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Abstract. Roulette Wheel Sampling, sometimes referred to as Fitness
Proportionate Selection, is a method to sample from a set of objects each
with an associated weight. This paper introduces a distributed version AQ1

of the method designed for message passing environments. Theoretical
bounds are derived to show that the presented method has better scala-
bility than naive approaches. This is verified empirically on a test clus-
ter, where improved speedup is measured. In all tested configurations,
the presented method performs better than naive approaches. Through
a renumbering step, communication volume is minimized. This step also
ensures reproducibility regardless of the underlying architecture.

Keywords: Genetic algorithms · Roulette wheel selection
Sequential Monte Carlo · HPC · Message passing

1 Introduction

Given a set of n objects with associated weights wi, the goal of Roulette Wheel
Sampling (RWS) is to sample objects where the probability of each object j is
given by a normalized weight, w̃j = wj/

∑n
i wi. In genetic algorithms, objects

are individuals and their weight is determined by its fitness [4]. After individuals
have been selected for survival, they are either mutated or recombined to form
the next generation. RWS is used in the resampling step of Sequential Monte
Carlo methods [1,7], where objects are weighted particles. Hereafter, this paper
refers to objects in general.

The resampling step is commonly implemented in one of two ways. The first
approach, referred to as the cumulative sum approach, is to generate u ∼ U(0, 1),
and to select the last j for which u ≤ ∑j

i=0 w̃i. Computing the cumulative sum
takes O(n) time and finding an object takes O(log n). The second approach is
the alias method [10]. Constructing an alias table takes O(n) time and taking a
sample takes O(1) time. This results in a lower execution time, but, as Sect. 2
details, the cumulative approach is a better fit for parallelization.

This paper relies on parallel random generation techniques [8]. Since RWS is
typically executed multiple times, each object is provided with a unique random
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10861, pp. 1–7, 2018.
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generator from which a random number sequence can be generated in parallel.
However, if such techniques are not available, any pseudo random number gen-
erator (RNG) that can either jump in its sequence or a pre-generated sequence
can be used instead.

Reproducibility is a desirable property of any scientific computing code. For
this reason, only methods that output the same samples are considered. This
means that the results are reproducible not only for a given parallel configuration
if executed repeatedly, but also if the number of processors, p, is changed.

The remainder of this paper is structured as follows. Section 2 describes how
to parallelize RWS in a reproducible fashion. Experimental results are shown in
Sect. 3. Section 4 lists related work. Section 5 concludes the paper and proposes
future work.

2 Reproducible RWS

Given a sequence of weights, (w1, . . . , wn), the output of RWS is a sequence
S1 = (s1, . . . , sn) where si is the index of the object that has been selected. Let
S2 = (s′

1, . . . , s
′
n) denote the output sequence of the cumulative sum approach

applied to another sequence of weights, constructed by replacing the subsequence
wj , . . . , wj+k by its sum. The sequence S1 can be transformed into S2 as follows.
First, if si < j, then s′

i = si. Second, if si ∈ [j, j + k], then s′
i = j. Finally, if

si > j + k, then s′
i = si − k. In other words, the cumulative sum approach is

only affected partially if weights are aggregated as shown by Fig. 1. Parts of the
output sequence that correspond to non-aggregated weights are recoverable.

Let S3 and S4 be output sequences of applying the alias method to the
same two sequences of weights. Sadly, there is no clear relationship between the
elements of S3 and S4. The algorithm first calculates the average weight, wa.
Next, the entries of two tables are built by repeatedly combining two weights
wi and wj for which wi < wa ≤ wj , to form entries of the two tables. Weight
wj is replaced by wj − wa + wi and wi is removed. The process is repeated until
all weights have been removed. With small changes to weights, the entries in
this table can change drastically making the alias method unstable. Therefore,
this paper focuses on parallelization of the cumulative sum approach, but the
alias method is mentioned here since it has the best sequential performance and
forms the baseline for comparison in the performance results shown in Sect. 3.

2.1 Naive Approaches to Parallelization

This paper considers only static load balancing, where each of p processors is
assigned an equal share of n objects. Collecting all weights at a single processor
to perform RWS leads to a centralized approach where the master processor
quickly become the bottleneck, and more communication is required as n grows.
Therefore, this approach is not considered further.

Let wk,j denote the weights of objects assigned to processor pk. One straight-
forward approach to parallelization is to fix the assignment of objects to pro-
cessors. First, each processor pk shares all its local weights wk,j through an
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u3u5 u2 u7 u1 u6 u4

w1 w2 w3 w4 w5 w6 w7

w1 w2 w3 w4 w5

Fig. 1. Effect of replacing the subsequence w4, w5, w6 by their sum. Given the same
sequence of random numbers (u1, . . . , u7), where ui ∼ U(0,

∑7
i=1 wi), the sequence

at the top is S1 = (5,333,777, 6,222, 6, 4) and the sequence at the bottom is S2 =
(4,333,555, 4,222, 4, 4). Bold indices are not effected or can be reconstructed.

all-to-all broadcast requiring O(n) time [5]. Next, since all weights are available,
each processor builds the alias table in O(n) time and generates n/p samples
in O(n/p) time. Each processor requests objects that it needs to initialize all
its local output objects. Processors exchange objects by sending objects to their
owner. The expected communication volume is O(n − n/p).

