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Abstract

Estimating all parameters in a multiparameter response model as smooth functions of

an explanatory variable is very similar to estimating the different components of an ad-

ditive model for the response mean. It is shown that, in a general estimating framework,

local polynomial backfitting estimators in an additive one-parameter model do not work

optimally. For a multiparameter model, however, a backfitting algorithm can be defined

that leads to local polynomial estimators that do have optimal properties.

Keywords: Additive models, Backfitting, Estimating equations, Local polynomial esti-

mators, Multiparameter models.

1 Introduction

In lots of statistical problems it is desirable to obtain nonparametric estimators of two or

more curves at the same time. Here, we consider the general regression setting in which

unknown parameters of an m dimensional response vector Y are modeled as a function of

a D dimensional vector of covariates X. We also focus on local polynomial estimation as

smoothing technique, combined with the backfitting scheme as fitting algorithm. In this
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context, simultaneous estimation of several curves can essentially occur in two different

situations.

First, these curves can correspond to the different components of an additive model

for one single “natural” parameter (typically the mean). We refer to this case as CASE I.

This type of multicurve estimation has been studied extensively in the context of “clas-

sical” regression (response = mean + error, m = 1) by Hastie and Tibshirani (1990).

They formulate the backfitting algorithm for general linear smoothers and show how it

can be generalized to one-parameter likelihood models. The specific application of local

polynomial smoothing to “classical” additive models is studied in detail by Opsomer and

Ruppert (1997). Its generalization to general (quasi-)likelihood is one of our objectives.

Suppose next that there is only one single covariate of interest (D = 1). A completely

different situation in which more curves have to be fit is when using a multiparameter

response model (CASE II). Examples are the mean and variance function in a Gaussian

regression model, or the probability of success and the correlation in a beta-binomial model

for correlated binary data. Local polynomial smoothing in this case has been studied by

Aerts and Claeskens (1997) and Carroll, Ruppert and Welsh (1998), but they only study

in detail the case where one single bandwidth parameter is used for all curves. This

is clearly not flexible enough, since one might expect a different degree of smoothness

for each parameter. Therefore, each component should be estimated using a different

bandwidth parameter. A call for such an estimation scheme is also expressed in Davison

and Ramesh (1998) and Carroll, Ruppert and Welsh (1998). An interesting question here

is whether local polynomial backfitting estimators can be used to achieve this goal and

how optimal their properties are.

Finally, there is the general case where each curve in a multiparameter model may be

a function of more than one covariate (CASE III). More explicit examples of all situations

are given in the next section.

A desirable property is that each curve can be estimated in the most optimal, efficient

way, that is, the estimator of one curve should have the same asymptotic properties as if all

other components were known and the estimation scheme is essentially one-dimensional.

In Section 3 we obtain that, for case I, local polynomial backfitting estimators do not

satisfy this optimality property, even not for independent covariates. An important result
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in Section 4 is that a system of backfitting equations can be defined for the multiparameter

case II, which lead to estimators with optimal statistical properties.

All results are formulated in a general estimating equations framework containing least

squares, quasi-likelihood, etc. as special cases.

2 Examples

In this section we give some examples of parametric response models. Suppose we want to

estimate some parameter θ = (θ1, . . . , θκ)T , based on a sample Y 1, . . . ,Y n, and suppose

we use the following system of equations

n∑

i=1

ψ(Y i;θ) = 0.

When estimating θ as a smooth function of X by local polynomials, each score contribu-

tion ψ(Y i; θ) has to be weighted by a kernel function in combination with the backfitting

algorithm.

Example 1: Classical regression

Let m = 1, κ = 1 and θ = E(Y1). Then the least-squares estimating equations are

ψ(Yi; θ) = (Yi−θ). When there are covariates Xi = (X1i, . . . , XDi) associated with Yi, an

additive model assumes that θ(X1i, . . . , XDi) = θ1(X1i) + . . . + θD(XDi). This is a case I

example and most literature focuses on this particular setting.

Next, assume that Yi is normally distributed and that, next to the mean θ1 = E(Y1),

also the variance θ2 = Var(Y1) is a parameter of interest. When estimating θ = (θ1, θ2)

(κ = 2) as a function of one covariate X, one has two options: estimating both parameters

separately by moment type estimators or simultaneously by maximizing the (local) like-

lihood function as a function of θ. Both solutions are asymptotically equivalent. For this

case II example, ψk(Yi; θ) = ∂/∂θk ln f(Yi; θ1, θ2), k = 1, 2, where f is the normal density.

