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Abstract. The HTTP/1.1 protocol has long been a staple on the web, for both pages
and apps. However, it has started to show its age, especially with regard to page
load performance and the overhead it entails due to its use of multiple underlying
connections. Its successor, the newly standardized HTTP/2, aims to improve the
protocol’s performance and reduce its overhead by (1) multiplexing multiple resources
over a single TCP connection, (2) by using advanced prioritization strategies and by
introducing new features such as (3) Server Push and (4) HPACK header compression.
This work provides an in-depth overview of these four HTTP/2 performance aspects,
discussing both synthetic and realistic experiments, to determine the gains HTTP/2
can provide in comparison to HTTP/1.1 in various settings. We find that the single
multiplexed connection can actually become a significant performance bottleneck in
poor network conditions with high packet loss and that HTTP/2 rarely improves much
on HTTP/1.1, except in terms of reduced overhead. Prioritization strategies, Server
Push and HPACK compression are found to have a relatively limited impact on web
performance, but together with other observed HTTP/2 performance problems this
could also be due to faulty current implementations, of which we have discovered
various examples.

1 Introduction

As the web grows more mature in terms of availability and features, so does its complexity.
Websites have evolved from collections of simple individual document pages into complex
user experiences and even full “apps”. Even though internet connection speeds have also been
steadily increasing in this time frame, the traditional internet protocols HTTP/1.1 and TCP
have struggled to keep up with these developments and are in many cases unable to provide
fast web page load performance[12]. This is detrimental to the overall viability of the web
platform for complex use cases such as e-commerce, since a multitude of studies has shown
that web performance is a core tenet in ensuring user satisfaction [9, 13].

Most of the performance problems with HTTP/1.1 stem from the fundamental limitation
to only request a single resource per underlying TCP connection at the same time. This
means that slow or large resources can delay others, which is called “Head-Of-Line (HOL)
blocking”. As modern websites consist of tens to even hundreds of individual resources,
browsers typically open several parallel HTTP (and thus also TCP) connections (up to six
per hostname and 30 in total in most browser implementations). However, these heavily



parallelized setups induce large additional overheads (e.g., in terms of server-side connection
count) while not providing extensive performance benefits in the face of ever more complex
websites [12] (see also Sect. 4). Note that while the HTTP/1.1 specification does include the
pipelining technique (which does allow multiple requests to be queued on a connection), it is
not enabled by default in the major modern browsers due to various practical issues [14].

In order to tackle these challenges, the new HTTP/2 protocol [3] (h2) was standardized in
2016, after evolving from Google’s SPDY protocol since 2009. While keeping full backwards
compatibility with the semantics of the HTTP/1.1 protocol (h1) (e.g., types of headers, verbs
and overall setup), h2 nevertheless introduces many low-level changes, primarily with the
goal of improving web page load performance. For example, all h2 traffic is ideally sent
over a single TCP connection (making use of multiplexing and inter-resource prioritization
algorithms to eliminate HOL blocking), there is support for server-initiated traffic (Server
Push) and headers are heavily compressed in the HPACK format. The details of these aspects
are discussed in Sect. 4 to 7.

In theory, h2 should solve most of the problems of h1 and improve web page load
times by up to 50% [12]. In practice however, the gains from h2 are limited by other factors
and implementation details. Firstly, the use of a single TCP connection introduces a potential
single-point-of-failure when high packet loss is present (and so it might actually be better
to also use multiple TCP connections for h2). Secondly, correctly multiplexing multiple
resources over this connection is heavily dependent on the used resource prioritization scheme
and the interleaving of resource chunks might introduce its own implementation overhead as
these chunks need to be aggregated before processing. Finally, complex inter-dependencies
between resources and late resource discovery might also lessen the gains from h2 [22].
The fact that h2 is not a simple drop-in replacement with consistently better performance
than h1 is also clear from previous studies, which often find cases where h2 is significantly
slower than h1 (see Sect. 2).

In this text, we continue the groundwork from our previous publications [17, 18]. We
discuss four HTTP/2 performance-related aspects and test their impact, both in synthetic and
realistic test scenarios, in comparison with HTTP/1.1’s performance (Sect. 4 to 8).
Our main contributions are as follows:

– We extend the Speeder framework for web performance measurement [18], com-
bining a large number of off-the-shelf software packages to provide various test setup
permutations, leading to a broad basis for comparison and interpretation of experimental
results.

– We compare h2 to h1 in both synthetic and realistic experiments and find that while
h2 rarely significantly improves performance over h1, it is also rarely much
slower. Additionally, in most cases, bad network conditions do not seem to impact
h2 much more than they impact h1. Using multiple parallel TCP connections can
help both h2 and h1. Prioritization, Server Push and HPACK compression seem to
contribute only sparingly to page load time improvements.

– We find that many current h2 implementations (both on the server and browser
sides) are not yet fully mature and that some (default) implementations lead to sub-
optimal performance, especially concerning the time it takes to start rendering the web
page.



2 Related Work

Various authors have published works comparing the performance of h2 and its predecessor
SPDY to h1.

In “How Speedy is SPDY?” [27] the authors employ isolated test cases to better assess the
impact of various parameters (latency, throughput, loss rate, initial TCP window, number of
objects and object sizes). They observe that SPDY incurs performance penalties when packet
loss is high (mainly due to the single underlying TCP connection) but helps for many small
objects, as well as for many large objects when the network is fast. For real pages, they find
that SPDY improves page load performance for up to 80% of pages under low throughput
conditions, but only 55% of pages under high bandwidth.

“Towards a SPDY’ier Mobile Web?” [8] performs an analysis of SPDY over a variety
of real networks and finds that underlying cellular protocols can have a profound impact
on its performance. For 3G, SPDY performed on a par with h1, with LTE showing slight
improvements over h1. A faster 802.11g network did yield improvements of 4% to 56%.
They further conclude that using multiple concurrent TCP connections does not help SPDY.

“Is The Web HTTP/2 Yet?” [26] measures page load performance by loading real websites
over real networks from their original origin servers. They find that most websites distribute
their resources over multiple backend hosts and as such use h2 over multiple concurrent
connections, which “makes h2 more resilient to packet loss and jitter”. They conclude that
80% of the observed pages perform better over h2 than over h1 and that h2’s advantage
grows in mobile networks. The remaining 20% of the pages suffer a loss of performance.

“HTTP/2 Performance in Cellular Networks” [10] introduces a novel network emulation
technique based on measurements from real cellular networks. They use this technique to
specifically assess the performance impact of using multiple concurrent TCP connections
for h2. They find that h2 performs well for pages with large amounts of small and medium
sized objects, but suffers from higher packet loss and larger file sizes. They demonstrate that
h2 performance can be improved by using multiple connections, though it will not always
reach parity with h1.