Alternatively, to save bandwidth, processors can also share the sum of their
local weights, Wk =

∑n/p
j=0 wk,j , in O(p) time. It might seem that the alias

method could be used in this case as well. However, since the alias table would
be built using the weights Wk, a different table would be built depending on p. If
the parallel environment changes, the output of the sampling process will change
as well, which precludes reproducible results. Instead, once all aggregate weights
Wk are available, two cumulative sums are calculated in O(n/p + p) time and n
samples are taken through a nested binary search in O(n log(p)+(n/p) log(n/p))
time. Here, the first binary search is over the cumulative sum of Wk. If an object
resides on pk, a second binary search is performed over the cumulative sum of
local weights, wk,j . A single random number is used for both searches. Again,
each object is sent to the processor to which it was assigned.

Three factors limit performance in both of these parallelizations. First, an
all-to-all broadcast to share Wk causes communication volume to grow linearly
in p. If wk,j are shared, communication volume also grows linearly in n. Sec-
ond, each processor can communicate with every other processor when objects
are exchanged. Third, the total expected communication volume to exchange
objects, O(n − n/p), grows as either n or p increases.

2.2 Distributed Approach

The fundamental issue with the two approaches described above is that objects
are assigned to processors and that this assignment is fixed. Instead, if objects
are allowed to “move” in a way that minimizes communication required for
exchanges, and reproducibility is maintained, efficiency can be improved.

Observe that each Wk will be distributed normally around
∑p

i=0 Wi/p as
n increases since all processors are treated equally. Hence the number of selected
objects per processor is expected to be equal. The goal of the method presented
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in this paper is to exploit this fact to minimize communication. As noted earlier,
the cumulative approach is parallelized. For this, each processor pk needs to
know only

∑k−1
i=0 Wi and

∑p
i=0 Wi since this determines the offset of its weights

wk,j in the global context. Computing this prefix sum takes O(p) time [2]. In
addition,

∑p
i=0 Wi is needed to normalize the weights, which can be computed

with an all-reduce which takes O(log(p)) time [5]. Next, a cumulative sum of
weights wk,j is built locally. A single binary search suffices since a selection of
objects owned by any of the processes p1, . . . , pk−1 is detected directly. Finally,
objects are renumbered in such a way that their identifier is independent of p.

Algorithm 1 summarizes these steps. Processor pk draws ui from the random
generator of object i to determine where the selection is located. The total
number of samples, q, for which the selected object is located at the processors
p0, . . . , pk−1 can be tracked since the prefix sum is available at processor pk.
Next, each processor maintains a count table of length n/p to track the number
of times each local object is selected. Selections falling on processors pk+1, . . . , pp,
are ignored. After all n samples have been generated, the count table is traversed
in O(n/p) time and objects are created with identifiers starting from q. The
identifiers determine which processor owns the object. This renumbering step
can be seen as moving objects around without communication.

Algorithm 1. Distributed RWS on processor pk

Data: Objects (o1, . . . , on/p), associated weights (wk,1, . . . , wk,n/p)
Result: New objects (o′

1, . . . , o
′
n/p)

Wk =
∑n/p

j=0 wk,j , Wtotal = allReduce(Wk, +), Wbelow = prefixSum(Wk)
countTable = [0, . . . , 0], q = 0
for i = 1 . . . n do

ui ∼ U(0,Wtotal)
if u < Wbelow then

q = q + 1
else if Wbelow < u < Wbelow + Wk then

s = cumSumSearch(u − Wbelow, (wk,1, . . . , wk,n/p))
countTable[s] = countTable[s] + 1

end
for i = 1 . . . n/p do

for j = 1 . . . countTable[i] do
create new object from oi with identifier q
q = q + 1

end
end
rebalanceObjects() � Typically, few objects moved

Sums of local weights Wk will be distributed around
∑p

i=0 Wi/p. Hence,
approximately the same number of objects will be selected from each processor
and only deviations need to be corrected. This minimizes communication volume.
Whenever two processors communicate, one processor will receive objects and
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Reproducible Roulette Wheel Sampling for Message Passing Environments 5

the other processor will transmit objects, but never both. This is easy to see by
dividing the processors into two groups: p1, . . . , pk and pk+1, . . . , pp. If the first
group has less than k ×n/p objects, objects will be transmitted from the second
group to the first. The opposite case is also possible. A useful consequence of
the numbering scheme is that, in many cases, rebalancing can be achieved by
transferring objects between neighboring processors pk and pk+1. Compared to
the naive approaches from Sect. 2.1 where objects can travel in both directions
and tend to travel between any pairs of processors, the presented renumbering
scheme reduces network contention. Finally, since identifiers are determined from
a global context, they do not depend on the number of processors. This makes
the presented method reproducible across different parallel architectures.

