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Abstract 

The trimmed mean is a method of dealing with patient dropout in clinical trials that considers 

early discontinuation to be a bad outcome rather than leading to missing data.  The present 

investigation is the first comprehensive assessment of the approach across a broad set of 

simulated clinical trial scenarios.  In the trimmed mean approach all patients who dropout are 

excluded from analysis by trimming an equal percentage of bad outcomes from each treatment 

arm. The untrimmed values are used to calculated means or mean changes.  An explicit intent of 

trimming is to favor the group with lower dropout because having more completers can be a 

beneficial effect of the drug, or conversely, higher dropout can be a bad effect.  In the simulation 

study treatment effects estimated from trimmed means were greater than the corresponding 

effects estimated from untrimmed means when dropout favored the experimental group, and vice 

versa.  The trimmed mean estimates a unique estimand.  Therefore, comparisons with other 

methods are difficult to interpret and the utility of the trimmed mean hinges on the 

reasonableness of its assumptions: dropout is an equally bad outcome in all patients and 

adherence decisions in the trial are sufficiently similar to clinical practice in order to generalize 

the results.  Trimming might be applicable to other inter-current events such as switching to or 

adding rescue medicine.  Given the well-known biases in some methods that estimate 

effectiveness, such as baseline observation carried forward and non-responder imputation, the 

trimmed mean may be a useful alternative when its assumptions can be justified.    
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1. Introduction 

Missing data is an incessant problem in clinical trials.  Fortunately, prevention and treatment of 

missing data has been an active area of investigation leading to new and updated guidance (1-4).  

Consensus exists that the framework for dealing with missing data begins with clear 

specification of trial objectives and causal estimands (1-5).  Conceptually, an estimand is simply 

the true population quantity of interest to estimate that addresses the trial objective (5).  

Specification of estimands includes the population and time point (or time period) of interest, 

and a measure of the intervention effect (3).  The intervention effect can often be described in 

terms of two components that yield four general categories of estimands: 1) whether interest is in 

the effects of an individual treatment or a treatment policy (often involving a specific treatment); 

and 2) whether interest is in the effects  if the intervention taken as directed (efficacy) or as 

actually taken (effectiveness) (1).  With the variety of clinical trial scenarios and missing data 

possibilities, consensus on a universally best estimand is neither realistic nor desirable and 

multiple estimands may be of interest in a single trial (1).   

 

Conceptually, effectiveness estimands  are some combination of efficacy and adherence; as such, 

dropout may be a relevant outcome rather than a cause of missing data (6).  Baseline observation 

carried forward (BOCF) and non-responder imputation (NRI) use dropout as an outcome in that 

patients who discontinue are ascribed values indicating no improvement, thereby yielding data 

sets with no missing data.  However, these methods ignore changes due to non- pharmacologic 

effects, such as study effects, placebo effects, and the natural progression or waxing and waning 

of the disease and can therefore be biased (2).   

 



Recently, Permutt and Li proposed a trimmed mean approach as an alternative for estimands in 

which dropout is a bad outcome (6).  In principle, post-randomization (inter-current) events such 

as adding or switching to rescue medication may also be bad outcomes. Therefore, extending the 

trimmed mean approach to include these events may also be useful.  The trimmed mean 

approach integrates the observed data on completers (or more generally, patients not having 

relevant inter-current events) with the information that some patients dropped out (or more 

generally, patients with any relevant inter-current event).    

 

The trimmed mean approach uses well-known statistics and distributional theory (6).  The basic 

idea is to assign an arbitrarily bad score (or outcome) to all patients that had a relevant inter-

current event such that the assigned outcomes are worse than any observed outcomes. An equal 

fraction of the worst outcomes is trimmed from each treatment group such that all patients with a 

relevant inter-current event are trimmed, thereby obviating concerns about sensitivity to the 

actual score assigned and yielding an analysis data set with no missing values.  Means (medians) 

or mean (median) changes from the untrimmed values are calculated and permutation methods 

used to construct a reference distribution for testing and interval estimation (6). 

  

General attributes of the trimmed mean across a narrow set of conditions have been reported (6).  

The purpose of the present investigation is to assess the trimmed mean approach across a broader 

set of realistic clinical conditions than has been previously reported.  Section 2 provides a 

summary of the trimmed mean methodology.  Section 3 details a simulation study to assess 

power and type I error.  Section 4 summarizes results of the simulation study.  Section 5 includes 

a clinical trial example.  Finally, Section 6 ties these ideas together in a discussion. 



 

2. Description of the trimmed mean approach 

The trimmed mean approach is applicable to clinical trials comparing treatments intended to 

improve the signs and symptoms of a disease (rather than alter the underlying disease 

mechanism) (6).  The method assumes that all patients that dropped out have equally bad 

outcomes (6).  Although the original authors did not speak to this, the approach could include 

other inter-current events such as switching to or adding rescue medicine.  Another assumption, 

as with all methods that incorporate dropout as part of the outcome, is that adherence decisions 

in the clinical trial are sufficiently close to the decisions that made in clinical practice in order for 

the results to be generalized (1).   