“HTTP/1.1 Pipelining vs HTTP2 In-The-Clear: Performance Comparison” [7] compares
the cleartext (non-secure) versions of h1 and h2 (h1c and h2c respectively) (even though
h2c is not currently supported by any of the main browsers, see Sect. 3). They disregard
browser computational overhead and find that on average h2c is 15% faster than h1c and
“h2c is more resilient to packet loss than h1c”.

Additional academic work [15] found that for a packet loss of 2%, “h2 is completely
defeated by h1” and that even naive Server Push schemes can yield up to 26% improvements.
Others [25] conclude that h2 is mostly interesting for websites with large amounts of images,
showing up to a 48% decrease in page load time, with an additional 10% when using
h2 Server Push, and that h2 is resilient to higher latencies but not to packet loss. Further
experiments [23] indicate that h2 Server Push seems to improve page load times under
almost all circumstances. Finally, Carlucci et al. [6] state that packet loss has a very high
impact on SPDY, amounting to a 120% increase of page load time compared to h1 on a
high bandwidth network.

Content Delivery Network (CDN) companies have also measured h2 performance on
their networks. Gooding et al. [11] from Akamai find that using multiple TCP connections is



best avoided for critical resources on h2. A presentation by Fastly [2] states that h2 mostly
outperforms h1 on fast networks, but loses on networks with higher packet loss.

Our review of related work clearly shows that the current state of the art is often contradic-
tory in its conclusions regarding h2 performance. It is not clear whether using multiple TCP
connections provides significant benefits, whether h2 is resilient to poor network conditions
and what degrees of improvement developers might expect when migrating from h1 to h2.

In this work, we try to assess why these contradictions exist by running a wide variety of
tests on several heterogeneous test setups (see Sect. 3). We look at four performance-related
aspects of h2, first in isolation to assess their relative impacts and then in combination
to evaluate the protocol’s impact on typical realistic web page loads. We are thus able to
confirm some of the findings reported by the related work, while showing that many of the
contradictory findings can be attributed to inefficiencies in current h2 implementations.

3 Experimental Setup with the Speeder Framework

As discussed in Sect. 2, there are many cases of contradictory results regarding the performance
of h2. As we suspect that one of the reasons for these discrepancies are differences in the
underlying h2 implementations (both client/browser-side and server-side) and utilized test
configurations, we aim to employ as many test setup permutations as possible. We argue that
if the results show similar trends across all or a large part of the test setups, they are most
likely attributable to the protocol itself. If however the results vary widely, they are typically
dependent on specific implementations.

In order to obtain these diverse test setup permutations, we use the Speeder framework for
web performance measurement, previously introduced in [18]. Speeder provides pre-installed
versions of a large amount of existing software packages (e.g., servers, browsers, network
emulation tools, automated testing tools) that can be freely coupled to each other through the
use of Docker containers1. Users simply need to select the desired setup permutations and the
framework collects and aggregates a multitude of key metrics. Users can then utilize various
visualization tools to compare the results.

For this work, we have expanded Speeder in a variety of ways. We have upgraded the
supported browser versions of Chrome and Firefox to v60 and v54 respectively, updated
webpagetest2 to v3 and now also support the H2O webserver 3, which was heavily optimized
for h2 from the ground up. We have also created and integrated the H2Vis visualization
tool. H2Vis directly takes the low-level .pcap packet capture files recorded during a test run
(using tcpdump4) to produce a number of insightful graphical representations. For example,
we can plot both TCP-level and h2-level packets on a graphical timeline to help verify how
data is actually sent by the h2 server, how the various h2 streams are interleaved on a
single TCP connection (see Sect. 4 and 5) and what the practical impact of packet loss is on
the connection. Additionally, support for graphically visualizing the generated h2 priority
dependency trees (see Sect. 5) allows us to quickly assess the impact of various prioritization

1 https://www.docker.com/
2 https://www.webpagetest.org/
3 https://h2o.examp1e.net/
4 http://www.tcpdump.org/



Table 1. Software, metrics and visualizations supported in the Speeder framework (August 2017).

Protocols HTTP/1.1 (cleartext), HTTPS/1.1, HTTPS/2

Browsers Chrome (v51 - v60), Firefox (v45 - v54)

Test drivers Sitespeed.io (v3), Webpagetest (v3.0)

Servers Apache (v2.4.20), NGINX (v1.10), NodeJS (v6.2.1), H2O (v2.1)

Network - DUMMYNET (cable and cellular) (provided by Webpagetest)
- fixed TC NETEM (cable and cellular)
- dynamic TC NETEM (cellular) [10]

Metrics All Navigation Timing values [28], SpeedIndex [19], firstPaint, visualComplete, other
Webpagetest metrics [20]

Visualizations Packet timeline (TCP and h2), h2 priority dependency trees. Boxplots, linegraphs and
CDFs of recorded metrics

strategies in use by browsers. Table 1 provides an overview of the features of the Speeder
framework at the time of writing.

Unless indicated otherwise, the results in this work were generated in an experimental
setup using NGINX v1.10 as web server and Google Chrome v54 as browser, driven by
Webpagetest v2.19 and the dynamic cellular network model. This dynamic network model
uses previous work [10] which introduced a model based on real-life cellular network
observations. The model has six levels of “user experience (UX)”: NoLoss, Good, Fair,
Passable, Poor and VeryPoor. Each UX level contains a time series of values for bandwidth,
latency and loss. The model changes these parameters at 70ms intervals to simulate a real
network. This implies, for example, that applied packet loss is more bursty than with the fixed
model. For details, please see [10] or the original source code5.

Our results will be presented using two distinct metrics, namely loadEventEnd and
SpeedIndex. loadEventEnd from the Navigation Timing API [28] gives a good indication
of the total time (in milliseconds (ms)) a page needed to load, but does not say anything
about how progressively it was rendered in that time frame. In other words: a page that
stays empty for 5s and only renders content during the last 0.6s (page A) will have a better
observed loadEventEnd performance than a page that finishes loading at 7.5s, but that had
its main content drawn by 2.5s (page B), while the latter arguably yields the better end-user
experience. In order to capture the degree to which the page loads progressively, Google
introduced the SpeedIndex metric [19], which measures how fast a page renders, not just
loads. Inconsistencies between loadEventEnd and SpeedIndex results can indicate that a
resource was fast to load but slow to have visual impact. Like loadEventEnd, SpeedIndex
is expressed in ms and so for both metrics lower values mean better performance.

Finally, we performed most of our tests using three versions of the HTTP protocol: the
secure HTTPS/2 (h2s) and HTTPS/1.1 (h1s) and also the unencrypted HTTP/1.1 (h1c),
because many websites still use this “cleartext” version. We do not include h2c, as modern

5 https://github.com/akamai/cell-emulation-util



browsers choose to only support h2s for security reasons. Note additionally that switching
from h1c to a secure setup (either h1s or h2s) could have its own performance impact as
TLS connections typically require additional network round-trips to setup. In the following
sections, we will use h2 to refer to h2s, and h1 refers to both h1s and h1c.

