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ABSTRACT
To investigate the association between dietary acrylamide and advanced prostate cancer, we
examined acrylamide-gene interactions for advanced prostate cancer risk by using data from the
Netherlands Cohort Study.

Participants (n D 58,279 men) completed a baseline food frequency questionnaire (FFQ), from
which daily acrylamide intake was calculated. At baseline, 2,411 men were randomly selected from
the full cohort for case-cohort analysis. Fifty eight selected single nucleotide polymorphisms (SNPs)
and two gene deletions in genes in acrylamide metabolism, DNA repair, sex steroid systems, and
oxidative stress were analyzed. After 20.3 years of follow-up, 1,608 male subcohort members and
948 advanced prostate cancer cases were available for Cox analysis.

Three SNPs showed a main association with advanced prostate cancer risk after multiple testing
correction: catalase (CAT) rs511895, prostaglandin-endoperoxide synthase 2 (PTGS2) rs5275, and
xeroderma pigmentosum group C (XPC) rs2228001. With respect to acrylamide-gene interactions,
only rs1800566 in NAD(P)H quinone dehydrogenase 1 (NQO1) and rs2301241 in thioredoxin (TXN)
showed a nominally statistically significant multiplicative interaction with acrylamide intake for
advanced prostate cancer risk. After multiple testing corrections, none were statistically significant.

In conclusion, no clear evidence was found for interaction between acrylamide intake and
selected genetic variants for advanced prostate cancer risk.

Introduction

Prostate cancer is a hormone-related cancer that is respon-
sive to androgen deprivation (hormonal) therapy (1). In the
western world, prostate cancer has one of the highest inci-
dence rates of all cancers in men, with approximately
759,000 new cases in 2012 (2). Age, family history of pros-
tate cancer, and black race are accepted risk factors, but
other risk factors have not been convincingly established
(3). Incidence rates (both overall and age-specific) vary
widely between countries, which can partly be explained by
the increase of prostate-specific-antigen (PSA) testing in
developed countries (4). Environmental factors may also
contribute to these differences. For example, migrant studies
have shown that prostate cancer incidence rates increased
among men who migrated to a region with higher prostate

cancer incidence (5). Of course, increased access of migrants
to PSA testing may contribute to this rise in incidence, but
dietary factors are also believed to influence the incidence of
prostate cancer (6). However, to date, there is still little
known about a possible association between diet and pros-
tate cancer (3).

Since its discovery in food in 2002, dietary acrylamide
has been the subject of numerous epidemiologic studies
on cancer. Acrylamide arises as a by-product of the Mail-
lard reaction between the amino acid asparagine and
reducing sugars (e.g., fructose, sucrose), during high-
temperature cooking of foods such as cookies, potato
chips, and French fries. The International Agency for
Research on Cancer (IARC) classified acrylamide as a
probable human carcinogen, based on evidence derived
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from rodent studies. Epidemiologic studies in humans,
thus far, have reported inconsistent findings on cancer
risk, with some studies showing increased risk for hor-
mone-related cancers (endometrial and ovarian cancer)
(7). In a previous study by our group (8), high intake of
acrylamide was non-significantly inversely associated
with advanced prostate cancer among never-smokers
after 13.3 years of follow-up. The analysis was restricted
to never-smokers to exclude any possible confounding
effect of smoking, which is a major source of acrylamide.
While another cohort study (9) also found acrylamide
intake to be non-significantly inversely associated with
advanced prostate cancer risk in never-smokers, the
third other cohort study (10) did not show any associa-
tions with advanced prostate cancer. It thus remains
unclear whether acrylamide intake influences advanced
prostate cancer risk.

A number of mechanismsmay explain the effect of acryl-
amide on cancer risk (11). The first mechanism involves gly-
cidamide, an epoxidemetabolite of acrylamide. Glycidamide
formsDNA adducts and is therefore thought to be the carci-
nogenic compound in acrylamide-induced carcinogenesis
due to its genotoxicity (12). Second, in previous analyses by
our group (8, 13), findings with hormone-related cancers
support the hypothesis of a hormonal mechanism of acryl-
amide. A third mechanism is acrylamide-induced oxidative
stress. Oxidative stress occurs when reactive oxygen species
(ROS), generated by pro-oxidants, outbalance the antioxi-
dant system (14). This imbalance becomes more common
with increasing age (15) and may therefore play an impor-
tant role in the development and progression of age-related
cancers including prostate cancer (16). However, it is
unclear whether and how these mechanisms may provide a
causal explanation for the association between acrylamide
and prostate cancer.