 

Using the nomenclature of the draft ICH E9 R1 addendum on estimands and sensitivity (7), the 

trimmed mean is a composite approach to dealing with inter-current events.  The specific 

estimand tested by the trimmed mean is the difference between treatments in endpoint means in 

the X% subset of patients with the most favorable outcomes, where patients with a relevant inter-

current event are considered to have had an outcome worse than any patient in the X% subset.  

The fraction of data to be trimmed can be determined using either an a priori chosen fixed 

percentage that based on previous trials ensures all bad outcomes resulting from assigning bad 

scores to patients with relevant inter-current are trimmed; or, trimming can be adaptive based on 

the actual results of the trial (6).     

 

Permutt and Li (6) provided technical details for the trimmed mean approach, with additional 

description and software code to implement the method in Mehrotra et al (8). Permutt and Li (6) 

summarized the method as follows: 



 

 Stigler [9] gave distribution theory for the trimmed mean, including the asymmetric case.  The 

trimmed mean is asymptotically normal under regularity conditions, and its expectation is the 

population trimmed mean (6). Tukey (10) gave a heuristic way of approximating the variance, at 

least in the symmetric case; alternatively, a permutation test can be sued to construct the exact 

distribution conditional on the observed values: 

• Calculate the difference between the trimmed means.   

• Keep the data (including the fact of discontinuation) the same and permute the 

treatment assignments in all possible ways, or in a sufficiently large random sample 

of possible ways. 

• Calculate the difference between the trimmed means for each permutation.  If the 

original difference falls in, say, the upper 2.5% of the permutation distribution, the 

difference is significant.   

Exact CIs for location shifts are constructed by inverting the permutation test. That is, if Δ 

represents the shift, the hypothesis Δ = t can be tested by subtracting t from each value in the 

active treatment group and repeating the permutation test.  The set of values of t for which the 

hypothesis Δ = t is not rejected is an exact CI for Δ.  This procedure entails intensive 

computation because the permutation distribution has to be constructed for each value of t. 

Alternatively, CI can be constructed from the permutation distribution under t = 0.  For example, 

if Y is the estimate and Yγ/2 and Y1- γ/2 are the lower and upper γ/2 quantiles of the permutation 

distribution, then Y +γγ/2 , Y + γ1- γ/2 is approximately a 1-γ CI for all percentiles above γ/.  

 



The quantiles of the permutation distribution may be estimated either by the empirical quantiles 

or by a normal approximation ±sɸ-1(γ/2) where s is the sample standard deviation of the 

permutation distribution.  Such intervals are conservative because the permutation distribution 

overestimates the variance of the test statistic when the null hypothesis is false (6). 

 

Permutt and Li (6) further note that the difference between groups in the trimmed mean is 

proportional to the area between the empirical cumulative distribution curves (with changes of 

sign if they cross) and below 1 – α.  The difference in medians is the horizontal difference 

between the curves at a height of 0.5.  The difference between groups in any percentile is a 

horizontal distance, and the difference in trimmed means is the average of the differences for all 

percentiles above γ/.  Accordingly, it can be interpreted much the same as the median, as a 

summary of the distance between the CDFs in general, and as the constant difference in the 

special case of a location shift.  Averaging many (differences in) order statistics will usually 

result in a less variable statistic than the (differences in) medians alone (6). 

 

3. Simulation study 

The goals of the simulation study were two-fold:  1) To characterize the impact of 

discontinuations for individual reasons, such as lack of efficacy or intolerability, on trimmed 

means; and, 2) to characterize the simultaneous impact of multiple reasons for discontinuation, 

such as would be anticipated in actual clinical trials, on trimmed means.    

 

A base scenario with no missing data was constructed to contrast with results from otherwise 

similar scenarios that had varying rates of and reasons for missing data.  The base scenario was 



constructed as:  Treatments 𝑖𝑖 = 1,2  refer to experimental and control arms, respectively.  

Changes from baseline were  simulated as 𝑁𝑁(𝜇𝜇𝑖𝑖,𝜎𝜎2), 𝑖𝑖 = 1,2.  With 𝜇𝜇1 = −40, 𝜇𝜇2 = −20, 𝑑𝑑 =

𝜇𝜇1 − 𝜇𝜇2 = −20.  In this parameterization, lower scores represented greater improvement (-40 is 

better than -20).  Using a two-sided alpha = 0.05 yielded 90% power in a superiority test of 

experimental versus control with 𝜎𝜎 = 30 and N = 50 per arm, or if 𝜎𝜎 = 43 and N = 100 per arm.   

 

Simulation Input parameters were chosen to test results across a broad set of realistic scenarios.  

However, inputs were not from actual clinical trials.  The first set of simulations, referred to as 

scenario A, had treatment arms with equal rates of missing data that arose from a completely 

random mechanism.  Scenarios A1-A4 assumed the means and variances as described in the 

previous paragraph.  Scenarios A5-A8 were otherwise identical to A1-A4, except the mean 

changes were -20 for both groups, yielding 𝑑𝑑 = 𝜇𝜇1 − 𝜇𝜇2 = 0.   