Most of our graphs will show loadEventEnd on the Y-axis. Individual data points
will typically represent aggregates (e.g., median, average) of 10 to 100 page loads. Each
experiment was repeated at least five times. Unexpected datapoints and anomalies across runs
were analyzed further by manually checking the collected output of individual page loads
(e.g., screenshots/videos, .har files, waterfall charts, .pcap files). The line plots will show the
median values under Good network conditions, as do the Cumulative Distribution Functions
(CDFs). The box plots will show the median as a horizontal bar and the average as a black
square dot, along with the 25th and 75th percentiles and min and max values as the whiskers.
Some box plots use a logarithmic scale on the Y-axis to allow for large values. To be able to
compare our results using the SpeedIndex metric, we make sure our loaded resources have a
strong visual impact on the visible “above the fold” part of the website.

Some of our results were obtained using hand-crafted experiments on synthetic data.
These test cases are intended to demystify the underlying behavior of the protocols and their
implementations, and so are often not entirely realistic or involve extreme circumstances.
However, most of our results were obtained using more realistic data based on existing
websites. We expect that, compared to the experiments on synthetic pages, these test cases
will show similar but more nuanced results and trends.

Readers are encouraged to review our full dataset (which encompasses results not pre-
sented in this paper (e.g., for other browser/server combinations and test pages)), setup details
and source code via https://speeder.edm.uhasselt.be.

4 Multiplexing Over a Single TCP Connection

4.1 Background

One of the major downsides of HTTP/1.1 is that it only allows a single resource to be
requested and sent on an individual TCP connection at any given time. As such, the problem
of Head-Of-Line (HOL) blocking is introduced, where the delivery of the initial resource(s)
can block later resources (e.g., if the initial resource is very slow to be generated, is very
small (so it does not take up the full possible bandwidth) or is very large). To work around
this problem, modern browsers typically open up to six parallel HTTP/TCP connections to
a single origin server. This way, even if one or more of the connections suffer from HOL
blocking, the others can serve key resources as soon as possible. In tandem, developers have
adopted the practice of merging several smaller resources into larger files, a practice called
“concatenation” or “bundling”. This approach causes the number of individual resources to
go down and with them the number of needed TCP connections and HTTP requests. On the
other hand, concatenation has the adverse effect that it reduces the fine-grained cacheability
of individual, smaller resources.

Another h1 best practice is that of “hostname sharding”. Web developers will typically
distribute their resources over a number of individual servers with different hostnames (for
example by using a CDN). The browser will open up to six connections per hostname,



resulting in a total of 17 - 60 parallel h1 connections across all hostnames6 per page load.
This leads to massively parallel page loads, but also introduces significant overheads on the
server side in order to support this large amount of connections and their state management.
The downsides of both concatenation and sharding (reduced cacheability and higher overhead,
respectively) do not always outweigh their observed page load performance benefits [12].

In response, HTTP/2 tries to solve the root issue of HOL blocking by delivering mul-
tiple resources over a single TCP connection concurrently, using multiplexing. In practice,
smaller chunks of individual resources are encapsulated in conceptual “streams” and are then
interleaved on the single connection. Section 5 discusses in detail how h2 decides on the
resources’ interleaving order with a priority-based dependency tree. The HTTP/2 specification
[3] actively encourages this single connection setup. For example, it includes a mechanism for
coalescing requested HTTP connections to separate hostnames onto a single TCP connection
if the hosts use the same HTTPS certificate and resolve to the same IP address, this way
effectively “undoing” a typical sharded h1 setup. HTTP/2 Server Push can also only be used
for resources on the same domain (see Sect. 6).

In theory, h2’s approach should render the h1 best practices of concatenation and
sharding obsolete [12]. In practice however, the single TCP connection might also be more
susceptible to adverse network conditions than h1’s parallel approach. With h1, if one or
more of the parallel connections would incur packet loss or high jitter, the possibility exists
that the other connections would remain unimpaired. With just a single h2 connection, all
resources will be impacted when the network deteriorates. In effect, this could introduce
transport-layer HOL blocking, induced by TCP’s guarantee of in-order delivery combined
with re-transmits when packet loss is present [21]. If the impact of packet loss is significant,
h2 might in practice also benefit from sharding on multiple connections (see Sect. 4.2).

4.2 Head-of-Line Blocking in Practice with Images

In order to assess the impact of concatenation and sharding on both h1 and h2 page load
performance in varying network conditions, the experiments in Fig. 1 compare three cases:
(left) concatenated into a single resource on one host, (middle) non-concatenated on one host,
(right) non-concatenated on four hosts (“sharded”). In practice, for the sharded case, for h1
the browser will open the maximum amount of connections (24, six per hostname) and a
single connection per hostname for h2 (four in our case). The observed h1 connections are
all configured with Keep-Alive and do not use pipelining.

In h1 the problem of HOL blocking is most apparent when trying to download many
smaller files, as browsers only open six parallel connections. Since these smaller files do not
fully take up the available bandwidth and each individual resource request requires a full
Round-Trip-Time (RTT) delay, this overhead quickly adds up. For this, we consider three
experiments in Fig. 1: (a) a large number (i.e., 380) of small files, (b) a medium number (i.e.,
42) of medium sized files and (c) a medium number (i.e., 30) of large files. We choose images
because they typically incur a low processing overhead from the browser. We look at more
complex JavaScript/CSS cases in the next section.

For Fig. 1(a) we observe that h2 significantly outperforms h1 when there is no con-
catenation (middle), but that using a single concatenated image largely reduces h2’s benefit

6 http://www.browserscope.org/
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Fig. 1. Synthetic test cases concerning HOL blocking with images. h2 performs well for many small
files but deteriorates for less or larger files. Sharding only helps h2 for larger files.



and brings it somewhat on a par with h1 (left). This is expected as the single h2 connection
can efficiently multiplex the many small files. It is of note that the concatenated version
is two to five times faster overall, even though (in a rare compression fluke) its file size is
much higher than the sum of the individual file sizes. Additionally, we see that sharding
deteriorates h2’s performance, while only marginally benefiting h1 (right). Because the
files are that small, h2’s multiplexing was at its best in the single host case and maximized
the single connection’s throughput, while in the sharded setting it has less data to multiplex
per connection. Conversely, sharding empowers h1 to open up more connections, but still
suffers from HOL blocking on the small files.

