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with flexible correlation structure
Zhen Jianga∗, Yimeng Liua, Abdus S. Waheda and Geert Molenberghsb

Adherence to medication is critical in achieving effectiveness of many treatments. Factors influence adherence
behavior have been the subject of many clinical studies. Analyzing adherence is complicated because it is often
measured on multiple drugs over a period of time, resulting in a multivariate longitudinal outcome. This paper is
motivated by the Virahep-C study, where adherence is measured on two drugs as a bivariate ordinal longitudinal
outcome. To analyze such outcome, we propose a joint model assuming the multivariate ordinal outcome arose
from a partitioned latent multivariate normal process. We also provide a flexible multilevel association structure
covering both between and within outcome correlation. In simulation studies, we show that the joint model
provides unbiased estimators for regression parameters, which are more efficient than those obtained through
fitting separate model for each outcome. The joint method also yields unbiased estimators for the correlation
parameters when the correlation structure is correctly specified. Finally, we analyze the Virahep-C adherence
data and discuss the findings. Copyright c© 0000 John Wiley & Sons, Ltd.

Keywords: Adherence; Generalized estimating equations; Joint model; Latent variable model;
Multivariate ordinal longitudinal data

1. INTRODUCTION

1.1. Medication Adherence

Medication adherence is defined as the extent to which patients follow their prescribed treatment regimens. It can be
measured using many methods including pill counts, self-reporting, monitoring drug concentration, and electronic pill
monitors. Adherence is critical for achieving effectiveness of many medical treatments. Poor adherence often results
in lack of treatment effects, worsening of diseases, and increased health care costs.1–3 Unfortunately, poor adherence
is common even in well-monitored clinical trials, especially in treating chronic diseases such as hypertension4 and
psychiatric illness.5 Analyzing adherence data is complicated because adherence is often measured on multiple drugs
over a period of time, resulting in a multivariate longitudinal outcome.
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The example motivated this paper is the Viral Resistance to Antiviral Therapy of Chronic Hepatitis C (Virahep-C) study,
which assesses the response rates to the peginterferon and ribavirin therapy among African American (AA) and Caucasian
American (CA) patients with chronic hepatitis C of genotype 1.6 The primary objective is to investigate why many
patients, more specifically three-fourths of the AA patients, failed to response to the current optimal treatment.6 Because
literature in HCV research has indicated that patients’ treatment responses are affected by how closely prescribed treatment
regimens are followed,6–8 one hypothesis is that patients’ poor responses could be attributed to poor adherence. Our goal
is to identify potential influential factors for medication adherence, and to study the association between adherence to
peginterferon and adherence to ribavirin.

In the Virahep-C study, all participants were to receive peginterferon once weekly and ribavirin twice daily. Adherence
to peginterferon was dichotomized into adherent or non-adherent. Adherence to ribavirin was categorized as fully
adherent, partially adherent, or non-adherent. Therefore, each patient’s adherence outcome consists of two longitudinal
measurements: one is binary and the other is ordinal. Any patients’ adherence status cannot be fully characterized by
any one of the two measurements. And these two measurements from the same patient are expected to be correlated and
may be affected by similar set of factors. Therefore, rather than fitting separate models, joint modeling of this bivariate
longitudinal outcome is preferred. The joint modeling approach may also provides estimates for the correlation between
two adherence outcomes, which is of our interest.

2. JOINT MODELING

To jointly model the multivariate ordinal longitudinal outcome, one general strategy is to specify its joint density. Verbeke
and Davidian,9 and Molenberghs and Verbeke10 reviewed several modeling approaches to construct such joint density.
The first approach, multivariate marginal models, directly specifies the joint density of the multivariate outcome. Bivariate
Plackett distribution,11 and multivariate distributions within the exponential family12 have been proposed. This approach
gives direct marginal inference, but it requires strong distributional assumptions and would be mathematically challenging
for higher dimensions. The second approach, conditional models, specifies a marginal model for one outcome, which the
modeling of other outcomes will be conditioned on. Tate,13 and Little and Schluchter14 developed different methods
following this idea. However, this approach does not provide direct marginal inference. The third approach, shared
parameter models, specifies a common random effect in the marginal model for each outcome. Such shared random
effect will naturally introduce correlation among multiple outcomes. This approach allows for flexible marginal models
and can be easily extended to higher dimensions. However, it also imposes strong restrictions on the association structure,
which forces the pairwise correlation between two different outcomes to be equal to the pairwise correlation from one
outcome times the correlation from the other outcome.9 The fourth approach, random-effect models, specifies model
specific random effect for each outcome. It enables flexible within and between outcome correlation structure, but causes
the dimensions of random effects to increase as the number of outcomes increases. This may not be an issue with fewer
outcomes, but it would pose computational issues in fitting models with higher number of outcomes.

The other general strategy, to jointly model the multivariate longitudinal outcome, is to use generalized estimation
equation (GEE) based methods, where only the marginal means and the association structure of the joint density are
specified. Since the introduction of GEE, numerous improvements have been made for binary and ordinal outcomes.
For binary outcomes, correlation15 and odds ratio16, 17 have been used as the association measure. Qu et al.18 proposed
a latent variable model with a tetrachoric correlation for clustered binary outcomes. For ordinal outcomes, inverse of
the Fisher’s Z transformation19 and the global odds ratio20 have been used as the association measure. Qu et al.21 also
extended their previous work for ordinal outcomes with a polychoric correlation. However, it was limited to univariate
ordinal longitudinal outcome.

Joint modeling of the multivariate ordinal longitudinal outcome using GEE based methods is complicated with two
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main challenges. The first one is how to link all longitudinal outcomes together and what association measure to use.
The second one is how to model the multilevel correlation structure nested in the data (e.g., within and between outcome
correlation, subject level correlation, correlation between distinct outcomes at different times, etc.). To analyze this type
of data, Lipsitz et al.22 developed a joint GEE method for the multivariate binary longitudinal outcome. Sutradhar et al.23

proposed a GEE based method which accounts for the complex between and within outcome correlation as well as the
structural correlation from the ordinal nature of the outcomes.

In this paper, we propose a joint modeling approach based on GEE to simultaneously model multiple ordinal
longitudinal outcomes. The proposed method models the marginal means and the association structure separately. The
marginal probability models can be flexible (e.g. cumulative logit model, probit model). The association structure is
assumed to have arisen from a latent multivariate normal process, which provides a flexible framework for multilevel
correlation structure. In this paper, we demonstrate the structure of the proposed joint model, illustrate the flexible
framework for multilevel correlation structure, and provide the inference procedure in Section 3. In Section 4, we assess
the performance of the proposed joint model via simulation studies. In Section 5, we compare the analysis of Virahep-C
data based on fitting separate models and the proposed joint model. We conclude the paper with discussions in Section 6.

