7→ φ̄α,F (u) are bounded
functions of uniformly bounded variation. Note that, for F1, F2 ∈ F ,

F1(t−αT1 x)− F2(t−αT2 x) = F1(t−αT1 x)− Fα1(t−αT1 x) + Fα1(t−αT1 x)

− Fα2(t−αT2 x) + Fα2(t−αT2 x)− F2(t−αT2 x),

and that (see (2.3.1)):∣∣Fα1(t−αT1 x)− Fα2(t−αT2 x)
∣∣

=
∣∣∣∣∫ F0(t−αT0 x+ (α1 −α0)T (y − x))fX|T−αT1 X(y|t−αT1 x) dy

−
∫
F0(t−αT0 x+ (α2 −α0)T (y − x))fX|T−αT2 X(y|t−αT2 x) dy

∣∣∣∣
= O (|α1 −α2|) ,
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by Assumption A2 and Assumption A5.
For the indicator function 1[ε,1]

(
F (t−αTx)

)
we get, as in (A.2.3), using the monotonic-

ity of F ,

1[ε,1]
(
F (t−αTx)

)
= 1[ε,1]

(
F (t−αTx)

)
− 1(1−ε,1]

(
F (t−αTx)

)
= 1[aε,F ,M ](t−αTx)− 1(bε,F ,M ](t−αTx),

for points aε,F ≤ bε,F , where M is an upper bound for the values of t − αTx, implying
that the function

(x, t) 7→ 1[ε,1]
(
F (t−αTx)

)
,

is of uniformly bounded variation. So the functions in K1 are products of functions of
uniformly bounded variation, and we therefore get, using Lemma A.1.1

sup
ζ>0

ζHB (ζ,K1, L2(P0)) = O(1),

which implies: ∫ ζ

0
HB (u,K1, L2(P0))1/2

du = O
(
ζ1/2

)
, ζ > 0.

Defining:

kα,F (x, t, δ) =
(
φα(t−αTx)− φ̄α,F (t−αTx)

)(
δ − F (t−αTx)

)
1[ε,1−ε](F (t−αTx)),

for F ∈ F , we get, using (A.2.11),{∫ ∥∥∥kα̂n,F̂n,α̂n (x, t, δ)
∥∥∥2

dP0(x, t, δ)
}2

≤
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

∥∥∥φα̂n(t− α̂Tnx)− φ̄α̂n,F̂n,α̂n (t− α̂Tnx)
∥∥∥2

dP0(x, t, δ)

≤ K
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
F̂n,α̂n(t− α̂Tnx)− Fα̂n(t− α̂Tnx)

}2
dP0(x, t, δ)

≤ K ′
∫
F̂n,α̂n (u)∈[ε,1−ε]

{
F̂n,α̂n(u)− Fα̂n(u)

}2
du

p−→ 0,

for constants K,K ′ > 0. This implies

√
nIIa =

√
n

∫
kα̂n,F̂n,α̂n

(x, t, δ) d(Pn − P0)(x, t, δ) = op(1), (A.2.12)

by an application of Lemma A.0.1.
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Using (A.2.11), ‖Fα̂n− F̂n,α̂n‖2 = Op(n−1/3) and the Cauchy-Schwarz inequality on the
second term we get:

IIb = Op(n−2/3).

The functions φα and Fα are of a simple parametric nature, since

φα = E(X|T −αTX),

and

Fα(u) =
∫
F0(u+ (α−α0)Tx)fX|T−αTX(x|T −αTX = u) dx,

see (2.3.1). Moreover, since

Fα̂n(u) = F0(u) + (α̂n −α0)T
∫
xf0(u)fX|T−α̂TnX(x|u) dx+ op(α̂n −α0)

= F0(u) + (α̂n −α0)T f0(u)E{X|T − α̂TnX = u}+ op(α̂n −α0),

and since the difference φα̂n − φ̄α̂n,F̂n,α̂n converges to zero, we get for the third term
IIc:

IIc =
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
φα̂n(t− α̂Tnx)− φ̄α̂n,F̂n,α̂n (t− α̂Tnx)

}
·
{
F0(t−αT0 x)− Fα̂n(t− α̂Tnx)

}
dP0(x, t, δ)

= op (α̂n −α0) .

We therefore conclude:

ψ1ε,n(α̂n) = I + op

(
n−1/2 + α̂n −α0

)
.

We now write:

I =
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
·
{
δ − F̂n,α̂n(t− α̂Tnx)

}
dPn(x, t, δ)

=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
·
{
δ − Fα̂n(t− α̂Tnx)

}
dPn(x, t, δ)

+
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
·
{
Fα̂n(t− α̂Tnx)− F̂n,α̂n(t− α̂Tnx)

}
dPn(x, t, δ)

= Ia + Ib.
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We next show that Ia is equal to the first two terms on the right-hand side of (A.2.8)
and that

Ib = op

(
n−1/2 + (α̂n −α0)

)
.

We have:

Ia =
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
·
{
δ − Fα̂n(t− α̂Tnx)

}
dPn(x, t, δ)

=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
·
{
δ − Fα̂n(t− α̂Tnx)

}
d(Pn − P0)(x, t, δ)

+
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
·
{
F0(t−αT0 x)− Fα̂n(t− α̂Tnx)

}
dP0(x, t, δ).

For the second integral on the right-hand side we get:∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
·
{
F0(t−αT0 x)− Fα̂n(t− α̂Tnx)

}
dP0(x, t, δ)

=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
·
{
F0(t− α̂Tnx)− Fα̂n(t− α̂Tnx)

}
dP0(x, t, δ)

+
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
·
{
F0(t−αT0 x)− F0(t− α̂Tnx)

}
dP0(x, t, δ),

and next we get, using the definition of φα given in (A.2.9), for the first integral on the
right-hand side of the last display:∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}{
F0(t− α̂Tnx)− Fα̂n(t− α̂Tnx)

}
dP0(x, t, δ)

=
∫
F̂n,α̂n (u)∈[ε,1−ε]

{
x− φα̂n(u)

}{
F0(u)− Fα̂n(u)

}
fT−α̂TnX(u) fX|T−α̂TnX(x|u) du dx

= 0.

Furthermore, we get by expanding F0(t−αTx) and by the continuity of α 7→ φα(u) at
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α = α0:∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}{
F0(t−αT0 x)− F0(t− α̂Tnx)

}
dP0(x, t, δ)

=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
(α̂n −α0)Txf0(t−αT0 x) dP0(x, t, δ)

+ op (α̂n −α0)

=
{∫

F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}
xT f0(t−αT0 x) dP0(x, t, δ)

}
(α̂n −α0)

+ op (α̂n −α0) .

Finally we get from the consistency of F̂n,α̂n :{∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}
xT f0(t−αT0 x) dP0(x, t, δ)

}
(α̂n −α0)

=
{∫

F0(t−αT0 x)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}
xT f0(t−αT0 x) dP0(x, t, δ)

}
(α̂n −α0)

+ op (α̂n −α0)

= ψ′1ε(α0)(α̂n −α0) + op (α̂n −α0) .

We therefore obtain:

Ia

=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}{
δ − Fα̂n(t− α̂Tnx)

}
d(Pn − P0)(x, t, δ)

+ ψ′1ε(α0)(α̂n −α0) + op (α̂n −α0) .

We now proceed again as before, and define K′1 to be the set of functions

K′1 =
{

(x, t, δ) 7→
(
x− φα(t−αTx)

)(
δ − Fα(t−αTx)

)
1[ε,1−ε](F (t−αTx))

: F ∈ F , α ∈ Θ} .

We add the function

(x, t, δ) 7→
(
x− φ0(t−αT0 x)

)(
δ − F0(t−αT0 x)

)
1[ε,1−ε](F0(t−αT0 x)),

to the set K′1. We therefore get, similarly as before, using Lemma A.1.1, that

sup
ζ>0

ζHB (ζ,K′1, L2(P0)) = O(1),
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which implies that∫ ζ

0
HB (u,K′1, L2(P0))1/2

du = O
(
ζ1/2

)
, ζ > 0.

Moreover, we get that(
x− φα̂n(t− α̂Tnx)

)(
δ − Fα̂n(t− α̂Tnx)

)
1[ε,1−ε]

(
F̂n,α̂n(t− α̂Tnx)

)
−
(
x− φ0(t−αT0 x)

)(
δ − F0(t−αT0 x)

)
1[ε,1−ε]

(
F0(t−αT0 x)

)
=
{(
x− φα̂n(t− α̂Tnx)

)(
δ − Fα̂n(t− α̂Tnx)

)
−
(
x− φ0(t−αT0 x)

)(
δ − F0(t−αT0 x)

)}
1[ε,1−ε]

(
F̂n,α̂n(t− α̂Tnx)

)
+
(
x− φ0(t−αT0 x)

)(
δ − F0(t−αT0 x)

)
·
{

1[ε,1−ε]
(
F0(t−αT0 x)

)
− 1[ε,1−ε]

(
F̂n,α̂n(t− α̂Tnx)

)}
= An(x, t, δ) +Bn(x, t, δ),

implying that∫ {(
x− φα̂n(t− α̂Tnx)

)(
δ − Fα̂n(t− α̂Tnx)

)
1[ε,1−ε]

(
F̂n,α̂n(t− α̂Tnx)

)
−
(
x− φ0(t−αT0 x)

)(
δ − F0(t−αT0 x)

)
1[ε,1−ε]

(
F0(t−αT0 x)

)}2
dP0(x, t, δ)

≤ 2
∫ {

An(x, t, δ)2 +Bn(x, t, δ)2} dP0(x, t, δ) = op(1),

since the integrals w.r.t. A2
n and B2

n tends to zero using the consistency of α̂n and F̂n,α̂n .
Hence we get from Lemma A.0.1:

Ia =
∫
F0(t−αT0 x)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}{
δ − F0(t−αT0 x)

}
d(Pn − P0)(x, t, δ)

+ ψ′1ε(α0)(α̂n −α0) + op (α̂n −α0) + op

(
n−1/2

)
.

This means that we get the conclusion:∫
F0(t−αT0 x)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}{
δ − F0(t−αT0 x)

}
d (Pn − P0) (x, t, δ)

(A.2.13)

= −ψ′1ε(α0)(α̂n −α0) + op (α̂n −α0) + op

(
n−1/2

)
,

if we can show that Ib is negligible.
Since, by definition of φα given in (A.2.9),∫

F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
fX|T−α̂TnX(x|t− α̂Tnx) dx = 0,
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we have:

Ib =
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− φα̂n(t− α̂Tnx)

}
·
{
Fα̂n(t− α̂Tnx)− F̂n,α̂n(t− α̂Tnx)

}
d(Pn − P0)(x, t, δ).

The negligibility of Ib now follows in the same way as (A.2.12), using the parametric
nature of the function φα and the entropy properties of the class of functions

u 7→ F̂n,α̂n(u)− Fα̂n(u).

The conclusion now follows from (A.2.13).

Remark A.2.1. Note that the proof above yields the representation

α̂n −α0 ∼ n−1ψ′1ε(α0)−1
n∑
i=1

(Xi − E(Xi|T −αT0X))
{

∆i − F0(Ti −αT0Xi

}
,

where ψ′1ε(α0) is given in Lemma 2.4.1.

A.3 Asymptotic behavior of the ESE

In this section we prove the asymptotic efficiency of the score estimator defined in Section
2.4.2. The proof of existence of the root and the consistency proof for the score estimator
is similar to the proof of existence and consistency of the first score estimator defined in
Section 2.4.1, thus omitted.

Proof of Theorem 2.4.2 (Asymptotic Normality). Since the proof is very similar to the
proof of Theorem 2.4.1, we only give the main steps of the proof. As in the proof of
Theorem 2.4.1, we can define ψ2ε,nh at α̂n by

ψ2ε,nh(α̂n) = 0,

and ψ2ε,nh(α̂n) is then a combination of one-sided limits at α̂n.
We prove that

ψ2ε,nh(α̂n)

=
∫
F0(t−αT0 x)∈[ε,1−ε]

{
xf0(t−αT0 x)− ϕα0(t−αT0 x)

}{
δ − F0(t−αT0 x)

}
F0(t−αT0 x){1− F0(t−αT0 x)}

dPn(t, x, δ)

+ ψ′2ε(α0)(α̂n −α0) + op

(
n−1/2 + (α̂n −α0)

)
, (A.3.1)
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where ϕα is defined by

ϕα(t−αTx) = E(X|T −αTX = t−αTx)fα(t−αTx),

and ψ2ε is defined by

ψ2ε(α) =
∫
Fα(t−αTx)∈[ε,1−ε]

{
xfα(t−αTx)− ϕα(t−αTx)

}{
δ − Fα(t−αTx)

}
Fα(t−αTx){1− Fα(t−αTx)}

· dP0(x, t, δ).

Straightforward calculations show that

ψ′2ε(α0) =
∫
F0(t−αT0 x)∈[ε,1−ε]

{
xf0(t−αT0 x)− ϕα0(t−αT0 x)

}2

F0(t−αT0 x){1− F0(t−αT0 x)}
dP0(x, t, δ)

= Eε

{
f0(T −αT0X)2 {X − E(X|T −αT0X)

}{
X − E(X|T −αT0X)

}′
F0(T −αT0X){1− F0(T −αT0X)}

}
= Iε(α0).

(See also the derivation of the derivative ψ′ε for the first score equation in the proof of
Theorem 2.4.1, Part 1). Since

√
n

∫
F0(t−αT0 x)∈[ε,1−ε]

{
xf0(t−αT0 x)− ϕα0(t−αT0 x)

}{
δ − F0(t−αT0 x)

}
F0(t−αT0 x){1− F0(t−αT0 x)}

dPn(x, t, δ)

d→ N(0, Iε(α0)),

(A.3.1) implies, using the nonsingularity of ψ′2ε(α0) and the consistency of α̂n,

√
n(α̂n −α0)

= −ψ′2ε(α0)−1

{
√
n

∫
F0(t−αT0 x)∈[ε,1−ε]

xf0(t−αT0 x)− ϕα0(t−αT0 x)
F0(t−αT0 x){1− F0(t−αT0 x)}

·
{
δ − F0(t−αT0 x)

}
dPn(x, t, δ)

}
+ op(1 +

√
n(α̂n −α0))

d→ N
(
0, Iε(α0)−1) .

Let, analogously to the start of the proof of Theorem 2.4.1, ϕ̄α̂n,F̂n,α̂n be a (random)
piecewise constant version of ϕα̂n , where, for a piecewise constant distribution function
F with finitely many jumps at τ1 < τ2 < . . . , the function ϕ̄α,F is defined in the following
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way.

ϕ̄α,F (u) =


ϕα(τi), if Fα(u) > F (τi), u ∈ [τi, τi+1),
ϕα(s), if Fα(u) = F (s), for some s ∈ [τi, τi+1),
ϕα(τi+1), if Fα(u) < F (τi), u ∈ [τi, τi+1).

(A.3.2)

We now have:

ψ2ε,nh(α) =
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

xfnh,α̂n(t− α̂Tnx)

· δ − F̂n,α̂n(t− α̂Tnx)
F̂n,α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

dPn(x, t, δ)

=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
xfnh,α̂n(t− α̂Tnx)− ϕα̂n(t− α̂Tnx)

}
· δ − F̂n,α̂n(t− α̂Tnx)
F̂n,α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

dPn(x, t, δ)

+
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
ϕα̂n(t− α̂Tnx)− ϕ̄n,F̂n,α̂n (t− α̂Tnx)

}
· δ − F̂n,α̂n(t− α̂Tnx)
F̂n,α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

dPn(x, t, δ)

= J + JJ.

Let F be the set of piecewise constant distribution functions with finitely many jumps
(like the MLE F̂n,α̂n), and let K2 be the set of functions

K2 =
{

(x, t, δ) 7→ 1[ε,1−ε](F (t−αTx))
{
ϕα(t−αTx)− ϕ̄α,F (t−αTx)

}
·

δ − F (t−αTx)
)

F (t−αTx){1− F (t−αTx)} : F ∈ F , α ∈ Θ
}
,

where ϕ̄α,F is defined by (A.3.2). We add the function which is identically zero to K2. As
in the proof of Theorem 2.4.1, the functions are uniformly bounded and also of uniformly
bounded variation, using Assumption A4 and Assumption A5. For k1 and k2 in K2, we
define:

d(k1, k2)2 =
∫
‖k1 − k2‖2 dP0, k1, k2 ∈ K2.

For this distance, we therefore get, similarly as before, using Lemma A.1.1:

sup
ζ>0

ζHB (ζ,K2, L2(P0)) = O(1),

which implies: ∫ ζ

0
HB (u,K2, L2(P0))1/2

du = O
(
ζ1/2

)
, ζ > 0.
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Note that the indicator function keeps F (t − αTx) away from zero and one, which is
essential for getting the bounded variation property.
Following the same steps as in the proof of Theorem 2.4.1, we get:

JJ = op

(
n−1/2 + α̂n −α0

)
.

We now write

J =
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
xfnh,α̂n(t− α̂Tnx)− ϕα̂n(t− α̂Tnx)

}
· δ − F̂n,α̂n(t− α̂Tnx)
F̂n,α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

dPn(x, t, δ)

=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
xfnh,α̂n(t− α̂Tnx)− ϕα̂n(t− α̂Tnx)

}
· δ − Fα̂n(t− α̂Tnx)
F̂n,α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

dPn(x, t, δ)

+
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
xfnh,α̂n(t− α̂Tnx)− ϕα̂n(t− α̂Tnx)

}
· Fα̂n(t− α̂Tnx)− F̂n,α̂n(t− α̂Tnx)
F̂α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

dP0(x, t, δ)

+
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
xfnh,α̂n(t− α̂Tnx)− ϕα̂n(t− α̂Tnx)

}
· Fα̂n(t− α̂Tnx)− F̂n,α̂n(t− α̂Tnx)
F̂α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

d(Pn − P0)(x, t, δ)

= Ja + Jb + Jc.

For the term Jb we get:∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
xfnh,α̂n(t− α̂Tnx)− ϕα̂n(t− α̂Tnx)

}
· Fα̂n(t− α̂Tnx)− F̂n,α̂n(t− α̂Tnx)
F̂α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

dP0(x, t, δ)

=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
x− E(X|T − α̂TnX = t− α̂Tnx)

}
fnh,α̂n(t− α̂Tnx)

· Fα̂n(t− α̂Tnx)− F̂n,α̂n(t− α̂Tnx)
F̂α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

dP0(x, t, δ)

+
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
fnh,α̂n(t− α̂Tnx)− fα̂n(t− α̂Tnx)

}
· E(X|T − α̂TnX = t− α̂Tnx) Fα̂n(t− α̂Tnx)− F̂n,α̂n(t− α̂Tnx)

F̂α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}
dP0(x, t, δ)
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=
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
fnh,α̂n(t− α̂Tnx)− fα̂n(t− α̂Tnx)

}
· E(X|T − α̂TnX = t− α̂Tnx) Fα̂n(t− α̂Tnx)− F̂n,α̂n(t− α̂Tnx)

F̂α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}
dP0(x, t, δ)

=
∫
F̂n,α̂n (u)∈[ε,1−ε]

{
fnh,α̂n(u)− fα̂n(u)

}
E(X|T − α̂TnX = u) Fα̂n(u)− F̂n,α̂n(u)

F̂α̂n(u){1− F̂n,α̂nu)}

· fT−α̂TnX(u) du.

Furthermore,∫
F̂n,α̂n (u)∈[ε,1−ε]

{
fnh,α̂n(u)− fα̂n(u)

}
E(X|T − α̂TnX = u)

· Fα̂n(u)− F̂n,α̂n(u)
F̂α̂n(u){1− F̂n,α̂nu)}

fT−α̂TnX(u) du

= h−2
∫
F̂n,α̂n (u)∈[ε,1−ε]

{∫
K ′((u− v)/h)F̂n,α̂n(v) dv − fα̂n(u)

}
· E(X|T − α̂TnX = u) Fα̂n(u)− F̂n,α̂n(u)

F̂α̂n(u){1− F̂n,α̂n(u)}
fT−α̂TnX(u) du

= h−2
∫
F̂n,α̂n (u)∈[ε,1−ε]

{∫
K ′((u− v)/h)

{
F̂n,α̂n(v)− Fα̂n(v)

}
dv

}
· E(X|T − α̂TnX = u) Fα̂n(u)− F̂n,α̂n(u)

F̂α̂n(u){1− F̂n,α̂n(u)}
fT−α̂TnX(u) du

+
∫
F̂n,α̂n (u)∈[ε,1−ε]

{∫
Kh(u− v) dFα̂n(v)− fα̂n(u)

}
E(X|T − α̂TnX = u)

· Fα̂n(u)− F̂n,α̂n(u)
F̂α̂n(u){1− F̂n,α̂n(u)}

fT−α̂TnX(u) du. (A.3.3)

The last term on the right-hand side of the above equation has an upper bound of order
Op(n−2/7−1/3) = Op(n−13/21) = op(n−1/2), since{∫

F̂n,α̂n (u)∈[ε,1−ε]

{∫
Kh(u− v) dFα̂n(v)− fα̂n(u)

}2
du

}1/2

= Op

(
n−2/7

)
,

and {∫
F̂n,α̂n (u)∈[ε,1−ε]

{
F̂n,α̂n(u)− Fα̂n(u)

}2
du

}1/2

= Op

(
n−1/3

)
, (A.3.4)

using Lemma 2.3.1 for the last relation. We also use the Cauchy-Schwarz inequality.
The first term on the right of (A.3.3) is of order Op(n1/7−2/3) = Op(n−11/21) =
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op(n−1/2) by (A.3.4) and using∣∣∣∣∣h−2
∫
F̂n,α̂n (u)∈[ε,1−ε]

[∫
K ′((u− v)/h)

{
F̂n,α̂n(v)− Fα̂n(v)

}
dv

]

·E(X|T − α̂TnX = u) Fα̂n(u)− F̂n,α̂n(u)
F̂α̂n(u){1− F̂n,α̂n(u)}

fT−α̂TnX(u) du

∣∣∣∣∣
= h−1

∣∣∣∣∣
∫
F̂n,α̂n (u)∈[ε,1−ε]

[∫
K ′(w)

{
F̂n,α̂n(u− hw)− Fα̂n(u− hw)

}
dw

]

·E(X|T − α̂TnX = u) Fα̂n(u)− F̂n,α̂n(u)
F̂α̂n(u){1− F̂n,α̂n(u)}

fT−α̂TnX(u) du

∣∣∣∣∣
≤ ch−1

∫
F̂n,α̂n (u)∈[ε/2,1−ε/2]

{
F̂n,α̂n(u)− Fα̂n(u)

}2
du,

for small h and a constant c > 0, where we first use Fubini’s theorem and next the
Cauchy-Schwarz inequality in the last inequality, together with∫

F̂n,α̂n (u)∈[ε,1−ε]

{
F̂n,α̂n(u− hw)− Fα̂n(u− hw)

}2
du

≤
∫
F̂n,α̂n (u)∈[ε/2,1−ε/2]

{
F̂n,α̂n(u)− Fα̂n(u)

}2
du,

for small h > 0, together with w ∈ [−1, 1]. Finally we use Lemma 2.3.1 again. Note that
a bandwidth choice h � n−1/5 corresponds to the order Op(n1/5−2/3) = Op(n−7/15) for
the first term on the right hand side of (A.3.3). Consequently, when the bandwidth is of
order n−1/5, this term is no longer negligible in the proofs and therefore we use a band-
width h � n−1/7 in Theorem 2.4.2. The latter bandwidth choice moreover corresponds
to the classical choice for estimating the density in the current status model (see e.g.
Groeneboom et al., 2010).
For the term Jc we argue similarly as before using Lemma A.0.1 that

Jc = op

(
n−1/2

)
.

Finally,

Ja =
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
xfnh,α̂n(t− α̂Tnx)− ϕα̂n(t− α̂Tnx)

}
· δ − F̂n,α̂n(t− α̂Tnx)
F̂n,α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

d
(
Pn − P0

)
(x, t, δ)

+
∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
xfnh,α̂n(t− α̂Tnx)− ϕα̂n(t− α̂Tnx)

}
· F0(t−αT0 x)− F̂n,α̂n(t− α̂Tnx)
F̂n,α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

dP0(x, t, δ).
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This time we consider the class of functions

K′2 =
{

(x, t, δ) 7→ 1[ε,1−ε](F (t−αTx))
(
xf(t−αTx)− ϕα(t−αTx)

)
· δ − F (t−αTx)
F (t−αTx){1− F (t−αTx)} : F ∈ F , f ∈ F ′, α ∈ Θ

}
,

where F ′ is a class of uniformly bounded functions of uniformly bounded variation (which
have the interpretation of estimates of F ′α), to which we add the function

(x, t, δ) 7→ 1[ε,1−ε](F0(t−αT0 x))
(
xf0(t−αT0 x)− ϕα0(t−αT0 x)

)
· δ − F0(t−αT0 x)
F0(t−αT0 x){1− F0(t−αT0 x)}

.

So we get, using Lemma A.1.1,

sup
ζ>0

ζHB (ζ,K′2, L2(P0)) = O(1),

which implies: ∫ ζ

0
HB (u,K′2, L2(P0))1/2

du = O
(
ζ1/2

)
, ζ > 0.

As before, we now get:∫
F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
xfnh,α̂n(t− α̂Tnx)− ϕα̂n(t− α̂Tnx)

}
· δ − F̂n,α̂n(t− α̂Tnx)
F̂n,α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

d
(
Pn − P0

)
(x, t, δ)

=
∫
F0(t−αT0 x)∈[ε,1−ε]

{
xf0(t−αT0 x)− ϕα0(t−αT0 x)

}
· δ − F0(t−αT0 x)
F0(t−αT0 x){1− F0(t−αT0 x)}

d
(
Pn − P0

)
(x, t, δ)

+ op

(
n−1/2 + α̂n −α0

)
and ∫

F̂n,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
xfnh,α̂n(t− α̂Tnx)− ϕα̂n(t− α̂Tnx)

}
· F0(t−αT0 x)− F̂n,α̂n(t− α̂Tnx)
F̂n,α̂n(t− α̂Tnx){1− F̂n,α̂n(t− α̂Tnx)}

dP0(x, t, δ)

=
{∫

F0(t−αT0 x)∈[ε,1−ε]

{
xf0(t−αT0 x)− ϕα0(t−αT0 x)

}
· f0(t−αT0 x)x′

F0(t−αT0 x){1− F0(t−αT0 x)}
dP0(x, t, δ)

}
(α̂n −α0)

+ op

(
n−1/2 + α̂n −α0

)
.
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The result now follows.

A.4 Asymptotic behavior of the plug-in estimator

In this section we first sketch in Section A.4.1 the proof of consistency of the plug-in
estimator, denoted by α̂n. This is the second result stated in Theorem 2.4.3. The
proof of existence of a root is similar to the proof of existence of a root of the SSE and
omitted. We next prove the asymptotic normality result of the plug-in estimator, which
is the third result given in Theorem 2.4.3. The proof of Theorem 2.4.5 on the asymptotic
representation of the plug-in estimator as a sum of i.i.d. random variables follows from
the proof of 2.4.3. The asymptotic distribution of the estimator of the intercept, given
in Theorem 2.5.1, is proved in Section A.4.2.

Before we start the proofs, we give, in Lemma A.4.1, some auxiliary results on the L2-
distance between the plug-in estimate Fnh,α and Fα and between the partial derivative
of the plug-in estimate ∂αFnh,α and ∂αFα. Next, we follow the arguments used to prove
the asymptotic normality of the SSE and ESE and give a similar proof for the limiting
distribution of the plug-in estimator.

Lemma A.4.1. Let the conditions of Theorem 2.4.3 be satisfied. Then we have, for the
estimate Fnh,α, defined by (2.4.6) that∫

Fnh,α(t−αTx)∈[ε,1−ε]

{
Fnh,α(t−αTx)− Fα(t−αTx)

}2
dG(x, t) (A.4.1)

= Op

(
1
nh

)
+Op

(
h4) ,

∫
Fnh,α(t−αTx)∈[ε,1−ε]

{
∂αFnh,α(t−αTx)− ∂αFα(t−αTx)

}2
dG(x, t) (A.4.2)

= Op

(
1
nh3

)
+Op

(
h2)

uniformly in α ∈ Θ.

proof of Lemma A.4.1. We first prove the first part and show that (A.4.1) holds. Recall
that

Fnh,α(t−αTx) = gnh,1,α(t−αTx)
gnh,α(t−αTx) ,

where

gnh,1,α(t−αTx) =
∫
δKh(t−αTx− u+αTy) dPn(y, u, δ),
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and

gnh,α(t−αTx) =
∫
Kh(t−αTx− u+αTy) dPn(y, u, δ).

Moreover,

Fα(t−αTx) =
∫
F0(t−αT0 x+ (α−α0)T (y − x))fX|T−αTX(y|t−αTx) dy.

We first investigate the bias part:

Egnh,1,α(t−αTx) =
∫
F0(u−αT0 y)Kh(t−αTx− u+αTy) dG(y, u)

=
∫
F0(v + (α−α0)Ty)Kh(t−αTx− v) fT−αTX(v) fX|T−αTX(y|v) dy dv

=
∫
F0(t−αTx+ (α−α0)Ty − hw)K(w)

· fT−αTX(t−αTx− hw) fX|T−αTX(y|t−αTx− hw) dy dw

= fT−αTX(t−αTx)
∫
F0(t−αT0 x+ (α−α0)T (y − x))fX|T−αTX(y|t−αTx) dy

+O
(
h2) ,

uniformly in α ∈ Θ and x, t varying over a bounded set, due to the assumptions of
Theorem 2.4.3. In a similar way, we get

Egnh,α(t−αTx) = fT−αTX(t−αTx) +O
(
h2) ,

uniformly in α ∈ Θ and x, t varying over a bounded set. So we find:

Egnh,1,α(t−αTx)
Egnh,α(t−αTx) = Fα(t−αTx) +O

(
h2) ,

uniformly in α ∈ Θ and x, t varying over a bounded set, such that Egnh,1,α(t − αTx)
stays away from zero. We now get:

Fnh,α(t−αTx)− Fα(t−αTx) = gnh,1,α(t−αTx)− Egnh,1,α(t−αTx)
gnh,α(t−αTx)

+ Egnh,1,α(t−αTx)Egnh,α(t−αTx)− gnh,α(t−αTx)
gnh,α(t−αTx)Egnh,α(t−αTx) +O

(
h2) ,

and{
Fnh,α(t−αTx)− Fα(t−αTx)

}2 ≤ 3
{
gnh,1,α(t−αTx)− Egnh,1,α(t−αTx)

gnh,α(t−αTx)

}2

+ 3
{
Egnh,1,α(t−αTx)Egnh,α(t−αTx)− gnh,α(t−αTx)

gnh,α(t−αTx)Egnh,α(t−αTx)

}2

+O
(
h4) ,

(A.4.3)
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uniformly in α ∈ Θ and x, t varying over a bounded set, such that Egnh,1,α(t − αTx)
stays away from zero.
Since η > 0 is chosen in such a way that a1(β) = F−1

α (ε) > a, b1(β) = F−1
α (1− ε) < b,

for each α ∈ Θ and since gnh,α stays away from zero with probability tending to one if
ε < Fnh,α(t−αTx) < 1− ε we get:∫

Fnh,α(t−αTx)∈[ε,1−ε]

{
gnh,1,α(t−αTx)− Egnh,1,α(t−αTx)

gnh,α(t−αTx)

}2

dG(x, t)

.
∫
Fnh,α(t−αTx)∈[ε,1−ε]

{
gnh,1,α(t−αTx)− Egnh,1,α(t−αTx)

}2
dG(x, t).

Furthermore

E
{
gnh,1,α(t−αTx)− Egnh,1,α(t−αTx)

}2

= E
{∫

δKh(t−αTx− u+αTy) d(Pn − P0)(y, u, δ)
}2

= O

(
1
nh

)
,

uniformly for (x, t) in a bounded region, so we get:

E
∫
Fnh,α(t−αTx)∈[ε,1−ε]

{
gnh,1,α(t−αTx)− Egnh,1,α(t−αTx)

}2
dG(x, t) = O

(
1
nh

)
.

Hence∫
Fnh,α(t−αTx)∈[ε,1−ε]

{
gnh,1,α(t−αTx)− Egnh,1,α(t−αTx)

gnh,α(t−αTx)

}2

dG(x, t) = Op

(
1
nh

)
.

The second term on the right-hand side of (A.4.3) can be treated in a similar way. This
proves (A.4.1).
We next continue with the proof of (A.4.2). We have:

∂αFnh,α(t−αTx) (A.4.4)

=
∫

(y − x){δ − Fnh,α(t−αTx)}K ′h(t−αTx− u+αTy) dPn(y, u, δ)
gnh,α(t−αTx) .

We consider the numerator of (A.4.4). It can be rewritten as∫
(y − x){δ − F0(u−αT0 y)}K ′h(t−αTx− u+αTy) dPn(y, u, δ)

+
∫

(y − x){F0(u−αT0 y)− Fα(t−αTx)}K ′h(t−αTx− u+αTy) dGn(y, u)

+ {Fα(t−αTx)− Fnh,α(t−αTx)}
∫

(y − x)K ′h(t−αTx− u+αTy) dGn(y, u).

The first term can be written as

An(x, t, β) def=
∫

(y − x){δ − F0(u−αT0 y)}K ′h(t−αTx− u+αTy) d
(
Pn − P0

)
(y, u, δ),
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and we have for each component An,j of An, 1 ≤ j ≤ d:

E
∫
Fnh,α(t−αTx)∈[ε,1−ε]

An,j(x, t,α)2 dG(x, t) ≤ E
∫
An,j(x, t,α)2 dG(x, t)

∼ 1
nh3

∫
var(Xj |v)F0(v){1− F0(v)}fT−αTX(v) dv

∫
K ′(u)2 du, n→∞.

