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ABSTRACT

Despite the advantages, big transport data are characterized by a considerable disadvantage as well.
Personal and activity-travel information are often lacking, making it necessary to deduce this
information with data mining techniques.

However, some studies predict many unique activity type classes (ATCs), while others merge
multiple activity types into larger ATCs. This action enhances the activity inference estimation, but
destroys important activity information. Previous studies do not provide a strong justification for this
practice. An objectively optimized set of ATCs, balancing model prediction accuracy and preserving
activity information from the original data, becomes essential.

Previous research developed a classification methodology in which the optimal set of ATCs
was identified by analyzing all possible ATC combinations. However, for the US National Household
Travel Survey (NHTS) 2009 data set which comprises 36 ATCs (home activity excluded), this approach
is practically impossible in a finite amount of time since there would be 3.82*10730 unique
combinations.

The aim of this paper is to optimize which original ATCs should be grouped into a new class,
and this for data sets for which it is impossible or impractical to simply calculate all ATC combinations.
The proposed method defines an optimization parameter U (based on classification accuracy and
information retention) which is maximized in an iterative search algorithm. The optimal set of ATCs
for the NHTS 2009 data set was determined. A comparison finds that this optimum is considerably
better than many expert opinion activity type classification systems. Convergence was confirmed and
performance gains were benchmarked.

Keywords: Activity type classification, (Big) transport data annotation, optimal set of activity types,
local search algorithm, classification accuracy, entropy indices
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INTRODUCTION

These days big data sets are collected continuously and in real time, making large amounts of data that
are temporally and spatially referenced available to researchers (1). Furthermore, advancements in ICT
and the improvement of location-aware technologies facilitate the collection of transport data, e.g. daily
trajectories. The new transport data-collection methods support researchers with refined, detailed data
sets of real-time data. These large collections of spatio-temporal information offer research
opportunities, i.e. they enable a better investigation and understanding of human travel behavior.

Due to the availability of temporal information (e.g. time stamps), big transport data are very
effective in exploring individual mobility patterns. Despite the advantages, big transport data are
characterized by a considerable disadvantage as well. Personal and activity-travel information are often
lacking (2), making it necessary to deduce this information from the available travel patterns.

In order to overcome this shortcoming, behavioral data mining techniques are frequently used
to infer activity types (sometimes otherwise denoted as trip or travel purposes, activity classes, activity
categories or activity encoding) from behavioral attributes, such as temporal attributes and spatial
information (e.g. (3-5)). In recent studies on activity-travel data mining, different inference techniques
are investigated. However, in these researches different classifications of activity types exist. Some
studies infer many activity classes, while others aggregate or group several activity types, limiting the
number of activity type classes (ATCs) (6). As argued in (6), in none of these studies a strong
justification is established. The activity type classification in the majority of researches merely relies on
the travel survey design, due to a lack of clear standards for ATCs which is grounded by a theoretical
background (7). The ATCs (and the size of this set of classes) strongly affect the classification accuracy.
Often, activity types are aggregated in order to enhance the activity inference estimation. However, by
aggregating activity types, and thus enhancing the activity inference estimation, important activity
information is lost. Therefore, the need for a standardized method for activity categorization arises. An
optimal set of activity types is an essential prerequisite for a robust and sound transport data annotation.
The proposed method is an objective alternative to the subjective ATCs based on intuition.

Previous research (6) developed a classification methodology using a rule-based heuristic
algorithm in which the optimal grouping of ATCs was identified. The optimization method searches for
an optimal balance between improving model accuracy and preserving activity information from the
original data set. This method focused solely on the temporal attributes (i.e. activity start time and
activity duration) from household travel survey (HTS) data sets, in order to develop a generic
categorization method which is applicable to as many big data sources as possible. Other types of
attributes, e.g. spatial information, can however also be used in the proposed method. The method was
applied to two HTSs, i.e. the Seoul HTS and the Flanders (Belgium) HTS called OVG.