3. THE PROPOSED JOINT MODEL AND INFERENCE

3.1. Marginal Probability Models

Let us denote Yijt as the ith (i = 1, . . . , n) subject’s jth (j = 1, . . . , J) outcome observed at time t (t = Tj1, . . . , Tjnij ),
where Yijt is a ordinal outcome takes value from {0, . . . ,Kj − 1}. The response vector Yi of the ith subject is formed as
Yi = (Y ′

i1, . . . , Y
′
iJ)′, where Yij=(YijTj1 , . . . , YijTjnij

)′. Also, let Xit = (xit1, . . . , xitp) be the covariate vector for the
ith subject at time t, βj = (βj1, βj2, . . . , βjp)

′ be the regression coefficient vector, and aj = (aj0, aj1, . . . , ajKj−2)′ be the
(Kj − 1) dimensional intercept vector for the jth outcome.

Let γijtk = Pr (Yijt ≤ k) and πijtk = Pr (Yijt = k). We assume γijtk depends on covariates Xit through a cumulative
logistic regression model as:

γijtk = Pr
(
Yijt ≤ k | Xit,βj ,aj

)
=

exp(ajk + XT
itβj)

1 + exp(ajk + XT
itβj)

, and (1)

πijtk = Pr
(
Yijt = k | Xit,βj ,aj

)
= γijtk − γijtk−1

=
exp(ajk + XT

itβj)

1 + exp(ajk + XT
itβj)

−
exp(ajk−1 + XT

itβj)

1 + exp(ajk−1 + XT
itβj)

. (2)

For simplicity, we assume that each outcome has the same set of covariates, although each outcome can have its own set
of covariates. We denote β = (a′1,β

′
1,a
′
2,β
′
2, . . . ,a

′
J ,β

′
J)′ as the overall regression parameter vector.

3.2. Joint Probability Model

We denote γi,jtk,j′t′k′ = Pr (Yijt ≤ k, Yij′t′ ≤ k′) (k = 0, . . . ,Kj − 1 ; k′ = 0, . . . ,K ′j − 1) as the pairwise joint
cumulative probability of Yijt and Yij′t′ . We assume that Yijt and Yij′t′ originate from a bivariate normal distribution

(u, v) ∼ N

((
0

0

)
,

(
1 ρijt,ij′t′

ρijt,ij′t′ 1

))
, which is partitioned by threshold values Φ−1(γijtk) and Φ−1(γij′t′k′).

More specifically, Yijt ≤ k when u ≤ Φ−1(γijtk) and Yij′t′ ≤ k′ when v ≤ Φ−1(γij′t′k′) . Therefore, γi,jtk,j′t′k′ and
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πi,jtk,j′t′k′ can be expressed as:

γi,jtk,j′t′k′ = Pr(Yijt ≤ k, Yij′t′ ≤ k′) =

∫ Φ−1(γijtk)

−∞

∫ Φ−1(γij′t′k′ )

−∞
φ2(u, v, ρijt,ij′t′) dudv, (3)

πi,jtk,j′t′k′ = Pr(Yijt = k, Yij′t′ = k′) =

∫ Φ−1(γijtk)

Φ−1(γijtk−1)

∫ Φ−1(γij′t′k′ )

Φ−1(γij′t′k′−1)

φ2(u, v, ρijt,ij′t′) dudv, (4)

where Φ is the cdf of a standard normal distribution, φ2 is the pdf of a bivariate normal distribution. The correlation
ρijt,ij′t′ is also referred to as the polychoric correlation, which is not restricted by marginal probabilities and the number
of parameters does not increase as the number of categories of the ordinal outcome increases.21 We will discuss the
structure of ρijt,ij′t′ in section 3.3.

The proposed pairwise joint probability ensures the marginal cumulative probability is still Φ
(
Φ−1(γijtk)

)
= γijtk.

Only the pairwise joint probability or the second moment is affected by the latent multivariate normal assumption and
pairwise correlation ρijt,ij′t′ . Therefore, the consistency of marginal regression parameters β is not affected even when
the latent normal process and/or the correlation structure are misspecified.

This method of modeling joint cumulative probability can be viewed as a multivariate threshold model,18, 21, 24 which
assumes the

∑J
j=1 nij × 1 dimensional response vector Yi is observed from partitioning a

∑J
j=1 nij × 1 dimensional

latent random vector εi, where εi follows a multivariate normal distribution with mean zero and correlation matrix R, and
yijt = k when Φ−1(γijtk−1) < εijt ≤ Φ−1(γijtk).

3.3. Correlation Structure

We develop a general framework to model the multilevel association structure, which includes the association within the
outcome at different time points, and the association between different outcomes at the same or different time points, or
even subject level association. It is motivated by the correlation model proposed by Lipsitz et al.22 and can be viewed as a
natural extension of common univariate correlation structures (e.g. autoregressive(AR), exchangeable, and m-dependent).
For example, we construct an extended AR-type correlation as:

ρijt,ij′t′ = α
|t−t′|
jj′ × αI(j 6=j

′)
2jj′ , (5)

where −1 ≤ αjj′ ≤ 1 and −1 ≤ α2jj′ ≤ 1. In the extended AR-type correlation, responses from the same outcome at
different time points have an AR(1) correlation ρijt,ij′t′ = α

|t−t′|
jj′ ; responses from different outcomes at different time

points have a weighted AR(1) correlation ρijt,ij′t′ = α
|t−t′|
jj′ × α2jj′ with weight equals α2jj′ ; and responses from different

outcomes at the same time point have correlation ρijt,ij′t′ = α2jj′ . Similarly, we construct an extended exchangeable
correlation and an extended m-dependent correlation as follows:

ρijt,ij′t′ = αjj′ × αI(j 6=j
′)

2jj′ , and (6)

ρijt,ij′t′ = αjj′|t−t′| × α
I(j 6=j′)
2jj′ . (7)

For the extended AR-type and exchangeable correlation in (5) and (6), only J2 and 1
2 (J2 + J) correlation parameters are

needed for J longitudinal outcomes. More parameters are required for the extended m-dependent structure in (7), where
the estimation of correlation parameter α may be computationally intensive.

This general framework can be easily extended to model more than two levels of association. For example, when patients
at the same hospital are assumed to be clustered, the pairwise correlation structure with three levels of association can be
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written as:

ρijt,i′j′t′ = α
|t−t′|
jj′ × αI(j 6=j

′)
2jj′ × αI(i 6=i

′)
3jj′ , (8)

ρijt,i′j′t′ = αjj′ × αI(j 6=j
′)

2jj′ × αI(i6=i
′)

3jj′ , (9)

ρijt,i′j′t′ = αjj′|t−t′| × α
I(j 6=j′)
2jj′ × αI(i 6=i

′)
3jj′ , (10)

where only an extra parameter α3jj′ is required. One can construct even more flexible correlation structures by combining
different correlation structures at different levels as discussed in Section 6.

In summary, the proposed joint model and correlation structure address both challenges for GEE based methods
discussed in Section 2. First, we assume a latent multivariate normal process to link each longitudinal outcome together
and use the polychoric correlation as the association measure. Second, we construct a flexible framework to model the
multilevel correlation structure.