In the second term we must compare F0(u−αT0 y) with

Fα(t−αTx) =
∫
F0(t−αT0 x+ (α−α0)T (z − x))fX|T−αTX(z|t−αTx) dz.

We can write:

F0(u−αT0 y)− Fα(t−αTx)

=
∫ {

F0(u−αT0 y)− F0(t−αT0 x+ (α−α0)T (z − x))
}
fX|T−αTX(z|t−αTx) dz.

So we find for the second term:

Bn(x, t,α)
def=
∫

(y − x)
{
F0(u−αT0 y)− Fα(t−αTx)

}
K ′h(t−αTx− u+αTy) dGn(y, u)

=
∫ ∫

(y − x)
{
F0(u−αT0 y)− F0(t−αT0 x+ (α−α0)T (z − x))

}
· fX|T−αTX(z|t−αTx) dzK ′h(t−αTx− u+αTy) dGn(y, u)

=
∫

(y − x)
∫ {

F0(u−αT0 y)− F0(t−αT0 x+ (α−α0)T (z − x))
}

· fX|T−αTX(z|t−αTx) dzK ′h(t−αTx− u+αTy) dG(y, u)

+
∫

(y − x)
∫ {

F0(u−αT0 y)− F0(t−αT0 x+ (α−α0)T (z − x))
}

· fX|T−αTX(z|t−αTx) dzK ′h(t−αTx− u+αTy) d
(
Gn −G

)
(y, u)

= fT−αTX(t−αTx)∂αFα(t−αTx) +O(h) +Op

(
1
nh3

)
.

where, using integration by parts, the last line follows by straightforward calculation. Since

gnh,α(t−αTx) = fT−αTX(t−αTx) +Op(h2),

we get: ∫
Fnh,α(t−αTx)∈[ε,1−ε]

∥∥∥∥ Bn(x, t,α)
gnh,α(t−αTx) − ∂αFα(t−αTx)

∥∥∥∥2
dG(x, t)

= Op

(
1
nh3

)
+Op

(
h2) .
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Finally, defining

Cn(x, t,α)
def= {Fα(t−αTx)− Fnh,α(t−αTx)}

∫
(y − x)K ′h(t−αTx− u+αTy) dGn(y, u),

we get, using,∫
(y − x)K ′h(t−αTx− u+αTy) dGn(y, u)

=
∫

(y − x)K ′h(t−αTx− u+αTy) dG(y, u)

+
∫

(y − x)K ′h(t−αTx− u+αTy) d(Gn −G)(y, u)

=
∫

(y − x)K ′h(t−αTx− v)fT−αTX(v)fX|T−αTX(y|v) dv dy +Op

(
1
nh3

)
=
∫

(y − x)Kh(t−αTx− v) d
dv

{
fT−αTX(v)fX|T−αTX(y|v)

}
dv dy +Op

(
1
nh3

)
= Op(1),

and using the first part of Lemma A.4.1 for the factor Fα(t − αTx) − Fnh,α(t − αTx)
that ∫

Fnh,α(t−αTx)∈[ε,1−ε]
‖Cn(x, t,α)‖2 dG(x, t) = Op

(
1
nh

)
+Op

(
h4) .

This proves (A.4.2).

A.4.1 Consistency and asymptotic normality of the plug-in estima-
tor

We first prove that α̂n is a consistent estimate of α0.

Proof of Theorem 2.4.3, Part 1 (Consistency). We assume that α̂n is contained in the
compact set Θ, and hence the sequence (α̂n) has a subsequence (α̂nk = α̂nk(ω)),
converging to an element α∗. It is easily seen that, if α̂nk = α̂nk(ω) −→ α∗, we get:

Fnkh,α̂nk (t− α̂Tnkx) −→Fα∗(t−αT∗ x)
def=
∫
F0(t−αT∗ x+ (α∗ −α0)Ty)fX|T−αT∗X(y|t−αT∗ x) dy.
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In the limit we get the relation:

lim
k→∞

−(α̂nk −α0)T
∫
Fnkh,α̂nk

(t−α̂Tnkx)∈[ε,1−ε]{
δ − Fnkh,α̂nk (t− α̂Tnkx)

}
∂αFnkh,α(t−αTx)

∣∣
α=α̂nk

Fnk,α̂nk (t− α̂Tnkx){1− Fnk,α̂nk (t− α̂Tnkx)} , dPnk(x, t, δ)

= − (α∗ −α0)T
∫
Fα∗ (t−αT∗ x)∈[ε,1−ε]{

F0(t−αT0 x)− Fα∗(t−αT∗ x)
}
∂αFα(t−αTx)|α=α∗

Fα∗(t−αT∗ x){1− Fα∗(t−αT∗ x)} dG(x, t) = 0,

which can only mean α∗ = α0 by condition (2.4.9).

We next continue with the proof of the asymptotic normality of the plug-in estimator.

Proof of Theorem 2.4.3, Part 2 (Asymptotic Normality). To prove the asymptotic nor-
mality of the plug-in estimator, we follow the reasoning of the corresponding proofs for
the SSE and ESE. We prove that

ψ3ε,nh(α̂n) =
∫
F0(t−αT0 x)∈[ε,1−ε]

{
E(X|T −αT0X = t−αT0 x)− x

}
f0(t−αT0 x)

·
{
δ − F0(t−αT0 x)

}
F0(t−αT0 x){1− F0(t−αT0 x)}

dPn(x, t, δ)

+ ψ′3ε(α0)(α̂n −α0) + op

(
n−1/2 + (α̂n −α0)

)
,

where ψ3ε is defined by

ψ3ε(α) =
∫
Fα(t−αTx)∈[ε,1−ε]

∂αFα(t−αTx)
{
δ − Fα(t−αTx)

}
Fα(t−αTx){1− Fα(t−αTx)} dP0(x, t, δ),

and

ψ′3ε(α0) = −Eε

{
f0(T −αT0X)2 {X − E(X|T −αT0X)

}{
X − E(X|T −αT0X)

}T
F0(T −αT0X){1− F0(T −αT0X)}

}
= −Iε(α0),

which follows by straightforward calculations after noting that

∂αFα(t−αTx)

=
∫

(y − x)f0(t−αT0 x+ (α−α0)T (y − x))fX|T−αTX(y|T −αTX = t−αTx)dy

+
∫
F0(t−αT0 x+ (α−α0)T (y − x))∂αfX|T−αTX(y|T −αTX = t−αTx) dG(x, t),
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which is, at α = α0, equal to

f0(t−αT0 x)E
{
X − x|T −αT0X = t−αT0 x

}
.

We have:

ψ3ε,nh(α̂n) =
∫
Fnh,α̂n (t−α̂Tnx)∈[ε,1−ε]

∂αFnh,α(t−αTx) |α=α̂n

· δ − Fnh,α̂n(t− α̂Tnx)
Fnh,α̂n(t− α̂Tnx){1− Fnh,α̂n(t− α̂Tnx)} dPn(x, t, δ)

=
∫
Fnh,α̂n (t−α̂Tnx)∈[ε,1−ε]

∂αFα(t−αTx) |α=α̂n

· δ − Fnh,α̂n(t− α̂Tnx)
Fnh,α̂n(t− α̂Tnx){1− Fnh,α̂n(t− α̂Tnx)} dPn(x, t, δ)

+
∫
Fnh,α̂n (t−α̂Tnx)∈[ε,1−ε]

{
∂αFnh,α(t−αTx) |α=α̂n −∂αFα(t−αTx) |α=α̂n

}
· δ − Fnh,α̂n(t− α̂Tnx)
Fnh,α̂n(t− α̂Tnx){1− Fnh,α̂n(t− α̂Tnx)} dPn(x, t, δ)

= L+ LL.

Let F be a class of functions with the property that∫
ε/2<Fα(u)<1−ε/2

f ′(u)2 du ≤M.

if f ∈ F , for a fixed M > 0. Using Proposition 5.1.9, p. 393 in Giné and Nickl (2015),
with m = 1, p = 2 and h � n−1/5, we may assume that the functions u→ Fnh,α(u) and
u→ ∂αFnh,α(u) belong to F . Since the plug-in estimates are monotonically increasing
with probability tending to one we get that the function

(x, t) 7→ 1[ε,1−ε]
(
Fnh,α(t−αTx)

)
,

can be written in the form

(x, t) 7→1[aε,Fnh,α ,bε,Fnh,α ](t−α
Tx)

= 1[aε,Fnh,α ,∞)(t−αTx)− 1(bε,Fnh,α ,∞)(t−αTx),

for aε,Fnh,α ≤ bε,Fnh,α for large n, with probability tending to one. The function is there-
fore of uniformly bounded variation for n sufficiently large (see also the proofs of Theorems
2.4.1 and 2.4.2). It now follows that the bracketing ζ−entropy HB(ζ,K3, L2(P0)) for the
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class K3 of functions consisting of the function which is identically zero and the functions

K3 =
{

(x, t, δ) 7→
{
∂αFnh,α(t−αTx)− ∂αFα(t−αTx)

}
· δ − F (t−αTx)
F (t−αTx){1− F (t−αTx)}1[ε,1−ε](Fnh,α(t−αTx)) : F ∈ F , α ∈ Θ

}
,

w.r.t. the L2-distance satisfies:

sup
ζ>0

ζHB (ζ,K3, L2(P0)) = O(1),

which implies: ∫ ζ

0
HB (u,K3, L2(P0))1/2

du = O
(
ζ1/2

)
, ζ > 0.

Moreover, by Lemma A.4.1 we also have:∫
Fnh,α(t−αTx)∈[ε,1−ε]

{{
∂αFnh,α(t−αTx)− ∂αFα(t−αTx)

}
· δ − Fnh,α(t−αTx)
Fnh,α(t−αTx){1− Fnh,α(t−αTx)}

}2

dP0(x, t, δ) p→ 0.

This implies, by an application of Lemma A.0.1, that∫
Fnh,α̂n (t−α̂Tnx)∈[ε,1−ε]

{{
∂αFnh,α(t−αTx) |α=α̂n −∂αFα(t−αTx) |α=α̂n

}
· δ − Fnh,α̂n(t− α̂Tnx)
Fnh,α̂nb(t− α̂Tnx){1− Fnh,α̂n(t− α̂Tnx)}

}
d(Pn − P0)(x, t, δ)

= op

(
n−1/2

)
.

Furthermore, an application of the Cauchy-Schwarz inequality and Lemma A.4.1 yield
that
√
n

∫
Fnh,α̂n (t−βx)∈[ε,1−ε]

{
∂αFα(t−αTx) |α=α̂n −∂αFnh,α(t−αTx) |α=α̂n

}
·
{

F0(t−αT0 x)− Fnh,α̂n(t− α̂Tnx)
Fnh,α̂n(t− α̂Tnx){1− Fnh,α̂n(t− α̂Tnx)}

}
dP0(x, t, δ)

= Op

(
n−1/10

)
+ op

(√
n(α̂n −α0)

)
.

We conclude that
LL = op

(
n−1/2 + (α̂n −α0)

)
.
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We now write:

L =
∫
Fnh,α̂n (t−α̂Tnx)∈[ε,1−ε]

∂αFα(t−αTx) |α=α̂n

· δ − Fnh,α̂n(t− α̂Tnx)
Fnh,α̂n(t− α̂Tnx){1− Fnh,α̂n(t− α̂Tnx)} dPn(x, t, δ)

=
∫
Fnh,α̂n (t−α̂Tnx)∈[ε,1−ε]

∂αFα(t−αTx) |α=α̂n

· δ − Fα̂n(t− α̂Tnx)
Fn,α̂n(t− α̂Tnx){1− Fn,α̂n(t− α̂Tnx)} dPn(x, t, δ)

+
∫
Fnh,α̂n (t−α̂Tnx)∈[ε,1−ε]

∂αFα(t−αTx) |α=α̂n

· Fα̂n(t− α̂Tnx)− Fn,α̂n(t− α̂Tnx)
F̂α̂n(t− α̂Tnx){1− Fn,α̂n(t− α̂Tnx)}

dPn(x, t, δ)

= La + Lb.

We now get, using Lemma A.4.1 and

∂αFα(t−αTx) |α=α̂n= E(X − x|T − α̂TnX = t− α̂Tnx)f0(t− α̂Tnx) +Op (α̂n −α0) ,

that
Lb = op

(
n−1/2 + α̂n −α0

)
.

The result of Theorem 2.4.3 now follows by showing that∫
Fnh,α̂n (t−α̂Tnx)∈[ε,1−ε]

∂αFα(t−αTx) |α=α̂n

· δ − Fα̂n(t− α̂Tnx)
Fnh,α̂n(t− α̂Tnx){1− Fnh,α̂n(t− α̂Tnx)} d(Pn − P0)(x, t, δ)

=
∫
F0(t−αT0 x)∈[ε,1−ε]

∂αFα(t−αTx) |α=α0

· δ − F0(t−αT0 x)
F0(t−αT0 x){1− F0(t−αT0 x)}

d(Pn − P0)(x, t, δ)

+ op

(
n−1/2 + α̂n −α0

)
, (A.4.5)

and, ∫
Fnh,α̂n (t−α̂Tnx)∈[ε,1−ε]

∂αFα(t−αTx) |α=α̂n

· δ − Fα̂n(t− α̂Tnx)
Fnh,α̂n(t− α̂Tnx){1− Fnh,α̂n(t− α̂Tnx)} dP0(x, t, δ)

= ψ′3ε(α0)(α̂n −α0) + op

(
n−1/2 + α̂n −α0

)
. (A.4.6)
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The proof of (A.4.5) and (A.4.6) is similar to the proof of the corresponding steps given
in the proof of Theorem 2.4.1 and omitted.

Remark A.4.1. It follows from the proof of Theorem 2.4.3 that
√
nIε(α0)(α̂n −α0)

= n−1/2
n∑
i=1

f0(Ti −αT0Xi){E(Xi|Ti −αT0Xi)−Xi}

· ∆i − F0(Ti −αT0Xi)
F0(Ti −αT0Xi){1− F0(Ti −αT0Xi)}

1[ε,1−ε]
{
F0(Ti −αT0Xi)

}
+ op(1).

Therefore the result of Theorem 2.4.5 follows.

A.4.2 Estimation of the intercept

Proof of Theorem 2.5.1. We have

µ̂n − µ0 =
∫
u dFnh,α̂n(u)−

∫
u dF0(u) =

∫ {
F0(u)− Fnh,α̂n(u)

}
du

=
∫
F0(t− α̂Tnx)− Fnh,α̂n(t− α̂Tnx)

fT−α̂TnX(t− α̂Tnx) dG(x, t)

=
∫
F0(t− α̂Tnx)− F0(t−αT0 x)

fT−α̂TnX(t− α̂Tnx) dG(x, t)

+
∫
F0(t−αT0 x)− Fnh,α̂n(t− α̂Tnx)

fT−α̂TnX(t− α̂Tnx) dG(x, t). (A.4.7)

For the first term in the last expression we get:∫
F0(t− α̂Tnx)− F0(t−αT0 x)

fT−α̂TnX(t− α̂Tnx) dG(x, t)

=
∫ {

F0(u)− F0(u+ (α̂n −α0)Tx)}fX|T−α̂TnX(x|T − α̂TnX = u) du dx

∼ −
∫

(α̂n −α0)Txf0(u)fX|T−αT0 X(x|T −αT0X = u) du dx

∼ −(α̂n −α0)T
{∫

E{X|T −αT0X = u}f0(u) du
}
.

This term, multiplied with
√
n, is asymptotically normal, with expectation zero and vari-

ance

σ2
1
def= a(α0)T Iε(α0)−1 a(α0),

where a(α0) is the d-dimensional vector, defined by

a(α0) =
∫

E{X|T −αT0X = u}f0(u) du.
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For the second term in (A.4.7), we first note that

Fnh,α̂n(t− α̂Tnx)− F0(t−αT0 x) (A.4.8)

=
∫
{δ − F0(t−αT0 x)}Kh(t− α̂Tnx− u+ α̂Tny) dPn(y, u, δ)

gnh,α̂n(t− α̂Tnx) .

We write (A.4.8) as the sum of the integral over dP0 and the integral over d(Pn−P0) and
show that the contribution of the dP0 integral, evaluated in (A.4.7) is negligible and that
the contribution of the d(Pn − P0) integral will yield an asymptotic normal distribution.
We have:∫
{δ − F0(t−αT0 x)}Kh(t− α̂Tnx− u+ α̂Tny) dP0(y, u, δ)

=
∫
{F0(u−αT0 y)− F0(t−αT0 x)}Kh(t− α̂Tnx− u+ α̂Tny) dG(y, u)

=
∫
{F0(v + (α̂n −α0)y)− F0(t−αT0 x)}}Kh(t− α̂Tnx− v)

· fT−α̂TnX(v)fX|T−α̂TnX(y|T − α̂TnX = v) dv dy

= fT−α̂TnX(t− α̂Tnx)
∫
{F0(t− α̂Tnx+ (α̂n −α0)y)− F0(t−αT0 x)}

· fX|T−α̂TnX(y|T − α̂TnX = t− α̂Tnx) dy +Op
(
h2)

= fT−α̂TnX(t− α̂Tnx)f0(t−αT0 x)
(
α̂n −α0

)TE{X − x|T − α̂TnX = t− α̂Tnx}

+Op
(
h2)+ op

(
‖α̂n −α0‖

)
,

where ‖x‖ is the euclidean norm of the vector x. Hence we get∫ ∫
{δ − F0(t−αT0 x)}Kh(t− α̂Tnx− u+ α̂Tny) dP0(y, u, δ)

gnh,α̂n(t− α̂Tnx)fT−α̂TnX(t− α̂Tnx) dG(x, t)

= (α̂n −α0)T
∫
f0(t−αT0 x)E{X − x|T −αT0X = t−αT0 x}

gnh(t− α̂Tnx) dG(x, t)

+Op
(
h2)+ op(α̂n −α0)

= (α̂n −α0)T
∫
f0(v)E{X − x|T −αT0X = v}fX|T−αT0 X(x|T −αT0X = v) dx dv

+Op
(
h2)+ op

(
‖α̂n −α0‖

)
= Op

(
h2)+ op

(
‖α̂n −α0‖

)
,

which is op(n−1/2) if h � n−1/4. Therefore, we use a bandwidth h � n−1/3 instead
of h � n−1/5 in Theorem 2.5.1 to estimate the plug-in estimate Fnh,α̂n of F0. Since
‖α̂n − α0‖ = Op(n−1/2) by Theorem 2.4.3, we do not need to change the order of the
bandwidth (h � n−1/5) for estimating α0 in the estimation of the intercept.
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Finally,

√
n

∫ (∫ {δ − F0(t−αT0 x)}Kh(t− α̂Tnx− u+ α̂Tny) d
(
Pn − P0

)
(y, u, δ)

gnh,α̂n(t− α̂Tnx)fT−α̂TnX(t− α̂Tnx)

)
dG(x, t)

=
√
n

∫ (∫
{δ − F0(t−αT0 x)}Kh(t− α̂Tnx− u+ α̂Tny)

gnh,α̂n(t− α̂Tnx)fT−α̂TnX(t− α̂Tnx) dG(x, t)
)
d
(
Pn − P0

)
(y, u, δ)

=
√
n

∫
{δ − F0(u−αT0 y)}
fT−αT0 X(u−αT0 y)

d
(
Pn − P0

)
(y, u, δ) +Op

(
h2)+Op

(
‖α̂n −α0‖

)
,

is asymptotically normal, with expectation zero and variance:

∫
F0(v){1− F0(v)}
fT−αT0 X(v) dv,

if h� n−1/4.

Both terms in the representation on the right of (A.4.7) are, apart from a negligible
contribution, sums of independent variables with expectation zero. By Theorem 2.4.5 we
have

√
n(α̂n −α0) = n−1/2Iε(α0)−1

n∑
i=1

f0(Ti −α0Xi){E(Xi|Ti −αT0Xi)−Xi}

· ∆i − F0(Ti −αT0Xi)
F0(Ti −αT0Xi){1− F0(Ti −αT0Xi)}

1[ε,1−ε]
{
F0(Ti −αT0Xi)

}
+ op(1).

and the second term of (A.4.7) has the representation:

n−1/2
n∑
i=1

∆i − F0(Ti −αT0Xi)
fT−αT0 X(Ti −αT0Xi)

.

By the independence of the summands with indices i 6= j, the only contribution to the
covariance of the two terms in the representation can come from summands with the
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same index. But,

E

{
f0(Ti −αT0Xi){E(Xi|Ti −αT0Xi)−Xi}{∆i − F0(Ti −αT0Xi)}2

F0(Ti −αT0Xi){1− F0(Ti −αT0Xi)}fT−αT0 X(Ti −αT0Xi)

· 1[ε,1−ε]{F0(Ti −αT0Xi)}
}

=
∫
F0(u−αT0 y)∈[ε,1−ε]

f0(u−αT0 y){E(X|T −αT0X = u−αT0 y)− y}

· {δ − F0(u−αT0 y)}2

F0(u−αT0 y){1− F0(u−αT0 y)}fT−αT0 X(u−αT0 y)
dP0(y, u, δ)

=
∫∫

F0(v)∈[ε,1−ε]
f0(v){E(X|T −αT0X = v)− y}

· F0(v){1− F0(v)}
F0(v){1− F0(v)}fX|T−αT0 X(y|v)dvdy

=
∫
F0(v)∈[ε,1−ε]

(∫
{E(X|T −αT0X = v)− y}fX|T−αT0 X(y|v)dy

)
f0(v)F0(v){1− F0(v)}
F0(v){1− F0(v)} dv

= 0.

So the covariance is zero and Theorem 2.5.1 follows.
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Bootstrap procedures under
current status data - Appendix

We give the proofs of Lemma 3.2.1 and Lemma 3.3.1 stated in Section 3.2 and Section
3.3 respectively. In Section B.1 we first proof Lemma 3.2.1 and derive the asymptotic
normality result of the bootstrapped SMLE (3.2.2). The proof of Lemma 3.2.2 is given
next. The behavior of the nonparametric bootstrap is given in Section B.2, where we
also illustrate how the validity of the nonparametric bootstrap for generating the limiting
distribution of the bootstrapped SMLE and the bootstrapped SSE is derived.

B.1 The smooth bootstrap

We introduce the notation
Xn = OP̃ (an),

to denote that for all ε > 0 and almost all sequences (T1,∆1), (T2,∆2), . . . , there exists
a positive constant K > 0 such that

P̃n
{
a−1
n |Xn| ≥ K

}
< ε,

for all large n, where P̃n is the conditional probability measure of the (Ti,∆∗i ), given
(T1,∆1), . . . , (Tn,∆n). As a consequence of Lemma 3.2.1 we therefore get by an appli-
cation of Markov’s inequality that∫ t+h

t−h

{
F̂ ∗n(x)− F̃nh(x)

}2
dx = OP̃

(
hn−2/3

)
. (B.1.1)

183
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Recall that we denote the empirical measure of (T1,∆∗1), . . . , (Tn,∆∗n) by P̃n. In the
proof of Lemma 3.2.1 we use the following (Dvoretsky-Kiefer-Wolfowitz-type) inequality
from Banerjee et al. (2017).

Lemma B.1.1 (Lemma 8.1 of Banerjee et al. (2017)). Let F be a distribution function
on R with a density f supported on [0, 1] and bounded away from zero on [0, 1]. Let Fn
be the empirical distribution function associated with a sample of n observations from F

and let F−1
n be the corresponding empirical quantile function. With c a lower bound for

f , we then have

P

(
sup
t∈[0,1]

|F−1
n (t)− F−1(t)| > x

)
≤ 4 exp(−2nc2x2),

for all n and x > 0.

B.1.1 Proof of Lemma 3.2.1

Just as in the proof of the corresponding Theorem 11.3 in Groeneboom and Jongbloed
(2014), Doob’s inequality and exponential centering play an important role in the proof.
Moreover, we prove the equivalent statement

P̃n
{∣∣Ũn(a)− Ũ0(a)

∣∣ > x
}
≤ c1 exp

{
−c2nx3} , (B.1.2)

almost surely, for all large n, and constants c1, c2 > 0 and all x ∈ (n−1/3,M ]. To see
that this is equivalent, first note that

P̃n

{
n1/3∣∣Ũn(a)− Ũ0(a)

∣∣ > x
}

= P̃n

{∣∣Ũn(a)− Ũ0(a)
∣∣ > n−1/3x

}
,

so, if (B.1.2) holds, we get that

P̃n

{
n1/3∣∣Ũn(a)− Ũ0(a)

∣∣ > x
}
≤ c1 exp

{
−c2x3} ,

for all x > 0. Next note that for x ∈ [0, n−1/3]

c1 exp
{
−c2nx3} ≥ c1 exp {−c2} ≥ 1,

if c1 ≥ ec2 . So we can always adapt the constants in such a way that the inequality is
satisfied for x ∈ [0, n−1/3]. Furthermore, for x ∈ [1,M ], we can write:

c1 exp
{
−c2nx2} ≤ c1 exp

{
−(c2/M)nx3} .

So for x ∈ [1,M ], we only need an inequality with x2 in the exponent on the right-hand
side, and can use Lemma B.1.1 to our advantage (see below). Finally, for x > M , the
probability on the left-hand side of (B.1.2) is zero.
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Let Λ∗n : [0, 1]→ [0, 1] be defined by Λ∗n(0) = 0, and

Λ∗n(i/n) = n−1
∑
j≤i

∆∗j , 1 ≤ i ≤ n,

and by linear interpolation at other points of [0, 1]. Furthermore, let λ∗n be the left-
continuous slope of the greatest convex minorant of Λ∗n. Then:

F̂ ∗n(Ti) = λ∗n(i/n) = λ∗n(Gn(Ti)),

where Gn is the empirical distribution function of the observations T1, . . . , Tn and F̂ ∗n is
the MLE in the bootstrap sample.
We define analogously λ̃n = F̃nh ◦G−1, and

Λ̃n(t) =
∫ t

0
λ̃n(u) du =

∫ t

0
F̃nh

(
G−1(u)

)
du, t ∈ [0, 1].

Moreover, we define

Wn = λ̃−1
n . (B.1.3)

With these definitions we have that

Ũ0 = G−1 ◦ λ̃−1
n = G−1 ◦Wn. (B.1.4)

By the model assumptions at the beginning of Section 3.1 for F0 and G, and the almost
sure convergence of F̃nh and its derivative to F0 and f0, respectively, uniformly on [0,M ]
(using the suggested boundary correction near 0 and M), we may assume that there is a
constant c > 0 such that λ̃′n(t) ≥ c for all t ∈ [0, 1] and all large n, and that therefore,
using a Taylor expansion, we get:

Λ̃n(t)− Λ̃n(Wn(a)) ≥
(
t−Wn(a)

)
a+ 1

2c
(
t−Wn(a)

)2
, (B.1.5)

for all t, a ∈ [0, 1].
We similarly define

W ∗n(a) = argminu∈[0,1]{Λ∗n(u)− au},

where argmin denotes the smallest location of the minimum. Note that, analogously to
(B.1.4), we have for Ũn as defined by (3.1.2) that

Ũn = G−1
n ◦W ∗n . (B.1.6)

By the transition of Ũ0 and Ũn to Wn and W ∗n , respectively, the range of Ũ0 and Ũn is
changed from [0,M ] to [0, 1]. We now prove:

P̃n
{∣∣W ∗n(a)−Wn(a)

∣∣ > x
}
≤ c1 exp

{
−c2nx3} , (B.1.7)
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almost surely, for all large n, and constants c1, c2 > 0 and all x ∈ (n−1/3, 1]. Note that
the probability on the left-hand side of (B.1.7) is zero if x > 1.
Define:

ε∗i = ∆∗i − F̃nh(Ti), 1 ≤ i ≤ n.

Then, we get that

Λ∗n(i/n) = n−1
∑
j≤i

ε∗j + n−1
∑
j≤i

F̃nh
(
G−1
n (j/n)

)
= n−1

∑
j≤i

ε∗j +
∫ i/n

0
F̃nh

(
G−1
n (u)

)
du, 1 ≤ i ≤ n,

using the piecewise constancy of G−1
n . This gives:

P̃n
{∣∣W ∗n(a)−Wn(a)

∣∣ > x
}

≤ P̃n
{

min
i: |Wn(a)−i/n|>x

{Λ∗n(i/n)− a i/n} ≤ Λ∗n(Wn(a))− aWn(a)
}

≤ P̃n
{

min
i: |Wn(a)−i/n|>x

{
D∗n(i/n)−D∗n (Wn(a)) + 1

2c
(
in−1 −Wn(a)

)2} ≤ 0
}
,

where D∗n is defined by D∗n = Λ∗n− Λ̃n and where we use (B.1.5) in the last step. Define:

B∗n(t) = D∗n(t)−
∫ t

0

{
F̃nh

(
G−1
n (u)

)
− F̃nh

(
G−1(u)

)}
du.

Then we get that

B∗n(i/n) = n−1
∑
j≤i

ε∗i .

Moreover, the event {
∣∣W ∗n(a)−Wn(a)

∣∣ > x} is contained in the union of the events

En1 ={
sup

u: |Wn(a)−u|>x

{∫ u

Wn(a)

{
F̃nh

(
G−1(t)

)
− F̃nh

(
G−1
n (t)

)}
dt− c

4(u−Wn(a))2

}
≥ 0
}

and

En2 =
{

sup
i: |Wn(a)−i/n|>x

{B∗n(Wn(a))−B∗n(i/n)− c

4(in−1 −Wn(a))2} ≥ 0
}
.

We have, by the mean value theorem and the bounded differentiability of F̃nh,∣∣∣∣∣
∫ u

Wn(a)

{
F̃nh

(
G−1(t)

)
− F̃nh

(
G−1
n (t)

)}
dt

∣∣∣∣∣
≤ c′

∣∣u−Wn(a)
∣∣ sup
t∈[0,1]

∣∣G−1
n (t)−G−1(t)

∣∣,
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for a constant c′ > 0. Hence we get from Lemma B.1.1 in the original space that

Pn(En1) ≤ Pn

{
sup
t∈[0,1]

∣∣G−1
n (t)−G−1(t)

∣∣ ≥ cx

4c′

}
≤ 4 exp

{
−Knc2x2}

≤ 4 exp
{
−Kc2n1/3

}
, (B.1.8)

for some K > 0 and x ∈ (n−1/3,M ]. This means that we may assume that, almost
surely, the complement of En1 is satisfied for all large n and all x ∈ (n−1/3, 1]. So we
now turn to P̃n(En2). We have that

P̃n(En2)

≤
∑
k≥1

P̃n

(
sup

i: |Wn(a)−i/n|∈(kx,(k+1)x]

{
B∗n (Wn(a))−B∗n(i/n)− c

4 (i/n−Wn(a))2
}
≥ 0
)

≤
∑
k≥1

P̃n

(
sup

i: |Wn(a)−i/n|≤(k+1)x
{B∗n (Wn(a))−B∗n(i/n)} ≥ c

4k
2x2

)
.

Using the piecewise linearity of B∗n, we get that

B∗n (Wn(a)) = B∗n

(
bnWn(a)c

n

)
+
(
Wn(a)− bnWn(a)c

n

)
ε∗bnWn(a)c+1,

where bnWn(a)c denotes the integer part (“floor”) of nWn(a). Hence,

P̃n(En2) ≤
∑
k≥1

P̃n

((
Wn(a)− bnWn(a)c

n

)
ε∗bnWn(a)c+1 ≥

c

8k
2x2
)

+
∑
k≥1

P̃n

 sup
i: |Wn(a)−i/n|≤(k+1)x

 ∑
j≤nWn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8 k2x2

 . (B.1.9)

The Markov inequality implies that for all θ > 0, k ≥ 1, a ∈ [0, 1] and x ∈ (n−1/3, 1],

P̃n

{(
Wn(a)− bnWn(a)c

n

)
ε∗bnWn(a)c+1 ≥

c

8k
2x2
}

≤ exp
{
−θc8 k

2x2
}
Ẽn exp

{
θ

(
Wn(a)− bnWn(a)c

n

)
ε∗bnWn(a)c+1

}
,

where Ẽn denotes the expectation under P̃n. Since ε∗i ∈ [−1, 1] for all i, we have
exp(αε∗i ) ≤ K exp(α2) for all α ∈ R and K ≥ exp(1) and therefore, with θ =
ck2x2n2/16, we obtain

P̃n

((
Wn(a)− bnWn(a)c

n

)
ε∗bnWn(a)c+1 ≥

c

8k
2x2
)
≤ K exp

(
−θc8 k

2x2 + θ2

n2

)
≤ K exp

(
−c

2k4x4n2

256

)
.
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Using that k4 ≥ k for all k ≥ 1 and nx ≥ 1 for all x ∈ (n−1/3, 1), we conclude that for
all a ∈ [0, 1] and x ∈ (n−1/3, 1)

∑
k≥1

P̃n

((
Wn(a)− bnWn(a)c

n

)
ε∗bnWn(a)c+1 ≥

c

8k
2x2
)

≤ K
∑
k≥1

exp
(
−c

2kx3n

256

)
≤ K exp

(
−c

2x3n

256

)∑
k≥0

exp
(
−c

2kx3n

256

)
≤ K ′ exp(−K2nx

3), (B.1.10)

with any finite K ′ that satisfies K ′ ≥ K
∑
k≥0 exp

(
−c2k/256

)
and K2 ≤ c2/256. This

takes care of the first term on the right of (B.1.9).