The optimization method in (6), however, might not be appropriate when the initial data set
contains too many unique ATCs. The optimization strategy comprises three stages, where in the first
stage all possible combinations of ATCs are generated. This brute-force approach calculates
approximately 117,000 unique sets of combinations of classes for both the OVG and Seoul HTS as both
HTS data sets consist of only 10 distinct activity types, when the ‘Being at home’ activity is excluded
from the experiment. The home activity was excluded from the experiment, because this activity type
is quite easy to classify and is mostly predicted with a very high accuracy (e.g. (8)). Additionally, due
to a large share of home activities in the data set, its good classification capability obscures the
suboptimal or bad classifications of out-of-home activities. In the second stage of the optimization
strategy, classifiers are trained and tested on the data that were transformed according to the ATC
combinations of the first stage. Finally, the optimal set of ATCs is defined in the third stage of the
optimization method. On a server equipped with two intel Xeon EQ-2643 v2 processors (running at
approximately 80% capacity, i.e. 20 threads) estimating 117,000 classifiers took roughly 30 hours of
computation time. However, for the US National Household Travel Survey (NHTS) 2009 data set (9)
which comprises 36 ATCs (home activity excluded), calculating classifiers for all possible grouping
combinations is impossible since the increase in distinct combinations is exponential. In other words, a
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large number of initial activity types (n in Table 1) which are considered for aggregation will result in
an extremely large set of grouping combinations that needs to be processed as shown in Table 1.
Therefore, the computation time of the second stage of the optimization method would rise up to
1.13*10723 years for the US NHTS data set on the same server using 20 threads. Note that the age of
the universe is only 13.8*10”9 years (10).

TABLE 1 Number of possible activity type class (ATC) combinations as a function of the number of activity

types, n
n #of ATC combinations n # of ATC combinations
1 1 21 4.748698E+14
2 2 22 4.506716E+15
3 5 23  4.415201E+16
4 15 24 4.459589E+17
5 52 25 4.638590E+18
6 203 26 4.963125E+19
7 877 27 5.457170E+20
8 4,140 28 6.160539E+21
9 21,147 29 7.133980E+22
10 115,975 30 8.467490E+23
11 678,570 31 1.029336E+25
12 4.213597E+06 32 1.280647E+26
13  2.764444E+07 33 1.629596E+27
14 1.908993E+08 34 2.119504E+28
15 1.382959E+09 35 2.816002E+29
16 1.048014E+10 36 3.819715E+30
17 8.286487E+10 37 5.286837E+31
18 6.820768E+11 38 7.462899E+32
19 5.832742E+12 39 1.073882E+34
20 5.172416E+13 40 1.574506E+35
TABLE 2 Examples of household travel survey data sets with their number of distinct activity type classes
(ATCs)
Data set Country (or region) Number of  Number of ATCs
of origin person days (home activity
surveyed excluded)
AUS VISTA 2007 & 2009 (11, 12)  Australia 67,060 12
BEL Beldam 2010 (13) Belgium 11,279 11
BEL OVG 3.0-4.5 (14) Belgium (Flanders) 13,522 10
CHE Thurgau 2003 (15) Switzerland 8,522 25
DEU Mobidrive 1999 (16) Germany 13,244 22
FIN HLT 2010-2011 (17) Finland 10,137 19
FRA ENTD 2008 (18) France 17,996 31
GBR NTS 2009-2014 (19) United Kingdom 551,234 22
IRL NTS 2009 (20) Ireland 5,023 9
KOR Seoul HTS 2010 (21, 22) South Korea 219,269 10
NLD OViN 2013 (23) The Netherlands 34,710 13
SVN Ljubljana 2013 (24) Slovenia 3,426 12
SWE RVU 2011-2014 (25) Sweden 31,457 25
USA NHTS 2009 (9) United States of 257,586 36

America
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Considering that the US NHTS is not the only data set which consists a large number of activity
types, this computation time issue will surface for other travel data sets. In the UK HTS data set (26),
for example, 22 distinct activity types are employed. In Table 2, several travel data sets are listed,
together with the number of activity types that are considered in each case.

To overcome this process time issue, the research in this paper proposes an update of the
optimization categorization methodology using a ‘local search’ algorithm. The local search algorithm
starts from a predefined ATC grouping combination and iteratively tries to optimize this group by
applying random changes, and thus reducing the required computation process time. The remainder of
this paper is structured as follows. The next section describes the data and clarifies the methodology.
Subsequently, the results of the convergence of the local search algorithm are presented, followed by
the optimal ATCs for annotation. Finally, a conclusion is formulated.