 

Therefore, scenarios A1-A4 assessed power and scenarios A5-A8 assessed “something like” 

Type I error.  The qualifier “something like” is important because this assessment was based on 

the rate of significant differences between trimmed means in scenarios where the untrimmed 

means did not differ, whereas typical Type I error assessment would be based on scenarios where 

the trimmed means did not differ.  In other words, it is assessing the Type I error of a different 

estimand.  The estimand associated with the untrimmed mean is the difference between treatment 

means based on all patients if all patients completed the trial.  As such, a significant difference in 

trimmed means when the untrimmed means are equal is not necessarily a false positive result.  

However, the chosen comparisons are necessary to understand the impact of assigning arbitrarily 



and equally bad scores for all non-adherent patients in situations where no difference between 

treatments exist if all patients adhere. Table 1 includes additional details on these simulations. 

 

Table 1:  Input parameters for simulations scenarios A1-A8, with equal rates of missing data 
arising from a completely random mechanism.  

Scenario Treatment 
arm1 

Missing 
Rate (%) 

Endpoint 
means 

A1 
 

Exp 5 -40 
Con 5 -20 

A2 
 

Exp 10 -40 
Con 10 -20 

A3 
 

Exp 15 -40 
Con 15 -20 

A4 
 

Exp 20 -40 
Con 20 -20 

A5 
 

Exp 5 -20 
Con 5 -20 

A6 
 

Exp 10 -20 
Con 10 -20 

A7 
 

Exp 15 -20 
Con 15 -20 

A8 
 

Exp 20 -20 
Con 20 -20 

 1. Exp = experimental arm, Con = control arm  

 
 
Details on the second set of simulations are provided in Table 2.  The only difference from the 

first scenario was that data were deleted from the experimental arm only.  These simulations can 

be viewed in two contexts: 1) as extension of the first set except with deletions applied to only 

the experimental arm; or, 2) as an assessment of the impact of discontinuations for intolerability, 

assuming the tolerability is independent of efficacy.   

  



Table 2:  Input parameters for simulations scenarios B1-B8, with unequal rates of missing data 
arising from a completely random mechanism. 
 

Scenario Treatment 
arm1 

Missing 
Rate (%) 

Endpoint 
means 

B1 
 

Exp 5 -40 
Con 0 -20 

B2 
 

Exp 10 -40 
Con   0 -20 

B3 
 

Exp 15 -40 
Con   0 -20 

B4 
 

Exp 20 -40 
Con   0 -20 

B5 
 

Exp 5 -20 
Con 0 -20 

B6 
 

Exp 10 -20 
Con   0 -20 

B7 
 

Exp 15 -20 
Con  0  -20 

B8 
 

Exp 20 -20 
Con   0 -20 

 
1. Exp = experimental arm, Con = control arm  
 
 

A third set of simulations was conducted in order to mimic data missing due to discontinuation 

for lack of efficacy.  For these simulations the probability an observation was missing was a 

function of the outcome variable; that is, missing probability for a response 𝑥𝑥 was, 𝐹𝐹𝑁𝑁�𝑚𝑚,𝑠𝑠2�(𝑥𝑥), 

where 𝐹𝐹 is the distribution function of the normal distribution with mean 𝑚𝑚 and variance 𝑠𝑠2.  For 

example, if 𝑚𝑚 = 50, and 𝑠𝑠 = 10, if a patient had a change from baseline of 35, the probability 

for this patient to drop out = 𝐹𝐹𝑁𝑁�50,102�(35) = 0.067.  This process mimicked situations where 

patients with better responses (changes of greater negative magnitude) were less likely to 

dropout, and vice versa.  

 



The same function was applied to both treatment arms.  Values of m and s were manipulated to 

generate rates of missing data similar to those in scenarios A and B.  With only one observation 

per subject, the missing data due to lack of efficacy was a missing not at random mechanism.  

However, given the same parameters were used for deleting data in each treatment arm, it was 

not possible to create equal rates of missing data when efficacy differed between treatment arms, 

nor was it possible to generate different rates of missing data when efficacy was the same in both 

treatments. 

 

Table 3:  Input parameters for simulations scenarios C1-C8, with varying rates of missing data 
arising from lack of efficacy. 
 

Scenario Treatment1 Missing 
Rate (%) 

Endpoint 
means 

C1 
m=50,s=10 

Exp 2 -40 
Con 6 -20 

C2 
m=50,s=35 

Exp 5 -40 
Con 10 -20 

C3 
m=35,s=35 

Exp 9 -40 
Con 16 -20 

C4 
m=15,s=8 

Exp 10 -40 
Con 21 -20 

C5 
m=50,s=10 

Exp 6 -20 
Con 6 -20 

C6 
m=50,s=35 

Exp 10 -20 
Con 10 -20 

C7 
m=35,s=35 

Exp 16 -20 
Con 16 -20 

C8 
m=15,s=8 

Exp 21 -20 
Con 21 -20 

1. Exp = experimental arm, Con = control arm  
 
 

A fourth set of simulations was conducted in order to mimic data missing from actual clinical 

trials, with a combination of discontinuations for lack of efficacy, intolerability, and completely 



random reasons.  These simulations involved deleting observations using various combinations 

of the deletion strategies used in scenarios A, B, and C.  Specific details are provided in Table 4.  

