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Abstract: 
People’s behavior is governed by extremely complex, multidimensional processes. This fact is 
well-established in the transportation research community, which has been working on travel 
behavior (travel demand) models for many years. The number of degrees of freedom in a 
person’s activity schedule is enormous. However, the frequency of occurrence of day-long 
activity schedules obeys a remarkably simple, scale-free distribution. This particular 
distribution has been observed in many natural and social processes and is commonly 
referred to as Zipf’s law, a power law distribution.  

This research provides evidence that activity schedules from various study areas 
exhibit a universal power law distribution. To this end, an elaborate analysis using 13 
household travel surveys from diverse study areas discusses the effect of proportional outlier 
removal on the power law’s exponent value. Statistical evidence is provided for the 
hypothesis that activity schedules in all these datasets exhibit a power law distribution with a 
common exponent value. 

The study proposes that a Zipf power law could be used as an additional dimension 
within a travel demand model’s validation process. Contrary to other validation methods, no 
new data is required. The observation of a Zipf power law distribution in the generated 
schedules appears to be a necessary condition. Additionally, the universal activity schedule 
distribution might enable the full integration of activity schedules in models based on 
universal mobility patterns. 
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1. Introduction 
People’s behavior is governed by extremely complex, multidimensional processes, 
characterized by many degrees of freedom. Behavioral research makes it possible to model 
the participation in activities in e.g. so-called activity-based models, which can be used to 
model personal transportation as a derived demand. Such research has revealed that modeling 
the four basic dimensions of activities (activity type, duration, location and sequence (order)) 
are subject to many types of constraints and optimization problems. Additionally, it has 
become clear that any reliable behavioral model actually requires the understanding of 
activity decisions considering the whole household. This makes understanding and modeling 
people’s activities (i.e. the schedules of people during the day) a daunting task. (Arentze et al. 
2000; Doherty and Axhausen 1999) 

Yet despite the apparent complexity of activity schedules, this paper will demonstrate 
that the frequency of occurrence of day-long activity schedules obeys a remarkably simple, 
scale-free distribution. This is a noteworthy finding given the apparent countless number of 
constraints and optimization requirements for people’s activities. By analysing several 
datasets from different study areas, evidence is provided that it is a universal distribution, i.e. 
it is valid for activity schedule frequencies in many, if not all, study areas. The discovery of 
this new universal law provides further insight in mobility behavioral patterns. Other 
universal laws within this domain (in the form of power law-like distributions) have been 
evidenced in i.a. displacement distance, activity duration, gyration radius and location 
visiting frequency (González et al. 2008; Noulas et al. 2012; Riccardo et al. 2012; Zheng et 
al. 2016), as well as in location visiting duration (Brockmann et al. 2006). Power laws were 
found in transportation networks as well Yang et al. (Jiang 2009; Paleari et al. 2010; Saberi et 
al. 2017; Wang et al. 2015; Yang et al. 2014). Another well-known universal law is the 
BreVer law stating a universal daily travel time budget on an aggregated level (Hupkes 
1982). 

Observed universal laws are also being used in modeling applications. For example, 
Simini et al. (2012) proposed the universal radiation model which predicts mobility and 
migration patterns. Jiang et al. (2016) presented a framework to simulate spatiotemporal 
patterns of human mobility (TimeGeo) based on universal mobility pattern distributions. 
Pappalardo and Simini (2017) developed a conceptually very similar framework (DITRAS), 
yet in a more data-driven fashion being completely parameter-free. 

The validation of microscopic simulation models, i.e. the verification that a model 
sufficiently replicates reality, is not straightforward (Toledo and Koutsopoulos 2004). Almost 
all current validation strategies seem to involve the collection of new (unseen) data to 
compare with the model’s output, whether it be a visual or statistical validation (Boyce and 
Bar-Gera 2003; Park, B.; Schneeberger 2003; Toledo and Koutsopoulos 2004). However, the 
universal distribution revealed in the current paper could be used as an additional dimension, 
a necessary condition, within a travel demand model’s validation process. Contrary to other 
validation methods, such additional validation instrument would not require any new data. 

In conclusion, the motivation for this work is threefold: (i) investigating universal 
laws advances the understanding of mobility behavior. The demonstrated universal 
distribution for daily activity schedules (a very complex subject) is highly remarkable. 
Additionally, (ii) universal mobility patterns are being used in modeling travel demand or 
other mobility-related models as they facilitate nearly parameter-free, lightweight models. 
The revealed universal law may facilitate the inclusion of detailed activity patterns in these 
models. Finally, (iii) it is suggested that a Zipf power law could be used as an additional 
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dimension within a travel demand model’s validation process as a necessary condition, not 
requiring any additional validation data. 

The remainder of the paper is structured as follows: after the Introduction section the 
Literature review section discusses Zipf’s law and revises related work in more detail. Next, 
the Methodology section describes the data used in this study, as well as the methods used to 
estimate the power laws and to conduct the statistical analyses. The Results section illustrates 
the outcomes of applying this methodology to the 13 datasets in this research. This section is 
followed by a Discussion section on potential applications, a hypothetical generation 
mechanism and outlier data. The Conclusion section finalizes the paper.  

2. Literature review 
2.1. Zipf’s law 

This particular distribution, now also observed in day-long activity schedules, has intrigued 
researchers from various domains and is commonly referred to as Zipf's law. It obeys a power 
law distribution and has been observed in many natural and social processes. It was first 
observed by Felix Auerbach in (1913) (Auerbach, cited in Zipf (1949) and Newman (2005)). 
He discovered that city size is governed by such a power law. Willis (1922), cited in Chen 
(1980), noted in 1922 that the size distribution of biological genera follows a power law 
distribution. Zipf, an American linguist, described a power law distribution in word 
frequency in 1949 (although it had first been noticed by Estroup in 1916 (Estroup, cited in 
KiBaek et al. (2011)). Zipf famously investigated this distribution in more detail, revealing 
that the same power law distribution holds for a large number of events in different domains, 
ranging from sizes of earthquakes, annual income of companies, solar flares, to the number of 
citations received on papers, social media check-in data (Fujiwara 2004; Furusawa and 
Kaneko 2003; Ma et al. 2017; Maillart et al. 2008; Newman 2005; Okuyama et al. 1999). 
More examples are listed in e.g. Clauset (2009) and Newman (2005). 

