

Faculty Medicine and Life Sciences

Aberrant cardiopulmonary function during exercise testing and exercise intolerance in relation to cardiometabolic health in obese adolescents

Dominique Hansen, PhD, FESC^{1,2}; Wouter Franssen, MSc¹; Marjolein Beyens, MSc¹; Nastasia Marinus, MSc¹; Liene Bervoets, MSc; Johan Vijgen, MD²; Pieter Koopman, MD²; Hein Heidbuchel, MD, PhD²; Kenneth Verboven, PhD¹; Paul Dendale, MD, PhD, FESC^{1,2}; Guy Massa, MD, PhD^{1,3}; Martijn A. Spruit, PhD, FERS^{1,4}

¹REVAL – Rehabilitation Research Center, BIOMED- Biomedical Research Center, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium ²Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium ³Jessa Hospital, Department of Pediatrics, Hasselt, Belgium ⁴Department of Research & Education, CIRO, Horn, The Netherlands

INTRODUCTION

disturbed Adults display with obesity may а cardiopulmonary function and impaired exercise capacity during maximal cardiopulmonary exercise (CPET), which relates testing to worse а cardiometabolic health and prognosis. In obese adolescents it remains uncertain whether specific cardiopulmonary abnormalities and exercise intolerance during CPET relate to cardiometabolic risk.

One-day hospitalization

AIM

To compare cardiopulmonary parameters and exercise tolerance during CPET between obese and lean adolescents, and to examine associations between aberrant CPET parameters or exercise intolerance and cardiometabolic health in obese adolescents.

MATERIAL & METHODS

Observational cross-sectional design

- 60 obese and 44 lean adolescents (12-16 years)
- Free of chronic cardiovascular, renal, pulmonary or orthopedic disease

Figure 2; Schematic representation of different measurements at various time points during a one-day hospitalization. Subjects underwent measurements in exact chronology.

 Table 2; Multivariate regression analyses explaining aberrant cardiopulmonary parameters.

Lean adolescents

		(r	1=44); <u>BMI=19.1±2.</u>	2kg/m ²		Adjusted r ²	SC (B)	p-value
					Workload	0.611		< 0.001
Total population					Body height		0.370	< 0.001
(n=104)				e	Haemoglobin		0.260	0.002
	Obese ad	olescents	$= 51); DMI = 29.5 \pm 2.$	SKg/III ²	Leptin		-0.241	0.006
	(n=	60)			Triglycerides/hdl ratio		-0.206	0.009
			Severe obese		W/VO ₂	0.294		<0.001
Figure 1; Study flowchart.		(n	=29); BMI=37.1±3.	skg/m ²	Fasting glucose		-0.438	< 0.001
					QRS width		-0.283	0.003
					Mechanical efficiency	0.214		<0.001
RESULTS					Leptin		-0.452	< 0.001
Table 1 ; Cardiopulmonary function duri	ng CPET in obese a	and lean adolescents.			Minute ventilation	0.419		< 0.001
Peak values	Lean (n=44)	Moderate obese (n=31)	Severe obese (n=29)	p-value	Leptin		-0.279	0.002
Oxygen uptake (ml/min)	2359 ± 642	2065 ± 444	2268 ± 492	0.087	Breathing frequency	0.218		< 0.001
Cycling power output (W)	186 ± 47	152 ± 36*	156 ± 35*	0.002	Leptin		-0.252	0.012
W per VO2 (W/ml/min)	80.1 ± 10.1	74.0 ± 9.0*	$69.1 \pm 10.1^*$	<0.001	Pogrossion model was corrected for ag	a cox and Tannor stag		
Mechanical efficiency	0.22 ± 0.02	$0.20 \pm 0.02^*$	$0.19 \pm 0.03^{*}$	<0.001	considered statistically significant.	e, sex and failler stage	e. P-value <0.	JS (Z-talled) was
Minute ventilation (l/min)	84 ± 23	71 ± 18*	76 ± 18	0.015				
Breathing frequency (breaths/min)	44 ± 8	39 ± 8*	40 ± 7	0.021				
Heart rate (bpm)	188 ± 9	183 ± 12	181 ± 13	0.062		CONCLUCT		
Respiratory exchange ratio	1.20 ± 0.08	1.18 ± 0.09	1.16 ± 0.07	0.051		CONCLUSI		

In obese adolescents specific cardio-

Figure 3; Cycling power output and the mechanical efficiency in relation to percentage of peak oxygen uptake in lean and obese subjects during exercise testing.

pulmonary parameters deviate during CPET and peak workload capacity is lowered, which relate to altered blood and electrocardiographic parameters. These data highlight the relevance of CPET in the clinical evaluation of obese adolescents, and the impact of obesity on health.

Declaration of interest

The authors declare that there is no conflict of interest associated with this publication