3.4. INFERENCE

To draw inference, the outcome variable Yijt with Kj categories is first transformed into a (Kj − 1) dimensional binary
vector Zijt = (zijt0, zijt1, . . . , zijtKj−2), where

zijtk =

{
1 if Yijt = k

0 if Yijt 6= k k = {0, . . . ,Kj − 2},
and

πijtk = Pr
(
Yijt = k | Xit,βj ,aj

)
as in (2).

It follows that the
∑J

j=1 nij dimensional ordinal response vector Yi can be transformed into a
∑J

j=1 nij(Kj − 1)

dimensional binary vector Zi with πi=E(Zi). Our inference procedure is based on this dichotomized outcome variable
Zi.

Had the correlation parameter α been known, the regression parameter β can be estimated by solving generalized
estimating equations for Zi as:

N∑
i=1

DT
i (β)Σ−1

i (α,β){Zi − πi(β)} = 0, (11)

where πi(β) is defined in (2), and Di(β) = δ

δβ
πi(β) is the partial derivative of πi(β) with respect to β. For example,

the derivative of πijtk(β) with respect to βj is given by:

δ

δβj
πijtk(β) =


XT

it

exp(ajk+XT
itβj)

(1+exp(ajk+XT
itβj))

2 k = 0,

XT
it

[
exp(ajk+XT

itβj)

(1+exp(ajk+XT
itβj))

2 −
exp(ajk−1+XT

itβj)

(1+exp(ajk−1+XT
itβj))

2

]
k ≥ 1.

(12)

The variance-covariance matrix Σ−1
i (α,β) of Zi can be defined as:

Σi(α,β) =


Σi11(α,β) Σi12(α,β) . . . Σi1J(α,β)

Σi21(α,β) Σi22(α,β) . . .
...

...
...

. . .
...

ΣiJ1(α,β) ΣiJ2(α,β) . . . ΣiJJ(α,β)

 , (13)
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where Σijj′(α,β) =


Σi,jTj1,j′Tj′1(α,β) Σi,jTj1,j′Tj′2(α,β) . . . Σi,jTj1,j′Tj′n

ij′
(α,β)

Σi,jTj2,j′Tj′1(α,β) Σi,jTj2,j′Tj′2(α,β) . . .
...

...
...

. . .
...

Σi,jTjnij
,j′Tj′1(α,β) Σi,jTjnij

,j′Tj′2(α,β) . . . Σi,jTjnij
,j′Tn

ij′
(α,β)

 . (14)

The matrix Σijt,j′t′ = cov(Zijt, Zij′t′) is a (Kj − 1)× (K ′j − 1) dimensional variance-covariance matrix. When j = j′

and t = t′, Σijt,j′t′ represents the structural correlation that arose from the polytomous nature of the ordinal outcome Yijt.
When j 6= j′ or t 6= t′, Σijt,j′t′ represents the correlation arose from the latent bivariate normal process for Yijt and Yij′t′ .

Let us denote σi,jtk,j′t′k′ as the (k, k′)th element of Σijt,j′t′ . One can show that:

σi,jtk,j′t′k′ =

{
−πijtkπij′t′k′ k 6= k′

πijtk(1− πij′t′k′) k = k′
j = j′ and t = t′, (15)

σi,jtk,j′t′k′ = πi,jtk,j′t′k′ − πijtkπij′t′k′ j 6= j′ or t 6= t′, (16)

where πijtk and πij′t′k′ are the marginal probabilities given by (2) and πi,jtk,j′t′k′ is the pairwise joint probability given
by (4). Thus, Σi depends on the correlation parameter α through the assumed latent random normal process.

Now, we can solve (11) using an iterative equation:

β̃
(m+1)

= β̃
(m)

+

(
N∑
i=1

DT
i (β̃

(m)
)Σ−1

i (α, β̃
(m)

)Di(β̃
(m)

)

)−1 N∑
i=1

DT
i (β̃

(m)
)Σ−1

i (α, β̃
(m)

)(Zi − πi(β̃
(m)

)). (17)

In order to estimate the unknown α in above equation, we first construct a matrix Si as the product of centralized Zi

given by:
Si(β) = (Zi − πi(β))(Zi − πi(β))′. (18)

Notice that E(Si(β)) is the variance-covariance matrix of Zi under the joint model (i.e. Σi(α,β)). Therefore, one can view
Si(β) as the “observed outcome” and Σi(α,β) as the “expected mean” in estimatingα given β under the joint model. Let
si(β) = vech(Si(β))25 be the vectorzied version of the upper diagonal elements in Si(β) and σi(α,β) = vech(Σi(α,β))

be the counterpart of Σi(α,β). Given β, one can estimate the correlation parameterα by minimizing sum of the Euclidean
norms of (si(β)− σi(α,β)) as:

N∑
i=1

(si(β)− σi(α,β))T (si(β)− σi(α,β)), (19)

with respect to α, which is equivalent to solving the following generalized estimating equation for α when β is given:

N∑
i=1

∂σi(α,β)

∂α

T

{si(β)− σi(α,β)} = 0. (20)

Now we can carry out the iterative estimation procedure in the following manner:
Step 1: Obtain an initial estimate of β denoted as β̂

0
from fitting separate model to each outcome;

Step 2: Estimate α̂0 by minimizing Equation (19) with β replaced by β̂
0
;

Step 3: Solve for β̂
1

from generalized estimating Equation (11) with α replaced by α̂0.
Step 4: Iterate between Steps 2 and 3 until convergence criteria are fulfilled for both α and β.

Let us denote the solution from Step 4 as α̂ and β̂. The α̂ is obtained by minimizing Equation (19). Therefore, α̂ is a
least square estimate, which is consistent and asymptotically normal.26, 27 The β̂ obtained from above iterative procedure
is also consistent and follows an asymptotic normal distribution with mean β and a variance-covariance matrix that can
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be estimated by the robust variance estimator proposed by Liang and Zeger28 as follows:

ˆcov(β̂) = An
−1BnAn

−1 (21)

where An =

N∑
i=1

Di(β̂)TΣi(α̂, β̂)−1Di(β̂)

Bn =

N∑
i=1

Di(β̂)TΣi(α̂, β̂)−1(Zi − πi(β̂))(Zi − πi(β̂))TΣi(α̂, β̂)−1Di(β̂).

Therefore, the confidence intervals and hypothesis testing for β can be constructed using the Wald method.

4. SIMULATION STUDY

To examine the proposed joint model, we performed a series of simulation studies. For simplicity, we assumed each
subject i has one ordinal longitudinal outcome with three categories and 5 repeated measurements at t = 0, 1, 2, 3, 4

as Yi1=(Yi10, Yi11, Yi12, Yi13, Yi14)′ plus one binary longitudinal outcome with 3 repeated measurements at t′ = 0, 2, 4

as Yi2=(Yi20, Yi22, Yi24)′. Thus, each subject has a 8× 1 dimensional response vector Yi = (Y ′
i1, Y

′
i2)′. Similar to the

Virahep-C study, these two outcomes are measured at different time points by design.
We used cumulative logistic model and logistic model to specify the true marginal probabilities for the two outcomes.