  

Table 4:  Input parameters for simulations scenarios D1-D8, with varying rates of missing data 
arising from a combination reasons. 

Scenario Treatment1 Missing Rates (%)2  
R1 R2 R3 Overall Endpoint

Means 
D1 

m=50,s=10 
Exp 5 24 2 30 -40 
Con 5 0 6 10 -20 

D2 
m=50,s=35 

Exp 5 16 5 25 -40 
Con 5 0 10 15 -20 

D3 
m=35,s=35 

Exp 5 8 9 20 -40 
Con 5 0 16 20 -20 

D4 
m=15,s=8 

Exp 5 0 10 15 -40 
Con 5 0 21 25 -20 

D5 
m=50,s=35 

Exp 5 0 5 10 -40 
Con 5 17 10 30 -20 

D6 
m=50,s=10 

Exp 5 21 6 30 -20 
Con 5 0 6 10 -20 

D7 
m=50,s=35 

Exp 5 11 10 25 -20 
Con 5 0 10 15 -20 

D8 
m=35,s=35 

Exp 5 0 16 20 -20 
Con 5 0 16 20 -20 

D9 
m=50,s=35 

Exp 5 0 10 15 -20 
Con 5 11 10 25 -20 

D10 
m=50,s=10 

Exp 5 0 6 10 -20 
Con 5 21 6 30 -20 

1. Exp = experimental arm, Con = control arm  
2. R1 and R2 specify rates of dropout from a completely random dropout mechanism.  The sum of 

R1 + R2 = dropout for completely random reasons + dropout due to intolerability that is 
unrelated to outcome; R3 = dropout depending on outcome, thereby mimicking lack of efficacy. 
 

 
For each scenario 5,000 trials were simulated and for each trial 1,000 permutations were 

constructed.  In order to confirm that this level of replication was sufficient to yield stable 

results, Monte Carlo errors were calculated for scenarios B2 and B6 as Monte Carlo errors were 

calculated as (INSERT)  .  The impact of this level of Monte Carlo error was assessed by 



replicating these scenarios were each conducted 10 times.  Results across these 10 replications 

yielded rates of significant difference that all fell within a range of approximately 1%, thereby 

confirming that results were stable and replication sufficient to eliminate findings due to chance 

alone.   

 

Adaptive trimming was used in analyses of each permuted data; that is, only dropouts were 

trimmed for the group with the higher dropout, and the same percentage of observations were 

trimmed from the group with lower dropout, resulting in all dropouts plus the worst observed 

values being trimmed from that group.   

 
 
4. Simulation study results 
 
Results from simulation scenarios A1-A4 are summarized in Table 5.  In these scenarios with 

equal rates of dropout arising from a completely random mechanism, the average estimates of 

the trimmed means were equal to the corresponding untrimmed means that were input for 

simulation.  As the rate of missing data increased, more data were trimmed and the sample sizes 

decreased, which reduced power.  Differences in the variance of untrimmed values did not 

influence trimmed mean estimates. 

 
  



Table 5:  Trimmed means and power from simulation scenarios A1-A4, with untrimmed 
treatment means of -40 and -20, and equal rates of missing data arising from a completely 
random mechanism. 
 
Scenario Treatment Missing 

Rate (%) 
Monte Carlo Estimation 

n=50 (𝜎𝜎 = 30) n=100 (𝜎𝜎 = 43) 
Exp 

Mean 
Con 

Mean 
Mean 
Diff  

Power Exp 
Mean 

Con 
Mean 

Mean 
Diff  

Power 

A1 
 

Exp 5 -40.00 -20.00 -20.00 0.87 -40.12 -19.98 -20.14 0.84 
Con 5 

A2 
 

Exp 10 -39.89 -20.13 -19.75 0.78 -39.99 -20.07 -19.92 0.77 
Con 10 

A3 
 

Exp 15 -39.88 -20.12 -19.76 0.73 -39.90 -19.99 -19.92 0.70 
Con 15 

A4 
 

Exp 20 -40.05 -19.87 -20.18 0.67 -40.04 -19.95 -20.09 0.65 
Con 20 

 
 

Results from simulation scenarios A5-A8 are summarized in Table 6.  In these scenarios with 

equal untrimmed means and equal rates of complete random dropout, the percentages of 

significant differences (something like Type I error, as described in Section 3) was less than the 

nominal rate of 5%.  Differences in variance of untrimmed values did not influence estimates of 

trimmed means.  