The rank-size interpretation of Zipf's law is most common. For example: within the 
context of city sizes, the size of a city at rank 𝑟𝑟𝑖𝑖 scales with a factor 1/𝑟𝑟𝑖𝑖 relative to the size of 
the largest city. The second largest city is for example half the first city's size, the third 
largest one-third its size etc.: 

 𝑓𝑓(𝑟𝑟𝑖𝑖) =
𝑓𝑓(𝑟𝑟1)
𝑟𝑟𝑖𝑖

 ( 1 ) 

where 𝑓𝑓 represents frequency and 𝑟𝑟 the rank. In other words, the size of a city is inversely 
proportional to its rank. The data obeys a power law distribution with exponent close to 1.0. 

In its more formal form of a Pareto distribution, Zipf's law states that the probability 
for a city to have a size greater than 𝑆𝑆 decreases as 1/𝑆𝑆:  

 𝑃𝑃(𝑠𝑠 > 𝑆𝑆) = 𝑎𝑎𝑆𝑆−𝜍𝜍 ( 2 ) 
where 𝑠𝑠 is the size of a particular city, 𝜍𝜍 denotes the exponent (~1 for Zipf's law) and 𝑎𝑎 a 
scaling factor. This relation should be valid over a large range of sizes 𝑆𝑆. (Gabaix 1999) 

A power law distribution has characteristics of a heavy-tailed distribution, meaning 
that the tail of rare events has a higher frequency than in an exponential distribution (which is 
characterized by a stronger frequency decay). Another property is its scale invariance. The 
Pareto principle, or 80-20 rule, states that for many events in nature or society, approximately 
80% of the effects come from 20% of the causes. A similar behavior is present for a power 
law distributed quantity.  

Thus far no conclusive proof exists (to the authors' best knowledge) rejecting the 
existence of a natural power law mechanism, nor does a final consensus exist on why the 
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empirical Zipf's law seems to surface in a multitude of domains. Without going into detail, 
mechanisms leading to an observed power law distribution have been described by (Chen 
1980; Corominas-Murtra and Solé 2010; Gabaix 1999; Ioannides and Overman 2003; Jiang 
and Jia 2010; Ki Baek et al. 2011; Li 1992; Marsili and Zhang 1998; Newman 2005; Reed 
2001). 

The fact that the law is so ubiquitous and many of the power law observations share 
the same exponent desires a universal mechanism explaining the peculiar findings. Most 
researchers however agree that several mechanisms lead to the power law distributions in 
different domains. Newman (2005) presents an overview of several mechanisms leading to a 
power law distribution which were previously proposed in literature. 

Some work objects against the general applicability of such power laws. Ioannides 
and Overman (2003) built upon Gabaix (1999)'s work and investigated the validity of Zipf's 
law in case of non-constant city growth rates conditional on city size (i.e. as a time-varying 
geometric Brownian motion, also depending on city size). In a large-scale study by Soo 
(2005), city sizes in 73 countries from across the world were analyzed for conformity with 
Zipf's law. Two methods were utilized: OLS and the Hill estimator. Both methods reject 
Zipf's law in more cities than expected. Nitsch (2005) arrives at the same conclusion after a 
meta study including 515 estimates from 29 studies. He concludes that the power law 
exponent is statistically different from Zipf's value of 1.0, actually being closer to 1.1. Lü, 
Zhang and Zhou (2013) evidenced that not all language display a Zipf’s law rank-frequency 
relation. Non-Indo-European languages such as Chinese, Japanese and Korean have an 
exponential decay instead of a power law. 

2.2. Power laws within the domain of transportation 
References to Zipf's law within the domain of transportation sciences are thin, though there 
are many references to universal laws (in many cases with a power law distribution).  

For example, Guidotti et al. (2015) proposed a two-step clustering algorithm for 
personal locations detection (TOSCA). They created synthetic data to compare their algorithm 
to that of other researchers. In this dataset, the number of visits in every location was 
governed by a Zipf power law distribution. This property of human trajectories was described 
by González et al. (2008). Based on two large long-term trajectory datasets, they found that 
the probability of a user visiting a location of a certain rank 𝐿𝐿 follows 𝑃𝑃(𝐿𝐿)~1/𝐿𝐿, i.e. Zipf's 
law. They also revealed that the distribution of displacements (not trips) obeys a truncated 
power law of the form: 

 𝑃𝑃(Δ𝑟𝑟) = (Δ𝑟𝑟 + Δ𝑟𝑟0)−𝛽𝛽𝑒𝑒−Δ𝑟𝑟/𝜅𝜅 ( 3 ) 
where Δ𝑟𝑟 is the displacement, 𝛽𝛽 a power law exponent, and Δ𝑟𝑟0 and 𝜅𝜅 cutoff parameters. This 
behavior can be well-approximated by: 

 𝑃𝑃(Δ𝑟𝑟)~|Δ𝑟𝑟|−1−𝛼𝛼 ( 4 ) 
with 0 < 𝛼𝛼 ≤ 2. Random trajectories governed by this equation are also called Lévie flights 
(González et al. 2008; Klafter et al. 1996). Noulas et al. (2012) found universal laws in rank-
distance data from social network check-ins (based on the number of places between origin 
and destination). Their finding was inspired by the theory of intervening opportunities. 
Riccardo et al. (2012) discovered universal distributions while studying human mobility 
characteristics such as the trip length distribution, activity duration and the rank distribution 
of the visitation frequency. Preferential attachment is clearly observed. Also on the topic of 
trip lengths, Zheng et al. (2016) found that short (in the sense of duration) trips follow an 
exponential power law, and medium to long trips obey a truncated Pareto model. Trips were 
separated by travel purpose and the fitted distributions, as well as the breakpoints between the 
two regimes, were discussed. Their research, in contrast to the current research, only 
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considers trip duration distributions at the highest level of aggregation and it does not 
consider personal schedules. 

