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Summary

In this dissertation, quantile regression in varying coefficient models using a nonpara-

metric technique called P-splines is investigated. In mean regression, we study the

influence of the covariates on the conditional mean of the response. An alternative

way to study the central location is median regression which is robust to heavy-tailed

distributions. Quantile regression is a generalization of median regression to investi-

gate the influence of the covariates on the quantiles/percentiles (entire distribution)

of the response. It allows for a wide range of applications. For instance, investigating

the 25th percentile of the response (e.g. weight of the child) might be of interest in

studying severe malnutrition in children. In order to find the estimates, we need to

minimize a quantile objective function. In contrast to that of mean regression, the

objective function for quantile regression is not differentiable everywhere. Hence, the

coefficient estimates have no explicit expression.

A varying coefficient model is an extension of a classical linear regression model, where

each coefficient is varying with another variable. This model is important when we

have a complex data setting like longitudinal data. In such data scheme, it is intuitive

to allow the coefficients to vary with ‘time’. We consider, in particular, a location-

scale varying coefficient model. The key statistical tools are introduced in Chapter

1.

Population conditional quantiles cannot cross for different quantile levels (percentiles).

However, individual conditional quantile estimators can cross each other. To avoid

these crossings, we use an approach called ‘AHe’ (based on two assumptions). This

approach enables us to estimate the scale (variability function), and by doing so

estimate several quantiles with less computational time. In Chapter 2, we show the
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consistency of the proposed estimator theoretically and illustrate it in a simulation

study. Since estimation of the quantiles other than the median relies on the variability

function, it is important to identify the correct structure of the variability function

(e.g. homoscedastic or time varying). Under a homoscedastic variability structure, we

can conclude that the influence of the covariates on all other quantiles of the response

is similar to that of the median. We develop a testing procedure (Likelihood-Ratio-

Type test) to investigate the structure of the variability function. The performance

of the testing procedure is shown in the simulation study. The estimation and testing

procedures are illustrated on data examples.

In Chapter 3, we focus on testing the shape of a coefficient function (e.g. constant,

monotone or convex). Several testing procedures are proposed. A monotonicity test

is important to check, for example, that the weight of a child is decreasing at some

point in time. The performance of the testing procedures is illustrated in a simulation

study. An application to a data example also illustrates the use of the procedures.

To further simplify the model, in Chapter 4, two types of variable selection techniques

called ‘grouped Adaptive Lasso’ and ‘NonNegative Garrote’ are proposed. The per-

formance of these techniques is illustrated in a simulation study. In Chapter 5, we

also propose another two-stage variable selection technique called NNGSIS, in an

ultrahigh-dimensional setting (when the number of coefficients to estimate is possi-

bly much bigger than the number of observations). Simulation studies illustrate the

performance of the procedures. We also demonstrate the use of the methods on data

examples.

Chapter 6 draws some conclusions with discussion of possible future perspectives.

The R-code to implement the methodology developed in this dissertation is presented

in Appendix A.



Samenvatting

In deze thesis bestuderen we kwantiel regressie in variërende coëfficiënten modellen

waarbij we gebruik maken van P-splines, een niet-parametrische schattingsmethode.

In klassieke regressiemodellen bestuderen we het effect van covariaten op de gemid-

delde respons. In plaats van het gemiddelde te modelleren, kunnen we ook de mediaan

bestuderen. Deze maat is robuust voor verdelingen met een zware staart. Kwantiel

regressie is een veralgemening van mediaan regressie waarbij het effect van covariaten

op de kwantielen/percentielen (volledige verdeling) van de responsvariabelen bestu-

deerd wordt. Deze regressietechniek heeft verschillende toepassingsmogelijkheden,

bvb., bij de studie van ondervoeding bij kinderen is het vaak interessant om het 25ste

percentiel van de respons (gewicht van het kind) te kennen. De schatters worden

gevonden via het minimaliseren van een kwantiel doelfunctie. In tegenstelling tot re-

gressiemodellen voor de gemiddelde respons, is deze doelfunctie niet overal afleidbaar

waardoor er geen expliciete uitdrukking voor de schatters bestaat.

Een variërend coëfficiënten model is een uitbreiding van een lineair regressie model,

waarbij iedere regressiecoëfficiënt een functie van een andere variabele kan zijn. Dit

model is belangrijk bij complexe data structuren zoals longitudinale data, waarbij het

natuurlijk is om aan te nemen dat coëfficiënten variëren over de tijd. We bestude-

ren in het bijzonder een locatie-schaal variërend coëfficiënten model. De belangrijke

statistische aspecten worden in Hoofstuk 1 gëıntroduceerd.

Populatie conditionele kwantielen kunnen elkaar niet kruisen over de verschillende

percentielen. Individuele schatters voor deze conditionele kwantielen kunnen elkaar

helaas wel kruisen. Om dergelijke kruisingen te voorkomen, gebruiken we de AHe me-

thode (gebaseerd op twee aannames). De techniek maakt het mogelijk om de schaal
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(variabiliteitsfunctie) te schatten waarbij verschillende kwantielen berekend kunnen

worden in minder rekentijd. In Hoofdstuk 2 bewijzen we de consistentie van deze

methode en illustreren we de techniek aan de hand van een simulatiestudie. Het is

belangrijk om de correcte structuur van de variabiliteitsfunctie te kennen (bvb. ho-

moscedastisch of variërend over de tijd) omdat ieder kwantiel (behalve de mediaan)

bëınvloed wordt door deze variabiliteitsfunctie. In een homoscedastische setting geldt

dat het effect van covariaten op alle mogelijke kwantielen van de respons gelijk is aan

het effect op de mediaan van deze respons. We ontwikkelen een test om de structuur

van de variabiliteitsfunctie te controleren. De kwaliteit van deze test wordt weerge-

geven in een simulatievoorbeeld. Zowel de schattingsmethoden als de testprocedures

worden gëıllustreerd op datavoorbeelden.

In Hoofdstuk 3 ligt de focus op de vorm van de coëfficiëntfuncties (bvb. constant,

monotoon of convex). We stellen verschillende testprocedures voor. Een test voor

monotoniciteit is belangrijk om, bij de studie omtrent ondervoeding, te onderzoeken

of het gewicht van een kind daalt op een gegeven moment. De kwaliteit van de

test wordt aangetoond in een simulatiestudie. De toepasbaarheid van de ontwikkelde

techniek wordt weergegeven via een datavoorbeeld.

In Hoofdstuk 4 worden twee variabelenselectiemethoden, grouped adaptive Lasso en

nonnegative garrote, voorgesteld om het variërend coëfficiënten model te vereenvou-

digen. De kwaliteit van de procedures wordt gëıllustreerd in een simulatiestudie. In

Hoofdstuk 5 ontwikkelen we vervolgens een twee-stappen variabelenselectietechniek,

NNGIS genaamd voor een hoog-dimensionale setting (waarbij het aantal coëfficiënten

mogelijk veel groter is dan het aantal observaties). Simulatiestudies tonen de kwaliteit

van deze technieken. We illustreren het gebruik van de techniek in datavoorbeelden.

De conclusies en toekomst mogelijkheden omtrent dit onderzoek worden in Hoofdstuk

6 besproken. De R-code voor het implementeren van de methodologie, die in deze

thesis ontwikkeld werd, is beschikbaar in Appendix A.
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Chapter 1
Introduction

Longitudinal data arise in various research areas including econometrics, epidemiol-

ogy, clinical trials and environmental science. It refers to data observed over time

(e.g. the CD4 data in Section 2.4.1). In the CD data, it is of interest to investigate

the evolution of CD4 percentage over time. The 90th percentile of CD4 might evolve

differently than the median or the 10th percentile. Further, a flexible smoothing

technique may need to be considered in order to capture the evolution of the CD4

percentage over time.

The focus of this dissertation is on quantile regression in varying coefficient models

using one particular non-parametric technique called penalized B-splines (P-splines).

Therefore, in Section 1.1, the basics on quantile regression are introduced. The second

basic tool is variable selection, which is briefly described in Section 1.2. Section 1.3

presents the basics on P-splines. Then, Section 1.4 discusses a varying coefficient

model. Finally, Section 1.5 presents the contributions made in this thesis.

1.1 Quantile regression

Let Y ∈ R be our response variable and (X(1), . . . ,X(p))T ∈ Rp (AT denotes the

transpose of a vector or matrix A) be p-dimensional covariate vector. We want to

regress the response on the covariates, i.e. we want to predict/estimate the response

based on the covariates.

As an alternative to least squares regression, quantile regression allows a wide range

1
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of applications, where several conditional quantiles are of interest instead of just

the conditional mean. Studying the entire distribution of the response rather than

only the central tendency, as in mean regression, is important. Especially when the

distribution has a heteroscedastic nature, only the central tendency cannot represent

the entire distribution. If most of the observations are concentrated, for instance, on

the 75th percentile of the distribution, then it is more appropriate to consider the 75%

regression quantile than mean regression. If one is interested, for example, in studying

severe malnutrition in children, then lower quantiles of ‘weight’ can be of interest.

Further, quantile regression does not assume a specific form for the (conditional)

distribution, and thus is able to accommodate non-normal errors. When the response

variable given a set of covariates has a heavy-tailed distribution, quantile regression

puts a reduced weight on the extreme observations. Furthermore, due to its robustness

to outliers, there is a growing interest in the literature on quantile regression.

Quantile regression, as a generalization of median regression, was first introduced

by Koenker and Bassett (1978) (refer to Koenker (2005) for a comprehensive in-

troduction to quantile regression). Estimation of conditional quantiles relies on the

non-differentiable and asymmetric check-loss function of Koenker and Bassett (1978),

ρτ(z) = z[τ − I(z < 0)] for τ ∈ (0,1), with I(A) = 1 if A holds, and 0 otherwise, rather

than the square loss function (in mean regression). Therefore, the computational and

theoretical aspects of conditional quantile regression are different to that of mean

regression.

1.1.1 Unconditional quantiles

As a starting point, let us compare the τth quantile of Y (denoted as qτ(Y )) with the

mean of Y (denoted as µ = EY ). The mean of Y is the center of distribution which

minimizes the expected L2-loss deviation,

µ = arg min
c
E(Y − c)2.

The τth quantile of Y rather minimizes the expected check-loss deviation,

qτ(Y ) = arg min
c
E[ρτ(Y − c)].

Figure 1.1 depicts the loss functions that lead to the mean and quantiles of Y . As

can be seen in this figure, the check-loss function ρτ(⋅) (Koenker and Bassett, 1978) is
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non-differentiable at zero, hence the minimizer has no explicit solution. This calls for

the use of a Linear Programming (LP) optimization technique (Koenker and Bassett,

1978) like Frisch-Newton interior point (FN) algorithm (Portnoy and Koenker, 1997)

or a convex programming optimization algorithms like a Matlab-based modeling sys-

tem called CVX (Grant and Boyd, 2012). Linear Programming is considered in this

dissertation. Median regression is a special case of quantile regression with τ = 0.5,

q0.5(Y ) = arg min
c
E[ρ0.5(Y − c)] = arg min

c
E[0.5∣Y − c∣]. (1.1)

Equation (1.1) states that to obtain the median we need to minimize the expected

absolute deviations. Hence, median regression depends mainly on the sign of the

deviation rather than the magnitude. That is why median regression is robust to

outliers. For median regression, as can be seen in Figure 1.1 and Equation (1.1), both

negative and positive residuals are equally weighted. Where as for the other quantiles,

the loss function is asymmetric.

Loss

u

u2

ρ0.75(u)

ρ0.5(u)

ρ0.25(u)

Figure 1.1. The check-loss and squared-loss functions.

1.1.2 Conditional quantiles

It is easy to extend quantile estimation to quantile regression. As in mean regression,

we only need to incorporate the effect of covariates on the quantile of the response.
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Suppose we have the following linear model:

Y = β0 + β1X(1) + . . . + βpX(p) + ε̃ = XTβ + ε̃, (1.2)

with β = (β0, β1, . . . , βp)T and X = (1,X(1), . . . ,X(p))T. Assuming that the condi-

tional mean of the error term ε̃ is zero, the conditional mean of Y is E(Y ∣X) = XTβ.

The coefficient vector β is found solving minβE(Y − XTβ)2. Proceeding similarly,

assuming that the conditional τth quantile of the error term is zero, we obtain the

coefficient vector of the τth conditional quantile of Y , qτ(Y ∣X) = XTβτ , solving

arg min
β
E[ρτ(Y −XTβ)], (1.3)

with βτ = (βτ0, βτ1, . . . , βτp)T the τ -dependent coefficient vector.

For an observed response Yi and covariates Xi = (1,X(1)i , . . . ,X
(p)
i )T, for i = 1, . . . , n,

the empirical version of the objective function in Equation (1.3) is

arg min
β

1

n

n

∑
i=1

ρτ(Yi −XT
i β). (1.4)

The LP problem of Equation 1.4 can be written as,

min
all ui,vi

{τ
n

∑
i=1

ui + (1 − τ)
n

∑
i=1

vi}

subject to

XT
i β = Yi/n for all i = 1, . . . , n,

where ui ≥ 0 and vi ≥ 0 are, respectively, the positive and the negative regression

residuals.

The dual formulation of the above LP problem can then be solved by the FN algo-

rithm.

Throughout the dissertation, we need the following two essential properties of the

conditional quantiles.

Property:

1. Equivariance. Throughout the dissertation we transform the covariates such

that they have equivalent scales. We expect such changes to have no fundamen-
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tal changes on our coefficients. We call such invariant property ‘equivariance’.

Let us denote the coefficient vector of qτ(Y ∣X) for the model in Equation (1.2)

as βτ ;Y,X, let A be any (p + 1) × (p + 1) nonsingular matrix, η ∈ Rp+1, h(⋅) is a

nondecreasing function on R and a > 0, then for any τ ∈ (0,1)

� Scale equivariance: βτ ;aY,X = aβτ ;Y,X and βτ ;−aY,X = −aβ1−τ ;Y,X;

� Shift equivariance: βτ ;Y +XTη,X = βτ ;Y,X + η;

� Equivariance to reparametrization of design: βτ ;Y,XTA = (A−1)T βτ ;Y,X;

� Equivariance to nondecreasing transformations: qτ(h(Y )∣X) =
h(qτ(Y ∣X)).

2. Non-crossingness. Conditional quantile curves are monotone increasing in the

argument τ ∈ (0,1),

qτ1(Y ∣X) ≤ qτ2(Y ∣X), for 0 < τ1 ≤ τ2 < 1 and for all X.

Property 1 holds for β̂τ ;Y,X , the minimizer of Equation (1.4), with observations Y =
(Y1, . . . , Yn)T andX = (X1, . . . ,Xn)T. However, Property 2 holds only at the centroid

of the design, X̄ = (1, X̄(1), . . . , X̄(p))T, with X̄(k) = n−1∑ni=1X
(k)
i for k = 1, . . . , p,

for the estimated conditional quantile functions q̂τ(Y ∣X) = XTβ̂τ ;Y,X , as shown in

Theorem 2.5 of Koenker (2005).

There are several ways to prevent the problem of crossing estimated conditional quan-

tile curves, like the weighted simultaneous quantile functions (see e.g. Zou and Yuan,

2008; Zhao and Xiao, 2014), the quantile sheet (Schnabel and Eilers, 2013), the step-

wise individual quantile regression (Wu and Liu, 2009a) and the restricted regression

quantiles approach (He, 1997). In this thesis, we consider the restricted regression

quantiles approach. The advantage of this approach is that, it enable us to estimate

and identify the variability function (defined in Section 1.4). Using the estimate of the

variability, several regression quantiles can be estimated in less computational time

(especially when nonparametric techniques are considered to estimate the regression

coefficients or when we have high-dimensional data, where the number of covariates

is large).
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1.2 Variable selection

When the number of covariates is large, the estimated model might not be easy to

interpret or the prediction accuracy might be low, which calls for reducing the number

of nuisance covariates from the model. This can be done by standard techniques such

as subset selection and ridge regression. Subset selection leads to an interpretable

result, but can be extremely variable (the selected model can vary due to small changes

in the data). Whereas ridge regression shrinks the coefficients but does not set them

to zero. In this thesis, several shrinkage approaches (the Least absolute shrinkage and

selection operator (Lasso), the NonNegative Garrote (NNG), the Smoothly Clipped

Absolute Deviation (SCAD)), that shrink the coefficients of irrelevant covariates to

zeros, are considered. For high dimensional models, the Sure Independence Screening

(SIS) is implemented to reduce the dimensionality from high to a moderate scale that

is below the sample size.

Tibshirani (1996) propose the Lasso approach by adapting the ordinary least squares

estimates, such that some coefficients are shrunken and others are set to zero. The

Lasso retains the good feature (removing the irrelevant variables from the model) of

both subset selection and ridge regression. The estimates for the model in Equation

(1.2) are defined by,

β̂
Lasso

τ = arg min
β

n

∑
i=1

ρτ(Yi −XT
i β) + λL

p

∑
k=0

∣βk ∣,

where λL ≥ 0 is a tuning parameter that controls the amount of shrinkage.

The Lasso approach is motivated by Breiman’s NNG (Breiman, 1995). The estimates

are,

ĉτ = arg min
c0,...,cp

n

∑
i=1

ρτ (Yi −
p

∑
k=0

ckβ̂
init
τk X

(k)
i ) + λNNG

p

∑
k=0

ck s.t. ck ≥ 0 (k = 0,1, . . . , p),

where ĉτ = (ĉτ1, . . . , ĉτp)T; β̂
init

τ is the minimizer of Equation (1.4); and λNNG ≥ 0 is

a tuning parameter. The NNG estimator for βτk is given by,

β̂NNGτk = ĉτkβ̂init
τk .

As another attempt to retain the good features of both subset selection and ridge

regression, Fan and Li (2001) propose the SCAD method. The coefficient estimates
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are,

β̂
SCAD

τ = arg min
β

n

∑
i=1

ρτ(Yi −XT
i β) +

p

∑
k=0

%′λSCAD
(∣βk ∣)∣βk ∣,

where for some constant a > 2,

%′λSCAD
(x) = λSCAD (I(x ≤ λSCAD) +

(aλSCAD − x)+
(a − 1)λSCAD

I(x > λSCAD)) .

The above shrinkage approaches are applied to moderate-to-high dimensional models,

i.e. when the number of parameters or variables p is comparable with the number of

observations n. When p is much larger than n, Candes and Tao (2007) propose the

Dantzig selector and show that it achieves the ideal risk up to a logarithmic factor

log(p). Motivated by the fact that this factor can be large when the dimensionality is

ultrahigh, Fan and Lv (2008) propose the SIS. They show that the SIS has the sure

screening property for even exponentially growing dimensionality. SIS is based on

correlation learning, to reduce the dimensionality from ultrahigh to a moderate scale

(that is below the sample size n). Hence, the problems of the estimation accuracy

and the computational cost, that is generated when applying the above shrinkage

approaches on the ultrahigh-dimensional models, is resolved. When the dimension p

is large, we assume that only a small number of predictors contribute to the response

or in other words that βτ is sparse. It is defined by first obtaining υ = (υ1, . . . , υp)T,

a vector of marginal correlations of predictors with the response variable. Then, the

components of υ are sorted in a decreasing order and a submodel is defined

Ma = {1 ≤ k ≤ p ∶ ∣υk ∣ is among the first [an] largest of all} ,

where [an] denotes the integer part of an.

1.3 P-splines

Suppose we have the following model:

Y = β(T ) + ε̃, (1.5)

where Y is the response variable, β(⋅) is an unknown smooth function of a given

covariate T ∈ [a0, a1] and ε̃ is the error term.
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To estimate the function β(⋅), several smoothing methods are considered in the lit-

erature for quantile regression: local polynomial in Chaudhuri (1991), Honda (2004)

and Cai and Xu (2008), smoothing splines in He et al. (1998), B-splines in He and Shi

(1994) and Kim (2007) and P-splines in Bollaerts et al. (2006) and Andriyana et al.

(2014, 2016).

B-splines (de Boor, 2001) are one particular type of splines, which are piecewise

polynomial functions of a given degree with local support. They are determined by

a degree ν and a knot sequence l1 ≤ . . . ≤ a0 = lν+1 ≤ . . . ≤ a1 = lu+ν+1 ≤ . . . ≤ lu+2ν+1
(with u + 1 knots in the T interval) and have the following properties (Eilers and

Marx, 1996):

� it consists of ν + 1 polynomial pieces of degree ν;

� the polynomial pieces join at ν interior knots;

� at the joining points, the derivatives up to order ν − 1 are continuous;

� the B-spline is positive on the domain spanned by ν + 2 knots, it is zero every-

where else;

� except at the boundaries, it overlaps with 2ν polynomial pieces of its neighbors;

� at a given T , ν + 1 B-splines are nonzero.

The jth B-spline of degree ν ≥ 1, denoted by Bj(T, ν), can be determined from B-

splines of a lower degree via the recursive formula:

Bj(T, ν) =
T − lj
lj+ν − lj

Bj(T, ν − 1) +
lj+ν+1 − T
lj+ν+1 − lj+1

Bj+1(T, ν − 1),

with j = 1, . . . , u + ν and

Bj(T,0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if lj ≤ T < lj+1
0 otherwise.

The B-splines are normalized such that ∑u+νl=1 Bl(T, ν) = 1 for all T . Figure 1.2 illus-

trates B-splines of degree one, when u + 1 = 3 equidistant knots are used in the T

interval. To construct the recursion, ν knots are added to both sides of the interval.

As shown in the figure, three B-splines of degree one are constructed for T ∈ [l2, l4].
Each B-spline consists of two linear pieces; for instance, B1 has one piece from l1 to

l2, the other from l2 to l3 joined at the interior knot l2.
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Figure 1.2. B-splines of degree 1.

We assume that the coefficient function β(⋅) in the model in Equation (1.5) is ap-

proximated by the following linear combination of B-splines:

β(T ) ≈
m

∑
j=1

αjBj(T, ν),

where α = (α1, . . . , αm)T is the coefficient vector of the associated B-splines Bj(⋅, ν),
for j = 1, . . . , u + ν =m, of degree ν and u + 1 equidistant knots.

To overcome the overfitting problem of B-splines regression, Eilers and Marx (1996)

proposed P-splines, where a difference penalty on the coefficient of adjacent B-splines

is added to the loss function in the optimization problem. The adaptation of P-splines

to quantile regression is given by Bollaerts et al. (2006). The objective function is

given by

min
α

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

ρτ
⎛
⎝
Yi −

m

∑
j=1

αjBj(ti, ν)
⎞
⎠
+ λP

m

∑
j=d+1

∣∆dαj ∣
⎫⎪⎪⎬⎪⎪⎭
, (1.6)

where ti is an observed value for T ; λP > 0 is the smoothing parameter; d is the

differencing order in the penalty term; and ∆d is the dth order differencing operator:
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∆dαj = ∑dt=0(−1)t(d
t
)αj−t, for instance, ∆dαj = αj − αj−1 for d = 1. Based on the

estimated coefficient vector α̂ that minimizes Equation (1.6), we find that β̂(ti) =
∑mj=1 α̂jBj(ti, ν).

To illustrate the P-splines technique, we use the Canadian weather data in the fda

R-package. The response variable Y is the average daily temperature in degree celcius

for each day of the year, at a weather station in Canada, averaged over 1960 to 1994.

The covariate T is the day of summer (the days 150 till 250 in the year). As can be

seen in Figure 1.3 (a) the regular regression with B-splines tends to overfit when the

number of knots grows. This overfitting problem is solved by using P-splines, and the

choice of the number knots has now a minor effect on the regression curve, as shown

in Figure 1.3 (b). Figure 1.4 shows the influence of the smoothing parameter λP on

the fitted curve. As λP increases the fitted curve tends to be smoother. Hence, when

applying the P-splines technique, a large number of knots with a good data driven

smoothing parameter needs to be employed (see Chapter 2 for details).
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Figure 1.3. Canadian weather data. Conditional median estimators using
u = 6,12, and 24 and ν = 3. (a) B-splines and (b) P-splines with d = 1 and λP = 1.

1.4 Varying coefficient models

The model in Equation (1.2) is the classical multiple linear regression model, where

the regression coefficient vector β is assumed to be a constant vector. This assumption

might be too strong in some situations where the coefficient can vary over another
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Figure 1.4. Canadian weather data. Conditional median estimators using
P-splines with λP = 0.1,0.5, and 1, u = 24, ν = 3 and d = 1.

variable in the data set.

Varying coefficient models are considered in this dissertation, as our data setting has

a longitudinal nature and we need to allow the coefficients to vary with ‘time’. As

a completely nonparametric relationship between a response variable and several co-

variates is difficult to estimate and to alleviate the curse of dimensionality, varying

coefficient models are introduced by Hastie and Tibshirani (1993). Due to the flex-

ibility and interpretability of varying coefficient models, a lot of research has been

done on parameter estimation and hypothesis testing, but mostly in a mean regres-

sion setting. Varying coefficient models are used to model longitudinal data (see e.g.

Antoniadis et al., 2012b; Tang et al., 2013b; Andriyana et al., 2014).

In this dissertation, a longitudinal observational data scheme is considered, where

each subject has measurements at different time points. The measurements from

different subjects are assumed to be independent, but measurements at different time

points within each subject can be correlated.

We have longitudinal observations (Y (tij),X∗(tij)T, tij)T of (Y (T ),X∗(T )T, T )T ∈
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Rp+2 with X∗(T ) = (X(1)(T ), . . . ,X(p)(T ))T for i = 1, . . . , n, j = 1, . . . , Ni,

and p ≥ 1, where tij is the jth measurement time for the ith subject, Ni is the

number of repeated measurements for the ith subject, and Y (tij) and X∗(tij) =
(X(1)(tij), . . . ,X(p)(tij))T are the observed outcome and covariates of the ith sub-

ject at time point tij . The time points tij take values in the space T ⊂ R, we denote

X(T ) = (X(0)(T ),X(1)(T ), . . . ,X(p)(T ))T with X(0)(T ) ≡ 1. We consider the fol-

lowing location-scale type varying coefficient model (which is a generalization of the

linear model in Equation (1.2), where the coefficients β are allowed to vary with time

variable T ):

Y (T ) = XT(T )β(T ) + V (X(T ), T )ε(T ) (1.7)

= β0(T ) + β1(T )X(1)(T ) + . . . + βp(T )X(p)(T ) + V (X(T ), T )ε(T ),

where we have errors ε(tij) of ε(T ) ∈ R for i = 1, . . . , n, j = 1, . . . , Ni and

β(T ) = (β0(T ), β1(T ), . . ., βp(T ))T is the vector of unknown regression coefficient

functions at time T , with β0(T ) the baseline effect. We call V (X(T ), T ) the variabil-

ity function. To be short we write Y (tij),X(tij), ε(tij) as Yij ,Xij , εij . The ε̃ of the

model in Equation (1.2) is written in Equation (1.7) as V (X(T ), T )ε(T ) to allow for

heteroscedasticity. Since the variability function is allowed to vary with X(T ) and

T , the coefficient functions for each covariate is τ specific. If the variability function

is of a homoscedastic nature (i.e., V (X(T ), T ) = γ, for a nonnegative constant γ), all

quantile curves are as the median curve up to a shift (as only the intercept changes

to βτ0(T ) = β0(T ) + γqτ(ε(T )∣X(T ), T )). Some examples of heteroscedatic variabil-

ity function are V (X(T ), T ) = γ(T ) or V (X(T ), T ) = (∥X(T )∥1)θ (with θ ∈ R and

∥X(T )∥1 = ∣X(0)(T )∣ + ∣X(1)(T )∣ + . . . + ∣X(p)(T )∣).

We estimate the τth quantile of Y , βk(T ) (with k = 0, . . . , p) and V (X(T ), T ) with

the P-splines smoothing technique. The use of this smoothing technique is appealing

here, since it allows for flexible modeling and has computational advantages in varying

coefficient models.

In order to analyze longitudinal data, Koenker (2004) considers a model where the

subject specific effects (σ = (σ1, . . . , σn)T) are introduced in the model as fixed effects.

They use a shrinkage approach to control the variability introduced by the large

number of estimated σ parameters. However, the subject specific effects are assumed

to be independent of the quantile levels (i.e. the σ are common for all quantile

levels) and the computational complexity increases as n→∞. Wang and Sun (2017)

propose an iterative algorithm which solves an estimating equation that incorporates



1.5. OUTLINE OF THE DISSERTATION 13

a working correlation, to take into account the correlation within subject. Another

suggestion is by considering the σ as random effects (Reich et al., 2010; Geraci and

Bottai, 2014, to name a few).