Therefore, in the current study, we used data from the
Netherlands Cohort Study on diet and cancer and explored
whether genetic variation modifies the association between
dietary acrylamide and advanced prostate cancer risk. For
that matter, 60 single nucleotide polymorphisms (SNPs) and
two gene deletions in genes involved in acrylamide metabo-
lism and the hypothesized mechanisms of acrylamide-
induced carcinogenesis (DNA repair, a sex hormonal effect
and oxidative stress) were selected.We examined the associa-
tion between selected genetic variants and advanced prostate
cancer risk and investigated acrylamide-gene interactions.

Methods

Study Population and Design

The prospective Netherlands Cohort Study (NLCS) on diet
and cancer included 58,279 men aged 55–69 years. At

baseline (1986), participants completed a one-time self-
administered questionnaire on dietary habits, lifestyle, and
other risk factors for cancer. Participants provided informed
consent for study participation by completing and returning
this questionnaire. About 75% of the participants provided
toenail clippings for DNA-analyses. For reasons of effi-
ciency, a case-cohort approach was used (17). To this end, a
subcohort, including 2,411 men, was randomly selected
from the full cohort immediately after baseline. Subcohort
members were then followed up for migration and vital sta-
tus, to accurately estimate the accumulated person years of
the full cohort. Advanced prostate cancer cases were derived
from the full cohort and identified by regular record linkage
to the Netherlands Cancer Registry and the Dutch Pathol-
ogy Registry (PALGA) (18). Further details on the study can
be found elsewhere (19). The NLCS has been approved by
the institutional review boards of the University Hospital
Maastricht and TNONutrition and Food Research.

Cases were classified by the Netherlands Cancer Reg-
istry (NCR) according to the International Union
Against Cancer tumor-node metastasis classification
(TNM) staging system (20). We included prostate can-
cers with a pathologic or clinical TNM staging score of
T3/T4, NC, or M1 at diagnosis. Prevalent cancer cases
(other than skin cancer) at baseline were excluded from
analysis. Furthermore, cases and subcohort members
were excluded if dietary data were either incomplete or
inconsistent, toenail clippings were not provided or gen-
otyping was unsuccessful (sample call rate < 95%). With
respect to acrylamide-gene interaction analysis, cases
and subcohort members were additionally excluded if
they had missing data on covariables. After 20.3 years of
follow-up, 1,608 subcohort members and 948 incident
cases of advanced prostate cancer were available for anal-
ysis. Figure 1 shows a flow diagram of the exclusion cri-
teria applied to cases and subcohort members.

Assessment of Acrylamide Intake

The baseline questionnaire included a 150-item food fre-
quency questionnaire (FFQ) to estimate daily food and
nutrient intake, which has been tested for validity and
reproducibility (21,22). As described in detail elsewhere
(13), we used data on acrylamide levels in foods on the
Dutch market. Daily acrylamide intake was estimated by
multiplying frequency of consumption by portion size
and the mean acrylamide content of each acrylamide-
containing food.

A 24-hour duplicate diet study by our group indicated
that subjects can be reliably ranked with respect to acryl-
amide intake using mean acrylamide values for individ-
ual foods (23). The Spearman’s correlation between the
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calculated and (chemically) measured acrylamide intake
was 0.82 (P < 0.001).

Gene and SNP Selection

A detailed description of the gene and SNP selection has
been provided elsewhere (24). Briefly, we selected SNPs
in genes involved in acrylamide metabolism and the
hypothesized mechanisms of acrylamide-induced carci-
nogenesis: genotoxicity (selected SNPs in DNA repair
genes), a sex hormonal effect and oxidative stress, and
that were shown to be associated with a sex hormone-
related cancer (endometrial, ovarian, breast, or prostate
cancer). In addition, we selected SNPs that, to our
knowledge, have not been evaluated for their association
with hormone-related cancers, but were shown to be of
significance in acrylamide-related polymorphism- or
gene expression studies.