METHODOLOGY

Data description

Two HTSs were used in this research. The first HTS, the Seoul HTS, was organized in the Seoul
Metropolitan Area (SMA), Republic of Korea, in 2010. This data set consists of self-reported daily
household activity-travel data from approximately 76,000 individuals. As reported in Table 2, this data
set contains 11 distinct trip motives (or activity types), of which the ‘home’ activity will be excluded as
justified in the introduction. The Seoul HTS was included in this study to confirm the correct
convergence of the proposed search algorithm to the optimum which was found in (6), and to benchmark
the algorithm’s performance gains. The convergence on this data set will be discussed and the
performance of the algorithm will be compared to the approach in (6), justifying the need and benefits
of the iterative search approach. The optimum set of ATCs of this data set will however not be discussed
here. Interested readers may find a thorough analysis in (6).

The second HTS used in this study is the NHTS from the USA in 2009. It contains surveyed
information from 308,901 individuals. This massive data set contains detailed trip information of
approximately 1.17*1076 trips, of which the trip purpose is encoded in 37 distinct classes. After
excluding trips having the ‘home’ trip purpose, approximately 768,000 records remain to train activity
type classifiers. The copious activity types in this data set are the reason for the development of the
proposed methodology, as explained in the introduction. To the author’s best knowledge, this is the
richest activity type encoding in a HTS (not considering time-use surveys); see also Table 2. It is
therefore a challenge to find the optimal set of activity types, which may be used in any activity type
inference or annotation research. Additionally, this data set is employed in many studies to train their
models. Finding and using an optimal set of activity types may enable the seamless consolidation of
multiple research outcomes.

As mentioned earlier in the introduction, only temporal variables such as activity start time and
duration are used to train classifiers in this study. All other variables in the data are disregarded. This
choice was made in order to make this research as compatible as possible with other study areas.
Additionally, many applications start from e.g. GPS recordings, smart card data etc. for which
classification based on temporal variables gives already good results (27).

The data was split in a train set (75%) and test set (25%). According to common practice, the
train set is used to train a classifier, whilst the test set is used to evaluate its prediction accuracy on ‘new’
data.

Grouping of activity types

This section discusses the combinatorial challenge of grouping or aggregating of activity types into new
classes. For example, in the set of ATCs [[1], [2], [3], [4], [5], [6]. [7], [8], [9], [10]], activity types 3
and 6 may be merged into a new class as such: [[1], [2], [3, 6], [4], [5]. [7], [8]. [9], [10]]. The number
of possible ATCs grows exponentially with the number of distinct activity types: n. This is the result of
all the permutations of activity types across possible groups and the different combinations of possible
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group sizes. The order of activity types within a group, and the order of the groups among themselves
does not matter. The possible group size combinations for a given n may be obtained by computing the
integer partitions. For example, for n = 4 the integer partitions are {1+1+1+1, 2+1+1, 2+2, 3+1, 4}.
Each element in these partitions represents a group’s size. The first partition represents the case where
no activity types are merged, the final one represents the case where all 4 activity types are grouped in
one group of size 4. For each partitioni: g; + g, + -+ g; = n, there are x; number of ways to
distribute n activity types across the groups:

n!
X; = 1

T 1
I1; <g,-! ' fW) .

where f; the frequency of a particular element in the partition (which represents a group’s size). For
example, in the partition 2+1+1, element 2’ has a frequency of 1. In partition 2+2, element 2 has a

1
frequency of 2. The factor []; <fj fj!> corrects x; for the permutations of equal-sized groups as the

order of these equal-sized groups is unimportant, and should not increase x; (that is, 2, + 2, = 2, +
2,)- The total number of possible ATC combinations is the sum of all x; for a given n and its integer
partitions i. These values are listed in Table 1. One observes how the increase of possible combinations
increases exponentially, hereby strengthening the justification for the need of the proposed
methodology.