In this thesis, we consider an estimation procedure which makes very minimal assump-

tions on the form of the error distribution and thus is able to accommodate nonnormal

errors, and it is computationally convenient (Wang et al., 2009; Andriyana et al., 2014,

to cite a few).

1.5 Outline of the dissertation

We investigate quantile regression in varying coefficient models with a heteroscedastic

error structure. In Chapter 2, we propose an estimation technique for the variability

function and show its consistency. When the variability function is misspecified, the

estimated conditional quantiles other than the median are not correct, as is shown in

Figure 2.4 (a). Hence, a Likelihood-Ratio-Type test is proposed to identify what type

of function V (X(T ), T ) is. The proposed methods are implemented in the R-package

QRegVCM (Andriyana, Ibrahim, Gijbels, and Verhasselt, 2018). The research of

Chapter 2 is published in Gijbels, Ibrahim, and Verhasselt (2018).

In Chapter 3, we develop several new shape testing procedures for both the median

and variability functions, that have not been considered in the literature before. A

Likelihood-Ratio-Type test is proposed to test the shape (constancy, monotonicity

and/or convexity) of the functional coefficients. Further, testing procedures based

on L1-norm, L2-norm and L∞-norm of the differences of the P-splines coefficients

are introduced to test for constant functional coefficients. An extreme value test

for testing monotonicity or convexity is also formulated. Chapter 3 summarizes the

material presented in Gijbels, Ibrahim, and Verhasselt (2017).

There is a vast literature on variable selection in varying coefficient models when the

focus is on quantile estimation (e.g., Noh, Chung, and Van Keilegom, 2012; Tang,

Wang, and Zhu, 2013b). In Chapter 4, we propose an easy way to check the influence

of the covariates on the distribution of the response, that combines smoothing and

variable selection. Two types of variable selection techniques are considered: grouped

Adaptive Lasso using P-splines (gALassoP) and NonNegative Garrote. The consis-

tency of the grouped Adaptive Lasso is shown. This chapter discusses the methods

presented in Ibrahim and Verhasselt (2018b).
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Chapter 5 deals with selecting important covariates in the data set when the number of

coefficients to be estimated is much bigger than the number of observations. A two-

stage variable selection procedure for ultrahigh-dimensional data is introduced for

both the location and the scale. In the first stage, we consider the Sure Independence

Screening in order to reduce the dimension, and in the second stage we use the

NonNegative Garrote on the reduced model. This chapter presents the results given

in Ibrahim and Verhasselt (2018a).

Chapter 6 presents general conclusions and avenues for further research. Appendix A

holds the R-codes to implement the results in this dissertation.
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Testing in quantile varying coefficient
models
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Chapter 2
Testing the heteroscedastic error structure in quantile
varying coefficient models

Quantile regression in varying coefficient models using P-splines estimation is studied

in Andriyana (2015). In that work, simple and general heteroscedastic error structures

for the variance of the errors (the variability function V (X(T ), T )) that are linear

(in the parameters/covariates) are investigated using the model in Equation (1.7).

In this chapter, we consider more elaborate structures for the variability function,

like power and exponential functions. We also prove that our estimator is consistent

when the variability function is of an exponential type. Furthermore, we provide a

test for choosing between two variability functions based on a Likelihood-Ratio-Type

test procedure.

In the mean regression case, Davidian and Giltinan (1995) consider the square of the

mean function for the error variance; Fortin et al. (2007) propose an unknown power

of the mean function. Inspired by these proposals, we consider variability functions

of the following form:

V (X(T ), T ) = γ(T )fθ(T )(∥X(T )∥), (2.1)

where γ(T ) ⩾ 0, fθ(T )(∥X(T )∥) ⩾ 0, for a well-defined vector norm, and θ(T ) ∈
R. More specifically, the following four special cases of the variability function

V (X(T ), T ) in Equation (2.1) are investigated:

V1: V (X(T ), T ) = γ(∥X(T )∥1)θ (with γ ≥ 0 and θ ∈ R);

17
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V2: V (X(T ), T ) = γ(T )(∥X(T )∥1)θ;

V3: V (X(T ), T ) = γ(T ) exp(θ∥X∗(T )∥1) = γ(T )[exp(∥X∗(T )∥1)]θ;

V4: V (X(T ), T ) = γ(T ) exp(θ1(T )∣X(1)(T )∣ + . . . + θp(T )∣X(p)(T )∣).

The first variability function is a special case of the second one for γ(T ) = γ. Modeling

structure V3 is a generalization of V1 and V2, in the sense that a first order approxi-

mation (for ∥X∗(T )∥1 close to zero) of the exponential function exp(∥X∗(T )∥1) leads

to ∥X(T )∥1. Modeling structure V4 is a further generalization of V3. We say that

structure V1 is nested in V2 (denoted hereafter as V1 ⊆ V2), V2 is “nested” (in an

approximative sense) in V3, and V3 is nested in V4. Model V2, with θ = 0, is consid-

ered by Andriyana et al. (2016). A variability function similar to V4 is considered by

Van Keilegom and Wang (2010), with a partially linear structure. In V4, we allow

the variability function to depend on each covariate and each coefficient is allowed to

vary with time T . In such a framework one can check the constancy of the varying

coefficients or do variable selection. By Assumption H1 stated in the next section, the

above variability functions have an influence on all quantiles other than the median.

The rest of this chapter is organized as follows. Sections 2.1 and 2.2 deal with esti-

mation and inference methods of the variability functions, respectively. Simulation

studies are carried out in Section 2.3. The estimation method and the testing proce-

dure are applied to data examples in Section 2.4. Section 2.5 concludes the results

in this chapter. Finally, Section 2.6 presents the theoretical details. The R-code to

implement the methods of this chapter on a data set is deferred to Appendix A.

2.1 Estimation procedure

The model in Equation (1.7) consists of three parts, the signal XT(T )β(T ), the

variability function V (X(T ), T ) and the error ε(T ). Estimating all the components

simultaneously is not feasible without imposing some assumption(s). Hence, we use

an approach similar to that of Andriyana et al. (2016). Such an approach consists of

adapting the approach of He (1997) to the context of varying coefficient models, and

is therefore termed the ‘Adaptive He (AHe) approach’ in the literature. The advan-

tage of this approach is two-fold: it avoids crossing of the estimated quantile curves

(when several quantiles are estimated) and allows estimation (and identification) of

the variability function. Note that the variability function is only identifiable when

extra assumptions are made on the error structure.
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We impose the following assumptions on the error structure:

H1. q0.5(ε(T )∣X(T ), T ) = 0.

H2. q0.5 (ln ∣ε(T )∣ ∣ X(T ), T) = 0.

Although the assumptions may appear strong, they are satisfied for a properly stan-

dardized error structure, as can be seen from Equation (2.14) in Section 2.3.

The estimation procedure then consists of the following three steps:

1. assuming H1, the median function is estimated,

2. assuming H2, the variability function is estimated, and

3. the τth quantile regression estimate is obtained, for various values of τ ∈ (0,1),
using the estimates from the previous two steps.

If the interest is on only the median function then Step 1 is enough. I.e, assuming

H1, the conditional median function of the model in Equation (1.7) is given by:

q0.5(Y (T )∣X(T ), T ) = XT(T )β(T ) + V (X(T ), T )q0.5(ε(T )∣X(T ), T )

= XT(T )β(T ). (2.2)

However, to study other quantiles as well, the other steps need to be considered. This

means that a correct specification of the variability function and Assumption H2 are

only important for the quantiles other than the median.

Remark 2.1 Instead of the model in Equation (1.7), one may consider the following

quantile varying coefficient model (Tang et al., 2013b):

qτ(Y (T )∣X(T ), T ) = XT(T )βτ(T ), (2.3)

where the varying coefficients are allowed to vary with the τ th quantile. However,

for the model in Equation (2.3), we need to assume qτ(ε(T )∣X(T ), T ) = 0 for the τ

considered. Where in the AHe approach, only the two Assumptions H1 and H2 are

needed.
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2.1.1 Step 1: estimation of the median

Under Assumption H1, the median function of the model in Equation (1.7) is given

by:

q0.5(Y (T )∣X(T ), T ) = XT(T )β(T ).

The coefficient functions βk(T ) can be approximated via normalized B-splines of

degree νk, for k = 0,1, . . . , p:

βk(T ) ≈ αk1Bk1(T, νk) + αk2Bk2(T, νk) + . . . + αkmk
Bkmk

(T, νk)

=
mk

∑
l=1

αklBkl(T, νk) = αT
kBk(T, νk), (2.4)

where αk = (αk1, . . . , αkmk
)T denotes the coefficient vector of the associated B-splines

Bk(T, νk) = (Bk1(T, νk), . . . ,Bkmk
(T, νk))T, mk = uk + νk, and uk + 1 represents the

number of equidistant knots in the B-splines approximation of the kth component

(X(k)(T )). A thorough discussion on the choice of the number of knots uk+1 and the

degree of the splines νk can be found in Gijbels and Verhasselt (2010). The coefficient

function βk(T ) is estimated by,

β̂k(T ) = α̂T
kBk(T, νk), (2.5)

where α̂k = (α̂k1, . . . , α̂kmk
)T (k = 0, ..., p), and α̂ = (α̂T

0 , . . . , α̂
T
p )T is obtained by

minimizing the following P-splines objective function, using an L1-type of penalty

function (Andriyana et al., 2014):

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Yij −UT
ijα) + λP

p

∑
k=0

ω1k

mk

∑
l=dk+1

∣∆dkαkl∣ (2.6)

with respect to α = (αT
1 , . . . ,α

T
p
)T, where Uij = ((U(0)ij )

T
, . . . , (U(p)ij )

T
)
T

mtot×1
with

U
(k)
ij = Bk(tij , νk)X(k)ij and mtot = ∑pk=0mk; λP > 0 is the smoothing parameter,

ω1k = Range(β̂Bk (T ))−ηP ; Range(β̂Bk (T )) is the range of quantile regression estimators

obtained using unpenalized B-splines (the minimizer of Equation (2.6) with λP = 0);

ηP ≥ 0; dk is the differencing order in the penalty term; and ∆dk is the dkth order

differencing operator of the kth variable: ∆dkαkl = ∑dkt=0(−1)t(dk
t
)αk(l−t). The penalty

weight ω1k is used such that the functional coefficients with larger range values are

allowed to vary more with T . We could, alternatively, use ω1k = Sd(β̂Bk (T ))−ηP , with

Sd(β̂Bk (T )) the standard deviation of the regression estimators β̂Bk (T ) (Andriyana
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et al., 2014).

2.1.2 Step 2: estimation of the variability function

From the model in Equation (1.7) and since V (X(T ), T ) ≥ 0, we have

ln ∣Y (T ) −XT(T )β(T )∣ = lnV (X(T ), T ) + ln ∣ε(T )∣. (2.7)

Using Assumption H2, since for a monotone function h(⋅) the quantiles of the trans-

formed random variable h(Y ) are simply the transformed quantiles of the original

variable Y (see property 1 in Section 1.1.2), we estimate V (⋅, ⋅) based on the following

equation:

q0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) = lnV (X(T ), T ).

In this step, we investigate how to estimate the four variability functions. First, the

conditional median of ln ∣Y (T ) −XT(T )β(T )∣ is given by:

V1: q0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) = δ+ θ ln{∥X(T )∥1}, with δ = ln{γ}

V2: q0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) = ln{γ(T )} + θ ln{∥X(T )∥1},

where ln{γ(T )} is approximated on a basis (of size mV = uV +νV) of normalized

B-splines of degree νV with uV + 1 equidistant knots.

V3: q0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) = ln{γ(T )} + θ∥X∗(T )∥1,

where ln{γ(T )} is approximated as in V2.

V4:

q0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) =
p

∑
k=0

θk(T )∣X(k)(T )∣, (2.8)

with θ0(T ) = ln{γ(T )} and θk(T ) is approximated on a basis (of size mV

k =
uV

k + νV

k ) of normalized B-splines of degree νV

k with uV

k + 1 equidistant knots, for

k = 0,1, . . . , p.

The conditional median of ln(∣Y (T ) −XT(T )β(T )∣) is therefore estimated by:

V1: q̂0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) = δ̂ + θ̂ ln{∥X(T )∥1},

V2: q̂0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) = ∑m
V

l=1 α̂
V

l Bl(T, νV)+θ̂ ln{∥X(T )∥1},
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V3: q̂0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) = ∑m
V

l=1 α̂
V

l Bl(T, νV) + θ̂∥X∗(T )∥1,

V4:

q̂0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) =
p

∑
k=0

θ̂k(T )∣X(k)(T )∣

=
p

∑
k=0

mV
k

∑
l=1

α̂V

klBkl(T, νV

k )∣X(k)(T )∣. (2.9)

The estimated parameters are obtained by solving for

V1:

min
δ,θ

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (ln(∣Yij −XT
ijβ̂(tij)∣) − δ − θ ln{∥Xij∥1})

⎫⎪⎪⎬⎪⎪⎭
,

where β̂(T ) = (β̂0(T ), β̂1(T ), . . . , β̂p(T ))T is the estimated vector of regression

coefficients obtained from Step 1, in Section 2.1.1.

V2:

min
αV

1 ,α
V
2 ,...,α

V

mV
,θ

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5
⎛
⎝

ln(∣Yij −XT
ijβ̂(tij)∣) −

mV

∑
l=1

αV

l Bl(tij , νV)

−θ ln{∥Xij∥1}
⎞
⎠
+λV

P

mV

∑
l=dV+1

∣∆dVαV

l ∣
⎫⎪⎪⎬⎪⎪⎭
,

where λV

P > 0 is the smoothing parameter, dV is the differencing order in the

penalty term.

V3:

min
αV

1 ,α
V
2 ,...,α

V

mV
,θ

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5
⎛
⎝

ln(∣Yij −XT
ijβ̂(tij)∣) −

mV

∑
l=1

αV

l Bl(tij , νV)

−θ∥X∗
ij∥1

⎞
⎠
+λV

P

mV

∑
l=dV+1

∣∆dVαV

l ∣
⎫⎪⎪⎬⎪⎪⎭
,
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V4:

min
αV

0 ,...,α
V
p

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5( ln(∣Yij −XT
ijβ̂(tij)∣) − (UVa

ij )TαV)+

λV

P

p

∑
k=0

ωV

1k∥D
dVk
mV

k

αV

k∥1
⎫⎪⎪⎬⎪⎪⎭
, (2.10)

where UVa

ij = ((UVa(0)
ij )T, . . . , (UVa(p)

ij )T)
T

mV
tot×1

with mV

tot = ∑
p
k=0m

V

k ; UVa(k)
ij =

BV

k(tij , νV

k )∣X
(k)
ij ∣; BV

k(T, νV

k ) = (BV

k1(T, νV

k ), . . . ,BV

kmV
k

(T, νV

k ))TmV
k
×1

; αV =

((αV

0 )T, . . . , (αV

p)T)
mV

tot×1
; αV

k = (αV

k1, . . . , α
V

kmV
k

)T
mV

k
×1

; ωV

1k = Range(θ̂Bk (T ))−η
V
P

with ηV

P ≥ 0 and θ̂Bk (T ) is the estimated coefficient using unpenalized B-splines;

dV

k is the differencing order in the penalty term; and D
dVk
mk is the matrix-

representation of the differencing operator ∆dVk ,

for dV

k = 1, D1
mV

k

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 0 0 . . . 0 0 0

0 1 −1 0 . . . 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 . . . 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ R(m
V
k −1)×m

V
k .

Finally, the variability function is estimated by:

V1: V̂ (X(T ), T ) = γ̂∥X(T )∥θ̂1 = exp{δ̂}∥X(T )∥θ̂1,

V2: V̂ (X(T ), T ) = γ̂(T )∥X(T )∥θ̂1 = exp{∑m
V

l=1 α̂
V

l Bl(T, νV)}∥X(T )∥θ̂1,

V3: V̂ (X(T ), T ) = γ̂(T ) exp{θ̂∥X∗(T )∥1} = exp{∑m
V

l=1 α̂
V

l Bl(T, νV) + θ̂∥X∗(T )∥1},

V4: V̂ (X(T ), T ) = γ̂(T ) exp{∑pk=1 θ̂k(T )∣X(k)(T )∣} = exp{∑pk=0 θ̂k(T )∣X(k)(T )∣}.

2.1.3 Step 3: estimation of the τ th quantile

The model in Equation (1.7) yields

qτ(Y (T ) −XT(T )β(T )∣X(T ), T ) = V (X(T ), T )qτ(ε(T )∣X(T ), T ).

Using the estimators β̂(T ) and V̂ (X(T ), T ) from Steps 1 and 2, respectively, we

create a pseudo-response Y (T ) −XT(T )β̂(T ) and a pseudo-covariate V̂ (X(T ), T ).
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We approximate the unknown conditional τth quantile of the error term ε(T ),
qτ(ε(T )∣X(T ), T ), by B-spline basis functions of degree νq with uq + 1 equidistant

knots, leading to qτ(ε(T )∣X(T ), T ) ≈ ∑m
q

l=1 α
q
lB

q
l (T, ν

q). We hereby also assume that

qτ(ε(T )∣X(T ), T ) satisfies the Hölder condition: qτ(ε(T )∣X(T ), T ) ∈ Hrq for some

rq > 1/2 (see Definition 2.2 in Section 2.6.1). The coefficients (αq1, α
q
2, ..., α

q
mq) are

estimated by minimizing the following P-splines objective function:

n

∑
i=1

1

Ni

Ni

∑
j=1

ρτ
⎛
⎝
Yij −XT

ijβ̂(tij) − V̂ (Xij , tij)
mq

∑
l=1

αqlB
q
l (tij , ν

q)
⎞
⎠

+
mq

∑
l=dq+1

λq ∣∆dqαql ∣

with respect to (αq1, α
q
2, ..., α

q
mq), where λq > 0 is the smoothing parameter, and dq is

the differencing order.

The τth quantile of the error is then estimated by: q̂τ(ε(T )∣X(T ), T ) =
∑m

q

l=1 α̂
q
lB

q
l (T, ν

q). Finally, the estimated conditional quantile function of the response

Y (T ) is given by:

q̂τ(Y (T )∣X(T ), T ) = XT(T )β̂(T ) + V̂ (X(T ), T )q̂τ(ε(T )∣X(T ), T ).

Recall that based on Assumption H1, we obtain the coefficient estimates β̂(T ). Then,

based on Assumption H2, we get the estimated variability function V̂ (X(T ), T ).
Finally, using the estimates obtained from the previous two steps (β̂(T ) and

V̂ (X(T ), T )), we can easily get q̂τ(Y (T )∣X(T ), T ) by estimating q̂τ(ε(T )∣X(T ), T ).

2.1.4 Implementation of the estimation method

Due to the non-differentiability of the optimization problem in Equation (2.6), the

estimators have no explicit solutions. However, one can use available LP optimization

techniques (Koenker and Bassett, 1978) like FN algorithm (Portnoy and Koenker,

1997) or a convex programming optimization algorithms like a Matlab-based modeling

system called CVX (Grant and Boyd, 2012). We apply the FN algorithm, used in

Andriyana et al. (2014), which is faster than CVX and efficient even for very large

problems, particularly when dealing with sparse matrices (see also Koenker and Ng,
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2003, 2005). The optimization problem can be written as:

min
all uij ,vij ,s0l,...,spl,t0l,...,tpl

{0.5
n

∑
i=1

Ni

∑
j=1

uij + (1 − 0.5)
n

∑
i=1

Ni

∑
j=1

vij

+λP
p

∑
k=0

ω1k

mk

∑
l=dk+1

(skl + tkl)}

subject to

UT
ijα/Ni + uij − vij = Yij/Ni for all i = 1, . . . , n and j = 1, . . . ,Ni,

∆dkαkl − skl + tkl = 0 for all l = dk + 1, . . . ,mk and k = 0, . . . , p,

where uij ≥ 0 and vij ≥ 0 are the positive and negative regression residuals, respec-

tively; skl = ∣∆dkαkl∣I(∆dkαkl ≥ 0); and tkl = ∣∆dkαkl∣I(∆dkαkl < 0).

The FN algorithm solves the dual formulation of the above LP problem.

The optimization problem in (Step 2) can also be written in a similar way by changing

appropriately [Uij , uij , vij , skl, tkl, λk, dk,mk, αkl, Yij].

The R-code to implement the estimation method is given in Appendix A and is

available in QRegVCM R-package (Andriyana et al., 2018).

2.1.5 Choice of the smoothing parameter

In the first step of our estimation procedure, the optimal value for λP is found by

minimizing the following Schwarz-type Information Criterion (SIC-criterion), intro-

duced by Schwarz (1978), suggested by Koenker et al. (1994) and also applied by

Andriyana et al. (2014):

SIC(λP ) = ln ( 1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5(Yij − q̂0.5(Yij ∣Xij , tij))) +
ln(N)

2N
pλP

(2.11)

with respect to λP , where N = ∑ni=1Ni and pλP
is the effective degrees of freedom

and taken to equal the size of the elbow set EλP
(Koenker, 2011),

EλP
= {(i, j) ∶ Yij − q̂0.5(Yij ∣Xij , tij) = 0}. (2.12)

For the last two steps of our procedure, a similar approach is considered.
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2.1.6 Consistency of the estimated variability function for V4

In this section, we investigate the consistency of the proposed estimation proce-

dure for V4. We show that the P-splines quantile estimator for V4 converges in

L2-norm to the unknown quantile function q0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) =

∑pk=0 θk(T )∣X(k)(T )∣, by proving that each θ̂k(T ) converges in L2-norm to the func-

tion θk(T ).

The following theorem, taken from Theorem 2.1 in Andriyana et al. (2014), states

that each individual estimate β̂k (in the signal part of the model), defined in Equation

(2.5), converges in L2-norm to the regression coefficient function βk for an increasing

number of knots. The definitions and assumptions are stated in Section 2.6.1.

Theorem 2.1 Suppose Assumptions 2.1 – 2.7 hold. Furthermore, assume that

u
3/4
maxλP maxn

−1/2 → 0 as n tends to ∞, where umax = max(u0, . . . , up) and λP max =
max(λP0, . . . , λPp) with λPk = λPω1k. Then, ∥β̂k − βk∥2 = Op(n−rmin/(2rmin+1)), where

for any function βk: ∥βk∥22 = ∫T βk(t)
2dt and rmin = min{r0, . . . , rp}, with rk as defined

in Definition 2.2.

In the second step of our procedure, we assume that ln ∣ε(T )∣ has median zero, given

(X(T ),T ). Note that relying on Theorem 2.1, we have:

ln ∣Y (T )−XT(T ){β(T ) + [β̂(T ) −β(T )]}∣

= ln ∣Y (T ) −XT(T ){β(T ) +Op(n−rmin/(2rmin+1))1p+1}∣
PÐ→ ln ∣Y (T ) −XT(T )β(T )∣, as n→∞, (2.13)

where 1p+1 is the vector of ones of dimension p + 1.

Our main result on the consistency of the θk, in the variability part of the model,

follows. The proof is provided in Section 2.6.

Theorem 2.2 Suppose Assumptions 2.6 – 2.13 hold. Furthermore, assume that

(uV

max)3/4λV

P maxn
−1/2 → 0 as n tends to ∞, where uV

max = max(uV

0 , . . . , u
V

p) and

λV

P max = max(λV

P0, . . . , λ
V

Pp) with λV

Pk = λV

Pω
V

1k. Then,

∥θ̂(j)k − θ(j)k ∥2 = Op(n−(r
V
min−j)/(2r

V
min+1)), j = 0,1, . . . , νV

k − 1,

where θ
(j)
k is the jth order derivative of θk and rV

min = min{rV

0 , . . . , r
V

p}, where rvk > 1/2
as in Assumption 2.8.
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The convergence rates in Theorem 2.2 attain the optimal global rates established

by Stone (1982) for non-parametric regression with independent and identically dis-

tributed data. Indeed if θk has bounded second order derivative and splines of at

most degree 3 are used, the convergence rate is n−2/5.

The proof of Theorem 2.2 is based on the fact that the number of knots does not grow

too fast with the sample size (see for example Assumption 2.10). This is similar to

the approach of Claeskens et al. (2009) which leads to a scenario close to regression

splines.

2.2 Model testing

Section 2.1.2 explains how to estimate a specific variability function. This section

discusses how to identify the specific shape of the variability function.

2.2.1 Variability function

The following hypothesis tests are considered:

H0 ∶ V (X(T ), T ) in Vj versus

H1 ∶ V (X(T ), T ) in Vk

where Vj ⊂ Vk.

We use the Likelihood-Ratio-Type test (LRT) considered by Kim (2007). The test

statistic is defined as:

G = 2

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (∣Yij −XT
ijβ̂(tij)∣ − m̂0)−

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (∣Yij −XT
ijβ̂(tij)∣ − m̂1)

⎫⎪⎪⎬⎪⎪⎭
,

where m̂0 and m̂1 are the estimated variability functions under H0 and under H1,

respectively. It is expected, when H0 is false, that ρ0.5 (∣Yij −XT
ijβ̂(tij)∣ − m̂0) is

larger than ρ0.5 (∣Yij −XT
ijβ̂(tij)∣ − m̂1). Therefore, with test statistic G, we assess

the generality of the variability function. We consider the four structures of the

variability function, V1 to V4, as well as:

V0: V (X(T ), T ) = γ (the homoscedastic model);

V5: V (X(T ), T ) = γ(T ) (the simple heteroscedastic model).
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Note that these six variability structures are “nested” in the following sense:

V0 ⊆ (V1, V5) ⊆ V2 ⊂
∼
V3 ⊆ V4,

where ⊂
∼

means that V3 is a generalization of V2 in the sense that a first order ap-

proximation of the exponential function exp(∥X∗(T )∥1) leads to ∥X(T )∥1. So, V4 is

considered the “full model” here.

The null hypothesis is rejected when G is too large. The p-value is obtained using

a resampling subject bootstrap. Since the data are longitudinal in nature and it is

important to retain the dependence structure within a subject, the observations in

each subject are treated as blocks. The procedure is given below.

1. Resample n subjects with replacement from i = 1, . . . , n, to obtain the

bootstrap sample {(Y b(tbij),Xb(tbij), tbij) ∶ i = 1, . . . , n, j = 1, . . . ,N b
i } from

{(Y p(tij),X(tij), tij) ∶ i = 1, . . . , n, j = 1, . . . ,Ni}, with

Y p(tij) =
p

∑
k=0

β̂k(tij)X(k)(tij) + m̂0ε
p(tij),

εp(tij) =
Y (tij) −∑pk=0 β̂k(tij)X

(k)(tij)
m̂4

,

where m̂0 and m̂4 are the estimated variability functions under H0 and under

the full model (V4), respectively.

2. Repeat the above sampling procedure B times, where B is the number of boot-

strap replications.

3. Obtain the test statistic Gb for each bootstrap sample to obtain its empirical

distribution.

4. Get the p-value using the empirical probability of Gb ≥ G.

The above testing procedure is implemented in the QRegVCM R-package (Andriyana

et al., 2018). The R-code is also available in Appendix A.

2.2.2 Extensions

V4 is the most general model for the variability function considered here. It has a

varying coefficient for each covariate X(1), . . . ,X(p). Hence, it can be of interest to

investigate whether the coefficients are constant (or even not significant). This again
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can be tested in a similar way to that presented in Section 2.2.1, using the LRT, by

putting the reduced model (where the varying coefficients are assumed constant or

not significant) in H0 and the full model (V4) in H1 (see Chapter 3).

2.3 Simulation study

In this section, we conduct simulation studies to compare the various variability struc-

tures discussed in the previous section. Four simulation settings, defined in Table 2.1,

are used, assuming the variability function structures V1, V2, V3 and V4. These are

referred to as Settings 1, 2, 3 and 4 here, with θ = 2. We also consider a simulation

setting, called Setting 5, which combines Settings 1 and 2 to check the robustness of

our testing procedure.

Table 2.1. Description of the coefficients.

Coefficients Setting 1 Setting 2 Setting 3 Setting 4

β0(T ) 2
√
T 2

√
T 2

√
T 2

√
T

β1(T ) 2
5
(πT + 10) 5

4
(πT + 10) πT + 10 5

4
(πT + 10)

β2(T ) sin(πT /30) + 3 sin(πT /30) + 3 sin(πT /30) + 3 sin(πT /30) + 3

β3(T ) (20−T )2

1000
− 4 (20 − T )2 − 4 (20 − T )2 − 4 (20−T )2

1000
− 4

γ(T ) 1 T /4 T /8 β0(T )/8

θ1(T )
√
β1(T )/2

θ2(T ) β2(T )/50

θ3(T ) β3(T )/50

In order to ensure that the estimation tasks are of comparable difficulty in the four

simulation settings, the coefficient functions are such that the Signal-to-Noise Ratio

(SNR) is approximately seven (as in Andriyana and Gijbels, 2017) in each setting:

SNR = Sample variance of ∑3
k=0 βk(T )X(k)(T )

Sample variance of V (X(T ), T )ε(T )
≈ 7.