Only validated SNPs with a minor allele frequency of
�10% in Caucasians in dbSNP were selected.

The SNPs (n D 60) we selected were in the following
genes: aldo-keto reductase family 1, member C1
(AKR1C1), aldo-keto reductase family 1, member C2

(AKR1C2), catalase (CAT), catechol-O-methyltransferase
(COMT), cytochrome P450 family 1 subfamily A member
1 (CYP1A1), cytochrome P450 family 1 subfamily A mem-
ber 2 (CYP1A2), cytochrome P450 family 1 subfamily B
member 1 (CYP1B1), cytochrome P450 family 11 subfamily
A member 1 (CYP11A1), cytochrome P450 family 17 sub-
family A member 1 (CYP17A1), cytochrome P450 family
19 subfamily A member 1 (CYP19A1), cytochrome P450
2E1 (CYP2E1), epoxide hydrolase 1 (EPHX1), estrogen
receptor 1 (ESR1), estrogen receptor 2 (ESR2), glutathione
peroxidase 1 (GPX1), glutathione S-transferase alpha 5
(GSTA5), glutathione S-transferase P1 (GSTP1), hydroxys-
teroid (17-beta) dehydrogenase 3 (HSD17B3), 3beta-
hydroxysteroid dehydrogenase (HSD3B1/B2), MGC12965,
mutY DNA glycosylase (MUTYH), nuclear factor kappa B
subunit 1 (NFKB1), nitric oxide synthase 2 (NOS2), NAD
(P)H quinone dehydrogenase 1 (NQO1), 8-oxoguanine
DNA glycosylase 1 (OGG1), progesterone receptor (PGR),
prostaglandin-endoperoxide synthase 2 (PTGS2), ribonucle-
otide reductase regulatory subunit M2 (RRM2), sex hor-
mone binding globulin (SHBG), solute carrier family 7
(cationic amino acid transporter, yC system), member 11
(SLC7A11), superoxide dismutase 1 (SOD1), superoxide

Figure 1. Flow diagram of subcohort members and advanced prostate cancer cases for 20.3 years of follow-up; Netherlands Cohort
Study on diet and cancer (1986–2006). (a) Analysis on the association between selected genetic variants and advanced prostate cancer
risk including 1,720 subcohort members and 1,000 advanced prostate cancer cases. (b) Analysis on the interaction between selected
genetic variants and acrylamide intake on advanced prostate cancer risk including 1,608 subcohort members and 948 advanced prostate
cancer cases.
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dismutase 2 (SOD2), steroid 5 alpha-reductase 1 (SRD5A1),
sulfotransferase family 1A member 1 (SULT1A1), sulfo-
transferase family 1E member 1 (SULT1E1), thioredoxin
(TXN), UDP glucuronosyltransferase family 1 member A6-
10 (UGT1A6-10), xeroderma pigmentosum, complementa-
tion group C (XPC), and x-ray repair complementing defec-
tive repair in Chinese hamster cells 1 (XRCC1).

In addition, glutathione s-transferase mu 1 (GSTM1)
and glutathione s-transferase theta 1 (GSTT1) were
selected as genes involved in acrylamide metabolism
(25). Since the beginning and ending of the GSTM1 and
GSTT1 deletions are not exactly known, it was impossi-
ble to design one SNP assay (based on single base exten-
sion) for the deletion. Therefore, we chose three SNPs
for GSTM1 (rs10857795, rs200184852, and rs74837985)
and four SNPs for GSTT1 (rs2844008, rs4630, rs140309,
and rs8140585) to represent the presence or absence of
the gene. In case all SNPs within a gene were not called,
we interpreted this as a deletion of the gene.

Finally, 67 SNPs (60 SNPs, plus 7 SNPs to represent
the GST deletions) were genotyped using two multiplex
panels. Supplementary Table S1 provides an overview of
the genotyped SNPs (not including the seven SNPs rep-
resenting the GST deletions).

DNA Isolation and Genotyping

DNA was isolated from 15 mg of toenail clippings,
according to a protocol described in detail elsewhere
(26). SNP genotyping was done on the MassARRAY sys-
tem in conjunction with the iPLEX TM assay (27).