Optimization through local search
In order to optimize the ATCs, the proposed method combines some of the original activity types into
a new class, and subsequently calculates the classification accuracy and entropy of the activity type
variable. The classification accuracy represents the performance of predicting an ATC, and the entropy
represents the amount of information such a prediction is giving. The entropy (or embedded
information) is greatest when no activity types are merged into a new class, yet the classification
accuracy increases when activity types are merged into new classes (as there are fewer classes to
predict). The aim of this paper is to optimize which original activity types should be grouped into a new
class, and this for data sets for which it is impractical or impossible to simply calculate all ATC
combinations (due to an extremely large amount of combinations). The proposed method defines an
optimization parameter U which is maximized in an iterative search algorithm.

At the heart of the optimization strategy in (6) is the optimization parameter which may be
calculated using Equation (2)

A — Ay Ey — E;
U= — 2
R, “ R @)

where 4; is the test set accuracy and E; the activity type entropy of a particular combination of ATCs i.
A, and E; are, respectively, the test set accuracy and activity type entropy of the reference case of no
activity type aggregation into new classes. Ry = Ajax — Amin 1S the range in test set accuracy
improvement and Rg = E,qx — Emin 1S the range in entropy reduction, observed within the set of
results of all ATC combinations. a can be used to give a relative weight to either the classification
accuracy improvement or to the entropy retention if there exists such an intrinsic bias for one of these
indices. A sensitivity analysis of this parameter is described in (6). The entropy may be calculated with
Equation (3):
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E= —Z p;log, (p;) )

where p; is the probability on class i.

However, Equation (2) can only be used when the results from all ATC combinations are
known, as Re depends on the minimum entropy E,,;, and Ra requires the maximum classification
accuracy A,,,, to be known. Note that the maximum entropy E,,,, and minimum classification
accuracy A,,;, can however be obtained from the reference case in which no activity types are grouped
into a new class. In (6), the optimization parameter U was calculated only after the entropy and
classification accuracy for all approx. 117,000 ATC combinations were calculated. Since calculating
the entropy and classification accuracy for all possible combinations of ATCs is impossible given a
large number of distinct activity types in the USA NHTS 2009 (see Introduction), E,,;;,, and A4, need
to be substituted.

The answer consists of allowing the trivial solution, that is the case when all activity types are
grouped into a single large class. In this trivial case, the entropy is zero (all activity type information is
lost) and the classification accuracy is 100% (as only one class remains to predict). The results in (6)
reveal that in practice E,,;,, and A,,., are in fact very close to, respectively, zero and one, thus
supporting the proposed measure. Doing so, Equation (2) may be simplified to the following form in
which all parameters (except 4; and E;) can be calculated from the start:

A — A E, — E; A;—Ay  E,—E;
U= —a = —a 4
Amax - Amin Emax - Emin 1- AO EO

As a result, U may be calculated without the need to calculate the classification accuracy and entropy
for all possible ATC combinations beforehand. An iterative optimization approach is now possible. The
proposed optimization algorithm performs the following steps:

1. Start without grouping activity types into new classes (all activity types form their own
group). This is the reference set of ATCs, e.qg. this set of ten distinct activity types: [[1], [2], [3], [4]. [5],
[6], [7], [8], [9], [10]]. For now this is the best grouping scheme.

2. Generate a new grouping scheme based on the above ‘best’ grouping scheme, but with some
random changes, e.g. the case where activity type ‘2’ and ‘10” are merged into a new class: [[1], [2, 10],
[31, [4], [51. [6], [71. [8], [9]1]- A random change is defined as the exchange of one activity type from
one group to another (this can be an empty group). The number of random changes that are applied are
according to an exponential distribution: the probability of a single change is 64.4%, that of two changes
23.7%, that of three changes 8.7% etc. and this up to a maximum of ten random changes. Using this
approach decreases the probability that the algorithm gets stuck in a local optimum and increases the
probability that it will reach the global optimum. Note that this step is not completely random, as
previously generated random grouping schemes are never used again (for obvious performance
reasons). The random change generator is insensitive to the size of an existing group. This prevents a
bias of large groups getting only larger, or vice versa. Multiple blocks of ATCs can arise without
biasness.

3. For this new set of ATCs, train a decision tree (DT) on the train set and calculate activity
classification accuracy based on the test set, and calculate entropy retention in the data. Compute U
(Equation (4)) while taking a = 1 for this study.