Table 6:  Trimmed means and rate of significant differences from simulation scenarios A5-A8, 
with untrimmed treatment means of -20 and -20, and equal rates of missing data arising from a 
completely random mechanism. 
Scenario Treatment Missing 

Rate (%) 
Monte Carlo Estimation 

n=50 (𝜎𝜎 = 30) n=100 (𝜎𝜎 = 43) 
Exp 

Mean 
Con 

Mean 
Mean 
Diff  

𝛼𝛼 Exp 
Mean 

Con 
Mean 

Mean 
Diff  

𝛼𝛼 

A5 
 

Exp 5 -20.06 -19.97 -0.09 0.04 -20.15 -19.93 -0.02 0.03 
Con 5 

A6 
 

Exp 10 -20.10 -20.03 -0.07 0.02 -20.06 -20.05 -0.01 0.02 
Con 10 

A7 
 

Exp 15 -19.91 -19.93 0.02 0.02 -20.13 -20.01 -0.12 0.02 
Con 15 

A8 
 

Exp 20 -20.02 -20.02 0.002 0.01 -20.07 -19.97 -0.10 0.01 
Con 20 

 



Results from simulation scenarios B1-B4 are summarized in Table 7.  In these scenarios with 

untrimmed treatment means of -40 and -20 and unequal rates of completely random dropout, 

estimates of the difference between treatments for trimmed means decreased and therefore power 

decreased as the rate of missing data increased.  Trimmed means within the experimental group 

were not affected by trimming because the trimmed values were a random sample from the 

distribution.  Trimmed means within the control group increased as trimming increased because 

the trimmed values were the worst values from that group.  The difference between trimmed and 

untrimmed means for the control group were greater in the scenarios with greater variance 

because the values trimmed from the tail of the distribution were more different from the mean 

than when the variance was smaller.  Therefore, in the scenarios with greater variance the 

difference between the experimental and control groups were smaller than in the scenarios with 

smaller variance. 

 

Table 7:  Trimmed means and power from simulation scenarios B1-B4, with untrimmed 
treatment means of -40 and -20, and unequal rates of missing data arising from a completely 
random mechanism.  
 
Scenario Treatment Missing 

Rate (%) 
Monte Carlo Estimation 

n=50 (𝜎𝜎 = 30) n=100 (𝜎𝜎 = 43) 
Exp 

Mean 
Con 

Mean 
Mean 
Diff  

Power Exp 
Mean 

Con 
Mean 

Mean 
Diff  

Power 

B1 
 

Exp 5 -40.04 -22.55 -17.49 0.78 -39.99 -24.64 -15.35 0.64 
Con 0 

B2 
 

Exp 10 -40.01 -25.66 -14.37 0.53 -40.08 -28.29 -11.79 0.36 
Con 0 

B3 
 

Exp 15 -40.00 -27.61 -12.39 0.38 -40.07 -31.66 -8.41 0.17 
Con 0 

B4 
 

Exp 20 -40.00 -30.31 -9.69 0.20 -40.07 -34.87 -5.19 0.06 
Con 0 

 
 

Results from simulation scenarios B5-B8 are summarized in Table 8.  In these scenarios with 



untrimmed treatment means of -20 and -20 and unequal rates of completely random dropout, 

estimates of the difference between treatments for trimmed means increased and therefore the 

rate of significant differences (something like Type I error, as described in Section 3) increased 

as the rate of missing data increased.  Trimmed means within the experimental group were not 

affected by trimming because the trimmed values were a random sample from the distribution.  

Trimmed means within the control group increased as trimming increased because the trimmed 

values were the worst values from that group.  The difference between trimmed and untrimmed 

means for the control group were greater in the scenarios with greater variance because the 

values trimmed from the tail of the distribution were more different from the mean than when the 

variance was smaller.  Therefore, in the scenarios with greater variance the difference between 

the experimental and control groups were greater than in the scenarios with smaller variance. 

 
Table 8:  Trimmed means and type I error from simulation scenarios B5-B8, with untrimmed 
treatment means of -20 and -20, and unequal rates of missing data arising from a completely 
random mechanism. 
 
Scenario Treatment Missing 

Rate (%) 
Monte Carlo Estimation 

n=50 (𝜎𝜎 = 30) n=100 (𝜎𝜎 = 43) 
Exp 

Mean 
Con 

Mean 
Mean 
Diff  

𝛼𝛼 Exp 
Mean 

Con 
Mean 

Mean 
Diff  

𝛼𝛼 

B5 
 

Exp 5 -19.92 -22.70 2.77 0.06 -20.06 -24.61 4.55 0.09 
Con 0 

B6 
 

Exp 10 -20.06 -25.68 5.62 0.11 -19.96 -28.30 8.34 0.21 
Con 0 

B7 
 

Exp 15 -19.94 -27.56 7.62 0.17 -19.99 -31.57 11.58 0.35 
Con 0 

B8 Exp 20 -19.95 -30.17 10.22 0.27 -20.09 -34.92 14.83 0.50 
Con 0 

 

Results from simulation scenarios C1-C4 are summarized in Table 9.  In these scenarios with 

untrimmed treatment means of -40 and -20 and unequal rates of missing data arising from lack of 

efficacy, trimmed means within each group increased because the trimmed values tended to be 



bad outcomes.  The increase in trimmed means was relatively equal in both groups resulting in 

relatively small changes to the average estimates of the difference between trimmed means and 

power.    

 
Table 9:  Trimmed means and power from simulation scenarios C1-C4, with untrimmed 
treatment means of -40 and -20, and unequal rates of missing data arising from lack of efficacy. 
 