The reproducibility of genotyping for the analyzed
SNPs (minus 7 SNPs representing the GST deletions)
was assessed from 146 duplicate samples, which was
>99% (excluding missing values). Out of 60 SNPs, two
SNPs (rs3736599 and rs7741) were excluded from analy-
ses due to insufficient genotyping success (call rate <

80%); the assay for rs3736599 failed completely (0% call
rate). After correction for multiple testing, using the Ben-
jamini–Hochberg (1995) false discovery rate (FDR)
approach (28), two SNPs (rs1001179 and rs5746136)
were not in Hardy–Weinberg equilibrium (FDR-adjusted
P value <0.20) (see Supplementary Table S1).

A total of 229 samples (120 cancer cases, 109 subco-
hort members) were excluded due to a sample call rate
below 95%. With respect to the three selected SNPs to
represent the GSTM1 deletion, rs10857795 was not
called in 39%, rs200184852 in 44%, and rs74837985 in
2% of the subcohort. The GSTM1 gene is deleted in
approximately 40–50% of the Caucasians. This probably
indicates that the low proportion of missings for
rs74837985 was due to genotyping error, possibly caused
by unspecific amplification. Therefore, only rs10857795

and rs200184852 were selected to represent the GSTM1
deletion. With respect to the four SNPs representing the
GSTT1 deletion, it was found that rs2844008 was not
called in 64%, rs4630 in 15%, rs140309 in 11%, and
rs8140585 in 85% of the subcohort. The GSTT1 gene is
deleted in about 20% of the Caucasians, thus rs2844008
and rs814058 were probably not correctly genotyped and
therefore not statistically analyzed in isolation.

Statistical Analysis

A Cox proportional hazards model was used to calculate
hazard ratios (HRs) with 95% confidence intervals (CIs).
Robust standard errors were calculated to account for
the additional variance introduced by sampling a subco-
hort from the full cohort (29). Follow-up time (time-on-
study) was used as the time scale and defined as time
from baseline (Sept. 1986) to either diagnosis of
advanced prostate cancer, death, emigration or loss to
follow-up, whichever came first. The proportional haz-
ards (PH) assumption was assessed by using the scaled
Schoenfeld residuals (30).

In models that examined the main effect of dietary
acrylamide and acrylamide-gene interactions, age, family
history of prostate cancer, and smoking were included as
predefined covariables. Internal acrylamide exposure
and smoking are strongly associated, because smoking is
an important source of acrylamide. For smoking to be a
confounder, it must be associated with advanced prostate
cancer risk as well. The evidence for this association is
mixed (31,32) and unpublished results by our group did
not reveal an association between smoking and advanced
prostate cancer risk. However, to minimize any residual
confounding, we decided to adjust for smoking. In this
perspective, we also analyzed never-smokers (main effect
dietary acrylamide only) and non-smokers (never smok-
ers combined with former smokers who had quit smok-
ing more than 10 years before baseline). Preferably, we
would have analyzed the never-smokers group for acryl-
amide-gene interactions (given the previously reported
inverse association; ref. 8), but this was impossible due to
the insufficient number of cases and subcohort members
in this group. Therefore, we chose to analyze non-smok-
ers and also adjusted for (former) smoking within that
group. The smoking variables that were entered into the
models were: cigarette smoking status (never/former/
current), frequency of cigarettes smoked per day, and
duration of smoking (years).

Based on literature, the following variables were a pri-
ori considered as potential confounders and only
included in the model if they changed the acrylamide
hazard ratio by >10%: BMI (kg/m2), non-occupational
physical activity (min/day), level of education (four
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categories), positive history of diabetes (yes/no), total
energy intake (kcal/day), fruit (g/day), vegetables (g/
day), dairy products (g/day), lycopene (mg/day), calcium
(mg/day), and vitamin E (mg/day). None of the variables
changed the acrylamide hazard ratio by >10% and were
thus not included in the final model. Throughout the
analyses, we adjusted for age, family history of prostate
cancer, and smoking, except for the association between
SNPs and advanced prostate cancer risk (age-adjusted
only).

As a first analysis, we examined whether the inverse
association between dietary acrylamide and advanced
prostate cancer risk in never-smokers after 13.3 years of
follow-up persisted after 20.3 years of follow-up.

