
Web Performance Automation for the People
Robin Marx∗

Hasselt University – tUL
Expertise Centre for Digital Media

Diepenbeek, Belgium
robin.marx@uhasselt.be

ABSTRACT
Web performance is important for the user experience and can heav-
ily influence web page revenues. While there are many established
Web Performance Optimization (WPO) methods, our work so far
has clearly shown that new network protocols, optimized browsers
and cutting-edge web standards can have a significant impact on
known best practices. Additionally, there is still low-hanging fruit to
be exploited, in the form of personalizing performance based on user
context (i.e., current device, network, browser) and user preferences
(e.g., text reading vs multimedia experience).

In our PhD project, we strive to integrate this user-specific meta-
data into dynamic configurations for both existing and new auto-
matedWPO techniques. An intermediate server can (pre)generate
optimized versions of a web page, which are then selected based on
user context and preferences. Additional metadata is also passed
along to the browser, enabling improvements on that side, and used
to steer new network protocols to speed up the incremental delivery
of page resources.

Weuse the Speeder platform toperformandevaluate full-factorial
objective measurements and use subjective user studies across a
range of groups to assess the applicability of our methods to end
users. Our aim is to provide insights in howWPO can be tweaked
for specific users, in the hopes of leading to newweb standards that
enable this behavior.

CCS CONCEPTS
•Networks→Networkprotocol design;Transport protocols;
Network performance evaluation; Application layer protocols;
Middle boxes / network appliances; •Human-centered computing
→ User studies; Contextual design; • Social and professional top-
ics→Automation; • Software and its engineering→ Software
performance;

KEYWORDS
Web Performance Optimization (WPO); Page Load Time (PLT); User
Context; QUIC Protocol; Distributed Systems; Web browsers; Net-
working; Systems Automation

∗Robin Marx is a SB PhD fellow at FWO, Research Foundation - Flanders, project
number 1S02717N. This PhD project is supervised by Prof. Peter Quax, PhD and Prof.
Wim Lamotte, PhD.

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporateWeb sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3186570

ACMReference Format:
Robin Marx. 2018. Web Performance Automation for the People. InWWW
’18 Companion: The 2018 Web Conference Companion, April 23–27, 2018, Lyon,
France.ACM,NewYork,NY,USA,5pages.https://doi.org/10.1145/3184558.3186570

1 PROBLEM STATEMENT
Modern websites and web-based applications are often slow to load
and interactwith, especially onmobile devices and cellular networks.
This suboptimal performance is annoying to the user; so annoying in
fact, that even slight increases in page load time can have a measur-
able and consistent impact on retention, conversions and revenue
in e-commerce scenarios [30]. A study byMicrosoft and LinkedIn
researchers [17] found that “an engineer that improves server per-
formance by 10msec [. . .] more than pays for his fully-loaded annual
costs. Every millisecond counts.”. We cannot solely rely on advances
in network and device speeds to ensure happier users over time,
as web page and user agent complexity has been incrementing at
staggering rates in recent years [14].

Given these challenges, the state of the art onWeb Performance
Optimization (WPO) is well-established in research (§2) and espe-
cially in industry. Many evergreen techniques (e.g., compression,
unused code elimination) can be applied automatically at the server
side, either in a pre-processing step or at runtime (e.g., modpage-
speed). Advanced backend setups can go one step further, also using
(limited) user context (e.g., current network connection type, de-
vice) to provide further customized optimizations [1] or, in the case
of cloud-based browsers, deeply rewrite the web page’s represen-
tation [8, 36] (though this can negatively impact user experience
in other ways). On the user side, modern browsers use advanced
heuristics [24] to optimize the common case and provide developers
with APIs (e.g., preload directives) to embed additional performance
hints. The Accelerated Mobile Pages (AMP) project combines cus-
tom HTML/JavaScript APIs with cloud-based hosting to provide
improved performance for a subset of use-cases (e.g., news arti-
cles). In addition to these automated techniques, developers can
also use a wide range of synthetic monitoring and analysis tools
(e.g.,Webpagetest.org, Sitespeed.io) tomanually assess performance
bottlenecks. Real User Monitoring (RUM) solutions on the other
hand, gather performance information from real page loads at the
user’s devices, offering more realistic insights. This additional data
is often needed to manually tweak individual page performance,
as the automated methods make mistakes or use too conservative
heuristics.