Figure 1(b) shows relatively little differences and no clear consistent winners between
the concatenated (left) and separate files (middle) over one host. This is somewhat expected
for h2, as in both cases it sends the same amount of data over the same connection, but
not for h1. We would expect the six parallel connections to have more impact, but it seems
they can actually hinder on good network conditions. This is probably because of the limited
bandwidth in our emulated cellular network, where the six connections contend with each
other, while a single connection can consume the full bandwidth by itself. Unlike h2’s
behaviour in (a), we see that here h2 does not get significantly faster for the concatenated
version. This indicates that the higher measurements in (a)(middle) are in large part due to
the overhead of handling the many individual requests. Similarly, sharding (right) shows
inconsistent behavior: sometimes it helps and sometimes it hurts h2; it shows impressive
benefits for h1c but smaller gains for h1s. We posit that the additional overhead of setting
up extra secured HTTPS connections (both for h1s and h2s) limits the effectiveness of the
higher parallel throughput. Overall, we can state that there is no clear winner here, nor for the
three different setups, nor for the three protocols.

Lastly, in Fig. 1(c) we see that h2 struggles to keep up with h1 for the larger files and
performs significantly worse under bad network conditions (note the y-axis’ log scale). Due
to the much larger amount of data, h1’s larger amount of parallel connections do help here,
while packet loss impacts the fewer h2 connections more. This is immediately apparent
when comparing the NoLoss and Good network conditions in Fig. 1(c)(middle): the h1
measurements are very similar while the single h2 connection is almost 80% slower in this
case (note that the NoLoss and Good conditions are identical except for the amount of packet
loss introduced). As expected, utilizing additional parallel connections (right) benefits both
h1 and h2, helping mitigate HOL blocking for h1 and lessening the impact of loss when
compared to a single h2 host. The SpeedIndex measurements (not included here) show very
similar trends for all of the experiments discussed in Fig. 1.

In conclusion, we can say that while h2 indeed helps for many smaller files, it still
loses to concatenated versions of those files, both over h1 and h2. This indicates that the
current h2 implementations can incur heavy costs for handling individual resources, though
this primarily poses a large problem for many (>42) files (see also Sect. 4.3). We can also
conclude that h2’s single connection setup seems to suffer from bad network conditions, but
not excessively more than h1, and the performance drop largely depends on the observed
case. Similarly, we have observed that using multiple parallel connections for h2 can help
mitigate this problem (especially for websites with large objects), but that it can also lead to
slower load times (for many, smaller objects). These findings are consistent with the previous
work of Goel et al. [10], who overall observed that if sharding helps for h2, sharding over



more hosts helps more, but there are diminishing returns with each increase in the amount
of hosts. Additionally, Mi et al. [21] decisively show that large files can increase the time
to download smaller files by 99% over a single h2 connection. They propose an extension
to h2 that allows migrating resource requests between parallel TCP connections (also in a
multipath TCP setting). Interestingly, Manzoor et al. [16] have shown empirically that various
browsers are already using multiple parallel connections for h2 in the wild (although this
was never observed during our tests). This might indicate that the browser vendors are aware
of the beneficial nature of this practice. However, to the best of our knowledge, the browser
vendors have yet to present their own results on this issue.

4.3 HOL Blocking in Practice with CSS and JavaScript.

HOL Blocking with CSS and JavaScript with loadEventEnd. The discussion in 4.2
has clearly shown the impact of network conditions and the amount of parallel connections
of h2’s performance. It has also shown that due to HOL blocking, h2 seems to shine when
loading a large amount of smaller files, but that it is not necessarily faster when the amount
of files is lower. In order to investigate this property further and determine the point where
HOL blocking is overcome, we observe two experiments in Fig. 2: 500 <div>-elements
are styled using (left) simple CSS files (single CSS rule per <div>) and (right) complex JS
files (multiple statements per <div>). We vary the degree of CSS and JS code concatenation,
from one file (full concatenation) to 500 files (no concatenation). Figure 2 plots full results in
(a) and shows more detail for one to 30 files in (b). We resorted to CSS and JS files in these
experiments instead of images because they typically include additional processing from the
browser, which can also impact page load time performance, as we will see. The data shown
here is from tests using the Good network condition.

The big-picture trends in Fig. 2(a) look very similar to Fig. 1(a)(left and middle): h2 again
clearly outperforms h1 as the number of files rises and shows a much better progression
towards larger file quantities than the quasi linear growth of h1. Interesting is also the
performance of Firefox: while its h1 results (not shown in Fig. 2 for clarity) look almost
identical to Chrome, its h2 values are much lower, indicating that it has a more efficient
implementation that scales better to numerous files.

Looking at the zoomed-in data in Fig. 2(b), we do see somewhat different patterns. For
the simple CSS files the trends are relatively stable, with h1c outperforming h2 and h2
beating h1s. This changes at about 30-40 files, where h2 finally takes the overall lead. For
the more complex JS files (right), this tipping point comes much later around 100 files. The
measurements for one to ten JS files are also much more irregular when compared to CSS.
Because h1 shows the same incongruous data as h2, we can assume this can be accounted
to the way the browser handles the computation of the larger incoming files. The performance
of a multithreaded or otherwise optimized handling of multiple files can depend on how
many files are being handled at the same time. This would also explain the very high h2
measurements for a single JS file in Firefox (consistent over multiple runs of the experiment).
In additional tests, smaller JS files and larger CSS files also showed much more stable trends,
indicating that especially large JS files incur a large computational overhead. Note as well
that the timings for a smaller amount of JS files are sometimes higher than those for the larger
amounts, indicating that concatenation might not always be optimal here (for none of the
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Fig. 2. Synthetic test cases for HOL blocking with CSS/JS files. h2 performs well for many files but
there is no clear winner for the more concatenated cases. Image taken from our previous work [18].

protocols). Poor network conditions (not shown here) show similar trends to Good networks,
but the h2 tipping points come later: 40-50 files for simple CSS, 150 for complex JS.

All in all, we can see that h2 only overcomes h1’s HOL blocking problems at a relatively
large amount of individual files (30+ in the best case). While most websites do include that
many resources, our results also show that concatenating files together (thus again reducing
the total resource count) can overall be faster than sending individual files for all protocols
(especially for CSS files and many images, see Fig. 1(a)). This again confirms our earlier
thesis that browsers introduce a lot of overhead per individual resource/request, regardless of
the actual size of the data (though Firefox seems to have a more efficient implementation than
chrome, at least for h2) and that this issue needs to be resolved first before h2 can overtake
h1 and its best practices.