We now consider the second term on the right of (B.1.9). Just as in the proof of Theorem
11.3 in Groeneboom and Jongbloed (2014), we use Doob’s submartingale inequality, this
time conditionally on (T1,∆1), . . . , (Tn,∆n). This gives

P̃n

 sup
i: |Wn(a)−i/n|≤(k+1)x

 ∑
j≤nWn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8 k2x2


≤ 2 exp

(
−θnc8 k2x2

)
sup

i: |Wn(a)−i/n|≤(k+1)x
Ẽn

exp

θ
 ∑
j≤nWn(a)

ε∗j −
∑
j≤i

ε∗j

 .
(B.1.11)

Suppose i/n < Wn(a). Then we get that

log Ẽn

exp

θ
 ∑
j≤nWn(a)

ε∗j −
∑
j≤i

ε∗j

 = log Ẽn

exp

θ
 ∑
i<j≤nWn(a)

ε∗j


=

∑
i<j≤nWn(a)

log
{

exp
{
θ{1− F̃nh(Tj)}

}
F̃nh(Tj) + exp

{
−θF̃nh(Tj)

}
{1− F̃nh(Tj)}

}
= n

∫ Wn(a)

i/n

log
{

exp
{
θ{1− F̃nh(G−1

n (t))}
}
F̃nh(G−1

n (t))

+ exp
{
−θF̃nh(G−1

n (t))}
}{

1− F̃nh(G−1
n (t))

}}
dt.
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Since log(1 + x) ≤ x, this is bounded above by

n

∫ Wn(a)

i/n

{
exp

{
θ{1− F̃nh(G−1

n (t))}
}
F̃nh(G−1

n (t))

+ exp
{
−θF̃nh(G−1

n (t))}
}{

1− F̃nh(G−1
n (t))

}
− 1
}
dt

≤ n
∫ Wn(a)

Wn(a)−(k+1)x

{
exp

{
θ{1− F̃nh(G−1

n (t))}
}
F̃nh(G−1

n (t))

+ exp
{
−θF̃nh(G−1

n (t))}
}{

1− F̃nh(G−1
n (t))

}
− 1
}
dt,

= n

∫ Wn(a)

Wn(a)−(k+1)x

{ ∞∑
i=2

θi

i! {1− F̃nh(G−1
n (t))}iF̃nh(G−1

n (t))

+
∞∑
i=2

θi

i! (−1)iF̃nh(G−1
n (t))i

{
1− F̃nh(G−1

n (t))
}}

dt,

= n

∞∑
i=2

θi

i!

∫ Wn(a)

Wn(a)−(k+1)x

{
{1− F̃nh(G−1

n (t))}iF̃nh(G−1
n (t))

+ (−1)iF̃nh(G−1
n (t))i

{
1− F̃nh(G−1

n (t))
}}

dt,

if i/n < Wn(a) and |Wn(a)− i/n| ≤ (k + 1)x. Since Wn(a) ∈ [0, 1], the integrand,

{1− F̃nh(G−1
n (t))}iF̃nh(G−1

n (t)) + (−1)iF̃nh(G−1
n (t))i

{
1− F̃nh(G−1

n (t))
}
,

is bounded by 1/2, we get,

P̃n

 sup
i: |Wn(a)−i/n|≤(k+1)x

 ∑
j≤nWn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8 k2x2


≤ 2 exp

(
−θnc8 k2x2

)
sup

i: |Wn(a)−i/n|≤(k+1)x
Ẽn

exp

θ
 ∑
j≤nWn(a)

ε∗j −
∑
j≤i

ε∗j


≤ 2 exp

(
−θnck

2x2

8 + n(k + 1)x
2

∞∑
i=2

θi

i!

)
,

for all x ∈ (n−1/3, 1), k ≥ 1, a ∈ [0, 1] and θ > 0. Therefore, with θ = log(1 + ck2x
4(k+1) ),
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we arrive at,

P̃n

 sup
i: |Wn(a)−i/n|≤(k+1)x

 ∑
j≤nWn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8 k2x2


≤ 2 exp

(
n(k + 1)x

2

{
ck2x

4(k + 1) −
(

1 + ck2x

4(k + 1)

)
log
(

1 + ck2x

4(k + 1)

)})
.

Following Pollard (1984), in his discussion of Bennett’s inequality on p. 192, we introduce
the function B, defined by B(0) = 1/2 and

B(u) = u−2{(1 + u) log(1 + u)− u}.

Making the change of variables uk = ck2x/(4(k + 1)), we can write

P̃n

 sup
i: |Wn(a)−i/n|≤(k+1)x

 ∑
j≤nWn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8 k2x2


≤ 2 exp

(
− nc2k4x3

32(k + 1)B(uk)
)
.

Since uk varies over a finite interval [0,M ′] and therefore B(uk) stays away from zero on
[0,M ′], we find that

∑
k≥1

P̃n

 sup
i: |Wn(a)−i/n|≤(k+1)x

 ∑
j≤nWn(a)

ε∗j −
∑
j≤i

ε∗j

 ≥ nc

8 k2x2


≤ K1

∑
k≥1

exp
(
− nc2k4x3

32(k + 1)

)
≤ K1 exp

(
−nc

2x3

64

)∑
k≥0

exp
(
− c2k4

32(k + 1)

)
≤ K2 exp

(
−K3nx

3) .
for appropriate K1,K2 and K3. Combining this with (B.1.8) and (B.1.10), it follows that

P̃n
{∣∣W ∗n(a)−Wn(a)

∣∣ > x
}
≤ c1 exp{−nc2x3),

for all large n, almost surely along (T1,∆1), . . . for constants c1, c2 > 0 and x ∈ (n−1/3, 1].
We now prove that (B.1.2) also follows by considering the transition of Wn and W ∗n to
Ũ0 and Ũn. By (B.1.4) and (B.1.6) we get that

Ũn(a)− Ũ0(a) = G−1
n ◦W ∗n(a)−G−1 ◦Wn(a),

and hence∣∣Ũn(a)− Ũ0(a)
∣∣ ≤ sup

t∈[0,1]

∣∣G−1
n (t)−G−1(t)

∣∣+ k1
∣∣W ∗n(a)−Wn(a)

∣∣,
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where

k1 = 1/ inf
x∈[0,M ]

g(x).

From Lemma B.1.1 we get in the original space that

Pn

{
sup
t∈[0,1]

∣∣G−1
n (t)−G−1(t)

∣∣ ≥ x/2} ≤ 4 exp
{
−Kn1/3

}
,

for some K > 0 and x ∈ (n−1/3,M ]. So we may assume that, almost surely,
∣∣G−1

n (t)−
G−1(t)

∣∣ < x/2, for all large n and all x ∈ (n−1/3, 1]. By the foregoing proof, we also
have that

P̃n
{
k1
∣∣W ∗n(a)−Wn(a)

∣∣ ≥ x/2} ≤ c1 exp
{
−c2nx3/

(
8k3

1
)}
.

This proves the result.

B.1.2 Asymptotic normality of the bootstrapped SMLE

In this section, we prove (3.2.2). Define the functions

ψt,h(u) = Kh(t− u)
g(u) , (B.1.12)

and

ψ̄∗t,h(u) =


ψt,h(τi), if F̃nh(u) > F̂ ∗n(τi), u ∈ [τi, τi+1),
ψt,hs), if F̃nh(u) = F̂ ∗n(s), for some s ∈ [τi, τi+1),
ψt,h(τi+1), if F̃nh(u) < F̂ ∗n(τi), u ∈ [τi, τi+1),

where the τi are the points of jump of F̂ ∗n . By the convex minorant interpretation of F̂ ∗n
we have that ∫

ψ̄∗t,h(u)
{
δ∗ − F̂ ∗n(u)

}
dP̃n(u, δ∗) = 0.

This implies that

0 =
∫
ψ̄∗t,h(u)

{
δ∗ − F̂ ∗n(u)

}
dP̃n(u, δ∗)

=
∫
ψt,h(u)

{
δ∗ − F̂ ∗n(u)

}
dP̃n(u, δ∗) +

∫ {
ψ̄∗t,h(u)− ψt,h(u)

}{
δ∗ − F̂ ∗n(u)

}
dP̃n(u, δ∗)

=
∫
ψt,h(u)

{
δ∗ − F̃ ∗nh(u)

}
d(P̃n − P̃n)(u, δ∗)

+
∫
ψt,h(u)

{
F̃ ∗nh(u)− F̂ ∗n(u)

}
dP̃n(u, δ∗)

+
∫ {

ψ̄∗t,h(u)− ψt,h(u)
}{

δ∗ − F̂ ∗n(u)
}
dP̃n(u, δ∗),
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where we write d(P̃n − P̃n) instead of dP̃n in the last equality as a result of the fact that

P̃n (∆∗i = 1) = F̃nh(Ti) 1 ≤ i ≤ n. (B.1.13)

Using integrating by parts we have

F̃ ∗nh(t)−
∫

Kh(t− u) dF̃nh(u) =
∫
ψt,h(u)

{
F̂ ∗n(u)− F̃nh(u)

}
dG(u).

So we find that

F̃ ∗nh(t)−
∫

Kh(t− u) dF̃nh(u)

=
∫
ψ̄∗t,h(u)

{
δ∗ − F̂ ∗n(u)

}
dP̃n(u, δ∗)−

∫
ψt,h(u)

{
F̃nh(u)− F̂ ∗n(u)

}
dG(u)

=
∫
ψt,h(u)

{
δ∗ − F̃nh(u)

}
d(P̃n − P̃n)(u, δ∗)

+
∫
ψt,h(u)

{
F̃nh(u)− F̂ ∗n(u)

}
d(Gn −G)(u, δ∗)

+
∫ {

ψ̄∗t,h(u)− ψt,h(u)
}{

δ∗ − F̂ ∗n(u)
}
dP̃n(u, δ∗)

= AI +AII +AIII .

To study the asymptotic distribution of

n2/5
{
F̃ ∗nh(t)−

∫
Kh(t− u) dF̃nh(u)

}
,

we therefore have to analyze the three terms AI , AII and AIII . We start with AI and
prove that

n2/5
∫
ψt,h(u)

{
δ∗ − F̃nh(u)

}
d(P̃n − P̃n)(u, δ∗) D−→ N

(
0, σ2) , (B.1.14)

where σ2 is defined in (3.2.3). Define

Znh,i = n−3/5ψt,h(Ti)
{

∆∗i − F̃nh(Ti)
}
.

The left hand side of (B.1.14) can then be expressed as
∑n
i=1 Znh,i. Conditionally on

(T1, X1), . . . , (Tn, Xn), Znh,i has mean zero and variance

σ2
nh,i = n−6/5ψ2

t,h(Ti)F̃nh(Ti)
{

1− F̃nh(Ti)
}
.
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Therefore, along almost all sequences (T1,∆1), (T2,∆2) . . . ,
n∑
i=1

σ2
nh,i = n−1/5

∫
ψ2
t,h(u)F̃nh(u)

{
1− F̃nh(u)

}
dGn(u)

= n−1/5
∫
ψ2
t,h(u)F̃nh(u)

{
1− F̃nh(u)

}
dG(u) + o(1)

=
∫ 1

−1
K2(u)F̃nh(t+ hu)

{
1− F̃nh(t+ hu)

}
g(t+ hu)du+ o(1)

→ F0(t){1− F0(t)}
cg(t)

∫
K2(u)du = σ2,

where we use the a.s. convergence of Fnh(t)→ F0(t) in the last line. By the Lindeberg-
Feller CLT, we have,

n∑
i=1

Znh,i
D−→ N

(
0, σ2) .

This proves (B.1.14).
We next consider AII . From the fact that the integrand is the product of h−1 times the
fixed bounded continuous function u 7→ K((t − u)/h)/g(u) and the class of functions
of bounded variation F̂ ∗n − F̃nh which have entropy with bracketing of order ε−1 for
the L2-distance and are of order OP̃ (n−1/3) for the L2-distance, again conditionally
on ω = (T1,∆1), (T2,∆2), . . . , it follows that AII is of order OP̃ (h−1n−2/3). As a
consequence, we have for h � n−1/5,

AII =
∫
ψt,h(u)

{
F̃nh(u)− F̂ ∗n(u)

}
d(Gn −G)(u) = oP̃ (n−2/5) (B.1.15)

We finally study the term AIII . Using similar arguments as in the proof of Lemma A.4
in Groeneboom et al. (2010), there exists a positive constant C such that∣∣ψ̄∗t,h(u)− ψt,h(u)

∣∣ ≤ Ch−2
∣∣∣F̂ ∗n(u)− F̃nh(u)

∣∣∣ , (B.1.16)

for all u such that f̃nh = F̃ ′nh is positive and continuous in a neighborhood around u. By
(B.1.13), we can write,

AIII =
∫ {

ψ̄∗t,h(u)− ψt,h(u)
}{

δ∗ − F̃nh(u)
}
d(P̃n − P̃n)(u, δ∗)

+
∫ {

ψ̄∗t,h(u)− ψt,h(u)
}{

F̃nh(u)− F̂ ∗n(u)
}
dGn(u). (B.1.17)

It is clear that ∫ {
ψ̄∗t,h(u)− ψt,h(u)

}{
δ∗ − F̃nh(u)

}
d(P̃n − P̃n)(u, δ∗)

= oP̃

(∫
ψt,h(u)

{
δ∗ − F̃nh(u)

}
d(P̃n − P̃n)(u, δ∗)

)
,
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which is oP̃ (n−2/5) by (B.1.14). For the second term on the right-hand side of (B.1.17)
we get by (B.1.1) and (B.1.16) that

∣∣∣∣∫ {ψ̄∗t,h(u)− ψt,h(u)
}{

F̃nh(u)− F̂ ∗n(u)
}
dGn(u)

∣∣∣∣
≤ Ch−2

∫ t+h

t−h

{
F̃nh(u)− F̂ ∗n(u)

}2
dGn(u) = OP̃

(
h−1n−2/3

)
= OP̃

(
n−7/15

)
.

(B.1.18)

The asymptotic normality of the bootstrapped SMLE given in (3.2.2) now follows by
(B.1.14),(B.1.15) and (B.1.18).

B.1.3 Proof of Lemma 3.2.2

We have:

∫
{Kh(t− u) + Kh(t+ u)−Kh(2M − t− u)} dF̃ (bc)

nh (u)

=
∫ M

u=0
{Kh(t− u) + Kh(t+ u)−Kh(2M − t− u)} f̃ (bc)

nh (u) du.

If t ∈ [h,M −h] we get, noting that Kh(t+u) = Kh(2M − t−u) = 1, if t ∈ [h,M −h],

∫ M

u=0
{Kh(t− u) + Kh(t+ u)−Kh(2M − t− u)} f̃ (bc)

nh (u) du

=
∫ M

u=0
Kh(t− u)f̃ (bc)

nh (u) du

=
∫ M

u=0
Kh(t− u)

∫
{Kh(u− v) +Kh(u+ v) +Kh(2M − u− v)} dF̂n(v) du

=
∫ {∫ M

u=0
Kh(t− u) {Kh(u− v) +Kh(u+ v) +Kh(2M − u− v)} du

}
dF̂n(v)

=
∫ {

K̃h(t− v) + K̃h(t+ v)− K̃h(2M − t− v)
}
dF̂n(v)
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The last transition follows from integration by parts and the symmetry of the kernel K

∫ M

u=0
Kh(t− u) {Kh(u− v) +Kh(u+ v) +Kh(2M − u− v)} du

= [Kh(t− u) {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)}]Mu=0

+
∫
Kh(t− u) {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)} du

=
∫
Kh(t− u) {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)} du

=
∫
{Kh(t− v − hw) + Kh(t+ v − hw)−Kh(2M − t− v − hw)}K(w) dw

= K̃h(t− v) + K̃h(t+ v)− K̃h(2M − t− v).

if t ∈ [h,M − h].

We likewise get, if t ∈ [0, h],

∫ M

u=0
{Kh(t− u) + Kh(t+ u)−Kh(2M − t− u)} f̃ (bc)

nh (u) du

=
∫ M

u=0
{Kh(t− u) + Kh(t+ u)− 1} f̃ (bc)

nh (u) du

=
∫ M

u=0
{Kh(t− u) + Kh(t+ u)− 1}

·
∫
{Kh(u− v) +Kh(u+ v) +Kh(2M − u− v)} dF̂n(v) du

=
∫ {

K̃h(t− v) + K̃h(t+ v)− K̃h(2M − t− v)
}
dF̂n(v).

In the last transition we use integration by parts again:

∫ M

u=0
{Kh(t− u) + Kh(t+ u)− 1}

· {Kh(u− v) +Kh(u+ v) +Kh(2M − u− v)} du

= [{Kh(t− u) + Kh(t+ u)− 1} {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)}]Mu=0

+
∫ M

u=0
{Kh(t− u)−Kh(t+ u)} {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)} du

=
∫ M

u=0
{Kh(t− u)−Kh(t+ u)} {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)} du,

where we use Kh(−v) +Kh(v) = 1 in the last equality (which follows from the symmetry
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of K). Furthermore,∫ M

u=0
{Kh(t− u)−Kh(t+ u)} {Kh(u− v) + Kh(u+ v)−Kh(2M − u− v)} du

=
∫ t/h

w=−1
K(w) {Kh(t− v − hw) + Kh(t+ v − hw)− 1} dw

−
∫ 1

w=t/h
K(w) {Kh(−t− v + hw) + Kh(−t+ v + hw)− 1} dw

=
∫ t/h

w=−1
K(w) {Kh(t− v − hw) + Kh(t+ v − hw)− 1} dw

+
∫ 1

w=t/h
K(w) {Kh(t+ v − hw) + Kh(t− v − hw)− 1} dw

=
∫ 1

w=−1
K(w) {Kh(t− v − hw) + Kh(t+ v − hw)− 1} dw

=
∫
K(w) {Kh(t− v − hw) + Kh(t+ v − hw)−Kh(2M − t− v − hw)} dw

= K̃h(t− v) + K̃h(t+ v)− K̃h(2M − t− v),

again using the relation Kh(x) + Kh(−x) = 1. The case t ∈ [M − h,M ] is treated
similarly.

B.2 The nonparametric bootstrap

To complete the notation introduced in Chapter 3, we suppose that the vectors
((Z1, . . . , Zn),Mn), n = 1, 2, . . . are defined on the product space ([0,M ] × {0, 1})∞ ×
Z∞+ ,B, PZM ), where Z+ is the set of nonnegative integers and B is the collection of Borel
sets, generated by the finite dimensional projections. We say that a real-valued function
Γn defined on the joint probability space is of order oP̂ (1) in probability if for all ε, η > 0:

P ∗
(
P̂n {|Γn| > ε} > η

)
→ 0 as n→∞,

where P ∗ denotes outer probability and P̂n is the conditional probability measure w.r.t.
the weights, given the sample Z1, . . . , Zn.

B.2.1 Proof of Lemma 3.3.1

Before proving Lemma 3.3.1 we provide two technical lemmas.
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Lemma B.2.1. Let α > 0. There exist constants K1,K2 > 0 such that, for each
j ≥ 1, j ∈ N,

P̂n

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3) :∣∣∣∣∣
∫
u∈(U0(a),U0(a)+y]

{δ − F0(u)} d
(
P̂n − Pn

)
(u, δ)

∣∣∣∣∣ ≥ α(j − 1)2n−2/3

}
≤ K1 exp

{
−K2(j − 1)3/2

}
, (B.2.1)

in probability.
Likewise, there exist constants K1,K2 > 0 such that, for each j ≥ 1, j ∈ N,

P̂n

{
∃y ∈

[
−jn−1/3,−(j − 1)n−1/3) :∣∣∣∣∣
∫
u∈(U0(a)+y,U0(a)]

{δ − F0(u)} d
(
P̂n − Pn

)
(u, δ)

∣∣∣∣∣ ≥ α(j − 1)2n−2/3

}
≤ K1 exp

{
−K2(j − 1)3/2

}
, (B.2.2)

in probability.

Proof. We only prove (B.2.1), since the proof of (B.2.2) is similar. Let Ft be the (Vapnik-
Cervonenkis) class of functions

Ft =
{

(δ − F0(v))1(U0(a),U0(a)+u](v) : u ∈ [0, t], δ ∈ {0, 1}
}
,

with envelope

Ft(v, δ) = 1(U0(a),U0(a)+t](v), v ∈ [0, t].

To prove (B.2.1), we use that an exponential tail bound can be derived from a bounded
Orlicz norm ‖ · ‖P,ψ, i.e., when taking ψ1(x) = exp(x)− 1, for x ≥ 0, we get, for x > 0
the inequality

P (|X| > x) ≤ 2 exp {−x/‖X‖P,ψ1} , (B.2.3)

where

‖X‖P,ψ1 = inf
{
C > 0 : Eψ1

(
|X|
C

)
≤ 1
}
.

Using the second statement of Theorem 2.14.5 in van der Vaart and Wellner (1996), with
p = 1, we get, the following inequality:∥∥∥∥∥∥∥√n(P̂n − Pn

)∥∥∥∗
Ft

∥∥∥∥
Pn,ψ1

.

∥∥∥∥∥∥∥√n(P̂n − Pn
)∥∥∥∗
Ft

∥∥∥∥
Pn,1

+ n−1/2{1 + logn}‖Ft‖Pn,ψ1 ,

(B.2.4)
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where ‖ · ‖∗Ft denotes the so-called measurable majorant of ‖ · ‖Ft (see van der Vaart
and Wellner (1996)). (Note that we use temporarily the "*" notation which is used for
bootstrap variables in the rest of the paper.)
Furthermore, we have by the rightmost inequality of Theorem 2.14.1 of van der Vaart and
Wellner (1996) that∥∥∥∥∥∥∥√n(P̂n − Pn

)∥∥∥∗
Ft

∥∥∥∥
Pn,1

. J (1,Ft) ‖Ft‖Pn,2 ,

where J(δ,Ft) is defined by

J(δ,Ft) = sup
Q

∫ δ

0

√
1 + logN (ε‖F‖Q,2,Ft, L2(Q)) dε,

and where the supremum is over all discrete probability measure Q with ‖Ft‖Q,2 > 0.
Since Ft ⊂ FM−U0(a) for all t ∈ [0,M − U0(a)], and since FM−U0(a) is a Vapnik-
Cervonenkis class, J(δ,Ft) is bounded by a fixed constant for all t ∈ [0,M −U0(a)], and
we get that ∥∥∥∥∥∥∥√n(P̂n − Pn

)∥∥∥∗
Ft

∥∥∥∥
Pn,1

. ‖Ft‖Pn,2 ,

uniformly for all t ∈ [0,M − U0(a)]. Note that

‖Ft‖2Pn,2 =
∫
u∈U0(a),U0(a)+t]

dPn(u, δ) =
∫
u∈U0(a),U0(a)+t]

dGn(u), (B.2.5)

t ∈ [U0(a),M − U0(a)]. We next evaluate the second term on the right-hand side of
(B.2.4). We have that∫

ψ1

(
Ft(u, δ)

c

)
dPn(u, δ) =

{
e1/c − 1

}∫
1(U0(a),U0(a)+t](u) dGn(u),

and {
e1/c − 1

}∫
1(U0(a),U0(a)+t](u) dGn(u) ≤ 1

⇐⇒ c ≥ 1
log
{

1 + 1/
∫
u∈U0(a),U0(a)+t] dGn(u)

} .
Thus (B.2.4) becomes, using (B.2.5),∥∥∥∥∥∥∥√n(P̂n − Pn

)∥∥∥∗
Ft

∥∥∥∥
Pn,ψ1

≤ c1

{∫
u∈U0(a),U0(a)+t]

dGn(u)
}1/2

+ 1 + logn
n1/2 log

{
1 + 1/

∫
u∈U0(a),U0(a)+t] dGn(u)

} ,
(B.2.6)
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for a constant c1 > 0. If t ≥ Kn−1/3 we get for the second term in probability,

1 + logn
n1/2 log

{
1 + 1/

∫
u∈U0(a),U0(a)+t] dGn(u)

} � c1

{∫
u∈U0(a),U0(a)+t]

dGn(u)
}1/2

.

We have: ∫
u∈[U0(a),U0(a)+t]

dGn(u)

=
∫
u∈[U0(a),U0(a)+t]

dG(u) +
∫
u∈[U0(a),U0(a)+t]

d
(
Gn −G

)
(u)

=
∫
u∈[U0(a),U0(a)+t]

dG(u) +Op

(
n−1/2

)
= O(t) +Op

(
n−1/2

)
= O(t) +OP̂

(
n−1/2

)
,

in probability (since a term defined only on the probability space (X ,A, P ) of order Op(1)
is also of order OP̂ (1) in probability). So we obtain, for j ≥ K in probability, conditioning
on (T1,∆1), (T2,∆2), . . . using the inequality on Orlicz norms on p. 96 or 239 of van der
Vaart and Wellner (1996):

P̂n

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3) :∣∣∣∣∣

∫
u∈(U0(a),U0(a)+y]

{δ − F0(u)} d
(
P̂n − Pn

)
(u, δ)

∣∣∣∣∣ ≥ α(j − 1)2n−2/3

}

= P̂n

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3) :

√
n

∣∣∣∣∣
∫
u∈(U0(a),U0(a)+y]

{δ − F0(u)} d
(
P̂n − Pn

)
(u, δ)

∣∣∣∣∣ ≥ α(j − 1)2n−1/6

}

≤ 2 exp

−m(j − 1)2n−1/6/

∥∥∥∥∥∥∥∥√n(P̂n − Pn
)∥∥∥∗
F
jn−1/3

∥∥∥∥∥
Pn,ψ1


≤ 2 exp

{
−c2m(j − 1)3/2

}
,

for some c2 > 0. This proves the statement.

Lemma B.2.2. For each ε > 0 and x ∈ [0,M − U0(a)],∣∣∣∣∣
∫
u∈(U0(a),U0(a)+x]

{δ − F0(u)} d
(
Pn − P

)
(u, δ)

∣∣∣∣∣ ≤ εx2 +Op

(
n−2/3

)
.
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Proof. As in the proof of Lemma B.2.1, we consider the Vapnik-Cervonenkis collection
of functions

Ft =
{

(δ − F0(v))1(U0(a),U0(a)+u](v) : u ∈ [0, t], δ ∈ {0, 1}
}
,

with envelope

Ft(v, δ) = 1(U0(a),U0(a)+t](v), v ∈ [0, t].

We have, using Theorem 2.14.1 of van der Vaart and Wellner (1996), that

EX

{
sup
f∈Ft

|Pn − P | (f)
}2

≤ Kn−1 ‖Ft‖2P,2 , (B.2.7)

for some K > 0. Since

‖Ft‖2P,2 =
∫
u∈U0(a),U0(a)+t]

dP (u, δ) =
∫
u∈U0(a),U0(a)+t]

dG(u) = O(t),

for t ∈ [U0(a),M − U0(a)], we get, by Markov’s inequality,

P

{
n2/3

∣∣∣∣∣
∫
u∈(U0(a),U0(a)+jn−1/3]

{δ − F0(u)} d
(
Pn − P

)
(u, δ)

∣∣∣∣∣ > A+ ε(j − 1)2

}
≤ Kj/

{
A+ ε(j − 1)2}2

.

The result now easily follows, see e.g. Kim and Pollard (1990). p. 201.

As a consequence of Lemma B.2.1 and Lemma B.2.2 we get the following result.

Lemma B.2.3. Let V̂n and ˆ̄Vn be defined by

V̂n(t) =
∫
u∈[0,t]

δ dP̂n(u, δ), ˆ̄Vn(t) =
∫
u∈[0,t]

F0(u) dĜn(u), t ∈ [0,M ].

(B.2.8)

where the process Ĝn is defined in (3.3.1), and let D̂n = V̂n − ˆ̄Vn. Then there exist
constants K1,K2 > 0 such that, for each j ≥ 1, j ∈ N,

P̂n

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3) : D̂n(U0(a) + y)− D̂n(U0(a))

≤ −
∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
dĜn(u)

}
≤ K1 exp

{
−K2(j − 1)3/2

}
, (B.2.9)
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in probability. Likewise, there exist constantsK1,K2 > 0 such that, for each j ≥ 1, j ∈ N,

P̂n

{
∃y ∈

[
−jn−1/3,−(j − 1)n−1/3) : D̂n(U0(a) + y)− D̂n(U0(a))

≤ −
∫ U0(a)

U0(a)+y

{
F0(u)− F0(U0(a))

}
dĜn(u)

}
≤ K1 exp

{
−K2(j − 1)3/2

}
, (B.2.10)

in probability.

Proof. We again only prove (B.2.1), since the proof of (B.2.2) is similar. First note that

P̂n

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3) : D̂n(U0(a) + y)− D̂n(U0(a))

≤ −
∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
dĜn(u)

}

≤ P̂n

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3) :

∣∣∣D̂n(U0(a) + y)− D̂n(U0(a))
∣∣∣

≥
∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
dĜn(u)

}
.

Furthermore,

∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
dĜn(u)

=
∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
dGn(u)

+
∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
d
(
Ĝn −Gn

)
(u)

=
∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
dG(u)

+
∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
d
(
Gn −G

)
(u)

+
∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
d
(
Ĝn −Gn

)
(u), (B.2.11)
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and for the dominant term on the right-hand side we get that∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
dG(u) ≥ m0

∫ U0(a)+y

U0(a)
{u− U0(a)} dG(u)

≥ m0m1

∫ U0(a)+y

U0(a)
{u− U0(a)} du = 1

2m0m1{y − U0(a)}2,

where m0 = infu∈[U0(a),M ] f0(u) and m1 = infu∈[U0(a),M ] g(u). We therefore consider
the probability

P̂n

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3) :

∣∣∣D̂n(U0(a) + y)− D̂n(U0(a))
∣∣∣

≥ m(j − 1)2n−2/3
}
, (B.2.12)

where

m = 1
2 min

{
inf

u∈[t0,M ]
f0(u), inf

u∈[t0,M ]
g(u)

}
.

We also have that

D̂n(U0(a) + y)− D̂n(U0(a)) =
∫
u∈(U0(a),U0(a)+y]

{δ − F0(u)} dP̂n(u, δ)

=
∫
u∈(U0(a),U0(a)+y]

{δ − F0(u)} d
(
P̂n − P

)
(u, δ)

=
∫
u∈(U0(a),U0(a)+y]

{δ − F0(u)} d
(
P̂n − Pn

)
(u, δ)

+
∫
u∈(U0(a),U0(a)+y]

{δ − F0(u)} d
(
Pn − P

)
(u, δ).

By Lemma B.2.2, we may assume that for x ∈ [0,M − U0(a)],∣∣∣∣∣
∫
u∈(U0(a),U0(a)+x]

{δ − F0(u)} d
(
Pn − P

)
(u, δ)

∣∣∣∣∣ ≤ εx2 +Kn−2/3, (B.2.13)

for some K > 0 and 0 < ε < m/2. Considering sequences X = (T1,∆1), (T2,∆2) . . . ,
satisfying (B.2.13), we get that

P̂n

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3) :

∣∣∣D̂n(U0(a) + y)− D̂n(U0(a))
∣∣∣

≥ m(j − 1)2n−2/3
}

≤ P̂n

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3) :∣∣∣∣∣
∫
u∈(U0(a),U0(a)+y]

{δ − F0(u)} d
(
P̂n − Pn

)
(u, δ)

∣∣∣∣∣ ≥ 1
2m(j − 1)2n−2/3

}
≤ K1 exp

{
−K2(j − 1)3/2

}
,
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with probability tending to one, using Lemma B.2.1.

We now prove Lemma 3.1.1.

Proof of Lemma 3.1.1. Suppose that n1/3|Ûn(a) − U0(a)| > x for some x > 0, then
there exists a y such that, n1/3 |y − U0(a)| > x and V̂n(y) − aĜn(y) ≤ V̂n(U0(a)) −
aĜn(U0(a)). Hence,

P̂n

{
n1/3

∣∣∣Ûn(a)− U0(a)
∣∣∣ ≥ x}

≤ P̂n

(
inf

y−U0(a)≥n−1/3x
D̂n(y)− D̂n(U0(a))

≤ −
∫ y

U0(a)

{
F0(u)− F0(U0(a))

}
dĜn(u)

)

≤
∞∑
j=i

P̂n

(
∃y ∈

[
(j − 1)n−1/3, jn−1/3) : D̂n(U0(a) + y)− D̂n(U0(a))

≤ −
∫ U0(a)+y

U0(a)

{
F0(u)− F0(U0(a))

}
dĜn(u)

)
,

where x ∈ [(i− 1)n−1/3, in−1/3]. By Lemma B.2.3, this is bounded above by

∞∑
j=i

K1 exp
{
K2(j − 1)3/2

}
= K1 exp

{
−K2(i− 1)3/2

} ∞∑
j=i

exp
{
−K2[(j − 1)3/2 − (i− 1)3/2]

}
≤ K ′1 exp

{
K ′2(i− 1)3/2

}
,

for constants K1,K
′
1,K2,K

′
2 > 0.

B.2.2 Asymptotic normality of the bootstrapped SMLE

In this section, we prove (3.3.2). Define the function ψt,h as in (B.1.12) and denote the
points of jump of the nonparametric bootstrapped MLE F̂ ∗n by τ̂1, . . . , τ̂m and define the
piecewise constant function ψ̄t,h with only jumps at τ̂1, . . . , τ̂m by

ψ̄t,h(u) =


ψt,h(τ̂i), if F0(u) > F̂ ∗n(τ̂i), u ∈ [τ̂i, τ̂i+1),
ψt,h(s), if F0(u) = F̂ ∗n(s), for some s ∈ [τ̂i, τ̂i+1),
ψt,h(τ̂i+1), if F̃0(u) < F̂ ∗n(τi), u ∈ [τ̂i, τ̂i+1).
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By the convex minorant interpretation of F̂ ∗n , we have that∫
ψ̄t,h(u)(δ − F̂ ∗n(u))dP̂n(u, δ) = 0,

(see the discussion of the SMLE in Groeneboom and Jongbloed (2014), p. 332).
We can write:

F̃ ∗nh(t) =
∫

Kh(t− u) dF̂ ∗n(u)

=
∫

Kh(t− u) d(F̂ ∗n − F0)(u) +
∫

Kh(t− u) dF0(u)

=
∫
ψt,h(u)

{
F̂ ∗n(u)− F0(u)

}
dG(u) +

∫
Kh(t− u) dF0(u)

=
∫
ψt,h(u)

{
F0(u)− F̂ ∗n(u)

}
d(Ĝn −G)(u) +

∫
ψt,h(u) {δ − F0(u)} dP̂n(u, δ)

+
∫ {

ψt,h(u)− ψ̄t,h(u)
}{

F̂ ∗n(u)− δ
}
dP̂n(u, δ) +

∫
Kh(t− u) dF0(u)

= F̃
(toy)∗
nh (t) +

∫
ψt,h(u)

{
F0(u)− F̂ ∗n(u)

}
d(Ĝn −G)(u, δ)

+
∫ {

ψt,h(u)− ψ̄t,h(u)
}{

F̂ ∗n(u)− δ
}
dP̂n(u, δ)

= F̃
(toy)∗
nh (t) +AI +AII .