Even though these automated methods and manual mitigations
exist, they might not be enough to guarantee optimal performance
in the face of several recent and upcoming changes in the internet
landscape and the changing expectations of end users. We want to

PhD Track WWW 2018, April 23-27, 2018, Lyon, France

825

https://doi.org/10.1145/3184558.3186570
https://doi.org/10.1145/3184558.3186570

focus on three main areas that can have a large impact on existing
performance best practices andwould require updates to established
methods:

• Area1 (A1):NewnetworkprotocolsThe recently standardized
HTTP/2 and the upcoming QUIC [5] protocols are slated to re-
place the ageing HTTP/1.1. While they were very much designed
with performance in mind, previous work (§2.2, §5) has shown
that it can be difficult to fine-tune new protocol features and that
differing implementations can lead to large performance impacts.
As such, HTTP/2 best practices have yet to emerge and several
large sites (e.g., Amazon, Uber, Netflix) have yet to (fully) transfer
to the new protocol. Our main research question in this area is
which new opportunities and possible pitfalls QUIC brings and
how to best put them to use.

• Area2(A2):RisingusercontextheterogeneityAsdevicesand
networks have become faster, web page complexity has grown
accordingly. Mobile devices on slower networks often fail to de-
liver proper page load performance for these more complex pages.
Additionally, user agent implementations are diversifying, with
Firefox v57 presenting a complete overhaul and the UC browser
dethroning Google Chrome in Asian countries [25]. Existing (au-
tomated) methods often do not allow to adjust the optimizations
based on this user context and thus many websites continue to
serve just two or even one (responsive) version of the website,
forcing low-end smartphones to download and process much the
same resources as high-end desktops. Our main research question
here is howwe can tweak new and existingWPO techniques to
better fit heterogeneous user contexts.

• Area 3 (A3): Subjective user preferences The end user’s expe-
rience with regards to performance can be highly subjective and
individualistic (§2.4). For example, Opera Mini [8] users enjoy
faster page loads, making the tradeoff to lose runtime JavaScript
execution. Additionally, Progressive JPG images can be annoying
and even feel slower to some users [10]. Users are also looking
to personalize their web browsing experience in other ways (e.g.,
the Brave browser provides a different model for serving adver-
tisements). However, almost no existing performance methods
take into account (explicit) individual user preferences, instead
treating all users the same. For example, modern browsers in-
clude a “reader mode”, but only enable this after all superfluous
content has been downloaded and processed. Wemainly aim to
research how (explicit) user preferences can be used to guide the
(combination of) usedWPO techniques in order to generate better
individualized experiences.

2 STATEOF THEART
2.1 Page load bottlenecks
Alarge bodyofworkhas focusedon identifying themainbottlenecks
in web page loading behaviour. Starting with theWProf study [35],
which identified how resource inter-dependencies and load orders
define the “critical path”, several systems have achieved impressive
performance gains by manipulating these load orders and resource
fetch priorities (e.g., Klotski [4], Polaris [22], Vroom [28] andMeta-
Push [13]). These works all use additional metadata, either on the
browser or server side, to further optimize loading performance.

In tandem, other work has focused particularly on mobile per-
formance, and often finds that there the computation capabilities
of the device, not the network [37], are often the bottleneck [6],
noting that “we need to fundamentally rethink optimizations for
mobile browsers”[21]. Yet, many of these studies often only consider
a single browser and/or are several years old, warranting a possible
re-evaluation, given the rapid browser implementation evolution.