The association between variants in CAT (rs1001179),
GPX1 (rs3448), NQO1 (rs1800566), OGG1 (rs1052133),
SOD1 (rs10432782), and SOD2 (rs4880) and advanced
prostate cancer risk were previously reported by our
group (33,34). For that reason, the main effects of these
SNPs on advanced prostate cancer risk will not be pre-
sented in the current study.

Multiplicative interaction P values for the interaction
between acrylamide and genotypes (assuming a dominant
genetic model) were tested using product terms between
acrylamide intake (continuous) and genotype. Dose-
response across genotype strata was tested by using the
median acrylamide intake of each quartile as a continuous
variable. In sensitivity analysis, we repeated the acrylam-
ide-gene interaction analysis in non-smokers for the 13.3
year follow-up period. P trends (main effect SNPs only)
and acrylamide-gene interaction P values were corrected
for multiple testing, using the Benjamini–Hochberg (1995)
FDR approach (28). The FDR threshold for these analyses
was set at 0.20, which is common in candidate gene studies
(33). FDR-adjusted P values were separately calculated for
the total study population and for non-smokers.

All statistical analyses were performed with STATA
(version 13.1, StataCorp LP, College Station, TX, USA)
and reported P values were two-sided, with P < 0.05
considered nominally statistically significant.

Results

At baseline, cases were comparable to subcohort mem-
bers regarding acrylamide intake, age, BMI, education,
cigarette smoking status, and diet (Table 1). In the sub-
cohort, former smokers with more than 10 years of ces-
sation had quit smoking for a mean (SD) of 20.8 (7.0)
years, which was comparable to that of cases. As com-
pared to subcohort members, cases more often had a
family history of prostate cancer but less often a history
of diabetes. Subcohort members (and cases) that pro-
vided toenail clipping were comparable to subcohort

members (and cases) that did not provide toenail clip-
pings, except for level of education and cigarette smoking
status (data not shown).

Main Effect of Acrylamide Intake

After 20.3 years of follow-up no associations were found
between acrylamide intake and advanced prostate cancer
risk in the total study population [HR(Q5 vs. Q1) D
1.03, 95% CI: 0.82–1.29; P trend D 0.89], never-smokers
[HR(Q5 vs. Q1) D 0.90, 95% CI: 0.51–1.60; P trend D
0.68] and non-smokers [HR(Q5 vs. Q1) D 0.93, 95% CI:
0.68–1.26; P trend D 0.78] (Table 2). Also, analysis with
13.3 years of follow-up did not reveal any association
apart from the previously reported (8) non-statistically
significant inverse dose response relationship in never-
smokers (Table 2).

Main Effect of SNPs

Six SNPs showed a nominally statistically significant
association with advanced prostate cancer risk after
20.3 years of follow-up (Table 3). Men with variant
alleles of rs11252887 (AKR1C2), rs511895 (CAT),

Table 1. Baseline characteristics of subcohort members and
advanced prostate cancer cases in the Netherlands Cohort Study
on diet and cancer (1986–2006)1.

Variable
Subcohort
(n D 1,608)

Cases
(n D 948)

Acrylamide (mg/day) 22.4 (11.9) 22.9 (12.2)
Age (years) 61.2 (4.2) 61.7 (4.1)
BMI (kg/m2) 24.9 (2.6) 25.0 (2.4)
Non-occupational physical

activity (min/day)1
63 (37–103) 64 (41–103)

Level of education (%)
Primary school 23.9 24.3
Lower vocational 20.8 18.0
High school 35.2 35.7
Higher vocational/university 20.1 22.0

Cigarette smoking status (%)
Never smoker 13.8 14.7
Former smoker 54.2 57.2
Current smoker 32.0 28.2

Former smokers >10 years cessation
Frequency of cigarette smoking
(n/day)

16.4 (11.8) 15.5 (10.4)

Duration of cigarette smoking (years) 22.4 (8.5) 22.7 (8.3)
Time since cessation (years) 20.8 (7.0) 20.6 (7.0)
Positive history of diabetes (%) 3.1 2.2
Family history of prostate
cancer (%)