3 Results

To evaluate performance in practice, a Message Passing Interface (MPI) imple-
mentation of Algorithm 1 is compared with the naive approaches described
in Sect. 2.1. Results for the parallel alias method have been omitted since they
almost coincide with the results for the naive cumulative approach. Random
weights are used during each step. Execution time is averaged over 10 runs, each
with a different RNG seed. Figure 2 shows speedup as the number of nodes, p,
is increased. The number of objects, n, increases from 214 to 217 vertically. The
object size increases from 1 byte to 2048 bytes horizontally.

The test cluster consists of 16 node interconnected with infiniband. Each
node has two Intel X5660 processors, running at 2.80 GHz, for a total of 12
cores. Speedup, S = Ts/Tp, with respect to the fastest sequential algorithm is
studied. Here, Ts is the sequential execution time of the alias method, and Tp is
the execution time of the parallel versions with p processes, one for each system
in the cluster. Each process consists of 12 threads which map to 12 cores.

First, while it is not clearly visible, both naive methods perform better on a
single node than on multiple nodes. The added overhead caused by communica-
tion causes performance to degrade.

Second, in the distributed version, only aggregate information is exchanged,
while information per object is exchanged in the naive versions. With more
objects, the communication overhead during the steps leading up to the rebal-
ancing phase for the distributed version will remain minimal. Comparing figures
from top to bottom for a fixed object size shows that scalability improves with
more objects. For example, with 214 objects of 1 byte each, all approaches show
poor scalability. Note that even in this case, the distributed version still outper-
forms the naive versions. Moving from 214 objects to 217 objects increases the
speedup from 2.6x to 10x with 16 nodes.

Third, communication volume in the rebalancing phase is kept to a minimum
in the distributed version. Hence, compared to the sequential execution time of
the alias method, speedup increases as overhead in the rebalancing phase is kept
to a minimum. Comparing results from left to right confirms this behavior. For
example, with 215 objects of 1 byte each, speedup is limited to 4x, but with
objects of 1024 bytes, this limit increases to 10x.
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Fig. 2. Performance comparison of the parallel naive approaches described in Sect. 2.1
with the method presented in Sect. 2.2. Horizontally, object size increases from 1 byte
to 2048 bytes. Vertically, the number of objects increases from 214 to 217.

4 Related Work

Parallel genetic algorithms have been extensively studied in the past [3]. A single
population can be managed by a master in a master-slave architecture. Again,
since the master processor executes RWS, it can become the performance bottle-
neck. Alternatively, multiple populations can be evolved in parallel on multiple
systems with occasional migrations between populations. While this improves
utilization of the underlying parallel system, the output will depend on the
number of processors. In contrast, the parallelization presented in Sect. 2.2 is
only one step of genetic algorithms. It does not impact mathematical properties
of the algorithm in which it is used.

Lipowski and Lipowska [6] use rejection sampling to sample from a set of
weights wi. Although the authors do not discuss parallelization, the downside of
their method is that its computational complexity is determined by the expected
number of attempts before acceptance. This is given by max{wi}/

∑n
i=0 wi which

depends on the distribution of weights. Using their method in a message passing
environment, either all weights are shared, or repeated communication to share
weights is required for each attempt. In contrast, the run time of the paralleliza-
tion from Sect. 2.2 is independent of the distribution of the weights.

5 Conclusion and Future Work

While the results show that speedup starts to converge, the presented method
outperforms the naive approaches. The biggest improvements are expected for
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Reproducible Roulette Wheel Sampling for Message Passing Environments 7

use cases with large objects. In all of the tested configurations, the distributed
version performs the best and is therefore the preferred approach.

This work uses static load balancing where each processor is assigned an equal
number of objects n/p. In practice, RWS is executed iteratively after objects
have been updated. Typically, the time required to update objects is imbalanced
between consecutive calls to the RWS subroutine. For this reason, future work
will focus on dynamic load balancing techniques like work stealing [9]. Instead
of restoring balance after each iteration, objects will be stolen from neighboring
processors, pk−1 and pk+1, if those processors are lagging behind.

The loop over all n objects to generate random numbers on each processor
causes speedup to converge as p increases. This part of the presented method can
be interpreted as being executed sequentially. It is possible to partition the loop
over all processors and have each processor maintain p count tables. However,
the reduction in execution time is outweighed by the additional communication
volume required to share all weights and count tables. Preliminary testing has
shown that, as long as p is small, such partitioning is beneficial. Hence, future
work will explore exchanging weights in sets of a few processors to partially
parallelize the loop over all objects.

Acknowledgments. Part of the work presented in this paper was funded by Johnson
& Johnson.
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