2.2 Network protocols
The newHTTP/2 protocol has been the subject of a large variety of
research in recent years. Sadly, our survey shows that many of the
studies [7, 9] produce contradictory results (e.g., that Server Push
should be used very sparingly [3, 41] versus aggressively [27]). It
is our opinion that this is mainly due to limited network emulation
variety in individual test setups and researchers testing different ver-
sions of the proposed protocols. As the new, evenmore flexibleQUIC
protocol is gaining momentum [5], we expect these contradictions
to continue, as corroborated by the recent work of Kakhki et al. [15].

Luckily, many of the publications also agree that, depending on
certain network parameters (e.g., packet loss), different approaches
(e.g., opening additional TCP connections [11]) lead to superior per-
formance, which is also corroborated by our own experiments (§5).
As the QUIC protocol allows much more freedom in all levels of the
protocol stack, we envision that deep configuration depending on
network parameters can be used to tweak performance, as hinted
by similar work from Qian et al. [26].

2.3 Proxy and cloud-based browsing
Manyof the existingworks onWPOare practically implemented and
evaluated using an intermediate proxy or cloud-based server that
helps provide the speedup. For example, Shandian [36] is similar to
Opera Mini [8] in that it does (partial) execution of JavaScript on the
server side. Other works bundle resources together [23], manipulate
resource loading orders [18, 28] or prefetch and precache website
assets [29, 32]. This shows that using such an intermediate server
is a valid approach in our own efforts (§3, step 2).

2.4 Subjective performancemetrics
WPO techniques are often measured using objective metrics, ob-
tained from theweb browser or by observing the visual load progres-
sion of the page. However, recent research has clearly shown that
these metrics are badly correlated with actual subjective user opin-
ionsonperceivedpage“readiness” [16, 33, 42]and that theseopinions
are often highly individualized. Related HCI research also indicates
that (automatically) personalized user interfaces can lead to shorter
task solve times [31]. These findings underscore the potential of the
incorporation of (explicit) user preferences into theWPO setup.

3 PROPOSEDAPPROACH
We envision a traditional setup where an intermediate server (§2.3)
optimizes the web page and its resources, received from the origin,
either ahead-of-time or upon receiving a request. This setup is akin
to the model used by most Content Delivery Networks (CDNs), as
we envision our work to be of most interest to that industry.

PhD Track WWW 2018, April 23-27, 2018, Lyon, France

826

Figure 1: Overview of our proposed overall system. Steps 3, 4 and 5 include ourmain envisioned contributions.

Our main contributions will be in steps 3, 4 and 5 in Figure 1.
The key to our approach is to increase the bi-directional commu-
nication of performance-related metadata between user agent and
server (steps 3 and 4). This additional information allows us to select
much more appropriate, context-related optimizations (step 2) and
to tweak the transfer of the actual page data (step 5) using protocol
settings appropriate to the current context (e.g., use of multiple con-
nections depending on network quality, §2.2). In turn, the browser
can use metadata on the applied optimizations to improve its heuris-
tics and internal processing (steps 4,5). Optimization insights can be
communicated back to the developers (step 6) and so lead to more
optimized initial web pages (step 1).

Step 3: User context and preferences (A2 and A3)
Until recently, browsers exposed relatively little user context and
preferences. This has changed with ongoing work on Client Hints
(e.g., indicating screen size), the NetInfo API (providing estimates
of current network quality parameters), the Memory Pressure API
and Cache Digests. However, several of these options are still very
experimental and their optimal usage is yet unknown. Additionally,
there are no provisions yet for explicit user preferences, such as to
indicate a metered (cellular) connection, to select a type of adver-
tisement (e.g., video vs text-only), to enforce reader mode, to disable
animations or to profess a preference to only lazy load images/video.

The main challenges here are to evaluate the usefulness of the
data from these new APIs and how to communicate this data to the
server as soon as possible. Additionally, we must look at which user
preferences are most useful and how they can be integrated into the
browser in a usable, secure and privacy-aware way.