The error term is generated from a transformed multivariate normal distribution to

ensure that H1 and H2 hold. First, for i = 1, . . . , n, we generate (ζi1, . . . , ζiNi) from

N(0,C), a multivariate normal with zero mean vector and covariance matrix C, whose
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element on the jth row and zth column is given by cov(ζij , ζiz) = 30 exp(−∣j − z∣)).
Then, the error term ε(T ) is obtained from the following transformation,

εij =
ζij − q̂0.5(ζij)

q̂0.5(∣ζij − q̂0.5(ζij)∣)
, (2.14)

where q̂0.5(ζij) is the sample median of ζij , for i = 1, . . . , n and j = 1, . . . ,Ni.

The covariate X(1)(T ) is generated from a standard exponential distribution, X(2)(T )
is generated from a standard normal distribution, and X(3)(T ) is generated from a

uniform distribution U[−1,1]. The covariates are standardized in the following way:

X(k)(T ) = X(k)(T ) −min(X(k)(T ))
3{max(X(k)(T )) −min(X(k)(T ))}

.

This standardization is done to ensure that the exponential function exp(∥X∗(T )∥1)
is well approximated by its first order approximation ∥X(T )∥1. We simulate 100 data

sets with n = 100 from each of the above settings. The time variable ranges from 0

to 49. For each case i, the probability of having a measurement in each time point

is 0.6, creating an unbalanced number of measurements (the number of measurement

for each subject i is different). The actual time points are calculated by adding a

generated value from a U[0,0.5] to the non-skipped time points.

To analyze the data sets, for each simulation setting, B-splines of degree three with

11 equidistant knots in the time interval and differencing order 1 (similarly as in

Andriyana et al., 2014) are used.

As discussed in Section 2.2.1, the six variability models are compared using the LRT

hypothesis testing based on bootstrap resampling, with B = 200 bootstrap samples

for all 100 simulated data sets. Proportions of significant tests are presented using

5% level of significance.

2.3.1 Setting 1

It is expected, under this setting, that the estimated variability structure assuming V1

performs better than or equivalently to V0 and V5, and has an equivalent performance

to V2, V3 and V4. Figure 2.1 (a) shows the root approximate integrated square error
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(RAISE), for the six aforementioned models, defined by

RAISE(V̂ (s)(⋅, ⋅)) =
⎛
⎝

n

∑
i=1

1

Ni

Ni

∑
j=1

[V̂ (s)(Xij , tij) − V (s)(Xij , tij)]2
⎞
⎠

1
2

,

for simulation s.

In all figures we refer to a model with structure Vj as “Model j”.

It can be seen from Figure 2.1 (a) that V0 and V5 have poorer performance than

the other models. This is also observed from Figure 2.1 (b), the root approximate

integrated square error of the quantiles from all simulated data sets, defined by

RAISE(q̂(s)τ (⋅)) =
⎛
⎝

n

∑
i=1

1

Ni

Ni

∑
j=1

[q̂(s)τ (Yij ∣Xij , tij) − q(s)τ (Yij ∣Xij , tij)]2
⎞
⎠

1
2

for simulation s.

The true V1 (Figure 2.2 (a)) as well as the estimated variability function (Figure 2.2

(b)) are presented for the sample associated with a 50th percentile performance in

terms of RAISE(V̂ (s)(⋅, ⋅)). It is observed that the estimated variability function of

V1 mimics the true variability function. The true and estimated quantiles evaluated at

the maximum values of the covariates, using V1, are presented in Figures 2.2 (c) and

(d), respectively. As can be observed from these figures, V1 mimics the true quantiles

quite well.

Several comparisons of the models using the LRT test are presented in Table 2.2. The

hypothesis for the first testing procedure is:

H0 ∶ V (X(T ), T ) in V0 versus

H1 ∶ V (X(T ), T ) in V1.

Table 2.2 shows that V0 is significantly worse than V1, indicating that θ is different

from zero or the variability function depends on the covariates via ∥X(T )∥1. Further-

more, V1 is not significantly worse than V2, V3 or V4. Table 2.2 also reveals that V0 is

not significantly worse than V5 and that V5 is worse than V2, V3 or V4. This indicates

that V5 is also worse than V1. This result coincides with the simulation result given

in Figure 2.1 (a). Similar results are obtained when the SNR is reduced to 4 or 0.5.
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(a)

(b)

Figure 2.1. Setting 1. Boxplots of (a) RAISE(V̂ (s)); (b) RAISE(q̂(s)τ ).
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(a) (b)

(c) (d)

Figure 2.2. Setting 1. (a) True variability function; (b) Estimated variability
function based on V1; (c) True quantile curves; (d) Estimated quantile curves based
on V1.

2.3.2 Setting 2

We investigate the performance of the estimation and testing procedures by simulating

from Setting 2 (defined in Table 2.1). Figure 2.3 (a) shows that V2, V3 and V4 have

better performance with respect to V̂ (⋅, ⋅). The boxplots for RAISE(q̂τ(⋅)) lead to

similar conclusions, but are not presented here for brevity.

V2 is compared to the other models using the LRT test. It is noted from Table 2.3 that
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Table 2.2. Setting 1. Proportion of significant tests.

Comparison Proportion

SNR ≈ 7 SNR ≈ 4 SNR ≈ 0.5

V0 vs V1 1.00 1.00 1.00

V1 vs V2 0.02 0.00 0.00

V1 vs V3 0.01 0.00 0.01

V1 vs V4 0.02 0.02 0.02

V0 vs V5 0.02 0.00 0.01

V5 vs V2 1.00 1.00 1.00

V5 vs V3 1.00 1.00 1.00

V5 vs V4 1.00 1.00 1.00

the power, namely the probability P(H0 is rejected ∣¬H0) is close to one. Furthermore,

the probability P(H0 is rejected ∣H0) is less than the nominal significance level (5%).

We also conclude that V0, V1 and V5 are significantly worse than V2, indicating that

θ is different from zero and the variability function depends on time T . However, V2

is not significantly worse than V3 and V4. This coincides with Figure 2.3 (a). Similar

results are obtained when the SNR is reduced to 4 or even to 0.5 (the last two columns

of Table 2.3) and when it is 16. We see that for large values of SNR (SNR ≈ 7 or

SNR ≈ 16), the power is less than one when comparing V5 with V2.

2.3.3 Setting 3

We simulate data from Setting 3 (defined in Table 2.1). As shown in Figure 2.3

(b), V2, V3 and V4 are found to have better performance in estimating the variability

function. A similar conclusion can be drawn from the boxplots (not presented here)

of RAISE(q̂τ(⋅)).

As in the previous section, the LRT test is used on this setting (presented in Table

2.4). V0, V1 and V5 are found to be significantly worse than V3. However, V2 is not

significantly worse than V3, and this model on its turn is not significantly worse than

V4. This coincides with the simulation result given in Figure 2.3 (b). Here also, the
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(a) (b)

Figure 2.3. Setting 2 (a) and 3 (b). Boxplots of RAISE(V̂ (s)).

Table 2.3. Setting 2. Proportion of significant tests.

Comparison Proportion

SNR ≈ 16 SNR ≈ 7 SNR ≈ 4 SNR ≈ 0.5

V0 vs V2 1.00 1.00 1.00 1.00

V1 vs V2 1.00 1.00 1.00 1.00

V5 vs V2 0.99 0.98 1.00 1.00

V2 vs V3 0.01 0.01 0.02 0.01

V2 vs V4 0.02 0.02 0.02 0.02

power of the test is close to one and the probability P(H0 is rejected ∣H0) is less

than the nominal significance level. When the SNR reduced to 4, similar results are

obtained.

2.3.4 Setting 4

The data sets are simulated from Setting 4. V4 has the best performance in estimating

the quantiles as well as the variability function (see Figures 2.4 (a) and (b)). From

Figure 2.5, it is clear that the true variability and quantile functions are estimated
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Table 2.4. Setting 3. Proportion of significant tests.

Comparison Proportion

SNR ≈ 7 SNR ≈ 4

V0 vs V3 1.00 1.00

V1 vs V3 1.00 1.00

V2 vs V3 0.01 0.02

V5 vs V3 1.00 1.00

V3 vs V4 0.01 0.01

Table 2.5. Setting 4. Proportion of significant tests.

Comparison Proportion

SNR ≈ 7 SNR ≈ 4 SNR ≈ 2

V0 vs V4 1.00 1.00 1.00

V1 vs V4 1.00 1.00 1.00

V2 vs V4 1.00 1.00 1.00

V3 vs V4 1.00 1.00 1.00

V5 vs V4 1.00 1.00 1.00

quite well using V4.

Using the LRT test, V4 is compared to the other models. Table 2.5 shows that all

the other models are worse than V4 with power equal to one. This was expected

since V4 is the most flexible model. This coincides with the simulation result given

in Figure 2.4. Table 2.5 also shows that when we reduce the SNR to 4 or 2, our test

still maintains its power.

2.3.5 Setting 5

We simulate data from Setting 2 with SNR ≈ 4, where the variability function

V (X(T ), T ) has a structure which is a linear combination of the structures V1 and
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(a)

(b)

Figure 2.4. Setting 4. Boxplots of (a) RAISE(q̂(s)τ ); (b) RAISE(V̂ (s)).
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(a) (b)

(c) (d)

Figure 2.5. Setting 4. (a) True variability function; (b) Estimated variability
function based on V4; (c) True quantile curves; (d) Estimated quantile curves based
on V4.

V2, i.e. of the form aV1 +(1−a)V2, with γ = 8.394 in structure V1. Under this setting,

the variability function is close to either V1 or V2 depending on the value of a – for a

close to 1, V (X(T ), T ) ≈ V1. We consider a = 0.1 and a = 0.9. For a = 0.1, Figure 2.6

(a) shows that V2, V3 and V4 have better performance. Where as, for a = 0.9, V1 has

also better performance (Figure 2.6 (b)). This result is confirmed by the LRT test

given in Table 2.6.
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(a) (b)

Figure 2.6. Setting 5. a = 0.1 (a) and a = 0.9 (b). Boxplots of RAISE(V̂ (s)).

Table 2.6. Setting 5. Proportion of significant tests.

Comparison Proportion

a = 0.1 a = 0.9

V0 vs V2 1.00 1.00

V1 vs V2 1.00 0.06

V5 vs V2 0.96 0.96

V2 vs V3 0.02 0.09

V2 vs V4 0.02 0.05

2.4 Data examples

In this section, the estimation and testing procedures developed in Sections 2.1 and

2.2 are applied to two data sets. To analyze both data sets, B-splines of degree three

with 11 equidistant knots in the time interval and differencing of order one are used,

similar as in Section 2.3. The covariates are standardized as in Section 2.3. All tests

are done at the 5% level of significance.
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2.4.1 CD4 data

The data set, which is a subset of the Multicenter AIDS cohort study, contains re-

peated measurements of physical examinations and CD4 percentages of 283 homo-

sexual men who became HIV-positive between 1984 and 1991. Each individual has

a different number of measurements ranging from 1 to 14, with median equals to 6,

due to missing of their appointments and the random HIV infection moments. There

are 59 distinct time points in total. More details on the data can be found in Kaslow

et al. (1987).

The covariates are X
(1)
i : the smoking status (1 or 0 according to whether the indi-

vidual ever or never smoked cigarettes), X
(2)
i : age at HIV infection, and X

(3)
i : the

pre-infection CD4 percentage of the individual. The response Y (tij) is the CD4 per-

centage at time tij , where tij denotes the time in years of the jth measurement on

the ith individual after HIV infection. HIV attacks the CD4 cells. The CD4 percent-

age reflects an individual’s immune system status, the lower the CD4 percentage the

weaker the immune system and the more vulnerable an individual is to infections.

Hence, it is of interest for investigating the evolvement of an HIV/AIDS infection

over time.

The simple heteroscedastic model has been previously used (by Andriyana et al.

(2016)) with these data and the validity of the two assumptions of the AHe approach

checked (and fulfilled).

As discussed in Section 2.2, several comparisons are performed using the LRT test

with B=200 bootstrap samples. Table 2.7 shows that V0 and V1 are significantly

worse than V4. But, V5, V2 and V3 are not significantly worse than V4. Hence, for

this data set the simple heteroscedastic model (V5) is recommended. The estimated

variability functions for V0, V4 and V5 are presented in Figure 2.7 (a). By using V5,

we see that the variability function varies with time. Furthermore, the estimated

variability function of V5 is located around the middle of the estimated variability

function of V4. The estimated function γ̂(T ) in the variability function based on V4

is given in Figure 2.7 (b). The estimators of the other coefficient functions in the

variability function are approximately constant and equal to −0.2270, −0.0078 and

0.0147 for smoking status, age and pre-infection CD4, respectively (with only small

deviations from a constant of magnitude 10−12, 10−14 and 10−14, respectively).
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Table 2.7. CD4 and PM10 data. P-values.

Comparison CD4 PM10

V0 vs V4 0.0450 0.7800

V1 vs V4 0.0400 0.7150

V5 vs V4 0.1100 0.9150

V2 vs V4 0.0950 0.9100

V3 vs V4 0.1700 0.9150

(a) (b)

Figure 2.7. CD4 data. (a) Estimated variability functions; (b) γ̂(T ) based on V4.

2.4.2 PM10 data

This data set is collected by the Norwegian Public Road Administration. It contains

repeated measurements of air pollution, traffic volume, and meteorological variables

for 273 days, at Alnabru in Oslo, Norway, between October 2001 and August 2003.

During each day, measurements are performed at different time points (hours), with a

range of 1 to 6 measurements per day, and a median of 2 measurements per day. The

response Y (tij) is the logarithm of the concentration of PM10 at hour tij . PM10 is a

mixture of solid and liquid droplets with diameter less than 10 micrometers, known as

“particulate matter”, which is one of the main constituent air pollutants with negative

effect on human health. The covariates are X(1)(tij) the logarithm of number of cars
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per hour at time tij , X
(2)(tij) the wind speed (in meters/second), and X(3)(tij) the

temperature (2 meters above the ground in degree Celsius), where tij denotes the time

in hours of the jth measurement of the ith day. See Statlib (http://lib.Stat.cmu.edu)

and truncSP R-package (Karlsson and Lindmark, 2014) for more information on the

data. It is of interest to investigate the evolution of the concentration of PM10 during

a day.

This data set is analyzed in Andriyana (2015) using the simple and a general het-

eroscedastic model. It is seen from his analysis that the quantile curves obtained

from the simple and the general heteroscedastic models are comparable. Further, the

coefficients of the variability function are plotted. It can be seen from the plots in

Andriyana (2015) that the coefficients of the covariates for the variability function are

close to zero. The homoscedastic model is not considered previously for these data.

Several comparisons of the models are performed (presented in Table 2.7) using the

LRT test with B = 200 bootstrap samples. The table shows that all the reduced

models are not significantly worse than V4, indicating that θ is zero and the variability

function depends neither on time T nor on the covariates. Hence, for this data set V0

(the homoscedastic model) can be used, which is better than all the other models in

terms of model parsimony.

2.5 Conclusion

Various structures of the variability function are investigated. An estimation proce-

dure for these functions is introduced without any reliance on global distributional

assumptions and we show its consistency for an increasing number of knots. The

simulation results show that the nesting structure of the different variability models

is respected by the proposed estimation method. For instance, as is observed from

simulation Setting 2, V2 outperforms V0, V1 and V5 and has an equivalent perfor-

mance when compared to the more complicated variability structures V3 and V4. The

Likelihood-Ratio-Type test proposed in this chapter, to check the structure of the

variability function, confirms this finding. We illustrate the methodology on two data

examples.

Hypothesis testing has also been performed using B = 99 bootstrap samples for the

simulation settings and the data sets (not presented). Similar results as B = 200

bootstrap samples are obtained for each setting. The variability structure V4 is the
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most flexible modeling structure depending on the covariates. Hence, based on this

model, one can do variable selection or test the constancy of the varying coefficient

functions using the Likelihood-Ratio-Type test (see Chapter 3).

Although the Likelihood-Ratio-Type test has a good performance in the simulation

study, it is of interest to prove the consistency of the test. This consistency relies on

the consistency of the estimators of the parameters as well as on the consistency of the

bootstrap procedure. If no modeling bias is assumed (i.e. θk(T ) = ∑m
V
k

l=1 α
V

klBkl(T, νV

k )
in V4), then the consistency of the bootstrap procedure can be shown similarly as

Knight (1999) (see also Andriyana et al., 2014). However, as we do not assume that

the θk(T ) are splines (i.e. there is modeling bias), the extension to this setting is not

straight forward.

Due to the non-differentiability of the quantile loss function, there is no explicit formu-

lation for the coefficients. Hence, the objective function is translated to a primal-dual

linear programming problem, such that it is easy to implement it by using all available

algorithms in the literature for the linear programming problems. We use a sparse

implementation of the Frisch-Newton interior point algorithm due to its ability to

exploit the sparsity that we are facing by adding a block diagonal matrix to penal-

ize the adjacent coefficients of the B-splines. The proposed methods can be easily

implemented using an R package called “QRegVCM” (Andriyana et al., 2018).

2.6 Assumptions, auxiliary results and proofs

2.6.1 Definitions and assumptions

Definition 2.1 For two sequences of nonnegative real numbers an and bn, an ∼ bn
denotes that there are constants 0 < a < A < ∞ such that a ≤ an/bn ≤ A for all n.

Definition 2.2 The collection of all functions on T for which the lth order derivative

satisfies the Hölder condition of order H with r = l +H is denoted by Hr. That is, for

each h ∈ Hr, ∣h(l)(s) − h(l)(t)∣ ≤ c∣s − t∣H for any s, t ∈ T , and a positive constant c.
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We introduce additional notation.

RV

ij = ∑
p
k=0(θ̃k(tij) − θk(tij))∣X

(k)
ij ∣; mV

max = max(mV

0 , . . . ,m
V

p);

ZVa = (UVa

11, . . . ,U
Va

1N1
, . . . ,UVa

n1, . . . ,U
Va

nNn
)
N×1

;

(HVa)2 = (ZVa)T ZVa; zij = (HVa)+ UVa(tij);

α̂V = ((α̂V

0 )T, (α̂
V

1 )T, . . . , (α̂
V

p)T)T
mV

tot×1
; θ̂

∗
= HVaα̂V;

α̃V = ((α̃V

0 )T, (α̃
V

1 )T, . . . , (α̃
V

p)T)T
mV

tot×1
; θ̃

∗
= HVaα̃V;

εVij = εV(tij);

where (HVa)+ denotes the Moore inverse of HVa, and for a vector u, ∥u∥2 denotes its

Euclidean norm.

Assumptions:

2.1. For k = 0,1, . . . , p, βk ∈ Hrk , for some rk > 1/2. Let ck denote the Hölder constant

for the kth varying coefficient function βk.

2.2. lim supn→∞ (umax

umin
) < ∞, with umin = min(u0, . . . , up).

2.3. The error terms εij and εlz are independent for all i ≠ l and for all j and z,

with i, l ∈ {1, . . . , n}, j ∈ {1, . . . ,Ni} and z ∈ {1, . . . ,Nl}. The distributions of

(εi1, . . . , εiNi) are the same for all i. The density function of εij given (Xij , tij),

fε, is continuous at zero and bounded away from zero and infinity.

2.4. limn→∞ umaxn
δM−1 = 0 for some δM ∈ (0,1).

2.5. umax ∼ n1/(2rmin+1), where rmin = min(r0, . . . , rp).

2.6. The conditional distribution of T , given X=x has a bounded density fT ∣X ∶ 0 <
b ≤ fT ∣X(t∣x) ≤ B < ∞, uniformly in x and t for some positive constants b and

B.

2.7. E(X(k)(T )∣T ) = 0 and P (∣X(k)(T )∣ < M) = 1 for some M < ∞, k = 1, . . . , p,

and there exist two positive definite matrices Σ1 and Σ2 such that Σ1 ≤
V ar(X(T )∣T ) ≤ Σ2 uniformly in T , where V ar(X(T )∣T ) denotes the condi-

tional covariance matrix of X(T ) given T .

2.8. For k = 0,1, . . . , p, θk ∈ HrV
k

, for some rV

k > 1/2. Let cVk denote the Hölder constant

for the kth varying coefficient function θk.
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2.9. Let εV(T ) = ln(∣ε(T )∣). The error terms εVij and εVlz are independent for all i ≠ l
and for all j and z, with i, l ∈ {1, . . . , n}, j ∈ {1, . . . ,Ni} and z ∈ {1, . . . ,Nl}.

The distribution of εVij , given (Xij , tij), has a density function fεV which is

continuous at zero with fεV(0) > 0.

2.10. limn→∞(uV

max)2nδ
V
−1 = 0 for some δV ∈ ]0,1[, where uV

max = max(uV

0 , . . . , u
V

p).

2.11. uV

max ∼ n1/(2r
V
min+1), with rV

min = min(rV

0 , . . . , r
V

p ).

2.12. lim supn→∞ (u
V
max

uV
min

) < ∞, with uV

min = min(uV

0 , . . . , u
V

p).

2.13. θk(t) is νV

k − 1 times continuously differentiable on t ∈ T , with νV

k ≥ 1.

2.6.2 Preliminary lemmas

The proof of Theorem 2.2 is based on the following lemmas.

Lemma 2.1 is a straightforward application of Corollary 6.21 in Schumaker (1981).

Lemma 2.1 Suppose Assumption 2.8 holds. For some constant W1,k that depends

only on νV

k and cVk, there exists a spline coefficient vector α̃V

k such that,

supt∈T ∣(α̃V

k)TBV

k(t, νV

k) − θk(t)∣ ≤W1,k(uV

k)−r
V
k .

The following two lemmas are derived from He and Shi (1994) (Lemmas 3.4 and 3.5,

respectively).

Lemma 2.2 Under Assumption 2.10, there exists a positive constant W2,k depending

only on b,B, νV

k and cVk such that, except on an event whose probability tends to zero

with n, for all θ̂k and θk ∈ HrV
k

,

∥θ̂k − θk∥22 ≤W2,k

⎧⎪⎪⎨⎪⎪⎩
(uV

max)−2r
V
min + 1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(θ̂k(tij) − θk(tij))2
⎫⎪⎪⎬⎪⎪⎭
.

Lemma 2.3 There exists a positive constant W3,k such that, for all θ̂k and θk ∈ HrV
k

,

∥θ̂(j)k − θ(j)k ∥22 ≤W3,k{(uV

max)2(j−r
V
min) + (uV

max)2j∥θ̂k − θk∥22}, j = 0,1, . . . , νV

k − 1.

Furthermore, we need the following lemma.
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Lemma 2.4 Suppose Assumptions 2.6 – 2.9 and 2.11 hold, and ξ ∈ Rm
V
tot .

(a) For any sequence {Ln} satisfying 1 ≤ Ln ≤ (uV

max)δ0/10, for some 0 < δ0 < (rV

min −
1/2)/(2rV

min + 1),

sup
∥ξ∥2≤1

(uV
max)

−1
RRRRRRRRRRR

n

∑

i=1

1

Ni

Ni

∑

j=1

⎡
⎢
⎢
⎢
⎢
⎣

ρ0.5{ε
V
ij −Ln(u

V
max)

1/2zTijξ −R
V
ij} − ρ0.5{ε

V
ij −R

V
ij}

+Ln(u
V
max)

1/2zTijξ(0.5 − I(ε
V
ij < 0)) −EεV[ρ0.5{ε

V
ij −Ln(u

V
max)

1/2zTijξ −R
V
ij}

−ρ0.5{ε
V
ij −R

V
ij}]

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRR

= op(1),

where EεV is the conditional expectation given (Xij , tij) for i = 1, . . . , n; j = 1, . . . ,Ni.

(b) For any ω > 0, there exists L (sufficiently large) such that as n→∞,

P

⎧
⎪⎪
⎨
⎪⎪
⎩

(uV
max)

−1 ⎛

⎝

inf
∥ξ∥2=1

n

∑

i=1

1

Ni

Ni

∑

j=1

EεV[ρ0.5{ε
V
ij −L(u

V
max)

1/2zTijξ −R
V
ij} − ρ0.5{ε

V
ij −R

V
ij}]

− L(uV
max)

1/2
XXXXXXXXXXX

n

∑

i=1

1

Ni

Ni

∑

j=1

zij(0.5 − I(ε
V
ij < 0))

XXXXXXXXXXX2

⎞

⎠

> 1

⎫
⎪⎪
⎬
⎪⎪
⎭

> 1 − ω.

The proof of Lemma 2.4 follows similar lines to those of Lemmas 3.2 and 3.3 in He

and Shi (1994). The difference arises from the calculations of Equations (3.7) and

(3.10) in He and Shi (1994); here the correlation of observations within subject i

has to be taken into account. However, the goal is to find an upper bound for the

aforementioned two expressions and since the correlation is at most one, we still attain

the same upper bounds for the expressions. Therefore, we omit the proof.

Lemma 2.5 Suppose Assumptions 2.6 – 2.9 and 2.11 hold. Furthermore, assume

that (uV

max)3/4λV

P maxn
−1/2 → 0 as n tends to ∞. Let θ̃k(T ) = (α̃V

k)TBV

k(T, νV

k), where

the α̃V

k are the coefficients of the best possible spline approximation of θk(T ) as defined

in Lemma 2.1. Then,

n

∑
i=1

1

Ni

Ni

∑
j=1

(θ̂k(tij) − θ̃k(tij))2 = Op(uV

max).

Proof 2.1 (Proof of Lemma 2.5) The proof of Lemma 2.5 is along the same lines

as the proof of Theorem 2.1 of He and Shi (1994). Using Lemma 2.4, for any ω > 0,

there exists L such that as n→∞,

P

⎧
⎪⎪
⎨
⎪⎪
⎩

(uV
max)

−1 ⎛

⎝

inf
∥ξ∥2=L(uV

max)
1/2

n

∑

i=1

1

Ni

Ni

∑

j=1

ρ0.5{ε
V
ij − z

T
ijξ −R

V
ij} −

n

∑

i=1

1

Ni

Ni

∑

j=1

ρ0.5{ε
V
ij −R

V
ij}

⎞

⎠

> 1

⎫
⎪⎪
⎬
⎪⎪
⎭

> 1 − ω.

(2.15)
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With probability one, we have

n

∑

i=1

1

Ni

Ni

∑

j=1

ρ0.5{ε
V
ij − z

T
ij(θ̂

∗

− θ̃
∗

) −RV
ij} = inf

∥ξ∥2∈R
mV

tot

n

∑

i=1

1

Ni

Ni

∑

j=1

ρ0.5{ε
V
ij − z

T
ijξ −R

V
ij}. (2.16)

From the proof of Lemma 2.3 in Andriyana et al. (2014) and using ∥θ̂
∗
− θ̃

∗
∥2 =

L(uV

max)1/2, we have

p

∑
k=0

λV

Pk∥D
dVk
mV

k

α̂V

k∥1 −
p

∑
k=0

λV

Pk∥D
dVk
mV

k

α̃V

k∥1 = op(uV

max). (2.17)

By Equations (2.16), (2.17) and since

p

∑
k=0

n

∑
i=1

Ni

∑
j=1

(θ̂k(tij)∣X(k)ij ∣ − θ̃k(tij)∣X(k)ij ∣)
2
= ∥θ̂

∗
− θ̃

∗
∥22,

Equation (2.15) implies that

P
⎛
⎝

p

∑
k=0

n

∑
i=1

Ni

∑
j=1

(θ̂k(tij)∣X(k)ij ∣ − θ̃k(tij)∣X(k)ij ∣)
2
≤ L2uV

max

⎞
⎠

= P (∥θ̂
∗
− θ̃

∗
∥2 ≤ L(uV

max)1/2) > 1 − ω,

which proves the lemma.

2.6.3 Proof of Theorem 2.2

Proof 2.2 (Proof of Theorem 2.2) First, by the fact that 2ab ≤ a2 + b2 for any

(a, b) ∈ R2, we have

1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(θ̂k(tij) − θk(tij))
2

≤ 2

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(θ̂k(tij) − θ̃k(tij))
2
+ 2

n

∑
i=1

1

Ni

Ni

∑
j=1

(θ̃k(tij) − θk(tij))
2
.
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By Lemma 2.5, we have that

2

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(θ̂k(tij) − θ̃k(tij))
2
= 2

n
Op(uV

max) = Op (uV

maxn
−1) . (2.18)

By Lemma 2.1 we have that

2
n

∑
i=1

1

Ni

Ni

∑
j=1

(θ̃k(tij) − θk(tij))
2
≤ 2( max

k=0,...,p
(W1,k))

2

(uV

max)−2r
V
min = Op ((uV

max)
−2rVmin) .