For each subject, we constructed one time covariate Ti as above and one baseline covariate Xi generated from a
Bernoulli(0.5) distribution. Let β1 = (β1x, β1t), a1 = (a10, a11) be the coefficients and intercept for the ordinal outcome,
and β2 = (β2x, β2t), a2 = a20 be the coefficients and intercept for the binary outcome. We constructed the marginal
cumulative probabilities for both outcomes γi = (γi1,γi2) by (1) where γi1 = (γi10,γi11,γi12,γi13,γi14) and γi2 =

(γi20,γi22,γi24).
To construct the latent multivariate normal process, we generated a 8× 1 random vector

εi=(εi10, εi11, εi12, εi13, εi14, εi20, εi22, εi24). εi follows a multivariate normal distribution with correlation R. R is a
function of the correlation parameter α = (α11, α22, α12, α212). In this simulation study, we constructed R as either an
extended AR-type correlation as in (5) or an extended exchangeable correlation as in (6). After obtaining the marginal
probabilities and the latent process εi, each element of the response vector Yi can be generated as:

Yi1t =


0, if 0 < Φ(εi1t) ≤ γi1t0,
1, if γi1t0 < Φ(εi1t) ≤ γi1t1,
2, if γi1t1 < Φ(εi1t) < 1, t ∈ {0, 1, 2, 3, 4}, and

Yi2t′ =

{
0, if 0 < Φ(εi2t′) ≤ γi2t′0,
1, if γi2t′0 < Φ(εi2t′) < 1, t′ ∈ {0, 2, 4}.

The above process ensures the response vector Yi has the specified marginal probabilities given by (1) and the specified
correlation based on the latent normal process given by either (5) or (6).

We examined different correlation structures and parameters. For each scenario, M = 1000 Monte-Carlo datasets with
n = 100 and n = 50 subjects were generated. We fitted three models to each dataset:
(1) sep-GEE: separately fitting the ordinal outcome and the binary outcome using GEE;
(2) Joint GEE Independence: fitting the proposd joint model with independent correlation structure;
(3) Joint GEE: fitting the joint model where the correlation parameter α and the regression parameter β are estimated.

We conducted all analyses using R version 3.3.0. Table 1 shows the simulation results with n = 100 subjects.
We examined four sets of α representing strong and moderate correlation for the extended AR-type and extended
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exchangeable correlation. The regression coefficients are estimated along with their Monte-Carlo variances and robust
sandwich variance estimates. Table 1 shows the estimators for regression coefficients are unbiased in all models, because
GEE estimators remain unbiased even with misspecified correlation.28 In addition, the coverage probabilities for all models
are close to the nominal level and the robust variance estimates are close to the Monte-Carlo variances. This implies the
robust variance estimators are approximately unbiased even with misspecified correlation.

However, when the joint model is adopted with the correct correlation structure, the estimators gain efficiencies, in some
cases, by up to 18%. Generally, the efficiency gains increase as the correlation increase. More specifically, the efficiency
gains of baseline covariates for the binary outcome (β̂2x) are 18% and 11% in scenarios 1 and 3, and 6% and 1% in
scenarios 2 and 4. The estimates of time covariates for both outcomes (β̂1t, β̂2t) have efficiency gains up to 12% and 17%
in scenarios 1 and 3, and 3% and 1% in scenarios 2 and 4. The estimate of baseline covariate for the ordinal outcome (β̂1x)
has a slight efficiency gains up to 4%. Supplementary Table 1 lists results with n = 50 subjects, which is similar to Table
1, except the standard errors for the estimates are larger due to the smaller sample size.

When the correct correlation structure is specified, Table 2 shows that the joint model yields unbiased estimates for
correlation parameters, which may be of further interest for assessing the association among multiple outcomes.

To check the robustness of the proposed joint model for misspecified correlation structure, we generated data with the
extended exchangeable and AR-type correlations. In both cases, we fitted the sep-GEE and joint model with extended
AR-type and exchangeable correlation. Table 3 shows the performance of the joint model when the working correlation
structure is misspecified. The estimators for regression coefficients remain unbiased with coverage probabilities close
to the nominal level. However, variance of the estimates is the smallest with the correct correlation structure. And the
efficiency gains decrease with misspecified working correlation structure. In some cases, specifically with misspecified
correlation structure, the joint model might results in efficiency loss compared to separate modeling. The exchangeable
correlation structure appears to be more robust than the independence structure (sep-GEE) and the AR correlation structure
in terms of maintaining the coverage and efficiency against misspecification of the true correlation structure.

To investigate higher dimensional situations, we performed an additional simulation study with three longitudinal
outcomes (one four-category ordinal outcome with 4 repeated measurements and two binary outcomes with 3 repeated
measurements each). The results listed in supplementary Table 2 shows the proposed joint model still has efficiency gains
but at the cost of increased computational time.

5. VIRAHEP-C STUDY DATA ANALYSIS

The Virahep-C Study is a nonrandomized, multicenter clinical study sponsored by the National Institute of Diabetes
and Digestive and Kidney Diseases (NIDDK). A total of 401 patients, 196 African American (AA) and 205 Caucasian
American (CA), were enrolled. All participants were to receive treatments with peginterferon alfa-2a (180µg/wk) once
weekly and ribavirin (1000-1200mg/day) twice daily. In this study, monitors placed on prescription bottles, referred to as
MEMS caps (Medication Event Management System, Aardex, Zug, Switzerland), were used to monitor drug consumption.
These MEMS caps continuously recorded time when the prescription bottles were closed, which was assumed to be the
time drugs were taken. Based on the daily cap closing, patients’ adherence to daily ribavirin was categorized as fully
adherent (2 or more closings), partially adherent (1 closing), or non-adherent (no closings). Patients’ adherence to weekly
peginterferon was characterized as fully adherent (at least 1 closing) and non-adherent (no closings). Therefore, each
patient’s adherence outcome consists of one binary and one ordinal longitudinal responses. Although participants in the
Virahep-C study continued treatments for up to 48 weeks, it is believed that adherence during the first 12 weeks is more
important to achieve positive responses to therapy.8 Hence, our analysis primarily focus on the first 12 weeks.

Figure 1 shows the overall trend of adherence to peginterferon and ribavirin fitted using lowess splines for AA and CA
patients. On average, patients remain adherent to peginterferon during the first 12 weeks, while adherence to ribavirin
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decreases over time. We also notice that CA patients have better adherence for both medications compared to AA patients.
There was a sudden drop in adherence to peginterferon during week 4 of the therapy. This drop is an artificial phenomenon
because patients were allowed to switch the day of peginterferon shot starting at week 4. Some patients started taking shots
during weekends instead of clinic visits, which are generally on weekdays. This resulted in some patients taking no shot
during week 4, but more than one shot during week 5.