2.5 3.5

Dietary intake
Total energy intake (kcal/day) 2,155 (498) 2,166 (486)
Fruit (g/day)2 137 (78–209) 142 (79–215)
Vegetables (g/day) 193 (84) 198 (82)
Dairy products (g/day)2 266 (165–399) 291 (181–419)
Lycopene (mg/day)2 751 (363–1,237) 802 (389–1,366)
Calcium (mg/day) 944 (341) 971 (339)
Vitamin E (mg/day) 14.7 (6.6) 15.2 (6.6)

1Values are means C SEMs or percentages unless otherwise indicated.
2Values are medians; ranges in parentheses.
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rs10923823 (HSD3B1/B2), and rs7546652 (HSD3B1/B2)
showed an increase in risk for advanced prostate cancer,
with HRs per minor allele of 1.16 (95% CI: (1.03–1.32);
P trend D 0.02), 1.17 [95% CI: (1.05–1.31); P trend D
0.01], 1.14 [95% CI: (1.01–1.27); P trend D 0.03] and
1.14 [95% CI: (1.02–1.28); P trend D 0.03], respectively.
A decreased risk of advanced prostate cancer was
observed for men with variant alleles of rs5275 (PTGS2)
and rs2228001 (XPC), with HRs per minor allele of 0.85
[95% CI: (0.76–0.96); P trend D 0.01] and 0.83 [95% CI:
(0.74–0.94); P trend D 0.002], respectively. After multi-
ple testing correction, rs5118895 in CAT (FDR-adjusted
P value D 0.15), rs5275 in PTGS2 (FDR-adjusted P value
D 0.19) and rs2228001 in XPC (FDR-adjusted P value D
0.11), remained significant at level 0.20. For the other
SNPs and 2 gene deletions, we did not observe clear asso-
ciations with advanced prostate cancer risk (data not
shown).

Interactions between Acrylamide Intake and SNPs

Out of 58 analyzed SNPs and 2 gene deletions, two SNPs
showed a nominally statistically significant multiplicative

interaction with acrylamide intake in the total study pop-
ulation (Table 4); rs1800566 (NQO1) with a P interaction
of 0.03 and rs2301241 (TXN) with a P interaction of 0.04.
Neither remained significant at level 0.20 after adjusting
for multiple comparisons and we did not observe a clear
dose-response relationship for acrylamide in strata of
those genotypes. In non-smokers, no SNPs showed evi-
dence of multiplicative interaction with acrylamide
intake. A detailed overview of the acrylamide-gene inter-
actions is provided in Supplementary Table S2.

In sensitivity analyses, we analyzed the acrylamide-
gene interactions in non-smokers for 13.3 years of fol-
low-up. Two SNPs (rs11252859 in AKR1C1 and
rs8192120 in SRD5A1) showed a nominally statistically
significant multiplicative interaction with acrylamide
intake, but they did not withstand correction for multiple
testing (data not shown).

Discussion

In this large population-based prospective cohort study,
we analyzed acrylamide-gene interactions for advanced
prostate cancer risk, which has not been done before. Six

Table 3. SNPs showing nominally statistically significant association (P trend < 0.05) with advanced prostate cancer risk after 20.3 years
of follow-up; Netherlands Cohort Study on diet and cancer (1986–2006).

Advanced prostate cancer

Gene SNP1 Genotype Person-years n cases HR (95% CI)2 P trend FDR-adjusted P value3

AKR1C2 rs11252887 CC 13 828 464 1.00 (ref)
CT 11 065 422 1.14 (0.96–1.35)
TT 2191 101 1.38 (1.03–1.85)
Per minor allele 27 084 987 1.16 (1.03–1.32) 0.02 0.26

CAT rs511895 GG 9882 308 1.00 (ref)
AG 12 786 495 1.25 (1.04–1.50)
AA 4691 197 1.36 (1.07–1.71)
Per minor allele 27 359 1000 1.17 (1.05–1.31) 0.01 0.15

HSD3B1/B2 rs10923823 TT 9270 314 1.00 (ref)
CT 13 032 467 1.06 (0.88–1.27)
CC 5021 218 1.31 (1.04–1.64)
Per minor allele 27 323 999 1.14 (1.01–1.27) 0.03 0.29

HSD3B1/B2 rs7546652 TT 9279 313 1.00 (ref)
CT 13 080 469 1.06 (0.88–1.28)
CC 5001 218 1.32 (1.05–1.65)
Per minor allele 27 359 1,000 1.14 (1.02–1.28) 0.03 0.29