(2.19)

Combining Equations (2.18) and (2.19) leads to

1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(θ̂k(tij) − θk(tij))
2
= Op (uV

maxn
−1 + (uV

max)
−2rVmin)

= Op (n−2r
V
min/(2r

V
min+1)) . (2.20)

Using Equation (2.20), Lemmas 2.2 and 2.3, the proof of our main result is now

complete.



Chapter 3
Shape testing in quantile varying coefficient models
with heteroscedastic error

Investigating several regression quantiles is important in order to get a nuanced pic-

ture for the relationship between a response and covariates. However, this is time

consuming if the variance of the errors (the variability function) is of a homoscedastic

structure (since it is sufficient, in this case, to consider one regression quantile). In the

previous chapter, we study several structures of the variability function, like power

and exponential functions; proposing also a Likelihood-Ratio-Type test to choose be-

tween two variability structures. In this chapter, we want to test the constancy of

the coefficients in the variability function as well as in the signal part of the model

(the median function). We investigate also other type of tests in addition to the LRT

proposed in the previous chapter. For mean regression, Huang et al. (2002), Li et al.

(2011) and Ahkim and Verhasselt (2018) develop testing procedure on the constancy

of the varying coefficients. Using B-splines, Kim (2007), Wang et al. (2009), Tang

et al. (2012) and Feng and Zhu (2016) propose the corresponding test for quantile

regression.

Furthermore, we discuss shape testing for the coefficient of a specific covariate, such as

a monotonicity test to check whether a covariate has a non-decreasing/non-increasing

effect over the evolution of another covariate. An estimation of monotone B-spline

smoothing in a simple non-parametric quantile regression was pioneered by He and Shi

(1998). He and Ng (1999) extend these results to a general framework for constrained

L1-norm regression. The extended framework includes monotonicity, convexity/con-

49
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cavity, periodicity and pointwise constraints. As a consequence, they develop an

algorithm called COBS (constrained B-splines smoothing) to S-plus users. Since the

above results were for the case of univariate smoothing, where the unknown function

is a function of a single variable, Kim (2006) extends them to the varying coefficient

model. Bollaerts et al. (2006) propose, for the univariate case, an estimation technique

for non-parametric monotone quantile regression using P-splines.

In mean regression, estimation methods under monotonicity constraints and testing

procedures for monotonicity have been widely discussed in univariate regression (Bow-

man et al., 1998; Ghosal et al., 2000; Wang and Meyer, 2011, and refereces therein).

Zhang et al. (2013) and Ahkim et al. (2017) extend testing the features of the func-

tional coefficients to varying coefficient models. Zhang et al. (2013) propose a robust

scenario of the SiZer (significant zero crossing of derivative) inference approach (Zhang

and Mei, 2012) based on the local least absolute deviation fitting procedure, using the

local polynomial estimation technique. Ahkim et al. (2017) propose a generalization

of the testing procedure developed by Wang and Meyer (2011) and another testing

procedure called Extreme Value Test, discussed in Section 3.1.2, using the B-splines

technique.

A monotonicity testing procedure in quantile regression is important in a real life

application, e.g. to test whether the weight of a child is significantly decreasing at

some points in time with the age of the child.

In this chapter we consider the varying coefficient model in Equation (1.7) with the

variability function having the following form (the “full” model in the previous chap-

ter):

V (X(T ), T ) = γ(T ) exp{θ1(T )X(1)(T ) + . . . + θp(T )X(p)(T )}, (3.1)

where γ(T ) ⩾ 0 and θk(T ) ∈ R for k = 1,2, . . . , p.

Remark 3.1 A similar variability function to Equation (3.1) is considered by

Van Keilegom and Wang (2010), with a partially linear structure. The structure

in Equation (3.1) ensures that the variability function is positive and the functional

coefficients are flexible enough.

The goal of this study is to propose a testing procedure that (i) checks whether the

coefficients βk(T ) and θk(T ) can be considered constant over T , for k = 0, . . . , p; (ii)

checks the shape (monotonicity or convexity/concavity) of βk(T ) over T .

The rest of the chapter is organized as follows. Section 3.1 deals with testing pro-

cedures for constancy, monotonicity and convexity/concavity. Simulation studies are
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carried out in Section 3.2. The testing procedures in Section 3.1 are applied on a

data example in Section 3.3. Finally, Section 3.4 concludes the results in this chapter.

The R-code to implement the methods of this chapter on the data set is deferred to

Appendix A and is available in QRegVCM R-package (Andriyana et al., 2018).

3.1 Testing

For the signal, the hypotheses are defined as:

H0 ∶ q0.5(Y (T )∣X(T ), T ) ∈ M0 Vs. H1 ∶ q0.5(Y (T )∣X(T ), T ) ∈ M1,

where M0 ⊂M1.

This can be extended to other hypotheses, such as constancy, monotonicity or convex-

ity of the coefficients in the signal, and also in the variability function or a combination

of these.

3.1.1 Constancy tests

In this section, four different types of testing procedures for the signal as well as

the variability function are discussed. They are the Likelihood-Ratio-Type (LRT)

(considered in the previous chapter), the L1, the L2 and the Lmax (discussed below)

tests.

The LRT test

The test is based on the objective function instead of the likelihood function. The

test statistic, for the signal, is defined as:

Gm = 2

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5{Y (tij) − m̂0(tij)} −
n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5{Y (tij) − m̂1(tij)}
⎫⎪⎪⎬⎪⎪⎭
,

where m̂0(⋅) and m̂1(⋅) are the estimated signal under H0 and under H1, respectively.

The null hypothesis is rejected when Gm is too large, as in the previous chapter. The

p-value is obtained by a re-sampling subject bootstrap:
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1. re-sample n subjects with replacement from i = 1, . . . , n, to obtain the bth boot-

strap sample

{(Y b(tbij),Xb(tbij), tbij) ∶ i = 1, . . . , n, j = 1, . . . ,N b
i }

from {(Y P (tij),X(tij), tij) ∶ i = 1, . . . , n, j = 1, . . . ,Ni}, with

Y P (tij) = m̂0(tij) + εP (tij), and εP (tij) = Y (tij) − m̂2(tij),

where m̂0(⋅) and m̂2(⋅) are the estimated signal under H0 and under the most

complex signal (where all coefficients are varying with T ), respectively.

2. repeat the above sampling procedure B times (hence b = 1, . . . ,B).

3. calculate the test statistic Gbm for each bth bootstrap sample to obtain its em-

pirical distribution.

4. get the p-value using the empirical probability of Gbm ≥ Gm.

Similarly, we can conduct the same procedure for the variability function (see Chapter

2). The test statistic is also defined similarly but changing (Y (tij), m̂0(tij) and

m̂1(tij)) to (ln ∣Y (tij)−XT(tij)β̂(tij)∣, v̂0(tij) and v̂1(tij)), where v̂0(⋅) and v̂1(⋅) are

the estimated variability functions under H0 and under H1, respectively. The p-value

is obtained by a re-sampling subject bootstrap, similar to the test for the signal, but

now we obtain the bootstrap sample

{(Y b(tbij),Xb(tbij), tbij) ∶ i = 1, . . . , n, j = 1, . . . ,N b
i }

from {(Y P (tij),X(tij), tij) ∶ i = 1, . . . , n, j = 1, . . . ,Ni}, with

Y P (tij) =
p

∑
k=0

β̂k(tij)X(k)(tij) + v̂0(tij)εP (tij),

εP (tij) =
Y (tij) −∑pk=0 β̂k(tij)X

(k)(tij)
v̂2(tij)

,

where v̂2(⋅) is an estimate for the most complex variability function.

The L1, the L2 and the Lmax tests

We introduce in this paragraph three types of test statistics for testing that a co-

efficient function is constant or varying. When the coefficients αk are a constant
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vector, the corresponding spline βk(⋅) is constant. From de Boor (2001), we have that

the first order derivative of βk(T ) in Equation (2.4), with distance 1/uk between the

equidistant knots (for T ∈ [0,1]), is given by

β′k(T ) = uk
mk

∑
j=2

∆1αkjBk(T ;νk − 1) = ukBk(T ;νk − 1)TD1
mk

αk. (3.2)

Degree one B-splines have support at three knots, and equal zero at the two end knot

points and one at the middle knot point (see Figure 1.2). Therefore, for quadratic

B-splines and by Equation (3.2), β′k(t) ≠ 0 for all t ∈ T if and only if D1
mk

αk ≠ 0.

The test statistics are based on a vector norm of the differences of the B-splines

coefficients for the βk(⋅). They are defined as follows, for testing constancy of the

βk(⋅):

L1m =
p

∑
k=0

∥D1
mk

α̂k∥1, L2m =
p

∑
k=0

∥D1
mk

α̂k∥2, and Lmaxm =
p

∑
k=0

∥D1
mk

α̂k∥∞,

where ∥αk∥1 = ∑mk

j=1 ∣αkj ∣, ∥αk∥2 =
√
∑mk

j=1 ∣αkj ∣2, and ∥αk∥∞ = maxj=1,...,mk
∣αkj ∣, are

respectively the L1-norm, the L2-norm and the L∞-norm of the vector αk.

Each of the above test statistics looks at the consecutive differences of the B-splines

coefficients to check whether the coefficient for the corresponding covariate varies over

time or not. The testing procedure for each of the above test statistics is based on

bootstrap re-sampling, to calculate the p-values.

Similar to that of the signal, the three test statistics are also considered for testing

the constancy of the coefficients θk(⋅) in the variability function, defined as follows:

L1v =
p

∑
k=0

∥D1
mV

k
α̂V

k∥1, L2v =
p

∑
k=0

∥D1
mV

k
α̂V

k∥2, and Lmaxv =
p

∑
k=0

∥D1
mV

k
α̂V

k∥∞.

When we use B-splines of degree three or more, we use the Lmax test given by (for

the signal, similar for the variability function):

Lmaxm =
p

∑
k=0

max
t∈T

∣Bk(t;νk − 1)TD1
mk

αk ∣.

Remark 3.2 We can similarly test for linearity of the functional coefficients (H0 ∶
β′′k (t) = 0 for all t ∈ T ). For cubic B-splines and by Equation (3.7), β′′k (t) ≠ 0 for all

t ∈ T if and only if D2
mk

αk ≠ 0. Hence, the test statistics are constructed based on
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the second order differences of the B-splines coefficients.

3.1.2 Monotonicity tests

By Equation (3.2), as uk and Bk(T ;νk − 1) are all positive by definition, restricting

∆1αkj to be positive (resp. negative) is a sufficient condition for β′k(T ) to be positive

(resp. negative). Hence, to restrict βk(T ) to be monotone increasing or decreas-

ing, we use the objective function considered by Bollaerts et al. (2006), which adds

asymmetric weights $kj to the objective function in Equation (2.6)

Sm(α) =
n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Y (tij) −
p

∑
k=0

X(k)(tij)αT
kBk(tij ;νk))+

λP
p

∑
k=0

ω1k∥Ddk
mk

αk∥1 +
p

∑
k=0

κk
mk

∑
j=2

$kj ∣∆1αkj ∣ (3.3)

with κk a user-defined constraint parameter chosen as large as possible to avoid the

violation of the constraints and

$kj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ∆1αkj ≥ 0 for increasing (resp. ∆1αkj ≤ 0 for decreasing),

1 otherwise.

(3.4)

The implementation of the estimation method for the objective function in Equation

(3.3), for a model with only one covariate, is discussed in Section 3 of Bollaerts

et al. (2006). It can be extended, for a model with several covariates, by adding the

additional constraints in Equation (3.4) for each coefficient of the covariates.

To test the monotonicity of βk, we construct two types of tests. The first one is the

LRT used in Section 3.1.1. The second test is the algorithm used by Ahkim et al.

(2017) for mean regression, which we call Extreme Value Test (EVT).

The hypothesis for testing βk is a non-decreasing function is:

H0 ∶ β′k(t) ≥ 0 for all t ∈ T Versus H1 ∶ ¬H0. (3.5)

To test βk is a non-increasing function, the hypothesis is

H0 ∶ β′k(t) ≤ 0 for all t ∈ T Versus H1 ∶ ¬H0. (3.6)
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Degree one B-splines have support at three knots, and equal zero at the two end knot

points and one at the middle knot point (Figure 1.2). Therefore, for quadratic B-

splines and by Equation (3.2), βk is non-decreasing if and only if D1
mk

αk ≥ 0. Then,

the algorithm for the testing procedure reads as follows:

1. dmin = min2≤j≤mk
(∆1α̂kj)

2. if dmin ≥ 0, the p-value equals one

3. if dmin < 0, determine the distribution of dmin under H0

4. get the p-value using the empirical probability of dbmin ≤ dmin, where dbmin is

the test statistic based on the bth bootstrap sample obtained under the null

hypothesis.

The bootstrap samples (b = 1, . . . ,B)

{(Y b(tbij),Xb(tbij), tbij) ∶ i = 1, . . . , n, j = 1, . . . ,N b
i }

are obtained from {(Y P (tij),X(tij), tij) ∶ i = 1, . . . , n, j = 1, . . . ,Ni}, with

Y P (tij) =
p

∑
k=0

β̂mk (tij)X(k)(tij) + εP (tij),

εP (tij) = Y (tij) −
p

∑
k=0

β̂k(tij)X(k)(tij),

where β̂mk (tij) and β̂k(tij) are the monotone constrained (solution of Equation (3.3))

and un-constrained estimated coefficients, respectively.

When we use B-splines of degree three or more, our test is based on

dmin = min
t∈T

(Bk(t;νk − 1)TD1
mk

αk).

The test for hypothesis in Equation (3.6) can be carried out similarly with the obvious

adjustment of the inequality and now using dmax = max2≤j≤mk
(∆1α̂kj).
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3.1.3 Convexity/Concavity tests

The second derivative of βk(T ) in Equation (2.4), with distance 1/uk between the

equidistant knots (for T ∈ [0,1]) is given by

β′′k (T ) = u2k
mk

∑
j=3

∆2αkjBk(T ;νk − 2). (3.7)

Hence, to restrict βk(T ) to be convex or concave, we use the following objective

function, which adds asymmetric weights ϑkj to the objective function in (2.6)

Sc(α) =
n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Y (tij) −
p

∑
k=0

X(k)(tij)αT
kBk(tij ;νk)) + λP

p

∑
k=0

ω1k∥Ddk
mk

αk∥1

+
p

∑
k=0

κck

mk

∑
j=3

ϑkj ∣∆2αkj ∣

(3.8)

with κck a user-defined constraint parameter and

ϑkj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ∆2αkj ≥ 0 for convex (resp. ∆2αkj ≤ 0 for concave),

1 otherwise.

The implementation of the estimation method for the objective function in Equation

(3.8) can also be written similarly as that of monotone quantile regression but now

using the second order differences.

Here also we can use the two tests discussed in Section 3.1.2, but now we work with

the second order derivative (for EVT test). The hypothesis for testing βk is a convex

function reads as:

H0 ∶ β′′k (t) ≥ 0 for all t ∈ T Versus H1 ∶ ¬H0.

The EVT test, for cubic splines, is given as dmin = min3≤j≤mk
(∆2α̂kj). When splines

of degree four or more are used the test is based on

dmin = min
t∈T

(Bk(t;νk − 2)TD2
mk

αk).
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To test whether βk(⋅) is a concave function, the hypothesis is

H0 ∶ β′′k (t) ≤ 0 for all t ∈ T Versus H1 ∶ ¬H0.

3.1.4 Shape testing in both signal and variability function

In this section, we introduce the LRT to test, simultaneously, convexity of a coeffi-

cient in the signal and constancy of a coefficient in the variability function (can be

generalized for other shapes). The hypothesis reads as follows:

H0 ∶ β′′k (t) ≥ 0 & θ′k(t) = 0 for all t ∈ T Versus H1 ∶ ¬H0.

The test statistic is defined as:

G = 2

⎧⎪⎪⎨⎪⎪⎩

n

∑
i=1

1

Ni

Ni

∑
j=1

[ρ0.5{Y (tij) − m̂0(tij)} − ρ0.5{Y (tij) − m̂1(tij)}

+ρ0.5{ln ∣Y (tij) −XT(tij)β̂(tij)∣ − v̂0(tij)}

−ρ0.5{ln ∣Y (tij) −XT(tij)β̂(tij)∣ − v̂1(tij)}]
⎫⎪⎪⎬⎪⎪⎭
,

where m̂0(⋅) and m̂1(⋅) are, respectively, the estimated signal under H0 and under

H1, and v̂0(⋅) and v̂1(⋅) are, respectively, the estimated variability function under H0

and under H1.

The p-value is obtained by the re-sampling subject bootstrap, similar procedure as

discussed in Section 3.1.1. The bootstrap samples (b = 1, . . . ,B)

{(Y b(tbij),Xb(tbij), tbij) ∶ i = 1, . . . , n, j = 1, . . . ,N b
i }

are obtained from {(Y P (tij),X(tij), tij) ∶ i = 1, . . . , n, j = 1, . . . ,Ni}, with

Y P (tij) =
p

∑
k=0

β̂ck(tij)X(k)(tij) + v̂0(tij)εP (tij),

εP (tij) =
Y (tij) −∑pk=0 β̂k(tij)X

(k)(tij)
v̂2(tij)

,

where β̂ck(⋅) and β̂k(⋅) are, respectively, the convex constrained (solution of Equation

(3.8)) and un-constrained estimated coefficients for the signal, and v̂2(⋅) is an estimate
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for the most complex variability function.

3.2 Simulation study

In this section, we conduct simulation studies to investigate the performances of the

testing procedures discussed in Section 3.1. Three simulation settings are consid-

ered (i) testing constancy of the coefficients in the signal as well as in the variability

function; (ii) monotonicity test for the coefficients in the signal; (iii) testing, simul-

taneously, for convexity of the functional coefficient of a covariate in the signal and

constancy of the functional coefficient of a covariate in the variability function. To

analyze the data sets, B-splines of degree two with six equidistant knots on the time

interval (similar as in Ahkim et al., 2017) and differencing order 1 are used.

3.2.1 Simulation study: constancy

We investigate the performances of the testing procedures in Section 3.1.1. We fur-

ther compare the testing procedures with the Rank Score (RS) test of Wang et al.

(2009) (using the compound symmetry error structure, and cubic splines for B-spline

estimators). A simulation setting (defined in Table 3.1) of the following type is used:

Y (T ) =β0(T ) + β1(T )X(1)(T ) + β2(T )X(2)(T )+

γ(T ) exp{θ1(T )X(1)(T ) + θ2(T )X(2)(T )}ε(T ).

Table 3.1. Description of the coefficients.

β0(T ) β1(T ) β2(T ) γ(T ) θ1(T ) θ2(T )

2
√
T πT+10

15
9 sin(πT /25) + 3 T+1

25
−T
5
+ 5 (20−T )2

100
− 4

To have an equivalent complexity in the data for the simulated samples, the coeffi-

cients are formulated such that the SNR is approximately seven.

As in Chapter 2, the error term is generated from a transformed multivariate normal

distribution given in Equation (2.14) (such that we attain the two assumptions H1

and H2, defined in Chapter 2) with ζij generated from a Gaussian process with zero
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mean and a covariance

cov(ζij , ζlz) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.62/5 if i = l, j ≠ z

0.62 if i = l, j = z

0 if i ≠ l.

The following time dependent covariates are considered

⎛
⎜⎜⎜
⎝

X(1)(T )

X(2)(T )

⎞
⎟⎟⎟
⎠
∼ N(0,Σ(T )), Σ(T ) =

⎛
⎜⎜⎜
⎝

1 1/(4 + T )

1/(4 + T ) 1

⎞
⎟⎟⎟
⎠
.

Then, the covariates X(k)(tij) are standardized as follows,

X(k)(tij) −min1≤i≤n;1≤j≤Ni
(X(k)(tij))

max1≤i≤n;1≤j≤Ni
(X(k)(tij)) −min1≤i≤n;1≤j≤Ni

(X(k)(tij))
,

to have them on a comparable scale, which is important to determine the individual

smoothing parameters λPk’s with λPk = λPω1k, chosen via the SIC in Chapter 2.

We simulated 100 data sets of size n = 100 from the above model. The time variable

ranges from 0 to 49. For each case i, the probability of having a measurement in each

time point is 0.6, creating an unbalanced number of measurements. Then, the actual

time points are calculated by adding a generated value from a U[0,0.5] to the non-

skipped time points. For the test, we use B = 200 bootstrap samples and proportion

of significant tests are presented with 5% significance level.

We test whether the coefficients for X(2)(T ) are varying over time or not (it can

similarly be done for the other covariates) for the signal (β2(T )) as well as for the

variability function (θ2(T )). To study the power of the tests in more detail we use a

sequence of alternative models indexed by c for the aforementioned coefficients:

β2(T, c) = c1 + c{β2(T ) − c1}, c1 = ∫
49

0
β2(t)dt/49

θ2(T, c) = c2 + c{θ2(T ) − c2}, c2 = ∫
49

0
θ2(t)dt/49

for c ∈ {0,0.1, . . . ,1}, presented in Figure 3.1.

For β2(T ), we see in Figure 3.2 (a) that all the tests preserve the nominal significance



60 CHAPTER 3. SHAPE TESTING

0 10 20 30 40 50

−5

0

5

10

T

C
oe

ffi
ci

en
ts

c

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(a) β2(T, c)

0 10 20 30 40 50

−4

−2

0

2

4

T

C
oe

ffi
ci

en
ts

c

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(b) θ2(T, c)

Figure 3.1. The true coefficients of X(2)(T ) for the signal (left panel) and for the
variability function (right panel) for various values of c.

level for c = 0 and the power increases to 1 for large values of c. Note that the power

curve of the RS test outperforms these of the other tests. Among these, the L1, L2

and Lmax tests perform better than the LRT test for small values of c, whereas the

latter test performs best for moderate to large values of c. Since the power curves of

the L1, L2, Lmax and LRT tests are crossing, there is no uniformly best test among

them. For the variability function (see Figure 3.2 (b)) we see that all the tests other

than the RS test preserve the nominal level. Among the tests that best keep the

nominal level, we observe that the power properties of the L1, L2 and Lmax tests are

substantially better than these of the LRT test, for a large range of c-values. The

power further increases to 1 for c large for all tests.

3.2.2 Simulation study: monotonicity

In this section we conduct a simulation study to investigate the performances of

the testing procedures discussed in Section 3.1.2, for the signal. We consider a ho-

moscedastic varying coefficient model with V (⋅, ⋅) = 0.4. We use the coefficient func-

tions β0(T ) = 0.25+ 2T and β2(T ) = −0.5+ 10(T − 0.5)2. We consider four simulation

settings to test the hypothesis in Equation (3.5) for β1(T ), which are based on the

following two functions,

� f1,a(T ) = −2 + 2(1 + T − a exp(−50(T − 0.5)2)) and
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Figure 3.2. The power curves for β2(T ) and θ2(T ).

� f2(T ) = 1.1.

The first three simulation settings are based on f1,a(T ) (presented in Figure 3.3),

which is taken from Bowman et al. (1998). This function is strictly increasing for

a = 0.15, a dip appears when a = 0.3 and the dip appears more profoundly with

a = 0.45. The fourth simulation setting is based on f2(T ). The coefficients are

formulated such that the SNR is approximately seven.

The error term, the covariates and the time variable are generated as in the previous

section. Then the time variable tij is standardized via

tij −min1≤i≤n;1≤j≤Ni (tij)
max1≤i≤n;1≤j≤Ni (tij) −min1≤i≤n;1≤j≤Ni (tij)

, (3.9)

to ensure that the time variable is between zero and one (and hence T takes values

in [0,1]).

To avoid the violation of the monotonicity constraint we use κ1 = 1000.

We present the proportion of significant tests for each testing procedure under the four

simulation settings in Table 3.2. Under the monotone functions f2(T ) and f1,0.15(T ),
we see that the P(rejecting H0∣H0) is around the nominal significance level, for both

tests. Whereas, under the non-monotone functions, f1,0.3(T ) and f1,0.45(T ), the

power of the test is around one, except for LRT having less power under f1,0.3(T ).
Here we see that dmin test perform better than the LRT test.
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Figure 3.3. f1,a(T ).

Table 3.2. Proportion of significant tests.

Setting LRT dmin Ideal

f2 0.06 0.04 0.05

f1,0.15 0.07 0.06 0.05

f1,0.3 0.51 0.87 1.00

f1,0.45 0.95 0.99 1.00

3.2.3 Simulation study: convex in signal and constant in variability

Using the LRT testing procedure, as discussed in Section 3.1.4, we test whether a

covariate has a coefficient function that is convex for the signal and is constant for

the variability function. We consider the simulation setting of Section 3.2.2 and

take β1(T ) equal to f1,0.45(T ). The proportion of significant tests, respectively, are

0.01 and 0.97 for X(0)(T ) (H0 ∶ β′′0 (t) ≥ 0 & θ′0(t) = 0 for all t ∈ T ) and X(1)(T )
(H0 ∶ β′′1 (t) ≥ 0 & θ′1(t) = 0 for all t ∈ T ). These results show that the test has good
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performance, since the nominal significance level is respected and the power is close

to one.

3.3 Data example: Wages data

In this section, we illustrate the use of the testing procedures in Section 3.1 on the

‘Wages’ data. To analyze the data set, similarly as in Section 3.2, B-splines of degree

two with six equidistant knots on the time interval and differencing order one are

used.

The data example is taken from the National Longitudinal Survey of Youth, col-

lected in USA. It was originally reported in Murnane et al. (1999). It consists of

888 individuals of age 14 to 17 years old. Each individual has a different number

of observations (Ni) ranging between 1 and 13. The response variable Y (tij) is the

hourly wage, with the time variable tij denoting the duration of the work experience

(in years), i = 1, . . . ,888 and j = 1, . . . ,Ni. We have two predictor variables. The first

one is the race variable with three levels (black, Hispanic and white), hence generat-

ing two dummy variables – (X(1)(T ),X(2)(T )) = (1,0), (X(1)(T ),X(2)(T )) = (0,1)
and (X(1)(T ),X(2)(T )) = (0,0) standing for black, Hispanic and white, respectively.

The second one is X(3)(T ) (hgc) the highest grade completed by the individual. The

covariates are standardized as in Section 3.2.1, so that the estimated coefficients have

an equivalent scale.

We check the constancy of the coefficients for the signal and/or the variability func-

tion (Table 3.3) using the four tests in Section 3.1.1. The four tests lead to similar

conclusions, with exception of the LRT test for testing constancy of the coefficient

θ0(T ). Our conclusion is based on the L1, L2 and Lmax tests results, since these tests

perform better than the LRT test in the simulation study. The aforementioned tests

indicate that all the covariates have non-varying coefficients with respect to both the

signal and variability functions.

Further, we check the monotonicity or convexity of β0(T ) in Table 3.4. Using both

tests in Sections 3.1.2 and 3.1.3, we do not have enough arguments to reject the

hypothesis that the coefficient function is non-decreasing or convex. This means, for

white individuals who have lower hgc level, that as the duration of the work experience

increases the median hourly wage is non-decreasing.
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Table 3.3. Wages data. P-values for constancy.

Coefficients LRT L1 L2 Lmax

β0(T ) 0.1200 0.1750 0.2300 0.3500

β1(T ) 0.5000 0.3850 0.3400 0.3200

β2(T ) 0.8550 0.7150 0.7250 0.7350

β3(T ) 0.8750 0.8100 0.8100 0.8100

θ0(T ) 0.0350 0.0500 0.1250 0.1700

θ1(T ) 0.5400 0.1350 0.1600 0.2200

θ2(T ) 0.0800 0.0950 0.1000 0.1000

θ3(T ) 0.1950 0.0700 0.0650 0.0650

Table 3.4. Wages data. P-values for monotonicity and convexity of β0(T ).

Null hypothesis LRT dmin

Monotone increasing 0.6600 1.0000

Convex 0.8400 0.6250

3.4 Conclusion

We consider constancy checking for the coefficients in the general heteroscedastic

model proposed in the previous chapter, using several types of tests. The coefficients

in both the signal and variability functions (the variance of errors) are allowed to

be more flexible via the varying coefficient models. We compare the performance of

the LRT proposed in Chapter 2 and RS test of Wang et al. (2009) with the other

three tests proposed in this chapter. These tests are applied on the signal (median

function) as well as on the variability function. We apply the testing procedures in a

simulation study and a data example. For the signal, the simulation study in Section

3.2.1 shows that the three tests (L1, L2 and Lmax) constructed in this chapter have

a performance somewhat comparable to that of the other two tests, although none is

dominating (cf the crossing power curves). For the variability function however, the

proposed tests have better overall (size and power) performances.