We first present analysis results from fitting separate modeling using generalized estimating equations.28 With main
covariate of interest, race (CA:1, AA:0), remaining in the model, backward model selection was conducted. Four other
covariates with p value < 0.1 in the univariate model also remain in the final model including time (number of days
since the treatment was initiated), sex (male:1, female:0), baseline log HCV RNA level (vload), employment status
(unemployed:1, employed:0) along with time and race interaction. So, the marginal probability model for the ordinal
adherence to ribavirin can be expressed as follow:

log

(
Pr(Yi1t ≤ k)

1− Pr(Yi1t ≤ k)

)
=a1k + β1 × racei + β2 × t+ β3 × racei ∗ t+ β4 × sexi

+ β5 × vloadi + β6 × employi, (22)

where t = 0, 1, 2, . . . , 84 and k = 0, 1. Similarly, the marginal probability model for the binary adherence to peginterferon
can be expressed as follow:

log

(
Pr(Yi2t ≤ 0)

1− Pr(Yi2t ≤ 0)

)
=a20 + β′1 × racei + β′2 × t+ β′3 × racei ∗ t+ β′4 × sexi

+ β′5 × vloadi + β′6 × employi, (23)

where t = 0, 7, 14, . . . , 84. In above cumulative logistic and logistic models, a positive regression coefficient indicates a
higher probability of being in a lower adherence category.

We fitted both marginal models assuming an auto-regressive (AR) correlation structure. Table 4 shows the regression
parameter estimates. The main covariate of interest, race, is significantly associated with adherence to both peginterferon
and ribavirin. CA patients are more likely to be adherent to both drugs compared to AA patients. This is consistent with
previous study findings.6 Employment status is also significant in peginterferon adherence, but not ribavirin. Finally, the
coefficients of time for both outcomes are positive indicating patients became less adherent to their medications over time.

Even though it seems that separate modeling serves the purpose of finding predictors for individual medication
adherence outcome, it fails to account for the correlation between two longitudinal outcomes. The joint modeling approach
not only addresses this, but also provides an estimate of the correlation between two outcomes.

Therefore, we analyzed the data using the joint modeling approach. We assumed the same marginal models for both
longitudinal outcomes and further assumed an extended AR-type correlation between any pair of observations from the
same subject. More specifically, for each subject i, we defined the correlation structure as follows:

ρijt,ij′t′ =


α
|t−t′|
11 if j = j′ = 1

α
|t−t′|
22 if j = j′ = 2

α
|t−t′|
12 × α212 otherwise ,

where α11 represents the correlation between two ribavirin adherence events observed one day apart; α22 represents
corresponding correlation between two peginterferon adherence events; and α∆t

12 × α212 represents the correlation between
ribavirin adherence and peginterferon adherence observed ∆t days apart.

The correlation estimates from the joint model are α̂ = (α̂11, α̂22, α̂12, α̂212)=(0.20, 0.98, 0.99, 0.42). This suggests
that adherence to weekly peginterferon has much higher within-outcome correlation compared to daily ribavirin. Since
α̂12 = 0.99 is close to 1, it suggests that between outcome correlation does not decrease significantly as the length of time
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increases.
The regression estimates from the joint model are shown in Table 5. The effect of race is no longer statistically significant

for ribavirin adherence, and the p-value of race for peginterferon adherence is 0.053. Adherence has a statistically
significant decline over time for ribavirin but not for peginterferon. And employment status is the only patient characteristic
has a significant effect on the adherence to peginterferon. The odds ratio of being nonadherent to peginterferon is
exp(0.81) = 2.25 for a patient who is unemployed at baseline compared to an otherwise similar patient who is employed
at baseline.

6. DISCUSSION

Multivariate ordinal longitudinal outcome (e.g. medication adherence, patient reported quality of life outcome, etc.)
is common in biomedical research. In this paper, we propose a joint model with flexible correlation structure, which
addresses the two main challenges to analyze this type of data using GEE based methods. First, we use a latent multivariate
normal process to link each longitudinal outcome together and used the polychoric correlation as an association measure.
Second, we construct a flexible framework to model the multilevel correlation structure. The proposed joint model
accounts for both the between and within outcome association via the correlation of the latent multivariate normal process.
Such correlation is not restricted by the marginal probabilities. The simulation study indicates that estimators for the
joint model are unbiased and more efficient compared to those obtained from fitting separate GEEs when the correlation
structure is correctly specified. However, they may be less efficient in some cases with misspecified correlation structure.
As observed in the analysis results of the Virahep-C study, failure to account for the between outcome correlation can lead
to different conclusions.

In the proposed joint model, although we assumed the observed ordinal outcomes arose from a latent multivariate
normal process, as argued in Qu et al.,21 this assumption does not affect the consistency of β̂ and the estimation of
marginal probabilities. This is because the assumed latent normal process affects only the correlation parameters through
the pairwise joint probabilities, but not the marginal probabilities. Thus, even if the latent normal process is misspecified,
β̂ will remain unbiased, while α̂ can be viewed as approximations for the true correlation.

We demonstrated in Section 3.3 that the joint model can incorporate a flexible multilevel correlation structure as
extended AR-type (5), extended exchangeable (6), and extended m-dependent (7). One can construct even more flexible
correlation structures by combining different correlation types. For example, one can assume the measurements from the
same outcome has an AR(1) correlation ρjt,jt′ = α

|t−t′|
jj , while the measurements from different outcomes have either an

extended exchangeable correlation ρijt,ij′t′ = α2jj′ or an extended m-dependent correlation ρijt,ij′t′ = α2jj′|t−t′|. These
two mixed correlation structures can be written as:

ρijt,ij′t′ = α
|t−t′|×I(j=j′)
jj′ × αI(j 6=j

′)
2jj′ , and (24)

ρijt,ij′t′ = α
|t−t′|×I(j=j′)
jj′ × αI(j 6=j

′)
2jj′|t−t′|. (25)

One can also extend it to handle more than two levels of association (e.g. association due to sites). Although additional
correlation parameters are required, the estimation process remain the same. Because the proposed joint model uses the
least square method to estimate correlation parameter α, it provides consistent estimators for α. Unlike Liang and Zeger28

only provided formulas to estimate α for several simple correlation structures (e.g. exchangeable, AR, m-dependent).
We also investigated the performance of the proposed joint model in higher dimensional situations. In the simulation

scenarios considered in Section 4, joint modeling still resulted in efficiency gains that comes at the cost of increased
computing time. For example, we analyzed a dataset with sample size of 150, where each subject has one four-
category ordinal outcome with 4 repeated measurements and two binary outcomes with 3 repeated measurements each
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(Supplementary Table 2). Using the R codes provided with this paper, three separate GEE runs used approximately 2
seconds in total compared to 1200 seconds for the joint model.