A truncated power law was observed in the distribution of the radius of gyration. 
Brockmann et al. (2006) additionally found that the time spent by an individual at a location, 
Δ𝑡𝑡, follows a fat-tailed, power law-like distribution 

 P(Δ𝑡𝑡)~|Δ𝑡𝑡|−1−𝛽𝛽 ( 5 ) 
with 0 < 𝛽𝛽 ≤ 1. Song et al. (2010) combined ( 4 ) and ( 5 ) with concepts of preferential 
return and exploration to obtain a microscopic model for individual human mobility. 

There is evidence for power law distributions in betweenness centrality and traffic 
flow in the road network (Jiang 2009). This relates to the concept of space syntax, which 
encompasses a set of theories to analyze space and its configuration while considering the 
implications on i.e. social interactions and pedestrian movement. The integration, i.e. a 
centrality measure expressing whether a node in the spatial network is integrated or 
segregated from the rest of the urban texture, follows a rank-size power law distribution 
similar to Zipf’s law. Other parameters in the space syntax domain also seem to obey a power 
law distribution (Makse et al. 1998; Shen and Karimi 2016; Volchenkov and Blanchard 
2008). In his research, M. Batty investigated fractal geometry and its relation to i.a. urban 
dynamics and scaling laws in cities (e.g. Batty 2008; Batty 2005). 

Also considering networks, Yang (2014) found power law distributions in their study 
of bus transport networks (BTNs) in China. They described an ESL network in which they 
observed a power law distributed edge length. The edge lengths in other network types (ESP 
and ESW) were found to have exponential and linear distributions. A power law distribution 
was also observed in airport networks: the distribution of degree (number of edges starting 
from a node or airport) has a Pareto double power law distribution (Paleari et al. 2010). Wang 
et al. (2015) applied a place rank algorithm to the Singapore public transport network. They 
found that place rank (inspired by the PageRank approach and representing the accessibility 
of an area) and travel time have a power-law relationship. Saberi et al. (2017) investigated 
origin-destination matrices of multiple cities as large-scale directed graphs. They found that 
these travel demand networks exhibit remarkably similar properties (displaying universal, 
scale-free power law distributions) despite differences in underlying topography and urban 
structure. 

Universal laws are also adopted in the travel demand modeling community. Simini et 
al. (2012) proposed the universal radiation model which predicts mobility and migration 
patterns. The model’s universality comes from the fact that it is parameter-free (it only 
depends on population density). Jiang et al. (2016) presented a framework to simulate 
spatiotemporal patterns of human mobility (TimeGeo). Call detailed records (CDR) are used 
to extract and calibrate universal mobility pattern distributions, which are then used to 
generate the duration of activities, the number of visited locations per day and the daily 
mobility networks for synthetic individuals. Few tunable parameters are required to generate 
individual mobility patterns. The framework does not account for different activity types 
other than `home’, `work’ and `other’. Similarly, Pappalardo and Simini (2017) developed a 
conceptually related framework to simulate spatiotemporal patterns of human mobility 
(DITRAS) by first generating mobility schedules and subsequently converting those into 
mobility trajectories. These two components operate in a very data-driven fashion and are 
parameter-free. The synthetic mobility trajectories are compared with universally observed 
aggregated mobility characteristics. Yet, also this model only considers time and duration of 
visits at various locations, without accounting for the activity type.  
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In addition to advancing the understanding of mobility behavior, and as discussed in 

the previous paragraph, several researchers investigate universal mobility patterns and 
attempt to use them in modeling travel demand or other mobility-related components. The 
current research illustrates an apparent universal property of activity schedules which was not 
observed before, which could also benefit models such as discussed above since these do not 
take into account detailed daily activity schedules. 

Comparable to the current research, some other studies also directly worked on 
generating activity schedules. Schneider et al. (2013) studied daily mobility patterns as they 
observed how many of the universal laws only capture long-term mobility behavior. They 
focused on temporal and spatial properties of day-long schedules, discarding i.a. activity type, 
travel time and activity duration characteristics. By contrast, the current research explicitly 
takes into account the activity type. Schneider et al. found how up to 90% of all schedules 
can be described in 17 distinct mobility patterns. This is consistent with findings from Ectors 
et. al. (2016b), who proposed a clustering method to determine activity skeleton schedules, 
though taking into account the activity type rather than trip destination.  

Another study by Li and Lee (2017) used context-free grammar techniques to generate 
sequences of activities (similar to the activity schedules in the current research). A grammar 
in this context is a set of rules for combining elements (words/activities) into sequences 
(sentences/schedules). They found considerable analogies between these schedules and 
natural languages. The proposed grammar was able to generate activity sequences with a very 
similar distribution as the source household travel survey (HTS), though admittedly only 
three distinct schedules already represented 80% of the HTS observations. This work did not 
reveal the universality in the distribution of these schedules. 

3. Methodology 
This paper provides statistical evidence that activity schedules exhibit a power law 
distribution with a common exponent value, i.e. that out-of-home activity schedules obey a 
universal power law distribution. In the methodology section, first the data from multiple 
study areas will be described. Secondly, the methodology for establishing the fact that a 
power law distribution governs a dataset is discussed. Thirdly, statistical tests combined with 
a proportional cutoff are discussed as an approach to thoroughly analyze the power law 
exponent estimate across different study areas. 

3.1. Data description 
In this research, an out-of-home activity schedule is constructed out of trip purpose 
information from HTSs. Trip purposes are concatenated into a sequence which represents a 
schedule of the main out-of-home activities. Location information is used as well in cases 
where trip purpose used a tour-definition rather than a trip-definition. An example of a tour-
definition in the trip purpose variable is the series of trip motives ‘commuting-commuting’ 
for an individual going to work and afterwards returning from work. In this research, such a 
series of trip motives is interpreted as ‘work-home’ by taking into account location 
information as well.  

Throughout this work, a trip is denoted as the movement from one location where an 
activity was performed to the next. A trip may consist out of several trip components, for 
instance because of mode changes. Trip components are not considered in this research. A 
tour is defined as a chain of trips, usually starting and ending at the home location.  

Because usually only the main trip purpose is recorded in a HTS, a known error 
occurs whenever multiple activities were performed at one location without an intermediate 
trip. The activity schedules used within this research represent chains of out-of-home 
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activities, depending on trip purposes. Additionally, the first activity of the day is assumed to 
be ‘home’ as this information is not consistently present in the HTS data. This is a known 
(small) error. 