HOL Blocking with CSS and JavaScript with SpeedIndex. For the tests in the previ-
ous section 4.3, the SpeedIndex results were significantly different from the loadEven-
tEnd measurements and merit separate discussion. Figure 3 shows the same experiment but
depicts SpeedIndex for Google Chrome. We notice that the data for the simple CSS files
(left) looks very similar to Fig. 2, but the results for the complex JS files (right) do not. Since



the SpeedIndex metric gives an indication of how progressively a page renders (Sect. 3)
and because we know from Fig. 2 that h1 takes much longer than h2 to load large amounts
of small files, we can only conclude that under h2 the JS files take much longer to have an
effect on the page rendering, to skew the SpeedIndex in this way.
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Fig. 3. Synthetic test cases for HOL blocking with CSS/JS files (SpeedIndex metric). h2 SpeedIndex
for JavaScript indicates that it is much slower to start rendering than h1. Image taken from our previous
work [18].

We manually checked this assumption using screenshots and found that for h1 the JS
was indeed progressively executed as soon as a file was downloaded, but with h2 the JS
code was applied in “chunks”: in larger groups of 50 to 300 files at a time and mostly towards
the end of the page load. We first assumed this was because of erroneous multiplexing: if
all the files are given the same priority and weight, their data will be interleaved, delaying
the delivery of all files (see Sect. 5). Captures of h2 frame data in Google Chrome however
showed that each file i was requested as dependent on file i - 1, and that file data was
fully delivered in request order (consistent with the behaviour described in Sect. 5). We can
once more only conclude that the browser implementation somehow delays the processing of
the files, either because of their JS complexity or because the handling of many concurrent
h2 streams is not optimized yet. This argument is supported by the SpeedIndex results
for Firefox (not shown here, for clarity), as its h2 values are much lower than those of h1,
indicating that Firefox has a more efficient h2 implementation than Chrome.

If the browsers’ handling of CSS code would be similar to that of JS code, we would
expect to see similar results in Fig. 3 (left) and (right). However, if the CSS files would also be
applied individually as soon as they were downloaded, the h1 SpeedIndex values would be
much lower than the observed measurements. We found that the browser delays execution of
all CSS until they have all been downloaded and processed for both h1 and h2, despite our
experiments having been built specifically to prevent this. This is again unexpected browser
behaviour (though probably not directly related to the h2 implementation) and we plan to
look deeper into this in future work, as discussed in [18].



5 Resource Prioritization

5.1 Background

As demonstrated in Sect. 4, h2 solves the h1 Head-Of-Line blocking problem by allowing
multiple resources to be sent on the same connection at the same time. To make this pos-
sible, each resource is assigned to its own conceptual “stream” and these streams are then
multiplexed over the single underlying TCP connection. The data from the individual files is
split up in chunks and can thus be interleaved with chunks from other files. This is especially
interesting for resources that are partly directly available but that need slow I/O operations to
complete (e.g., an HTML template that fetches content from a database). Using multiplexing,
chunks from other resources can be sent while the data of the “delayed” resource is being
fetched, resulting in less idle time on the TCP connection. Alternatively, when concurrently
sending a very large and a very small file, the data from the small file might be multiplexed
with parts of the larger file so the receiver does not need to wait for the larger file to be fully
downloaded to receive the smaller resource [21].

To this end, the h2 specification [3] details the concept of a “dependency tree”. Nodes
in this dependency tree represent individual h2 streams, while the root of the dependency
tree denotes the underlying TCP connection. New nodes are added to the tree as new
resources are requested and nodes can be removed when their corresponding resources have
been fully downloaded. A parent-child relationship between nodes indicates that the child’s
transmission should be postponed until its ancestor has been downloaded completely (or
until it is temporarily impossible to make progress on the parent resource). Conversely, a
sibling relationship between nodes allows bandwidth to be distributed among the siblings
proportionally to their “weight” (i.e., ∈ [1,256]), thus allowing multiple resources to be
interleaved in a very fine-grained way. The h2 buildup of the tree is decided by the browser at
runtime and communicated to the server using HEADERS or PRIORITY frames. This general
setup allows for a lot of flexibility in how the dependency tree is effectively constructed and
maintained by the browser during the page load.

Figure 4 shows example dependency trees from Google Chrome (a) and Mozilla Firefox
(b) respectively. It is apparent that Chrome chooses a very sequential setup, where each node
is the only child of its parent (rendering individual stream weights effectively useless). It
does however maintain an internal “priority order” depending on the type and location of the
resource (e.g., a CSS file in the <head> will be given a Highest priority level, while an
image in the <body> will have a Low overall importance). If a new resource is discovered,
it will be not be added at the end of the full tree, but rather after the last existing resource
with the same priority level. Firefox utilizes similar priority bins internally (indicated by
e.g., leaders, followers, unblocked) but chooses to build its priority tree in a radically
different way from Chrome. Firefox adds “ghost” nodes for each of these priority levels
(which do not directly represent an h2 resource or stream) to be able to group the h2
streams that belong to this category as siblings. This allows Firefox to use a more complex
prioritization strategy for its h2 implementation.

5.2 Evaluation of Prioritization Strategies

As Chrome’s and Firefox’s approaches for the h2 dependency trees are fundamentally
different (Fig. 4), it is difficult to directly compare both options and see which one performs
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best. This is due to the fact that the both browsers are internally optimized for their specific
strategy, implying that using a different strategy will skew the results. Instead, we implement
two alternative, less complex prioritization strategies to see how much better (or worse) the
browser’s more advanced approach works.

The first alternative algorithm, Round Robin (RR), is the default behaviour specified in
the h2 specification [3]. All h2 streams are made siblings under the root node and each is
given an equal weight. In effect, this causes all active resources to be given an equal share
of the bandwidth and leads to heavy multiplexing. The second algorithm, First-Come-First-
Served (FCFS), approaches the way h1 works. The dependency tree is purely linear and
each new node is added as the bottom leaf node; FCFS is thus a much less advanced version
of Chrome’s strategy as it will never inject new nodes between two existing nodes. FCFS
entails that the current resource has to be sent fully before (any part of) the next resource can
be sent, effectively disabling multiplexing.

These two alternative algorithms are implemented by modifying the H2O server source
code. The server simply ignores the priority directives from the browser (which is allowed
behaviour as per the h2 specification [3]) and builds its own dependency tree using the rules
described above.
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Figure 5 shows the CDF results for the Firefox browser in Poor network conditions.
We take a corpus of 40 websites (see Sect. 8 for details) and load them 20 times with each
protocol/prioritization strategy; the median values are used in the CDF.

We can deduce that the impact of the different h2 prioritization strategies is moderate
for the loadEventEnd metric, with h2 measurements being very similar. However, the
SpeedIndex metric clearly shows worse performance when using the Round Robin strategy.
This is expected, as it will take longer for resources to be fully downloaded and because,
as we have discussed in Sect. 4.3, browsers will often wait for a full resource (or group of
resources) to be downloaded before re-rendering the page. This is a remarkable result because,
as mentioned before, Round Robin is the default prioritization behaviour prescribed by the
h2 specification and in our tests it was seen in effect in both Microsoft’s Edge and Apple’s
Safari browsers (which do not seem to employ a custom prioritization strategy at this time).