In the Virahep-C Study, adherence data were collected via digital caps, and hence data were rarely missing. However,
missing data are usually inevitable for most longitudinal outcomes. Standard GEE inference is valid only when data
are complete or missing completely at random (MCAR). The proposed estimators will be biased if data are missing at
random (MAR). There are two general approaches to obtain consistent estimators with MAR data under GEE framework:
multiple imputation29, 30 and inverse probability weighting.31 The idea of multiple imputation is to fill in imputed data
and then apply standard GEE methods. Multiple imputation can be implemented by commonly available softwares, such
as PROC MI and PROC MIANALYZE in SAS. The inverse probability weighting (IPW) method was first introduced
in survey studies.32 Robins et al.31 proposed a class of IPW estimating equation, which extends the standard GEE
method to MAR data. Later, Yi and Cook33 proposed a weighted second-order estimating equations, where the inverse
probability weighting was applied to both mean and association parameters. Therefore, it provides consistent estimators
for both marginal mean parameters and association parameters. Such weighted second-order estimating equation can be
implemented to the proposed joint model in dealing with MAR data. This is beyond the scope of this paper and will be
presented in a separate paper.

References

1. Osterberg L, Blaschke T. Adherence to Medication. N Engl J Med. 2005;353(5):487-497.

2. Horwitz RI, Horwitz SM. Adherence to treatment and health outcomes. Arch Intern Med. 1993;153(16):1863-1868.

3. LaRosa JC. Poor compliance: the hidden risk factor. Curr Atheroscler Rep. 2000;2(1):1-4.

4. Waeber B, Leonetti G, Kolloch R, McInnes GT. Compliance with aspirin or placebo in the Hypertension Optimal Treatment(HOT) study. J Hypertens.

1999;17(7):1041-1045.

5. Nose M, Barbui C, Gray R, Tansella M. Clinical interventions for treatment nonadherence in psychosis: meta-analysis. Br J Psychiatry. 2003;183:197-

206.

6. Conjeevaram HS, Fried MW, Jeffers LJ, et al. Peginterferon and ribavirin treatment in African American patients and Caucasian American patients

with hepatitis C genotype 1. Gastroenterology. 2006;131(2):470-477.

7. Raptopoulou M, Tsantoulas D, Vafiadi I, et al. The effect of adherence to therapy on sustained response in daily or three times a week interferon

alpha-2b plus ribavirin treatment of naive and nonresponder chronic hepatitis C participants. J Viral Hepat. 2005;12(1):91-95.

8. Shiffman F, Bacon BR, Nelson D, et al. Peginterferon alfa-2a and ribavirin for 16 or 24 weeks in HCV genotype 2 or 3. N Engl J Med. 2007;357(2):124-

134.

9. Verveke G, Davidian M. Longitudinal Data Analysis. CRC Press; 2009.

10. Molenberghs G, Verbeke G. Models for Discrete Longitudinal Data. Springer; 2005.

11. Molenberghs G, Geys H, Buyse M. Evaluation of surrogate endpoints in randomized experiments with mixed discrete and continuous outcomes. Stat

Med. 2001;20(20):3023-3038.

12. Prentice RL, Zhao LP. Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics.

1991;47(3):825-839.

13. Tate RF. Correlation between a discrete and a continuous variable. Ann Math Statist. 1954;25(3):603-607.

14. Little RJA, Schluchter MD. Maximum likelihood estimation for mixed continuous and categorical data with missing values. Biometrika.

1985;72(3):497-512.

15. Prentice RL. Correlated binary regression with covariates specific to each binary observation. Biometrics. 1988;44(4):1033-1048.

16. Liang KY, Zeger SL, Qaqish B. Multivariate regression analyses for categorical data. J R Stat Soc Series B Stat Methodol. 1992;54(1):3-40.

17. Carey V, Zeger SL, Diggle P. Modelling multivariate binary data with alternating logistic regressions. Biometrika. 1993;80(3):517-526.

18. Qu Y, Williams GW, Beck GJ, Medendorp SV. Latent variable models for clustered dichotomous data with multiple subclusters. Biometrics.

1992;48(4):1095-1102.

19. Miller ME, Davis CS, Landis JR. The analysis of longitudinal polytomous data: Generalized estimating equations and connections with weighted least

squares. Biometrics. 1993;49(4):1033-1044.

20. Williamson JM, Kim K, Lipsitz SR. Analyzing bivariate ordinal data using a global odds ratio. J Am Stat Assoc. 1995;90(432):1432-1437.

21. Qu Y, Piedmonte MR, Medendorp SV. Latent Variable Models for Clustered Ordinal Data. Biometrics. 1995;51(1):268-275.

Statist. Med. 0000, 00 1–18 Copyright c© 0000 John Wiley & Sons, Ltd. www.sim.org 11
Prepared using simauth.cls



Statistics
in Medicine Z.Jiang et al.

22. Lipsitz SR, Fitzmaurice GM, Ibrahim JG, Sinha D, Parzen M, Lipshultz S. Joint generalized estimating equations for multivariate longitudinal binary

outcomes with missing data: an application to acquired immune deficiency syndrome data. J R Stat Soc Ser A Stat Soc. 2009;172(1):3-20.

23. Sutradhar BC, Kovacevic M. Analysing ordinal longitudinal survey data: Generalised estimating equations approach. Biometrika. 2000;87(4):837-848.

24. Harville DA, Mee RW. A mixed model procedure for analyzing ordered categorical data. Biometrics. 1984;40(2):393-408.

25. Vonesh EF, Chinchilli VM. Linear and nonlinear models for the analysis of repeated measurements. CRC Press; 1996.

26. Jennrich R. Asymptotic properties of non-linear least square estimators. Ann Math Statist. 1969;40(2):633-643.

27. Eicker F. Asymptotic normality and consistency of the least squares estimators for family of linear regression. Ann Math Statist. 1963;34(2):447-456.

28. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73(1):13-22.

29. Rubin DB. Multiple Imputations in Sample Surveys: A Phenomenological Bayesian Approach to Nonresponse. Proc Am Stat Assoc. 1978;:20-34.

30. Beunckens C, Sotto C, Molenberghs G. A simulation study comparing weighted estimating equations with multiple imputation based estimating

equations for longitudinal binary data. Comput Stat Data Anal. 2008;52(3):1533-1548.

31. Robins JM, Rotnitzky A, Zhao LP. Analysis of Semiparametric Regression Models for Repeated Outcomes in the Presence of Missing Data. J Am Stat

Assoc. 1995;90(429):106-121.

32. Horvitz DG, Thompson DJ. A Generalization of sampling without replacement from a finite universe. J Am Stat Assoc. 1952;47:663-685.

33. Yi GY, Cook RJ. Marginal Methods for Incomplete Longitudinal Data Arising in Clusters. J Am Stat Assoc. 2002;97(450):1071-1080.

12 www.sim.org Copyright c© 0000 John Wiley & Sons, Ltd. Statist. Med. 0000, 00 1–18

Prepared using simauth.cls



Z
.Jiang

etal.