Frequency tables can be generated from the activity schedules. They represent the 
observed distribution of activity schedules within a certain study area. Table 1 lists the top-10 
of most frequent schedules within the US HTS (USA NHTS 2009) dataset as an example. In 
total this dataset contains more than 83,000 distinct schedules based on 257,586 travel 
diaries. In case individual weights are available, these are taken into account. Individual 
weights correct any biasness which might be present in the travel survey’s sample (i.e. from 
surveying too many persons of a particular profile). Some of the weights not only correct the 
biasness, but also augment the records to year-long observations for all such individuals in 
the population. 

A considerable amount of different datasets was collected for the purpose of this 
research. This set includes 13 different HTSs from across the world. The dataset names, 
country of origin and the number of (valid) extracted single-day schedules are listed in Table 
2. Some datasets contain multiple years of observations. Careful testing (not described in this 
paper) revealed that activity schedule distributions for a particular study area do not 
significantly change in a period of a few years, and hence there was no need to separate them. 
However, activity schedule distributions from different study areas do exhibit (slightly) 
different activity schedules at each rank, although this research will demonstrate that their 
rank-frequency distributions are very similar. The selection of datasets to be used in this 
research was based on ease of access and cost. Apart from data freely available online and 
data available to the department, several institutions were contacted to obtain HTS microdata, 
also guided by the useful report by Ahern et al. (2013). 

 
Table 1: Top-10 most frequent activity schedules in USA NHTS 2009. A ‘home’ activity is abbreviated as ‘H’. 

Schedule Interpretation Frequency. [%] Rank 
1-11-1 H – Work - H 8.82 1 
1-21-1 H – Education - H 4.39 2 
1-41-1 H - Buying groceries/clothing/… - H 3.17 3 
1-53-1 H - Visiting friends/relatives - H 1.67 4 
1-51-1 H - Going to the gym/exercising/… - H 1.21 5 
1-22-1 H - Religious activity - H 1.16 6 
1-30-1 H - Medical/dental service - H 0.85 7 
1-82-1 H - Going out to eat - H 0.83 8 

1-41-41-1 H - Buying groceries/clothing/… - Buying 
groceries/clothing/… - H 0.78 9 

1-54-1 H - Going out (entertainment, going to a bar…) - H 0.63 10 
 

Table 2: HTS datasets used within this research. 

Dataset Country of origin Number of extracted schedules 
USA NHTS 2009 United States of America 257,586 
NLD OViN 2013 The Netherlands 34,710 
BEL OVG 3.0-4.5 Belgium (Flanders) 13,522 
SVN Ljubljana 2013 Slovenia 3,426 
GBR NTS 2009-2014 United Kingdom 551,234 
KOR Seoul HTS 2010 South Korea 219,269 
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DEU Mobidrive 1999 Germany 13,244 
CHE Thurgau 2003 Switzerland 8,522 
BEL Beldam 2010 Belgium 11,279 
IRL NTS 2009 Ireland 5,023 
FIN HLT 2010-2011 Finland 10,137 
SWE RVU 2011-2014 Sweden 31,457 
AUS VISTA 2007 & 2009 Australia 67,060 

3.2. Power law estimation methods 
The PDF of a power law distribution takes the form of Equation ( 6 ): 

 𝑝𝑝(𝑥𝑥) = 𝐶𝐶𝑥𝑥−𝛼𝛼 ( 6 ) 
where 𝐶𝐶 a constant and 𝛼𝛼 the exponent of the power law. When fitting a power law on non-
numeric data such as activity schedules in this research (similar to words in a text; see also 
Equation ( 1 )), one fits a power law on rank-ordered (frequency) distributions of the data. 
Consequently, one will estimate the parameters in 𝑓𝑓(𝑛𝑛) = 𝐶𝐶′𝑛𝑛−𝜏𝜏 where 𝑛𝑛 the (relative) 
frequency in the rank-ordered distribution and 𝜏𝜏 the so-called Zipf exponent. These two 
exponents, 𝛼𝛼 and 𝜏𝜏, are related by Equation ( 7 ) (Adamic and Huberman 2002; Hanel et al. 
2017): 

 𝛼𝛼 = 1 +
1
𝜏𝜏

 ( 7 ) 

The estimates in this paper are those based on Equation ( 6 ), that is the estimates tabulated 
are 𝛼𝛼�. Zipf's exponent 𝜏𝜏 = 1 yields an expected 𝛼𝛼 = 2.0 according to Equation ( 7 ) in order 
to confirm Zipf's law in activity schedules. 

In order to claim with relative certainty that the empirical Zipf's law can be observed 
in the domain of transportation behavior, a power law distribution should be fitted to the data. 
Often this fitting exercise is performed as a linear regression (least-squares) with logarithmic 
transformed variables, however this method is flawed as explained by (Clauset et al. 2009; 
Newman 2005; Urzúa 2011). The slope estimate may suffer from systematic, large errors. 
Clauset et al. (2009) proposed a method based on a maximum likelihood estimation (MLE) 
combined with the Kolmogorov-Smirnov (KS) goodness-of-fit statistic. The R package called 
"poweRlaw" (Gillespie 2015) was developed to automate this process. 

As the power law probability distribution 𝑝𝑝(𝑥𝑥) = 𝐶𝐶𝑥𝑥−𝛼𝛼 with 𝛼𝛼 ≥ 1 diverges for 
𝑥𝑥 → 0, resulting in an infinite area under the distribution, an additional parameter 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 needs 
to be specified. This parameter depicts the fact that few observed distributions follow a power 
law distribution across their entire range; most only have a power law in the (upper) tail. 
Observations with a value smaller than the cutoff parameter 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 will be excluded. The 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 
parameter may be optimized using the KS goodness-of-fit statistic. Under this optimization, 
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is selected such that the maximum distance between the observed distribution and the 
hypothesized power law reference distribution is minimized. 

A bootstrapping procedure allows to investigate uncertainty in the exponent estimate. 
It randomly selects data with replacement, and then executes a MLE step with KS cutoff on 
that sample. This is repeated a number of times to evaluate uncertainty (Gillespie 2015). In 
this paper, 2000 iterations were used on all datasets (in some cases even 5000 iterations). 