PTGS2 rs5275 TT 12 500 493 1.00 (ref)
TC 11 310 402 0.88 (0.74–1.04)
CC 3358 99 0.71 (0.54–0.93)
Per minor allele 27 169 994 0.85 (0.76–0.96) 0.01 0.19

XPC rs2228001 AA 9514 392 1.00 (ref)
CA 13 049 477 0.89 (0.75–1.06)4

CC 4796 130 0.67 (0.52–0.85)4

Per minor allele 27 359 999 0.83 (0.74–0.94) 0.002 0.11

Abbreviations: AKR1C2, aldo-keto reductase family 1 member C2; CAT, catalase; CI, confidence interval; FDR, false discovery rate; HR, hazard ratio; HSD3B1/B2, 3beta-
hydroxysteroid dehydrogenase; PTGS2, prostaglandin-endoperoxide synthase 2; SNP, single nucleotide polymorphism; XPC, xeroderma pigmentosum, complemen-
tation group C.

1Catalase (CAT) rs1001179 showed a positive association with advanced prostate cancer in the Netherlands Cohort Study on diet and cancer as previously reported
by our group (ref. 34) and is therefore not presented here.
2Hazard ratios adjusted for age.
3P values adjusted for multiple testing comparisons using the false discovery rate (FDR) approach of Benjamini-Hochberg (1995); the FDR threshold was set at
0.20.
4Possible violation of the proportional hazards assumption but no statistically significant interaction with time (P value � 0.05).
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SNPs were associated with advanced prostate cancer risk,
three of which remained significant after multiple com-
parisons correction (rs511895 in CAT, rs5275 in PTGS2,
and rs2228001 in XPC). Two SNPs (rs1800566 in NQO1
and rs2301241 in TXN) showed a nominally statistically
significant multiplicative interaction with acrylamide
intake, but neither remained significant after adjusting
for multiple comparisons.

CAT is an antioxidant enzyme that plays a key role in
oxidative stress protection by degrading hydrogen perox-
ide (35). The intronic CAT rs511895 SNP showed no
association with lethal prostate cancer in the Health Pro-
fessionals Follow-up Study (HPFS) (36). In the same
study, this SNP was associated with circulating levels of
alpha-tocopherol (Vitamin E), an antioxidant that may
reduce prostate cancer risk. This may indicate that CAT
rs511895 is a functional SNP or in linkage disequilibrium
with another functional SNP. In the present study, par-
ticipants with one or two variant alleles of CAT rs511895
had a higher advanced prostate cancer risk than homo-
zygous wild type participants. In a previous study by our
group (34), another CAT SNP (rs1001179) was also asso-
ciated with increased advanced prostate cancer risk. As
discussed by the authors, this association could be
explained by reduced catalase activity and, consequently,
deficiency in antioxidant protection against oxidative
stress. We cannot provide such an explanation for CAT
rs511895, which may indicate that our finding is due to
chance (even after correction for multiple testing).
PTGS2 encodes COX-2, an enzyme that converts arachi-
donic acid to prostaglandin H2 (37). COX-2 promotes
inflammation and is overexpressed in various cancers,
including prostate cancer (38). According to a meta-
analysis (39), PTGS2 rs5275 was not associated with
prostate cancer risk in Caucasians, but in that study
prostate cancer subtypes were not examined. In our
study, the rare allele of PTGS2 rs5275 was associated
with a decreased advanced prostate cancer risk. PTGS2
rs5275 is located in the 30-untranslated region of the
PTGS2 gene and thought to regulate mRNA stability and
degradation (40), thereby possibly influencing prostate
cancer carcinogenesis. However, the PTGS2 rs5275 SNP
is not clearly associated with PTGS2 gene expression in
lymphoblastoid cel lines (41). XPC is a protein (encoded
by the XPC gene) that plays an important role in DNA
damage recognition, in the global genome nucleotide
excision repair (GG-NER) pathway (42). A meta-analysis
found that the non-synonymous coding XPC rs2228001
SNP was not associated with prostate cancer risk in Cau-
casians (43). However, only two studies were included
(including one study with a small sample size) and pros-
tate cancer subtypes were not examined. In our study,
we show that the rare allele of XPC rs2228001 was

associated with a decreased advanced prostate cancer
risk. Various studies, however, have shown that this
polymorphism was associated with increased cancer risk
through decreased DNA repair capacity (44). This indi-
cates that the inverse association we found lacks biologi-
cal plausibility, and may therefore represent a chance
finding. With regard to all three SNPs (rs511895 in CAT,
rs5275 in PTGS2, and rs2228001 in XPC), future well-
designed gene-association studies with large sample size
are required to confirm our findings.