Statistics
in

M
edicine

Table 1. Performance of different methods with extended exchangeable and AR-type correlation. Results are from M=1000 datasets with n=100 subjects. β̂ is the
mean of Monte-Carlo (MC) estimates; var(β̂) is the MC variance of β̂; ˆvar(β̂) is the MC mean of estimated variances; CP% is the empirical coverage probability of

95% Wald confidence interval; RE is the relative efficiency of estimator based on Joint GEEc compared to sep-GEEa.

sep-GEEa Joint GEE Independenceb Joint GEEc

True Para- β β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% RE
Correlation meters

1) β1x 0.3 0.30 0.145 0.133 95% 0.30 0.145 0.133 95% 0.30 0.143 0.131 94% 1.01
Exchangeable β1t 0.2 0.20 0.002 0.001 95% 0.20 0.001 0.001 95% 0.20 0.001 0.001 95% 1.07
(α11, α22, α12) β2x 0.4 0.41 0.211 0.192 95% 0.41 0.231 0.206 94% 0.41 0.179 0.171 95% 1.18
= (0.9, 0.9, 0.9) β2t 0.5 0.52 0.011 0.010 94% 0.52 0.011 0.010 94% 0.52 0.010 0.009 94% 1.17

2) β1x 0.3 0.30 0.128 0.117 94% 0.30 0.128 0.117 94% 0.31 0.125 0.114 94% 1.02
Exchangeable β1t 0.2 0.20 0.002 0.002 95% 0.20 0.002 0.002 95% 0.20 0.002 0.002 95% 1.00
(α11, α22, α12) β2x 0.4 0.41 0.184 0.174 94% 0.40 0.193 0.179 93% 0.40 0.174 0.170 94% 1.06
= (0.8, 0.7, 0.4) β2t 0.5 0.51 0.010 0.010 94% 0.51 0.010 0.010 94% 0.51 0.010 0.010 94% 1.00

3) β1x 0.3 0.30 0.122 0.114 95% 0.30 0.129 0.121 95% 0.30 0.121 0.116 95% 1.01
AR-type β1t 0.2 0.20 0.003 0.003 95% 0.20 0.003 0.003 96% 0.20 0.003 0.003 96% 1.12
(α11, α22, α12, α212) β2x 0.4 0.42 0.198 0.183 96% 0.41 0.207 0.191 95% 0.41 0.178 0.201 95% 1.11
= (0.9, 0.9, 0.9, 0.9) β2t 0.5 0.52 0.011 0.010 94% 0.52 0.011 0.010 94% 0.51 0.010 0.010 94% 1.06

4) β1x 0.3 0.31 0.109 0.100 94% 0.31 0.109 0.100 94% 0.30 0.104 0.096 95% 1.04
AR-type β1t 0.2 0.20 0.004 0.004 96% 0.20 0.004 0.004 96% 0.20 0.003 0.004 96% 1.03
(α11, α22, α12, α212) β2x 0.4 0.41 0.153 0.147 95% 0.41 0.156 0.148 94% 0.41 0.151 0.145 95% 1.01
= (0.8, 0.7, 0.4, 0.3) β2t 0.5 0.51 0.013 0.012 94% 0.51 0.013 0.012 94% 0.51 0.012 0.012 94% 1.01

sep-GEEa: separately fit the ordinal outcome and the binary outcome using GEE; Joint GEE Independenceb: GEE applied to the joint model with independent correlation structure; Joint GEEc: GEE applied to the joint model

where correlation parameter α is estimated along with regression parameter β.
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Table 2. Estimates and Monte-Carlo variances of correlation parameters in Tables 1 and Supplementary Table 1 estimated
from the joint GEE. A) Table 1: M=1000 datasets with n=100 subjects; B) Supplementary Table 1: M=1000 datasets with

n=50 subjects. α̂ is the mean of Monte-Carlo (MC) estimates; var(α̂) is the MC variance of α̂.

Correlation Correlation A B

Type Parameters α α̂ var(α̂) α̂ var(α̂)

α11 0.9 0.94 0.004 0.89 0.004
α22 0.9 0.86 0.003 0.90 0.012
α12 0.9 0.90 0.002 0.90 0.003

Exchangeable α11 0.8 0.79 0.003 0.78 0.006
α22 0.7 0.60 0.008 0.68 0.030
α12 0.4 0.40 0.014 0.41 0.025

α11 0 -0.00 0.005 -0.01 0.005
α22 0 0.04 0.013 -0.03 0.051
α12 0 0.00 0.006 0.01 0.007

α11 0.9 0.91 0.002 0.89 0.002
α22 0.9 0.84 0.025 0.89 0.024
α12 0.9 0.89 0.004 0.89 0.003
α212 0.9 0.90 0.003 0.90 0.005

AR-type α11 0.8 0.79 0.002 0.78 0.005
α22 0.7 0.60 0.009 0.65 0.047
α12 0.4 0.13 0.005 0.37 0.174
α212 0.3 0.24 0.015 0.31 0.037

α11 0 -0.01 0.007 -0.01 0.014
α22 0 0.00 0.001 0.06 0.026
α12 0 -0.01 0.032 0.02 0.112
α212 0 -0.00 0.017 0.00 0.035
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Table 3. Performance of the joint model when correlation structure is misspecified. Results are from M=500 datasets with n=100 subjects. β̂ is the mean of Monte-
Carlo (MC) estimates; var(β̂) is the MC variance of β̂; ˆvar(β̂) is the MC mean of estimated variances; CP% is the empirical coverage probability of 95% Wald

confidence interval.

sep-GEEa Joint GEE Exchangeableb Joint GEE ARc

True Para- β β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% RE β̂ var(β̂) ˆvar(β̂) CP% RE
Correlation meters

β1x 0.3 0.32 0.113 0.101 94% 0.32 0.112 0.099 94% 1.02 0.32 0.109 0.096 95% 1.04
AR-type β1t 0.2 0.20 0.004 0.004 95% 0.20 0.004 0.004 95% 1.00 0.20 0.004 0.004 95% 1.00
(α11, α22, α12, α212) β2x 0.4 0.41 0.163 0.150 93% 0.41 0.156 0.147 95% 1.05 0.41 0.155 0.144 94% 1.05
= (0.8, 0.7, 0.4, 0.3) β2t 0.5 0.51 0.013 0.012 93% 0.51 0.013 0.012 94% 1.01 0.51 0.013 0.012 94% 1.01

β1x 0.3 0.31 0.131 0.118 93% 0.31 0.129 0.114 95% 1.02 0.31 0.132 0.117 95% 0.99
Exchangeable β1t 0.2 0.20 0.002 0.002 94% 0.20 0.002 0.002 94% 1.06 0.20 0.002 0.002 94% 0.95
(α11, α22, α12) β2x 0.4 0.41 0.175 0.173 96% 0.41 0.164 0.169 96% 1.07 0.41 0.164 0.170 96% 1.07
= (0.8, 0.7, 0.4) β2t 0.5 0.51 0.010 0.010 93% 0.51 0.010 0.010 94% 1.01 0.51 0.010 0.010 94% 1.01

sep-GEEa: seperately fit the ordinal outcome and binary outcome using GEE; Joint GEE Exchangeableb: GEE applied to the joint model with extended exchangeable correlation structure where correlation parameter α is
estimated along with regression parameter β; Joint GEE ARc: GEE applied to the joint model with extended AR-type correlation structure where correlation parameter α is estimated along with regression parameter β;
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Table 4. Regression estimates (standard errors) and p values from separate regression models, for Peginterferon and Ribavirin adherence.