The PoweRlaw R package also conducts a (special) hypothesis test and reports the 
resulting p-value. The null hypothesis states that a power law distribution is a good fit, the 
alternative hypothesis states that another distribution might be better. Clauset (2009) 
recommends a 10% significance level in this test. 
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3.3. Statistical analyses 
To investigate the general applicability of Zipf’s law, one approach could be to use the 
bootstrap samples of two (or more) study areas to infer information about the true (i.e. 
population) exponent mean. A Welch t-test, which does not assume normality and does not 
assume equal, known variances, can be used to test whether the mean power law exponent 
values of different study areas are equal. Alternatively, the Wilcoxon rank sum test (unpaired 
test), a non-parametric, distribution-free rank-based test, may be used. It assumes that two 
distributions have the same shape and spread, but they don’t necessarily have to be normally 
distributed. It too can be used to test for equal means in the bootstrapping results for the 
power law exponent. Under a second approach, the hypothesis that the true power law 
exponent value of a study area is equal to the value expected under Zipf’s law (i.e. 2.0; see 
section 3.2) could be tested. 

The above tests are very sensitive to the sample size. In the bootstrapping procedure, 
this sample size can be chosen at will by changing the desired number of iterations, being 
only limited by computing power and available time. During experimentation with the above 
hypothesis tests it was found that sample sizes of less than ±200 will not reject the null 
hypotheses and sample sizes of over ±200 will lead to a rejection of the null hypothesis. 
Each bootstrap sample is entirely based on a single observed distribution, hence the 
bootstrapping procedure does not add information, as is the case in other examples where an 
increase sample size will lead to hypothesis test with greater confidence level. As a 
consequence, the use of the bootstrapping samples in the above tests might intrinsically be 
flawed and should be avoided, as one can manipulate the outcome by controlling the sample 
size. 

Additionally, as the KS cutoff approach is used in the bootstrapping uncertainty 
procedure, one implicitly also tests the performance of this cutoff criterion in the above tests. 
Clearly a different approach should be followed. 

Summarizing, another method which avoids the use of the KS criterion is needed. 
Still, some sort of 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 cutoff approach is necessary. For this, a proportional cutoff 
methodology was used. The value of 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 (in a particular dataset) is determined so that a 
certain percentage of outlier-like schedules is excluded. In other words, a certain cumulative 
percentage of the most rare schedules is excluded. If for example an exclusion fraction of 0.2 
(20%) is specified for the USA NHTS 2009 dataset (see Table 2), 51,517 of the most rare 
schedules will be excluded. Note that these are not 51,517 distinct schedules, but rather the 
bottom cumulative 20% in the frequency table. The proportional cutoff criterion was used as 
an alternative to the KS cutoff in the PoweRlaw R package. 

There is no rationale on what exact value the exclusion fraction should take. Instead, 
this value was varied and for each exclusion fraction the corresponding power law exponent 
value was estimated through MLE. Each estimate of a particular dataset can be considered as 
a single independent data point. Estimating the exponents of the 13 datasets yields a (small) 
sample for each given exclusion fraction, upon which statistical tests were performed. 
Student’s t-tests and weighted t-tests (using ‘wtd.t.test’ from the ‘weights’ R package) were 
conducted. The number of extracted schedules listed in Table 2 (a measure for the dataset’s 
size) serves as the weight variable. 

4. Results 
This section presents the results from the methodology discussed before. This research 
attempts to provide evidence that activity schedules exhibit a power law distribution with a 
common exponent value (i.e. a universal power law distribution). To this end, activity 
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schedules are constructed out of trip purpose information in HTS data. Fig. 1 shows the 
frequency distribution of the schedules from each data source on a log-log plot. One observes 
the remarkable consistency across the various study areas. A curiously uniform linear trend 
exhibits itself starting at the most frequent schedule (at rank 1) and continuing up to 
schedules with a frequency of several orders of magnitude lower. At this lower end of the 
frequency spectrum, the linear trend breaks down. The plot exhibits the characteristics of a 
power law distribution. Such distribution is easily recognized by its linear manifestation on a 
log-log plot (although this fact alone is inconclusive). As discussed in the methodology 
section, there often exists an 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 below which a power law distribution cannot be 
maintained. Such 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, or final schedule rank in this case, may visually be interpreted as the 
point where the linear trend in Fig. 1 breaks down. 

 
Fig. 1 Activity schedule frequency distribution for several HTS datasets as a function of schedule rank. For each survey 
area, the original activity type encoding was used. Multiple-day survey data was converted into single-day schedules. The 
horizontal axis shows schedule rank (ID within a descending frequency table) and the vertical axis the relative frequency as 
a percentage of the total number of schedules. 

4.1. MLE combined with KS estimation results 
Apart from the visual analysis in Fig. 1, the distributions may also be analyzed quantitatively. 
As explained in the methodology section, a MLE step combined with the KS cutoff criterion 
was used to most optimally fit a power law distribution to the observed activity schedule 
distribution of each dataset. The R package poweRlaw (Gillespie 2015) was used to this end. 
Table 3 summarizes the most relevant results for each of the 13 datasets. The first part of the 
table lists the MLE + KS cutoff results, while the second part lists the results from the 
bootstrapping uncertainty evaluation. 
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To confirm a Zipf power law distribution, an exponent value of 2.0 should be 

observed in this table. All but two of the 13 datasets in the first part of Table 3 yield an 
estimated exponent value of approximately 2.0, which is an extraordinary observation. The 
mean value of the exponent estimates is 2.153. 