We performed similar tests for Google Chrome and on the various other network emulation
settings detailed in Sect. 3. The results displayed in Fig. 5 are among the most distinct of
all our evaluated data, meaning that other tests showed even less differences between the
different strategies, especially for improved network conditions. This indicates that the adopted
prioritization strategy is not a major influencer of h2 page load performance, except on poor
networks and then only when used in the most straightforward way. This reflects previous
work by Bergan [4], who found that Chrome’s implementation only clearly outperforms a
completely random strategy in 31% of the observed pages.

Finally, when looking at the browsers’ prioritization strategies, we found that their
implementations are often still lacking in their support of cutting-edge web technologies. For
example, the new Service Worker concept7 allows developers to register a JS-based “client-
side proxy” that can intercept and perform custom processing on all requests the browser
emits. We found that all h2 requests passing through such a Service Worker lost all of their
intelligent prioritization information, leading to Chrome defaulting to a FCFS-alike strategy,
while Firefox exhibited pure RR behaviour. This is probably an implementation oversight and
we expect this to be fixed in the future. As another example, developers can indicate to the
browser that certain JS files are less important using the async/defer attributes. Chrome
correctly assigns a Low priority to those resources, but in Firefox they are regarded as normal,
high-priority JS files. We believe that these and similar browser implementation errors could
be responsible, at least partly, for some contradictory results in other work (Sect. 2).

6 Server Push

6.1 Background

In HTTP/1.1, the browser can only receive resources that it has explicitly requested. Typically,
the user agent first fetches the HTML page (e.g., index.html), which it then parses to discover
other referenced resources. As such, it takes at least one RTT before the browser can start
requesting critical CSS/JS files and a minimum of two RTTs before they are downloaded.
Especially on slow networks, this can have a large performance impact. In response, the
HTTP/2 specification [3] describes a novel mechanism called “Server Push”. This allows the

7 https://developers.google.com/web/fundamentals/getting-started/primers/service-workers



server to decide to send along additional resources with previously requested resources, not
having to wait for the browser to request them first, thus potentially saving a full RTT.

In theory, developers could push all necessary resources of a website along with the
original HTML request and thus eliminate additional RTTs completely. In practice however,
Server Push is limited by TCP’s congestion control mechanisms. For example, in its “slow
start” phase, TCP sends only a small amount of data at the beginning of the connection and
then exponentially ramps up its speed if no packet loss or delays are present. In practice, the
TCP congestion window starts at about 14 KB for modern Linux kernels (as used in our
experiments) [17], severely limiting the amount of resource data we can push during the first
RTT. Given this behaviour, h2 Server Push’s benefits should increase the longer the TCP
connection stays open (i.e., the congestion window grows as the connection gets “warmer”),
as more data can be pushed in a single RTT.

Server Push could be a good fit for the popular modern Single Page App (SPA) setup.
In this paradigm, the loaded page routinely requests additional data from the server using a
(REST) API, thus keeping the TCP connection active. The API’s response will then no longer
just consist of the structured xml/json data, but can also contain the pushed subresources
(e.g., images) mentioned in the data. Another interesting use case is to deploy Server Push from
a network intermediary, such as a CDN proxy. In this setup, the browser typically connects
to the proxy, which in turn connects to the origin server. The proxy can then “warm up” its
connection to the browser by pushing static assets (mainly CSS/JS/font files) while it waits
for the dynamic HTML and other data to arrive from the origin. This use case is discussed
in-depth by Zarifis et al. [30], who show up to 27% web page load time improvements when
using Server Push in this fashion.

However, the page load performance of Server Push can be very dependent on knowledge
of the correct priority of the resources it wants to push and how they fit into the page loading
process. The main reason for this is that large parts of common network stack implementations
use buffered I/O, both on the OS-level and in the network itself [5]. Once data is queued in
these intermediate buffers, it is often impossible to remove it or replace it with other data. If
we then, for example, would immediately push three very large image files along with the
initiating request and their data fills up all buffers, the browser’s request for a more critical
CSS file will be delayed because we cannot re-prioritize the less important image data in the
buffers. This makes for large practical difficulties in determining which resources to push
and when [30]. This problem is enlarged by the fact that the h2 specification [3] does not
include a mechanism for the browser to signal to the server which files it has already cached.
Consequently, the server will potentially push files which the browser already has, wasting
bandwidth and delaying other resources.

6.2 Experimental Evaluation

While a full in-depth evaluation of the discussed characteristics of h2 Server Push is out of
scope for this work, we can nevertheless demonstrate several of the discussed aspects using
a very simple example. We use the existing Push demo by Bradley Fazon8, based on the
www.eff.org frontpage. This page has a single “critical CSS” file (which is responsible for
the main look-and-feel of the site and thus a good Push target) and a good mix of additional

8 https://github.com/bradleyfalzon/h2push-demo



CSS, JS and image files without being too complex. We make sure the initial HTML code is
smaller than 14 KB (by removing some metadata and enabling gzip compression), reducing
the on-network HTML size from 42 KB to 9 KB.

Figure 6 shows the results from tests using the Apache webserver because NGINX does
not yet support h2 Server Push. The SpeedIndex results are displayed because these should
be most affected. We observe five different experiments: (1) push the single “critical CSS”
file, (2) push all the CSS/JS files (10 files), (3) push all (images + CSS/JS + one font), (4)
push all images (18 files) and (5) the reference measurement (original, no push). We see that
pushing the one “critical CSS” file does indeed improve the SpeedIndex measurements, but
not excessively so. It is unexpected however that pushing all CSS/JS performs a little better
than just the “critical CSS” in the Good network condition. We found that in practice the
initial data window is often a bit larger than 14 KB, so it can accommodate more than just the
single CSS file. However, this is not always the case and other runs of the same experiment
show less optimal results (which can also be seen in the Poor network condition). Given a
larger data window, the “Push all” test case should perform similarly to pushing the CSS/JS
resources, but it is consistently a bit slower. It turned out that we pushed the single font file at
the very end, after all the images. The font data should have been given a higher h2 priority
than the images, but due to an Apache bug9 this was not the case and the font data had to wait,
delaying the final render. This also explains why pushing just the images performs worse than
the reference: the much more important CSS and JS is delayed behind the image data.
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Fig. 6. Realistic test case for HTTP/2 Push. Pushing the wrong assets or in the wrong order can
deteriorate performance.

The discussed aspects and challenges make Server Push difficult to fine-tune to achieve
optimal performance. Due to this and the fact that many popular h2 server implementations
do not yet support Server Push, Zimmerman et al. [31] found that out of their observed 5.38
million HTTP/2 enabled domains, only 595 actively used Server Push.