If θ is estimated by the (local) likelihood method as a function of more covariates, we get

a case III example.

Example 2: Categorical data models

An extension of the first case I - example to one-parameter exponential family additive

models (like the logistic or Poisson regression model) is discussed in Hastie and Tibshi-

rani (1990). Often overdispersion is present, due to the clustered nature of the data (a
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cluster might be a litter in a toxicological experiment or a household in a survey) and

different methods should be applied. One possibility is to use local quasi-likelihood as

in Fan, Heckman and Wand (1995). Here κ = 1 and ψ(Yi;θ) = ∂/∂θ ln f(Yi; θ) is the

appropriate (quasi)likelihood function. The use of local polynomial backfitting estimators

as presented in Section 3 has, to our knowledge, not been studied before.

Another more sophisticated way to handle overdispersion is to model it directly by com-

pound distributions like the negative-binomial (count data) or the beta-binomial (binary

data), see, e.g., Morgan (1992). For clustered binary data there are several other multipa-

rameter models like the Bahadur model (Bahadur 1961), the conditional model of Molen-

berghs and Ryan (1999) etc. Next to the success probability θ1, these models all include

one or more parameters θ2, θ3, . . . to describe the association between outcomes (so here

κ ≥ 2). Several examples where smoothing is involved are discussed in Claeskens (1999).

For our case II, θ = (θ1, . . . , θκ) are modeled as a function of one covariate (D = 1) and

for case III as an additive function of several covariates (D > 1). Here, the score functions

ψk are the derivatives of the log(quasi-)likelihood with respect to θk.

Example 3: Other complex data

There are still many other data settings and models leading to multiparameter models.

For clustered data and longitudinal data one can also apply the generalized estimat-

ing equations (see, e.g., Liang and Zeger, 1986) or pseudo-likelihood (see, e.g., Geys,

Molenberghs and Ryan, 1999). A step further is dealing with multivariate response data

Y = (Y1, . . . , Ym), like, e.g., a multivariate generalized linear model where the mean of

each response component is assumed to be additive in the covariates. More and more

parameters have to be estimated and estimating equations get more complex. Finally, a

complete different type of data are extremes, where location, scale and shape vary accord-

ing to smooth functions over time (Davison and Ramesh, 1998).

Although it might get complicated to implement certain multiparameter models with

local polynomial backfitting estimators, theory as presented in next sections covers all

given examples. To keep presentation simple, we state all results without regularity

conditions. These conditions are essentially a mixture of conditions as given by Opsomer

and Ruppert (1997) and Aerts and Claeskens (1997).
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3 Additive models

In this section we consider the one-parameter multiple covariate case (case I). The data

we observe are (Y1, X1), . . . , (Yn, Xn) where Xi = (X1i, . . . , XDi). In an additive model

with D ≥ 1 covariates, the unknown parameter of interest has the following form

θ(x1, . . . , xD) = θ1(x1) + . . . + θD(xD), (1)

where, for example in a generalized linear model, θ(x) = g(E[Y |X = x]) for a known link

function g (see, e.g., Hastie and Tibshirani, 1990).

If there is more than one covariate, that is, if D > 1, there is a problem of identifiability,

which is typical for this kind of additive models. For a random design, one usually includes

an intercept term α in the model and assumes that each of the expected values E[θd(Xd)]

is zero. This is also the approach that we will take. The intercept term α is estimated by

solving
∑n

i=1 ψ(Yi, α) = 0. Local polynomial estimators of degree pk of the curves θk(·) at

X1, . . . ,Xn, and of their derivatives up to order pk, for (k = 1, . . . , D), can be obtained

by solving the following set of kernel weighted estimating equations:

ψ{β(X1)} = 0, . . . ,ψ{β(Xn)} = 0 (2)

where ψ{β(x)} =




n∑

i=1

ψ{Yi; α +
pd∑

j=0

βdj(xd)(Xdi − xd)j +
∑

k 6=d

βk0(Xki)}Khd
(Xdi − xd)

... (for d = 1, . . . D)
n∑

i=1

ψ{Yi; α +
pd∑

j=0

βdj(xd)(Xdi − xd)j +
∑

k 6=d

βk0(Xki)}(Xdi − xd)pdKhd
(Xdi − xd) ,

(3)

Kh(·) = K(·/h)/h and β(x) = (βT
1x, . . . , βT

Dx)T with βdx = (βd0(xd), . . . , βdpd
(xd))T .