 
Table 3: Estimation results for activity schedule distributions in several HTS datasets. α represents the estimated power law 
exponent value, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 the cutoff value, ‘Cum. Pct rejected’ the cumulative percentage of data rejected because of the cutoff 
value, KS the Kolmogorov-Smirnov distant measure, AM the arithmetic mean and SD the standard deviation. 

 poweRlaw estimations (MLE + KS) Bootstrapping 
uncertainty evaluation 

Dataset name 𝜶𝜶 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎  (c) Cum. Pct rejected KS AM(𝜶𝜶) SD(𝜶𝜶) P-value 
USA NHTS 2009 2.003 36,809,977 55% 0 2.006 0.070 0.255 
NLD OViN 2013 (a) 1.885 1325 20% 0.034 1.877 0.058 0.005 
BEL OVG 3.0-4.5 (a) 1.947 2 23% 0.031 1.953 0.051 0.149 
SVN Ljubljana 2013 (a) 1.995 9 31% 0.079 2.028 0.208 0.449 
GBR NTS 2009-2014 1.862 4.071 9% 0.023 1.869 0.117 0 (d) 
KOR Seoul HTS 2010 1.859 26 32% 0.031 1.869 0.048 0.156 
BEL Beldam 2010 2.067 869 7% 0.025 2.067 0.055 0.097 
IRL NTS 2009 (b) 1.842 1,520 20% 0.042 1.983 0.118 0.415 
DEU Mobidrive 1999 2.053 23 52% 0.054 2.002 0.133 0.714 
CHE Thurgau 2003 1.929 16 49% 0.074 2.009 0.113 0.317 
FIN HLT 2010-2011 (b) 1.965 1,175 30% 0.045 1.980 0.096 0.016 
SWE RVU 2011-2014 (b) 3.309 1,049,401 75% 0 2.096 0.172 0.401 
AUS VISTA 2007 & 2009 3.270 360,498 66% 0 2.477 0.838 0.783 

a Based on 5000 bootstrapping iterations instead of 2000 
b Trip purpose encoding made compatible (tour- to trip-definitions; see methodology) 
c The large differences in the magnitude of 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 are due to different kind of weights used 
d Could not be calculated reliably 

 
The first outlying observation is that belonging to the Swedish HTS (SWE RVU 

2011-2014) dataset. The estimated exponent value is much higher than initially expected. 
However, upon closer inspection, this most likely is caused by the KS cutoff criterion. 
Because of this criterion, 75% of the data was excluded in the MLE step and consequently 
the exponent estimate was based only on the 4 most frequent schedules (combined 
accounting for about 25% of the schedules). The KS distant measure is 0, indicating a 
(nearly) perfect fit to the observed 4 schedules. In this particular case the KS criterion is 
inappropriate, a fact confirmed by the bootstrapping uncertainty evaluation where a mean 
exponent value of 2.096 was calculated for this dataset based on 2000 iterations. A cutoff 
based on the KS criterion is sensitive to small irregularities in the distribution and will 
aggressively exclude more data in favor of minimizing the maximal difference between fitted 
and observed distribution. For example, irregularities such as small ‘bumps’ might cause the 
exclusion of all data after (and including) the ‘bump’. 

The same explanation holds for the second outlying observation, the Australian HTS 
(AUS VISTA 2007 & 2009). Also in this case the KS cutoff criterion was too stringent and a 
high exponent value of 3.27 was estimated. The bootstrapping algorithm yields a much lower 
mean exponent value of 2.477. This value is still somewhat higher than expected and is 
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accompanied by a relatively high standard deviation. This is due to a slight sinusoidal-shaped 
pattern in the high-frequency region of the distribution. 

One also observes how the KS cutoff criterion is responsible for removing 7% up to 
55% of the data (not including the two outlying observations), indicating that the KS criterion 
may be quite stringent in some cases where one would visually not expect it (see Fig. 1). The 
KS criterion is consequently quite good (well-optimized) and low values are tabulated. 

The bootstrapping procedure yields results which favor the claim a universal exponent 
value of approximately 2.0, as listed in Table 3. The mean of the AM(𝛼𝛼) values is 2.016, 
again extremely close to the expected value of 2.0. Fig. 2 shows the bootstrapping estimation 
results in a graphical manner. These results seem to cluster around the expected value of 2.0.  

Table 3 additionally lists the p-values resulting from a bootstrapping procedure. As 
detailed by Clauset (2009), a p-value greater than 0.10 would not reject the null hypothesis of 
a power law distribution being a good distribution to fit the data. Only 3 datasets would reject 
the null hypothesis. The Dutch HTS (NLD OViN 2013) has a p-value of 0.005 and the 
Finnish HTS (FIN HLT 2010-2011) has a p-value of 0.016. The UK HTS (GBR NTS 2009-
2014) yielded a p-value of 0, which is interpreted skeptically as this p-value (for an unknown 
reason) showed no evolution at all during the 2000 bootstrapping iterations. A possible cause 
for the result for the other two datasets could be that a power law distribution is only 
appropriate for the upper tail, and another distribution (lognormal distribution?) is more 
fitting for the rest of the data. A lognormal and power law distribution have very similar 
characteristics in the upper tail of such distributions. Yet, the large majority of the datasets 
does not reject the hypothesis that the power law distribution is an appropriate distribution to 
describe the data. 

On a side note, Table 3 lists the results of in total several weeks of computing time on 
two servers running 20 threads at 80% CPU usage. The first one is equipped with 2x Intel 
Xeon (X5670) CPUs, the second one with 2x Intel Xeon E5-2643 v2 CPUs. The 
bootstrapping procedure, and in particular the use of the KS cutoff optimization, is the main 
responsible for the significant computational effort. The required computing time increases 
strongly with increasing number of distinct schedules in a dataset. 
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Fig. 2 Kernel density plot of the bootstrapped power law exponent estimates. Visually, one observes a large cluster of 
exponents around the value of 2.0. 

4.2. MLE combined with a proportional cutoff 
As explained in the methodology section, the 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 cutoff value may be varied in function of 
a certain cumulative percentage of data to be excluded (instead of using the KS criterion). 
The power law exponent value can subsequently be estimated through MLE. For each value 
of 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 this results in a small sample of exponent values from the different datasets, which 
can be used to perform an hypothesis test for a true mean value of 2.0. In this approach, one 
considers each power law exponent estimate of a particular dataset as a single independent 
data point. 

Fig. 3 illustrates the estimated exponent values in function of the cumulative fraction 
of data that was excluded. It shows that for all datasets the exponent estimation stabilizes 
after removing approximately 20% of the outliers. It is a satisfying finding that there is a 
good correspondence regarding this cutoff point between the datasets of different study areas. 
Excluding outliers is necessary in power law fitting, as also widely recognized in literature 
and discussed before. In the poweRlaw R package, this cutoff point is determined using a KS 
criterion (the 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 parameter). 