Step 4: Page optimizationmetadata (A2)
Browsers can profit from having additional metadata about the con-
tents of and optimizations applied to the web page. This is currently
already partly possible through methods such as Resource Hints or
Server Push [13], but more advanced options like explicit Priority
Hints are not yet standardized. In all, browsers often do not know
what a page will contain ahead of time and have to iteratively dis-
cover the subresources and their contents. This forces the browser
to use (sub-optimal) heuristics and to be overly conservative about
its approach.

If the browser has more detailed metadata up-front (e.g., file sizes
for each resource, full list of resources with their respective pri-
ority and conceptual contribution to the page) it can dramatically
improve its performance, as has already been hinted at in related

work (§2.1,§5). Additionally, if the browser is 100% sure that a web
page will not use a given JavaScript/CSS API or is structured in a
given, well-known way, it might opt for a faster execution path, as
slower subsystems can be skipped entirely. While these ideas have
been explored in previous work, we aim to further evaluate these
possibilities, especially for newer web standards.

Step 5: Optimized network transfer (A1)
Even though the newer network protocols provide clear advantages
over the old HTTP/1.1, it is clear that a single configuration will
not produce optimal results in all settings. For example, HTTP/2’s
single connection suffers from packet loss and performance can be
improved by using multiple parallel connections [11, 19]. For other
new features, such as Server Push and Prioritization, it is yet unclear
what the best practices are and how they are influenced by user
context [3, 40].

The new QUIC protocol re-implements many of TCP’s features
in userspace and as such allows even more dynamic configuration
(e.g., selecting a different congestion avoidance algorithm based on
current network conditions). As QUIC is in the process of being
standardized, it is an area of active research and existing studies on
older versions of QUIC might have to be nuanced based on newer
iterations [15].We believeQUIC’s design allows formany tweakable
performance optimizations, more so than other similar protocols.

Step 2: Automated resource rewriting (A1 and A3)
While the network transfer configurations will act mainly on user
context, extensive resource rewriting can be used to also adhere to
the explicit user preferences.Weenvisionan intermediate server that
primarily selects and combines established automated techniques
to (pre)generate various different representations of the web page,
depending on user context and selected performance preferences
(e.g., reader mode version with very simple layout, version that lazy
loads images, version with heavy resource compression/bandwidth
optimized, version purely for Google Chrome, etc.).

This intermediate server can also generate the optimization-
related metadata (e.g., prioritized list of resources) to be commu-
nicated to the browser in Step 4 or to be used for aspects such as
Server Push in Step 5. While previous work includes several ap-
proaches in this regard [22, 36], we expect additional work will be
needed to generate additional metadata and look at how developers
might provide this metadata themselves.

PhD Track WWW 2018, April 23-27, 2018, Lyon, France

827

4 METHODOLOGY
4.1 Planned developments
CustomQUIC andHTTP/2 Server
Weare currently in the process of developing a customNodeJS-based
QUIC and HTTP/2 server. This will allow us to gain a deep under-
standing of the protocol and to more quickly and dynamically test
several aspects and (congestion control) algorithmswithin theQUIC
protocol and to compare them to other default implementations.

Intermediate server setup
Wewill implement an intermediate server which integrates many of
the existing automatedWPO techniques. These techniques are then
combined into several “profiles” that adhere to specific combinations
of user context and preferences. These profiles can then be used
to either prefetch and pregenerate optimized versions of popular
websites or can be applied on-the-fly. The profiles can also further
be automatically iteratively refined by testing their output using the
Speeder framework (§4.2) and discarding suboptimal permutations.

Customweb browser(s)
Itwill benecessary tocreatecustomversionsofexistingwebbrowsers,
both to enable fast path processing based on the received metadata
and to allow additional user context and especially explicit user pref-
erences to be communicated to the server. To this end, we plan to
focus primarily on either/or the open source Chromium and Firefox
browsers, starting with an extensive source code review to identify
possible improvements and then incrementally creating several cus-
tom versions. This should eventually lead to a version to be used in
a longer-running subjective user study.