We first evaluate AI and show that this term is oP̂ (n−2/5) in probability, we have that

AI =
∫
ψt,h(u)

{
F0(u)− F̂ ∗n(u)

}
d(Ĝn −G)(u, δ)

=
∫
ψt,h(u)

{
F0(u)− F̂ ∗n(u)

}
d(Ĝn −Gn)(u, δ)

+
∫
ψt,h(u)

{
F0(u)− F̂ ∗n(u)

}
d(Gn −G)(u, δ)

An argument similar to that of Lemma A.7 in Groeneboom et al. (2010) shows that∫
ψt,h(u)

{
F0(u)− F̂ ∗n(u)

}
d(Gn −G)(u, δ) = op(n−2/5),

and hence, ∫
ψt,h(u)

{
F0(u)− F̂ ∗n(u)

}
d(Gn −G)(u, δ) = oP̂ (n−2/5),

in probability. Similarly to the proof of Lemma A.7 in Groeneboom et al. (2010), we can
also show that∫

ψt,h(u)
{
F0(u)− F̂ ∗n(u)

}
d(Ĝn −Gn)(u, δ) = oP̂ (n−2/5), (B.2.14)
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in probability, such that

AI = oP̂ (n−2/5) in probability.

We now study the term AII . Using the same inequality for ψt,h − ψ̄t,h as used in the
second display after (11.49) on p. 333 of Groeneboom and Jongbloed (2014), we get for
some constant C > 0 that∣∣ψ̄t,h(u)− ψt,h(u)

∣∣ ≤ Ch−2
∣∣∣F̂ ∗n(u)− F0(u)

∣∣∣ , (B.2.15)

for all u such that f0 is positive and continuous in a neighborhood around u. We decom-
pose the term AII as follows:

AII =
∫ {

ψ̄t,h(u)− ψt,h(u)
}{

F̂ ∗n(u)− F0(u)
}
dP̂n(u, δ)

+
∫ {

ψ̄t,h(u)− ψt,h(u)
}
{F0(u)− δ} dP̂n(u, δ). (B.2.16)

For the first term on the right-hand side of the above display we write:∫ {
ψ̄t,h(u)− ψt,h(u)

}{
F̂ ∗n(u)− F0(u)

}
dP̂n(u, δ)

=
∫ {

ψ̄t,h(u)− ψt,h(u)
}{

F̂ ∗n(u)− F0(u)
}
d(P̂n − Pn)(u, δ)

+
∫ {

ψ̄t,h(u)− ψt,h(u)
}{

F̂ ∗n(u)− F0(u)
}
dPn(u, δ)

≤
∫ {

ψ̄t,h(u)− ψt,h(u)
}{

F̂ ∗n(u)− F0(u)
}
d(P̂n − Pn)(u, δ)

+ Ch−2
∫ t+h

t−h

{
F̂ ∗n(u)− F0(u)

}2
dPn(u, δ), (B.2.17)

where we use (B.2.15) in the last inequality. The first term in the display above is
oP̂ (n−2/5) in probability by (B.2.14) and (B.2.15). Since

Ên

{
F̂ ∗n(t)− F0(t)

}2
< Kn−2/3 ∀t ∈ (0,M),

in probability, we have by Markov’s inequality and Fubini’s theorem that∫ t+h

t−h

{
F̂ ∗n(u)− F0(u)

}2
dPn(u, δ) = OP̂

(
hn−2/3

)
in probability. (B.2.18)

Hence, for h � n−1/5, we get for the second term in (B.2.17) that

Ch−2
∫ t+h

t−h

{
F̂ ∗n(u)− F0(u)

}2
dPn(u, δ)

= OP̂

(
h−1n−2/3

)
= OP̂

(
n−7/15

)
= oP̂

(
n−2/5

)
,
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in probability. For the second term of (B.2.16) we have that∫ {
ψ̄t,h(u)− ψt,h(u)

}
{F0(u)− δ} dP̂n(u, δ)

=
∫ {

ψ̄t,h(u)− ψt,h(u)
}
{F0(u)− δ} d(P̂n − Pn)(u, δ)

+
∫ {

ψ̄t,h(u)− ψt,h(u)
}
{F0(u)− δ} d

(
Pn − P

)
(u, δ).

Similar to the arguments used in the treatment of term AI above, we get by using again
arguments similar to that of Lemma A.7 in Groeneboom et al. (2010) that∫ {

ψ̄t,h(u)− ψt,h(u)
}
{F0(u)− δ} d

(
P̂n − Pn

)
(u, δ) = oP̂ (n−2/5),

and ∫ {
ψ̄t,h(u)− ψt,h(u)

}
{F0(u)− δ} d

(
Pn − P

)
(u, δ) = oP̂ (n−2/5),

in probability.

B.2.3 Asymptotic normality of the SSE

In this section we give a road map for the proof of the bootstrap validity in the current
status linear regression model given in (3.6.3). We assume that the assumptions stated
in Theorem 2.4.1 hold. Since the proof is very similar to the proof of Theorem 2.4.1, we
leave the details to the interested reader. Consider the bootstrap score function

ψ̂nε(β) =
∫
F̂∗n,α(t−αTx)∈[ε,1−ε]

x{δ − F̂ ∗n,α(t−αTx)} dP̂n(x, t, δ), (B.2.19)

for some fixed truncation parameter ε ∈ (0, 1/2).
The main idea is to show that

ψ̂nε(α̂∗n) = A(α̂∗n −α0) +
∫
F0(t−αT0 x)∈[ε,1−ε]

{x− E(X|T −αT0X = t−αT0 x)}

· {δ − F0(t−α′0x)} d(P̂n − Pn)(x, t, δ)

+
∫
F0(t−αT0 x)∈[ε,1−ε]

{x− E(X|T −αT0X = t−αT0 x)}

· {δ − F0(t−α′0x)} d(Pn − P )(x, t, δ)

+ oP̂ (n−1/2 + (α̂∗n −α0)), (B.2.20)

in probability. As in the proof of Theorem 2.4.1 given in Appendix A, we can work with
the definition

ψ̂nε(α̂∗n) = 0,
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for the score estimator α̂∗n. Since by the proof of Theorem 2.4.1,

−
√
nA(α̂n −α0)

=
√
n

∫
F0(t−αT0 x)∈[ε,1−ε]

{x− E(X|T −αT0X = t−αT0 x)}

· {δ − F0(t−αT0 x)} d(Pn − P )(x, t, δ)

+ op(1 +
√
n(α̂n −α0)),

we get that,

−
√
nA(α̂∗n − α̂n)

=
√
n

∫
F0(t−αT0 x)∈[ε,1−ε]

{x− E(X|T −αT0X = t−αT0 x)}

· {δ − F0(t−α′0x)} d(P̂n − Pn)(x, t, δ)

+ oP̂ (1 +
√
n(α̂∗n −α0)).

The validity of the bootstrap then follows by the arguments given in Section 3.6. Very
important in the proof of (B.2.20) is the conditional bootstrapped L2-result,

sup
α

∫ {
F̂ ∗n,α(t−αTx)− Fα(t−αTx)

}2
dPn(x, t, δ) = OP̂

(
n−2/3

)
, (B.2.21)

in probability, where Fα is defined in (2.3.1).
Let φ̄α̂∗n,F̂n,α̂∗n be a (random) piecewise constant version of φα̂∗n , where

φα = E
{
X|T −αTX = u

}
,

and where, for a piecewise constant distribution function F with finitely many jumps at
τ1 < τ2 < . . . , the function φ̄α,F is defined in the following way.

φ̄α,F (u) =


φα(τi), if Fα(u) > F (τi), u ∈ [τi, τi+1),
φα(s), if Fα(u) = F (s), for some s ∈ [τi, τi+1),
φα(τi+1), if Fα(u) < F (τi), u ∈ [τi, τi+1).

(B.2.22)

Similar to the proof of Theorem 2.4.1, we get that

‖φα̂∗n(u)− φ̄α̂∗n,F̂n,α̂∗n (u)‖ ≤ K|F̂n,α̂∗n(u)− Fα̂∗n(u)|,

for some constant K > 0 not depending on α. By the definition of the MLE F̂n,α̂∗n as
the slope of the greatest convex minorant of the corresponding cusum diagram, we can
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write:

ψ̂nε(α̂∗n) =
∫
F̂n,α̂∗n

(t−(α̂∗n)Tx)∈[ε,1−ε]

{
x− φα̂∗n(t− (α̂∗n)Tx)

}
·
{
δ − F̂n,α̂∗n(t− (α̂∗n)Tx)

}
dP̂n(x, t, δ)

+
∫
F̂n,α̂∗n

(t−(α̂∗n)Tx)∈[ε,1−ε]

{
φα̂∗n(t− (α̂∗n)Tx)− φ̄α̂∗n,F̂n,α̂∗n (t− (α̂∗n)Tx)

}
·
{
δ − F̂n,α̂∗n(t− (α̂∗n)Tx)

}
dP̂n(x, t, δ)

= I + II,

For the second term, we have that

II =
∫
F̂n,α̂∗n

(t−(α̂∗n)Tx)∈[ε,1−ε]

{
φα̂∗n(t− (α̂∗n)Tx)− φ̄α̂∗n,F̂n,α̂∗n (t− (α̂∗n)Tx)

}
·
{
δ − F̂n,α̂∗n(t− (α̂∗n)Tx)

}
d(P̂n − Pn)(x, t, δ)

+
∫
F̂n,α̂∗n

(t−(α̂∗n)Tx)∈[ε,1−ε]

{
φα̂∗n(t− (α̂∗n)Tx)− φ̄α̂∗n,F̂n,α̂∗n (t− (α̂∗n)Tx)

}
·
{
δ − F̂n,α̂∗n(t− (α̂∗n)Tx)

}
dPn(x, t, δ)

= IIa + IIb

It is shown in the proof of Theorem 2.4.1 that

IIb = op(n−1/2 + (α̂∗n −α0)),

and therefore

IIb = oP̂ (n−1/2 + (α̂∗n −α0)) in probability.

Using similar arguments as in in the proof of Theorem 2.4.1 we can also show that

IIa = oP̂ (n−1/2) in probability.

Hence, we get that‘12

ψ̂nε(α̂∗n) =
∫
F̂n,α̂∗n

(t−(α̂∗n)Tx)∈[ε,1−ε]

{
x− φα̂∗n(t− (α̂∗n)Tx)

}
·
{
δ − F̂n,α̂∗n(t− (α̂∗n)Tx)

}
dP̂n(x, t, δ)

+ oP̂ (n−1/2 + (α̂∗n −α0)),
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in probability. We now write∫
F̂n,α̂∗n

(t−(α̂∗n)Tx)∈[ε,1−ε]

{
x− φα̂∗n(t− (α̂∗n)Tx)

}{
δ − F̂n,α̂∗n(t− (α̂∗n)Tx)

}
dP̂n(x, t, δ)

=
∫
F̂n,α̂∗n

(t−(α̂∗n)Tx)∈[ε,1−ε]

{
x− φα̂∗n(t− (α̂∗n)Tx)

}
·
{
δ − F̂n,α̂∗n(t− (α̂∗n)Tx)

}
d(P̂n − Pn)(x, t, δ)

+
∫
F̂n,α̂∗n

(t−(α̂∗n)Tx)∈[ε,1−ε]

{
x− φα̂∗n(t− (α̂∗n)Tx)

}
·
{
δ − F̂n,α̂∗n(t− (α̂∗n)Tx)

}
dPn(x, t, δ)

It follows from the proof of Theorem 2.4.1 that there exists a random variable Rn of order
op(n−1/2 + α̂∗n−α0) (and hence of order oP̂ (n−1/2 + α̂∗n−α0) in probability) such that∫
F̂n,α̂∗n

(t−(α̂∗n)Tx)∈[ε,1−ε]

{
x− φα̂∗n(t− (α̂∗n)Tx)

}{
δ − F̂n,α̂∗n(t− (α̂∗n)Tx)

}
dPn(x, t, δ)

=
∫
F0(t−αT0 x)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}{
δ − F0(t−αT0 x)

}
d(Pn − P )(x, t, δ)

+ ψ′1,ε(α0)(α̂∗n −α0) +Rn. (B.2.23)

where φ0 ≡ φα0 . Therefore, (B.2.20) follows if we can show that∫
F̂n,α̂∗n

(t−(α̂∗n)Tx)∈[ε,1−ε]

{
x− φα̂∗n(t− (α̂∗n)Tx)

}
·
{
δ − F̂n,α̂∗n(t− (α̂∗n)Tx)

}
d(P̂n − Pn)(x, t, δ)

=
∫
F0(t−αT0 x)∈[ε,1−ε]

{
x− φ0(t−αT0 x)

}{
δ − F0(t−αT0 x)

}
d(P̂n − Pn)(x, t, δ)

+ oP̂ (n−1/2 + (α̂∗n −α0)). (B.2.24)

Equality (B.2.24) follows by similar arguments used in the proof of (B.2.23) based on
asymptotic equicontinuity using the closeness of F̂ ∗n,α to Fα and using entropy results
for the functions u 7→ F̂ ∗n,α(u) and the simpler parametric functions u 7→ Fα(u) and
u 7→ φα(u), parametrized by the finite dimensional parameter α.
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In this chapter, we give the proof of Chapter 4. Before giving the proofs, we first introduce
some notations and definitions used in the remainder of this Appendix. We will denote
the L2-norm of a function f defined on X ×R with respect to some probability measure
P by ‖ · ‖P; i.e.

‖f‖P = P(f2)1/2 =
(∫
X
f2(x, y)dP(x, y)

)1/2
.

Also, we will denote by ‖ · ‖B,P the Bernstein norm of a function f defined on X × R
which is given by

‖f‖P,B =
(

2P
(
e|f | − |f | − 1

))1/2
.

For both norms, P will taken to be P0, i.e. the true joint probability measure of the
(X, Y ). Note that when f is only a function of x ∈ X , then

‖f‖P0 =
(∫
X
f2(x)dG(x)

)1/2
=
(∫
X
f2(x)g(x)dx

)1/2
,

by Assumption A5.

For a class of functions F on R equipped with a norm ‖ · ‖, we let NB(ζ,F , ‖ · ‖) denote
again the minimal number N for which there exists pairs of functions {[gLj , gUj ], 1 ≤ j ≤
N} such that ‖gUj − gLj ‖ ≤ ζ for all 1 ≤ j ≤ N and such that for each g ∈ F there is a
j ∈ {1, . . . , N} such that gLj ≤ g ≤ gUj . The ζ−entropy with bracketing of F is defined
as HB(ζ,F , ‖ · ‖) = log(NB(ζ,F , ‖ · ‖)).

211
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Results on entropy calculations used in proving our main results are given in Section C.4.
Our proofs use inequalities for empirical processes described in Lemma 3.4.2 and Lemma
3.4.3 of van der Vaart and Wellner (1996).

Lemma 3.4.2 (van der Vaart and Wellner (1996)) Let F be a class of measurable
functions such that ‖f‖P ≤ δ and ‖f‖∞ ≤M for every f in F . Then

E
[
‖Gn‖F

]
. Jn(δ,F , ‖ · ‖P)

(
1 + Jn(δ,F , ‖ · ‖P)√

nδ2 M

)
,

where

Jn(δ,F , ‖ · ‖) =
∫ δ

0

√
1 +HB(ε,F , ‖ · ‖)dε

Lemma 3.4.3 (van der Vaart and Wellner (1996)) Let F be a class of measurable
functions such that ‖f‖P,B ≤ δ for every f in F . Then

E
[
‖Gn‖F

]
. Jn(δ,F , ‖ · ‖P,B)

(
1 + Jn(δ,F , ‖ · ‖P,B)√

nδ2

)
,

In the sequel, and whenever the ε-bracketing entropy of some class F with respect to
some norm ‖ · ‖ is bounded above by Cε−1 for some constant C > 0 (which may depend
on n), we will write for all e > ε

Jn(d) =
∫ e

0
(1 + C/ε)1/2dε. (C.0.1)

Moreover, we will use the inequality

Jn(d) ≤ d+ 2C1/2e1/2, (C.0.2)

which is an immediate consequence of the fact that
√
x+ y ≤

√
x+√y for all x, y ≥ 0.

This Appendix is organized as follows. In Section C.1 we prove the results given in Section
4.2. The asymptotic behavior of the simple and efficient score estimator given in Section
4.3.1 and Section 4.3.2 respectively is proved in Section C.2 respectively Section C.3. The
last two sections C.4 and C.5 of this Appendix contain some technical lemmas on entropy
results and some auxiliary results on the behavior of the score functions. We will regularly
refer to these results in the first part of this Appendix.

C.1 The least squares estimator ψ̂n,α

In this section we first prove Proposition 4.2.1. We next show in Lemma C.1.1 that the
LSE ψ̂n,α is of order Op(logn) uniformly in B(α0, δ0). This result is used in the proof of
Proposition 4.2.2, given at the end of this section.
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Proof of Proposition 4.2.1. Note that with X ∼ g we can write

Lα(ψ) = E
[(
ψ0(αT0X)− ψ(αTX)

)2]
.

Thus,

E
[(
ψ0(αT0X)− E(ψ0(αT0X) | αTX)

)2]
= min
ψ∈M′

Lα(ψ),

withM′ the set of all bounded Borel-measurable function defined on Iα =
{
αTx : x ∈

X
}
. Therefore, if the minimizing function u 7→ E(ψ0(αT0X) | αTX = u) is monotone

increasing on Iα, then this implies that it necessarily minimizes Lα overM. Furthermore,
such a minimizer is unique by strict convexity of Lα.

Lemma C.1.1.
max

α∈B(α0,δ0)
sup
x∈X

∣∣∣ψ̂n,α(αTx)
∣∣∣ = Op(logn).

Proof. The proof of this lemma is similar to that of Lemma 4.4 of Balabdaoui et al.
(2016). For a fixed α it follows from the min-max formula of an isotonic regression that
we have for all x ∈ X

min
1≤k≤n

∑k
i=1 Y

α
i

k
≤ ψ̂n,α(αTx) ≤ max

1≤k≤n

∑n
i=k Y

α
i

n− k + 1 .

Hence,

min
1≤i≤n

Yi ≤ ψ̂n,α(αTx) ≤ max
1≤i≤n

Yi,

and this in turn implies that

max
α∈B(α0,δ0)

sup
x∈X

∣∣∣ψ̂n,α(αTx)
∣∣∣ ≤ max

1≤i≤n
|Yi|.

Using similar arguments as in Balabdaoui et al. (2016), we use Assumption A7 to show
that max1≤i≤n |Yi| = Op(logn), which completes the proof.

Proof of Proposition 4.2.2. By the definition of the LSE of the unknown monotone link
function, ψ̂n,α maximizes the map ψ 7→Mn overM where,

Mn(ψ,α) =
∫
X×R

(
2yψ(αTx)− ψ2(αTx)

)
dPn(x, y). (C.1.1)

Moreover, ψα maximizes the map ψ 7→M overM, where

M(ψ,α) =
∫
X×R

(
2yψ(αTx)− ψ2(αTx)

)
dP0(x, y).
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Define the function fψ,α by

fψ,α(x, y) = 2yψ(αTx)− ψ2(αTx),

Note that by definition of the LSE as the maximizer of (C.1.1), we have

∫
X×R

(
fψ̂n,α,α(x, y)− fψα,α(x, y)

)
dPn(x, y) ≥ 0.

Moreover for all α ∈ B(α0, δ0) and ψ ∈M, we have

∫
X×R

(
fψ,α(x, y)− fψα,α(x, y)

)
dP0(x, y) = −d2

α(ψ,ψα),

where, for any α ∈ B(α0, δ0) and for any two elements ψ1 and ψ2 inM, we define the
squared distance

d2
α(ψ1, ψ2) =

∫
X

(
ψ2(αTx)− ψ1(αTx)

)2
g(x)dx.

This can be seen as follows:

∫
X×R

(
fψ,α(x, y)− fψα,α(x, y)

)
dP0(x, y)

=
∫
X×R

(
2ψα(αTx)(ψ(αTx)− ψα(αTx))− ψ2(αTx) + ψ2

α(αTx)
)
dP0(x, y)

= −
∫
X

(
ψ(αTx)− ψα(αTx)

)2
g(x)dx = −d2

α(ψ,ψα),

where we use that E{Y |αTX = u} = ψα(u). This implies that, for all α ∈ B(α0, δ0)
and ψ ∈M, we have

∫
X×R

(
fψ,α(x, y)− fψα,α(x, y)

)
d(Pn − P0)(x, y) ≥ d2

α(ψ,ψα).
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We write,

P

{
sup

α∈B(α0,δ0)
dα(ψ̂n,α, ψα) ≥ ε

}

≤ P

{
sup

α∈B(α0,δ0),dα(ψ̂n,α,ψα)≥ε

{∫
X×R

(
fψ̂n,α,α(x, y)− fψα,α(x, y)

)
d(Pn − P0)(x, y)

−d2
α(ψ̂n,α, ψα)

}
≥ 0, sup

α∈B(α0,δ0)
dα(ψ̂n,α, ψα) ≥ ε

}

≤ P

{
sup

α∈B(α0,δ0),ψ∈MRK ,dα(ψ,ψα)≥ε

{∫
X×R

(
fψ,α(x, y)− fψα,α(x, y)

)
d(Pn − P0)(x, y)

−d2
α(ψα, ψ)

}
≥ 0, max

α∈B(α0,δ0)
sup
x∈X

∣∣∣ψ̂n,α(αTx)
∣∣∣ ≤ K}

+ P
{

max
α∈B(α0,δ0)

sup
x∈X

∣∣∣ψ̂n,α(αTx)
∣∣∣ > K

}
.

Fix ν > 0. Since
max

α∈B(α0,δ0)
sup
x∈X

∣∣∣ψ̂n,α(αTx)
∣∣∣ = Op(logn),

by Lemma C.1.1, we can find K1 > 0 large enough such that

P
{

max
α∈B(α0,δ0)

sup
x∈X

∣∣∣ψ̂n,α(αTx)
∣∣∣ > K1 logn

}
< ν/2.

Define

MRK =
{
ψ monotone nondecreeasing on [−R,R] and bounded by K

}
, (C.1.2)

and consider the related class

FRK =
{
f(x, y) = 2y

(
ψ(αTx)− ψα(αTx)

)
− ψ(αTx)2 + ψα(αTx)2,

(α, ψ) ∈ B(α0, δ0)×MRK and (x, y) ∈ X × R
}
,

and for some v > 0

FRKv : =
{
f ∈ FRK : dα(ψ,ψα) ≤ v for all α ∈ B(α0, δ0)

}
.

Note now that the class FRKv is included in the class HRCδ defined in Lemma C.4.4
given in Section C.4 with C = 2K2 and δ = 2Kv. This holds true provided that K0 ≤ K,
and K ≥ 1 which we can assume for n large enough since K will be chosen to be of order
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logn. To see the claimed inclusion, it is enough to show that if m is a nondecreasing
function [−R,R] then m2 can be written as the difference of two monotone functions.
This is true because m2 = m2Im≥0 − (−m2)Im<0, and m2 and −m2 are nondecreasing
on the subsets {m ≥ 0} and {m < 0} respectively. When restricting attention to the
event that ψ̂n,α is bounded by K for n large enough, we can consider only monotone
functions ψ ∈ MRK . Using the expression of ψα the latter is bounded by K0 ≤ K. On
the other hand, for any function f ∈ FRKv, there exist nondecreasing monotone functions
f1 and f2 such that ψ2 − ψ2

α = f2 − f1, such that ‖f1‖∞, ‖f2‖∞ ≤ K2 + K2
0 ≤ 2K2.

Using that K ≥ 1 implies that ‖2ψ‖∞, ‖2ψα‖∞ ≤ 2K ≤ 2K2. To finish, note that for
any α we have that

∫
X
(
ψ(αTx)− ψα(αTx)

)2
dG(x) ≤ v2 we also have that∫

X

(
ψ2(αTx)− ψ2

α(αTx)
)2
dG(x) ≤ (2K)2

∫
X

(
ψ(αTx)− ψα(αTx)

)2
dG(x)

≤ 4K2v2.

The calculation above implies that we can take δ = 2Kv. Using the result of Lemma
C.4.4 in Section C.4, it follows that the related class F̃RKv = D̃−1FRKv with D̃ =
16M0C = 32M0K

2 and a given v > 0 satisfies

HB

(
ε, F̃RKv, ‖ · ‖B,P0

)
≤ HB

(
ε, H̃RKv, ‖ · ‖B,P0

)
≤ A

ε
,

for some constant A > 0 (depending only on d and the other parameters of the prob-
lem), and that for all f̃ ∈ F̃RKv we have ‖f̃‖B,P0 ≤ D̃−1δ = (32M0K

2)−12Kv =
(16M0)−1K−1v ≡ A0K

−1v. It follows from Lemma 3.4.3 of van der Vaart and Wellner
(1996) that, with Jn is defined in (C.0.1),

E
[
‖Gn‖F̃RKv

]
. Jn(A0K

−1v),
(

1 +K2 Jn(A0K
−1v)√

nA2
0v

2

)
,

≤ A0K
−1v + 2A1/2

0 K−1/2v1/2A1/2, using inequality (C.0.2)

≤ B0K
−1/2(v + v1/2),

for some constant B0 > 0, where we used the fact that K−1/2 ≥ K−1. Therefore

E
[
‖Gn‖F̃RKv

]
. B0K

−1/2(v + v1/2)
(

1 +K2B0K
−1/2(v + v1/2)√
nA2

0v
2

)
≤ C0K

−1/2(v + v1/2)
(

1 + C0K
3/2 1 + v1/2
√
nv3/2

)
.

Using the definition of the class F̃RKv, the preceding display implies that

E
[
‖Gn‖FRKv

]
. C0K

3/2(v + v1/2)
(

1 + C0K
3/2 1 + v1/2
√
nv3/2

)
. (C.1.3)
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Now with K = K1 logn, we have that

P

{
sup

α∈B(α0,δ0)
dα(ψ̂n,α, ψα) ≥ ε

}

≤ P

 sup
α∈B(α0,δ0),ψ∈MRK ,

dα(ψ,ψα)≥ε

{∫
X×R

(
fψ,α(x, y)− fψα,α(x, y)

)
d(Pn − P0)(x, y)

−d2
α(ψ,ψα)

}
≥ 0, max

α∈B(α0,δ0)
sup
x∈X

∣∣∣ψ̂n,α(αTx)
∣∣∣ ≤ K}+ ν/2

≤
∞∑
s=0

P

{
sup

α∈B(α0,δ0),ψ∈MRK ,

2sε≤dα(ψ,ψα)≤2s+1ε

√
n

∫
X×R

(
fψ,α(x, y)− fψα,α(x, y)

)
d(Pn − P0)(x, y)

≥
√
n22sε2,

}
+ ν/2

≤
∞∑
s=0

P

{
sup

h∈FRK2s+1ε

√
n

∫
X×R

h(x, y)d(Pn − P0)(x, y) ≥
√
n22sε2

}
+ ν/2. (C.1.4)

We now show that there exists a constant C > 0 such that with ε = M(logn)n−1/3,

E

{
sup

h∈FRK2s+1ε

√
n

∣∣∣∣∫
X×R

h(x, y)d(Pn − P0)(x, y)
∣∣∣∣
}
≤ CM1/2(logn)2n−1/62(s+1)/2.

(C.1.5)

An application of Markov’s inequality, together with (C.1.4), then yields, with ε =
M(logn)n−1/3

P

{
sup

α∈B(α0,δ0)
dα(ψ̂n,α, ψα) ≥ ε

}
≤
∞∑
s=0

CM1/2(logn)2n−1/62(s+1)/2
√
n22sε2

+ ν/2

=
∞∑
s=0

C(logn)2n−1/62(s+1)/2
√
n22sM3/2(logn)2n−2/3 + ν/2

= 21/2C

M3/2

∞∑
s=0

1
23s/2 + ν/2 ≤ ν,

forM sufficiently large. The result of Proposition 4.2.2 hence follows by showing (C.1.5).
Using the obtained bound in (C.1.3) with v = 2s+1ε and using that 2s+1 ≥ 1, s ≥ 0 and
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ε ≤ 1 for n large enough we get some some constant D0 > 0

E

{
sup

h∈FRK2s+1ε

√
n

∣∣∣∣∫
X×R

h(x, y)d(Pn − P0)(x, y)
∣∣∣∣
}

. (logn)3/2M1/22(s+1)/2(logn)1/2n−1/6

·
(

1 +D0(logn)3/2 1 +M1/22(s+1)/2(logn)1/2n−1/6
√
nM3/223(s+1)/2(logn)3/2n−1/2

)
= (logn)2n−1/6M1/22(s+1)/2

(
1 +D′0

1 +M1/22(s+1)/2(logn)1/2n−1/6

23(s+1)/2

)
≤ 2(logn)2n−1/6M1/22(s+1)/2,

with D′0 = D0M
−3/2, for s ≥ 0 and n large enough. This proves the desired result:

sup
α∈B(α0,δ0)

d2
α(ψ̂n,α, ψα) = sup

α∈B(α0,δ0)

∫ {
ψ̂n,α(αTx)− ψα(αTx)

}2
dG(x)

= Op

(
(logn)2n−2/3

)
.

C.2 Asymptotic behavior of the SSE

In this Section we prove Theorem 4.3.1 given in Section 4.3.1. The proof is decomposed
into three parts: In Section C.2.1 we first prove the existence of a crossing of zero of ξ1,n
defined in (4.3.5). The proof of consistency and asymptotic normality of α̂n are given in
Section C.2.2 and Section C.2.3.

C.2.1 Proof of existence of a crossing of zero

Let ξ be the population version of ξ1,n defined by

ξ(β) def=
∫

(JS(β))T x
{
y − ψα

(
S(β)Tx

)}
dP0(x, y), (C.2.1)

where ψα is defined by

ψα(u) def= E
[
ψ0
(
αT0X

)
|αTX = u

]
≡ E

[
ψ0
(
S(β0)TX

)
|S(β)TX = u

]
.

We have the following result:

Proposition C.2.1.
ξ1,n(β) = ξ(β) + op(1),

uniformly in β ∈ C def=
{
β ∈ Rd−1 : S(β) ∈ B(α0, δ0)

}
.
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Proof. For any β ∈ C, we write,

ξ1,n(β) =
∫

(JS(β))T x
{
y − ψα

(
S(β)Tx

)}
dPn(x, y)

+
∫

(JS(β))T x
{
ψα
(
S(β)Tx

)
− ψ̂n,α

(
S(β)Tx

)}
dPn(x, y)

= ξ(β) +
∫

(JS(β))T x
{
y − ψα

(
S(β)Tx

)}
d(Pn − P0)(x, y)

+
∫

(JS(β))T x
{
ψα
(
S(β)Tx

)
− ψ̂n,α

(
S(β)Tx

)}
d(Pn − P0)(x, y)

+
∫

(JS(β))T x
{
ψα
(
S(β)Tx

)
− ψ̂n,α

(
S(β)Tx

)}
dP0(x, y)

= ξ(β) + I + II + III. (C.2.2)

To find the rate of convergence of the term I in (C.2.2) we will use Lemma C.4.5 in Section
C.4. Note first that for 1 ≤ i ≤ d− 1 the i-th component of the vector (JS(β))T x can
be written as s(β)i1x1 + . . . + s(β)idxd, where by Assumption A8 the functions sij are
assumed to be uniformly bounded with partial derivatives that are also uniformly bounded
on the bounded convex set C to which β belongs. If B1 is the same constant found in
Lemma C.4.5 in Section C.4, then the ε-bracketing entropy is bounded above by B1K0/ε.
Applying Lemma 3.4.3 of van der Vaart and Wellner (1996), Markov’s inequality and
Lemma C.4.5 in Section C.4 to each of the empirical processes corresponding to the term
s(β)ijxj for 1 ≤ j ≤ d yields (with D = 8MRK0, and M is a constant bounding the
sum of s(β)ij and their partial derivatives) for A > 0 and for Jn is defined in (C.0.1) that

P
(
|I| ≥ An−1/2

)
≤ D

A
Jn(B2)

(
1 + Jn(B2)√

nB2
2

)
≤ D

A
B3

(
1 + B3√

nB2
2

)
, using the inequality in (C.0.2)

� 1
A
,

where B2 is the same constant of Lemma C.4.5 and B3 = B2 + 2B1/2
1 K

1/2
0 B

1/2
2 . This

implies that I = Op(n−1/2). For the last term III in (C.2.2) we get by an application of
the Cauchy-Schwarz inequality and by Proposition 4.2.2 that this term is Op(n−1/3 logn),
i.e.

III ≤

√∫ ∥∥∥(JS(β))T x
∥∥∥2

2
dG(x)

√∫ {
ψα (S(β)Tx)− ψ̂n,α (S(β)Tx)

}2
dG(x)

= Op(n−1/3 logn),

where we also use that (JS(β))T x is bounded in L2 norm, a straightforward implication
of Assumption A1 (boundedness of X and Assumption A8 (uniform boundedness of the
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components of the matrix JS). The result now follows by showing that the term II is
op(1). Consider the class of functions

GjRKv =
{
g(x, y) = s(β)xj

{
ψα
(
αTx

)
− ψ(αTx

)}
,

such that (α,β, ψ) ∈ Sd−1 × C ×MRK and (x, y) ∈ X× ∈ R,

and sup
α∈B(α0,δ0)

dα(ψα, ψ) ≤ v
}
,

with s a function satisfying (C.4.3). Then, GjRKv ⊂ QjRK −QjRK , where QjRC is the
same class defined in (C.4.4). Here, we choose K large enough such that K ≥ K0. If
follows from (C.4.6) in the proof of Lemma C.4.5 in Section C.4, that (at the cost of
increasing the constant L in (C.4.6))

HB

(
ε, G̃jRKv, ‖ · ‖P0

)
≤ LK

ε
,

where G̃jRKv = (16M0K)−1GjRKv. Also, we have for all g ∈ GjRKv

‖g‖P0 ≤MRv.