Scenario Treatment Missing Rate (%) Monte Carlo Estimation 

Exp Mean Con Mean Mean Diff Power 
C1 

m=50,s=10 
Exp 2 -45.11 -25.18 -19.96 0.899 
Con 6 

C2 
m=50,s=35 

Exp 5 -48.07 -26.86 -21.20 0.890 
Con 10 

C3 
m=35,s=35 

Exp 9 -51.70 -29.72 -21.98 0.884 
Con 16 

C4 
m=15,s=8 

Exp 10 -55.61 -35.59 -20.02 0.878 
Con 21 

 

Results from simulation scenarios C5-C8 are summarized in Table 10.  In these scenarios with 

untrimmed treatment means of -20 and -20 and equal rates of missing data arising from lack of 

efficacy, trimmed means within each group increased because the trimmed values tended to be 

bad outcomes.  The increase in trimmed means was relatively equal in both groups resulting in 

negligible changes to the average estimates of the difference between trimmed means and 

correspondingly negligible changes in the rate of significant differences (something like Type I 

error, as described in Section 3).    

 
  



Table 10:  Trimmed means and type I error from simulation scenarios C5-C8, with untrimmed 
treatment means of -40 and -40, and equal rates of missing data arising from lack of efficacy. 
 

Scenario Treatment Missing Rate (%) Monte Carlo Estimation 

Exp Mean Con Mean Mean Diff 𝛼𝛼 
C5 

m=50,s=10 
Exp 6 -25.93 -25.95 0.03 0.049 
Con 6 

C6 
m=50,s=35 

Exp 10 -28.25 -28.19 -0.06 0.056 
Con 10 

C7 
m=35,s=35 

Exp 16 -31.30 -31.57 0.27 0.051 
Con 16 

C8 
m=15,s=8 

Exp 21 -36.94 -36.97 0.03 0.048 
Con 21 

 
 
Results from simulation scenarios D1-D5 are summarized in Table 11.  These scenarios were 

intended to match realistic clinical trial scenarios with untrimmed treatment means of -40 and  

-20 and varying rates of missing data arising from multiple reasons.  When dropout was higher in 

the experimental group than in the control group the difference between trimmed means was 

smaller than in the corresponding untrimmed means.  The magnitude of this decrease, and the 

corresponding decrease in power, was greater as the difference in dropout rates became greater 

as a result of higher rates in the experimental group.  When dropout was higher in the control 

group than in the experimental group the difference between trimmed means was greater than in 

the corresponding untrimmed means.  The magnitude of this increase, and the corresponding 

increase in power, was greater as the difference in dropout rates became greater as a result of 

higher rates in the control group.     

 
  



Table 11:  Trimmed means and power from simulation scenarios D1-D4, with untrimmed 
treatment means of -40 and -20, and varying rates of missing data arising from multiple reasons. 
 

Scenario Treatment Missing Rates (%) Monte Carlo Estimation 
R1 R2 R3 Overall Exp 

Mean 
Con 

Mean 
Mean 

Diff  
Power 

D1 
m=50,s=10 

Exp 5 24 2 30 -42.15 -38.59 -3.56 0.04 
Con 5 0 6 10 

D2 
m=50,s=35 

Exp 5 16 5 25 -43.77 -35.10 -8.67 0.14 
Con 5 0 10 15 

D3 
m=35,s=35 

Exp 5 8 9 20 -47.39 -31.37 -16.02 0.51 
Con 5 0 16 20 

D4 
m=15,s=8 

Exp 5 0 10 15 -55.61 -35.49 -20.12 0.85 
Con 5 0 21 25 

D5 
m=50,s=35 

Exp 5 0 5 10 -58.85 -26.82 -32.03 0.99 
Con 5 17 10 30 

 
 
Results from simulation scenarios D6-D10 are summarized in Table 12.  These scenarios were 

intended to match realistic clinical trial scenarios with untrimmed treatment means of -20 and  

-20 and varying rates of missing data arising from multiple reasons.  When dropout was higher in 

the experimental group than in the control group the difference between trimmed means favored 

the control group.  The magnitude of the difference in trimmed means, and the corresponding 

increase in the rate of significant differences (something like Type I error, as described in 

Section 3) was greater as the difference in dropout rates became greater as a result of higher rates 

in the control group.  When dropout was lower in the control group than in the experimental 

group the difference between trimmed means favored the control group.  The magnitude of the 

difference in trimmed means, and the corresponding increase in the rate of significant differences 

(something like Type I error, as described in Section 3) was greater as the difference in dropout 

rates became greater as a result of higher rates in the experimental group.     

 
  



Table 12:  Trimmed means and type I error from simulation scenarios D5-D8, with untrimmed 
treatment means of -20 and -20, and varying rates of missing data arising from multiple reasons. 
 

Scenario Treatment Missing Rates (%) Monte Carlo Estimation 
R1 R2 R3 Overall Exp 

Mean 
Con 

Mean 
Mean 
Diff  

𝛼𝛼 

D6 
m=50,s=10 

Exp 5 21 6 30 -25.07 -39.00 13.94 0.43 
Con 5 0 6 10 

D7 
m=50,s=35 

Exp 5 11 10 25 -26.73 -34.74 8.01 0.15 
Con 5 0 10 15 

D8 
m=35,s=35 

Exp 5 0 16 20 -31.46 -31.52 0.05 0.047 
Con 5 0 16 20 

D9 
m=50,s=35 

Exp 5 0 10 15 -34.75 -26.88 -7.87 0.14 
Con 5 11 10 25 

D10 
m=50,s=10 

Exp 5 0 6 10 -38.95 -25.00 -13.96 0.43 
Con 5 21 6 30 

 

 
5. Clinical trial example 
 
A re-examination of a real clinical trial is used to reinforce findings from the simulation study.  