4.2 Evaluation amenities
The Speeder framework for objectivemeasurements
We have already developed an in-house testing framework named
Speeder. This automated platform allows for easy test setup and
full-factorial evaluations over multiple browsers, physical devices,
server implementations, network emulations and protocols. We use
tools such asWebPageTest.org, Sitespeed.io and Google Lighthouse
to gather objective performance metrics. The platform includes a
variety of different visualizations and statistical methods to evalu-
ate the gathered data (§5). In this, Speeder takes a more integrated
approach than similar frameworks, such as mahimahi [23], which
typically focus on either only the front or backend and rarely in-
tegrate visualization or analysis tools. Speeder will allow us full
control to test our custom QUIC and browser implementations. Ta-
ble 1 shows the current Speeder features. More details are available
on https://speeder.edm.uhasselt.be.

Subjective user studies
We plan to conduct several user studies and questionnaires. Firstly,
we need to obtain additional insight in typical user contexts that
can influence performance and into which explicit user preferences
wouldbe interesting for awide rangeof end-users. Secondly,weneed
to get a better feeling forwhy subjective usermetrics oftenmismatch
with objective metrics (§2.4) and how to handle this. Lastly, the final
version of our custom web browser that integrates advanced user
context and preferences should be tested in live scenarios by real
users. As we currently have little direct experience in this area, we
plan to rely on methods from previous work (§2.4) and the support
of our local colleagues active in HCI research. We will use groups

Table 1: Software, metrics and visualizations supported in
the Speeder framework (December 2017).

Protocols HTTP/1.1 (cleartext), HTTPS/1.1, HTTPS/2

Browsers Chrome (v51 - v63), Firefox (v45 - v56)

Test drivers Sitespeed.io (v3), Webpagetest (v3.0)

Servers Apache (v2.4.20), NGINX (v1.10), NodeJS (v6.2.1), H2O (v2.1)

Network -DUMMYNET (cable and cellular)
- fixed TC NETEM (cable and cellular)
- dynamic TC NETEM (cellular) [11]

Metrics All Navigation Timing values [34], SpeedIndex [39], other
Webpagetest metrics [38], Google Lighthouse metrics

Visualizations Packet timeline (TCP and HTTP/2), HTTP/2 priority
dependency trees. Boxplots, linegraphs and CDFs of
recorded metrics

consisting of students, volunteering web performance professionals
and subjects hired through platforms such as Mechanical Turk.

5 RESULTS
Our work in the past year has led to three accepted publications and
one pending overarching journal publication.

Our first publication validates HTTP/1.1-era best practices in an
HTTP/2 setup [19]. We used the Speeder framework to do a broad
analysis of different factors and found that HTTP/2’s performance
is heavily dependent on not only the network quality, but also on the
individual browser’s internal implementation and handling. Differ-
entHTTP/2 configurations (e.g., usingmultiple parallel connections,
more or less resource aggregation) can thus lead to improved perfor-
mance, depending on these contextual parameters (§3 Steps 3,5). Our
results were confirmed by related work [11] and directly contradict
earlier expectations [12].

Our second publication, focused on HTTP/2’s resource priori-
tization system [40], shows even more clearly that there are large
differences in individual browser implementations and that sub-
optimal heuristics can have detrimental effects on performance, fur-
ther demonstrating the need for additional metadata (§3 Steps 3,4,5).
We were one of the first to dig deep into HTTP/2’s prioritization
systemandour results confirm themain previouswork [2]while pro-
vidingadditional insights into the reasons for theobservedbehaviors.