Fix ν > 0 and let sij be the i× j entry of JS(β) for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ d. Also,
let

IIij =
∫
X×R

sij(β)xj
{
ψα
(
S(β)Tx

)
− ψ̂n,α

(
S(β)Tx

)}
d(Pn − P0)(x, y).

Using Lemma C.1.1 and Proposition 4.2.2 there exists some constantK1 > 0 large enough
(and independent of n ) such that with K = K1 logn and v = K1 logn n−1/3 we have
that for A > 0

P
(
|IIij | ≥ An−1/2

)
= P

(
|IIij | ≥ An−1/2, sup

α∈B(α0,δ0)
sup
x∈X

∣∣ψ̂n,α(αTx)
∣∣ ≤ K, sup

α∈B(α0,δ0)
dα(ψα, ψ) ≤ v

)
+ ν/2

.
K

A
Jn(MRv)

(
1 + Jn(MRv)√

nM2R2v2

)
+ ν/2

≤ K

A

(
MRv + 2(MRL)1/2K1/2v1/2

)(
1 + MRv + 2(MRL)1/2K1/2v1/2

√
nM2R2v2

)
+ ν/2

≤ M̃

A
(logn)2 n−1/6

(
1 + 1

lognM2R2

)
+ ν/2

≤ ν,

for some constant M̃ > 0 and n large enough. We conclude that IIij = op(n−1/2) which
in turn implies that II = op(n−1/2).
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Proof of Theorem 4.3.1 (Existence). Using Proposition C.2.1 we get, analogously to the
development in Appendix A, the relation

ξ1,n(α) = ξ′(β0)(β − β0) +Rn(β), (C.2.3)

where Rn(α) = op(1) + o(β − β0), uniformly in β ∈ C and where ξ′ is the derivative of
ξ defined in (C.2.1). Using Lemma C.5.1 in Section C.5, we get that the derivative of ξ
at β0 is given by the matrix

ξ′(β0) = (JS(β0))T E
[
ψ′0
(
S(β0)Tx

)
Cov(X|S(β0)TX)

]
JS(β0)

= (JS(β0))T AJS(β0) = B,

where A and B are defined in (4.3.7) and (4.3.9) respectively. We now define, for h > 0,
the functions

R̃n,h(β) = 1
hd−1

∫
Kh(u1 − β01) . . .Kh(ud−1 − βd−1)Rn(u1, . . . , ud−1) du1 . . . dud−1,

where

Kh(x) = h−1K(x/h), x ∈ R,

letting K be one of the usual smooth kernels with support [−1, 1].
Furthermore, we define

ξ̃1,n,h(β) = ξ′(β0)(β − β0) + R̃nh(β).

Clearly

lim
h↓0

ξ̃1,n,h(β) = ξ1,n(β) and lim
h↓0

R̃nh(β) = Rn(β),

for each continuity point β of ξ1,n.
We now reparametrize, defining

γ = ξ′(β0)β, γ0 = ξ′(β0)β0.

This gives

ξ′(β0)(β − β0) + R̃nh(β) = γ − γ0 + R̃nh
(
B−1γ

)
,

By (C.2.3), the mapping

γ 7→ γ0 −Rn
(
B−1γ

)
,
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maps, for each η > 0, the ball Bη(β0) = {β : ‖β − β0} ≤ η} into Bη/2(β0) = {β :
‖β − β0} ≤ η/2} for all large n, with probability tending to one, where ‖ · ‖ denotes the
Euclidean norm, implying that the continuous map

γ 7→ γ0 − R̃nh
(
B−1γ

)
,

maps Bη(γ0) = {γ : ‖γ − γ0‖2 ≤ η} into itself for all large n and small h. So for large
n and small h there is, by Brouwer’s fixed point theorem, a point γnh such that

γnh = γ0 − R̃nh
(
B−1γnh

)
.

Defining βnh = B−1γnh, we get

ξ̃1,n,h(βnh) = ξ′(β0)(βnh − β0) + R̃nh(βnh) = 0. (C.2.4)

By compactness, (βn,1/k)∞k=1 must have a subsequence (βn,1/ki) with a limit β̃n, as
i→∞. Suppose that the jth component ξ1,n,j of ξ1,n does not have a crossing of zero
at β̃n. Since ξ1,n,j only has finitely many jump discontinuities, since there can only be
discontinuities at a changing of ordering of the values αTXi, there must be a closed ball
Bδ(β̃n) = {β : ‖β − β̃n‖ ≤ δ} of β̃n such that {ξ̄nj(β) : β ∈ Bδ(β̃n)} has a constant
sign in the closed ball Bδ, say ξ̄nj(β) > 0 for β ∈ B̄δ(β̃n). Again using that ξ1,n,j only
has finitely many jump discontinuities, this means that

ξ̄n,j(β) ≥ c > 0, for all β ∈ B̄δ(β̃n).

This means that the jth component ξ̃1,n,h,j of ξ̃1,n,h satisfies

ξ̃1,n,h,j(β) = [ξ′(β0)(β − β0)]j + R̃nh,j(β)

= 1
hd−1

∫ {
[ξ′(β0)(β − β0)]j +Rnj(u1, . . . , ud−1)

}
Kh(u1 − β01)

. . .Kh(ud−1 − βd−1) du1 . . . dud−1

≥ 1
hd−1

∫ {
[ξ′(β0)(u− β0)]j +Rnj(u1, . . . , ud−1)

}
Kh(u1 − β1)

. . .Kh(ud−1 − βd−1) du1 . . . dud−1 − c/2

≥ c 1
hd−1

∫
Kh(u1 − β1) . . .Kh(ud − βd) du1 . . . dud − c/2

= c/2,

for β ∈ Bδ/2(β̃n) and sufficiently small h, contradicting (C.2.4), since βnh, for h = 1/ki,
belongs to Bδ/2(β̃n) for large ki.
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C.2.2 Proof of consistency of the SSE

Proof of Theorem 4.3.1 (Consistency). Since β̂n is contained in the compact set C, the
sequence (β̂n) has a subsequence (β̂nk = β̂nk(ω)), converging to an element β∗. Let
αnk = S(β̂nk). If β̂nk = β̂nk(ω) −→ β∗, we get by continuity of the map S that
αnk → α∗ = S(β∗). By Proposition 4.2.2, we also have

ψ̂nk,α̂nk
(
S(βnk)Tx

)
−→ ψα∗(S(β∗)Tx),

where ψα is defined in (4.2.3). By Proposition C.2.1 and the fact that in the limit, the
crossing of zero becomes a root of the continuous limiting function, we get

lim
k→∞

ξ1,nk(βnk) = ξ(β∗) = 0,

where

ξ(β∗) =
∫
JS(β∗)Tx

{
y − ψα∗

(
S(β∗)Tx

)}
dP0(x, y)

=
∫
JS(β∗)Tx

{
ψ0
(
S(β0)Tx

)
− ψα∗

(
S(β∗)Tx

)}
dG(x)

=
∫
JS(β∗)Tx

[
ψ0
(
S(β0)Tx

)
− E

{
ψ0
(
S(β0)Tx

)
|S(β∗)TX = S(β∗)Tx

}]
dG(x)

= E
[
Cov

[
JS(β∗)TX, ψ0

(
S(β0)TX

)
|S(β∗)TX

]]
.

We next conclude that

0 = (β0 − β∗)T ξ(β∗)

= E
[
Cov

[
(β0 − β∗)TJS(β∗)TX, ψ0

(
S(β∗)TX + (S(β0)− S(β∗))TX

)
|S(β∗)TX

]]
,

which can only happen if β0 = β∗ where we use the positivity of the ran-
dom variable Cov((α0 − α)TX, ψ0(αTX)|αTX) shown in Lemma C.5.2 in Sec-
tion C.5 and Assumption A6 which guarantees that the random variable Cov[(β0 −
β∗)TJS(β)TX, ψ0(S(β)TX + (S(β0) − S(β))TX)|S(β)TX] is not equal to 0 almost
surely for all β 6= β0. Note that

Cov
[
(β0 − β)TJS(β)TX, ψ0

(
S(β)TX + (S(β0)− S(β))TX

)
|S(β)TX = u

]
= Cov

[
(S(β0)− S(β) + o(β − β0))TX, ψ0

(
S(β)TX + (S(β0)− S(β))TX

) ∣∣
S(β)TX = u

]
= Cov

[
(α0 −α)TX, ψ0(αTX + (α0 −α)TX)|αTX = u

]
+ o(β − β0),

where the first term in the expression above is positive for all α ∈ B(α0, δ0) by Lemma
C.5.2 in Section C.5.
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C.2.3 Proof of asymptotic normality of the SSE

Proof of Theorem 4.3.1 (Asymptotic Normality). We define ξ1,n at β̂n by putting

ξ1,n(β̂n) = 0. (C.2.5)

Note that, with this definition, we use the representation of the components as a convex
combination of the left and right limit at β̂n

ξ1,n,j(β̂n) = γjξ1,n,j(β̂n−) + (1− γj)ξ1,n,j(β̂n+) = 0, (C.2.6)

where ξ1,n,j denotes the jth component of ξ1,n and where we can choose γj ∈ [0, 1] in
such a way that (C.2.6) holds since we have a crossing of zero componentwise. Note that
this does not change the location of the crossing of zero. Since the following asymptotic
representations are also valid for one-sided limits as used in (C.2.6) we can use Definition
(C.2.5) and assume ξ1,n(β̂n) = 0. We show

ξ1,n(β̂n) = JS(β0)T
∫ {

x− E(X|S(β0)Tx)
}{

y − ψ0
(
S(β0)Tx

)}
d
(
Pn − P0

)
(x, y)

+ JS(β0)T
∫ {

x− E(X|S(β0)Tx)
}{

y − ψα̂n
(
S(βn)Tx

)}
dP0(x, y)

+ op

(
n−1/2 + ‖β̂n − β0‖

)
, (C.2.7)

where from now on we will use the notation E(X|S(β)Tx) to denote
E(X|S(β)TX = S(β)Tx) for all β ∈ C and x ∈ X .

Since β̂n →p β0 and since the function β → ψS(β)(S(β)Tx) ≡ ψα(αTx) has derivative
ψ′0(S(β0)Tx)JS(β0)T

(
x − E(X|S(β0)TX = S(β0)Tx)

)
at β = β0 for all x ∈ X (See

Lemma C.5.1 in Section C.5), we get by Definition (C.2.5) and a Taylor expansion at
β = β0 that,

JS(β0)T
∫ {

x− E(X|S(β0)Tx)
}{

y − ψ0
(
S(β0)Tx

)}
d
(
Pn − P0

)
(x, y)

= B
(
β̂n − β0

)
+ op

(
n−1/2 + ‖β̂n − β0‖

)
,

where B is defined in (4.3.9). We conclude that
√
n(β̂n − β0) d→ Nd (0,Π) ,

where Π is defined in (4.3.10). The asymptotic normality of the estimator α̂n then follows
by noting that

√
n(α̂n −α0) = JS(β0)

√
n(β̂n − β0) + op

(√
n(β̂n − β0)

)
d→ Nd

(
0,JS(β0)Π (JS(β0))T

)
.
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To prove (C.2.7) we first define the piecewise constant function Ēn,β

Ēn,β(u) =


E
[
X|S(β)TX = τi,β

]
if ψα(u) > ψ̂n,α(τi) for all u ∈ (τi, τi+1),

E
[
X|S(β)TX = s

]
if ψα(s) = ψ̂n,α(s) for some s ∈ (τi, τi+1),

E
[
X|S(β)TX = τi+1,β

]
if ψα(u) < ψ̂n,α(τi) for all u ∈ (τi, τi+1),

where the τi,β denote the sequence of jump points of the monotone LSE ψ̂n,α = ψ̂n,S(β).
We then have

∫
Ēn,β̂n

(
S(β̂n)Tx

){
y − ψ̂n,α̂n

(
S(β̂n)Tx

)}
dPn(x, y) = 0. (C.2.8)

This follows from the fact that ψ̂n,α, i.e. the minimizer of the quadratic criterion∫
X×R

(
y − ψ(αTx)

)2
dPn(x, y) over monotone functions ψ ∈ M, is the left derivative

of the greatest convex minorant of the cumulative sum diagram. (See also Groeneboom
and Jongbloed (2014), p.332). By Lemma C.5.6 in Section C.5 we also know that ψ′α
stays away from zero for all α = S(β) in a neighborhood of α0 = S(β0). Using the same
techniques as in Groeneboom and Jongbloed (2014), we can find a constant C > 0 such
that for all 1 ≤ i ≤ d and u ∈ Iα,

∣∣E (Xi|S(β)TX = u
)
− Ēni,β(u)

∣∣ ≤ C ∣∣∣ψα(u)− ψ̂n,α(u)
∣∣∣ , (C.2.9)

where Ēni,β denotes the ith component of En,β. In the sequel, we will use JS(β̂n) =
Op(1), an immediate consequence of consistency of α̂n and Assumption A8. Now, as a
consequence of (C.2.8), we can write

ξ1,n(β̂n) = JS(β̂n)T
∫ {

x− E
(
X|S(β̂n)Tx

)}{
y − ψ̂n,α̂n

(
S(β̂n)Tx

)}
dPn(x, y)

+ JS(β̂n)T
∫ {

E
(
X|S(β̂n)Tx

)
− Ēn,β̂n

(
S(β̂n)Tx

)}
·
{
y − ψ̂n,α̂n

(
S(β̂n)Tx

)}
dPn(x, y)

= JS(β̂n)T
(
I + II

)
. (C.2.10)
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The term II can be written as

II =
∫ {

E
(
X|S(β̂n)Tx

)
− Ēn,β̂n

(
S(β̂n)Tx

)}
·
{
y − ψ̂n,α̂n

(
S(β̂n)Tx

)}
d(Pn − P0)(x, y)

+
∫ {

E
(
X|S(β̂n)Tx

)
− Ēn,β̂n

(
S(β̂n)Tx

)}
·
{
y − ψα̂n

(
S(β̂n)Tx

)}
dP0(x, y)

+
∫ {

E
(
X|S(β̂n)Tx

)
− Ēn,β̂n

(
S(β̂n)Tx

)}
·
{
ψ̂n,α̂n

(
S(β̂n)Tx

)
− ψα̂n

(
S(β̂n)Tx

)}
dP0(x, y)

= IIa + IIb + IIc. (C.2.11)

We first note that by Lemma C.5.4 in Section C.5, the functions u 7→ E(Xi|S(β)TX = u)
are uniformly bounded by R for all β ∈ C and i ∈ {1, . . . , d}. Also, they admit a bounded
variation, with a total variation that is uniformly bounded for all β ∈ C and i ∈ {1, . . . , d}.
By definition of Ēn,β its i-th component, Ēni,β is also uniformly bounded by R and has a
finite total variation which cannot exceed the total variation of u 7→ E(Xi|S(β)TX = u).
Using Lemma C.5.5 in Section C.5 , we can find two monotone functions f1 and f2 such
that u 7→ E

(
X|S(β)TX = u

)
− Ēn,β(u) = f2(u)− f1(u) with f1, f2 ∈MRC1 for some

constant C1 > 0. Also, we know that ψ̂n,α̂n ∈MRK with K = K1 logn with increasing
probability as n→∞ provided that K1 > 0 is chosen large enough. Noting that for any
bounded increasing functions f1, f2, f3 we have that (f2 − f1)f3 is again bounded and
has a bounded variation, it follows that the class of functions, Fa say, involved in term
IIa is included in HRK′v defined in Lemma C.4.4 of Section C.4. Here, the constant
K ′ = K2 logn for some large enough constant K2 > 0, and v = C2(logn)2n−1/3 for
some constant C2 > 0 using (C.2.9) and Proposition 4.2.2. Using Lemma C.4.4 in Section
C.4, we can show that (when the event ψ̂n,α̂n ∈MRK occurs)

HB

(
ε, F̃a, ‖ · ‖B,P0

)
≤ B1

ε
,

for some constant B1 > 0, with F̃a = D̃−1Fa with D̃ � K ′ = K2 logn. Also, for any
element f̃ = D̃−1f ∈ F̃ we have that

‖f̃‖B,P0 ≤ B2D̃
−1v = C2(logn)n−1/3 = δn,

for some constant C2 > 0. Let IIa,i be the term corresponding to i-th component of X.



Appendix C.2. Asymptotic behavior of the SSE 227

Using Markov’s inequality we have for a fixed A > 0, ν > 0 and n large enough that

P
(
|IIa,i| ≥ An−1/2

)
= P

(
|IIa,i| ≥ An−1/2, sup

α∈B(α0,δ0)
sup
x∈X

∣∣ψ̂n,α(αTx)
∣∣ ≤ K)+ ν/2

.
D̃

A
Jn(δn)

(
1 + Jn(δn)√

nδ2
n

)
+ ν/2 .

logn
A

B2δ
1/2
n

(
1 + B2
√
nδ

3/2
n

)
+ ν/2

.
1
A

(logn)3/2n−1/6
(

1 + B3

(logn)3/2

)
+ ν/2 ≤ ν,

for some constant B2 > 0 and B3 = B2C
−3/2
2 using the inequality in (C.0.2) and taking

n large enough. We conclude that IIa,i = op(n−1/2) which in turn implies that

IIa = op(n−1/2).

We turn now to IIb. Using Lemma C.5.1 in Section C.5 and a Taylor expansion of
β 7→ ψα

(
S(β)Tx

)
we get,

ψα
(
S(β)Tx

)
= ψ0

(
S(β0)Tx

)
+ (β − β0)T

[
JS(β0)T

(
x− E(X|S(β0)TX = S(β0)Tx)

)
ψ′0
(
S(β0)Tx

)]
+ o(β − β0), (C.2.12)

so that

IIb = JS(β̂n)T
∫ {

E
(
X|S(β̂n)Tx

)
− Ēn,β̂n

(
S(β̂n)Tx

)}
·
{
ψ0
(
S(β0)Tx

)
− ψα̂n

(
S(β̂n)Tx

)}
dP0(x, y)

= op

(
β̂n − β0

)
,

using consistency of β̂n. We next consider the term IIc. Using uniform boundedness of
JS on C and the inequality in (C.2.9) it follows that

‖IIc‖ .
∫ {

ψα̂n
(
α̂Tnx

)
− ψ̂n,α̂n

(
α̂Tnx

)}2
dG(x)

= Op((logn)2n−2/3) = op(n−1/2),
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uniformly in β ∈ C. We conclude that (C.2.10) can be written as

ξ1,n(β̂n) = JS(β̂n)T
∫ {

x− E
(
X|S(β̂n)Tx

)}{
y − ψ̂n,α̂n

(
S(β̂n)Tx

)}
dPn(x, y)

+ op

(
n−1/2 + (β̂n − β0)

)
= JS(β̂n)T

∫ {
x− E

(
X|S(β̂n)Tx

)}{
y − ψα̂n

(
S(β̂n)Tx

)}
dPn(x, y)

+ JS(β̂n)T
∫ {

x− E
(
X|S(β̂n)Tx

)}
·
{
ψα̂n

(
S(β̂n)Tx

)
− ψ̂n,α̂n

(
S(β̂n)Tx

)}
dPn(x, y)

+ op

(
n−1/2 + (β̂n − β0)

)
= Ia + Ib + op

(
n−1/2 + (β̂n − β0)

)
. (C.2.13)

We show below that Ib = op
(
n−1/2 + (α̂n −α0)

)
such that the limiting distribution of

the score estimator follows from the analysis of the term Ia which can be rewritten as

Ia = JS(β̂n)T
∫ {

x− E
(
X|S(β̂n)Tx

)}{
y − ψα̂n

(
S(β̂n)Tx

)}
d(Pn − P0)(x, y)

+ JS(β̂n)T
∫ {

x− E
(
X|S(β̂n)Tx

)}{
y − ψα̂n

(
S(β̂n)Tx

)}
dP0(x, y),

(C.2.14)

where we recall that ψα(u) = E
(
ψ0(αTX|αTX = u

)
. For the second term on the

right-hand side of (C.2.14) we have by (C.2.12)

JS(β̂n)T
∫ {

x− E
(
X|S(β̂n)Tx

)}{
y − ψα̂n

(
S(β̂n)Tx

)}
dP0(x, y)

= −
{
JS(β0)T

∫
ψ′0
(
S(β0)Tx

) {
x− E

(
X|S(β0)Tx

)}
·
{
x− E

(
X|S(β0)Tx

)}T
dP0(x, y)JS(β0)

}
(β̂n − β0)

+ op(β̂n − β0). (C.2.15)

For the first term on the right-hand side of (C.2.14) we have that

JS(β̂n)T
∫ {

x− E
(
X|S(β̂n)Tx

)}{
y − ψα̂n

(
S(β̂n)Tx

)}
d(Pn − P0)(x, y)

= JS(β0)T
∫ {

x− E
(
X|S(β0)Tx

)} {
y − ψ0

(
S(β0)Tx

)}
d(Pn − P0)(x, y)

+ op(n−1/2) + op(β̂n − β0). (C.2.16)
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Indeed, since this amounts to showing that

A =
(
JS(β̂n)− JS(β0)

)T ∫ {
x− E

(
X|S(β̂n)Tx

)}
·
{
y − ψα̂n

(
S(β̂n)Tx

)}
d(Pn − P0)(x, y)

= op(β̂n − β0), (C.2.17)

B =
∫ (

E
(
X|S(β̂n)Tx

)
− E

(
X|S(β0)Tx

))
(y − ψ0(αT0 x))d(Pn − P0)(x, y)

= op(n−1/2), (C.2.18)

and

C =
∫ (

x− E
(
X|S(β̂n)Tx

))(
ψ0(αT0 x)− ψα̂n

(
S(β̂n)Tx

))
d(Pn − P0)(x, y)

= op(n−1/2). (C.2.19)

We start by proving (C.2.17). Using again that u 7→ E
(
Xi|S(β̂n)TX = u

)
is a bounded

function with a uniformly bounded total variation, and that xi is a fixed (and deterministic)
function, we can show that the class of functions involved in A, FA say, satisfies FA ⊂
xiHRC1v +HRC1v with v and C1 are some constants that are independent of n (since
ψα, X and u 7→ E[X|αTX = u] are all bounded by constants independent of n).
Now it follows by Lemma C.4.4 in Section C.4 that HB

(
ε, H̃RC1v, ‖ · ‖B,P0

)
. 1/ε with

H̃RC1v = (16M0C1)−1HRC1v and ‖h̃‖B,P0 . C2 for some constant C2 > 0 that is
independent of n for all h̃ ∈ H̃RC1v. Hence, using arguments similar to those of the proof
of IIa = op(n−1/2) we can show that

∫ {
x− E

(
X|S(β̂n)Tx

)}{
y − ψα̂n

(
S(β̂n)Tx

)}
d(Pn − P0)(x, y) = Op(n−1/2).

Using a Taylor expansion of JS(β) around β0 gives the desired rate in (C.2.17).

Now we turn to term B in (C.2.18). Fix ν > 0 and i ∈ {1, . . . , d}. Using consistency of
β̂n and Lemma C.5.3 in Section C.5, then for all η > 0 there exists n large enough such
that

∣∣∣E(Xi|S(β̂n)Tx
)
− E

(
Xi|S(β0)Tx

) ∣∣∣ ≤ η,
with probability at least 1 − ν/2. Thus, for L > 0 we have that for the ith component
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Bi of B defined in (C.2.18) and for n large enough

P (|Bi| > Ln−1/2)

= P
(∣∣∣ ∫ (E(Xi|S(β̂n)Tx

)
− E

(
Xi|S(β0)Tx

))
(y − ψ0(αT0 x))d(Pn − P0)(x, y)

∣∣∣
> Ln−1/2

)
≤ ν/2 + 1

L
E[‖Gn‖F ′ ]

≤ ν/2 + C1

L
η,

where F ′ is defined in (C.4.9) and where we have used the result of Lemma C.4.7 for
some constant C1 > 0. Choosing η such that η ≤ νLC−1

1 /2 gives the claimed rate of
convergence in (C.2.18).
To establish the convergence rate of C, we first note that, for i ∈ {1, . . . , d}, we have
that x 7→ E(Xi|S(β̂n)TX = S(β̂n)Tx)ψα̂n(S(β̂n)Tx) belongs to the class GRC1−GRC1

for some constant C1 > 0 where GRK was defined in (C.4.1). This follows from using
again the fact that the function u 7→ E

(
Xi|S(β)TX = u

)
is uniformly bounded and has

a uniform total variation for all β ∈ C, that ψα is a bounded monotone function, and the
fact that (f1−f2)f3 is a bounded function with bounded total variation for any increasing
and bounded functions f1, f2 and f3, where we again use Lemma C.5.5 in Section C.5
to write the function u 7→ E

(
Xi|S(β)TX = u

)
as the difference f1 − f2. Note now

that both x 7→ xi and x 7→ ψ0(S(β0)Tx) are fixed and bounded functions, and that the
order bracketing entropy of a class does not get altered after multiplication its members
by such functions (similarly for addition). It follows from Lemma C.4.2 and Lemma C.4.3
in Section C.4, that the ε-bracketing entropy of the class of functions involved in term C

with respect to ‖ · ‖P0 is bounded above by B/ε for some constant B.
Furthermore, using consistency of α̂n and Lemma C.5.3 of Section C.5, we can find for
any fixed ν > 0 an η > 0 such that supx |ψ0(αT0 x)−ψα̂n(α̂Tnx)| ≤ η with probability at
least 1− ν/2 for n large enough. Hence, at the cost of increasing the constant B, both
the ‖ · ‖∞ and ‖ · ‖P0 norms of the functions of the class involved in term C are bounded
above by Bη. Using Markov’s inequality and Lemma 3.4.2 of van der Vaart and Wellner
(1996) it follows that for all L > 0

P (|Ci| > Ln−1/2)

= P
(∣∣∣∣∫ (xi − E

(
Xi|S(β̂n)Tx

) )(
ψ0(S(β0)Tx)− ψα̂n

(
S(β̂n)Tx

) )
d(Pn − P0)(x, y)

∣∣∣∣
≥ Ln−1/2

)
≤ ν/2 + 1

L
Jn(Bη)

(
1 +Bη

Jn(Bη)√
nB2η2

)
≤ ν/2 + 1

L

(
B1η

1/2 + B1

B

1√
n

)
≤ ν,
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taking η small enough and n large enough. We conclude that C = op(n−1/2). Now we
come back to term Ib given by

Ib = JS(β̂n)T
∫ {

x− E
(
X|S(β̂n)Tx

)}
·
{
ψα̂n

(
S(β̂n)Tx

)
− ψ̂n,α̂n

(
S(β̂n)Tx

)}
dPn(x, y).

Note first that

Ib = JS(β̂n)T
∫ {

x− E
(
X|S(β̂n)Tx

)}
·
{
ψα̂n

(
S(β̂n)Tx

)
− ψ̂n,α̂n

(
S(β̂n)Tx

)}
d(Pn − P0)(x, y)

= JS(β̂n)T I ′b, (C.2.20)

since

∫ {
x− E

(
X|S(β̂n)Tx

)}{
ψα̂n

(
S(β̂n)Tx

)
− ψ̂n,α̂n

(
S(β̂n)Tx

)}
dP0(x, y)

= E
[(
X − E

(
X|S(β̂n)TX

))(
ψα̂n

(
S(β̂n)TX

)
− ψ̂n,α̂n

(
S(β̂n)TX

))]
= E

[
E
[(
X − E

(
X|S(β̂n)TX

))
|S(β̂n)TX

]
·
(
ψα̂n

(
S(β̂n)TX

)
− ψ̂n,α̂n

(
S(β̂n)TX

))]
= 0.

Let Fb denote the class of functions involved in term I ′b defined in (C.2.20), where in the
definition of this class we consider the event where ψ̂nα̂n is bounded. Given the arguments
used recurrently above we can directly state that the ε-bracketing entropy of this class is
no larger than A1 logn/ε for some constant A1 > 0 with increasing probability. Also, the
‖ · ‖∞ and ‖ · ‖P0 norms of the members of the class Fb are respectively bounded above
with increasing probability by A1 logn and A1 logn n−1/3 = ηn at the cost of taking a
larger A1. For a fixed ν > 0 and L > 0 we have for i ∈ {1, . . . , d},using Lemma 3.4.2 of
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van der Vaart and Wellner (1996),

P
(∣∣∣ ∫ {xi − E

(
Xi|S(β̂n)Tx

)}{
ψα̂n

(
S(β̂n)Tx

)
− ψ̂n,α̂n

(
S(β̂n)Tx

)}
d(Pn − P0)(x, y)

∣∣∣ > Ln−1/2
)

≤ ν/2 + A2

L
(logn)1/2η1/2

n

(
1 + A2(logn)1/2η

1/2
n√

nη2
n

(logn)
)

≤ ν/2 + A2

L
(logn)1/2η1/2

n

(
1 + A2(logn)3/2

√
nη

3/2
n

)

. ν/2 + A2

L
(logn)n−1/6

(
1 + A2

A
3/2
1

)
≤ ν,

for some constant A2 > 0 and n large enough. This implies that Ib = op(n−1/2). We
conclude by (C.2.15), (C.2.16), (C.2.17), (C.2.18), (C.2.19) and Definition (C.2.5) that,

B
(
β̂n − β0

)
=
∫

(JS(β0))T
{
x− E(X|S(β0)Tx)

}{
y − ψ0

(
S(β0)Tx

)}
d
(
Pn − P0

)
(x, y)

+ op

(
n−1/2 + ‖β̂n − β0‖

)
,

where

B = (JS(β0))T E
[
ψ′0(S(β0)TX) Cov(X|S(β0)TX)

]
(JS(β0)) .

We get,
√
n
(
β̂n − β0

)
=
√
nB−1

∫
(JS(β0))T

{
x− E(X|S(β0)Tx)

}{
y − ψ0

(
S(β0)Tx

)}
d
(
Pn − P0

)
(x, y)

+ op

(
1 +
√
n‖β̂n − β0‖

)
d→ N(0,Π),

where

Π = B−1 (JS(β0))T ΣJS(β0)B−1 ∈ R(d−1)×(d−1).

The asymptotic limiting distribution of the single index score estimator α̂n now follows
by an application of the Delta method and we conclude that

√
n(α̂n −α0) = JS(β0)

√
n(β̂n − β0) + op

(√
n(β̂n − β0)

)
d→ Nd

(
0, JS(β0)Π (JS(β0))T

)
.

Finally, the result of Theorem 4.3.1 follows by Lemma 4.3.1. This completes the proof.
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C.3 Asymptotic behavior of the ESE

In this section we prove (iii) of Theorem 4.3.2 on the asymptotic normality of the efficient
score estimator α̃n. The proofs of existence and consistency of α̃n, given in (i) and (ii)
of Theorem 4.3.2 follow the same lines as the corresponding proofs for the simple score
estimator α̂n given in Sections C.2.1 and C.2.1 and are omitted.

Proof of Theorem 4.3.2 (Asymptotic Normality). Let τi denote the sequence of jump
points of the monotone LSE ψ̂n,α. We introduce the piecewise constant function ρ̄n,β
defined for u ∈ [τi, τi+1) as

ρ̄n,β(u) =
E[X|S(β)TX = τi]ψ′α(τi) if ψα(u) > ψ̂n,α(τi) for all u ∈ (τi, τi+1),
E[X|S(β)TX = s]ψ′α(s) if ψα(s) = ψ̂n,α(s) for some s ∈ (τi, τi+1),
E[X|S(β)TX = τi+1]ψ′α(τi+1) if ψα(u) < ψ̂n,α(τi) for all u ∈ (τi, τi+1).

We can write,

ξ2,nh(β̃n) = JS(β̃n)T
∫ {

xψ̃′nh,α
(
S(β̃n)Tx

)
− E

(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)}
·
{
y − ψ̂nα̃n

(
S(β̃n)Tx

)}
dPn(x, y)

+ JS(β̃n)T
∫ {

E
(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)
− ρ̄n,β̃n

(
S(β̃n)Tx

)}
·
{
y − ψ̂nα̃n

(
S(β̃n)Tx

)}
dPn(x, y)

= J + JJ, (C.3.1)

using, ∫
ρ̄n,β̃n

(
S(β̃n)Tx

){
y − ψ̂nα̃n

(
S(β̃n)Tx

)}
dPn(x, y) = 0.

The term JJ can be written as

JJ = JS(β̃n)T
∫ {

E
(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)
− ρ̄n,β̃n

(
S(β̃n)Tx

)}
·
{
y − ψ̂nα̃n

(
S(β̃n)Tx

)}
d(Pn − P0)(x, y)

+ JS(β̃n)T
∫ {

E
(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)
− ρ̄n,β̃n

(
S(β̃n)Tx

)}
·
{
y − ψα̃n

(
S(β̃n)Tx

)}
dP0(x, y)

+ JS(β̃n)T
∫ {

E
(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)
− ρ̄n,β̃n

(
S(β̃n)Tx

)}
·
{
ψα̃n

(
S(β̃n)Tx

)
− ψ̂nα̃n

(
S(β̃n)Tx

)}
dP0(x, y)

= JJa + JJb + JJc, (C.3.2)
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We first note that by Assumption A10, the functions u 7→ ψ′α(u) = ψ′S(β)(u)
are uniformly bounded and have a total variation that is uniformly bounded for all
β ∈ C. This also implies, using Lemma C.5.4 in Section C.5, that the functions
u 7→ E

(
Xi|S(β)TX = u

)
ψ′α(u) have a bounded variation for all β ∈ C. Using the

same arguments as those for term IIa defined in (C.2.11) in the proof of Theorem 4.3.1,
it easily follows that,

JJa = op(n−1/2).