This was a phase 3, double-blind, placebo- and active-controlled trial in which 1307 patients 

with active rheumatoid arthritis (RA) were randomly assigned in a 3:3:2 ratio to placebo, an 

experimental drug, or an active comparator, a well-characterized standard of care in RA (1305 

patients had post-baseline data for analysis).   

 

The primary endpoint was the binary outcome of 20% improvement according to the criteria of 

the American College of Rheumatology (ACR20 response).  For purposes of this re-examination 

only the placebo and active comparator arms are included and focus is on one of the key 

secondary endpoints, the HAQ-DI, which is a measure of physical function.  Although this is an 

ordinal outcome with a range of 0 to 3 (higher scores indicating greater disability), it is 

commonly analyzed as a continuous outcome and that convention is adopted here.   The time 

point of interest is week 24, with rescue treatment becoming available at week 16. 



Although the active comparator is well-known and well-characterized, the true difference 

between it and placebo is not known.  Therefore, results from the trimmed mean cannot be 

compared to true values.  Therefore, results from the trimmed mean are compared to results from 

commonly used methods, which estimate differing estimands.  Trimmed means were calculated 

as previously described for the simulation study.  Other analyses included modified baseline 

observation carried forward (mBOCF), modified last observation carried forward (mLOCF), and 

a likelihood-based repeated measures analysis commonly referred to as MMRM (mixed-effects 

model for repeated measures). 

 

In mBOCF analyses, for patients who discontinue the study or permanently discontinue the study 

treatment because of an AE, including death, the baseline observation is used as the week 24 

observation, indicating no improvement.   For patients who receive rescue, the last nonmissing 

observation at or before rescue is used as the week 24 observation 

 

In mLOCF analyses, for patients who discontinue the study or permanently discontinue the study 

treatment for any reason, the last nonmissing postbaseline observation before discontinuation is 

used as the week 24 observation.  For patients who receive rescue, the last nonmissing 

observation at or before rescue is used as the week 24 observation.   

 

In both mBOCF and mLOCF, data were analyzed using ANCOVA with a model that included 

treatment and baseline values.  The MMRM analysis included all postbaseline observations 

(weeks 1, 2, 4, 8, 12, 14, 16, 20, 24), Data were analyzed using likelihood-based estimation with 



a fixed effects model that included treatment, baseline values, visit and treatment by visit 

interaction, and the within-patient errors were modeled using an unstructured covariance matrix. 

 

In the placebo group, 333 of 488 Week 24 observations were available, leaving 155 (31.8%) of 

the observations that were either missing, imputed, or trimmed, depending on the analytic 

method.  For the active comparator, 272 of 330 observations were available, leaving 58 (17.6%) 

of the observations that were either missing, imputed or trimmed, depending on the analytic 

method.  Disposition is further summarized in Table 13. 

 
Table 13.  Patient disposition for the example clinical trial 
____________________________________________________________ 
     Placebo  Comparator  
Number randomized    488   330 
Number rescued   105   35 
Discontinuations 
 AE    15   7 
 Lack of efficacy  15   3 
 All other reasons  20   13 
 Total    50   23 
____________________________________________________________ 
 

Results from the various analyses are summarized in Table 14.  It is not surprising that all 

analytic methods yielded highly significant results given the robust, proven efficacy of the active 

comparator and the large sample sizes.  Therefore, focus is on the magnitude of the point 

estimates and the width of the confidence intervals.   

 

The point estimates from MMRM, mBOCF, and mLOCF were -0.256, -0.275, and -0.277, 

respectively.  In contrast, the trimmed mean was considerably larger, 0.435. Therefore, trimmed 

mean results from the example clinical trial were similar to results from the simulation study in 



scenarios where dropout was higher on the control arm. That is, the trimmed mean yielded a 

larger difference between treatments because all dropout outcomes and the worst actually 

observed outcomes were trimmed in the active  arm, whereas only dropout outcomes were 

trimmed in the placebo arm. Also similar to simulation findings, the estimated difference 

between trimmed means was less precise than estimates of means based on all randomized 

patients.  Specifically, the width of the 95% confidence intervals from mBOCF, mLOCF, and 

MMRM were approximately 0.15, whereas the confidence interval width from the trimmed mean 

approach was around 0.26.   