9 https://icing.github.io/mod h2/nimble.html



7 HPACK Header Compression

7.1 Background

HTTP uses the concept of Headers to convey various types of metadata about its requests
and responses between the user agent and the server. These headers are typically prepended
to the actual message body. Some popular header names are Content-Type, Keep-Alive,
Cache-Control and Cookie. This last header is useful to bind multiple requests and re-
sponses to the same conceptual “user session”, allowing applications to provide stateful
interactions. Cookies typically contain a numeric user ID or session token but can also include
more complex (serialized) data, which can make them relatively large in practice [29].

The headers are often repeated with each individual message, which can be wasteful with
respect to bandwidth usage, especially in the case of large metadata like Cookie. HTTP/2
attempts to solve this deficiency by introducing HPACK [24], a compression algorithm
specifically tuned to the HTTP header format. HPACK combines a pre-defined dictionary of
known prolific header names and values with a dynamic shared dictionary per connection
that is built up at runtime (at both the server and browser side), based on the header data that
is actually being sent during the session. As such, HPACK will perform better with large
amounts of similar files or cases with large dynamic metadata, as it learns the repeating data
on-the-fly. For example, the first time a header of the form Cookie: value is sent on the
connection, it is stored in the dynamic dictionary. The next time this specific header would be
sent, it can be wholly replaced by a reference to the dictionary entry, which is identical on
both client and server.

7.2 Experimental Evaluation

To demonstrate the behaviour of HPACK, we use data gathered during our experiments from
Sect. 4, which include only typical HTTP headers and no cookies are set. Table 2 details
three cases: (a) 10 large images, (b) 42 medium images and (c) 400 complex JS files. The
BytesOut measurements consist of all data that was sent by the browser and thus include
primarily HTTP request headers and TLS connection setup data. The actual header-induced
overhead is even larger if we also consider HTTP response headers.

For the cases with one host server, we can clearly see that HPACK significantly reduces
the overall header size when compared to h1, with a factor of more than five for case (c).
It is also apparent that the header overhead is typically relatively low but can grow to 27%
for many individual files on h1s (as each of those files requires a separate request and
response message). Looking at the sharded setup with four host servers, we see that while
both protocols produce more overhead from the extra connections, h2s relatively suffers
more than h1s, especially for (a) and (b) (note that the h1s overhead is mainly due to the
TLS overhead from opening 24 connections compared to the six for the single host case
and four for sharded h2s). This is expected, as h2s now has less data to learn from on
each individual connection and optimize its dynamic compression scheme. This is another
argument of h2 to favor using only a single underlying TCP connection.

It is of note that these observed header compression results are arguably too low to have
a significant impact on the performance of any individual page load of a realistic website.
However, when viewed on a larger scale (e.g., cumulatively across all the servers in a data



center or CDN) these savings can add up and make a significant difference in the overall
bandwidth usage of popular websites. Related work from Cloudflare [1] indicates that on
average HPACK reduces HTTP header size by 30% and overall HTTP/2 egress traffic by
1.4%, with outliers of up to 15% for individual websites.

Table 2. Total bytes sent by Google Chrome (∼ HTTP headers) and ratio to total page size. For
many small files, the HTTP header overhead is significant. Sharding over multiple hosts decreases the
effectiveness of HPACK header compression.

1 host 4 hosts

File count Protocol
Total

page size
BytesOut

% of total
page size

BytesOut
% of total
page size

(a) 10 large files h2s 2177600 504 0.02% 1227 0.05%

h1s 2177600 2419 0.1% 2993 0.1%

(b) 42 medium files h2s 1075000 649 0.06% 1362 0.1%

h1s 1075000 2786 0.2% 3346 0.3%

(c) 400 small files h2s 610000 29580 4% 38680 6%

h1s 610000 165300 27% 177600 29%

8 HTTP/2 Performance for Realistic Web Pages

8.1 Experimental Setup

While the synthetic test cases from the previous sections (excluding Sect. 5) are useful to assess
the individual h2 performance techniques in isolation, they are not always representative
for real websites. We will now look at some more realistic test cases. We will first present
results for a corpus of nine manually selected website landing pages (corpus A), which all
contain either many smaller images (e.g., media/news sites) or fewer but larger images (e.g.,
product landing pages with large images taking up most of the “above the fold” space).
The composition of this corpus is motivated by the goal of enabling easy and meaningful
comparison with our synthetic experiments in Sect. 4.2. As we will see however, while the
resulting findings showed clear trends, it was difficult to pinpoint their underlying causes.
In response, we executed additional tests on a second, larger corpus of 40 landing pages
(corpus B) taken from the Alexa Top 50 and Moz Top 500 rankings10. These pages were
selected primarily on their total filesize, with 10 pages being low-weight (< 500KB), 10 pages
medium-weight (≥ 500KB,≤ 1MB) and 20 pages heavy-weight (> 1MB). All pages were
cloned using the wget tool11 so that they could be served locally in the Speeder experimental
setup (Sect. 3).
10 http://www.alexa.com/topsites, https://moz.com/top500
11 https://www.gnu.org/software/wget/



The experimental setup is meant to simulate what would happen if a developer would
switch their h1 site to h2 by naively moving all their own assets over to a single server
(disabling sharding) but still downloading some external assets from third party servers (e.g.,
Google analytics, some JS libraries). This approach is similar to the one adopted in [27].
We expect to see good h2 performance compared to h1, as the latter has only six parallel
connections to work with and h2 can optimally use its single TCP connection.

The results for corpus A are from server NGINX v1.10, browsers Google Chrome v54
and Mozilla Firefox v49 and test runner webpagetest v2.19. Each page was loaded at least 10
times. The results for corpus B were obtained later during our research through the standard
H2O server v2.1, Google Chrome v58, Mozilla Firefox v54 and webpagetest v3.0. Each page
was loaded at least 20 times. We will display the median values. For more details on both test
corpora and the Speeder setup, we refer to our website (see Sect. 3).

8.2 Experimental Results

Figure 7 shows the median loadEventEnd and SpeedIndex measurements for corpus A
over Good and Poor networks. Globally, we can state that loadEventEnd and SpeedIndex
are often similar for the three protocols on the Good network, indicating that the page load
times of the tested pages are mostly network dependent, with the rendering having to wait for
assets to come in. This explains why Poor network conditions can have a very large impact on
page load time performance (see Fig. 7(right)). In various cases, h2’s SpeedIndex is far above
that of h1 even if their loadEventEnd values are similar, indicating that h2 is slower to
start rendering, consistent with our observations in Sect. 4.3. h1c is faster than h2 in almost
all of the cases and h2 is almost never much faster than h1s. Note that this is somewhat
against our hypothesis, as h1s has to make due without the benefits of sharding. A more
in-depth discussion of some of the outliers in Fig. 7 can be found in [18].