We next consider the term JJb. By Lemma C.5.6 in Section C.5, we know that ψ′α stays
away from zero for all S(β) in a neighborhood of S(β0). Using the same techniques as
in Groeneboom and Jongbloed (2014), we can find a constant K > 0 such that for all
1 ≤ i ≤ d and u ∈ Iα,∣∣E (Xi|S(β)TX = u

)
ψ′α(u)− ρ̄ni,β(u)

∣∣ ≤ K ∣∣∣ψα(u)− ψ̂n,α(u)
∣∣∣ , (C.3.3)

where ρ̄ni,β denotes the ith component of ρn,β. This implies that the difference
E
(
Xi|S(β)TX = u

)
ψ′α(u) − ρ̄ni,β(u) converges to zero for all u ∈ Iα. Recall from

(C.2.12) that, using Lemma C.5.1 in Section C.5 and a Taylor expansion of β 7→
ψα
(
S(β)Tx

)
we get

ψα
(
S(β)Tx

)
= ψ0

(
S(β0)Tx

)
+ (β − β0)T

[
JS(β0)T

(
x− E(X|S(β0)TX = S(β0)Tx)

)
ψ′0
(
S(β0)Tx

)]
+ o(β − β0),

such that

JJb = JS(β̃n)T
∫ {

E
(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)
− ρ̄n,β̃n

(
S(β̃n)Tx

)}
·
{
ψ0
(
S(β0)Tx

)
− ψα̃n

(
S(β̃n)Tx

)}
dP0(x, y)

= op
(
β̃n − β0

)
.

For the therm JJc, we get by an application of the Cauchy-Schwarz inequality together
with the uniform boundedness of JS, Proposition 4.2.2 and (C.3.3) that,

JJc ≤ JS(β̃n)T
√∫ {

E
(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)
− ρ̄n,β̃n

(
S(β̃n)Tx

)}2
dP0(x, y)

·

√∫ {
ψα̃n

(
S(β̃n)Tx

)
− ψ̂nα̃n

(
S(β̃n)Tx

)}2
dP0(x, y)

.
∫ {

ψα̃n
(
α̃Tnx

)
− ψ̂nα̃n

(
α̃Tnx

)}2
dG(x)

= Op

(
(logn)2n−2/3

)
= op(n−1/2).
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We conclude that (C.3.1) can be written as

ξ2,nh(β̃n)

= JS(β̃n)T
∫ {

xψ̃′nh,α̃n
(
S(β̃n)Tx

)
− E

(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)}
·
{
y − ψ̂nα̃n

(
S(β̃n)Tx

)}
dPn(x, y)

+ op

(
n−1/2 + (β̃n − β0)

)
= JS(β̃n)T

∫ {
xψ̃′nh,α̃n

(
S(β̃n)Tx

)
− E

(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)}
·
{
y − ψα̃n

(
S(β̃n)Tx

)}
dPn(x, y)

+ JS(β̃n)T
∫ {

xψ̃′nh,α̃n
(
S(β̃n)Tx

)
− E

(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)}
·
{
ψα̃n

(
S(β̃n)Tx

)
− ψ̂nα̃n

(
S(β̃n)Tx

)}
d(Pn − P0)(x, y)

+ JS(β̃n)T
∫ {

xψ̃′nh,α̃n
(
S(β̃n)Tx

)
− E

(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)}
·
{
ψα̃n

(
S(β̃n)Tx

)
− ψ̂nα̃n

(
S(β̃n)Tx

)}
dP0(x, y)

+ op

(
n−1/2 + (β̃n − β0)

)
= Ja + Jb + Jc + op

(
n−1/2 + (β̃n − β0)

)
. (C.3.4)

We first consider the term Jb. By Assumption A10, Lemma C.5.4 and Lemma C.5.7
in Section C.5, we get that the functions u 7→ E

(
X|S(β)Tx = u

)
ψ′α̃n (u) and u 7→

ψ̃′nh,α̃n(u) have a uniformly bounded total variation for all β ∈ C. Using similar arguments
as for the term Ib defined in (C.2.13) we get for A > 0 and ν > 0 that

P (|Jb| ≥ An−1/2) ≤ ν,

for n large enough and we conclude that Jb = op(n−1/2). For the term Jc we get,

Jc = JS(β̃n)T
∫ {

x− E
(
X|S(β̃n)Tx

)}
ψ̃′nh,α̃n

(
S(β̃n)Tx

)
·
{
ψα̃n

(
S(β̃n)Tx

)
− ψ̂nα̃n

(
S(β̃n)Tx

)}
dP0(x, y)

+ JS(β̃n)T
∫ {

ψ̃′nh,α̃n
(
S(β̃n)Tx

)
− ψ′α̃n

(
S(β̃n)Tx

)}
E
(
X|S(β̃n)Tx

)
·
{
ψα̃n

(
S(β̃n)Tx

)
− ψ̂nα̃n

(
S(β̃n)Tx

)}
dP0(x, y)

= JS(β̃n)T
∫ {

ψ̃′nh,α̃n
(
S(β̃n)Tx

)
− ψ′α̃n

(
S(β̃n)Tx

)}
E
(
X|S(β̃n)Tx

)
·
{
ψα̃n

(
S(β̃n)Tx

)
− ψ̂nα̃n

(
S(β̃n)Tx

)}
dP0(x, y),
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Furthermore, let Hβ be the distribution function of the random variable S(β)TX and let
E(X|u) denote the conditional expectation of X given S(β)TX = u, then

∫ {
ψ̃′nh,α̃n (u)− ψ′α̃n (u)

}
E (X|u)

{
ψα̃n(u)− ψ̂nα̃n (u)

}
dHβ̃n(u)

=
∫ { 1

h

∫
K ({u− v}/h) dψ̂nα̃n(v)− ψ′α̃n (u)

}
· E (X|u)

{
ψα̃n(u)− ψ̂nα̃n (u)

}
dHβ̃n(u)

=
∫ ( 1

h2

∫
K ′ ({u− v}/h)

{
ψ̂nα̃n(v)− ψα̃n (v)

}
dv

)
· E (X|u)

{
ψα̃n(u)− ψ̂nα̃n (u)

}
dHβ̃n(u)

+
∫ ( 1

h

∫
K ({u− v}/h)ψ′α̃n (v) dv − ψ′α̃n (u)

)
· E (X|u)

{
ψα̃n(u)− ψ̂nα̃n (u)

}
dHβ̃n(u).

The last term on the right hand side is Op
(
n−2/7−1/3) = op

(
n−1/2). This follows by an

application of the Cauchy-Schwarz inequality since

{∫ ( 1
h

∫
K ({u− v}/h)ψ′α̃n (v) dv − ψ′α̃n (u)

)2
dHβ̃n(u)

}1/2

= Op

(
n−2/7

)
,

and

{∫ (
ψα̃n(u)− ψ̂nα̃n (u)

)2
dHβ̃n(u)

}1/2
= Op

(
n−1/3

)
.

The first term on the right hand side is Op
(
n1/7−2/3) = op

(
n−1/2) using that for small

h

∫ ( 1
h2

∫
K ′ ({u− v}/h)

{
ψ̂nα̃n(v)− ψα̃n (v)

}
dv

)
· E (X|u)

{
ψα̃n(u)− ψ̂nα̃n (u)

}
dHβ̃n(u)

.
1
h

∫ (
ψα̃n(u)− ψ̂nα̃n (u)

)2
dHβ̃n(u).
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We conclude that (C.3.4) can be written as

ξ2,nh(β̃n) = JS(β̃n)T
∫ {

xψ̃′nh,α̃n
(
S(β̃n)Tx

)
− E

(
X|S(β̃n)Tx

)
ψ′α̃n

(
S(β̃n)Tx

)}
·
{
y − ψα̃n

(
S(β̃n)Tx

)}
dPn(x, y)

+ op

(
n−1/2 + (β̃n − β0)

)
= JS(β̃n)T

∫
x
{
ψ̃′nh,α̃n

(
S(β̃n)Tx

)
− ψ′α̃n

(
S(β̃n)Tx

)}
·
{
y − ψα̃n

(
S(β̃n)Tx

)}
d(Pn − P0)(x, y)

+ JS(β̃n)T
∫
x
{
ψ̃′nh,α̃n

(
S(β̃n)Tx

)
− ψ′α̃n

(
S(β̃n)Tx

)}
·
{
y − ψα̃n

(
S(β̃n)Tx

)}
dP0(x, y)

+ JS(β̃n)T
∫ {

x− E
(
X|S(β̃n)Tx

)}
ψ′α̃n

(
S(β̃n)Tx

)
·
{
y − ψα̃n

(
S(β̃n)Tx

)}
d(Pn − P0)(x, y)

+ JS(β̃n)T
∫ {

x− E
(
X|S(β̃n)Tx

)}
ψ′α̃n

(
S(β̃n)Tx

)
·
{
y − ψα̃n

(
S(β̃n)Tx

)}
dP0(x, y)

+ op

(
n−1/2 + (β̃n − β0)

)
= JJJa + JJJb + JJJc + JJJd + op

(
n−1/2 + (β̃n − β0)

)
.

We consider JJJa first and note that by Assumption A10 and Lemma C.5.7 i Section C.5,
the functions ψ′α and ψ̃′nh,α have a uniformly bounded total variation. By an application
of Lemma C.5.5 we can write the difference ψ̃′nh,α−ψ′α as the difference of two monotone
functions, say f1, f2 ∈ MRC1 for some constant C1 > 0. This implies that the class of
functions

F1 =
{
f(x, y) def= {ψ̃′nh,α

(
S(β)Tx

)
− ψ′α

(
S(β)Tx

)
}{y − ψα

(
S(β)Tx

)
},

(x, y,β) ∈ X × R× C

}
,

is contained in the class HRC1v where v � h−1 lognn−1/3 (See the proof of Lemma C.5.7
in Section C.5). By Lemma C.4.4 in Section C.4 and the fact that the order bracketing
entropy of a class does not get altered after multiplication with the fixed and bounded
function x 7→ xi we get that the class of functions involved with the term JJJa, say Fa,
satisfies

HB

(
ε,Fa, ‖ · ‖B,P0

)
.

1
ε

and ‖f‖
B,P0

. v.
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Using again an application of Markov’s inequality, together with Lemma 3.4.3 of van der
Vaart and Wellner (1996) we conclude that for A > 0

P (|JJJa| > An−1/2) . v1/2 = h−1/2(logn)1/2n−1/6,

which can be made arbitrarily small for n large enough and h � n−1/7. We conclude that

JJJa = op(n−1/2).

Using similar arguments as for the term JJb defined in (C.3.2) we also get

JJJb = op
(
β̃n − β0

)
.

The result of Theorem 4.3.2 follows by noting that, using the same techniques as for the
term Ia in (C.2.16), we get

JJJc = (JS(β0))T
∫ {

x− E
(
X|S(β0)Tx

)}
ψ′0
(
S(β0)Tx

)
·
{
y − ψ0

(
S(β0)Tx

)}
d(Pn − P0)(x, y)

+ op(n−1/2) + op(β̂n − β0),

and that by a Taylor expansion of β 7→ ψα
(
S(β)Tx

)
we get

JJJd = −
{

(JS(β0))T
(∫ (

ψ′0
(
S(β0)Tx

))2 · {x− E
(
X|S(β0)Tx

)}
·
{
x− E

(
X|S(β0)Tx

)}T
dP0(x, y)

)
JS(β0)

}
(β̃n − β0)

+ op(β̃n − β0).

The rest of the proof follows the same line as the proof of asymptotic normality of the
simple score estimator defined in Theorem 4.3.1 and is omitted.

C.4 Entropy results

Lemma C.4.1. Fix ε > 0, and consider F1 a class of functions defined on X ×R bounded
by some constant A > 0 and equipped by the L2 norm ‖ · ‖P0 with respect to P0. Also,
let F2 be another class of continuous functions defined on a bounded set C ⊂ Rd−1 such
that F2 is equipped by the supremum norm ‖·‖∞, and bounded by some constant B > 0.
Moreover assume that HB(ε,F1, ‖ · ‖P0) <∞ and HB(ε,F2, ‖ · ‖∞) <∞. Consider

F = F1F2 =
{
f(x) = fβ(x, y) = f1(x, y)f2(β) : (x, y,β) ∈ X × R× C

}
.

Then there exists some constant B > 0 such that

HB(ε,F , ‖ · ‖P0) ≤ HB(Bε,F1, ‖ · ‖P0) +HB(Bε,F2, ‖ · ‖∞).
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Proof. Let f = f1f2 ∈ F for some pair (f1, f2) ∈ F1 × F2. For ε > 0 consider the
(fL1 , fU1 ) and (fL2 , fU2 ) ε-brackets with respect to ‖ · ‖P0 for f1 and f2. Note that since
F1 and F2 are bounded by M = max(A,B) we can always assume that −M ≤ fLi ≤
fUi ≤ M for i ∈ {1, 2}. As we deal with a product of two functions, construction of a
bracket for f requires considering different sign cases for a given pair (x,β):

1. 0 ≤ fL1 (x) and 0 ≤ fL2 (β),

2. 0 ≤ fL1 (x), fL2 (β) < 0 and fU2 (β) ≥ 0,

3. fL1 (x) ≤ 0, fU1 (x) ≥ 0 and 0 ≤ fL2 (β),

4. fU (x) ≤ 0, fL(β) ≥ 0,

5. fL(x) ≥ 0, fU (β) ≥ 0,

6. fL1 (x) ≤ 0, fU (x) ≥ 0, fL2 (β) ≤ 0 and fU2 (β) ≥ 0,

7. fL1 (x) ≤ 0, fU (x) ≥ 0 and fU2 (β) ≤ 0,

8. fU (x) ≤ 0, fL(β) ≤ 0 and fU (β) ≥ 0,

9. fU1 (x) ≤ 0 and fU2 (β) ≤ 0.

We can assume without loss of generality that each one these cases occur for all x ∈ X
and β ∈ C since the general case can be handled by considering the 9 different subsets of
X×C. In the proof, we will restrict ourselves to making the calculations explicit for cases 1
and 2 since the remaining cases can be handled very similarly. Then, fL1 fL2 ≤ f ≤ fU1 fU2 .
Also, we have that

fU1 f
U
2 − fL1 fL2 =

(
fU1 − fL1

)
fU2 + fL1

(
fU2 − fL2

)
.

Recall that M = max(A,B). Then, it follows that∫
X

(
fU1 f

U
2 − fL1 fL2

)2
dP0 ≤ 2M

(∫
X

(
fU1 − fL1

)2
dP0(x) + ‖fU2 − fL2 ‖2∞

)
≤ 4Mε2.

This in turn implies that HB(ε,F , ‖ · ‖P0) ≤ HB(Cε,F1, ‖ · ‖P0) + HB(Cε,F2, ‖ · ‖∞)
with C = (2M)−1. Now we consider case 2. It is not difficult to show that

fL2 f
U
1 ≤ f ≤ fU1 fU2 .

Hence, ∫
X

(
fU1 f

U
2 − fL2 fU1

)2
dP0 ≤ A2‖fU2 − fL2 , ‖2∞ ≤ A2ε2

and we can take C = A−1.
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Lemma C.4.2. Let F be a class of functions satisfying HB(ε,F , ‖ · ‖P0) <∞ for every
ε ∈ (0, ε0) for some given ε0 > 0. If D = F − F the class of all differences of elements
of F , then

HB(ε,D, ‖ · ‖P0) ≤ 2HB(ε/2,F , ‖ · ‖P0).

Proof. Let ε ∈ (0, ε0) and d = f2 − f1 denote an element in D with (f1, f2) ∈ F2.
Also, let (fL1 , fU1 ) and (fL2 , fU2 ) ε-brackets for f1 and f2. Define dL = fL2 − fU1 and
dU = fU2 − fL1 . It is clear that (dL, dU ) is a bracket for d. Furthermore, we have that∫
X

(
dU (x, y)− dL(x, y)

)2
dP0(x, y)

≤ 2
{∫
X

(
fU1 (x, y)− fL1 (x, y)

)2
dP0(x, y) +

∫
X

(
fU2 (x, y)− fL2 (x, y)

)2
dP0(x, y)

}
≤ 4ε2.

Thus,

exp
(
HB(2ε,D, ‖ · ‖P0)

)
≤ exp

(
HB(ε,F , ‖ · ‖P0)

)2
,

which is equivalent to the statement of the lemma.

Consider the class GRK defined as

GRK =
{
g : g(x) = gα(x) = ψ(αTx),x ∈ X , (ψ,α) ∈MRK × B(α0, δ0)

}
. (C.4.1)

whereMRK is the same class defined in (C.1.2).

Lemma C.4.3. There exists A > 0 such that for ε ∈ (0,K) we have that

HB(ε,GRK , ‖ · ‖P0) ≤ AK

ε
.

Proof. See the proof of Lemma 4.9 in Balabdaoui et al. (2016).

Lemma C.4.4. For some constants C > 0 and δ > 0 consider the class of functions

DRCδ =
{
d : d = f1,α − f2,α, (f1,α, f2,α) ∈ G2

RC ,

‖d(αT ·)‖P0 ≤ δ for all α ∈ B(α0, δ0)
}
.

Let HRCv be a class of functions such that

HRCv =
{
h : h(x, y) = yd1(αTx)− d2(αTx), (x, y,α) ∈ X × R× B(α0, δ0),

(d1, d2) ∈ D2
RCv

}
,
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where C ≥ K0 ∨ 1. Then, for all ε ∈ (0, C) we have that

HB

(
ε, H̃, ‖ · ‖B,P0

)
≤ HB

(
εC̃−1,HRCv, ‖ · ‖P0

)
≤ C̃C

ε
� 1
ε
,

and

‖h̃‖B,P0 . D̃−1v,

where

A′ = A
(

2(a0M0 + 1)
)−1/2

, D̃ = 16M0C and

C̃ = 1
8M0

(
2a0 + 1

2e
(2M0)−1

)1/2 1
C
, (C.4.2)

with a0,M0 the same constants from Assumption A6, A the same constant in Lemma
C.4.3, and H̃ def= HRCvD̃−1.

Proof. Consider (dL1 , dU1 ) and (dL2 , dU2 ) to be ε-brackets of the functions x 7→ d1(αTx)
and x 7→ d2(αTx) and some α ∈ B(α0, δ0). It follows from Lemma 4.9 of Balabdaoui
et al. (2016) and Lemma C.4.2 that there exists some constant A > 0 such that

HB

(
ε,DRC , ‖ · ‖P0

)
≤ AC

ε
.

Define now

hL(x, y) =

ydL1 (x)− dU2 (x), if y ≥ 0

ydU1 (x)− dU2 (x), if y < 0,

and

hU (x, y) =

ydU1 (x)− dL2 (x), if y ≥ 0

ydL1 (x)− dL2 (x), if y < 0.

Note first that (hL, hU ) is a bracket for h(x, y) = yd1(αTx) − d2(αTx). Next we
compute the size of this bracket with respect to ‖ · ‖P0 . We have that∫

X×R

(
hU (x, y)− hL(x, y)

)2
dP0(x, y)

≤ 2
{∫
X×R

y2
(
dU1 (x)− dL1 (x)

)2
dP0(x, y) +

∫
X

(
dU2 (x)− dL2 x)

)2
dG(x)

}
= 2
{

2a0

∫
X

(
dU1 (x)− dL1 (x)

)2
dG(x) +

∫
X

(
dU2 (x)− dL2 x)

)2
dG(x)

}
≤ 2
(
2a0 + 1

)
ε2,
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where a0 is the same constant of Assumption A6. It follows that

HB

(
ε,H, ‖ · ‖P0

)
≤ ÃC

ε
,

with Ã = A
(

2(2a0 + 1)
)−1/2

and A is the same constant of Lemma C.4.3. Let now
D > 0 be some constant to be determined later. For a given h ∈ HRK2v, we consider
h̃ = D−1h which admits [D−1hL, D−1hU ] as bracket. We will compute the size of this
bracket with respect to the Bernstein norm. By definition of the latter we can write for
any function h such that hk is P0 integrable that

‖h‖2B,P0
= 2

∞∑
k=2

1
k! |h|

kdP0.

Thus, using this and convexity of the function x 7→ |x|k for all k ≥ 2 it follows that

‖D−1hU −D−1hL‖2B,P0

= 2
∞∑
k=2

1
k!Dk

∫
X×R

∣∣∣y(dU1 (x)− dL1 (x)
)

+ dU2 (x)− dL2 (x)
∣∣∣kdP0(x, y)

≤ 2
∞∑
k=2

2k−1

k!Dk

{∫
X×R

|y|k
(
dU1 (x)− dL1 (x)

)k
dP0(x, y)

+
∫
X×R

(
dU2 (x)− dL2 (x)

)k
dP0(x, y)

}
.

Using Assumption A7 and the fact that |dLi | ≤ K2 and |dUi | ≤ 2C for i ∈ {1, 2} (an
assumption that one can always make in constructing brackets for a bounded class) we
can write

‖D−1hU −D−1hL‖2B,P0

≤
∞∑
k=2

1
k!

(
2
D

)k {
a0M

k−2
0 k!(4C)k−2

∫
X

(
dU1 (x)− dL1 (x)

)2
dP0(x, y)

+ (4C)k−2
∫
X

(
dU1 (x)− dL1 (x)

)2
dP0(x, y)

}
=
(

2
D

)2{
a0

∞∑
k=2

(
8M0C

D

)k−2
+
∞∑
k=2

1
k!

(
8C
D

)k−2}
ε2

≤
(

2
D

)2{
a0

∞∑
k=0

(
8M0C

D

)k
+ 1

2

∞∑
k=0

1
k!

(
8C
D

)k }
ε2,

using k! ≥ 2(k − 2)!. Taking D = D̃ = 16M0C yields

‖D̃−1hU − D̃−1hL‖2B,P0
≤
(

2
D̃

)2(
2a0 + 1

2e
(2M0)−1

)
ε2,
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which in turn implies that

‖D̃−1hU − D̃−1hL‖B,P0 ≤
1

8M0

(
2a0 + 1

2e
(2M0)−1

)1/2 1
C
ε.

This completes the proof of the first claim about the entropy bound of the class H̃ with
D̃ defined as above. Now for a given element h̃ ∈ H̃ we calculate

‖h̃‖2B,P0
= 2

∞∑
k=2

1
D̃k

1
k!

∫
X×R

∣∣yd1(αTx)− d2(αTx)
∣∣kdP0(x, y)

≤ 2
∞∑
k=2

2k−1

D̃k

1
k!

∫
X×R

{∣∣y∣∣k∣∣d1(αTx)
∣∣k +

∣∣d2(αTx)
∣∣kdP0(x, y)

}
≤ 2

∞∑
k=2

2k−1

D̃k

1
k! (2C)k−2

{
a0M

k−2
0 k!

∫
X×R

∣∣d1(αTx)
∣∣2dP0(x, y)

+
∫
X×R

∣∣d2(αTx)
∣∣2dP0(x, y)

}
≤
(

2
D̃

)2
{
a0

∞∑
k=2

(
8M0C

D̃

)k−2
+
∞∑
k=2

1
k!

(
8C
D̃

)k−2
}
v2

≤
(

2
D̃

)2(
2a0 + 1

2e
(2M0)−1

)
v2,

implying that

‖h̃‖B,P0 ≤ 2
(

2a0 + 1
2e

(2M0)−1
)1/2 1

D̃
v . D̃−1v,

as claimed.

Recall that X is the support of the covariates Xi, 1 ≤ i ≤ n. Let us denote by Xj , 1 ≤
j ≤ d the set of the j-th projection of x ∈ X . Also, consider some function s that d− 1
times continuously differentiable on a convex and bounded set C ∈ Rd−1 with a nonempty
interior such that there exists M > 0 satisfying

max
k.≤d−1

sup
β∈C
|Dks(β)| ≤M, (C.4.3)

where k = (k1, . . . , kd) with kj an integer ∈ {0, . . . , d− 1}, k. =
∑d−1
i=1 ki and

Dk ≡ ∂k.s(β)
∂βk1 . . . ∂βkd

.

Consider now the class

QjRC =
{
qj(x, y) = s(β)xj(y − ψ(αTx)),

(α,β, ψ) ∈ B(α0, δ0)× C ×MRC , (xj , y) ∈ Xj× ∈ R
}
. (C.4.4)
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Define

Q̃jRC =
{
q̃j : q̃j = qjD̃

−1, qj ∈ QRC
}
,

where D̃ > 0 is some appropriate constant.

Lemma C.4.5. Let ε ∈ (0, 1) and C ≥ max(1, 2M0,Me−1/42−1/2R−1, 2a1/2
0 e−1/2).

Then, there exist some constant B1 > 0 and B2 depending on a0, M0, and R such that

HB

(
ε, Q̃jRC , ‖ · ‖B,P0

)
≤ B1C

ε
, ‖q̃j‖B,P0 ≤ B2,

if D̃ = 8MRC where a0 and M0 are the same positive constants in Assumption A6, and
M is from (C.4.3).

Proof. Fix j ∈ {1, . . . , d}. The proof of this lemma uses similar techniques as in showing
Lemma C.4.4. Let (gL, gU ) be ε-brackets for the class GRC . Using the result of Lemma
C.4.3 we know that there are at most N ≤ exp(AC/ε) such brackets covering GRC for
some constant A > 0. Define

(
kL(x, y), kU (x, y)

)
=


(
xj(y − gL(x)), xj(y − gU (x))

)
, if xj ≥ 0(

xj(y − gU (x)), xj(y − gL(x))
)
, if xj < 0 .

(C.4.5)

Then, the collection of all possible pairs (qL, qU ) form brackets for the class of functions

KjRC =
{
kj(x, y) = xj(y − ψ(αTx)),

(α, ψ) ∈ B(α0, δ0)×MRC , (xj ,x, y) ∈ Xj ×X × R
}
.

Furthermore we have that

‖kU − kL‖2P0
=

∫
X
x2
j

(
gU (x)− gL(x)

)2
dG(x)

≤ ‖x‖22
∫
X

(
gU (x)− gL(x)

)2
dG(x) ≤ R2ε2.

This implies that

HB

(
ε,KjRC , ‖ · ‖P0

)
≤ ARC

ε
,

where A is the same constant of Lemma C.4.3. Furthermore, the assumption in (C.4.3)
implies that the function s belongs to Cd−1

M̃
as defined in Section 2.7 in van der Vaart and

Wellner (1996), with M̃ = 2M . Using now Theorem 2.7.1 of van der Vaart and Wellner
(1996) it follows that there exists some constant B > 0 such that

logN
(
ε, Cd−1

M̃
, ‖ · ‖∞

)
≤ B

(
1
ε

)d/(d−1)
≤ B

ε
.
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This also implies that

HB

(
ε, Cd−1

M̃
, ‖ · ‖∞

)
= logN

(
ε/2, Cd−1

M̃
, ‖ · ‖∞

)
≤ 2B

ε
.

Indeed, for an arbitrary s ∈ Cd−1
M̃

there exists si, i ∈ {1, . . . , N}, with N =
N
(
ε/2, Cd−1

M̃
, ‖ · ‖∞

)
, such that ‖s − si‖∞ ≤ ε/2. The claim follows from noting that

(si − ε/2, si + ε/2) is an ε-bracket for Cd−1
M̃

with respect to ‖ · ‖∞. Using Lemma C.4.1
it follows that there exists some constant L > 0 such that

HB

(
ε,QjRC , ‖ · ‖P0

)
≤ L

(
1
ε

+ C

ε

)
≤ 2LC

ε
, (C.4.6)

using that C ≥ 1, d−1 ≥ 1 and ε ∈ (0, 1). Consider now a constant D > 0, and (qL, qU )
and ε-bracket. From the proof of Lemma C.4.1 we know that we can restrict attention to
the case for example to case 1 assumed to occur for all (x,β) ∈ X × C. In such that we
have qL = sLkL and qU = sUkU where (sL, sU ) is an ε-bracket for C1

M̃
equipped with

‖ · ‖∞, where the expression of (kL, kU ) is given in (C.4.5). We can now write

‖D−1qU −D−1qL‖2B,P0

= 2
∞∑
k=2

1
k!

1
Dk

∫
X×R

∣∣sUkU − sLkL∣∣kdP0

≤
∞∑
k=2

2k

k!
1
Dk

∫
X×R

{∣∣sU(kU − kL)|k +
∣∣kL(sU − sL)∣∣k}dP0,

with ∫
X×R

∣∣sU(kU − kL)∣∣kdP0 ≤Mk(2RC)k−2
∫
X×R

(
kU − kL

)2
dP0

= M2(2MCR)k−2ε2,

where we used the fact that |s| ≤M by assumption of the lemma (implying that we can
constructs brackets (sL, sU ) satisfying the same property), and kU−kU = xj(gU−gL) ≤
2RC. Also, if we assume without loss of generality that xj ≥ 0 is satisfied for all x ∈ X
we have that∫

X×R

∣∣kL(sU − sL)∣∣kdP0

≤ (2M)k−2
∫
X×R

∣∣xj(y − gL(x))|kdP0(x, y)× ε2

≤ (2M)k−2Rk2k−1
∫
X×R

{
|y|k +

∣∣gL(x)
∣∣k }dP0(x, y)× ε2.

≤ (2M)k−2Rk2k−1
(
a0M

k−2
0 k! + Ck

)
ε2.
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Putting these inequalities together and after some algebra we get

‖D−1qU −D−1qL‖2B,P0
≤

(
1
2

(
2M
D

)2
e4MCR/D +

(
2RC
D

)2
e8MCR/D

+ 2a0

(
2R
D

)2 1
1− 8MM0R/D

)
)
ε2.

Now let us choose D̃ = D ≥ max(16MM0R, 8MRC). In particular, we can assume that
C is large enough so that max(16MM0R, 8MRC) = 8MRC = D̃ (or equivalently C ≥
2M0). Then, 4MCR/D̃ = 1/2, 8MCR/D̃ = 1/4, and 8MM0R/D̃ = M0/C ≤ 1/2.
Therefore,

‖D̃−1qU − D̃−1qL‖2B,P0
≤

(
1
2

(
2M
D̃

)2
e1/2 +

(
2RC
D̃

)2
e+ 4a0

(
2R
D̃

)2
)
ε2

=
(

2M2e1/2 + 4R2e C2 + 16a0R
2
) 1
D̃2

ε2

≤ ÃC2

D̃2
ε2 = Ã

64M2R2 ε
2,

if C is large enough, where Ã = 2M2e1/2 + 4R2e+ 16a0R
2. It follows that we can find

some constant L̃ > 0 such that

‖D̃−1qU − D̃−1qL‖B,P0 ≤ L̃ε.

This in turn implies that

HB

(
L̃ε, Q̃jRC , ‖ · ‖B,P0

)
≤ HB

(
ε,QjRC , ‖ · ‖P0

)
.

2MC

ε
,

using (C.4.6). Hence, we can find a constant B1 > 0 such that

HB

(
ε, Q̃jRC , ‖ · ‖B,P0

)
≤ B1C

ε
.

Now we turn to computing an upper bound for ‖q̃j‖B,P0 . We have

‖q̃j‖2B,P0
= 2

∞∑
k=2

1
k!D

−k
∫
X×R

|s(β)|k
∣∣xj(y − ψ(αTx)

)∣∣kdP0(x, y)

≤
∞∑
k=2

1
k! 2

kD−k(RM)k
∫
X×R

{∣∣y∣∣k +
∣∣ψ(αTx)

∣∣k}dP0(x, y)

≤
∞∑
k=2

1
k! 2

kD−k(RM)k
(
a0M

k−2
0 k! + Ck

)
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≤ a0

(
2MR

D

)2 ∞∑
k=2

(
2RMM0

D

)k−2
+ 1

2

(
2MRC

D

)2 ∞∑
k=2

1
(k − 2)!

(
2RMC

D

)k−2

≤ a0

(
1

2C

)2 ∞∑
k=0

(
1
4

)k
+ 1

2

(
1
2

)2 ∞∑
k=0

1
k!

(
1
2

)k
≤ a0

(
1

2C

)2 3
4 + 1

2

(
1
2

)2
e1/2,

if D = 4MRC and C ≥ max(1, 2M0). The proof of the lemma is complete if we write
B2 = (3a0/16 + e1/2/8)1/2.

In the next lemma, we consider a given a class of functions F which admits a bounded
bracketing entropy with respect to ‖ · ‖P0 for ε ∈ (0, 1]. Suppose also that there exists
D > 0 such that ‖f‖∞ ≤ D and δ > 0 such that ‖f‖P0 ≤ δ for all f ∈ F . Then we can
derive an upper bound for the bracketing entropy for the class

F̃ =
{
f̃ : f̃(x, y) = (4M0D)−1f(x)

(
y − λψ0(αT0 x)

)
, (x, y) ∈ X × R and f ∈ F

}
,

(C.4.7)

with respect to the Bernstein norm. Here, M0 is the same constant from Assumption A6
and D̃ is a positive constant that will be determined below.

Lemma C.4.6. Let F be a class of functions satisfying the conditions above. Then,

HB(ε, F̃ , ‖ · ‖B,P0) ≤ HB(εD̃−1,F , ‖ · ‖P0), and ‖f̃‖B,P0 ≤ D̃δ,

where

D̃ =
(

a0

2M2
0

+ λ2K2
0

8M2
0
eλK0(2M0)−1

)1/2

D−1, (C.4.8)

and a0,M0 are the same constants from Assumption A6.

Proof. Let (L,U) be an ε-bracket for F with respect to ‖ · ‖P0 . Consider the class

F ′ =
{
f ′ : f ′(x, y) = f(x)

(
y − λψ0(αT0 x)

)
, (x, y) ∈ X × R and f ∈ F

}
.

