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Abstract
To stay competitive and preserve high service levels for customers, the focus of warehouses in today’s supply chain is on fast
and timely delivery of smaller and more frequent orders. To keep up with competitors, companies accept late orders from
customers, which results in additional pressure for order picking operations. Speci�cally, more orders need to be picked and
sorted in shorter and more �exible time windows, which o�en results in workload peaks during the day. �e objective of this
study is to formulate and solve the operational workload imbalance problem in parallel zone order picking systems. An iter-
ated local search algorithm is provided to solve the planning problem. Solving the operational workload imbalance problem
results in a more stable order picking process and overall productivity improvements for the total warehouse operations.
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1 Introduction

Warehouses, where products can be stored before the ful�lment of customer orders, play a vital role in the sup-
ply chain. To ful�l customer orders, warehouse operations have to satisfy basic requirements such as receiving,
storing and retrieving stock keeping units. Considering the four basic warehouse activities (i.e., receiving, stor-
age, order picking and shipping), order picking is the most costly activity. About half of the total warehouse
operating costs can be a�ributed to this process [1]. Order picking, retrieving goods from storage or bu�er ar-
eas to ful�l incoming customer orders, is labour intensive whenever it is performed manually, and very capital
intensive if automated warehouse systems are used. Despite technological advances in automated warehouse
systems, the most dominant order picking systems in practice still rely on human operators. Human operators
yield more �exibility to the order picking process due to the combination of their motor and cognitive skills [2].
�is �exibility is needed to preserve high service levels in times of a changing customer behaviour. Trends such
as shortened product life cycles, e-commerce, greater product variety and the trend of accepting late orders from
customers, result in extra pressure for order picking operations. More orders need to be picked and sorted in
shorter and more �exible time windows. Warehouse managers therefore experience di�culties in balancing the
workload of the order pickers on a daily basis, resulting in peaks of workload during the day [3].

�e problem addressed in this paper originates from a large international B2B warehouse located in Belgium. �e
warehouse is responsible for the storage and distribution of automotive spare parts. Spare part warehouses are
characterized by customer orders that can be grouped based on their destination. An order set refers to a group
of order lines with a common destination that is picked in a single zone. All order lines of a common destination
from all pick zones are referred to as the order lines from a shipping truck. Deadlines of order lines are determined
by the shipping truck and resulting schedule of shipping trucks (i.e. shipping schedule). Each shipping truck can
consist of multiple order sets (i.e., a single order set for each order picking zone). �e assignment of order sets
to shipping trucks as well as the shipping schedule are assumed to be �xed at the operational level. �is �xed
shipping schedule o�en results in workload peaks during the day, as order pa�erns vary across customers (e.g.,
varying number of orders and customers, varying order time and resulting available time to pick orders) [3].

Balancing the workload in an order picking system can be addressed from di�erent perspectives. While most
papers that cover the issue of workload imbalance, start at a strategic or tactical level, the emphasis of this paper
is on the operational level with the aim of avoiding peaks in the number of order lines to be picked during the
day. �e objective function aims to minimize the variance of planned order lines over all time slots, for each pick
zone. [3]. Solving instances of realistic size to optimality in a reasonable amount of computation time does not
seem feasible due to the complex nature of the operational workload imbalance problem (OWIP). �e objective
of this paper is to develop an iterated local search algorithm to solve OWIP in a parallel zoned manual order
picking system. �is study contributes to the current state-of-the-art by providing a more stable order picking
process and overall productivity improvements for the total warehouse operations.
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2 Problem formulation

�is section describes the operational workload imbalance problem as introduced in [3]. �e notation outlined
in Table 1 is used. A mixed integer programming (MIP) model is developed to formulate OWIP.