Prior to acrylamide-gene interaction analysis, we
examined the association between dietary acrylamide
and advanced prostate cancer risk after 20.3 years of fol-
low-up. The (statistically non-significant) inverse associ-
ation we observed across quintiles of acrylamide intake
and advanced prostate cancer risk in never-smokers after
13.3 years of follow-up (8) did not persist after 20.3 years
of follow-up. Thus, the previously observed inverse asso-
ciation may have been due to chance since the associa-
tion was not statistically significant. In our earlier study,
we interpreted the putative inverse association in the
context of the associations we found with other hor-
mone-related cancers. A Swedish prospective study (9),
conducted after our study, also reported an (statistically
non-significant) inverse association between acrylamide
intake and advanced prostate cancer risk in never-smok-
ers. However, the third other study (10) did not find an
association. Given this limited and inconsistent evidence,
we examined acrylamide-gene interactions in order to
better understand a possible association between acryl-
amide intake and prostate cancer. For that matter, we
selected genetic variants involved in acrylamide metabo-
lism and the hypothesized mechanisms of acrylamide-
induced carcinogenesis: genotoxicity (DNA repair), a sex
hormonal effect and oxidative stress (11). While we
observed two SNPs (rs1800566 in NQO1 and rs2301241
in TXN) that showed statistically significant multiplica-
tive interaction in the total study population, we did not
identify SNPs that survived multiple testing correction
or multiple SNPs in the same gene or SNPs that showed
a clear dose-response relationship for acrylamide in
strata of the genotypes. Thus, the current study does not
provide evidence for an interaction between selected
genetic variants and acrylamide intake on advanced
prostate cancer risk. Consequently, this study does not
increase the strength of evidence for a causal association
between acrylamide intake and prostate cancer risk.

Preferably, we would have performed acrylamide-
gene interactions in never-smokers to eliminate any con-
founding effects by smoking (which is an important
source of acrylamide) and to be able to shed more light
on the previously reported inverse association for this
group. However, the number of available cases in this
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group was too small for this purpose and therefore we
combined never-smokers with former smokers who had
quit smoking more than 10 years before baseline.
Unpublished results by our group did not show an asso-
ciation between former smoking and advanced prostate
cancer risk and other studies reported mixed results
(31,32), which made us decide to combine these two
groups. Of course, residual confounding by former
smoking may still have been present, but we tried to
eliminate this as much as possible by detailed adjustment
for (former) smoking. It is therefore not to be expected
that analyzing this non-smoking group has rendered
importantly different results than analyzing never-smok-
ers would have done.

Strengths of our study are the prospective nature, the
(>96%) completeness (45), and duration of cancer fol-
low-up. A drawback of our study is the one-time baseline
assessment of exposures and covariables. However, older
people are likely to have relatively stable diets over time.
Another drawback of our study is that we focused on
functional candidate genes and variants associated with
acrylamide metabolism and the hypothesized mecha-
nisms of acrylamide-induced carcinogenesis. Therefore,
we may have missed variants in genes that possibly inter-
act with dietary acrylamide on advanced prostate cancer
risk. Furthermore, even though we used data from a large
cohort study, a relatively small number of cases per cell
in acrylamide-gene analysis may have possibly resulted
in limited statistical power to show statistically signifi-
cant multiplicative interactions. Finally, baseline charac-
teristics differed not significantly between participants
who provided toenail clippings for DNA-analyses and
participants who did not, except for level of education
and cigarette smoking status. However, given the pro-
spective cohort design of our study this is not likely to
have biased our results.

In conclusion, the Netherlands Cohort Study on diet
and cancer does not provide clear evidence for an inter-
action between acrylamide intake and selected genetic
variants on advanced prostate cancer risk and does not
increase the strength of evidence for a causal association
between acrylamide intake and prostate cancer risk.
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