Our third publication, dealing with transpiling HTML/CSS pages
into WebVR-compatible representations [20], was used as a vehi-
cle to gain more insight in the underlying details of the browser’s
JavaScript and CSS engines. Our findings show that these engines
often have to keep large amounts of internal state to provide esoteric
APIs, leaving opportunities for the integration of fast paths (§3 Step
4). Our implementation achieves an order ofmagnitude performance
increase compared to equivalent existing approaches.

6 CONCLUSIONS AND FUTUREWORK
Through a survey of existing work and our own efforts in the past
year, we have identified several new opportunities for progressing
Web Performance Optimization best practices, based on advances in

PhD Track WWW 2018, April 23-27, 2018, Lyon, France

828

https://speeder.edm.uhasselt.be

network protocols and browser implementations. We aim to employ
these opportunities in a personalizedmanner, by taking into account
deep user context and explicit user preferences, improving on the
same-size-fits-all approach that is currently still common practice.

Aiming to end our PhD project in three years, we plan to spend
year one primarily on preparation for the individual aspects of our
setup: the implementation and testing of the QUIC server, browser
source code review plus minor custom adjustments and subjective
user studies surrounding (image) placeholder format preferences.
The second year will center around integrating the different aspects
into a single setup, implementing the intermediate proxy server and
defining the optimization profiles. The last year will then produce
the final custom browser version, to be tested and evaluated by real
users. Throughout the whole period we will also update the Speeder
framework to be able to test as many parameters as possible.

REFERENCES
[1] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben

Greenstein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian
Yin. 2015. Flywheel: Google’s Data Compression Proxy for the MobileWeb.. In
NSDI, Vol. 15. 367–380.

[2] Tom Bergan. 2016. Benchmarking HTTP/2 Priorities. Online,
https://docs.google.com/document/d/1oLhNg1skaWD4DtaoCxdSRN5erEXrH-
KnLrMwEpOtFY/. (October 2016).

[3] Tom Bergan, Simon Pelchat, and Michael Buettner. 2016. Rules of
Thumb for HTTP/2 Push. Online, https://docs.google.com/document/d/
1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0. (2016).

[4] Michael Butkiewicz, DaimengWang, ZheWu, Harsha V. Madhyastha, and Vyas
Sekar. 2015. KLOTSKI: ReprioritizingWeb Content to Improve User Experience
on Mobile Devices. In Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation (NSDI’15). 439–453.

[5] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP over UDP:
an Experimental Investigation of QUIC. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing. ACM, 609–614.

[6] CalinCascaval, Seth Fowler, PabloMontesinos-Ortego,Wayne Piekarski,Mehrdad
Reshadi, Behnam Robatmili, Michael Weber, and Vrajesh Bhavsar. 2013. ZOOMM:
a parallel web browser engine for multicore mobile devices. In ACM SIGPLAN
Notices, Vol. 48. ACM, 271–280.

[7] Hugues de Saxcé, Iuniana Oprescu, and Yiping Chen. 2015. Is HTTP/2 really
faster than HTTP/1.1?. In Proceedings of the IEEE Conference on Computer
Communications Workshops. 293–299.

[8] Dev.Opera. 2012. Opera Mini and JavaScript. Online, http://dev.opera.com/
articles/view/opera-mini-and-javascript/. (2012).

[9] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana, and K. K. Ramakrishnan. 2013.
Towards a SPDY’ier Mobile Web?. In Proceedings of the 9th ACM International
Conference on emerging Networking EXperiments and Technologies (CoNEXT’13).
303–314.

[10] Everts, Tammy. 2014. Progressive image rendering: Good or evil? Online,
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-
image-rendering-good-evil/. (2014).

[11] Utkarsh Goel, Moritz Steiner, Mike P Wittie, Stephen Ludin, and Martin Flack.
2017. Domain-Sharding for Faster HTTP/2 in Lossy Cellular Networks. arXiv
preprint arXiv:1707.05836 (2017).