Further, we propose two testing procedures to test for monotonicity or convexity.
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Both tests perform well in the simulation study (Sections 3.2.2). Furthermore, we

investigate a coefficient’s convexity in the signal and its constancy in the variability

function (Section 3.2.3), using the LRT test procedure in Section 3.1.4. This test can

be generalized to any other shapes either in the signal or the variability functions. For

instance, we can test monotonicity of a coefficient function in the signal and constancy

of a coefficient function in the variability function, simultaneously.

Although the proposed testing procedures in this chapter have good performance in

the simulation studies, it is of interest to prove their consistency. If no modeling bias

is assumed, this can be shown similarly as Knight (1999) (see also the discussion in

Section 2.5).
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Part II

Variable selection in quantile varying
coefficient models
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Chapter 4
Variable selection in quantile varying coefficient
models with heteroscedastic error

As in the previous chapter, we consider the location-scale varying coefficient model

in Equation (1.7) with the variability function of the form given in Equation (3.1).

To get a nuanced picture for the relationship between a response and covariates, one

can consider several regression quantiles. If the variability function is, however, of a

homoscedastic structure, investigating several regression quantiles is time consuming.

Under a homoscedastic model, the effect of the covariates is the same on the entire

distribution of the response. The computational time is larger, especially when non-

parametric estimations are considered. Therefore, in Chapter 2 (Gijbels et al., 2018),

we study several structures of the variability function, such as power and exponential

functions; proposing also a Likelihood-Ratio-Type test (LRT) to choose between two

variability structures. Further, in Chapter 3 (Gijbels et al., 2017), we develop several

constancy testing procedures in addition to the LRT for both the median and vari-

ability functions to find the best suitable model among a family of models. The LRT

can also be used to do variable selection. However, the LRT can be time consuming

and the type-I error rate might inflate when a large number of covariates are consid-

ered. This is because in the LRT, we have to compare various models with several

combinations of covariates included.

Variable selection is a hot topic in the literature nowadays due to the application

of high-dimensional data, where a lot of covariates are collected and stored. Several

popular methods have first been introduced in the parametric mean regression (least

69
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squares), including the Least absolute shrinkage and selection operator (Lasso) (Tib-

shirani, 1996), the Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li, 2001),

the Adaptive Lasso (Zou, 2006), the one-step sparse estimator (Zou and Li, 2008) and

the elastic net (Zou and Zhang, 2009). A lot of research has also been done in the

non-parametric regression setting (Wang and Xia, 2009; Xue, 2009; Noh and Park,

2010; Huang et al., 2012; Ma et al., 2013; Antoniadis et al., 2014; Wang and Lin, 2014;

Wang et al., 2014; Yang et al., 2016; Li et al., 2017, to cite a few). A brief discussion

on grouped regularization techniques and on a robust variable selection method is

given by Gijbels et al. (2015).

In an attempt to have variable selection techniques which are robust to outliers and

non-normal errors, robust regressions such as least absolute deviation and quantile

regression have been proposed (Li and Zhu, 2008; Zou and Yuan, 2008; Wu and Liu,

2009b). For the non-parametric quantile regression setting, SCAD (Kai et al., 2011;

Noh et al., 2012; Lee et al., 2014; Guo et al., 2017), Adaptive Lasso (Jiang et al., 2012;

Tang et al., 2012, 2013b; Zhao et al., 2013), a smooth-threshold estimating equation

(Wang and Sun, 2017), a Boosting approach (Fenske et al., 2011) and NonNegative

Garrote (Lin et al., 2013) have been considered, among others.

In contrast to the above mentioned literature, apart from the location, the variability

function is in addition investigated in this chapter. We extend the grouped Adaptive

Lasso by Tang et al. (2013b) to our context where we use P-splines (gALassoP).

Furthermore, we propose a NonNegative Garrote (NNG) estimator. We show the

consistency of the gALassoP.

The remainder of the chapter is organized as follows. Section 4.1 deals with the

estimation methods and the asymptotic results. Simulation studies are carried out

in Section 4.2. The proposed variable selection techniques are applied on two data

examples in Section 4.3. Section 4.4 concludes the results in this chapter. Finally,

Section 4.5 presents theoretical details. The R-code to implement the methods of this

chapter on a data set is deferred to Appendix A and is available at http://ibiostat.

be/online-resources/online-resources/longitudinal.

4.1 Estimation Methods

We use the Adaptive He (AHe) approach (He, 1997; Andriyana et al., 2016; Andriyana

and Gijbels, 2017; Gijbels et al., 2017, 2018) to estimate the median as well as the
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variability function.

4.1.1 Step 1: estimation of the median

Assuming H1 in Chapter 2, the median function of Y (T ) is given in Equation (2.2).

Grouped Adaptive Lasso

Using unpenalized B-splines, Tang et al. (2013b) propose a grouped Adaptive Lasso

approach (gALassoB). A penalty (in L1-norm) for each coefficient group, correspond-

ing to a particular functional coefficient, is added to the objective function (i.e. Equa-

tion (4.1) with λP = 0). Here we combine it with the P-splines technique in Equation

(2.6) and write the penalized objective function as

S(α) =
n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Yij −UT
ijα) + λP

p

∑
k=0

ω1k∥D1
mk

αk∥1 + λL
p

∑
k=0

ω2k∥αk∥1, (4.1)

where λL is a nonnegative regularization parameter that determines the sparsity of

the solution; ω2k = ∥α̂Bk ∥−ηL1 , with ηL ≥ 1 and k = 0, . . . , p, are the penalty weights of

the coefficient groups; α̂Bk are the coefficient estimates using unpenalized B-splines

(i.e. when λP = λL = 0 in Equation (4.1)). Tang et al. (2013b) showed from their

simulation study that the grouped Adaptive L1- and L2-penalties perform equiva-

lently well in finite samples. The objective function with the L1-norm penalty can

be solved by a standard linear programming. Therefore, using the L1-norm penalty

is computationally more convenient than the L2-norm. The data-driven smoothing

parameters λP and λL are obtained using the following SIC-criterion (Schwarz, 1978;

Tang et al., 2013b; Gijbels et al., 2018) on a two-dimensional grid:

SIC(λP , λL) = ln
⎛
⎝

1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Yij −UT
ijα̂)

⎞
⎠
+ ln(N)

2N
pλP ,λL

, (4.2)

where N = ∑ni=1Ni; α̂ is the minimizers in Equation (4.1); and pλP ,λL
is the effective

degrees of freedom, taken to equal the size of the elbow set Eλ in Equation 2.12.
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NonNegative Garrote

In a classical multiple linear regression model, Breiman (1995) proposes the NNG

for subset regression. Here we use this methodology by first obtaining the initial

estimates of βk(t) (β̂init
k (t)), the minimizers of the objective function in Equation

(2.6) (P-splines). Then, using these estimates, the NonNegative Garrote shrinkage

factors ĉ = (ĉ0, . . . , ĉp)T are obtained by solving the following optimization problem:

min
c0,...,cp

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Yij −
p

∑
k=0

ckβ̂
init
k (tij)X(k)ij )+λNNG

p

∑
k=0

ck s.t. ck ≥ 0 (k = 0,1, . . . , p).

(4.3)

The NonNegative Garrote estimator for βk(t) is given by

β̂NNG

k (tij) = ĉkβ̂init
k (tij). (4.4)

To obtain the tuning parameter λNNG, we use the SIC-criterion:

SIC(λNNG) = ln
⎛
⎝

1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Yij −
p

∑
k=0

ĉkβ̂
init
k (tij)X(k)ij )

⎞
⎠
+ ln(N)

2N
pλNNG

. (4.5)

4.1.2 Step 2: estimation of the variability function

When the interest is in studying several quantiles, we have to estimate the variability

function. From the model in Equation (1.7) and since V (X(T ), T ) ≥ 0, we have

Equation (2.7). Therefore, assuming H2 in Chapter 2, we can estimate V (⋅, ⋅) based

on the following equation,

q0.5 (ln ∣Y (T ) −XT(T )β(T )∣ ∣ X(T ), T) = lnV (X(T ), T )

=
p

∑
k=0

θk(T )X(k)(T ) = XT(T )θ(T ), (4.6)

with θ0(T ) = ln{γ(T )} and θ(T ) = (θ0(T ), . . . , θp(T ))T. Then, θk(T ) can be approx-

imated in a basis (of size mV

k = uV

k + νV

k ) of normalized B-splines of degree νV

k with

uV

k + 1 quasi-uniform knots.

Similar variable selection procedures as for the median can be constructed for

the variability function. For the gALassoP, the estimated functional coeffi-

cients are obtained by minimizing the following objective function, where UV

ij =
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((UV(1)
ij )

T
, . . . , (UV(p)

ij )
T
)
T

mV
tot×1

with UV(k)
ij = BV

k(tij , νV

k )X
(k)
ij and the weights ωV

2k =

∥(α̂V)Bk ∥−η
V
L

1 are based on the (unpenalized) B-splines estimates (α̂V)Bk (i.e when

λV

P = λV

L = 0 in Equation (4.7)) with ηV

L ≥ 1:

S(αV) =
n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5( ln(∣Yij −XT
ijβ̂(tij)∣) − (UV

ij)TαV)+

λV

P

p

∑
k=0

ωV

1k∥D
dVk
mV

k

αV

k∥1 + λV

L

p

∑
k=0

ωV

2k∥αV

k∥1, (4.7)

where λV

L is a nonnegative regularization parameter.

For the NNG, the estimated functional coefficients are obtained by solving,

min
cV0 ,...,c

V
p

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (ln(∣Yij −XT
ijβ̂(tij)∣) −

p

∑
k=0

cVk θ̂
init
k (tij)X(k)ij ) + λV

NNG

p

∑
k=0

cVk

s.t. cVk ≥ 0 (k = 0,1, . . . , p), (4.8)

where θ̂initk (tij) are the estimates obtained minimizing Equation (4.7) with λV

L = 0 and

λV

NNG ≥ 0 is the regularization parameter.

The implementation of the estimation procedures can be written similarly as in Chap-

ter 2. We use the Frisch-Newton interior point algorithm (Portnoy and Koenker,

1997), used in Tang et al. (2013b) after updating it to our procedures.

4.1.3 Asymptotic properties of the grouped Adaptive Lasso

In this section, we show that the gALassoP approach leads to a consistent variable

selection procedure and the resulting estimator achieves the optimal convergence rate.

We assume that only the first s covariates are relevant, i.e. βk(⋅) ≠ 0 for k = 0,1, . . . , s

and βk(⋅) = 0 for k = s + 1, . . . , p.

For the first step of our estimation procedure in Equation (4.1), where the ε(T ) is

assumed to have median zero given (X(T ), T ) (H1), we have the following main

theorem for the gALassoP (see Section 4.5.2 for the proof). The extra notations and

assumptions are stated in Section 4.5.1.

Theorem 4.1 (gALassoP) Suppose Assumptions 2.2, 2.3, 2.5, 2.6 and 4.1 –

4.5 hold. Furthermore, assume that u
3/4
maxλP maxn

−1/2 → 0, λLu
1/2
maxn

−1/2 → 0 and

u
−3/2
maxλL →∞; as n tends to ∞. Then
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(a) β̂k(⋅) = 0, k = s + 1, . . . , p, with probability approaching 1;

(b) ∥β̂k − βk∥2 = Op (n−rmin/(2rmin+1)), k = 0,1, . . . , s.

Theorem 4.1 (a) says that the gALassoP is consistent in variable selection. As pro-

vided in Theorem 4.1 (b), the resulting estimator has an optimal global convergence

rate for nonparametric regression (Stone, 1982).

The next theorem states the corresponding asymptotic behavior for the variability

function. We assume there are sV relevant covariates in the model, with θk(⋅) ≠ 0 for

k = 0,1, . . . , sV and θk(⋅) = 0 for k = sV + 1, . . . , p. Relying on Theorem 4.1, we have

Equation (2.13).

Assuming H2, we have the following theorem for the gALassoP (see Section 4.5.3 for

the proof).

Theorem 4.2 (gALassoP) Suppose Assumptions 2.6, 2.9 – 2.12, 4.2, 4.4,

4.6 and 4.7 hold. Furthermore, assume that (uV

max)3/4λV

P maxn
−1/2 → 0,

λV

L(uV

max)1/2n−1/2 → 0 and (uV

max)−3/2λV

L →∞; as n tends to ∞. Then,

(a) θ̂k(⋅) = 0, k = sV + 1, . . . , p, with probability approaching 1;

(b) ∥θ̂k − θk∥2 = Op(n−r
V
min/(2r

V
min+1)), k = 0,1, . . . , sV.

Remark 4.1 The same proof can be used to generalize the asymptotic properties in

Theorems 4.1 and 4.2 to the grouped Adaptive Lκ-penalty with any κ ≥ 1. Hence, the

results in this Chapter can be extended to Lκ-penalty, but with the disadvantage of

not being able to use linear programming.

4.2 Simulation study

We investigate the performance of the gALassoP and NNG approaches defined in

Section 4.1, using two settings: homoscedastic and heteroscedastic models. The two

methods are also compared with the gALassoB in Tang et al. (2013b), the grouped

SCAD (gSCADB) in Noh et al. (2012) and the grouped SCAD (gSCADP) when

adding the penalization term in Equation (2.6) (λP ∑pk=0 ω1k∑mk

l=dk+1
∣∆dkαkl∣) to the

objective function in Noh et al. (2012). R-software which uses Fortran code from

the quantreg R-package (Koenker et al., 2017) is used for the gALassoP, NNG and

gALassoB. Where as for the gSCADB and gSCADP a Matlab-based modeling system

CVX is used.
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Remark 4.2 We can easily show that the gSCADB has the same convergence rate

as the gALassoP by making use of Equation (6.5) in Noh et al. (2012) and Lemma

4.5. Similarly, it is easy to show that the gSCADP has the same convergence rate as

the gALassoP by making use of Equation (6.5) in Noh et al. (2012), Lemma 4.5 and

Equation (4.11).

4.2.1 Homoscedastic model

We simulate from the following model (considered by Tang et al. (2013b)),

Yij = β0(tij) +
23

∑
k=1

βk(tij)X(k)ij + 1.75εij .

The coefficients (also presented in Figure 4.1) are formulated as follows,

β0(T ) = 15 + 20 sin(πT /60) β1(T ) = 2 − 3 cos(π(T − 25)/15) β2(T ) = 6 − 0.2T

β3(T ) = −4 + (20 − T )3/2000 βk(T ) = 0 for k = 4, . . . ,23.

We use 1.75 for the variability function (V (Xij , tij)) such that the Signal-to-Noise

Ratio is approximately seven. The error term is generated from a transformed mul-

tivariate normal distribution as in Equation (2.14) (to fulfill assumptions H1 and

H2 in Section 2.1), with ζij = Eij + Zij , Eij ∼ N(0,4) and Zij is generated from a

Gaussian process with zero mean and a decayed exponential covariance

cov(Zij , Zlz) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4 exp(−∣tij − tlz ∣) if i = l,

0 if i ≠ l.

The covariate X
(1)
ij is generated from a Unif[tij/10,2 + tij/10], X(2)ij ∼ N(0,

1+X
(1)
ij

2+X
(1)
ij

),

X
(3)
ij ∼ Bern(0.6), and the rest are redundant variables, X

(k)
ij for k = 4, . . . ,23, having

the same distribution as Zij .

The time variable T ranges from 1,2, . . . ,30. We have an unbalanced design: each

time point (excluding time 1) has 60% probability of being skipped. Then the actual

time point is obtained by adding a Unif[−0.5,0.5].

We simulated 500 samples of size n = 200. B-splines of degree three with eight

quasi-uniform knots and differencing order one are used for the gALassoP, NNG and
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Figure 4.1. True coefficients of the median.

gSCADP. Where as for the gALassoB and gSCADB, the number of knots are chosen

adaptively from a grid between four and eight (similar as in Tang et al., 2013b). In

all the methods, we have two tuning parameters for smoothness and sparsity. Hence,

we search over a two-dimensional grid of the same size for all methods to make it

comparable. We set ηP = 1 and ηL = 2 (as in Tang et al., 2013b). The cut-off criterion

to keep the covariates is ∥αk∥1 > 10−6 for the gALassoB, gALassoP, gSCADB and

gSCADP, and is ck > 10−6 for the NNG.

We measure the ability of the methods to find the true model (oracle), those containing

the true model (good), models with one extra variable (+1), those that remove one

true variable (-1). We further look at the median number of selected variables that are

truly relevant (Med.r), the median number of selected variables that are redundant

(Med.z) and the median computing time in seconds (Med.t) (see Table 4.1).

The procedures have equivalent performance in selecting the significant variables for

both the signal and variability functions (Table 4.2). However, the NNG outperforms

the other procedures in terms of selecting the true model and/or the computing time.

We also compare the methods by the root approximated integrated square errors
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Table 4.1. Measures of the performance.

Measure Definition

Oracle % the percentage of replications that the exact true model is selected

Good % the percentage of replications that the truly relevant variables are included in the model

+1 % the percentage of replications that one extra variable is included in the model

-1 % the percentage of replications that one important variable is removed from the model

Med.r the median number of selected variables that are truly relevant

Med.z the median number of redundant variables selected

Med.t the median time in seconds

defined as follows:

RAISE(β̂(i)k (⋅)) = ( 1

301

301

∑
a=1

[β̂(i)k (ta) − β(i)k (ta)]2)
1
2

, for simulation i,

RAISE(θ̂(i)(⋅)) = ( 1

301

301

∑
a=1

[θ̂(i)k (ta) − θ(i)k (ta)]2)
1
2

, for simulation i,

where ta = a/10, a = 5,6, . . . ,305.

Figure 4.2 (a) shows that all the methods have a similar efficiency in estimating the

coefficients of the median. However, the gSCADB and gSCADP have bad performance

compared to the others for the variability function (Figure 4.3 (a)), which might be

surprising. Note that the estimated coefficients are close to zero for the irrelevant

covariates (X(4)(T ) and X(1)(T ), respectively, for the median and the variability

functions), which supports Theorems 4.1 (a) and 4.2 (a). The boxplots for the other

irrelevant variables (not presented) are also similar (close to zero).

Furthermore, we look at the performance of the methods when increasing the sample

size to n = 400. From Table 4.3 we conclude that, for the signal, the oracle percentages

of the gALassoP and gALassoB improved, as expected. From Figures 4.2 (b) and 4.3

(b), we note that all the methods improve in terms of estimation accuracy. The rela-

tive median computing time to estimate the median function for the NNG, compared

to that of the gALassoB and gSCADB, respectively, is 0.159 and 0.008. The grouped

SCAD approach (whether or not P-splines smoothness penalty is considered) has bad

estimation for the variability function (Figure 4.3).
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(a) n = 200

(b) n = 400

Figure 4.2. RAISE(β̂(i)k (⋅)) for the homoscedastic model.
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(a) n = 200

(b) n = 400

Figure 4.3. RAISE(V̂ (i)(⋅, ⋅)) for the homoscedastic model.
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Table 4.2. Performance of the variable selection techniques for the homoscedastic
model with n = 200.

Median Variability

Method gAL P gAL B NNG gS B gS P gAL P gAL B NNG gS B gS P

Oracle % 98.4 99.4 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0

Good % 100.0 100.0 100.0 100.0 100.0 – – – – –

+1 % 1.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-1 % 0.0 0.0 0.0 0.0 0.0 – – – – –

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) – – – – –

Med.z 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Med.t

36.1 28.9 4.6 563.6 604.9 36.3 26.3 4.0 581.8 620.8

(35.7, (28.3, (4.5, (554.4, (594.4, (35.4, (25.6, (3.9, (573.1, (611.4,

36.6) 29.6) 4.7) 572.2) 614.3) 37.1) 26.9) 4.1) 592.5) 633.3)

NOTE: gAL P: gALassoP; gAL B: gALassoB; gS B: gSCADB; gS P: gSCADP; the numbers in

brackets are the first and third quartiles.

Table 4.3. Performance of the variable selection techniques for the homoscedastic
model with n = 400.

Median Variability

Method gAL P gAL B NNG gS B gS P gAL P gAL B NNG gS B gS P

Oracle % 100.0 99.8 100.0 99.8 99.8 100.0 100.0 100.0 100.0 100.0

Good % 100.0 100.0 100.0 100.0 100.0 – – – – –

+1 % 0.0 0.2 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0

-1 % 0.0 0.0 0.0 0.0 0.0 – – – – –

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) – – – – –

Med.z 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Med.t

77.1 57.2 8.1 2054.9 2147.9 66.3 50.3 6.9 2102.0 2194.1

(76.1, (56.5, (8.0, (2019.2, (2099.7, (64.6, (49.4, (6.8, (2067.2, (2151.6,

77.8) 58.0) 8.3) 2082.4) 2181.3) 67.9) 51.3) 7.1) 2132.9) 2234.2)

NOTE: gAL P: gALassoP; gAL B: gALassoB; gS B: gSCADB; gS P: gSCADP; the numbers in

brackets are the first and third quartiles.
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4.2.2 Heteroscedastic model

In this section we consider a similar setting as in Section 4.2.1 with n = 200, but now

with a heteroscedastic error (V (X(T ), T ) = exp (β3(T )
10

X(6)(T ))). For the signal, the

conclusion is similar to that of the previous section, indicating that the methods

have similar performance with respect to variable selection and estimation accuracy

(see Table 4.4 and Figure 4.4 (a), respectively). For the variability function, the

gSCADB and gSCADP could not identify the important variable. The estimation

accuracy of the gSCADB, gSCADP and gALassoB is also bad for the important

variable in the variability function (Figure 4.4 (b)). Tang et al. (2013b) also indicate

in one of their simulation setting that the gSCAD shows bad performance, in a mean

regression setting. Again, the NNG outperforms the other methods with respect to

the execution time. The relative median computing time to estimate the median

function for the NNG, compared to that of the gALassoB and gSCADB, respectively,

is 0.146 and 0.008. The gALassoB has bad estimation performance for the coefficient

of the important variable in the variability function, which calls for the importance

of considering the penalized B-splines.

Table 4.4. Performance of the variable selection techniques for the heteroscedastic
model with n = 200.

Median Variability

Method gAL P gAL B NNG gS B gS P gAL P gAL B NNG gS B gS P

Oracle % 100.0 100.0 100.0 98.6 100.0 99.0 99.8 100.0 1.0 0.0

Good % 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.4 0.0

+1 % 0.0 0.0 0.0 0.6 0.0 1.0 0.2 0.0 0.4 0.0

-1 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.6 100.0

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 1 (1, 1) 1 (1, 1) 1 (1, 1) 0 (0, 0) 0 (0, 0)

Med.z 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Med.t

37.1 32.8 4.8 572.0 605.6 36.7 28.6 4.1 612.6 641.0

(36.6, (31.5, (4.7, (562.9, (596.3, (35.9, (27.6, (4.0, (603.4, (631.2,

37.7) 34.6) 4.9) 580.2) 615.9) 37.5) 30.0) 4.1) 623.6) 652.4)

NOTE: gAL P: gALassoP; gAL B: gALassoB; gS B: gSCADB; gS P: gSCADP; the numbers in

brackets are the first and third quartiles.
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(a) RAISE(β̂
(i)
k

(⋅))

(b) RAISE(V̂ (i)(⋅, ⋅))

Figure 4.4. RAISE for the heteroscedastic model.
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4.3 Data examples

In this section, we study three data examples; containing two, 22 and 27 covariates,

respectively, for Grunfeld, KTB and Intego data.

4.3.1 Grunfeld data

This data example contains annual measurements for 11 US manufacturing firms

over 20 years, for the years 1935–1954. The response variable is gross investment at

year T . Each firm has the same number of measurements Ni = 20. There are two

covariates in the data set, the market value of the firm X(1)(T ) and the stock of

plant and equipment (capital) X(2)(T ). See AER R-package (Kleiber and Zeileis,

2008) for more information on the data. The data is first studied by Grunfeld (1958).

It is also considered by Andriyana (2015), where a general heteroscedastic model is

recommended.

The covariates are standardized as in Section 3.2.1, so that they have equivalent scale.

B-splines of degree three with six quasi-uniform knots and differencing order one are

used for the gALassoP, NNG and gSCADP. Where as for the gALassoB and gSCADB,

the number of knots are chosen adaptively from a grid between four and six.

Table 4.5 shows that, using all the procedures discussed in Section 4.2, the two co-

variates are selected in the signal part. For the variability function, all the procedures

other than the gSCADB select both the covariates (Table 4.6). To assess the selection

stability of the methods, we obtain 200 bootstrap samples from the data. For each

bootstrap, we resample the firms (Y (tij),X(1)(tij),X(2)(tij), j = 1, . . . ,Ni) with re-

placement and apply the variable selection methods to the bootstrap sample. We see

from Table 4.5 that all the methods are stable for the signal. However, the gSCADB is

not stable for the variability function (Table 4.6). Using the NNG, X(2)(T ) is selected

194 times and 177 times, respectively, for the median and the variability functions.

The third row of Tables 4.5 and 4.6 shows that, using the NNG, the models selected

in the bootstrap samples agree with the models selected in the observed data 97%

and 83.5% of times for the signal and the variability functions, respectively.
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Table 4.5. Grunfeld data. Frequencies that the covariates are selected in the
observed sample (O) and in the bootstrap samples (Boot) for the median function.

gAL P gAL B NNG gS B gS P

O Boot O Boot O Boot O Boot O Boot

X(1) 1 200 1 200 1 200 1 200 1 200

X(2) 1 200 1 200 1 194 1 200 1 200

AgreeP – 100.0 – 100.0 – 97.0 – 100.0 – 100.0

NOTE: gAL P: gALassoP; gAL B: gALassoB; gS B: gSCADB; gS P: gSCADP; AgreeP: the

percentage that the model selected by the bootstrap sample agrees with the model selected by the

observed sample.

Table 4.6. Grunfeld data. Frequencies that the covariates are selected in the
observed sample (O) and in the bootstrap samples (Boot) for the variability
function.

gAL P gAL B NNG gS B gS P

O Boot O Boot O Boot O Boot O Boot

X(1)(T ) 1 199 1 131 1 189 0 145 1 200

X(2)(T ) 1 192 1 191 1 177 1 176 1 200

AgreeP – 95.5 – 63.0 – 83.5 – 22.0 – 100.0

NOTE: gAL P: gALassoP; gAL B: gALassoB; gS B: gSCADB; gS P: gSCADP; AgreeP: the

percentage that the model selected by the bootstrap sample agrees with the model selected by the

observed sample.

Even though the covariates are significant for the variability function, Figure 4.5

(b) shows that the estimated coefficients (obtained minimizing Equation (4.7) with

λV

L = 0) are constant over time. Hence, the model can be further simplified by checking

the constancy of the coefficients using the testing procedures proposed in Chapter 3

or using step 1 of Tang et al. (2012).
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(a) Median

(b) Variability

Figure 4.5. Grunfeld data. The estimated coefficient functions of the standardized
covariates.
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4.3.2 KTB data

This data example is obtained from the German Continental Deep Drill program

(KTB). It contains 68 covariates of petrophysical properties and geochemical com-

positions from drill cuttings measured at each of the 5922 depth points down to a

final depth of 9.1 km (with a distance of 1 to 2m between the cuttings). The aim

of the program is to study the properties and processes of the upper 10 km of the

continental crust. The response variable is the content of cataclastic rocks (the sum

of three cataclastic components, namely cataclastic gneiss, cataclastic metabasite and

cataclasites) in volume percent with logarithmic scale. We consider the 22 covariates

(see Table 4.7) as in Winter et al. (2002), with X(0)(T ) ≡ 1. The covariates are stan-

dardized as in Section 3.2.1. Winter et al. (2002) pointed out that the composition

of the cataclastic shear-zones highly depends on the lithology (and thus the depth).

Hence, we allow the coefficients to vary with the depth. This data set is also investi-

gated by Antoniadis et al. (2012b), where they also use the varying coefficient models

comparing four types of variable selection techniques in a mean regression setting.

To analyze the data set, B-splines of degree three with 16 quasi-uniform knots (similar

as in Antoniadis et al., 2012b) and differencing order one are used for the gALassoP,

NNG and gSCADP. Where as for the gALassoB and gSCADB, the number of knots

are chosen adaptively from a grid of 6-16.

As in the previous data example, we conduct variable selection using all the methods.