Table 1: Sets, parameters and decision variables
Sets

ι set of time slots with time slot i = 1, 2, ..., I
κ set of pick zones with k = 1, 2, ..., K
λ set of shipping trucks with l = 1, 2, ..., L

Parameters

akl number of order lines of shipping truck l in zone k
∆tmax maximum di�erence in number of time slots that is allowed for planning order sets of a shipping truck over di�erent zones
t rl release time slot of shipping truck l
tdl deadline time slot of shipping truck l
δ split order set factor for spli�ing large order sets over multiple consecutive time slots
µk mean number of order lines per time slot in zone k

Decision variables

Xikl binary variable which is equal to 1 if and only if order set (k ; l ) is planned in time slot i

Objective function

min
∑
k ∈κ

1
I

∑
i ∈ι

(∑
l ∈λ

aklXikl − µk

)2
(1)

Subject to ∑
i ∈ι
i<t rl
i>tdl

Xikl = 0 ∀k ∈ κ ∀l ∈ λ (2)

∑
i ∈ι

Xikl = 1 ∀k ∈ κ ∀l ∈ λ (3)∑
i ∈ι

i
(
Xikl − Xik ′l

)
≤ ∆tmax ∀k ∈ κ ∀k ′ ∈ κ\{k} ∀l ∈ λ (4)

Objective function 1 minimizes the variance of planned order lines over all time slots, for each pick zone. Con-
straints 2 indicate that an order set (i.e., the combination of {k ; l}) can only be scheduled a�er the release time of
a shipping truck and before the pick deadline of the corresponding shipping truck. Assigning each order set to a
single time slot is the result of constraints 3. Constraints 4 incorporate the maximum di�erence in time slots for
planning order lines of a certain shipping truck over di�erent zones. �is di�erence in time slots cannot exceed
a threshold parameter ∆tmax in order to prevent the model creating huge bu�ers in the staging area.

In addition to the above constraints, the model includes an extra parameter δ in case of large order sets. To avoid
the model planning an large order set in a single time slot, which will be infeasible to pick in practice, the split
order set factor δ is de�ned as a fraction of the mean number of order lines per time slot in zone k . Each order
set {k ; l} is split into two if the following equation is met: akl > (1 + δ )µk ,∀k ∈ κ and ∀l ∈ λ. By means of
the size of δ , order sets are split into two if an order set of shipping truck l is greater than (1 + δ ) times µk in
order to facilitate balancing over the di�erent time slots. Furthermore, the split order sets must be scheduled in
consecutive time slots, which results in an extra set of equations:
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�����∑
i ∈ι

i
(
Xikl 1 − Xikl 2

) ����� ≤ 1 ∀(
l1; l2

)
∈ λ′ ∀k ∈ κ (5)

with
(
l1; l2

)
∈ λ′ the set containing the split order sets, and l1 and l2 the �rst and second part of split order sets,

respectively.

3 Methods

Due to the complex nature of OWIP, solving instances of realistic size to optimality in a reasonable amount of
computation time does not seem feasible. �erefore, an iterated local search (ILS) algorithm is introduced to
solve the operational workload imbalance problem. First, an initial solution is created in which orders of all
shipping trucks are assigned to the deadline time slot

(
tdl

)
. By means of a local search procedure, the initial

solution is improved. �e local search procedure consists of reassigning an order set to another time slot (i.e.,
shi�), exchanging two order sets of di�erent time slots (i.e., swap) and an ejection chain. Moves are repeated
until no further improvement in the objective function value is possible. �is local search procedure results in
a local optimum. To escape from this local optimum, a large and random change is performed to the currently
best found solution. �e perturbation is followed by the local search procedure to reach a new local optimum.
If an iteration of perturbation and local search results in an improved solution with respect to the variance, the
solution is accepted as new best solution. �ese steps are repeated until 1, 000 consecutive iterations without
improvement.

Table 2: Warehouse parameter values
Warehouse parameter Parameter value

U (u1;u2) uniform distribution with u1 and u2 the lower and upper bound
I number of time slots 24 time slots
al number of order lines of shipping truck l N (µa ;σa )
akl number of order lines of shipping truck l in zone k al

(
1
K +U (−γ ;γ )

)
µa mean number of order lines of a shipping truck 175 order lines
γ split shipping truck factor that de�nes the distribution of order lines across pick zones 0.05
δ split order set factor 0.25
t rl release time slot of orders in shipping truck l U

(
1; I

)
tpl available number of time slots to pick shipping truck l U (µtp − σtp ; µtp + σtp )
σtp variation in number of time slots between t r and td for each l 2 time slots
tdl deadline time slot of orders in shipping truck l min

(
I ; t rl + t

p
l

)
To assess the performance of the proposed ILS algorithm, a series of experiments is performed. Warehouse
parameters are outlined in Table 2. In the experiments, �ve factors are considered as summarised in Table 3.