Excluding to much of the data, i.e. more than 60%, makes the estimates unstable 
again, especially in case of small-sample size datasets. This is to be expected, as only few 
distinct schedules remain in this case. In the ‘stable area’ where between 20% and 
approximately 60% of the outliers is excluded, the exponent estimates visually seem to center 
around Zipf's value of 2.0.  
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Fig. 3 Power law exponent values for several HTS datasets in function of the exclusion fraction (of outliers). This overview 
plot shows a range in exclusion fraction between 0.0 (no data excluded) and 0.9 (90% of the schedule data excluded). 

As can be observed from the first part of Fig. 3, large datasets might already have a 
quite stable exponent estimate at lower exclusion levels than the 20% level, whilst smaller 
datasets might require a slightly larger exclusion level. One also clearly observes how some 
datasets display plateaus. This is due to the fact that no individual weight variable was 
available in these datasets, and that the schedule frequency distribution is also characterized 
by these plateaus of discrete frequencies. Datasets where individual weights were available 
are recognized by their smooth distributions. Possibly, even more consistent results would 
have been obtained if all datasets contained individual weights. Fig. 4 illustrates the schedule 
frequency distributions after removing 20% of the data. The fraction of data where the linear 
trend breaks down in Fig. 1 appears to have been excluded. 
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Fig. 4 Similar as in Fig. 1, this figure shows the activity schedule frequency distribution for several HTS datasets as a 
function of schedule rank. For each dataset, the 20% least occurring schedules have been removed as outliers. 

The goal of this paper is to demonstrate that Zipf's law governs the schedule 
frequency distribution, the latter thus exhibiting a power law distribution with exponent value 
2.0. For this reason, statistical tests were conducted. The methodology section describes the 
use of each power law exponent estimate of a particular dataset as a single independent data 
point in a (small) sample upon which statistical tests may be performed. 

For each exclusion level, a Student's t-test was performed based on 13 data points (the 
exponent estimates from all datasets). Fig. 5 (a) shows the p-values. A significance level of 
10% is indicated for convenience. Within this research, a 10% significance level is a more 
stringent test than the more common significance level of 5%, as it is easier to reject the null 
hypothesis of a universal exponent value of 2.0. It appears that, for most of the outlier 
exclusion levels in the ‘stable region’ (between 20% and approximately 55% of the data 
excluded), one cannot reject the null hypothesis that the mean is equal to 2.0, i.e. Zipf's value. 
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(a) 

 
(b) 

 
Fig. 5 P-values in function of the exclusion fraction (of outliers). The corresponding hypothesis test is: H0: The true mean 
power law exponent value of all study areas is 2.0. In (a) no weights were used, while in (b) a weighted t-test was used with 
as weights the number of schedules as in Table 2. A range in exclusion fraction between 0.0 (no data excluded) and 0.9 
(90% of schedules excluded) is shown. 
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Considering the hypothesis test above, one might recognize that some datasets are 

much larger than others. This fact was not accounted for. Therefore, in Fig. 5 (b) the p-values 
from weighted Student's t-tests are shown. Each exponent estimate is weighted according to 
the dataset’s size, i.e. according to the number of extracted schedules listed in Table 2. Using 
weighted t-tests, one no longer rejects (at 10% significance level) the null hypothesis for 
exclusion levels lower than 20%. One in general only rejects the null hypothesis for exclusion 
levels greater than approximately 55%. Comparing Fig. 5 (a) and (b) provides the insight that 
large datasets generally obey a power law distribution for a larger part of their data range than 
the smaller datasets. When taking into account dataset size, (almost) no data needs to be 
excluded in order to not reject the hypothesis of a universal exponent value of 2.0. 

Fig. 6 shows the (weighted) mean and (weighted) standard deviation values for the 
different exclusion levels upon which the Student’s t-test and its weighted variant were 
conducted. 

 
Fig. 6 Descriptive statistics for the power law exponent value of the sample of activity schedules of 13 HTSs, in function of 
the exclusion fraction (of outliers). For the weighted mean and standard deviation, the number of schedules as in Table 2 
was used as weight variable. 

5. Discussion 
5.1. Application 

This paper establishes that out-of-home activity schedules obey a power law distribution. 
This knowledge can be employed in applications such as for example model validation. The 
validation of microscopic simulation models, i.e. the verification that a model sufficiently 
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replicates reality, is not straightforward (Toledo and Koutsopoulos 2004). Almost all current 
validation strategies seem to involve the collection of new (unseen) data to compare with the 
model’s output, whether it be a visual or statistical validation (Boyce and Bar-Gera 2003; 
Park, B.; Schneeberger 2003; Toledo and Koutsopoulos 2004). In some cases a historical 
validation is possible, in which the model is trained and executed for historical cases and 
compared to census and HTS data (from that time) which are known in the current time 
period (Miller et al. 2012). 

However, the authors envision that a Zipf power law could be used as an additional 
dimension within a travel demand model’s validation process. Contrary to other validation 
methods, such additional validation instrument would not require any new data, thus not 
bringing any additional cost to the project or research. The observation of a Zipf power law 
distribution in the generated schedules appears to be a necessary condition: if it cannot be 
observed, one can confidently state something is wrong in the model. However, one has to 
remark that such an observation is not a sufficient condition to conclude a model’s validity, as 
a set of unrealistic schedules could still exhibit a Zipf power law distribution. 

As described in the Literature review section, observed universal laws are also being 
used in modeling applications. Modeling frameworks such as the radiation model by Simini 
et al. (2012), TimeGeo by Jiang et al. (2016) and DITRAS by Pappalardo and Simini (2017) 
typically don’t (fully) encompass activity schedules. The distribution from the current paper 
might enable such integrations in models based on universal mobility patterns. 

5.2. Generation mechanism 
At this point there is no conclusive explanation for the power law in the distribution of 
activity type schedules. As stated in the literature review section, many mechanisms leading 
to a power law distribution have been described in literature. The work by Newman (2005) 
presents an overview of the most often published mechanisms for generating power law 
distributions. One promising generation mechanism is based on the interaction of two 
exponential distributions. Activity schedules are i.a. characterized by (i) the number of 
activities performed during the day, and (ii) the probability of each activity type to occur. 
Looking at the available schedule data it becomes clear that schedules consisting of few out-
of-home activities (in other words ‘short’ schedules) occur at a higher frequency than more 
complex schedule consisting of several activities. Additionally, some activity types take place 
much more often than others (think for example of ‘work’ vs ‘medical visit’). 