4. If the newly calculated U is larger than the U of the best grouping scheme, replace the best
grouping scheme with the newly found grouping scheme.

5. Repeat step 2 to 4 until a stopping criterion is satisfied, indicating that the algorithm
converged to a (local) optimum (which is possibly equal to the global optimum). For the Seoul HTS
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2010 data set, iterations stopped after 100 cycles without a change in best U, whilst for the NHTS 2009
data set this threshold was set to 2000 cycles.

6. Step 1 to 5 can be repeated (optionally with different ‘seed’ set). Each case could potentially
converge to a different local optimum. If however consistently the same solution is found, this may be
considered evidence for a global optimum.

The C4.5 (J48 in Weka (28)) DT classification algorithm yields an excellent classification
accuracy and requires only a short time to train it (6). This was the classifier of choice in step 3. In step
5 it was explained that after a predefined number of iterations without change of the optimum, the
algorithm would stop. This predefined number was chosen after initial experimentation and may not be
optimal. It is however critical that this number is chosen sufficiently large for cases of copious distinct
activity types. This is important since more combinations of classes are possible and thus the optimal
becomes more difficult to find. The algorithm needs sufficient time to try random different combinations
before one can conclude convergence.

In the experiments described in this paper, the algorithm was run for 10 (Seoul HTS 2010) or
15 (NHTS 2009) times as described above in step 6. Due to the random changes applied in step 2, each
run had a different path of convergence. Yet, as will be discussed in the results section, consistently the
same optimum was found giving evidence for a global optimum

RESULTS

Convergence of the local search algorithm

First the proposed algorithm was run for the Seoul HTS 2010 data set, similar as in (6). The intention
of this experiment is to confirm that the proposed algorithm works, and that it yields major
improvements in performance. Compared to (6), slightly different values for U are expected since an
adapted formula is used in this study. The algorithm ran for 10 times (independently) and converged
each time to the same optimum, which was reassuringly also the same as was found in (6). Figure 1
illustrates the convergence of these runs. Although each run started at a different U value due to the
random change at the start of the algorithm, they all converged to the same optimal U value. Notably,
this exact same result could be found in just a couple of minutes, whilst in the approach of (6)
approximately 30 hours on 20 threads of a high-end server were needed. As also concluded in that study,
this optimum is considerably better than many ‘expert opinion’ activity type classification systems being
used.

After having confirmed the excellent performance of the method on the Seoul HTS, the
experiment was repeated on the NHTS 2009 data set. Within 15 parallel runs, approximately 97,000
distinct combinations were calculated in total. Table 3 lists a selection of all those combinations,
including also the most optimal set of ATCs as the first entry in the table (see also next section). The
first run found the optimum in just over 40.5 hours (after 4,324 iterations), the last one in just under 92
hours (10,072 iterations). Mind that in all runs the final 2000 iterations were part of the stopping
criterion. Note that this is a mere fraction of the 3.82*10730 sets of ATC combinations that would have
to be analyzed with the method of (6). Compared to the Seoul HTS, processing time for NHTS 2009
took considerably longer. This is a consequence of the increased time to transform the ATCs in the data
and subsequently train the DTs on this large data set.

Figure 2 illustrates the convergence of the 15 runs. One immediately notices how all seem to
have converged to the same maximum U value. However, there are two runs who failed to converge to
this maximum value, of which one run is clearly visible up to approximately iteration 6,000. The U
value at which these runs reached the stopping criterion is inferior to the one at which the 13 other runs
converged. This may be caused by too few iterations before the stopping criterion is fulfilled (set to
2,000 in this experiment) or that these runs were stuck in a local optimum. The latter is unlikely, since
by allowing up to 10 random changes on the previous best scheme (see Methodology section) it would
be very likely that any local optimum could be avoided, on the condition that the algorithm was given
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FIGURE 1 Convergence plot for 10 independent runs on the Seoul HTS 2010 data set. The slowest run

finished in just under 13 minutes (Intel Core i5-4210M CPU @ 2.60GHz) and needed 255 iterations (100
part of the stopping criterion). All 15 found the same optimum
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FIGURE 2 Convergence plot for 15 independent (parallel) runs on the NHTS 2009 data set. The last thread
finished in just under 92 hours (Intel Xeon E5-2660 v4 CPU @ 2.00GHz). All but two found the same
optimum
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TABLE 3 Most optimal sets of the combined results of the 15 parallel runs on the NHTS 2009 data set and
some interesting sets to compare with. Table 4 lists the encoding of the activity types. The best set of activity
classes (1% row in table) was the end result in 13 out of 15 runs. The italic* sets of activity classes represent
multiple variations with 10: ‘Work’ (see text)