Then for f ′ ∈ F ′ we have if y − λψ0(αT0 x) ≥ 0

L(x)(y − λψ0(αT0 x)) ≤ f ′(x, y) ≤ U(x)(y − λψ0(αT0 x)),

or, if y − λψ0(αT0 x) < 0,

U(x)(y − λψ0(αT0 x)) ≤ f ′(x, y) ≤ L(x)(y − λψ0(αT0 x)).
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Let (L′, U ′) denote the new bracket. Using the definition of the Bernstein norm, convexity
of x 7→ xk, k ≥ 2 and ‖ψ0‖∞ ≤ K0 we have that∥∥(U ′ − L′)(4M0D)−1∥∥2

B,P0

= 2
∞∑
k=2

(4M0D)−k

k!

∫
X×R

(U(x)− L(x))k|y − λψ0(αT0 x)|kdP0(x, y)

≤ 2
∞∑
k=2

(4M0D)−k

k!

∫
X×R

(U(x)− L(x))k2k−1
(
|y|k + λk|ψ0(αT0 x)|k

)
dP0(x, y)

≤
∞∑
k=2

1
2kDkMk

0 k!

∫
X×R

(U(x)− L(x))k
(
|y|k + λkKk

0
)
dP0(x, y)

≤
∞∑
k=2

1
2kDkMk

0 k!

∫
X×R

(U(x)− L(x))k(a0k!Mk−2
0 + λkKk

0 )dP0(x, y)

≤ a0

4M2
0D

2

∞∑
k=2

1
2k−2

∫
X×R

(U(x)− L(x))2g(x)dx

+ λ2K2
0

4D2M2
0

∞∑
k=2

(
λK0

2M0

)k−2 1
k!

∫
X×R

(U(x)− L(x))2g(x)dx

≤ a0

2M2
0D

2 ε
2 + λ2K2

0
8D2M2

0

∞∑
k=2

1
(k − 2)!

(
λK0

2M0

)k−2
ε2

≤
(

a0

2M2
0D

2 + λ2K2
0

8D2M2
0
eλK0(2M0)−1

)
ε2 = D̃2 ε2.

This implies that

HB

(
εD̃, F̃ , ‖ · ‖B,P0

)
≤ HB

(
ε,F , ‖ · ‖P0

)
,

or equivalently

HB

(
ε,F ′, ‖ · ‖B,P0

)
≤ HB

(
εD̃−1,F , ‖ · ‖P0

)
.

Using similar calculations we can write

‖f̃‖2B,P = 2
∞∑
k=2

1
(4M0D)k

1
k!

∫
X×R

|f(x)|k|y − λψ0(αT0 x)|kdP(x, y)

≤ 1
D2

∞∑
k=2

1
(2M0)k

1
k!

∫
X×R

f(x)2(a0k!Mk−2
0 + λkKk

0 )g(x)dx

≤

(
a0

4M2
0D

2

∞∑
k=2

1
2k−2 + λ2K2

0
8D2M2

0

∞∑
k=2

(
λK0

2M0

)k−2 1
(k − 2)!

)∫
X×R

f(x)2g(x)dx

≤ D̃2δ2,

which completes the proof.
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In the next corollary, we consider the class

F =
{
x 7→ fα(x) = Ei,α0(αT0 x)− Ei,α(αTx), x ∈ X ,α ∈ B(α0, δ)

}
,

where Ei,α(u) = E
{
Xi|αTX = u

}
for i ∈ {1, . . . , d} and δ ∈ (0, δ0). Using the same

arguments in the proof of Lemma C.5.3 in Section C.5 with f(x) = xi it follows that for
all x ∈ X and α,α′ ∈ B(α0, δ)

|fα′(x)− fα(x)| ≤M‖α′ −α‖,

for the same constant M of that lemma. Now, we can apply Theorem 2.7.11 of van der
Vaart and Wellner (1996) to conclude that

NB
(
2ε,F , ‖ · ‖P0

)
≤ N

(
ε,B(α0, δ), ‖ · ‖

)
,

where N
(
ε,B(α0, δ), ‖·‖

)
is the ε-covering number for B(α0, δ) with respect to the norm

‖ · ‖ which is of order (δ/ε)d for ε ∈ (0, δ). Hence, using the inequality log(x) ≤ x for
x > 0 we can find a constant M ′ > 0 depending on d such that

HB

(
ε,F , ‖ · ‖P0

)
≤ M ′δ

ε
.

Furthermore, there exists M̃ > 0 such that ‖f‖∞ ≤ M̃δ and ‖f‖P0 ≤ M̃δ.

Lemma C.4.7. Let F be the class of functions as above and consider the related class

F ′ =
{
f ′ : f ′(x, y) = f(x)

(
y − λψ0(αT0 x)

)
, (x, y) ∈ X × R, f ∈ F

}
. (C.4.9)

Then,

E[‖Gn‖F ′ ] . δ.

Proof. Note that for any function f ′ ∈ F ′ and constant C > 0 we have thatGn(f ′C−1) =
C−1Gnf ′ implying that ‖Gn‖F ′ = 4M0M̃δ‖Gn‖F̃ , where

F̃ =
{
f̃ : f̃(x, y) = (4M0M̃δ)−1f ′(x, y), f ′ ∈ F ′

}
.

Note also that the constant D̃ in Lemma C.4.6 is given by D̃ � δ−1, where D̃ depends
on M̃ , a0, M0 and K0. Also, using the entropy calculations along with Lemma C.4.6 we
can show easily that

HB(ε, F̃ , ‖ · ‖B,P0) . 1
ε
,

and that ‖f̃‖B,P0 . 1. Using Lemma 3.4.3 of van der Vaart and Wellner (1996) it follows
that there exists some constant B > 0 such that

E[‖Gn‖F̃ ] . Jn

(
1 + Jn√

nB2

)
,

with Jn =
∫ B

0

√
1 +B/εdε. Hence, E[‖Gn‖F̃ ] . 1 and E[‖Gn‖F ′ ] . δ as claimed.
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C.5 Auxiliary results

Proof of Lemma 4.3.1. We have

(JS(β0))T AJS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T AJS(β0)

= (JS(β0))T AJS(β0).

In the parameterizations that we consider, the columns of JS(β0) are orthogonal to α0.
We can therefore extend the matrix JS(β0) with a last column α0 to a square nonsingular
matrix J̄S(β0). This leads to the equality(

J̄S(β0)
)T
AJS(β0)

{
(JS(β0))T AJS(β0)

}−1
(JS(β0))T AJ̄S(β0)

=
(
J̄S(β0)

)T
AJ̄S(β0).

Multiplying on the left by
((
J̄S(β0)

)T)−1
and on the right by J̄S(β0)−1, we get:

AJS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T A = A. (C.5.1)

This shows that JS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T is a generalized inverse of
A.
To complete the proof and show that it is indeed the Moore-Penrose inverse of A, we
first note that

JS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))TAJS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T

= JS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T . (C.5.2)

Furthermore, (
AJS(β0)

{
(JS(β0))T AJS(β0)

}−1
(JS(β0))T

)T
= JS(β0)

{
(JS(β0))T AJS(β0)

}−1
(JS(β0))T AT

= JS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T A,

where the last equality holds since A is symmetric, being a covariance matrix. We have
to show that

JS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T A

= AJS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T . (C.5.3)



Appendix C.5. Auxiliary results 251

Multiplying on the left by (JS(β0))T and on the right by JS(β0), we get

(JS(β0))TJS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T AJS(β0)

= (JS(β0))TJS(β0)

= (JS(β0))TAJS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T JS(β0),

and (C.5.3) follows by the orthogonality relation of the columns of JS(β0) with α0 in the
same way as before, replacing the matrix JS(β0) by J̄S(β0) in the outer factors of the
equality relation. In a similar way we obtain(

JS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T A
)T

= JS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T A. (C.5.4)

Since the matrix JS(β0)
{

(JS(β0))T AJS(β0)
}−1

(JS(β0))T satisfies properties (C.5.1),
(C.5.2),(C.5.3) and (C.5.4), the matrix satisfies the four properties which define the
Moore-Penrose pseudo-inverse matrix ofA. This completes the proof of Lemma 4.3.1.

Remark C.5.1. The same proof holds for showing that the Moore-Penrose inverse Ã is
given by

JS(β0)
{

(JS(β0))T ÃJS(β0)
}−1

(JS(β0))T .

Lemma C.5.1 (Derivative α 7→ ψα(αTx)).

∂

∂αj
ψα(αTx)

∣∣∣
α=α0

=
(
xj − E(Xj |αTX = αT0 x)

)
ψ′0(αT0 x),

and

∂

∂βj
ψα(αTx)

∣∣∣
α=α0

= ∂

∂βj
ψS(β)(S(β)Tx)

∣∣∣
β=β0

=
(
JS(β0)T

)
j

(
x− E(X|S(β)TX = S(β)Tx)

)
ψ′0
(
S(β)Tx

)
,

where
(
JS(β0)T

)
j
denotes the jth row of JS(β0)T .

Proof. We assume without loss of generality that the first component α1 of α is not equal
to zero. Denote the conditional density of (X2, . . . , Xd)T given αTX = u by hα(·|u).
Using the change of variables t1 = αTx, tj = xj for 1 ≤ j ≤ d, the function ψα can be
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written as

ψα(αTx) = E[ψ0(αT0X)|αTX = αTx]

=
∫
ψ0

α01

α1
(αTx− α2x̃2 − . . .− αdx̃d) +

d∑
j=2

α0j x̃j


· hα(x̃2, . . . , x̃d|αTx)

d∏
j=2

dx̃j ,

with partial derivatives w.r.t. αj for 2 ≤ j ≤ d given by

∂

∂αj
ψα(αTx)

= ∂

∂αj
E[ψ0(αT0X)|αTX = αTx]

=
∫
α01

α1
(xj − x̃j)ψ′0

α01

α1
(αTx− α2x̃2 − . . .− αdx̃d) +

d∑
j=2

α0j x̃j


· hα(x̃2, . . . , x̃d|αTx)

d∏
j=2

dx̃j

+
∫
ψ0

α01

α1
(αTx− α2x̃2 − . . .− αdx̃d) +

d∑
j=2

α0j x̃j

 ∂

∂αj

· hα(x̃2, . . . , x̃d|αTx)
d∏
j=2

dx̃j ,

which is at α = α0 equal to

∂

∂aj
ψα(αTx)

∣∣∣
α=α0

=
∫

(xj − x̃j)ψT0
(
αT0 x

)
hα0(x̃2, . . . , x̃d|αT0 x)

d∏
j=2

dx̃j

= ψ′0(αT0 x)
{
xj − E(Xj |αT0X = αT0 x)

}
.

For the partial derivatives w.r.t. α1 we have

∂

∂α1
ψα(αTx)

=
∫ {

α01

α1
x1 −

α01

α2
1

(αTx− α2x̃2 − . . .− αdx̃d)
}

· ψ′0

α01

α1
(αTx− α2x̃2 − . . .− αdx̃d) +

d∑
j=2

α0j x̃j

hα(x̃2, . . . , x̃d|αTx)
d∏
j=2

dx̃j
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+
∫
ψ0

αTx+ (α01 − α1)α
Tx− α2x̃2 − . . .− αdx̃d

α1
+

d∑
j=2

(α0j − αj)x̃j


· ∂

∂α1
h(x̃2, . . . , x̃d|αTx)

d∏
j=2

dx̃j ,

and,

∂

∂a1
ψα(αTx)

∣∣∣
α=α0

= ψ′0(αT0 x)
{
x1 − E(X1|αT0X = αT0 x)

}
.

This proves the first result of Lemma C.5.1. The proof for the second results follows
similarly and is omitted.

Lemma C.5.2. Let ξ̄ be defined by

ξ̄(α) =
∫
x
{
y − ψα(αTx)

}
dP0(x, y) =

∫
x
{
ψ0(αT0 x)− ψα(αTx)

}
dG(x),

then we have for each α ∈ B(α0, δ0),

ξ̄(α) = E
[
Cov

[
X, ψ0(αTX + (α0 −α)TX)|αTX

]]
.

Moreover,

αT ξ̄(α) = 0,

and,

(α0 −α)T ξ̄(α) = E
[
Cov

[
(α0 −α)TX, ψ0(αTX + (α0 −α)TX)|αTX

]]
≥ 0,

and α0 is the only value such that the above equation holds uniform in α ∈ B(α0, δ0).

Proof. We have,

ξ̄(α) =
∫
x
{
y − ψα(αTx)

}
dP0(x, y) =

∫
x
{
ψ0(αT0 x)− ψα(αTx)

}
dG(x)

=
∫
x
[
ψ0(αT0 x)− E

{
ψ0(αT0X)|αTX = αTx

}]
dG(x)

= E
[
Cov

[
X, ψ0(αT0X)|αTX

]]
,

and

αT ξ̄(α) = αT
∫
x
[
ψ0(αT0 x)− E

{
ψ0(αT0X)|αTX = αTx

}]
dG(x)

= E
[
Cov

[
αTX, ψ0(αT0X)|αTX

]]
= 0.
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We next note that,

(α0 −α)T ξ̄(α) = E
[
Cov

[
(α0 −α)TX, ψ0(αT0X)|αTX

]]
= E

[
Cov

[
(α0 −α)TX, ψ0(αTX + (α0 −α)TX)|αTX

]]
,

which is positive by the monotonicity of ψ0. This can be seen as follows. Recall that,
using Fubini’s theorem, one can prove that for any random variables X and Y such that
XY,X and Y are integrable, we have

Cov {X,Y } = EXY − EXEY =
∫
{P(X ≥ s, Y ≥ t)− P(X ≥ s)P(Y ≥ t)} ds dt.

Denote Z1 = (α0 − α)TX and Z2 = ψ0(u+ (α0 − α)TX) = ψ0(u+ Z1), then, using
monotonicity of the function ψ0, we have

P(Z1 ≥ z1, Z2 ≥ z2) = P(Z1 ≥ max{z1, z̃2})

≥ P(Z1 ≥ max{z1, z̃2})P(Z1 ≥ min{z1, z̃2})

= P(Z1 ≥ z1)P(Z2 ≥ z2),

where

z̃2 = ψ−1
0 (z2)− u = inf{t ∈ R : ψ0(t) ≥ z2} − u.

We conclude that,

Cov
{

(α0 −α)TX, ψ0(αTX + (α0 −α)′X)|αTX = u
}

=
∫
{P(Z1 ≥ z1, Z2 ≥ z2)− P(Z1 ≥ z1)P(Z2 ≥ z2)} ds dt ≥ 0,

and hence the first part of the Lemma follows. We next prove the uniqueness of the
parameter α0. We start by assuming that, on the contrary, there exists α1 6= α0 in
B(α0, δ0) such that

(α0 −α)T ξ̄(α) ≥ 0 and (α1 −α)T ξ̄(α) ≥ 0 for all α ∈ B(α0, δ0),

and we consider the point α ∈ B(α0, δ0) such that

|αj − αj0| = |αj − αj1| for 1 ≤ j ≤ d.

For this point, we have,

(α0 −α)T ξ̄(α) = −(α1 −α)T ξ̄(α) for all α ∈ B(α0, δ0),

which is not possible since both terms should be positive. This completes the proof of
Lemma C.5.2.
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Lemma C.5.3. Let f : X → Rk, k ≤ d be a differentiable function on X such that there
exists a constant M > 0 satisfying ‖f‖∞ ≤M . Then, under the assumptions A1 and A5
we can find a constant M̃ > 0 such that for all α ∈ B(α0, δ0) we have that

sup
x∈X

∣∣∣E[f(X)|αTX = αTx]− E[f(X)|αT0X = αT0 x]
∣∣∣ ≤M‖α−α0‖.

Proof. We can assume without loss of generality that α0,1 6= 0 where α0,1 is the first
component of α0. At the cost of taking a smaller δ0, we can further assume that α̃1 6= 0
for all α ∈ B(α0, δ0). Consider the change of variables t1 = αTX, ti = xi for 1 ≤ i ≤ d.
Then, the density of (αTX, X2, . . . , Xd) is given by

g(αTX,X2,...,Xd)(t1, . . . , td) = g

(
1
α1

(
t1 − α2t2 − . . .− αdtd), t2, . . . , td

)
1
α1
.

Then, for i = 2, . . . , d, the conditional density hα(x2, . . . , xd|u) of the (d−1)-dimensional
vector (X2, . . . , Xd) given that αTX = u is equal to

hα(x2, . . . , xd|u) =
g
(
u−α2x2−...−αdxd

α1
, x2, . . . , xd

)
∫
g
(
u−α2t2−...−αdtd

α1
, t2, . . . , td

)∏d
j=2 dtj

(C.5.5)

where the domain of integration in the denominator is the set {(x2, . . . , xd) : x ∈ X )}.
Note that X1 = (αTX − α2X2 − . . .− αdXd)/α1. Thus we have that

E[f(X)|αTX = αTx] = E[f(X1, X2, . . . , Xd)|αTX = αTx]

= E
[
f

(
αTX − α2X2 − . . .− αdXd

α1
, X2, . . . , Xd

)
| αTX = αTx

]
=
∫
f

(
αTx− α2x2 − . . .− αdxd

α1
, x2, . . . , xd

)
hα(x2, . . . , xd|αTx)

d∏
j=2

dxj .

Note now that function

α 7→ hα(x2, . . . , xd|αTx) =
g
(
αTx−α2x2−...−αdxd

α1
, x2, . . . , xd

)
∫
g
(
αTx−α2t2−...−αdtd

α1
, t2, . . . , td

)∏d
j=2 dtj

,

is continuously differentiable on B(α0, δ0). This follows from assumptions A1 and A5
together with Lebesgue dominated convergence theorem which allows us to differentiate
the density g under the integral sign. With some notation abuse we write ∂h/∂xi for the
i-th partial derivative of α 7→ hα(x2, . . . , xd|αTx). Straightforward calculations yield

∂hα
∂α1

= g

(
αTx− α2x2 − . . .− αdxd

α1
, x2, . . . , xd

)

×

∫ ∑d
i=2(xi − ti) ∂g∂x1

(
αTx−α2t2−...−αdtd

α1
, t2, . . . , td)

)∏d
j=2 dtj

α2
1

(∫
g
(
αTx−α2t2−...−αdtd

α1
, t2, . . . , td

)∏d
j=2 dtj

)2 ,
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and for 2 ≤ i ≤ d
∂hα
∂αi

= −g
(
αTx− α2x2 − . . .− αdxd

α1
, x2, . . . , xd

)

×

∫
(xi − ti) ∂g∂xi

(
αTx−α2t2−...−αdtd

α1
, t2, . . . , td)

)∏d
j=2 dtj

α1

(∫
g
(
αTx−α2t2−...−αdtd

α1
, t2, . . . , td

)∏d
j=2 dtj

)2 .

Assumptions A1 and A5 allow us to find a constant D > 0 depending on R, c0, c̄0 and
c̄1 such that ∥∥∥∂hα

∂αi

∥∥∥
∞
≤ D,

for 1 ≤ i ≤ d. Consider now the function α 7→ E[f(X)|αTX = αTx]. Using the
assumptions of the lemma and applying again Lebesgue dominated convergence theorem
we conclude for i ∈ {1, . . . , d} that we have

∂E[f(X)|αTX = αTx]
∂αi

=
∫
f

(
αTx− α2x2 − . . .− αdxd

α1
, x2, . . . , xd

)
∂hα(x2, . . . , xd|αTx)

∂αi

d∏
j=2

dxj .

Furthermore, we have that

sup
(x,X

∣∣∣∂E[f(X)|αTX = αTx]
∂αi

∣∣∣ ≤MD

∫ d∏
j=2

dxj = M ′,

for all i ∈ {1, . . . , d} and (x,X ) and α ∈ B(α0, δ). The results now follow using a first
order Taylor expansion to obtain∣∣∣E[f(X)|αTX = αTx]− E[f(X)|αT0X = αT0 x]

∣∣∣
=
∣∣∣ d∑
i=1

∂E[f(X)|α̃TX = α̃Tx]
∂αi

(αi − α0,i)
∣∣∣,

for some α̃ ∈ Rd such that ‖α̃ − α0‖ ≤ ‖α − α0‖. Bounding the right side of the
preceding display by M̃‖α−α0‖ with M̃ = dM ′ gives the result.

Lemma C.5.4. Denote for i ∈ {1, . . . , d} the ith component of the function u 7→
E[X|αTX = u] by Ei,α. Then Ei,α has a total bounded variation. Furthermore, there
exists a constant B > 0 such that for all α ∈ B(α0, δ0)

‖Ei,α‖∞ ≤ B, and
∫
Iα
|E′i,α(u)|du ≤ B,

where Iα = {αTx : x ∈ X}.
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Proof. Since X ⊂ B(0, R), it is clear that ‖Ei,α‖∞ ≤ R. As above let us assume without
loss of generality that the first component of α0 is not equal to 0. At the cost of taking
a smaller δ0, we can further assume that α̃1 6= 0 for all α ∈ B(α0, δ0). We known that
for 2 ≤ i ≤ d

Ei,α(u) =
∫
xihα(x2, . . . , xd|u)dx2 . . . dxd,

where integration is done over the set {(x2, . . . , xd) : (x,X )} and u ∈ Iα ⊂ (a0 −
δ0R, b0 +δ0R) and where hα denotes conditional density of (X2, . . . , Xd)′ given αTX =
u, defined in (C.5.5). Using assumptions A1 and A5 along with the Lebesgue dominated
convergence theorem we are allowed to write

E′i,α(u) =
∫
xi

∂

∂u
hα(x2, . . . , xd|u) dx2 . . . dxd.

Straightforward calculations yield that

∂

∂u
hα(x2, . . . , xd|u) =

∂g
∂x1

(
u−α2x2−...−αdxd

α1
, x2, . . . , xd

)
α1

(∫
g
(
u−α2t2−...−αdtd

α1
, t2, . . . , td

)∏d
j=2 dtj

)
− g

(
1
α1

(
u− α2x2 − . . .− αdxd), x2, . . . , xd

)

·

∫
∂g
∂x1

(
u−α2t2−...−αdtd

α1
, t2, . . . , td

)∏d
j=2 dtj

α1

(∫
g
(
u−α2t2−...−αdtd

α1
, t2, . . . , td

)∏d
j=2 dtj

)2 .

Thus, we can find constant C > 0 depending only on |α0,1|, c0, c1, c̄1 and R such
that

∫
|E′i,α(u)|du ≤ C for all α ∈ B(α0, δ0). Now B = max(R,C) gives the claimed

inequalities. If i = 1, then

E1,α(u) = 1
α1

(
u− αj

d∑
j=2

Ej,α(u)
)
, and e′1,α(u) = 1

α1

(
1− αj

d∑
j=2

e′j,α(u)
)
.

for u ∈ Iα. We conclude again that the claimed inequalities are true at the cost of
increasing the constant B obtained above.

Lemma C.5.5. Let f be a function defined on some interval [a, b] such that ‖f‖∞ ≤M
and

V (f, [a, b]) = sup
a=x0<x1...<xn=b

n∑
j=1
|f(xj)− f(xj−1)| ≤M,

for some finite constant M > 0. Then, there exist two nondecreeasing functions f1 and
f2 on [a, b] such that ‖f1‖∞, ‖f2‖∞ ≤ 2M and f = f2 − f1.
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Proof. The fact that f = f2 − f1 with f1 and f2 nondecreeasing on [a, b] follows from
the well-known Jordan’s decomposition. Furthermore, we can take f1(x) = V (f, [a, x])
and f2(x) = f(x)− f1(x)for (x, [a, b]. By assumption, ‖f1‖∞ ≤M ≤ 2M and ‖f2‖ ≤
‖f‖∞ + ‖f1‖∞ ≤ 2M .

Lemma C.5.6. Under Assumptions A4-A5, we can find a constant C > 0 such that for
all α close enough to α0 we have that

ψ′α(u) > C,

for all u ∈ Iα.

Proof. We assume again that a1 6= 0. By calculations similar to the calculations made in
the proof of Lemma C.5.1, we get

ψα(u)

= α01

α1

∫
ψ′0

α01

α1
(u− α2x̃2 − . . .− αdx̃d) +

d∑
j=2

α0j x̃j

hα(x̃2, . . . , x̃d|u)
d∏
j=2

dx̃j

+
∫
ψ0

α01

α1
(u− α2x̃2 − . . .− αdx̃d) +

d∑
j=2

α0j x̃j

 ∂

∂u
h(x̃2, . . . , x̃d|u)

d∏
j=2

dx̃j .

Now, a Taylor expansion of αi in the neighborhood of α0,i and using that α0,1/α1 =
1− ε1/α0,1 + o(ε1) yields

ψ0

(
α0,1

α1
(u− α2x2 − · · · − αdxd) + α0,2x2 + · · ·+ α0,dxd

)
= ψ0

(
u− ε1

α0,1
(u− ε2x2 − . . .− εdxd) + o(ε1)

)
= ψ0(u)− ε1

α0,1
(u− ε2x2 − . . .− εdxd)ψ′0(u) + o(ε1)

= ψ0(u)− ε1
α0,1

uψ′0(u) + o(‖α−α0‖).

Using the Lebesgue dominated convergence theorem and the fact that hα(x̃2, . . . , x̃d|u)
is a conditional density it follows that

∫
ψ0

α01

α1
(u− α2x̃2 − . . .− αdx̃d) +

d∑
j=2

α0j x̃j

 ∂

∂u
h(x̃2, . . . , x̃d|u)

d∏
j=2

dx̃j ,

= o(α−α0),
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such that

ψ′α(u) ≥ C
(

1− ε1
α0,1

)
+ o(α−α0) ≥ C > 0,

provided that ‖α−α0‖ is small enough.

Lemma C.5.7. If h � n−1/7, then there exists a constant B > 0 such that for all
α ∈ B(α0, δ)

‖ψ′nh,α‖∞ ≤ B and
∫
Iα
|ψ′′nh,α(u)|du ≤ B,

where Iα = {αTx : x ∈ X}

Proof. Using integration by parts and Proposition 4.2.2, we have for all u ∈ Iα

ψ′nh,α(u) = 1
h

∫
K

(
u− x
h

)
dψ̂nα(x)

= 1
h

∫
K

(
u− x
h

)
ψ′α(x)dx+ 1

h2

∫
K ′
(
u− x
h

)
(ψ̂nα(x)− ψα(x))dx

= 1
h

∫
K

(
u− x
h

)
dψα(x) + 1

h

∫
K ′ (w) (ψ̂nα(u+ hw)− ψα(u+ hw))dw

= ψ′α(u) +O(h2) +Op(h−1 lognn−1/3) = ψ′α(u) + op(1).

This proves the first part of Lemma C.5.7. For the second part, we get by a similar
calculation that,

ψ′′nh,α(u) = 1
h

∫
K

(
u− x
h

)
ψ′′α(x)dx+ 1

h2

∫
K ′′ (w) (ψ̂nα(u+ hw)− ψα(u+ hw))dw

= 1
h

∫
K

(
u− x
h

)
ψ′′α(x)dx+Op(h−2 lognn−1/3).

Since h−2 lognn−1/3 = o(1) for h � n−1/7, the second part follows by Assumption
A10.





Appendix D
Varying coefficient models -
Appendix

D.1 Definitions and properties

This section contains the Definition of the L2-distance and the Assumptions needed for
the main results, i.e., Theorem 5.5.1 and 5.5.2.

Assumption A.

1. For all 1 ≤ p ≤ d, the random variable Up has distribution function FUp on Up =
[ap, bp]. The distribution function FUp has Lebesgue density fUp which is bounded
away from zero and infinity, uniformly in Up, i.e. there exist positive constants N1

and N2 such that N1 ≤ fUp(u) ≤ N2 for u ∈ Up.

2. The eigenvalues η1(u), . . . , ηd(u) of Σ(u) = E(XXT |U = u) are bounded away
from zero and infinity, uniformly over all u ∈ Ud, i.e. there exist positive constants
N3 and N4 such that N3 ≤ η1(u) ≤ · · · ≤ ηd(u) ≤ N4 for u ∈ Ud.

3. There exists a positive constant N5 such that | Xp |≤ N5 for 1 ≤ p ≤ d.

4. There exists a positive constant N6 such that σ2
j (u,x) ≤ N6 <∞ for j = 1, 2 and

for every u ∈ Ud,x ∈ Rd, where σ2
j (u,x) = Var(Y ∗j | U = u,X = x).

5. lim supn
(maxpmp

minpmp

)
<∞.

6. n−1m
3/2
maxλmax → 0 and n−1mmax → 0 as n→∞.

261
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7. n−1mmax log(mmax)→ 0 as n→∞.

8. ρn → 0 as n→∞.

Assumption B.

1. supu,x τ1(u,x) supt≤τ1(u,x) |Ĝ(t|u,x)−G(t|u,x)| = op(1).

2. supu,x κ(u,x)→ 0 as n→∞.

3. supu,x κσ(u,x)→ 0 as n→∞ .

Assumption C.

1. βp ∈ C3([ap, bp]), for each 1 ≤ p ≤ d, where Cr([a, b]) is the space of r−times
continuously differentiable functions on [a, b] .

2. m3/2
max

[
supu,x

{
τ1(u,x) supt≤τ1(u,x) |Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

+ κσ(u,x)
}

+ ρn

]
→ 0 and n−1/2m2

max → 0; n−1m
3/2
maxλmax → 0

as n→∞.

Assumption D.

1. m−1/2
max n1/2

(
supu,x

(
τ1(u,x) supt≤τ1(u,x) |Ĝ(t|u,x)−G(t|u,x)|+

κ(u,x)
))
→ 0 and n−1/2mmaxλmax + n1/2ρn → 0 as n→∞ .

2. m−1
maxn

1/2 supu,x
(
τ1(u,x) supt≤τ1(u,x) |Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

+ κσ(u,x)
)
→ 0 and m−1/2

max logn+ n−1/2mmaxλmax + n1/2ρn → 0
as n→∞.

Assumption A.1 guarantees that the observation points are randomly scattered and is a
natural assumption in nonparametric regression (see e.g. Eubank and Speckman (1990)).
All A assumptions are common in P-spline theory (see e.g. Antoniadis et al. (2012)).
In particular A.1-A.4 are common in mean regression in varying coefficient models. Also
note that Assumptions A.5, A.6 andA.7 are satisfied with the choice of number of knots
and smoothing parameter of Remark 5.5.2. When all βp have bounded r-th derivatives
ρn = Op(m−rmax) (Schumaker (2007)). Assumption B ensures that the censored nature of
the data is taken into account and is illustrated by an example in Remark 5.5.1. When
the Kaplan-Meier estimator is used to estimate G, it follows from Zhou (1991) that
supt≤τ1(u,x) |Ĝ(t) − G(t)| = Op(n−1/2). Assumption C guarantees that, uniformly over
Up, the second order derivative of β̂1p is a consistent estimator for β1p, for 1 ≤ p ≤ d. It
is a technical assumption needed in the proof of Theorem 5.5.1, Part 2 and guarantees
that the Kaplan-Meier estimator based on residual observations constructed with method
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1 converges to the true error distribution F . Assumption D is an assumption on the
convergence rate of the P-spline estimators and guarantees that the squared L∞-distance
between the P-spline estimators β̂j and β∗j converges to zero at a faster rate than the
variance given by (5.5.1). For the examples considered in Remark 5.5.1, Assumptions C
and D are also fulfilled when G is estimated using the Kaplan-Meier estimator, mmax �
n1/5 and λmax � nι, ι < 3/10.

Definition D.1.1. For a real valued function f on U and a vector valued function g =
(g1, ..., gd) on Ud, the L2-norm is given by:

‖f‖L2 =
{∫
U
f2(t)dt

}1/2
, ‖g‖L2 =

(
d∑
p=1
‖gp‖2L2

)1/2

,

Definition D.1.2. For a real valued matrix A of dimension mA × nA, the 2-norm of A
is given by ‖A‖2 = supx 6=0

‖Ax‖2
‖x‖2

, with x ∈ RnA and ‖x‖2 =
√∑nA

i=1 x
2
i . This norm is

equal to
√
ζmax(ATA) where ζmax is the largest eigenvalue of ATA.

Definition D.1.3. For sequences of positive numbers rn and sn, rn . sn means that
s−1
n rn is bounded and rn � sn means that s−1

n rn and r−1
n sn are bounded.

Definition D.1.4. For a real valued function f on U and a vector valued function g =
(g1, ..., gd) on Ud, the L∞-norm is given by:

‖f‖∞ = sup
u∈U
| f(u) |, ‖g‖∞ = max

1≤p≤d
‖gp‖∞.

Our estimation technique relies on properties of B-splines. For a detailed description of
B-splines we refer to De Boor (1978) or Schumaker (2007).

Property D.1.1. Bpl(up; qp) ≥ 0;
∑mp
l=1Bpl(up; qp) = 1.

Property D.1.2. There exists positive constants N7, N8 and coefficients αpl ∈ R such
that

m−1
p N7

mp∑
l=1

α2
pl ≤

∫
U
{
mp∑
l=1

αplBpl(up; qp)}2du ≤ m−1
p N8

mp∑
l=1

α2
pl.

Property D.1.3.
∫
U Bpl(u; qp)du = O(m−1

p ).

Property D.1.4. ‖g‖∞ . m
−1/2
p ‖g‖L2 for g ∈ Gp, 1 ≤ p ≤ d where Gp is the space of

spline functions of degree qp on Up with knots ξp.

We use as notations α̂j ,α∗j and α̃j for methods j = 1, 2 (described in Section 5.4), when
we replace Y in expression

α̂ =
(
RTR + Qλ

)−1RTY.
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by Ŷ∗j = (Ŷ ∗j1, . . . , Ŷ ∗jn)T , Y∗j = (Y ∗j1, . . . , Y ∗jn)T , and M = (Mj1, . . . ,Mjn)T with
Mji = E(Y ∗ji|Ui, Xi) for 1 ≤ i ≤ n respectively. Similar notations hold for β̂j =
(β̂j1, . . . , β̂jd)T , β∗j = (β∗j1, . . . , β∗jd)T and β̃j = (β̃j1, . . . , β̃jd)T .