 
Table 14:  Results from example clinical trial 

 
 

  
COMP 
N=330 

PBO 
N=488 

 
MMRM Censored 
at Discon/Rescue 

 n (missing %) 272 (17.6%) 333 (31.8%) 

Mean -0.710 -0.443 

LS mean -0.709 -0.452 
LSMean difference (95% CI) 
Pvalue 

-0.256 [-0.328, -0.184] 
P<0.0001 

Adaptive Trimmed 
Mean Trimmed mean -0.878 -0.443 

 

 Mean difference (95% CI) 
Pvalue 

-0.435 [-0.565, -0.304] 
P<0.0001 

ANCOVA + mBOCF 
 

 N 330 488  

Mean -0.625 -0.340 
LS mean -0.620 -0.345 
LSMean difference (95% CI) 
Pvalue 

-0.275 [-0.351, -0.199] 
P<0.0001 

ANCOVA  + mLOCF  n  330  488  

Mean -0.640 -0.350 

LS mean -0.632 -0.355 
LSMean difference (95% CI) 
Pvalue 

-0.277 [-0.354, -0.201] 
P<0.0001 

    
 
 

  



6. Discussion 

The trimmed mean is an alternative to existing methods for continuous endpoints.  The estimand 

it assesses is the difference between treatments in endpoint means in the best X% of patients.  

This is a unique estimand not addressed by other methods currently in common use.  An explicit 

intent of the trimmed mean is to favor the group with lower dropout because having more 

completers can be a beneficial effect of the drug, or conversely, higher dropout can be a bad 

effect.  In the simulation study, the difference between treatments in trimmed means did indeed 

influence completion rates.  In the simulation study the difference between groups in trimmed 

means was greater than the corresponding difference in untrimmed mean changes when 

completion rates were higher in the experimental group; the difference between groups in 

trimmed mean changes was less than the corresponding differences between untrimmed mean 

changes when completion rates were higher in the control group.  In scenarios where the 

untrimmed means were equal in the experimental and control groups, higher completion rates in 

the experimental group yielded trimmed mean changes that favored the experimental group, and 

the difference between groups in trimmed mean changes favored the control group when 

completion rates were higher in the control group.   

 

The magnitude of the difference between untrimmed and trimmed means depended not just on 

the relative rates of dropout but also on the dropout mechanism.  Trimming dropouts for lack of 

efficacy tended to have less impact than trimming for reasons unrelated to efficacy.  Dropouts for 

lack of efficacy would have had a bad outcome if they had been observed; therefore, assigning 

bad outcomes to dropouts did not cause much re-ranking of outcomes.  In contrast, dropout for 

reasons unrelated to efficacy resulted in a greater re-ranking of the data because bad outcomes 



could be assigned to patients that would have had good outcomes if they had been observed and 

not trimmed.      

 

Several limitations influence interpretations of these results.  For example, dropout mechanism 

influenced the effects of trimming and the simulations used a mechanism in which adverse 

events were unrelated to the outcomes.  If a relationship existed, the results of trimming would 

be different from those observed here.  Therefore, results are not a specific guide of what to 

expect in actual practice, although the general trends should be a useful.  Further, it would be 

interesting to explore the trimmed mean with longitudinal data as that would allow exploration of 

a larger variety of missing-data mechanisms.  

 

The trimmed mean is estimating something different than existing methods.  Therefore, direct 

comparisons of the trimmed mean with other methods are difficult to interpret.  For example, we 

cannot say the trimmed mean works better than or worse than method X because the methods 

target different estimands.  Similarly, we cannot say that a significant difference in trimmed 

means in scenarios where no difference existed in untrimmed means is a Type I error because the 

trimmed mean does not target inferences from the untrimmed values.  However, it is important to 

note that the trimmed mean can yield significant differences between treatments in situations 

where there would be no difference between treatments if all patients completed. 

  

Therefore, the utility of the trimmed mean hinges on the reasonableness of its assumptions.  

These assumptions include that dropout is an equally bad outcome in all patients and that 

adherence decisions in the trial are sufficiently similar to what is expected in clinical practice in 



order to generalize the results.  Permutt and Li (6) noted scenarios where these assumptions do 

not hold.  For example, it is crucial to distinguish incomplete data from drop out due to 

intolerability versus incomplete data from death.  These authors also noted that increased 

adherence is not always beneficial if that adherence arises from a pleasant side effect of the drug 

that is unrelated to the outcome.  However, in situations where assumptions are reasonable, the 

trimmed mean is an intuitive approach that does not require modeling assumptions or 

assumptions about the missing data mechanism, nor does it rely on explicit imputation of 

missing values.   

 

It must be remembered, though, that the trimmed mean assesses a unique estimand.  This 

estimand may not be relevant in all situations.  For example, trimmed means estimate benefit in a 

subset of patients.  However, medications have cost for everyone who takes the drug.  Therefore, 

trimmed means may not be relevant to Health Technology Assessors.  Similarly, for those 

wishing to make across study comparisons the lack of historical use of the trimmed mean could 

be problematic.   

 

For those situations where the trimmed mean is an appropriate option, power compared with 

untrimmed means is an important consideration.  Results of the current study show that, all else 

equal, the reduction in power from using a subset of the data can be considerable and therefore 

the impact of trimming must be carefully considered in study planning.  These considerations 

should include the anticipated rates of and reasons for early discontinuation.  Although previous 

studies on the same compound in similar settings can be a useful guide, uncertainty in rates of 



and reasons for dropout may add additional uncertainty into sample size estimation that would 

need to be taken into account.   

 

Given the well-known biases and strong recommendations against using some methods that 

estimate effectiveness estimands, such as BOCF and NRI, the trimmed mean may be a useful 

alternative when the assumptions are justifiable.   
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