For the median function all the methods other than the gSCADB and gSCADP select

21 covariates (Table 4.8). As shown by Antoniadis et al. (2012b), less covariates are

selected for mean regression. This might be because our point of interest is now on the

median of the response. For the variability function, the NNG selects 12 covariates,

whereas the gALassoP selects 19 covariates. Using P-splines estimation (minimizing

Equations (2.6) and (4.7) with λV

L = 0, respectively, for the median and the variability

functions), we plot the estimated coefficient functions for the first four covariates in

Figure 4.6. We see in Figure 4.6 (a) that β̂3(T ) is almost around zero.

To quantify the effect of leaving out irrelevant variables from the model, we cal-

culate the SIC-criterion when the estimation is done based on the selected set of

variables with P-splines. For the median function, the SIC values when only X(3)(T )
is removed, removing the irrelevant variables using the NonNegative Garrote from

Antoniadis et al. (2012b), removing the irrelevant variables from Antoniadis et al.

(2012b) other than X(3)(T ), and using the full model are presented in Table 4.9.

As indicated from the table, the model with the set of selected variables when only
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Table 4.7. KTB data. Covariates.

Label description Label description

X(1)(T ) crystal water (H2O in weight %) X(12)(T ) rubidium (Rb, in ppm)

X(2)(T ) carbon (C in weight %) X(13)(T ) zirkonium (Zr, in ppm)

X(3)(T ) quartz (QRZ in weight %) X(14)(T ) chronium (Cr, in ppm)

X(4)(T ) SiO2 content (in weight %) X(15)(T ) vanadium (V , in ppm)

X(5)(T ) Al2O3 content (in weight %) X(16)(T ) copper (Cu, in ppm)

X(6)(T ) Fe2O3 content (in weight %) X(17)(T ) potassium (K, in weight %)

X(7)(T ) MgO content (in weight %) X(18)(T ) thorium232 (Th, in ppm)

X(8)(T ) CaO content (in weight %) X(19)(T ) uranium238 (U , in ppm)

X(9)(T ) Na2O content (in weight %) X(20)(T ) magnetic susceptibility (dimensionless)

X(10)(T ) sulfur (S, in weight %) X(21)(T ) density (in Mg ⋅m−3)

X(11)(T ) strontium (Sr, in ppm) X(22)(T ) thermal conductivity (in W ⋅m−1 ⋅K−1)

X(3)(T ) is removed has the lowest SIC value. Similarly, for the variability function,

the SIC values when removing the irrelevant variables using the NNG in this chapter,

removing the irrelevant variables using the gALassoP, and using the full model are

presented at the bottom of Table 4.9. The table indicates that the model with the

set of selected variables resulting from the NNG has the lowest SIC. The estimated

median log of the content of cataclastic rocks, using all the methods, is plotted in Fig-

ure 4.7. The content is increasing up to about 7000 meters with a small peak around

2000 meters and then slightly decreasing. All the methods respect the pattern of the

evolution of the cataclastic rocks content over the depth which is also supported by

the comparable SIC values in Table 4.8. For the variability function, we see that even

though the NNG selects much less covariates, it has a smaller SIC value compared to

that of the gALassoP and gALassoB.
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Table 4.8. KTB data. Selected covariates.

Median Variability

gAL P gAL B NNG gS B gS P gAL P gAL B NNG gS B gS P

X(1)(T ) x x x x x x x x x x

X(2)(T ) x x x x x x x x x x

X(3)(T ) x x x x x

X(4)(T ) x x x x x x x x x x

X(5)(T ) x x x x x x x x x x

X(6)(T ) x x x x x x x x x x

X(7)(T ) x x x x x x x x x

X(8)(T ) x x x x x x x x x x

X(9)(T ) x x x x x x x x x

X(10)(T ) x x x x x x x x x

X(11)(T ) x x x x x x x x x

X(12)(T ) x x x x x x x x x x

X(13)(T ) x x x x x x x x x

X(14)(T ) x x x x x x x x x

X(15)(T ) x x x x x x x x x x

X(16)(T ) x x x x x x x x

X(17)(T ) x x x x x x x x

X(18)(T ) x x x x x x x x x

X(19)(T ) x x x x x x x x x x

X(20)(T ) x x x x x x x x x

X(21)(T ) x x x x x x x x x x

X(22)(T ) x x x x x x x x x x

SIC -1.31 -1.30 -1.44 -1.47 -1.30 -0.42 0.70 -0.73 -0.94 -0.95

NS 21 21 21 22 22 19 21 12 22 22

NOTE: gAL P: gALassoP; gAL B: gALassoB; gS B: gSCADB; gS P: gSCADP; SIC: SIC-criterion

in Equations (4.2) or (4.5); NS: number of selected covariates.
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(a) Median

(b) Variability

Figure 4.6. KTB data. The estimated coefficient functions of the standardized
covariates.
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Table 4.9. KTB data. The SIC values based on the P-splines estimation of the
selected covariates from the different methods.

Method SIC

For the median function

NNG -1.294

NNG of Antoniadis et al. (2012b) -1.289

NNG of Antoniadis et al. (2012b) including X(3)(T ) -1.284

The full model -1.285

For the variability function

NNG -0.451

gALassoP -0.448

The full model -0.444
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(a) (b)

(c) (d)

(e)

Figure 4.7. KTB data. The estimated median log of the content of cataclastic
rocks.
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4.3.3 Intego data

This data set is obtained from Intego, a Belgian general practice-based morbidity reg-

istration network at the Department of General Practice of KU Leuven. Ninety-seven

general practitioners of 55 practices, evenly spread throughout Flanders, Belgium,

collaborate in the Intego project. The data contains annual measurements of 6529 pa-

tients over the years 2000–2015. Each patient has different number of measurements.

The response is eGFR (the estimated glomerular filtration rate) in mL/min/1.73

m2/year. This response variable, which is calculated with the modification of diet in

the renal disease equation, is used to measure the kidney function of the patients. A

rapid annual decline of kidney function is defined as ≥ 3mL/min/1.73 m2/year (Vaes

et al., 2015). We have 27 covariates (see Table 4.10) consisting of gender, age, weight,

height, blood pressure, lab tests, presence of morbidities and prescribed medications.

The main aim of the project is to explore the association between blood pressure

value and eGFR over time (year).

To analyze the data set, B-splines of degree three with eight quasi-uniform knots

and differencing order one (as in Section 4.2) are used for the gALassoP, NNG and

gSCADP. Where as for the gALassoB and gSCADB, the number of knots are chosen

adaptively from a grid of between four and eight. The covariates are standardized as

in Section 3.2.1.

We conduct the variable selection using all the techniques used in Section 4.2. For

the median function, as indicated in Table 4.11, the NNG chooses only 13 covariates,

while having the same SIC as the gALassoP and gALassoB. The other methods select

over 20 covariates. Based on the selected set of variables by the NNG, the blood

pressure values (systolic and diastolic) are not selected as important covariates. For

the variability function, again the NNG selects only one covariate. Figure 4.8 shows

the estimated functional coefficients of the first five covariates. The figure indicates

that indeed β̂5(T ), the estimated functional coefficient of the diastolic blood pressure,

is around zero. As shown in Figure 4.8 (a), age has a negative association with the

kidney function (median eGFR), which is varying over time.

We plot the estimated median function of eGFR for the maximum values of the

covariates, i.e. for female patients with the highest age, weight, height, blood pressure,

lab tests, and presence of morbidities and prescribed medications. Figure 4.9 shows

that the B-splines based methods have wiggly functional estimates. Based on the

NNG, we see that the eGFR value is decreasing over time for these specific type of

patients.
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Table 4.10. Intego data. Covariates.

Label description Label description

X(1)(T ) age X(15)(T ) heart failure (1 = yes)

X(2)(T ) weight X(16)(T ) hypercholesterolemia (1 = yes)

X(3)(T ) height X(17)(T ) ischemic heart disease (1 = yes)

X(4)(T ) systolic blood pressure X(18)(T ) stroke (1 = yes)

X(5)(T ) diastolic blood pressure X(19)(T ) urinary disease (1 = yes)

X(6)(T ) glucose lab test X(20)(T ) arterosclerosis (1 = yes)

X(7)(T ) cholesterol lab test X(21)(T ) hypertension (1 = yes)

X(8)(T ) ldl cholesterol lab test X(22)(T ) diuretic medication (1 = yes)

X(9)(T ) hdl cholesterol lab test X(23)(T ) beta blockers medication (1 = yes)

X(10)(T ) triglycerides lab test X(24)(T ) calcium blockers medication (1 = yes)

X(11)(T ) hemoglobin lab test X(25)(T ) renin agents medication (1 = yes)

X(12)(T ) uric acid lab test X(26)(T ) lipid agents medication (1 = yes)

X(13)(T ) potassium lab test X(27)(T ) gender (1 = Female)

X(14)(T ) diabetes (1 = yes)
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Table 4.11. Intego data. Selected covariates.

Median Variability

gAL P gAL B NNG gS B gS P gAL P gAL B NNG gS B gS P

X(1)(T ) x x x x x x x

X(2)(T ) x x x x x x x

X(3)(T ) x x x x x x x

X(4)(T ) x x x x x x

X(5)(T ) x x x x x x

X(6)(T ) x x x x x x

X(7)(T ) x x x x x x x x x

X(8)(T ) x x x x x x x x

X(9)(T ) x x x x x x x

X(10)(T ) x x x x x x x x x

X(11)(T ) x x x x x x x x x

X(12)(T ) x x x x x x x

X(13)(T ) x x x x x x x

X(14)(T ) x x x x x x

X(15)(T ) x x x x x x

X(16)(T ) x

X(17)(T ) x x x

X(18)(T ) x x x x x x

X(19)(T ) x x x x x x x

X(20)(T ) x x x x x

X(21)(T ) x x

X(22)(T ) x x x x x x x

X(23)(T ) x x

X(24)(T ) x x x x

X(25)(T ) x x x x x x

X(26)(T ) x x

X(27)(T ) x x x x x x x

SIC 1.84 1.84 1.84 -23.35 -27.34 -0.84 3.64 -0.86 -27.24 -31.05

NS 21 21 13 24 23 3 4 1 22 27

NOTE: gAL P: gALassoP; gAL B: gALassoB; gS B: gSCADB; gS P: gSCADP; SIC: SIC-criterion

in Equations (4.2) or (4.5); NS: number of selected covariates.
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Figure 4.8. Intego data. The estimated coefficient functions of the standardized
covariates.
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Figure 4.9. Intego data. The estimated median eGFR.

4.4 Conclusion

We propose two variable selection methods – grouped Adaptive Lasso using P-splines

and NonNegative Garrote. We show the consistency of the grouped Adaptive Lasso

with respect to variable selection and convergence rate. For a linear model, Zou (2006)

has shown, using least squares, that the NNG estimator can be viewed as a special

case of the Adaptive Lasso (ALasso) estimator. Based on this fact, the author has

shown that the NNG has an equivalent asymptotic behavior as the ALasso. Here we

can not proceed similarly, as we have grouped coefficients (i.e. replacing ck by ∥αk∥1

∥α̂init
k ∥1

in Equation (4.3) will not end up in Equation (4.1), with α̂init
k an initial estimate

obtained minimizing Equation (4.1) with λL = 0).

The simulation study in Section 4.2 shows that both the grouped Adaptive Lasso and

NonNegative Garrote perform equivalently well, for the median function, compared

to the gALassoB in Tang et al. (2013b) and the grouped SCAD (whether or not a

P-spline smoothness penalty is added) in Noh et al. (2012). When a heteroscedastic

model is considered in the simulation study, the two methods outperform in terms of
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estimating the functional coefficients of the variability function. The gALassoB has

the worst performance in estimating the functional coefficient of the relevant variable

in the variability function. The two proposed methods also outperform the grouped

SCAD in terms of selecting the relevant variable in the variability function. The

NNG outperforms in terms of the computing time in all settings. The methods are

illustrated on three data examples.

The model, we get in this chapter, can be further simplified by checking the constancy

of the coefficients using the testing procedures proposed in Chapter 3 or using step 1

of Tang et al. (2012), leading to a partially linear varying coefficient model.

By using the AHe approach we are able to select variables not only for the median

function but for the entire distribution, through investigating the variability function,

with less computing time. In the simulation study, we see that our variable selection

methods have identified properly the important variables in terms of both the signal

and variability functions. Hence, both the gALassoP and NNG are recommended to

do variable selection and estimation.

4.5 Assumptions, auxiliary results and proofs

4.5.1 Notations and Assumptions

We first introduce some notations:

Z = (U11, . . . ,U1N1 , . . . ,Un1, . . . ,UnNn)
T
N×1 ; ψτ(u) = τ − I(u < 0);

H2 = ZTZ; zij = H+Uij ;

ZV = (UV

11, . . . ,U
V

1N1
, . . . ,UV

n1, . . . ,U
V

nNn
)T
N×1

(HV)2 = (ZV)TZV

θ̂
∗
= HVα̂V θ̃

∗
= HVα̃V

α̂ = ((α̂0)T, (α̂1)T, . . . , (α̂p)T)Tmtot×1; θ∗ = HVαV;

α̃ = ((α̃0)T, (α̃1)T, . . . , (α̃p)T)Tmtot×1; β̃
∗
= Hα̃;

Rij = ∑pk=0(α̃
T
kBk(tij , νk) − βk(tij))X(k)ij ; β∗ = Hα;

β̂
∗
= Hα̂;
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where H+ denotes the Moore inverse of H, and α̃k are the coefficients of the best

possible spline approximation of βk(T ) (defined in Lemma 4.1). Let us define

χi = (Xi1, . . . ,XiNi)T as the Ni × (p + 1) design matrix on the ith subject, and

χ = (χT
1 , . . . ,χ

T
n)T.

Assumptions:

4.1. βk ∈ Hrk , k = 0,1, . . . , p, for some rk > 3/2. Let ςk denote the Hölder constant

for the kth varying coefficient function βk (see Definition 2.2 in Section 2.6.1).

4.2. For all i ∈ {1, . . . , n} and j ∈ {1, . . . ,Ni}, the random design vector Xij is bounded

in probability. The eigenvalues of the matrix N−1χTχ are bounded away from

zero and infinity.

4.3. limn→∞ u2maxn
δM−1 = 0 for some δM ∈ ]0,1[.

4.4. maxi=1,...,nNi < ∞.

4.5. Let εi = (εi1, . . . , εiNi)T. For each i, 0 < E[ψ0.5(εi)ψ0.5(εi)T] < ∞.

4.6. θk ∈ HrV
k

, k = 0,1, . . . , p, for some rV

k > 3/2. Let ςVk denote the Hölder constant

for the kth varying coefficient function θk.

4.7. Let εV

i = (εVi1, . . . , εViNi
)T. For each i, 0 < E[ψ0.5(εV

i )ψ0.5(εV

i )T] < ∞.

4.5.2 Proof of Theorem 4.1

The proof of Theorem 4.1 (a) is similar to that of Tang et al. (2013b), the essential

difference is that here we have to incorporate the smoothing penalty term. The proof

in Theorem 4.1 (b) is similar to that in Chapter 2, the difference is that here we give

a proof for the median function and we have in addition the regularization term.

First, we need the following lemmas. Lemma 4.1 (a) is taken directly from Corollary

6.21 of Schumaker (1981), Lemma 4.1 (b) immediately follows from Lemma 4.1 (a),

Lemma 4.2 is a basic inequality, Lemmas 4.3 and 4.4 are taken, respectively, from

proof of Theorem 2.1 and Lemma 3.4 in He and Shi (1994), the arguments used to

prove Lemma 4.5 are similar to those used in the proof of Lemma 2.4, and Lemma

4.6 is derived from Lemma 2 of Tang et al. (2013b). Hence, we omit the proofs.

Lemma 4.1 Suppose Assumptions 2.2, 2.6 and 4.1 hold. For a constant W4,k that

depends on only νk and ck, there exists a spline coefficient vector α̃ = (α̃0, . . . , α̃p)
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such that,

(a) supt∈T ∣βk(t) − α̃T
kBk(t, νk)∣ ≤W4,ku

−rmin
max , k = 0, . . . , p.

(b) ∥α̃k∥1 ≠ 0 if k ∈ {0, . . . , s}, α̃k = 0mk
if k = s + 1, . . . , p; with 0mk

a vector of 0 of

length mk.

Lemma 4.2 For a vector a with dimension m, ∥a∥1 ≤m1/2∥a∥2.

Lemma 4.3 Let α̂B be the minimizer of Equation (2.6) with λP equals zero. Suppose

Assumptions 2.2, 2.3, 2.5, 2.6 and 4.1 – 4.5 hold. Then ∥α̂B−α̃∥2 = Op(n−1/2umax).

Lemma 4.4 Under Assumption 4.3, there exists a positive constant W5,k depending

only on b,B, νk and ςk, such that, except on an event whose probability tends to zero

with n, for all βk ∈ Hrk and β̂k minimizer of Equation (4.1),

∥β̂k − βk∥22 ≤W5,k

⎧⎪⎪⎨⎪⎪⎩
(umax)−2rmin + 1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(β̂k(tij) − βk(tij))2
⎫⎪⎪⎬⎪⎪⎭
.

Lemma 4.5 Suppose Assumptions 2.3, 2.5, 2.6, 4.1 and 4.2 hold, and ξ ∈ Rmtot .

(a) For any sequence {Ln} satisfying 1 ≤ Ln ≤ (umax)δ0/10, for some 0 < δ0 < (rmin −
1/2)/(2rmin + 1),

sup
∥ξ∥2≤1

(umax)
−1

RRRRRRRRRRR

n

∑

i=1

1

Ni

Ni

∑

j=1

⎡
⎢
⎢
⎢
⎢
⎣

ρ0.5{εij −Ln(umax)
1/2zTijξ −Rij} − ρ0.5{εij −Rij}

+Ln(umax)
1/2zTijξ(0.5 − I(εij < 0)) −Eε[ρ0.5{εij −Ln(umax)

1/2zTijξ −Rij}

−ρ0.5{εij −Rij}]

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRR

= oP (1),

where Eε is the conditional expectation given (Xij , tij) for i = 1, . . . , n; j =
1, . . . ,Ni.

(b) For any ω > 0, there exists L ∶= Lω (sufficiently large) such that as n→∞,

P

⎧
⎪⎪
⎨
⎪⎪
⎩

(umax)
−1 ⎛

⎝

inf
∥ξ∥2=1

n

∑

i=1

1

Ni

Ni

∑

j=1

Eε[ρ0.5{εij −L(umax)
1/2zTijξ −Rij} − ρ0.5{εij −Rij}]

− L(umax)
1/2

XXXXXXXXXXX

n

∑

i=1

1

Ni

Ni

∑

j=1

zij(0.5 − I(εij < 0))
XXXXXXXXXXX2

⎞

⎠

> 1

⎫
⎪⎪
⎬
⎪⎪
⎭

> 1 − ω.

Lemma 4.6 Suppose Assumptions 2.5, 2.6, 4.1, 4.2 and 4.4 hold. Then, the eigen-

values of umaxH
2/n are uniformly bounded away from 0 and ∞ in probability.

Now, we need to prove the following lemma, using similar lines as that of Lemma 2.5.
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Lemma 4.7 Suppose Assumptions 2.3, 2.5, 2.6, 4.1, 4.2 and 4.4 hold. Further-

more, assume that (umax)3/4λP maxn
−1/2 → 0 and (umax)1/2λLn−1/2 → 0 as n tends to

∞. Then, ∑ni=1 1
Ni
∑Ni

j=1(β̂k(tij) − β̃k(tij))2 = OP (umax).

Proof 4.1 (Proof of Lemma 4.7) Using Lemma 4.5, for any ω > 0, there exists

L ∶= Lω such that as n→∞,

P

⎧
⎪⎪
⎨
⎪⎪
⎩

(umax)
−1 ⎛

⎝

inf
∥ξ∥2=L(umax)

1/2

n

∑

i=1

1

Ni

Ni

∑

j=1

ρ0.5{εij − z
T
ijξ −Rij} −

n

∑

i=1

1

Ni

Ni

∑

j=1

ρ0.5{εij −Rij}
⎞

⎠

> 1

⎫
⎪⎪
⎬
⎪⎪
⎭

> 1 − ω.

(4.9)

We have:

n

∑

i=1

1

Ni

Ni

∑

j=1

ρ0.5{εij − z
T
ij(β̂

∗

− β̃
∗

) −Rij} = inf
∥ξ∥2∈Rmtot

n

∑

i=1

1

Ni

Ni

∑

j=1

ρ0.5{εij − z
T
ijξ −Rij}. (4.10)

From the proof of Lemma 2.3 in Andriyana et al. (2014), assuming ∥β∗ − β̃
∗
∥2 =

L(umax)1/2 and by Lemma 4.6, we have:

λP
p

∑
k=0

ω1k(∥Ddk
k αk∥1 − ∥Ddk

k α̃k∥1) ≤
p

∑
k=1

4dk/2m3/4
maxλP max∥α − α̃∥2

= oP (umax), (4.11)

where mmax = max(m0, . . . ,mp).

By Lemma 4.2 and the triangle inequality

λL
p

∑
k=0

ω2k(∥αk∥1 − ∥α̃k∥1) ≤ λL
p

∑
k=0

ω2k(∥αk − α̃k∥1) ≤ λL
p

∑
k=0

ω2km
1/2
k (∥αk − α̃k∥2).

By Lemmas 4.1 (b) and 4.3, for k = 0, . . . , s and n large enough, there exist a pos-

itive constant cL ≥ 0 such that ∥α̂Bk ∥1 ≥ cL in probability and therefore ω2k ≤ c−ηLL .

Assuming ∥β∗ − β̃
∗
∥2 = L(umax)1/2 and by Lemma 4.6,

λL
p

∑
k=0

ω2k(∥αk∥1 − ∥α̃k∥1) ≤ pc−ηlL λLu
3/2
maxn

−1/2.
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Now, assuming λLu
1/2
maxn

−1/2 Ð→ 0 and by the fact that p is finite, we have

λL
p

∑
k=0

ω2k(∥αk∥1 − ∥α̃k∥1) = oP (umax). (4.12)

By Equations (4.9), (4.11) and (4.12),

P
⎛
⎝

inf
∥β∗−β̃

∗

∥2=L(uV
max)

1/2

S(α) − S(α̃) > 0
⎞
⎠
→ 1. (4.13)

By convexity of S(α), Equation (4.10) and since

p

∑
k=0

n

∑
i=1

Ni

∑
j=1

(β̂k(tij)X(k)ij − β̃k(tij)X(k)ij )
2
= ∥β̂

∗
− β̃

∗
∥22,

Equation (4.13) implies that

P
⎛
⎝

p

∑
k=0

n

∑
i=1

Ni

∑
j=1

(β̂k(tij)X(k)ij − β̃k(tij)X(k)ij )
2
≤ L2umax

⎞
⎠

= P (∥β̂
∗
− β̃

∗
∥2 ≤ L(umax)1/2) > 1 − ω,

which proves the lemma.

Proof 4.2 (Proof of Theorem 4.1 (b)) First, by the fact that 2ab ≤ a2 + b2 for

any (a, b) ∈ R2, we have

1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(β̂k(tij) − βk(tij))
2

≤ 2

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(β̂k(tij) − β̃k(tij))
2
+ 2

n

∑
i=1

1

Ni

Ni

∑
j=1

(β̃k(tij) − βk(tij))
2
.

By Lemma 4.7, we have that

2

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(β̂k(tij) − β̃k(tij))
2
= 2

n
OP (umax) = OP (umaxn

−1) . (4.14)
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By Lemma 4.1 (a), we have that

2
n

∑
i=1

1

Ni

Ni

∑
j=1

(β̃k(tij) − βk(tij))
2
≤ 2( max

k=0,...,p
(W4,k))

2

(umax)−2rmin = OP ((umax)−2rmin) .

(4.15)

Combining Equations (4.14) and (4.15) leads to

1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(β̂k(tij) − βk(tij))
2
= OP (umaxn

−1 + (umax)−2rmin)

= OP (n−2rmin/(2rmin+1)) . (4.16)

Using Equation (4.16) and Lemma 4.4, the proof of the theorem is now complete.

Proof 4.3 (Proof of Theorem 4.1 (a)) From the proof of Theorem 1 (a) of Tang

et al. (2013b), it is sufficient to prove that

RRRRRRRRRRR

RRRRRRRRRRR

n

∑
i=1

1

Ni

Ni

∑
j=1

ψ0.5(Yij −UT
ijα̂)U(k)ij

RRRRRRRRRRR

RRRRRRRRRRR2
≤ λPω1k + λLω2k, for k = s + 1, . . . , p.

We now check the above inequality holds:

From Tang et al. (2013b), we have that ∥∑ni=1 1
Ni
∑Ni

j=1 ψ0.5(Yij − UT
ijα̂)U(k)ij ∥2 =

OP (n1/2). By Lemmas 4.1 (b) and 4.3, ∥α̂Bk ∥2 = OP (n−1/2umax) for k = s + 1, . . . , p,

therefore by Lemma 4.2 there exist, for large n, a positive constant ek such that

∥α̂Bk ∥1 ≤ u
1/2
k ∥α̂Bk ∥2 ≤ ekn

−1/2u
3/2
max. Hence, for ηL ≥ 1, λLω2k = λL∥α̂Bk ∥−ηL1 ≥

λL∥α̂Bk ∥−11 ≥ λLe−1k n1/2u
−3/2
max .

As Range(β̂Bk (T )) ≥ 0, λPω1k ≥ 0. Hence, assuming λLu
−3/2
max Ð→ ∞, the proof is

complete.

4.5.3 Proof of Theorem 4.2

First, we need the following lemmas. Lemma 4.8 (a) is taken directly from Corollary

6.21 of Schumaker (1981), Lemma 4.8 (b) follows from Lemma 4.8 (a), the arguments

used to prove Lemma 4.9 are similar to those used in the proof of Theorem 2.1 in He

and Shi (1994), Lemma 4.10 is derived from Lemma 3.4 of He and Shi (1994) and

Lemma 4.11 can be proved as in Lemma 2 of Tang et al. (2013b). Hence, we omit

the proofs.
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Lemma 4.8 Suppose Assumptions 2.6, 2.12 and 4.6 hold. For a constant W V

1,k that

depends only on νV

k and ςVk , there exists a spline coefficient vector α̃V such that,

(a) supt∈T ∣θk(t) − (α̃V

k)TBV

k(t, νV

k)∣ ≤W V

1,k(uV

max)−r
V
min , k = 0, . . . , p.

(b) ∥α̃V

k∥1 ≠ 0 if k ∈ {0, . . . , sV}, α̃V

k = 0mV
k

if k = sV + 1, . . . , p.

Lemma 4.9 Let (α̂V)B be the minimizer of Equation (4.7) with λV

P = λV

L = 0. Suppose

Assumptions 2.6, 2.9 – 2.12, 4.2, 4.4, 4.6 and 4.7 hold. Then ∥(α̂V)B − α̃V∥2 =
Op(n−1/2uV

max).

Lemma 4.10 Under Assumption 2.10, there exists a positive constant W V

2,k depend-

ing only on b,B, νV

k and ςVk , such that, except on an event whose probability tends to

zero with n, for all θ̂k minimizer of Equation (4.7) and θk ∈ HrV
k

,

∥θ̂k − θk∥22 ≤W V

2,k

⎧⎪⎪⎨⎪⎪⎩
(uV

max)−2r
V
min + 1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(θ̂k(tij) − θk(tij))2
⎫⎪⎪⎬⎪⎪⎭
.

Lemma 4.11 Suppose Assumptions 2.6, 2.11, 4.2, 4.4 and 4.6 hold. Then the

eigenvalues of uV

max(HV)2/n are uniformly bounded away from 0 and ∞ in probability.

Now, we need to prove the following lemma, which is a preliminary result for our

main theorem.

Lemma 4.12 Suppose Assumptions 2.6, 2.9, 2.11, 4.2, 4.4 and 4.6 hold. Further-

more, assume that (uV

max)3/4λV

P maxn
−1/2 → 0 and (uV

max)1/2λV

Ln
−1/2 → 0; as n tends

to ∞. Then, ∑ni=1 1
Ni
∑Ni

j=1(θ̂k(tij) − θ̃k(tij))2 = OP (uV

max).

Proof 4.4 (Proof of Lemma 4.12) From the proof of Lemma 2.5, Equation

(2.13), assuming n−2r
V
min/(2r

V
min+1) → 0 and for any ω > 0, there exists L ∶= Lω such

that as n→∞,

P ( inf
∥θ∗−θ̃

∗

∥2=L(uV
max)

1/2

Q(αV) > uV

max) > 1 − ω, (4.17)

with

Q(αV) =
n

∑
i=1

1

Ni

Ni

∑
j=1

{ρ0.5 (ln ∣Yij −XT
ijβ̂(tij)∣ −

p

∑
k=0

m

∑
l=1

αV

klB
V

kl(tij , νV

k)X
(k)
ij )

−ρ0.5 (ln ∣Yij −XT
ijβ̂(tij)∣ −

p

∑
k=0

m

∑
l=1

α̃V

klB
V

kl(tij , νV

k)X
(k)
ij )} .