Covariates Peginterferon Ribavirin

Est(SE) p value Est(SE) p value

Race(CA vs. AA) -0.66(0.298) 0.027 -0.56(0.205) 0.006
Time(days) 0.01(0.003) 0.033 0.01(0.002) < .001
Race*Time(days) -0.00(0.005) 0.892 -0.00(0.003) 0.509
Sex (male vs. female) -0.11(0.284) 0.692 0.02(0.190) 0.902
Baseline viral load(log10) 0.09(0.145) 0.547 0.07(0.115) 0.556
Employed (no vs. yes) 0.88(0.273) 0.001 -0.06(0.186) 0.767

Table 5. Regression estimates (standard errors) and p values from the joint model for Peginterferon and Ribavirin.

Covariates Peginterferon Ribavirin

Est(SE) p value Est(SE) p value

Race(CA vs. AA) -0.57(0.294) 0.053 -0.32(0.210) 0.124
Time(days) 0.00(0.003) 0.162 0.01(0.002) < .001
Race*Time(days) -0.00(0.005) 0.893 -0.00(0.003) 0.194
Sex(male vs. female) -0.06(0.282) 0.819 0.12(0.189) 0.516
Baseline viral load(log10) 0.05(0.151) 0.742 0.02(0.109) 0.837
Employed(no vs. yes) 0.81(0.267) 0.002 -0.22(0.158) 0.160
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Supplementary Materials

Supplementary Table 1: Performance of different methods with extended exchangeable and AR-type correlation. Results are from M=1000 datasets with n=50
subjects. β̂ is the mean of Monte-Carlo (MC) estimates; var(β̂) is the MC variance of β̂; ˆvar(β̂) is the MC mean of estimated variances; CP% is the empirical

coverage probability of 95% Wald confidence interval; RE is the relative efficiency of estimator based on Joint GEEc compared to sep-GEEa.

sep-GEEa Joint GEE Independenceb Joint GEEc

True Para- β β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% RE
Correlation meters

1) β1x 0.3 0.30 0.301 0.273 94% 0.30 0.30 0.272 94% 0.30 0.299 0.265 94% 1.00
Exchangeable β1t 0.2 0.21 0.003 0.003 94% 0.21 0.003 0.003 94% 0.21 0.003 0.003 95% 1.04
(α11, α22, α12) β2x 0.4 0.43 0.488 0.429 95% 0.43 0.492 0.427 94% 0.42 0.393 0.349 95% 1.24
= (0.9, 0.9, 0.9) β2t 0.5 0.53 0.022 0.021 93% 0.53 0.022 0.020 93% 0.53 0.020 0.019 94% 1.09

2) β1x 0.3 0.28 0.259 0.237 94% 0.29 0.259 0.237 94% 0.29 0.254 0.232 95% 1.02
Exchangeable β1t 0.2 0.21 0.004 0.004 94% 0.21 0.004 0.004 94% 0.21 0.004 0.004 93% 1.02
(α11, α22, α12) β2x 0.4 0.44 0.399 0.367 94% 0.44 0.401 0.370 93% 0.43 0.365 0.353 95% 1.10
= (0.8, 0.7, 0.4) β2t 0.5 0.53 0.023 0.021 93% 0.53 0.023 0.020 93% 0.53 0.022 0.021 94% 1.03

3) β1x 0.3 0.29 0.268 0.246 95% 0.29 0.268 0.246 95% 0.29 0.269 0.237 93% 1.00
AR-type β1t 0.2 0.21 0.006 0.006 94% 0.21 0.006 0.006 94% 0.21 0.006 0.006 94% 1.03
(α11, α22, α12, α212) β2x 0.4 0.43 0.436 0.385 94% 0.43 0.453 0.395 94% 0.39 0.374 0.334 94% 1.17
= (0.9, 0.9, 0.9, 0.9) β2t 0.5 0.53 0.025 0.022 93% 0.53 0.026 0.021 91% 0.53 0.023 0.020 93% 1.10

4) β1x 0.3 0.28 0.229 0.201 94% 0.28 0.231 0.201 94% 0.28 0.228 0.193 93% 1.01
AR-type β1t 0.2 0.21 0.008 0.008 94% 0.21 0.008 0.008 94% 0.21 0.008 0.007 94% 1.03
(α11, α22, α12, α212) β2x 0.4 0.44 0.310 0.310 95% 0.44 0.315 0.308 96% 0.43 0.299 0.299 96% 1.04
= (0.8, 0.7, 0.4, 0.3) β2t 0.5 0.52 0.028 0.026 94% 0.53 0.029 0.025 93% 0.52 0.028 0.025 94% 1.01

sep-GEEa: separately fit the ordinal outcome and the binary outcome using GEE; Joint GEE Independenceb: GEE applied to the joint model with independent correlation structure; Joint GEEc: GEE applied to the joint model

where correlation parameter α is estimated along with regression parameter β.
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Supplementary Table 2: Performance of different methods for higher dimensional outcomes (one four-category ordinal outcome with 4 repeated
measurements and two binary outcomes with 3 repeated measurements each) with extended AR-type correlation (α11, α22, α33, α12, α13, α23, α212, α213, α223) =

(0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9) . Results are from M=1000 datasets with n=150 subjects. β̂ is the mean of Monte-Carlo (MC) estimates; var(β̂) is the MC
variance of β̂; ˆvar(β̂) is the MC mean of estimated variances; CP% is the empirical coverage probability of 95% Wald confidence interval; RE is the relative efficiency

of estimator based on Joint GEEc compared to sep-GEEb.

sep-GLMa sep-GEEb Joint GEEc

Parameters β β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% RE

β1x 0.1 0.09 0.0674 0.0218 73% 0.09 0.0674 0.0715 96% 0.09 0.0666 0.0708 96% 1.01
β1t 0.2 0.20 0.0020 0.0044 100% 0.20 0.0019 0.0018 94% 0.21 0.0019 0.0018 95% 1.02
β2x 0.4 0.39 0.0910 0.0490 85% 0.39 0.0883 0.0882 95% 0.39 0.0845 0.0866 95% 1.04
β2t 0.5 0.51 0.0045 0.0075 99% 0.51 0.0048 0.0048 95% 0.51 0.0043 0.0044 95% 1.11
β3x 0.3 0.29 0.0996 0.0450 81% 0.30 0.0988 0.1028 96% 0.30 0.0903 0.0936 94% 1.09
β3t 0.2 0.20 0.0043 0.0071 98% 0.20 0.0044 0.0044 95% 0.20 0.0039 0.0038 94% 1.13

sep-GLMa: separately fit cumulative logistic regression for ordinal outcome and logistic regression for binary outcome using maximum likelihood; sep-GEEb: separately fit the ordinal outcome using GEE with exchangeable

correlation and the binary outcome using GEE with AR1 correlation; Joint GEEc: GEE applied to the joint model where correlation parameter α is estimated along with regression parameter β.
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