Sets of activity classes TestSet  Entropy U(])
(only grouped activity types are shown) Accuracy

[22, 30, 40, 41, 42, 43,51, 53, 71, 73, 82] 0.734 2.216 0.114272
[10, 23], [22, 30, 40, 41, 42, 43,51, 53, 71, 73, 82] * 0.734 2.216 0.114268
[23, 70], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82] 0.734 2.214 0.113756
[10, 23, 70], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82] 0.734 2.214 0.113751
[15), 62], [23, 70], [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 0.734 2.214 0.113751
82] *

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [30, 40, 41, 42,43, 0.851 0.977 0.001754

50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73,
80, 81, 82, 83, 97] (ref.: (29))

Reference case (original 36 activity types) 0.340 4.276 0

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24, 30, 40, 41, 42,43,  0.895 0.618 -0.014185
50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73,
80, 81, 82, 83, 97] (ref.: (4))

[10, 11, 12, 13, 14], [23, 24, 30, 40, 41, 42, 43,50, 51,52,  0.733 1.271 -0.107685
53, 54, 55, 63, 64, 80, 81, 82, 83, 97], [20, 21, 22, 60, 61
62, 65, 70, 71, 72, 73] (ref.: e.g. (30))

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [40, 41, 42, 43], 0.476 2.754 -0.150825
[50, 51, 52, 53, 54, 55], [60, 61, 62, 63, 64, 65], [70, 71, 72,
73], [80, 81, 82, 83] (ref.: (9) (first digit NHTS codes))

[24, 30, 40, 41, 42, 43, 61, 64, 65, 82], [10, 11, 12, 13, 14,  0.632 1.539 -0.197553
20, 21, 70, 71, 72, 73], [22, 23, 50, 51, 52, 53, 54, 55, 60
62, 63, 80, 81, 83, 97] (ref. e.g. (31))

[10, 11, 12, 13, 14], [20, 21, 22, 23, 24], [30, 40, 41, 42, 0.599 1.741 -0.200993
43], [50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71

72,73, 80, 81, 82, 83, 97] (ref.: (32))

[40, 41, 42, 43], [70, 71, 72, 73], [10, 11, 12, 13, 14], [20,  0.485 2.429 -0.213240
21, 22, 23, 24], [50, 51, 52, 53, 54, 55], [30, 60, 61, 62, 63

64, 65, 80, 81, 82, 83, 97] (ref. (33))

enough time. Both runs would also converge to the same optimum as the others with a better setting of
the stopping criterion. The other 13 runs, which started at different random variations on the initial
scheme, converged to the same optimum which is greater than that of the two which did not converge
to this U value. This gives confidence for a globally optimal set of ATCs.

Optimal activity type classes for annotation

Table 3 lists some interesting results from the experiments on the NHTS 2009 data. The first entry is
the most optimal ATC combination: 10, 11, 12, 13, 14, 20, 21, 23, 24, 50, 52, 54, 55, 60, 61, 62, 63, 64,
65, 70, 72, 80, 81, 83, 97, [22, 30, 40, 41, 42, 43, 51, 53, 71, 73, 82]. Compared to the reference case,
its test set classification accuracy has more than doubled from 34.0% to 73.4% . This comes at a cost of
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losing 2.06 bits of information. It suggests these 26 distinct classes (excl. ‘Home’) are more optimal
compared to the original 36. It merges the following activity types into a new class:

22: Go to religious activity

30: Medical/dental services

40: Shopping/errands

41: Buy goods: groceries/clothing/hardware store
42: Buy services: video rentals/dry cleaner/post office/car service/bank
43: Buy gas

51: Go to gym/exercise/play sports

53: Visit friends/relatives

71: Pick up someone

73: Drop someone off

82: Get/eat meal

This is a class which is hard to define. Some are flexible in nature (buying goods,...) yet others have
obligations to third parties and are not flexible (e.g. picking up or dropping off someone). However,
none of them usually have a very long duration and could in theory occur at almost any time within a
day. All activity types occur at a relatively high frequency (see Table 4). Many of these activities are
likely to be chained together: picking up or dropping off people whilst visiting friends/relatives or going
to play sports, or getting something to eat before (or after) doing some shopping etc. This makes it hard
to distinguish between these activity types based on only temporal profiles, and hence it makes sense to
merge them into a single class.