The number of activities (or trips) is approximately exponentially distributed. In fact, 
one could think of it as a geometric distribution, where each additional performed activity 
reduces the probability on that schedule by a constant factor. The exponential distribution is a 
good approximation of the discrete geometric distribution. In tests on the USA NHTS 2009 
data, it was found that the exponential or geometric distributions offer a good fit for a large 
proportion of the data. A function of the form 𝐴𝐴𝑒𝑒(𝐵𝐵𝐵𝐵+𝐶𝐶𝑙𝑙2), where 𝑙𝑙 represents the number of 
activities and 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 constants, offers an excellent fit across the entire range. 

The probability of activity types is approximately exponentially distributed (on a 
rank-frequency plot) for the most frequent activity types. The entire range of activity types in 
USA NHTS 2009 is described by a truncated power law (a power law with an exponential 
cutoff) of the form 𝐴𝐴𝑒𝑒𝐵𝐵𝐵𝐵𝑟𝑟𝐶𝐶 where 𝑟𝑟 the rank of a particular activity type and 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 
constants. 

Schedules may be generated by simply sampling from the distribution for the number 
of activities in a schedule, and by sampling the distribution for the activity types in order to 
populate that schedule (using either the two simple exponential functions, or the two more 
complex functions). Though perhaps different from the mechanism in Newman (2005), 
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generating schedules by simply sampling from these distributions yields a power law for the 
activity schedule frequency. It resembles constructing a probability tree where each node 
represents a schedule and each link adds an activity to the previous schedule with a certain 
probability.  

A problem with this mechanism is the fact that it fails to reproduce the power law 
regime in the high frequency regime of the distribution, which is characterized by schedules 
with only one out-of-home activity (it is obvious that simple schedules occur at the highest 
frequency). The sampling mechanism will result in the approximate exponential distribution 
of the activity types for the upper range of the activity schedule frequency distribution (since 
the schedules here consists of only one out-of-home activity), after which it transforms into a 
power law distribution for the rest of the schedule data. 

This issue may for example be addressed by investigating the interdependence of both 
distributions in future research. This research focusses however on the remarkable 
observation, and the demonstration of the evidence for a universal law. A conclusive 
explanation may be formulated in future research. 

5.3. Outlier data 
One might wonder why outliers might be present in the activity schedule distributions. Under 
the above hypothesis, the data collection might be the cause. The ‘outlier’ regime can to a 
large degree be explained by HTS sample size in combination with the number of distinct 
activity types in the study. For example, the USA NHTS 2009 HTS has 37 distinct activity 
types. The sample size of 257,586 schedules (see Table 2) seems however insufficient to 
allow ample occurrences of all combinations with these activity types. Therefore, ultimately 
the tail will decay faster than in the power law regime, which is seen as outlier behavior. The 
GBR NTS 2009-2010 HTS has 23 distinct activity types and a sample size of 551,234 
schedules. As can be observed in Fig. 1, the power law regime visually extends almost across 
the entire range, without displaying outlier-like behavior. When investigating Fig. 3 into the 
detail, this is confirmed by the fact that the estimated power law exponent hardly changes 
across the range of excluding no data at all, to excluding approximately 55%. The personal 
weights may have a large influence on this part of the distribution as well. 

6. Conclusion 
People’s behavior is governed by extremely complex, multidimensional processes, 
characterized by many degrees of freedom. This paper demonstrated that the frequency of 
occurrence of day-long activity schedules obeys a remarkably simple, scale-free distribution 
which is commonly referred to as Zipf's law, a power law distribution which has intrigued 
researchers from various domains. By analyzing 13 datasets from different study areas from 
across the world, evidence is provided that it is a universal distribution, i.e. a common 
exponent value of approximately 2.0 defines the power law distribution in activity schedule 
frequencies of many, if not all, study areas.  

First, activity schedules were composed from trip purpose (and activity location) data 
from 13 household travel surveys. Subsequently, a power law distribution was fitted to this 
activity schedule data using a maximum likelihood estimation approach combined with a 
Kolmogorov-Smirnov cutoff (lower bound on the considered data) criterion using the 
poweRlaw R package (Gillespie 2015). For the thirteen datasets, a mean exponent value of 
2.153 was found, which is very close to the expected value of 2.0 under Zipf’s law. A 
bootstrapping procedure analyzed the uncertainty in the power law exponent estimates (a 
mean exponent value of 2.016 was found) and tested whether a power law distribution is an 
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appropriate distribution for the data (at least 10 out of 13 datasets did not reject this 
hypothesis). 

Next, recognizing the limitations of using the Kolmogorov-Smirnov criterion, a 
cumulative percentage of ‘outlier’ data to be excluded (the exclusion level) was used as an 
alternative cutoff criterion. The exclusion level was varied between 0.0 (no data excluded) 
and 0.9 (90% of schedule data excluded). It shows that for all datasets the exponent 
estimation stabilizes near Zipf’s value after excluding approximately 20% of the outliers.  

At each exclusion level the corresponding power law exponent values were estimated. 
A (weighted) hypothesis test for a true mean exponent value of 2.0 was performed at every 
exclusion level, based on the sample of 13 power law exponent estimates. It appears that, for 
most of the outlier exclusion levels between 20% and approximately 55%, one cannot reject 
the null hypothesis that the mean is equal to 2.0, i.e. Zipf's value. In a weighted test, this is 
the case even onwards from an exclusion level of 0%. In conclusion: at least 80% of the 
activity schedule distribution obeys a power law with a universal exponent value of 2.0. 

Almost all current validation strategies seem to involve the collection of new (unseen) 
data to compare with the model’s output. The authors envisioned that a Zipf power law could 
be used as an additional dimension within a travel demand model’s validation process, not 
requiring any additional validation data and thus not bringing any additional cost to the 
project or research. Additionally, the distribution from the current paper might enable the 
integration of activity schedules in models based on universal mobility patterns. 

Future research will focus on a detailed modeling of the mechanism that leads to a 
Zipf power law distribution for activity schedules. Additionally, the law’s extend will be put 
to the test in further analyses and applications will be investigated in depth. 
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