Looking more closely at the results for Poor networks in Fig. 7, we see that h2 is
sometimes much slower than h1 but sometimes is also relatively similar. Given the limited
size of corpus A, it was difficult to pinpoint the underlying reasons for this inconsistent
behaviour. Suspecting that the total page size and amount of objects on the page had a large
influence (both from the corpus A results and our synthetic tests in Sect. 4), we ran additional
tests on the larger corpus B. The results in Fig. 8 show that our thesis was indeed correct: the
low-weight pages (left) have similar SpeedIndex performance for h1s and h2s even on
the Poor network, while for the heavier pages (right) h2 clearly suffers. The results for the
loadEventEnd metric showed similar though less pronounced trends for the Poor network
and only small differences in the three protocols’ measurements on the Good network.

Finally, it is difficult to directly compare our results for realistic pages to related work,
since few authors present results from a large corpus of locally cloned web pages over various
network conditions with modern h2 implementations or for the SpeedIndex metric. The
closest related work loads pages directly on the internet via various networks and shows more
positive loadEventEnd results for h2 than our tests do, for example that 80% of pages on
faster networks clearly benefit from h2 [26]. This percentage is lower on slower networks
but there h2 typically also has a higher benefit. We are unable to confirm their findings with
our measurements. The most recent related work [31] loads pages over a high speed link and
concludes that 51% of the tested pages are ≥ 5% faster over h2 when compared to h1s,
which is also contradictory to our realistic test case results.
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Fig. 7. Nine realistic websites from corpus A on the dynamic Good and dynamic Poor network models.
There is very similar performance under Good network conditions, but h2 clearly suffers from Poor
conditions. Image taken from our previous work [18].
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9 Discussion

Conceptually, the ideal HTTP/2 setup will use a single TCP connection to multiplex a large
amount of small and individually cacheable site resources. This mitigates the HTTP/1.1
application-layer HOL blocking issue and helps to reduce the h1 overhead of many parallel
connections, while also maximizing the efficiency of the underlying TCP protocol. Together
with advanced resource prioritization strategies, Server Push and HPACK header compression,
this can lead to (much) faster load times than are possible today over h1, with less overhead.

Unfortunately, as our experiments have shown, this ideal setup is not yet viable. While
h2 is indeed faster than h1 when loading many small files (Fig. 1 and 2), it is still often
slower than loading concatenated versions of those files over h2 (Sect. 4.2). Looking at the
SpeedIndex metric results (Fig. 3, 7 and 8) also shows that h2 is frequently later to start
rendering the page than h1. HTTP/2 also struggles when downloading large files (Fig. 1 and
8) and its performance can quickly deteriorate when used in bad network conditions. In our
observations, h2 is in most cases currently either a little slower than or on a par with h1
and shows both the most improvement and worst deterioration in extreme circumstances.

The good news is that almost all of the encountered problems limiting h2’s performance
seem to be due to inefficient implementations in the used server and browser software.
Firstly, while loading many smaller files incurs its own considerable browser overhead, the
comparison of Chrome and Firefox in Fig. 2 tells us that this overhead can be reduced, as
Firefox seems to have especially optimized its pipeline for large amounts of files. Secondly,
the fact that h2 is later to start rendering than h1 is also due to ineffective processing of the
h2 data, since we have confirmed that resources are received well in time to enable faster
first paints (Sect. 4.3). Thirdly, several cases in which h2 underperformed could be attributed
to the server or browser not correctly (re-)prioritizing individual assets (Sect. 5 and 6). As
these implementations mature, we can expect many of these issues to be resolved.

However, h2 still retains some core limitations, mostly due to its single underlying TCP
connection, which seems to simultaneously be its greatest strength and weakness. TCP’s
congestion control algorithms can lead h2 to suffer significantly from packet loss on Poor



networks (most obvious when downloading multiple large files (Fig. 1 and 8)) and can
heavily impact the effectiveness of h2 on newly established connections (Sect. 6). We have
to nuance these statements however, as in practice h2 actually performs quite admirably and
usually does not suffer more from bad networks than h1, despite using fewer connections.
Additionally, we have found that h2 can also benefit from using multiple connections in bad
networks, especially in the cases where its performance problems are greatest.

The other discussed h2 performance aspects do not seem to have as large an impact
as the use of the single TCP connection. While prioritization is certainly important, the
exact strategy that is used seems to have relatively little impact in most cases. Chrome and
Firefox use wildly different algorithms to build their dependency trees (Sect. 5). Similarly,
HPACK has only a limited impact on the total used bandwidth for most normal cases and
will probably not directly affect individual page load times (Sect. 7). Finally, h2 Server Push
sounds like a powerful optimization but takes a lot of work and special network setup (e.g.,
CDN intermediaries) to save more than a single RTT on a page load (Sect. 6). Further work
is needed to determine how to optimize both h2 resource prioritization and Server Push.

Recognizing that the core h2 performance problems stem primarily from the use of TCP,
the new QUIC protocol [6] implements its own application-layer reliability and congestion
control logic on top of UDP. QUIC removes the transport-layer HOL blocking by allowing
out-of-order delivery of packets, differently handles re-transmits in the case of loss, reduces
the amount of round-trips needed to establish a new connection and allows larger initial data
transmissions. Running h2 on top of QUIC could greatly benefit h2’s multiplexing setup.

As such, we can conclude that the HTTP/2 protocol specification is a solid foundation
for the next steps in bringing better page load performance to the web and reducing overall
overhead. It will however take some time for implementations to mature and the QUIC
protocol to be finalized before we will see its largest benefits in practice.

10 Conclusion

In this work we have discussed and evaluated four salient performance-related aspects of the
new HTTP/2 protocol: using a single underlying TCP connection (Sect. 4), prioritization of
multiple resources over this single connection (Sect. 5), the new Server Push construct (Sect.
6) and HPACK header compression (Sect. 7). Our evaluation was comprehensive and varied,
looking both at synthetic and realistic test cases, over a variety of software, performance
metrics and emulated network conditions.

Our results have shown that the switch to the single multiplexed TCP connection has
by-and-large the biggest performance impact when comparing h2 to h1’s multiple parallel
connections. While in most cases h2 performs similarly to or slightly better than h1 (while
inducing much less overhead), poor network conditions coupled with large files can cause
h2’s performance to deteriorate. The emerging QUIC protocol might help h2 overcome
these problems by switching to UDP, while in the mean time using multiple concurrent h2
connections can also help.

Other discovered performance problems, such as h2 delaying the time to start rendering
web page content, were likely to stem primarily from incomplete or erroneous h2 implemen-
tations and are expected to be solvable in time. Similarly, prioritization and Server Push both
have potential but require future work to determine their best practices.
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