The next ATC schemes in the list combines 10: “Work’ with all other activity types which are
not in the large group of the most optimal scheme (24 distinct combinations, e.g. [10, 23]; [10, 70]; [10,
62]; etc.) and finally it also joins the large group. Because of space constraints, only the best performing
of all those variations is listed in italics in Table 3. From Table 4 one observes that activity type 10 is
slightly peculiar, as its weighted frequency is many orders of magnitude smaller than other activity
types. It is clearly different from ‘Go to work’ as the latter has a frequency which is approximately 10°
times larger. The exact definition of the “Work’ activity could not be found. Because of the very low
frequency, the impact of this activity type on the classification accuracy and entropy retention is very
small. This experiment concludes that in practice these variations with activity type 10 may not be
different from the most optimal scheme and one could most likely ignore them.

Subsequently in Table 3 one finds the scheme where, in addition to the large group from before,
also 23: ‘Go to library: school related’ and 70: ‘“Transport someone’ are merged into a single class. This
could make sense as this experiment used only time-related variables to train the DTs, and one could
intuitively think the temporal distributions of both activity types may be similar. Again different
combinations with activity type 10 are listed afterwards. The schemes discussed so far perform similar
as the most optimal scheme. One has to be cautious when interpreting the rank in Table 3 as the
algorithm does not guarantee to find all ATC combinations.

Next in Table 3 are seven interesting activity class combination schemes from literature to
compare with the optimal scheme. An attempt was made to merge ATCs in a similar fashion as in these
studies. The most obvious comparison may be made with an ATC scheme based on the first digit of the
NHTS codes (9). Even though there are much fewer activity classes to predict compared to the most
optimal scheme, its classification accuracy is much lower at 47.6% compared to 73.4%. This deficiency
outweighs the fact that this scheme retains slightly more information than the optimal scheme. The
scheme based on (33) performs similarly. The ones inspired by (31) and (32) perform worse than the
optimal scheme on both the classification accuracy and information retention. The schemes inspired by
(4), (29) and (30) have similar of better classification accuracies compared to the optimal scheme,
however these lost a major portion of their information content as a consequence.
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Depending on the research, there might exist a reason for employing one of the suboptimal
schemes (e.g. some activity types need to be predicted and may not be merged, or a predefined number
of ATC:s is required). Yet, without such justification, this work suggests one should strongly consider
using the revealed most optimal set of ATCs in order to simultaneously maximize the prediction
accuracy and the information in that prediction.

TABLE 4 Trip motive codes in NHTS 2009 which were used in this study’s optimization of activity type
classes. There are 37 distinct codes (including ‘Home’)

NHTS 2009  Description of trip motive Weighted
codes frequency
1 Home 1.35E+11
10 Work 2.16E+05
11 Go to work 3.11E+10
12 Return to work 5.73E+09
13 Attend business meeting/trip 1.07E+09
14 Other work related 7.90E+09
20 School/religious activity 1.13E+09
21 Go to school as student 1.18E+10
22 Go to religious activity 6.98E+09
23 Go to library: school related 4.54E+08
24 OS - Day care 8.29E+08
30 Medical/dental services 6.30E+09
40 Shopping/errands 7.10E+09
41 Buy goods: groceries/clothing/hardware store 4.40E+10
42 Buy services: video rentals/dry cleaner/post office/car service/bank  1.12E+10
43 Buy gas 6.60E+09
50 Social/recreational 3.78E+09
51 Go to gym/exercise/play sports 1.34E+10
52 Rest or relaxation/vacation 3.28E+09
53 Visit friends/relatives 1.76E+10
54 Go out/hang out: entertainment/theater/sports event/go to bar 6.84E+09
55 Visit public place: historical site/fmuseum/park/library 1.85E+09
60 Family personal business/obligations 4.48E+09
61 Use professional services: attorney/accountant 1.11E+09
62 Attend funeral/wedding 6.68E+08
63 Use personal services: grooming/haircut/nails 1.47E+09
64 Pet care: walk the dog/vet visits 2.94E+09
65 Attend meeting: PTA/home owners association/local government 1.61E+09
70 Transport someone 3.09E+08
71 Pick up someone 1.10E+10
72 Take and wait 1.19E+09
73 Drop someone off 1.20E+10
80 Meals 7.92E+08
81 Social event 2.49E+09
82 Get/eat meal 2.04E+10
83 Coffee/ice cream/snacks 2.98E+09
97 Other reason 2.59E+09
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CONCLUSION