[12] Ilya Grigorik. 2013. High Performance Browser Networking. " O’Reilly Media, Inc.".
[13] Bo Han, Shuai Hao, and Feng Qian. 2015. MetaPush: Cellular-Friendly Server

Push For HTTP/2. In Proceedings of the Workshop on All Things Cellular
(AllThingsCellular’15). 57–62.

[14] Ilya Grigorik and Pat Meenan and Rick Viscomi. 2017. HTTP Archive. Online,
http://httparchive.org/. (October 2017).

[15] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and
Alan Mislove. 2017. Taking a long look at QUIC: an approach for rigorous
evaluation of rapidly evolving transport protocols. In Proceedings of the 2017
Internet Measurement Conference. ACM, 290–303.

[16] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R Das. 2017.
Improving User Perceived Page Load Times Using Gaze.. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI). 545–559.

[17] RonKohavi, AlexDeng, Roger Longbotham, and YaXu. 2014. Seven rules of thumb
for web site experimenters. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 1857–1866.

[18] Xuanzhe Liu, Yun Ma, Xinyang Wang, Yunxin Liu, Tao Xie, and Gang Huang.
2017. Swarovsky: Optimizing resource loading for mobile web browsing. IEEE

Transactions on Mobile Computing 16, 10 (2017).
[19] Robin Marx, Peter Quax, Axel Faes, and Wim Lamotte. [n. d.]. Concatenation,

Embedding and Sharding: Do HTTP/1 Performance Best Practices Make Sense in
HTTP/2?. In Proceedings of the 13th International Conference onWeb Information
Systems and Technologies (WEBIST’17). Scitepress.

[20] Robin Marx, Sander Vanhove, Wouter Vanmontfort, Peter Quax, and Wim
Lamotte. 2017. DOM2AFrame: Putting theWeb back inWebVR. In Proceedings
on the Int. Conf. on 3D Immersion (IC3D17). IEEE.

[21] Javad Nejati and Aruna Balasubramanian. 2016. An in-depth study of mobile
browser performance. In Proceedings of the 25th International Conference onWorld
WideWeb. 1305–1315.

[22] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016.
Polaris: Faster Page Loads Using Fine-grained Dependency Tracking. In
Proceedings of the 13th USENIX Conference on Networked Systems Design and
Implementation (NSDI’16). 123–136.

[23] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Win-
stein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate
Record-and-Replay for HTTP.. In USENIX Annual Technical Conference. 417–429.

[24] Osmani, Addy. 2017. Preload, Prefetch And Priorities in Chrome. Online,
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-
776165961bbf. (2017).

[25] Purnell, Newley. 2018. UC Browser vs Google Chrome. Online,
https://www.wsj.com/articles/a-browser-youve-never-heard-of-is-
dethroning-google-in-asia-1514808002. (2018).

[26] Feng Qian, Vijay Gopalakrishnan, Emir Halepovic, Subhabrata Sen, and Oliver
Spatscheck. 2015. TM 3: flexible transport-layer multi-pipe multiplexing
middlebox without head-of-line blocking. In Proc. of the 11th ACM Conf. on
Emerging Networking Experiments and Technologies.

[27] Sanae Rosen, Bo Han, Shuai Hao, Z Morley Mao, and Feng Qian. 2017. Push or Re-
quest: An Investigation ofHTTP/2 Server Push for ImprovingMobile Performance.
In Proceedings of the 26th International Conference onWorldWideWeb. 459–468.

[28] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V
Madhyastha. 2017. VROOM: Accelerating the Mobile Web with Server-Aided
Dependency Resolution. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication.

[29] Ali Sehati and Majid Ghaderi. 2015. WebPro: A proxy-based approach for low
latency web browsing on mobile devices. In Quality of Service (IWQoS), 2015 IEEE
23rd International Symposium on. IEEE, 319–328.

[30] Tammy Everts and Tim Kadlec. 2017. WPO Stats. Online, https://wpostats.com/.
(October 2017).