Table 3: Experimental factor se�ing
Factor Factor levels

L number of shipping trucks (1) 100 trucks (2) 150 trucks (3) 200 trucks
K number of pick zones (1) 1 pick zone (2) 2 pick zones (3) 3 pick zones
∆tmax maximum di�erence in ti for planning orders of l in each k (1) 2 time slots (2) 4 time slots (3) 6 time slots
σa variation in number of order lines for each l : (1) 5 order lines (2) 10 order lines (3) 15 order lines
µtp mean number of time slots between t r and td for each l (1) 1 time slot (2) 2 time slots (3) 3 time slots

4 Results

�e algorithm is implemented in C++. To solve the MIP formulation, ILOG Cplex 12.7 is used with a runtime
limit of 5 h. As even the small instances could not be solved to optimality, due to the quadratic objective func-
tion, the imbalance is approximated by minimizing the range of OWIP in each order picking zone as follows:
min

∑
k ∈κ

(
Amax
k − Amin

k

)
. Amax

k and Amin
k are de�ned as the maximum and minimum number of planned order

lines over all time intervals in each order pick zone, respectively. It can be proven that the range of a given
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solution is minimal if the variance of a solution is minimal. Consequently, minimising the variance of OWIP by
the heuristic algorithm and calculating the range of the resulting solution allows us to evaluate the performance
of the ILS algorithm with respect to the optimal solution.

As we are currently developing the ILS algorithm, this section presents some preliminary results of the perfor-
mance of the ILS algorithm. �e ILS algorithm is tested on small problem instances with an experimental factor
se�ing as shown in Table 3. All 243 factor combinations are replicated 5 times, which leads to a total of 1, 215
instances. Results of solving the revised MIP model with Cplex show that 930 instances have been solved to
optimality within the 5 h limit (76.5 %). �e optimality gap of the remaining 285 instances varies between 0.02 %
and 86.63 % with an average gap of 8.68 %. �e number of instances that cannot be solved to optimality by Cplex
increase with larger values of factors L, K and µtp .

�e 930 instances that have been solved to optimality are compared to the results of the ILS algorithm in terms of
their performance in objective function value (range). �e di�erence in the range between the optimal solution
and the ILS algorithm is on average 3.11 (0.87 %). For all 1, 215 instances, the average runtime of Cplex is com-
pared to the average runtime of the ILS algorithm. �e average runtime of solving the MIP formulation is about
103 times higher than the average runtime of the ILS algorithm. �e average runtime of the optimal solution
amounts 4, 386.1 s, while the ILS algorithm only takes 42.6 s on average. �is large di�erence in runtime has im-
portant implications for the application possibilities of OWIP. �e intention of the developed model, is its usage
as a simulation tool to plan order sets more accurately during the day, in this way, avoiding peaks in workload.
�e model can be used to support warehouse managers and supervisors in their daily planning activities. Long
run times for OWIP means a smaller application potential in practice. �e proposed ILS algorithm can serve as
an alternative for the exact algorithm, providing fast and accurate results whenever it is used as a supporting
tool in practice. However, the algorithm needs further testing on realistic instances to be valuable in practice.

5 Conclusion

Short time periods for picking customer orders cause peaks inworkload during the day, resulting in extra pressure
for order pickers. Only approaches for long-term balancing have been introduced in literature. Practitioners are
searching for a solution to balance the workload for every hour of the day, to increase the utilization of pickers
and decrease the probability of missing shipping deadlines. Results show that the proposed ILS algorithm is able
to balance the workload during the day for small instances. To make our research more valuable to practice,
additional experiments are required: the algorithm should be tested for realistic problems to show the bene�ts in
practice. �e proposed algorithm can be used by warehouse supervisors as a decision support tool to plan order
sets more accurately during the day, in this way, avoiding peaks in workload. Additionally, the algorithm can
serve as an advisory tool for managers to start negotiations in changes in cut-o� times for customer order entry
and shipping schedules to further reduce workload imbalances.
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