From the proof of Lemma 2.3 in Andriyana et al. (2014), assuming ∥θ̂
∗
− θ̃

∗
∥L2 =
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L(uV

max)1/2 and by Lemma 4.11, we have:

λV

P

p

∑
k=0

ωV

1k(∥D
dVk
k α̂V

k∥1 − ∥DdVk
k α̃V

k∥1) = oP (uV

max). (4.18)

Similar as in the proof of Lemma 4.7, by Lemmas 4.2, 4.8 (b), 4.9 and 4.11 and

assuming ∥θ̂
∗
− θ̃

∗
∥2 = L(uV

max)1/2,

λV

L

p

∑
k=0

ωV

2k(∥α̂
V

k∥1 − ∥α̃V

k∥1) = oP (uV

max). (4.19)

By Equations (4.17), (4.18) and (4.19),

P
⎛
⎝

inf
∥θ∗−θ̃

∗

∥L2
=L(uV

max)
1/2

S(αV) − S(α̃V) > 0
⎞
⎠
→ 1. (4.20)

By convexity of S(αV), the fact that S(α̂V) − S(αV) ≤ 0 and since

p

∑
k=0

n

∑
i=1

Ni

∑
j=1

(θ̂k(tij)X(k)ij − θ̃k(tij)X(k)ij )
2
= ∥θ̂

∗
− θ̃

∗
∥22,

Equation (4.20) implies that

P
⎛
⎝

p

∑
k=0

n

∑
i=1

Ni

∑
j=1

(θ̂k(tij)X(k)ij − θ̃k(tij)X(k)ij )
2
≤ L2uV

max

⎞
⎠

= P (∥θ̂
∗
− θ̃

∗
∥2 ≤ L(uV

max)1/2) > 1 − ω,

which proves the lemma.

Proof 4.5 (Proof of Theorem 4.2 (b)) Using similar lines as the proof of Theo-

rem 4.1 (b) and using Lemmas 4.8 (a) and 4.12, we have

1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

(θ̂k(tij) − θk(tij))
2
= OP (uV

maxn
−1 + (uV

max)
−2rVmin)

= OP (n−2r
V
min/(2r

V
min+1)) . (4.21)

Using Equation (4.21) and Lemma 4.10, the proof of the theorem is complete.

Proof 4.6 (Proof of Theorem 4.2 (a)) From the proof of Theorem 1 (a) of Tang
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et al. (2013b), for k = sV + 1, . . . , p, it is sufficient to prove that

RRRRRRRRRRR

RRRRRRRRRRR

n

∑
i=1

1

Ni

Ni

∑
j=1

ψ0.5(ln ∣Yij −XT
ijβ̂(T )∣ − (UV

ij)
T
α̂V)UV(k)

ij

RRRRRRRRRRR

RRRRRRRRRRR2
≤ λV

Pω
V

1k + λV

Lω
V

2k.

We have from Tang et al. (2013b) that

∥
n

∑
i=1

1

Ni

Ni

∑
j=1

ψ0.5(ln ∣Yij −XT
ijβ̂(T )∣ − (UV

ij)
T
α̂V)UV(k)

ij ∥2 = OP (n1/2).

By Lemmas 4.8 (b) and 4.9, ∥(α̂V)Bk ∥2 = OP (n−1/2uV

max) for k = sV + 1, . . . , p,

therefore by Lemma 4.2 there exist a positive constant eVk such that ∥(α̂V)Bk ∥1 ≤
(uV

k)1/2∥(α̂
V)Bk ∥2 ≤ eVkn−1/2(uV

max)3/2. Hence, for ηV

L ≥ 1, λV

Lω
V

2k = λV

L∥(α̂
V)Bk ∥−η

V
L

1 ≥
λV

L∥(α̂
V)Bk ∥−11 ≥ λV

L(eVk)−1n1/2(uV

max)−3/2.

As Range((β̂V

k)B(T )) ≥ 0, λV

Pω
V

2k ≥ 0. Hence, assuming λV

L(uV

max)−3/2 Ð→ ∞, the

proof is complete.
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Chapter 5
A two-stage screening and variable selection method
in ultrahigh-dimensional quantile varying coefficient
models with heteroscedastic error

As in Chapters 3 and 4, we consider the location-scale varying coefficient model in

Equation (1.7) with the variability function of the form given in Equation (3.1).

For a given quantile level τ (0 < τ < 1), we define the set of active/relevant variables

in the model in Equation (1.7) as

M∗ = {k ∶ qτ (Y (T )∣X(T ), T ) functionally depends on X(k)(T )},

for k = 1, . . . , p. We denote s = ∣M∗∣ the number of relevant variables in the model.

The previous chapter and the literature there in focus on situation where the number

of covariates p is finite or p is growing slower than the sample size. Recently, there is an

increased interest in ultrahigh-dimensional data with p much larger than the sample

size. This type of problem arises, for instance, in studying tumor identification, fi-

nance, etc. Existing penalization methods for ultrahigh-dimensional parametric mean

regression (least squares) include the Lasso in Meinshausen and Bühlmann (2006),

Boosting in Bühlmann (2006), the Dantzig selector in Candes and Tao (2007), Sure

Independence Screening (SIS) in Fan and Lv (2008) and forward selection in Wang

(2009). Several authors consider ultrahigh-dimensional nonparametric mean regres-

sion (Huang et al., 2010; Wei et al., 2011; Xue and Qu, 2012; Cheng et al., 2016; Chen

107
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et al., 2017, to cite a few).

A lot of work has also been done for ultrahigh-dimensional linear quantile regression

models, including but not limited to the Lasso (Belloni and Chernozhukov, 2011),

the Adaptive Lasso (Zheng et al., 2013), nonconvex penalties (Wang et al., 2012),

composite quasi-likelihood (Bradic et al., 2011) and the Dantzig-type penalty (Park

et al., 2017). In an ultrahigh-dimensional nonparametric quantile regression setting,

the Adaptive Lasso (Honda et al., 2017) and variable screening (He et al., 2013) have

been considered, among others. Tang et al. (2013a) propose a two-stage approach for

quantile varying coefficient models.

This chapter has novel contributions to the existing literature. We propose a two-stage

approach, that requires less computing time, for dimension reduction and variable

selection, in ultrahigh-dimensional varying coefficient models. In addition to the

location, we study the influence of covariates on the the scale (variability function) of

the response. Further, a P-splines penalty is added to the objective function in order

to avoid the problem of overfitting by B-splines estimation. In the first stage, we

propose the Sure Independence Screening (SIS) to reduce the size of the model from

ultrahigh-dimension to a model that has size close to the true model, which contains

the true model as a submodel. In the second stage, variable selection is done by the

NonNegative Garrote (NNG) on the reduced set of variables, in order to exclude the

remaining irrelevant covariates. We compare the proposed two-stage method with the

existing two-stage method of Tang et al. (2013a).

The remainder of the chapter is organized as follows. Sections 5.1 to 5.3 present

the screening and variable selection methods considered in the thorough numer-

ical comparison. Simulation studies are carried out in Section 5.4. The esti-

mation methods are applied to a data example in Section 5.5. Finally, we dis-

cuss the main findings in Section 5.6. The R-code to implement the methods of

this chapter on the data example is deferred to Appendix A and is available at

http://ibiostat.be/online-resources/online-resources/longitudinal.

5.1 Methods

Assuming H1, the conditional median function of Y (T ) is given in Equation (2.2).

From the model in Equation (1.7) and since V (X, T ) ≥ 0, we have Equation (2.7).

Therefore, from Equation (3.1) and assuming H2 in Chapter 2, V (⋅, ⋅) can be esti-
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mated based on Equation (4.6).

Our variable selection and screening method is a two-stage procedure. We compare

the proposed procedures with the two-stage method of Tang et al. (2013a). The

method of Tang et al. (2013a) is based on B-splines estimation, with the grouped

Lasso in the first (dimension reduction) stage and the grouped Adaptive Lasso in the

second (variable selection) stage. We compare the grouped Lasso first stage, with

the Sure Independence Screening first stage. In the second stage, we compare the

grouped Adaptive Lasso based on B-splines (gALassoB), the grouped Adaptive Lasso

using P-splines (gALassoP) and the NonNegative Garrote. Here at the second stage,

we expect the gALassoP and NNG to perform better than the gALassoB, as in the

previous chapter. Further, the NNG is expected to outperform in computing time.

In the subsequent subsections, we describe the screening and variable selection tech-

nique only for the median function. When the interest is in the variability function,

we need to replace (Yij , uk, νk,mk) by (ln ∣Yij −XT
ijβ̂(T )∣, uV

k , ν
V

k ,m
V

k) for k = 0, . . . , p,

where β̂(T ) are the estimated functional coefficients from the median.

All the optimization problems are implemented in R-software and solved with the

Frisch-Newton interior point algorithm (Portnoy and Koenker, 1997) of Tang et al.

(2013a).

5.2 Dimension reduction – Stage 1

In this section, we describe the two first-stage methods considered in the numerical

comparison. In the first stage, the dimension of the set of covariates is reduced to a

moderate size, ideally including the true set of active/relevant covariates.

5.2.1 Grouped Lasso

In this method, regularization with a grouped Lasso penalty on the spline coefficients

is done via a penalty on the L1-norm of the αk (∥αk∥1), inducing sparsity as in Tang

et al. (2013a). The resulting estimator is

α̃ = arg min
α

=
n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Yij −UT
ijα) + λL

p

∑
k=0

∥αk∥1,
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where α = (αT
0 , . . . ,α

T
p
)T; α̃ = (α̃T

0 , . . . , α̃
T
p
)T; λL is a nonnegative regularization

parameter that determines the sparsity of the solution. We denote the estimated set

of active variables as M̂Lasso = {k ∶ ∥α̃k∥1 > 0, k = 1, . . . , p}.

From Theorem 1 of Tang et al. (2013a), the estimator in this stage is sparse with

the number of nonzero groups at the order close to the true size, and is consistent in

estimation at the nearly optimal nonparametric rate. They show, however, that the

estimator in this stage is not consistent in variable selection.

The smoothing parameter u = u0 = . . . = uk and the regularization parameter λL

are chosen in a data-driven way, by minimizing the following SIC-criterion (Schwarz,

1978; Tang et al., 2013b; Gijbels et al., 2018) on a two-dimensional grid:

SIC(u,λL) = ln
⎛
⎝

1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Yij −UT
ijα̃)

⎞
⎠
+ ln(N)

2N
pu,λL

, (5.1)

where N = ∑ni=1Ni; and pu,λL
is the effective degrees of freedom, taken to equal the

size of the elbow set Eλ in Equation (2.12). The degree of the B-splines is fixed.

5.2.2 Sure Independence Screening

As an alternative to the grouped Lasso, we propose the Sure Independence Screening

as a first dimension reduction, in this section. The SIS allows to rapidly reduce the

dimension of the covariate space (p) to a moderate scale (He et al., 2013). Further,

it has an advantage in computational time over the grouped Lasso. We estimate the

marginal contribution of each covariate (while including the intercept in the model)

individually with P-splines,

(α̃T
0 , α̃

T
k ) = arg min

(αT
0 ,α

T
k
)

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5
⎛
⎝
Yij − ∑

l∈{0,k}

X
(l)
ij αT

l Bl(tij , νl)
⎞
⎠

+λP ∑
l∈{0,k}

ω1l∥Ddl
ml

αl∥1, (5.2)

where ω1l = Range(β̃Bl (T ))−ηP with Range(β̃Bl (T )) is the range of quantile regression

estimators obtained using unpenalized B-splines (i.e. the solution of Equation (5.2)

with λP = 0), ηP ≥ 0; λP > 0 is the smoothing parameter; and dl is the differencing

order in the penalty term (which is set to 1 as in the previous chapters). We take

a fixed number of knots (eight knots are used in the simulation study as in Section

4.2), but choose the smoothing parameter λP data-driven by minimizing the SIC in
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Equation (5.1).

Defining the marginal quantile utility as f̃nk(tij) = α̃T
0 B(tij , ν) +X(k)ij α̃T

kB(tij , ν) −
q̂0.5(Yij), the SIS is based on the magnitude of the estimated marginal component

f̂mnk = n−1∑ni=1N−1
i ∑

Ni

j=1 f̃nk(tij)2, where q̂0.5(Yij) is the sample median of Yij , for

i = 1, . . . , n and j = 1, . . . ,Ni. We rank the variables based on their f̂mnk-value and

keep the top [n/ ln(n)] variables (as in He et al. (2013)). We denote the estimated

set of active variables as M̂SIS .

5.3 Variable selection – Stage 2

In the second stage, we start from the selected set of the first stage and do a fur-

ther dimension reduction with a variable selection technique. Below we describe the

different variable selection techniques that are considered in the simulation study.

5.3.1 Grouped Adaptive Lasso with B-splines after grouped Lasso

In this method, we conduct the grouped Adaptive Lasso in Tang et al. (2013b) on

the reduced model in Section 5.2.1. This procedure is based on unpenalized B-splines

and denoted as gALassoBLasso. We solve

min
α

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Yij −UT
ijα) + λL ∑

k∈M̂Lasso

ω2k∥αk∥1, (5.3)

where λL > 0 is a regularization parameter that determines the sparsity of the solution;

ω2k = ∥α̃k∥−ηL1 , for k ∈ M̂Lasso, are the penalty weights of the estimated coefficient

group in Section 5.2.1, with ηL ≥ 1. We use the same number of knots as obtained in

Section 5.2.1. Then, the SIC in Equation (5.1) is used to obtain a data-driven λL.
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5.3.2 Grouped Adaptive Lasso with P-splines after grouped Lasso

This procedure is denoted as gALassoPLasso. In order to enforce smooth estimates,

we add a P-splines penalty to the previous optimization problem (Equation (5.3)):

min
α

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Yij −UT
ijα) + λP ∑

k∈M̂Lasso

ω1k∥D1
mαk∥1 + λL ∑

k∈M̂Lasso

ω2k∥αk∥1,

(5.4)

where λP and λL are the smoothing and regularization parameters, respectively; ω1k =
Range(β̃k(T ))−ηP , with Range(β̃k(T )) the range of quantile regression estimators

obtained in Section 5.2.1; and ω2k = ∥α̃k∥−ηL1 the penalty weights of the estimated

coefficient group from Section 5.2.1. The tuning parameters λP and λL are chosen

data-driven, by minimizing the SIC in Equation (5.1).

5.3.3 NonNegative Garrote after grouped Lasso

The procedure is denoted as NNGLasso. On the reduced set of covariates (from Section

5.2.1), we apply the NonNegative Garrote. The NonNegative Garrote procedure is

based on the initial estimates of the βk(t) (β̂init
k (t)). These initial estimates are the

P-splines estimates, i.e. the minimizers of Equation (5.4) with λL = 0. Then, using

these estimates, the NonNegative Garrote shrinkage factors ĉ = (ĉk ∶ k ∈ M̂Lasso) are

obtained by solving the following optimization problem:

min
ck ∶k∈M̂Lasso

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5
⎛
⎝
Yij − ∑

k∈M̂Lasso

ckβ̂
init
k (tij)X(k)ij

⎞
⎠
+ λNNG ∑

k∈M̂Lasso

ck

s.t. ck ≥ 0 (k ∈ M̂Lasso), (5.5)

where λNNG > 0 is a regularization parameter (chosen data-driven by minimizing the

SIC in Equation (5.1)). Finally, the covariates corresponding to ĉk > 0 are retained.

5.3.4 Grouped Adaptive Lasso with P-splines after SIS

The procedure is denoted as gALassoPSIS and is based on the SIS-selected set in the

first stage and the grouped Adaptive Lasso with a P-splines penalty as in Equation

(5.4) in the second stage, where β̃ and α̃ in Equation (5.4) are now the minimizers of

Equation (5.4) with λP = λL = 0.
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5.3.5 NonNegative Garrote after SIS

We refer to the procedure, denoted as NNGSIS, as the method that is based on a first

stage SIS and the NNG in the second stage (minimizing Equation (5.5), replacing

M̂Lasso by M̂SIS).

5.4 Simulation study

In this section, we investigate the performance of the five variable selection proce-

dures described in Section 5.3 on two simulation settings: a heteroscedastic model

with uncorrelated covariates (setting 1) and a homoscedastic model with correlated

covariates (setting 2).

5.4.1 Setting 1: heteroscedastic model

We consider the following heteroscedastic model:

Yij = β0(tij) +
p

∑
k=1

βk(tij)X(k)ij + 2.1 exp(
β3(tij)

10
X
(6)
ij ) εij .

The coefficients (also presented in Figure 4.1), considered by Tang et al. (2013b), are

formulated as follows,

β0(T ) = 15 + 20 sin(πT /60) β1(T ) = 2 − 3 cos(π(T − 25)/15) β2(T ) = 6 − 0.2T

β3(T ) = −4 + (20 − T )3/2000 βk(T ) = 0 for k = 4, . . . , p.

The error term is generated from a transformed multivariate normal distribution as

in Equation (2.14) (to fulfill assumptions H1 and H2), with ζij = Eij + Zij , with

Eij ∼ N(0,4) and Zij is generated from a Gaussian process with zero mean and an

exponential decaying covariance

cov(Zij , Zlz) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4 exp(−∣tij − tlz ∣) if i = l,

0 if i ≠ l.

The covariates are generated from the same distribution as Zij . The time variable T

ranges from 1,2, . . . ,30. Each time point (excluding time 1) has 80% probability of
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being skipped, therefore creating an unbalanced design. Then, the actual time point

is obtained by adding a Unif[−0.5,0.5].

We generate 500 data sets of size n = 50 and consider p = 100,200 and 400. The choice

of the covariates, coefficient functions and error structure results in a Signal-to-Noise

Ratio of approximately seven.

We use a grid of length five for the smoothing parameters u and λP , and a grid of

length ten for the regularization parameter λL everywhere throughout the variable

selection procedure. B-splines of degree νk = 3 are used. When eight knots are used

and p = 100, mtot = 1010 parameters (αkl) should be estimated based on N ≈ 355

observations. As in the previous chapter, we set ηP = 1 and ηL = 2.

We measure the performance of the methods based on the same criteria as in Chapter

4 (see Table 4.1).

Comparison of the first and second stage methods

For the median function, at the first stage both the Lasso and SIS have an oracle

percentage that is zero (Table 5.1); note that the SIS always selects a fixed amount of

variables (n/ ln(n)), so it is expected that too many variables are selected. However,

they both preserve the important variables (good percentage close to 100). In the

second stage, the gALassoPLasso has the highest oracle percentage (93%). The other

procedures, except the gALassoPSIS, perform also well.

Table 5.2 shows the results for the variability function. In that table we present the

result of Stage 1 for each procedure, since the result from the median (more precisely

β̂k) is used to obtain the estimated active set for the variability function. The SIS

has good performance in terms of preserving the relevant variables. The NNGSIS has

the best performance at the second stage with an oracle percentage of 94.8%. The

NNGLasso also performs well (oracle percentage of 72%). The NNGSIS outperforms

all the methods in terms of the computing time, when focusing on the median or the

variability function.

Comparison of tuning parameter selection criteria

In Section 5.2.1, we discuss a SIC to choose the smoothing and regularization parame-

ters in the first and second stages. Tang et al. (2013a) propose an Extended Bayesian
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Table 5.1. Setting 1. Performance for the median function using SIC for p = 100
with data-driven choice of number of knots.

Stage 1 Stage 2

Method Lasso SIS gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

Oracle % 0.0 0.0 87.6 93.0 67.2 3.6 67.6

Good % 100.0 94.2 100.0 100.0 100.0 94.2 94.2

+1 % 0.0 0.0 11.4 6.4 12.8 7.8 18.0

-1 % 0.0 5.8 0.0 0.0 0.0 5.8 5.8

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3)

Med.z 17 (14, 21) 9 (9, 9) 0 (0, 0) 0 (0, 0) 0 (0, 1) 4 (2, 5) 0 (0, 1)

Med.t

– – 41.6 36.5 41.5 6.8 5.8

– – (39.5, (34.6, (39.3, (6.6, (5.7,

– – 43.9) 38.8) 43.6) 7.3) 6.3)

NOTE: The numbers in brackets are the first and third quartiles.

Table 5.2. Setting 1. Performance for the variability function using SIC for p = 100
with data-driven choice of number of knots.

gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

Method S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Oracle % 42.6 8.8 0.0 14.4 10.4 72.0 0.0 21.0 0.0 94.8

Good % 58.0 9.0 21.6 15.0 74.8 72.2 97.8 94.0 98.4 95.2

+1 % 5.8 0.2 0.0 0.4 3.0 0.2 0.0 22.8 0.0 0.4

-1 % 42.0 91.0 78.4 85.0 25.2 27.8 2.2 6.0 1.6 4.8

Med.r 1(0,1) 0(0,0) 0(0,0) 0(0,0) 1(0,1) 1(0,1) 1(1,1) 1(1,1) 1(1,1) 1(1,1)

Med.z 0(0,0) 0(0,0) 0(0,0) 0(0,0) 9(0,15) 0(0,0) 11(11,11) 2(1,3) 11(11,11) 0(0,0)

Med.t

– 37.2 – 32.4 – 35.0 – 5.5 – 4.7

– (35.0, – (30.8, – (33.2, – (5.3, – (4.3,

– 38.6) – 34.1) – 36.3) – 5.9) – 4.9)

NOTE: S1: Stage 1; S2: Stage 2; the numbers in brackets are the first and third quartiles.

Information Criterion (EBIC) for tuning parameter selection in the second stage:

EBIC(λP , λL) = ln
⎛
⎝

1

n

n

∑
i=1

1

Ni

Ni

∑
j=1

ρ0.5 (Yij −UT
ijα̂)

⎞
⎠
+ ln(N)

2N
pλP ,λL

+ϑ ln(∣M̂1∣)
2N

pλP ,λL
,
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where M̂1 is the selected set from the first stage (either M̂SIS or M̂Lasso); α̂ are the

estimates from the second stage; and 0 ≤ ϑ ≤ 1 (we take ϑ = 0.5 as in Tang et al.

(2013a)).

We compare the performance of the SIC and EBIC in this paragraph. Tables 5.3 and

5.4 summarize the results when the EBIC is used in the second stage. All procedures

improve slightly, except for the NNGLasso in the variability function, when the EBIC

is used to choose the tuning parameters.

Table 5.3. Setting 1. Performance for the median function using EBIC for p = 100
with data-driven choice of number of knots.

Stage 1 Stage 2

Method Lasso SIS gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

Oracle % 0.0 0.0 95.6 97.8 72.6 3.8 74.2

Good % 100.0 95.6 100.0 100.0 100.0 94.2 95.6

+1 % 0.0 0.0 4.2 2.0 12.2 9.4 14.4

-1 % 0.0 4.4 0.0 0.0 0.0 5.8 4.4

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3)

Med.z 17 (14, 21) 9 (9, 9) 0 (0, 0) 0 (0, 0) 0 (0, 1) 4 (2, 5) 0 (0, 0)

Med.t

– – 32.2 31.2 30.3 6.8 3.1

– – (30.5, (30.2, (29.2, (6.6, (3.1,

– – 34.1) 32.7) 31.7) 7.3) 3.2)

NOTE: The numbers in brackets are the first and third quartiles.

Choice of the number of knots

In order to reduce the computing time for the Lasso in stage 1, we now fix the number

of knots to u + 1 = 5 (as in Tang et al., 2013a) rather than selecting it data-driven.

Then, the number of B-spline coefficients is mtot = 707 (when p = 100). We compare

again the two information criteria, for both the median (Tables 5.5 and 5.7) and

variability functions (Tables 5.6 and 5.8). The tables show that again the procedures,

generally, improve when the EBIC is used. When it comes to whether the number of

knots should be chosen in a data-driven way or not, we conclude from Tables 5.3 and

5.7 for the median and Tables 5.4 and 5.8 for the variability function, that fixing the

number of knots does not worsen the performance, in general. The gALassoPSIS and

NNGSIS are performing better when the number of knots is fixed at 5.
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Table 5.4. Setting 1. Performance for the variability function using EBIC for
p = 100 with data-driven choice of number of knots.

gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

Method S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Oracle % 0.0 14.2 0.0 13.0 0.0 64.2 0.0 24.2 0.0 95.2

Good % 17.6 14.6 20.4 13.2 66.2 64.4 97.8 91.4 98.6 95.4

+1 % 0.6 0.4 0.2 0.2 0.0 0.0 0.0 25.0 0.0 0.2

-1 % 82.4 85.4 79.6 86.8 33.8 35.6 2.2 8.6 1.4 4.6

Med.r 0(0,0) 0(0,0) 0(0,0) 0(0,0) 1(0,1) 1(0,1) 1(1,1) 1(1,1) 1(1,1) 1(1,1)

Med.z 0(0,0) 0(0,0) 0(0,0) 0(0,0) 10(0,16) 0(0,0) 11(11,11) 1(0,3) 11(11,11) 0(0,0)

Med.t

– 30.6 – 28.6 – 26.8 – 5.5 – 3.0

– (28.6, – (27.0, – (25.8, – (5.3, – (2.9,

– 32.4) – 30.5) – 28.4) – 5.9) – 3.1)

NOTE: S1: Stage 1; S2: Stage 2; the numbers in brackets are the first and third quartiles.

Table 5.5. Setting 1. Performance for the median function using SIC for p = 100
with u = 4.

Stage 1 Stage 2

Method Lasso SIS gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

Oracle % 0.0 0.0 91.8 92.0 64.4 31.0 77.0

Good % 100.0 95.6 100.0 100.0 100.0 95.6 96.0

+1 % 0.0 0.0 7.8 7.4 18.8 33.8 14.2

-1 % 0.0 4.4 0.0 0.0 0.0 4.4 4.0

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3)

Med.z 14 (11, 18) 9 (9, 9) 0 (0, 0) 0 (0, 0) 0 (0, 1) 1 (0, 2) 0 (0, 0)

Med.t

– – 5.1 6.1 5.2 4.8 4.1

– – (4.9, (5.7, (5.1, (4.6, (3.9,

– – 5.3) 6.4) 5.4) 5.6) 4.5)

NOTE: The numbers in brackets are the first and third quartiles.

Influence of the number of covariates

In the bottom part of Tables 5.7 and 5.8, the performance of the variable selection

procedures are presented for p = 200, using u = 4 and the EBIC for the second stage.
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Table 5.6. Setting 1. Performance for the variability function using SIC for p = 100
with u = 4.

gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

Method S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Oracle % 0.0 3.4 0.0 8.0 0.0 48.2 0.0 36.6 0.0 97.2

Good % 4.0 3.6 11.8 8.2 48.8 48.6 99.8 94.0 99.8 97.4

+1 % 0.0 0.2 0.0 0.2 0.0 0.2 0.0 23.8 0.0 0.2

-1 % 96.0 96.4 88.2 91.8 51.2 51.4 0.2 6.0 0.2 2.6

Med.r 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,1) 0(0,1) 1(1,1) 1(1,1) 1(1,1) 1(1,1)

Med.z 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,13) 0(0,0) 11(11,11) 1(0,2) 11(11,11) 0(0,0)

Med.t

– 4.6 – 4.5 – 4.5 – 4.6 – 3.7

– (4.4, – (4.3, – (4.2, – (4.4, – (3.6,

– 4.9) – 4.8) – 4.7) – 4.8) – 3.9)

NOTE: S1: Stage 1; S2: Stage 2; the numbers in brackets are the first and third quartiles.

The gALassoPLasso also here performs best when it comes to variable selection for the

median and bad for the variability function. We can conclude again that the NNGSIS

performs well for the median as well as the variability function. When increasing the

number of covariates to p = 400 (N ≈ 355 < mtot = 2807), the conclusion is similar

with slightly worse performance for all procedures (see Tables 5.9 and 5.10).

Conclusion

Under Setting 1, the criterion EBIC improves the performance of the procedures

compared to the SIC. The EBIC resulted in an improvement whether a fixed or

data-driven selected number of knots is used. Further, fixing the number of knots,

generally, does not worsen the performance of the procedures. Then, using u = 4 and

the EBIC, the procedures are compared when p = 100, 200, and 400. In all cases, the

NNGSIS has good performance for both the median and variability functions, while

using significantly less computing time. There is a slight reduction in the performance

for all procedures as p increases.

In the previous chapter, the gALassoB, gALassoP and NNG perform equivalently

well in terms of variable selection. In this chapter, after the Lasso first stage, the

gALassoP perform the best compared to the others for the median function. Where



5.4. SIMULATION STUDY 119

Table 5.7. Setting 1. Performance for the median function using EBIC with u = 4.