[31] Kashyap Todi, Jussi Jokinen, Antti Oulasvirta, and Kris Luyten. 2018. Famil-
iarisation: Restructuring Layouts with Visual Learning Models. In International
Conference on Intelligent User Interfaces 2018 (IUI). ACM.

[32] Jeroen van der Hooft, Stefano Petrangeli, TimWauters, Rameez Rahman, Nico
Verzijp, Rafael Huysegems, Tom Bostoen, and Filip De Turck. 2017. Analysis of a
large multimedia-rich web portal for the validation of personal delivery networks.
In Integrated Network and Service Management (IM), 2017 IFIP/IEEE Symposium
on. IEEE, 714–719.

[33] Matteo Varvello, Jeremy Blackburn, David Naylor, and Konstantina Papagiannaki.
2016. EYEORG: A Platform For Crowdsourcing Web Quality Of Experience
Measurements. In Proceedings of the 12th ACM International Conference on
emerging Networking EXperiments and Technologies (CoNEXT’16). 399–412.

[34] W3C Recommendation. 2012. Navigation Timing. Online, https:
//www.w3.org/TR/navigation-timing. (December 2012).

[35] Xiao SophiaWang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance withWProf. In Proceedings
of the 10th USENIX Conference on Networked Systems Design and Implementation
(NSDI’13). 473–486.

[36] Xiao SophiaWang, Arvind Krishnamurthy, and DavidWetherall. 2016. Speeding
UpWeb Page Loads with Shandian. In Proceedings of the 13th USENIX Conference
on Networked Systems Design and Implementation (NSDI’16). 109–122.

[37] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2011. Why
are web browsers slow on smartphones?. In Proceedings of the 12thWorkshop on
Mobile Computing Systems and Applications. ACM, 91–96.

[38] WebPagetest. 2017. Website Performance and Optimization Test. Online,
https://www.webpagetest.org/. (2017).

[39] WebPageTest Documentation. 2012. Speed Index. Online, https:
//sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/
speed-index. (2012).

[40] Maarten Wijnants, Robin Marx, Peter Quax, and Wim Lamotte. 2018. HTTP/2
Prioritization and its Impact onWeb Performance. InWWW2018: The 2018Web
Conference, April 23-27, 2018, Lyon, France.ACM.

[41] Kyriakos Zarifis, Mark Holland, Manish Jain, Ethan Katz-Bassett, and Ramesh
Govindan. 2017. Making Effective Use of HTTP/2 Server Push in Content Delivery
Networks. In Technical report. University of Southern California.

[42] Torsten Zimmermann, Benedikt Wolters, and Oliver Hohlfeld. 2017. A QoE
Perspective on HTTP/2 Server Push. In Proc. Workshop on QoE-based Analysis
and Management of Data Comm. Networks. ACM, 1–6.

PhD Track WWW 2018, April 23-27, 2018, Lyon, France

829

https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/
https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0
http://dev.opera.com/articles/view/opera-mini-and-javascript/
http://dev.opera.com/articles/view/opera-mini-and-javascript/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
https://blog.radware.com/applicationdelivery/wpo/2014/09/progressive-image-rendering-good-evil/
http://httparchive.org/
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://www.wsj.com/articles/a-browser-youve-never-heard-of-is-dethroning-google-in-asia-1514808002
https://www.wsj.com/articles/a-browser-youve-never-heard-of-is-dethroning-google-in-asia-1514808002
https://wpostats.com/
https://www.w3.org/TR/navigation-timing
https://www.w3.org/TR/navigation-timing
https://www.webpagetest.org/
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

	Abstract
	1 Problem Statement
	2 State of the Art
	2.1 Page load bottlenecks
	2.2 Network protocols
	2.3 Proxy and cloud-based browsing
	2.4 Subjective performance metrics

	3 Proposed Approach
	4 Methodology
	4.1 Planned developments
	4.2 Evaluation amenities

	5 Results
	6 Conclusions and future work
	References