As demonstrated in previous research (6), there is a strong need for activity categorization standards in
the domain of trip purpose annotation (activity type classification). An optimal set of activity type
classes (ATCs) is an essential prerequisite for a robust and sound transport data annotation, or any
modeling exercise. Most existing researches use a suboptimal set of ATCs in their methodology
(without providing a justification), leading to high classification accuracies, but low information in the
prediction. An optimization strategy that was proposed in previous research (6), has shown a limitation:
the issue of copious distinct ATC combinations and its associated long computation time.

The aim of this paper is to optimize which original activity types should be merged into a new
class, and this for data sets for which it is impractical or impossible to simply calculate all ATC
combinations due to an extremely large amount of combinations. The paper suggests a revision of the
optimization method in (6). The proposed method defines an optimization parameter U, based on
classification accuracy and information retention, which is maximized in an iterative search algorithm.

To confirm the correct convergence of the search algorithm and to benchmark the performance
gains needed, the algorithm was run for ten times (independently) on the Seoul household travel survey
in 2010. These converged to the same optimum as in (6) in just a couple of minutes, whilst in the
approach of (6) approximately 30 hours on 20 threads of a high-end server were needed.

In fifteen parallel runs on the very large national household travel survey (NHTS) of the U.S.
in 2009, approximately 97,000 distinct combinations were calculated. Thirteen runs found the same
most optimal set of ATCs in merely 40.5 hours (after 4,324 iterations) to 92 hours (10,072 iterations)
instead of an estimated 1.13*10/23 years (3.82*10730 sets of ATC combinations ) using the method of
(6). The two remaining runs reached the stopping criterion prematurely. The most optimal set of ATCs
for the NHTS 2009 creates only a single group, in which the following NHTS 2009 activity types are
merged into a new class:

Go to religious activity

Medical/dental services

Shopping/errands

Buy goods: groceries/clothing/hardware store
Buy services: video rentals/dry cleaner/post office/car service/bank
Buy gas

Go to gym/exercise/play sports

Visit friends/relatives

Pick up someone

Drop someone off

Get/eat meal

This is a class which is hard to define, but the activity types have in common that they usually don’t
have a very long duration and that they could in theory occur at almost any time within a day. All activity
types occur at a relatively high frequency. Many of these activities are likely to be chained together.
Additionally merging the ATCs ‘Go to library: school related’ and ‘Transport someone’ into a second
group is also acceptable as this forms the second most optimal set of ATCs found.

An attempt was made to merge the original ATCs in a similar fashion as in other studies, in
order to compare those approaches to the optimal set of ATCs found in this study. All tested
combinations are inferior to the revealed optimal one, either by classification accuracy, by retained
information or by both indices simultaneously.

Depending on the research, there might however exist a reason for employing one of the
suboptimal schemes (e.g. some activity types need to be predicted and may not be merged, or a
predefined number of ATCs is required). Yet, without such justification, this work suggests one should
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strongly consider using the objectively determined most optimal set of ATCs of the NHTS 2009 in order
to simultaneously maximize the prediction accuracy and the information in that prediction.

Future research will include also spatial and regional variables to apply the methodology to a

big transport data activity type annotation problem. Furthermore, the application of data fusion based
on annotated optimized ATCs will be investigated. Models based on traditional ATCs and optimized
ones can be compared.
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