Stage 1 Stage 2

Method Lasso SIS gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

For p = 100

Oracle % 0.0 0.0 91.8 94.8 72.4 43.0 80.8

Good % 100.0 95.6 100.0 100.0 100.0 96.0 95.6

+1 % 0.0 0.0 7.8 4.8 15.2 29.6 11.4

-1 % 0.0 4.4 0.0 0.0 0.0 4.0 4.4

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3)

Med.z 14 (11, 18) 9 (9, 9) 0 (0, 0) 0 (0, 0) 0 (0, 0) 1 (0, 2) 0 (0, 0)

Med.t

– – 5.1 6.1 5.4 4.6 2.7

– – (4.9, (5.7, (5.2, (4.4, (2.6,

– – 5.3) 6.4) 5.6) 5.1) 2.8)

For p = 200

Oracle % 0.0 0.0 88.6 91.4 73.6 40.0 75.0

Good % 100.0 92.4 100.0 100.0 100.0 90.8 92.4

+1 % 0.0 0.0 10.8 8.0 8.8 27.0 13.6

-1 % 0.0 7.6 0.0 0.0 0.0 9.2 7.6

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3)

Med.z 25 (20, 31.25) 9 (9, 9) 0 (0, 0) 0 (0, 0) 0 (0, 1) 1 (0, 2) 0 (0, 0)

Med.t

– – 63.6 50.4 49.7 15.1 5.2

– – (59.1, (44.7, (46.3, (13.3, (5.1,

– – 67.9) 53.9) 53.2) 16.5) 5.3)

NOTE: The numbers in brackets are the first and third quartiles.

as after the SIS first stage, the NNG perform better than the gALassoP for both the

median and variability functions.

5.4.2 Setting 2: homoscedastic model

We investigate the performance of the proposed methods, when the covariates are

correlated. The data are generated from the following model (longitudinal version of
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Table 5.8. Setting 1. Performance for the variability function using EBIC with
u = 4.

gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

Method S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

For p = 100

Oracle % 0.0 3.4 0.0 7.6 0.0 51.4 0.0 41.4 0.0 96.2

Good % 4.0 3.6 13.4 7.8 52.0 51.6 99.6 91.8 99.8 96.4

+1 % 0.0 0.2 0.0 0.2 0.0 0.2 0.0 21.8 0.0 0.2

-1 % 96.0 96.4 86.6 92.2 48.0 48.4 0.4 8.2 0.2 3.6

Med.r 0(0,0) 0(0,0) 0(0,0) 0(0,0) 1(0,1) 1(0,1) 1(1,1) 1(1,1) 1(1,1) 1(1,1)

Med.z 0(0,0) 0(0,0) 0(0,0) 0(0,0) 7(0,13) 0(0,0) 11(11,11) 1(0,2) 11(11,11) 0(0,0)

Med.t

– 4.6 – 4.6 – 4.7 – 4.4 – 2.7

– (4.4, – (4.3, – (4.4, – (4.3, – (2.6,

– 4.9) – 4.9) – 4.9) – 4.6) – 2.7)

For p = 200

Oracle % 0.0 0.4 0.0 1.4 0.0 23.0 0.0 31.8 0.0 92.2

Good % 0.4 0.4 1.6 1.4 24.2 23.0 97.6 84.6 99.0 92.8

+1 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.2 0.0 0.6

-1 % 99.6 99.6 98.4 98.6 75.8 77.0 2.4 15.4 1.0 7.2

Med.r 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0) 1(1,1) 1(1,1) 1(1,1) 1(1,1)

Med.z 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,8) 0(0,0) 11(11,11) 1(0,2) 11(11,11) 0(0,0)

Med.t

– 63.7 – 46.9 – 45.2 – 13.4 – 5.2

– (59.3, – (40.1, – (40.1, – (12.8, – (5.1,

– 68.7) – 50.8) – 49.2) – 17.6) – 5.3)

NOTE: S1: Stage 1; S2: Stage 2; the numbers in brackets are the first and third quartiles.

Tang et al. (2013a)):

Yij = β0(tij) +
p

∑
k=1

βk(tij)X(k)i + εij .
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Table 5.9. Setting 1: Performance for the median function using EBIC for p = 400
with u = 4.

Stage 1 Stage 2

Method Lasso SIS gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

Oracle % 0.0 0.0 86.4 89.0 66.2 32.0 70.0

Good % 100.0 86.8 100.0 100.0 99.8 86.6 86.8

+1 % 0.0 0.0 13.2 10.0 6.0 32.6 12.6

-1 % 0.0 12.6 0.0 0.0 0.2 12.8 12.6

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3)

Med.z 44 (37, 51) 9 (9, 9) 0 (0, 0) 0 (0, 0) 0 (0, 2) 1 (0, 2) 0 (0, 0)

Med.t

– – 213.8 271.0 265.3 10.6 9.8

– – (201.7, (259.1, (252.2, (10.4, (9.6,

– – 233.7) 287.0) 283.1) 10.8) 9.9)

NOTE: The numbers in brackets are the first and third quartiles.

Table 5.10. Setting 1: Performance for the variability function using EBIC for
p = 400 with u = 4.

gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

Method S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Oracle % 0.0 0.0 0.0 0.0 0.0 7.4 0.0 28.6 0.0 89.2

Good % 0.0 0.0 0.0 0.0 9.4 7.6 97.0 83.6 96.6 89.6

+1 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.2 0.0 0.4

-1 % 100.0 100.0 100.0 100.0 90.6 92.4 3.0 16.4 3.4 10.4

Med.r 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0) 1(1,1) 1(1,1) 1(1,1) 1(1,1)

Med.z 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0) 11(11,11) 1(0,2) 11(11,11) 0(0,0)

Med.t

– 223.5 – 265.2 – 252.4 – 10.9 – 9.6

– (205.7, – (246.8, – (235.4, – (10.7, – (9.4,

– 239.6) – 281.2) – 271.0) – 11.1) – 9.8)

NOTE: S1: Stage 1; S2: Stage 2; the numbers in brackets are the first and third quartiles.

The coefficient functions are given by

β0(T ) = 15 + 20 sin(πT /2) β1(T ) = 2 − 3 cos(π(6T − 5)/3) β2(T ) = 6 − 6T

β3(T ) = 3 βk(T ) = 0 for k = 4, . . . , p.

The covariates (X(1)i , . . . ,X
(p)
i ) are generated from a multivariate normal N(0,Σ)-

distribution with Σjk = 0.5∣j−k∣ for j, k = 1, . . . , p. The error εij and the time variable

tij are generated as in Section 5.4.1. To ensure that the time variable is between zero
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and one, we standardize it as in Equation (3.9). We consider p = 100 and 400.

All results in this section are based on B-splines of degree 3 with u = 4 and the EBIC

in stage 2 is used to select the tuning parameters.

Table 5.11 shows that all the procedures are performing well for the median function,

except for the gALassoPSIS. We see under this setting that at stage 1 the grouped

Lasso has an oracle percentage of 52.4 and the median number of redundant variables

selected is zero. Even though the oracle percentage of SIS is zero as expected (because

of the n/ ln(n) cutoff point), the good percentage is 85.8. The NNGLasso performs

very well, even when p = 400. The NNGSIS is able to select the true model 83.2%

and 73.2% of times, respectively, for p = 100 and p = 400. Here also we see that the

NNGSIS outperforms in terms of computating time: the relative computing time (for

p = 400) compared to the gALassoPSIS, NNGLasso, gALassoPLasso and gALassoBLasso,

respectively, is 0.93, 0.05, 0.04, and 0.05.

The results of variable selection in the variability function are given in Table 5.12.

All the procedures perform very good, except for the gALassoPSIS. The true model is

selected by the NNGSIS 99.2% and 97% of times, respectively, for p = 100 and p = 400.

Conclusion

In Setting 2, we see that all the procedures have good performance for both the

median and variability functions, except for the gALassoPSIS. However, the NNGSIS

again outperforms in the computing time, especially when p = 400.

5.5 Data example: UK Employment data

In this section we illustrate the performance of the methods on the UK Employment

data. The data set contains company accounts from Datastream International which

provides accounts records of employment and remuneration (i.e. wage bill) for 140

United Kingdom quoted companies whose main activity is manufacturing from 1976

to 1984. The companies have unbalanced number of measurements ranging from

seven to nine. The data set is available in the plm R-package (Croissant and Millo,

2008) named EmplUK. More details on the data can be found in the data appendix of

Arellano and Bond (1991). The response variable Y (tij) is the logarithm of number of

employees in company i at time tij . The covariates are X(1)(tij) the average annual
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Table 5.11. Setting 2. Performance for the median function using EBIC with u = 4.

Stage 1 Stage 2

Method Lasso SIS gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

For p = 100

Oracle % 52.4 0.0 92.0 92.8 94.0 56.4 83.2

Good % 95.6 85.8 93.6 93.4 95.6 85.8 85.8

+1 % 29.4 0.0 1.6 0.6 1.6 18.4 2.4

-1 % 4.2 13.2 5.8 6.0 4.2 13.2 13.2

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3)

Med.z 0 (0, 1) 9 (9, 9) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 1) 0 (0, 0)

Med.t

– – 4.8 5.0 4.9 3.4 2.7

– – (4.7, (4.9, (4.8, (3.2, (2.7,

– – 5.0) 5.1) 5.0) 3.5) 2.8)

For p = 400

Oracle % 14.4 0.0 92.2 94.6 92.4 51.2 73.2

Good % 97.2 76.4 96.0 96.0 97.2 76.6 76.4

+1 % 26.0 0.0 3.2 1.2 4.4 18.4 3.0

-1 % 2.6 21.4 3.6 3.6 2.6 21.2 21.4

Med.r 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3) 3 (3, 3)

Med.z 2 (1, 3) 9 (9, 9) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 2) 0 (0, 0)

Med.t

– – 192.8 241.5 193.3 10.8 10.0

– – (185.7, (231.7, (185.0, (10.6, (9.8,

– – 202.1) 252.7) 202.8) 11.0) 10.2)

NOTE: The numbers in brackets are the first and third quartiles.

wage per employee in the company, X(2)(tij) the capital defined as the book value

of gross fixed assets, and X(3)(tij) an index of value-added output at constant cost.

This data set has also been used by Andriyana and Gijbels (2017). In addition to the

three original covariates, p − 3 artificial variables are added. The artificial variables

are independent of the original covariates and have the same distribution as Zij in

Section 5.4.1.



124 CHAPTER 5. A TWO-STAGE SCREENING AND VARIABLE SELECTION METHOD

Table 5.12. Setting 2. Performance for the variability function using EBIC with
u = 4.

gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

Method S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

For p = 100

Oracle % 98.0 100.0 98.8 100.0 97.8 99.8 0.0 68.2 0.0 99.2

+1 % 1.8 0.0 1.0 0.0 2.0 0.2 0.0 19.4 0.0 0.8

Med.z 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0) 12(12,12) 0(0,1) 12(12,12) 0(0,0)

Med.t

– 4.7 – 4.4 – 4.4 – 3.5 – 2.8

– (4.4, – (4.2, – (4.2, – (3.4, – (2.7,

– 5.0) – 4.7) – 4.6) – 3.6) – 2.9)

For p = 400

Oracle % 97.8 100.0 99.6 100.0 94.2 100.0 0.0 53.4 0.0 97.0

+1 % 1.6 0.0 0.0 0.0 4.2 0.0 0.0 25.0 0.0 1.8

Med.z 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0) 0(0,0) 12(12,12) 0(0,1) 12(12,12) 0(0,0)

Med.t

– 210.2 – 255.1 – 189.8 – 11.0 – 9.9

– (194.4, – (237.7, – (172.5, – (10.8, – (9.7,

– 224.2) – 272.5) – 207.6) – 11.3) – 10.2)

NOTE: S1: Stage 1; S2: Stage 2; the numbers in brackets are the first and third quartiles.

Five different values for the number of covariates are considered: p = 50,100,200,400,

and 1000. The covariates are standardized as in Section 3.2.1, so that they have

equivalent scale. To analyze the data set, B-splines of degree three with five quasi-

uniform knots are used (as in Section 5.4).

Table 5.13 shows the number of artificial variables included in the model. For all

values of p, all the methods perform well. Even when the number of covariates is

1000 (mtot = 8000 parameters to be estimated), the faster NNGSIS selects only 2 and

3 artificial variables, respectively, for the median and the variability functions. Using

the NNGSIS, X
(2)
ij is kept in the model for the median. Where as for the variability

function, none of the original variables are retained.
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Table 5.13. UK Employment data. Number of artificial variables selected in the
model.

p gALassoBLasso gALassoPLasso NNGLasso gALassoPSIS NNGSIS

For Median

50 0 0 0 0 0

100 0 0 0 1 1

200 0 0 0 0 1

400 0 0 0 0 4

1000 0 0 0 16 2

For Variability function

50 0 0 0 2 3

100 0 0 0 1 0

200 0 0 0 1 2

400 0 0 0 5 1

1000 0 0 0 9 3

5.6 Conclusion

For both theoretical and computational purpose, Tang et al. (2013a) propose a two-

stage approach for cross sectional data when the number of coefficients to be estimated

(mtot) is much bigger than n. They use the grouped Lasso for the first stage and the

grouped Adaptive Lasso for the second stage. In this chapter, we propose another two-

stage approach (NNGSIS) when we have longitudinal observations (when the number

of coefficients to be estimated is much bigger than the number of observations N). In

the first stage, we consider the Sure Independence Screening to reduce the size of a

model from ultrahigh-dimensional to a model which has size close to the true model.

In the second stage, we apply the NonNegative Garrote (proposed in Chapter 4) to the

reduced model, to have a method which is consistent in variable selection. We further

adapt the approach of Tang et al. (2013a) in the second stage where we penalize the

B-splines (gALassoPLasso). Two other variable selection techniques (gALassoPSIS and
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NNGLasso) are also investigated.

From the simulation study, we observe that if we are interested in only the median

function, the gALassoPLasso performs best. However, if one is interested in the other

quantiles (and therefore the variability function) in addition to the median, then the

NNGSIS performs very good in terms of selection in both the median and variabil-

ity functions. The NNGSIS further outperforms all the considered methods in the

computing time. In general, NNGSIS is recommended to do variable selection and

estimation in an ultrahigh-dimensional setting.

In addition, we compare two types of information criteria for tuning parameter selec-

tion in the second stage. The procedures perform well when the EBIC is used. The

number of knots can be fixed, since the procedures did not show worse performance

when the number of knots is fixed in the simulation study. The gALassoPSIS is per-

forming better (moderate performance for both the median and variability functions)

when the number of knots is fixed at 5.

In the homoscedastic model with correlated covariates, all the methods perform bet-

ter, especially the NNGLasso. This is due to the fact that the number of irrelevant

variables included in the model by the grouped Lasso (in the first stage) is small.

The proposed procedures are illustrated on a data example. Although the NNGSIS

has good performance in the simulation study, it is of interest to show its consistency.



Chapter 6
Discussion and further research

This dissertation considers varying coefficient models in a quantile regression setting

while allowing for heteroscedasticity. In addition of being able to investigate the

entire distribution of the response, quantile regression is robust to a heavy-tailed dis-

tributions. Here, we focus on longitudinal data. For such data, it is more realistic to

consider the coefficients (in the varying coefficient model) of each covariate to vary

with ‘time’. Several smoothing techniques have been considered in the literature to

estimate the varying coefficients. As in Andriyana et al. (2014), the P-splines smooth-

ing technique is used in this thesis. This technique has a computational advantage

and eases the interpretation of the estimates by avoiding wiggliness of the B-splines.

In practice, not all data have a homoscedastic nature, as has been seen in CD4,

Grunfeld, KTB and Intego data. To avoid this strong assumption, we allow for het-

eroscedasticity throughout the thesis. In order to avoid the crossing of the estimated

quantile regression curves (when several quantiles are of interest) and to estimate the

variability function, we adapt the approach of He (1997) to the context of the vary-

ing coefficient models. A Likelihood-Ratio-Type (LRT) test is developed in Chapter

2, to identify the structure of the heteroscedasticity (the variability function or the

variance of errors). The identification of the variability function is important, as the

estimation of the quantiles other than the median depend on the specific variability

function. For the CD4 data, a simple heteroscedastic variability structure (that only

depends on time) is recommended based on the LRT test.

The Wages data in Section 3.3 is found to have constant functional coefficients for both

the median and variability functions. Considering a varying coefficient model for such

127
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data will only complicate the interpretation and might be too complex. Hence, based

on the varying coefficient model (with a very flexible variability function referred

to as V4, the full model) introduced in Chapter 2, testing procedures that check

the constancy of the functional coefficients are developed in Chapter 3. Further, a

testing procedure that checks for monotonicity or convexity of a functional coefficient

is proposed. We also propose a testing procedure that can simultaneously check the

shape of the functional coefficients in both the signal and variability functions.

The Intego data in Section 4.3.3 has several covariates. It is difficult to interpret the

association of the blood pressure values with the eGFR (the measure of the kidney

function of the patients) considering all the covariates. Hence, in Chapter 4, two

variable selection techniques (the grouped Adaptive Lasso using P-splines (gALassoP)

and the NonNegative Garrote (NNG)) are proposed.

The number of covariates p is assumed to be finite in Chapter 4 and allowed to

grow slower than the sample size. However, due to an advancement in technology to

identify and store a huge amount of information, there is a high demand in applications

for ultahigh-dimensional models (when the number of coefficients to be estimated is

much bigger than the number of observations). In Chapter 5, a two-stage approach

(NNGSIS) is proposed. This approach is illustrated on the UK Employement data,

where in addition to the three original covariates several hundreds of artificial ones

are generated and added to the data.

In Chapter 2, we consider an exponential varying coefficient type of variability func-

tion to be the full model. Alternatively, one could also consider a single-index type

of modeling (e.g. Wu et al., 2010; Lian et al., 2015) where the variability function is

V (X(T ), T ) = g(XT(T )θ(T )), with an unknown link function g(⋅) ≥ 0. To estimate

the variability function we would then need to go through two steps: in the first step

the single index XT(T )θ(T ) would be estimated with g assumed to be approxima-

tively linear, and in the second step the unknown link function is estimated. This

type of variability function can be considered when one wants to be sure in identifying

the correct heteroscedastic model for the data at hand.

Another type of hypothesis testing (for the shape of the functional coefficients) to

consider in the context of the varying coefficient models is the change point detection

or piecewise testing. Such hypothesis is important for the functional coefficient β1(T )
in the Intego data, which is varying in the interval around year 2010 and everywhere

else it is constant up to a shift (Figure 4.8 (a)). In mean regression, Lebarbier (2005)

and Kolar et al. (2009), among others, propose how to estimate the jump locations of
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a piecewise constant function. Several authors have been focusing on linear quantile

regression models, for instance, Zhang et al. (2014) and Lee et al. (2017). Using

a score-type statistic, Zhang et al. (2014) propose a testing procedure to check for

the existence of a threshold effect (piecewise constant). Lee et al. (2017) develop

L1-penalized estimators of both the sparse regression coefficients and the parameter

for the change point, in an ultrahigh-dimensional setting. It would be interesting to

study such hypothesis in quantile varying coefficient models.

In this dissertation, we focus on a longitudinal data setting. Quantile regression has

recently emerged as a useful alternative tool to the classical Cox model for analyzing

censored data (Ying et al., 1995; McKeague et al., 2001; Portnoy, 2003; Wang and

Wang, 2009; De Backer et al., 2018, to name a few). Since quantile regression can

be used to directly model the survival time (e.g. time to cure from a disease), it

relaxes the proportional hazards assumption of the Cox model, and it is easy to

interpret. When the survival time is more prone to random right censoring (e.g.

the patients leave the study before being cured), it is more appropriate to consider

the lower quantiles than the mean of the survival time. He et al. (2013) consider

feature screening for an ultrahigh-dimensional varying coefficient model for a response

which is subject to random right censoring. They investigate the diffuse large-B-cell

lymphoma microarray data that contains the survival times and the gene expression

measurements of 7399 genes for 240 patients, where nearly half of the survival time

data are censored. It would be interesting to adapt the approach of He et al. (2013)

to flexible screening with the P-splines technique. Further, considering the NNG and

NNGSIS, respectively, in Chapters 4 and 5, for this type of data would be of interest.

Checking the structure of the variability function (to see if only investigating the

median survival time suffices or not) as well as testing for the shape of the functional

coefficients is also nice to consider.

It is interesting to consider quantile regression to investigate spatial data, which arise

in various research areas including econometrics, epidemiology, environmental sci-

ence and image analysis. For instance when investigating the ground level ozone

concentration, which often shows high degrees of heterogeneity across different re-

gions, studying several quantiles might be more appropriate than investigating only

the mean. Further, adding spatial smoothing to this, captures the spatial trend (e.g.

of the ozone concentration) and provides a way to extrapolate our estimators to the

location at which observations are not available. Assuming that the quantile func-

tion is linear in time and smooth over the space, Reich (2012) and Das and Ghosal

(2017) study spatio-temporal quantile varying coefficient models using Bayesian anal-
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ysis. For mean regression, assuming that the observations are randomly distributed

over two-dimensional domains in space, Mu et al. (2018) consider bivariate splines

over triangulations to represent the coefficient functions in spatially varying coeffi-

cient models. The authors also propose a penalized approach to balance the goodness

of fit and smoothing. They also construct a nonstationary bootstrap test to check

whether some of the functional coefficients vary over the space or not. Extending the

results of Mu et al. (2018) to quantile regression, might therefore be very useful when

investigating spatial data.

Last but not least, implementing our proposed methodologies to another type of

flexible models like additive models, where the functional coefficients are allowed to

vary with some different variables, might be an interesting topic to consider. One

example is the Prostate Cancer Data considered in Antoniadis et al. (2012a), where

the interest is in studying the correlation between the level of prostate-specific antigen

and a number of clinical measures. For such data, we might be interested to investigate

if each clinical measure has a functional relation with the prostate-specific antigen.

Antoniadis et al. (2012a) have shown, using mean regression, that some of the clinical

measures, like the cancer volume and the prostate weight, have varying association

with the prostate-specific antigen.
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Appendix A
R-code used to analyze the data examples

#######################################################

### The data example in Section 2.4.1 ###

#######################################################

library(QRegVCM)

data(CD4)

subj = CD4$subj ## subject indicator (a man)

dim = length(subj) ## number of rows in the data = 1817

y = CD4$CD4 ## the CD4 percentage

X0 = rep(1,dim) ## the intercept

X1 = CD4$Smooking ## the smoking status

X2 = CD4$Age ## age at HIV infection

X3 = CD4$PreCD4 ## the pre-infection CD4 percentage

times = CD4$Time ## the time in years

X = cbind(X0, X1, X2, X3) ## the covariate matrix

px=ncol(X)

lambdas = 10^seq(-2, 1, 0.1)

kn = rep(10,px) ## The number of knot intervals for each covariate.

degree = rep(3,px) ## the degree of splines

d = rep(1,px) ## the differencing order in the penalty term

## for each covariate
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gam=0.25 ## the power used in estimating the smoothing parameter

## for each covariate (the \eta_P)

nr.bootstrap.samples=200 ## number of bootstrap samples

seed=110 ## the seed for the random generator in the bootstrap

## resampling

taus = seq(0.1,0.9,0.2) ## the quantiles of interest

test2=test_variability(times=times, subj=subj, X=X, y=y, d=d,

kn=kn, degree=degree, lambda=lambdas, gam=gam,

nr.bootstrap.samples=nr.bootstrap.samples,seed,

tau=taus,test="Y",model=4)

### test results

test2$comp ## the comparisons made

test2$P ## p-values

test2$GR ## test statistics

View(test2$Gb) ## bootstrap test statistics

### estimation results

## The variability models

qhat5_s2_m4=test2$qhat5_s2_m4 # Model 4

qhat5_s2_m5=test2$qhat5_s2_m5 # Model 5

qhat5_s2_m0=test2$qhat5_s2_m0*rep(1,dim) # Model 0

## The estimated coefficients for Model 4

gamma0=test2$hat_btV_4[1:dim]

gamma1=test2$hat_btV_4[(dim+1):(dim*2)]

gamma2=test2$hat_btV_4[(dim*2+1):(dim*3)]

gamma3=test2$hat_btV_4[(dim*3+1):(dim*4)]

#######################################################

### The data example in Section 3.3 ###

#######################################################

library(QRegVCM)

data(wages)

y = wages$resp ## the hourly wage

times = wages$exper ## the duration of work experience in years
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subj = wages$id ## subject indicator (individual)

dim=length(y) ## number of rows in the data = 6402

x0 = rep(1,dim) ## for intercept

### the covariates

x1 = wages$r1 # the dummy variable for black individuals

x2 = wages$r2 # the dummy variable for hispanic individuals

x3 = wages$hgc ## the highest grade completed by the indiviadual

X = cbind(x0, x1, x2, x3) ## the covariate matrix

px=ncol(X)

##########################

### Input parameters ####

#########################

lambda = 10^seq(-2, 1, 0.1) # the smoothing parameter

kn = rep(5,px) # The number of knot intervals for each covariate.

degree = rep(2,px) # the degree of splines

d = rep(1,px)

gam=0.25

nr.bootstrap.samples=200

seed=110

########################################

## Testing for the constancy of \beta_0

test1=simul_shapetest(times=times, subj=subj, X=X, y=y, d=d, kn=kn,

degree=degree, lambda=lambda, gam=gam, v=1,

nr.bootstrap.samples=nr.bootstrap.samples,seed=seed,

test=c("c",NA),omega=10^3)

#### Testing results

test1$result #the testing procedures

test1$P ## p-values

test1$R ## test statistics

#######################################################

### The data example in Section 4.3.1 ###

#######################################################

# First run the functions in the R-code available at

# https://ibiostat.be/online-resources/longitudinal
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library(splines)

library(SparseM)

library(quantreg)

library(mvtnorm)

library(AER)

data(Grunfeld)

subj = Grunfeld$firm ## The firm indicator

dim = length(subj)

Y = Grunfeld$invest ## gross investment

x0 = rep(1,dim)

x1 = Grunfeld$value ## the market value of the firm

x2 = Grunfeld$capital ## the capital of the firm

times = Grunfeld$year ## the time in year

X = cbind(x0, x1, x2)

tolerance=1e-06; degree=3;

kn=4 # The number of internal knot for each covariate.

lambdasp = c(0.01,10^seq(-1, 2, 0.3))

lambdas = (1:23)*0.01 # regularization parameter

test1=variable_selection(times, subj, X, Y, d=1, kn, degree,

lambda=lambdas, lambdap=lambdasp, eta_p=1, eta_l=2,

tolerance=1e-06,variability="Y", technique="galassoP")

test1$result # The indicator of which covariates are selected

# for the median.

test1$resultV # The indicator of which covariates are selected

# for the variability.

#######################################################

### The data example in Section 5.5 ###

#######################################################

# First run the functions in the R-code available at

# https://ibiostat.be/online-resources/longitudinal

library(splines)

library(SparseM)
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library(quantreg)

library(mvtnorm)

library(plm)

data(EmplUK)

subj = EmplUK$firm ## the firm indicator

times = EmplUK$year ## the time in year

dim = length(subj)

Y = log(EmplUK$emp) ## logarith of number employees

x0 = rep(1,dim)

x1 = EmplUK$wage ## average annual wage per employee

x2 = EmplUK$capital ## the caital of the company

x3 = EmplUK$output ## an index of value-added output

#### p-3=47 redundant covariates

nt=9

sigma = matrix(1, nrow=nt, ncol=nt)

for(i in 1:nt)

{

for(j in 1:nt)

{

sigma[i,j] = 4*exp(-abs(i-j))

}

}

ip=47

xr = NULL

N = rep(0,length(unique(subj)))

for(i in 1:length(unique(subj))){

N[i] = length(subj[which(subj==unique(subj)[i])])

xr = rbind(xr,t(rmvnorm(ip, mean=rep(0,N[i]),

sigma=sigma[1:N[i],1:N[i]])))

}

X = cbind(x0, x1, x2, x3,xr)

tolerance=1e-06; degree=3;

kn=3 # The number of internal knot for each covariate.

lambdasp = c(0.01,10^seq(0, 1.8, 0.6))
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lambdas = (seq(1,30,by=3))*0.01 # regularization parameter

test1=variable_selection(times, subj, X, Y, d=1, kn, degree,

lambda=lambdas,lambdap=lambdasp, eta_p=1, eta_l=2, tolerance=1e-06,

variability="Y",technique="galassoB_lasso")

sum(test1$result[-(1:4),2]) ## number irrelevant variables in median

sum(test1$resultV[-(1:4),2]) ## number irrelevant variables in

# variability