D.2 Proof of Theorem 5.5.1, Part 1

The proof of the first result stated in Theorem 5.5.1 relies on the maximal distance
between the Y ∗1i and Ŷ ∗1i responses, derived in Lemma D.2.1.

Lemma D.2.1. max1≤i≤n | Ŷ ∗1i − Y ∗1i |=

Op

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})
,

Proof of Lemma D.2.1. Since| Ŷ ∗1i − Y ∗1i |=

| Ŷ ∗1i − Y ∗1i | 1{Zi≤τ1(Ui,Xi)}+ | Ŷ
∗
1i − Y ∗1i | 1{Zi>τ1(Ui,Xi)},

we consider two cases and prove the following results,

max
1≤i≤n

{
| Ŷ ∗1i − Y ∗1i | 1{Zi≤τ1(Ui,Xi)}

}
. sup

u,x

(
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|

)
. (D.2.1)

max
1≤i≤n

{
| Ŷ ∗1i − Y ∗1i | 1{Zi>τ1(Ui,Xi)}

}
. sup

u,x
κ(u,x). (D.2.2)

For (D.2.1) we start by the triangle inequality,

| Ŷ ∗1i − Y ∗1i | 1{Zi≤τ1(Ui,Xi)} ≤| ∆i{ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi)}

+ (1−∆i){ψ̂1(Ui,Xi, Zi)− ψ1(Ui,Xi, Zi)} |

≤| ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi) | + | ψ̂1(Ui,Xi, Zi)− ψ1(Ui,Xi, Zi) | .

We derive the order bound for | ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi) |, similar result holds if
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we replace ϕ1 and ϕ̂1 by ψ1 and ψ̂1 respectively.

|ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi)|

≤

∣∣∣∣∣(1 + γ)
{∫ Zi

0

1
Ĝ(t|Ui,Xi)

dt−
∫ Zi

0

1
G(t|Ui,Xi)

dt

}∣∣∣∣∣
+
∣∣∣∣ γZi

Ĝ(Zi|Ui,Xi)
− γZi
G(Zi|Ui,Xi)

∣∣∣∣
≤

∣∣∣∣∣(1 + γ)
∫ Zi

0

Ĝ(t|Ui,Xi)−G(t|Ui,Xi)
G(t|Ui,Xi)Ĝ(t|Ui,Xi)

dt

∣∣∣∣∣
+

∣∣∣∣∣γZi{Ĝ(Zi|Ui,Xi)−G(Zi|Ui,Xi)}
G(Zi|Ui,Xi)Ĝ(Zi|Ui,Xi)

∣∣∣∣∣

≤ |1 + γ| sup
t≤τ1(Ui,Xi)

{
| Ĝ(t|Ui,Xi)−G(t|Ui,Xi) |

}
×
∫ τ1(Ui,Xi)

0

G(t|Ui,Xi)
Ĝ(t|Ui,Xi)

1
G(t|Ui,Xi)2 dt

+ |γ|τ1(Ui,Xi) sup
t≤τ1(Ui,Xi)

{
| Ĝ(t|Ui,Xi)−G(t|Ui,Xi) |

}
× sup
t≤τ1(Ui,Xi)

{ 1
G(t|Ui,Xi)2

G(t|Ui,Xi)
Ĝ(t|Ui,Xi)

}
.

From the uniform convergence of Ĝ we have:

sup
t≤τ1(Ui,Xi)

G(t|Ui,Xi)
Ĝ(t|Ui,Xi)

= 1 + op(1).

Also inft≤τ1(Ui,Xi){G(t|Ui,Xi)} > 0, therefore,

| ϕ̂1(Ui,Xi, Zi)− ϕ1(Ui,Xi, Zi) |

= Op

(
τ1(Ui,Xi) sup

t≤τ1(Ui,Xi)
| Ĝ(t|Ui,Xi)−G(t|Ui,Xi) |

)
.

For (D.2.2) we have,

E{| Ŷ ∗1i − Y ∗1i | 1{Zi>τ1(Ui,Xi)}}

≤ E
[
E
{

max
φ=ϕ1,ψ1

1{Zi>τ1(Ui,Xi)} | Zi − φ(Ui,Xi, Zi) |
∣∣Ui,Xi

}]
≤ sup

u,x
κ(u,x).

By combining (D.2.1) and (D.2.2), the result of Lemma D.2.1 follows.
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Proof of Theorem 5.5.1, Part 1. Since

‖β̂1 − β1‖L2 ≤ ‖β̂1 − β∗1‖L2 + ‖β∗1 − β̃1‖L2 + ‖β̃1 − β1‖L2 ,

the result follows by showing that

‖β̂1 − β∗1‖L2 (D.2.3)

= Op

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})
‖β∗1 − β̃1‖L2 = Op

(
n−1/2m1/2

max

)
(D.2.4)

‖β̃1 − β1‖L2 = Op

(
n−1m3/2

maxλmax + ρn

)
. (D.2.5)

We start with the proof of (D.2.3). By Property D.1.2 it suffices to show that

‖α̂1 −α∗1‖2 =

Op

(
m1/2

max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

From Antoniadis et al. (2012) we have,

α̂1 −α∗1
=
{

(RTR)−1 − (RTR)−1Qλ(RTR)−1 + op(n−1m3/2
maxλmax)(RTR)−1}

×
n∑
i=1

Ri(Ŷ ∗1i − Y ∗1i)

= α̂1,reg −α∗reg −
{

(RTR)−1Qλ(RTR)−1 + op(n−1m3/2
maxλmax)(RTR)−1}

×
n∑
i=1

Ri(Ŷ ∗1i − Y ∗1i)

=
{

1− (RTR)−1Qλ + op(n−1m3/2
maxλmax)

}(
α̂1,reg −α∗reg

)
,

where α̂1,reg and α∗reg denote the regular B-spline estimator (i.e. λ0 = . . . = λd = 0).
Consequently,

‖α̂1 −α∗1‖2

≤
{

1 + ‖(RTR)−1‖2‖Qλ‖2 + op(n−1m3/2
maxλmax)

}
‖α̂1,reg −α∗1,reg‖2.

From Lemma 1 in Antoniadis et al. (2012) we know that except on an event whose
probability tends to zero, ‖(RTR)−1‖2‖Qλ‖2 = Op(n−1m

3/2
maxλmax),

‖α̂1,reg −α∗1,reg‖22 = (Ŷ∗1 −Y∗1)TR(RTR)−1(RTR)−1RT (Ŷ∗1 −Y∗1)

= (n−1mmax)2(Ŷ∗1 −Y∗1)TR
(
n−1mmaxRTR

)−1(
n−1mmaxRTR

)−1RT (Ŷ∗1 −Y∗1).
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and since all eigenvalues of n−1mmaxRTR fall between positive constants, we have
‖n−1mmaxRTR‖2 � 1 and thus,

‖α̂1,reg −α∗1,reg‖22 = (Ŷ∗1 − Ŷ∗1)TR(RTR)−1(RTR)−1RT (Ŷ∗1 −Y∗1)

� n−1mmax(Ŷ∗1 −Y∗1)T (Ŷ∗1 −Y∗1)

. mmax

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

})2

.

In the last step, we use the result of Lemma D.2.1 and the inequality√
(Ŷ∗1 −Y∗1)T (Ŷ∗1 −Y∗1) = ‖Ŷ∗1 −Y∗1‖2 ≤

√
n max

1≤i≤n
|Ŷ ∗1i − Y ∗1i|.

We continue with the proof of (D.2.4). Using similar arguments as is the proof of (D.2.3),
we have

‖α∗1 − α̃1‖2

≤
{

1 + ‖(RTR)−1‖2‖Qλ‖2 + op(n−1m3/2
maxλmax)

}
‖α∗1,reg − α̃1,reg‖2, (D.2.6)

and,

‖α∗1,reg − α̃1,reg‖22
= (n−1mmax)2(Y∗1 −M1)TR(n−1mmaxRTR)−1(n−1mmaxRTR)−1RT (Y∗1 −M1).

By Assumption A.3,

E
{

(Y∗1 −M1)TRRT (Y∗1 −M1)
}

= E

{ n∑
i=1

Ri(Y ∗1i −M1i)
}T {

(
n∑
i=1

Ri(Y ∗1i −M1i)
}

= E

∑
p,l

n∑
i,j=1

XipXjpBpl(Uip; qp)Bpl(Ujp; qp)(Y ∗1i −M1i)(Y ∗1j −M1j)


.
∑
p,l

[
n∑
i=1

E
{
B2
pl(Uip; qp)2(Y ∗1i −M1i)2}

+
∑
i 6=j

E
{
Bpl(Uip; qp)Bpl(Ujp; qp)(Y ∗1i −M1i)(Y ∗1j −M1j)

}]
.

By the independence of the observations, Assumption A.5 and Properties D.1.2 and D.1.3
of B-splines it follows that, using the law of the total expectation,

E
{
B2
pl(Uip; qp)(Y ∗1i −M1i)2} . E{B2

pl(Uip; qp)} . m−1
p = O(m−1

max),

E{Bpl(Uip; qp)Bpl(Ujp; qp)(Y ∗1i −M1i)(Y ∗1j −M1j)}

= E{Bpl(Uip; qp)(Y ∗1i −M1i)}E{Bpl(Ujp; qp)(Y ∗1j −M1j)} = 0.
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Therefore,

E
{

(Y∗1 −M1)TRRT (Y∗1 −M1)
}

= O(n),

(Y∗1 −M1)TRRT (Y∗1 −M1) = Op(n),

such that
‖α∗1,reg − α̃1,reg‖22 = Op

(
n−1m2

max
)
. (D.2.7)

Combining (D.2.6) and (D.2.7) gives,

‖α∗1 − α̃1‖22 = Op

(
n−1m2

max

(
1 + n−1m3/2

maxλmax

)2
)

= Op(n−1m2
max)

‖β∗1 − β̃1‖2L2
� 1
mmax

‖α∗1 − α̃1‖22 = Op
(
n−1mmax

)
,

where we use Assumption A.6 and B-spline Property D.1.2. From the proof of Theorem
1 in Antoniadis et al. (2012), we have,

‖β̃1 − β‖L2 = Op

(
n−1m3/2

maxλmax + ρn

)
,

and (D.2.5) follows immediately.

D.3 Proof of Theorem 5.5.1, Part 2

To prove Part 2 of Theorem 5.5.1, we can repeat the proof of Part 1 of Theorem 5.5.1 but
now using Lemma D.3.1 instead of Lemma D.2.1 giving the maximal distance between Y ∗2
and Ŷ ∗2 responses. The proof of Lemma D.3.1 needs two further lemmas: Lemma D.3.2
on the uniform consistency of the initial estimators m̂1 and σ̂1 as estimators for m and
σ; and Lemma D.3.3 on the uniform consistency of F̂ as estimator of F . The proof of
Lemma D.3.2 is included, that of Lemma D.3.3 follows along the lines of a similar result
(in the kernel estimation context) in Van Keilegom and Akritas (1999). The details of
the proof of Lemma D.3.3 are not given but we do give and prove, in Lemma D.3.4, the
key result that is needed to modify their result to our P-spline setting.

Lemma D.3.1. If Assumptions A, B and C hold,

max
1≤i≤n

| Ŷ ∗2i − Y ∗2i |= Op(an) = op(1),

where an = n−1/2(logn)1/2 + n−1m
3/2
maxλmax + ρn+

m−1/2
max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x) + κσ(u,x)

})
.
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Method 2 uses (5.4.4) and (3.2.3) as initial estimates for m(u,x) and σ2(u,x). We
therefore need, in the proof of Theorem 5.5.1, Part 2, the consistency results given in
Lemma D.3.2.

Lemma D.3.2. Under Assumptions A, B.1 and B.2, we have,

(a) sup
u,x
|m̂1(u,x)−m(u,x)| = Op

(
n−1/2 + n−1m3/2

maxλmax + ρn

+m−1/2
max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

(b) max
1≤i≤n

| Ŷ ∗1i,σ2 − Y ∗1i,σ2 |= Op

(
n−1/2 + n−1m3/2

maxλmax + ρn+

sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+m−1/2

max κ(u,x) + κσ(u,x)
})

where Y ∗1i,σ2 = ∆i(Zi −m(Ui,Xi))2

G(Zi|Ui,Xi)
.

(c) sup
u,x
|σ̂1(u,x)− σ(u,x)| = Op

(
n−1/2 + n−1m3/2

maxλmax + ρn

+m−1/2
max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|

+m−1/2
max κ(u,x) + κσ(u,x)

}))

where Y ∗1i,σ2 = ∆i(Zi −m(Ui,Xi))2

G(Zi|Ui,Xi)
.

Proof of Lemma D.3.2(a). Since the Xp are bounded (see Assumption A.3), we have,

sup
u,x
|m̂1(u,x)−m(u,x)| .

d∑
p=1
‖β̂1p − βp‖L∞

≤
d∑
p=1
‖β̂1p − β̃1p‖L∞ +

d∑
p=1
‖β̃1p − βp‖L∞ .

By property D.1.4, we have ‖β̂1p−β̃1p‖L∞ . m
−1/2
max ‖β̂1p−β̃1p‖L2 . Using the intermediate

results stated in the proof of Theorem 5.5.1, part 1, we obtain that

‖β̂1p − β̃1p‖L∞ = Op

(
n−1/2+

m−1/2
max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.
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By Lemma A.10 of Huang et al. (2004), we have,

‖β̃1,reg − β‖L∞ = Op(ρn),

where β̃1p,reg(up) = B(up)(RTR)RM is the expectation of the regular spline estimator
(i.e. λ1 = . . . = λd = 0). From the proof of Theorem 2 in Antoniadis et al. (2012), we
have that

β̃1 =
(

1−Op(n−1m3/2
maxλmax)

)
β̃1,reg.

Since each spline β̃p is a continuous function on the compact set Up, each spline β̃p is
bounded and ‖β̃1,reg‖L∞ = OP (1). We therefore conclude that

‖β̃1 − β‖L∞ = Op(ρn + n−1m3/2
maxλmax),

The result of Lemma D.3.2(a) now follows.
Proof of Lemma D.3.2(b). Lemma D.3.2(b) is for σ(u,x) what Lemma D.2.1 is for
m(u,x). Again we consider two cases: Zi exceeds or does not exceed τ1(Ui,Xi). Sup-
pose first that Zi ≤ τ1(Ui,Xi), then we write,

| Ŷ ∗1i,σ2 − Y ∗1i,σ2 |

≤
∣∣m̂2

1(Ui,Xi)−m2(Ui,Xi)
∣∣+ 2Zi |m̂1(Ui,Xi)−m(Ui,Xi)|

+ (Zi −m(Ui,Xi))2 |Ĝ(Zi|Ui,Xi)−G(Zi|Ui,Xi)|

Since m̂2(u,x)−m2(u,x) = {m̂(u,x)−m(u,x)}{m̂(u,x)+m(u,x)}, we get from the
uniform convergence of m̂(u,x) to m(u,x) , that the rate of the first and second term
on the right-hand side are both equal to the rate obtained in Lemma D.3.2(a). The third
term on the right hand side is bounded in probability by supt≤τ1(Ui,Xi) |Ĝ(t|Ui,Xi) −
G(t|Ui,Xi)|.
Next, suppose Zi > τ1(Ui,Xi), then we can write,

|Ŷ ∗1i,σ2 − Y ∗1i,σ2 | ≤ |Ŷ ∗1i,σ2 − Ỹ ∗1i,σ2 |+ |Ỹ ∗1i,σ2 − Y ∗1i,σ2 |

where Ỹ ∗1i,σ2 = Y ∗1i,σ21{Zi≤τ1(Ui,Xi)}+ (Zi−m2(Ui,Xi))21{Zi>τ1(Ui,Xi)}. Analogue to
the second part of the proof of Lemma D.2.1, we use κσ to bound the difference between
Ŷ ∗1i,σ2 and Y ∗1i,σ2 in the truncation area. For the estimation of the mean of Y , the
transformation formula when Zi lies in the truncation area is Zi, whereas in this case, the
transformation formula is (Zi−m̂1(Ui,Xi))2 and therefore also involves an estimator m̂1.
The variable Ỹ ∗1i,σ2 is introduced to make the transition from Ŷ ∗1i,σ2 ≡ (Zi−m̂1(Ui,Xi))2

via Ỹ ∗1i,σ2 ≡ (Zi −m(Ui,Xi))2 to Y ∗1i,σ2 . We get

E|Ỹ ∗1i,σ2 − Y ∗1i,σ2 | ≤ sup
u,x

κσ(u,x),
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and,

|Ŷ ∗1i,σ2 − Ỹ ∗1i,σ2 |

≤ 2Zi |m̂1(Ui,Xi)−m(Ui,Xi)|+
∣∣m̂2

1(Ui,Xi)−m2(Ui,Xi)
∣∣

= Op

(
n−1/2 + n−1m3/2

maxλmax + ρn

+m−1/2
max

(
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}))
.

Proof of Lemma D.3.2(c). Following the same steps as in the proof of Theorem 5.5.1,
Part 1, we can, using the result of Lemma D.3.2(b), derive the L2-distance between σ̂2

and σ2. Analogous to Lemma D.3.2(a), the L∞-distance then follows. Since σ̂1 − σ =
(σ̂2

1 − σ2)/(σ̂1 + σ), it follows from the convergence of σ̂2
1(u,x) to σ2(u,x) > 0, that

the rate is maintained for σ̂1 − σ.

Lemma D.3.3. If assumptions A, B and C hold, then, for t < S, we have,

F̂ (t)− F (t) = Op

(
n−1/2(logn)1/2 + n−1m3/2

maxλmax + ρn+

m−1/2
max

[
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x) + κσ(u,x)

}])
.

Lemma D.3.4. Suppose βp ∈ Cr([ap, bp]) for each 1 ≤ p ≤ d. Then under Assumptions
A and B, we have,

‖β̂(v)
1 − β(v)‖L∞ = Op

(
n−1/2mv

max + n−1m3/2
maxλmax +mv−r

max

+mv−1/2
max

[
sup
u,x

{
τ1(u,x) sup

t≤τ1(u,x)
|Ĝ(t|u,x)−G(t|u,x)|+ κ(u,x)

}
+ ρn

])
,

where β(v) =
(
∂vβ1
∂uv1

, . . . , ∂
vβd
∂uv

d

)T
and β̂(v)

1 =
(
∂vβ̂11
∂uv1

, . . . , ∂
vβ̂1d
∂uv

d

)T
are the vectors of the

v-th order derivative functions for v = 0, . . . , r − 1.

Proof of Lemma D.3.4. We first note that the v-th derivative of the B-spline function
β̂1p(up) =

∑mp
l=1 α̂1p,lBpl(up, qp) of degree qp is a B-spline function of degree qp − v

given by (see De Boor (1978)),

β̂
(v)
1 = Kv

p b(up, q − v)TDvα̂1p, (D.3.1)
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where b(up, q − v) = (B1p(up, qp − v), . . . , Bmp−1,p(up, qp − v))T is the vector of the
Kp + qp − v B-spline basis functions of degree qp − v with knots ξp i.e., for v = 1, we
have,

β̂
(1)
1p (up) = Kp

mp−1∑
l=1

(α̂1p,l−1 − α̂1p,l)Bpl(up, qp − 1) = Kpb(up, q − 1)TD1α̂1p

= Kp

(
b(up, q − 1)T α̂1[−1] − b(up, q − 1)T α̂1[−m]

)
where α̂1[−1] = (α̂12, . . . α̂1m), α1[−m] = (α̂11, . . . α̂1,m−1). Representation (D.3.1)
implies that the v-th derivative of βp is again a spline function with coefficient vector
KpDvα̂1p. As a consequence we have, using Property D.1.2, that

‖β̂(v)
1 − β̃(v)

1 ‖L2 = Op(mv−1/2
max ‖α̂1 − α̃1‖2). (D.3.2)

We now use the fact that there exists a spline function (see Corollary 6.21 and (2.120)
of Theorem 2.59 in Schumaker (2007)) ζp(up) =

∑mp
l=1 cplBpl(up, qp) of degree qp with

equidistant knots ξp and coefficient vector cp = (c1p, . . . , cmpp)T such that

‖β̃(v)
1 − ζ(v)‖L2 = Op(mv

maxρn + n−1m3/2
maxλmax). (D.3.3)

To show the validity of (D.3.3), we proceed as follows. By Lemma A.7 of Huang et al.
(2004), we have that ‖α̃1,reg− c‖2 = O(m1/2

maxρn), using a similar argument as before we
find, ‖β̃(v)

1,reg − ζ(v)‖L2 = Op(mv
maxρn). Using the relationship

β̃
(v)
1 =

(
1−Op(n−1m3/2

maxλmax)
)
β̃

(v)
1,reg.

and the fact that β(v)
1,reg is bounded on a compact region, we have ‖β(v)

1,reg‖L2 = Op(1)
and (D.3.3) follows. Also note (Schumaker (2007)) that ζp satisfies

‖β(v)
p − ζ(v)

p ‖L∞ = O(mv−r
p ). (D.3.4)

The rates in (D.3.2)-(D.3.4) provide the key for the proof. Indeed

‖β̂(v)
1 − β(v)‖L∞ ≤ ‖β̂

(v)
1 − ζ(v)‖L∞ + ‖ζ(v) − β(v)‖L∞ . (D.3.5)

For the second term in (D.3.5) we use (D.3.4). For the first term, note that

‖β̂(v)
1 − ζ(v)‖L∞ . m−1/2

max ‖β̂
(v)
1 − ζ(v)‖L2 (D.3.6)

and that

‖β̂(v)
1 − ζ(v)‖L2 ≤ ‖β̂

(v)
1 − β̃(v)‖L2 + ‖β̃(v)

1 − ζ(v)‖L2

= Op(mv−1/2
max ‖α̂1 − α̃1‖2 +mv

maxρn + n−1m3/2
maxλmax). (D.3.7)
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The result now follows from the rate obtained for ‖α̂1 − α̃1‖2 in Theorem 5.5.1, Part 1
in combination with (D.3.2)-(D.3.7).

Proof of Lemma D.3.1. We first note that supu,x |m̂1(u,x)−m(u,x)| and
supu,x |σ̂1(u,x)− σ(u,x)| are both Op(an) by Lemma D.3.2.

We write,

Ŷ ∗2i − Y ∗2i = m̂1(Ui,Xi)−m(Ui,Xi)

+ σ̂1(Ui,Xi)
1− F̂ (ÊTi )

∫ Ŝi

ÊT
i

sdF̂ (s)− σ(Ui,Xi)
1− F (ETi )

∫ Si

ET
i

sdF (s)

= {m̂1(Ui,Xi)−m(Ui,Xi)} (D.3.8)

+ σ̂1(Ui,Xi)− σ(Ui,Xi)
1− F̂ (ÊTi )

∫ Ŝi

ÊT
i

sdF̂ (s) (D.3.9)

+ σ(Ui,Xi){F̂ (ÊTi )− F (ETi )}
{1− F̂ (ÊTi )}{1− F (ETi )}

∫ Ŝi

ÊT
i

sdF̂ (s) (D.3.10)

+ σ(Ui,Xi)
1− F (ETi )

{∫ ETi

ÊT
i

sdF̂ (s) +
∫ Si

ET
i

sd(F̂ (s)− F (s)) +
∫ Ŝi

Si

sdF̂ (s)
}
. (D.3.11)

We first consider the three integrals in (D.3.11). Using integration by part, we have,

∫ ETi

ÊT
i

sdF̂ (s) = ETi F̂ (ETi )− ÊTi F̂ (ÊTi )−
∫ ETi

ÊT
i

F̂ (s)ds

= ETi {F̂ (ETi )− F (ETi )}+ {ETi F (ETi )− ÊTi F (ETi )}+ ÊTi {F (ETi )− F̂ (ÊTi )}

−
∫ ETi

ÊT
i

F̂ (s)ds. (D.3.12)

For the first term of (D.3.12), using Lemma D.3.3, we conclude that

∣∣∣ETi {F̂ (ETi )− F (ETi )}
∣∣∣ = |ETi |Op (an) = Op (an) .

Since |ETi | ≤ {σ(Ui,Xi)}−1{|min(Zi, τ2(Ui,Xi))| + |m(Ui,Xi)|} < ∞. To get a
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consistency rate for the second and the fourth term of (D.3.12), note that

ÊTi − ETi

= min(τ2(Ui,Xi), Zi)− m̂1(Ui,Xi)
σ̂1(Ui,Xi)

− min(τ2(Ui,Xi), Zi)−m(Ui,Xi)
σ(Ui,Xi)

= 1
σ(Ui,Xi)σ̂(Ui,Xi)

[
min(τ2(Ui,Xi), Zi)

{
σ(Ui,Xi)− σ̂1(Ui,Xi)

}
− σ(Ui,Xi)

{
m̂1(Ui,Xi)−m(Ui,Xi))

}
+m(Ui,Xi)

{
σ̂1(Ui,Xi)− σ(Ui,Xi)

}]
.

It then follows from Lemma D.3.2 and the convergence of σ̂1(u,x) to σ(u,x) > 0 that

|ÊTi − ETi | = Op(an),

which gives the rate for the second and the fourth term of (D.3.12). For the third term
of (D.3.12), we have that

F̂ (ÊTi )− F (ETi ) = {F̂ (ÊTi )− F (ÊTi )}+ {F (ÊTi )− F (ETi )}.

Lemma D.3.3 can be used for the first summand. For the second summand, we use a
first order Taylor approximation and write,

F (ÊTi )− F (ETi ) =
(
−m̂1(Ui,Xi)−m(Ui,Xi)

σ̂1(Ui,Xi)

− {σ̂1(Ui,Xi)− σ(Ui,Xi)}{min(τ2(Ui,Xi), Zi)−m(Ui,Xi)}
σ̂1(Ui,Xi)σ1(Ui,Xi)

)
fε(θ),

with fε the density of ε and for some θ between min(τ2(Ui,Xi),Zi)−m̂1(Ui,Xi)
σ̂1(Ui,Xi) and

min(τ2(Ui,Xi),Zi)−m(Ui,Xi)
σ(Ui,Xi) . By the convergence of σ̂1(u,x) to σ(u,x) > 0 and the

fact that supe |efε(e)| <∞, we get

F (ÊTi )− F (ETi ) = Op(an). (D.3.13)

We conclude that ∣∣∣ÊTi {F (ETi )− F̂ (ÊTi )}
∣∣∣ = Op(an),

where we use that by Lemma D.3.2, |ÊTi | = |ETi |+Op(an) <∞. Based on the analysis
of (D.3.12) we conclude for the first term of (D.3.11),

σ(Ui,Xi)
1− F (ETi )

∫ ETi

ÊT
i

sdF̂ (s) = Op(an). (D.3.14)
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In a similar way, we obtain for the third term of (D.3.11)

σ(Ui,Xi)
1− F (ETi )

∫ STi

ŜT
i

sdF̂ (s) = Op(an). (D.3.15)

For the second integral in (D.3.11), we use partial integration and Lemma D.3.3 to obtain∫ STi

ET
i

sd(F̂ (s)− F (s)) = STi {F̂ (STi )− F (STi )} − ETi {F̂ (ETi )− F (ETi )}

−
∫ STi

ET
i

{F̂ (s)− F (s)}ds = Op(an).

The terms (D.3.8)-(D.3.10) are more easy to handle. For (D.3.8) we use Lemma D.3.2(a).
For (D.3.9) and (D.3.10) we need that∫ Ŝi

ÊT
i

sdF̂ (s) = Op(1). (D.3.16)

To show (D.3.16), note that, using similar reasoning as in Heuchenne and Van Keilegom
(2007), we can prove that ∫ Si

ET
i

sdF̂ (s) = Op(1).

Combining this result with the rates obtained in (D.3.14) and (D.3.15) yields,∫ Ŝi

ÊT
i

sdF̂ (s) = Op(1).

By the convergence of F̂ (ÊTi ) to F (ETi ) < 1 (D.3.13), we get that (D.3.9) and (D.3.10)
are both Op(an).

D.4 Proof of Theorem 5.5.2

Proof of Theorem 5.5.2. We prove the asymptotic normality of the P-spline estimator
β̂1 for method 1 by proving that for 1 ≤ p ≤ d,

{
s.e.

(
β∗jp(up) | Xn

)}−1 {
β∗jp(up)− β̃jp(up)

} d→ N(0, 1) (D.4.1){
s.e.

(
β∗jp(up) | Xn

)}−1
{

(β̂1p(up)− β∗1p(up)) + (β̃1p(up)− βp(up))
}

p→ 0. (D.4.2)

The proof of (D.4.1) is based on the proof given in Antoniadis et al. (2012) where some
steps can be simplified due to the independence of the observations.
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Let Bp(u) be the column vector representing the p-th row of B(u).

BT
p (u)(α∗ − α̃) =

n∑
i=1

BT
p (u)(RTR + Qλ)−1Ri(Y ∗1i −M1i) =

n∑
i=1

diξi,

where d2
i = σ2

1,i{BT
p (u)(RTR + Qλ)−1Ri}2 and ξi = σ−2

1,i (Y ∗1i −M1i). Conditioning
on Xn the ξi are independent with mean 0 and variance 1. To prove the asymptotic
normality of the P-spline estimator we verify that the Lindeberg condition,

max d2
i∑n

i=1 d
2
i

p→ 0,

is satisfied, then, ∑n
i=1 diξi√∑n
i=1 d

2
i

d→ N(0, 1).

For any ω = (ωT
0 , . . . ,ω

T
d )T with ωp = (ωp1, . . . , ωpmp)T , and especially for ω =

{RTR + Qλ)−1Bp(u)}, we have by the Cauchy-Schwarz inequality,

ωTRiRT
i ω =

{
d∑
p=0

Xip

mp∑
l=1

ωplBpl(Uip; qp)
}2

≤

(
d∑
p=0

X2
ip

) d∑
p=0

{
mp∑
l=1

ωplBpl(Uip; qp)
}2
 .

Set gω,p(u; qp) =
∑mp
l=1 ωplBpl(up; qp) for p = 0, . . . , d. By Assumption (B3) and Prop-

erties D.1.2 and D.1.4,

ωTRiRT
i ω .

d∑
p=0
‖gω,p‖2∞ . mmax

d∑
p=0
‖gω,p‖2L2

� ‖ω‖22. (D.4.3)

From Lemmas A.1 and A.2 in Huang et al. (2004), we know that except on an event with
probability tending to zero, n−1∑n

i=1(
∑d
p=0Xipgω,p(Uip; qp))2 � m−1

max‖ω‖22. Thus,

ωT
n∑
i=1

{
RiRT

i σ
2
1,i
}

ω ≥ n min
1≤i≤n

σ2
1,in
−1

n∑
i=1

( d∑
p=0

Xipgω,p(Uip; qp)
)2

& m−1
maxn‖ω‖22. (D.4.4)

Combining (D.4.3) and (D.4.4), we find that except on an event whose probability tends
to zero, we have,

maxi(σ2
1,iω

TRiRT
i ω)

ωT (
∑n
i=1 σ

2
1,iRiRT

i )ω
. n−1mmax.

By Assumption (A6), it follows that the Lindeberg assumption is fulfilled and hence the
normality result in (D.4.1) follows.
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We continue with the proof of (D.4.2). Since we assume that σ2
1,i is bounded away from

zero and ∞, we have,

Var(β∗1p(u) | Xn) = Cov
(
BT
p (u)α∗ | Xn

)
= B(u)

(
RTR + Qλ

)−1
( n∑
i=1

RiRT
i σ

2
1,i

)(
RTR + Qλ

)−1Bp(u)

& BT
p (u)

(
RTR + Qλ

)−1RTR
(
RTR + Qλ

)−1Bp(u)

� n

mmax
BT
p (u)

(
RTR + Qλ

)−1(RTR + Qλ

)−1Bp(u)

&
n

mmax

(
1

λmax(RTR + Qλ)

)2 mp∑
l=1

B2
pl(u)

&
n

mmax

 1
n

mmax

(
1 + m

3/2
max λmax
n

)
2

1
mp

� 1
n

(
1 + m

3/2
maxλmax
n

)−2

,

where we use the Cauchy-Schwarz inequality,

1 =
(
mp∑
l=1

Bpl(u)
)2

≤
mp∑
l=1

B2
pl(u)

mp∑
l=1

1 = mp

mp∑
l=1

B2
pl(u),

and the upper bound for the largest eigenvalue λmax(RTR + Qλ):

λmax(RTR+Qλ) = ‖RTR + Qλ‖2 ≤ ‖RTR‖2 + ‖Qλ‖2

.
n

mmax
+

√√√√ d∑
p=1
‖Qλ‖∞ .

n

mmax
+
√
dλmaxm

1/2
max max

1≤p≤d
4kp

.
n

mmax

(
1 + m

3/2
maxλmax
n

)
.

By Property D.1.4 of B-splines and Assumption (A5),

β̂1p(up)−β∗1p(up) ≤ sup
u∈U
|β̂1p(up)− β∗1p(up)| = ‖β̂1p − β∗1p‖∞

.

(
1
mp

)1/2
‖β̂1p − β∗1p‖L2 �

(
1

mmax

)1/2
‖β̂1p − β∗1p‖L2 .

We conclude,

β̂1p(up)− β∗1p(up)
s.e.

(
β∗1p(up) | Xn

) .

(
n

mmax

)1/2
(

1 + m
3/2
maxλmax
n

)
‖β̂1p − β∗1p‖L2 ,
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and

β̃1p(up)− βp(up)
s.e.

(
β∗1p(up) | Xn

) . n1/2

(
1 + m

3/2
maxλmax
n

)
‖β̃1p − βp‖L∞ .

From assumption D.1 it follows that these two terms converge to zero as n goes to
∞. The proof for method 2 is exactly the same but we do not look at the difference
β̃2p − βp.
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