First we need some more notation. The jth moment of the kernel function K is

defined by νj(x, hk) =
∫
Rx,hk

ujK(u)du, where the integration region is given by, Rx,hk
=

{t : (x + hkt) ∈ supp(fk)} ∩ supp(K), and fk is the marginal probability density function

of covariate Xk. This region will indicate the difference between interior and boundary

points, the former are identified when Rx,hk
= supp(K). Let R0(x, hk) =

∫
Rx,hk

K2(u)du.

The notational dependence of ν and R on x and hk will be omitted for interior points.

Solving the set of equations (2) can be done in practice via the iteratively reweighted

backfitting algorithm. For likelihood models, Hastie and Tibshirani (1990, p. 149) moti-
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vate the use of an iterative backfitting scheme, where the “smoother” matrices now also

depend on the unknown coefficients via the matrix of partial derivatives of the estimating

equations, as does the pseudo-response vector or adjusted dependent variable (see, e.g.,

Hastie and Tibshirani, 1990, p. 139), the latter defined for general estimating equations,

not necessarily originating from likelihood equations. This dependence on unknowns re-

quires the additional iterative local scoring procedure where these matrices are “updated”

after which the backfitting step is repeated using these updated matrices.

A novel aspect of the next result is that the asymptotic properties of estimators are

obtained outside the framework of the classical, homoscedastic regression model (see also

Section 2). In order to obtain our results, we rely on the important piece of work as

provided by Opsomer and Ruppert (1997). To get the asymptotic conditional bias and

variance of the estimators β̂kj(Xki) it suffices to concentrate on a first order approximation

of the equations (2) if second partial derivatives of the estimating equations (e.g. third

partial derivatives of the log likelihood) are uniformly bounded.

Assuming the sufficient conditions for existence of the estimators to hold, we focus

attention to asymptotic bias and variance expressions of the estimators. In parametric

estimating equations models, conditions implying existence, consistency and asymptotic

normality of the estimators are formulated by Yuan and Jennrich (1998), and for local

likelihood equations, see Aerts and Claeskens (1997).

For the bivariate case (D = 2) we obtain the following result for the estimators of the

curves θ̂1(X1i) = β̂10(X1i) and θ̂2(X2i) = β̂20(X2i). Extensions to the estimators β̂dj(Xdi)

for 2 < d ≤ D and 1 ≤ j ≤ pd are straightforward.

Theorem 1 For p1 and p2 both odd, under the appropriate regularity conditions,

E[θ̂1(X1i)− θ1(X1i)|X1, . . . , Xn] =
hp1+1

1

(p1 + 1)!
νp1+1(X1i, h1)θ

(p1+1)
1 (X1i)

+
hp1+1

1

(p1 + 1)!
νp1+1C1 − hp2+1

2

(p2 + 1)!
νp2+1C2 + OP (

1√
n

) + oP (hp1+1
1 + hp2+1

2 ),

a similar expression is obtained for E[θ̂2(X2i)− θ2(X2i)|X1, . . . ,Xn].

Var(θ̂1(X1i)|X1, . . . , Xn) =
1

nh1
R0(Kp1 , X1i)f−1

1 (X1i)C3 + oP (
1

nh1
)

and similarly for Var(θ̂2(X2i)|X1, . . . ,Xn). The values C1, C2 and C3 depend in a com-

plicated way on the “Fisher” information E[∂ψ
∂θ (Y ; θ1(X1i) + θ2(X2i))|X1, . . . ,Xn] and
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the joint density function of the covariates. C2 depends also on θ
(p2+1)
2 (X2i), C1 on

(
θ
(p1+1)
1 (X11), . . . , θ

(p1+1)
1 (X1n)

)
, and C3 on E[ψ2(Y ; θ1(X1i) + θ2(X2i))|X1i, X2i].

The proof can be obtained along the same lines as the proof of Theorem 4.1 in Op-

somer and Ruppert (1997), details are therefore omitted (see Claeskens 1999). All results

obtained above reduce to those of the classical additive model under least squares equa-

tions. This theorem clearly demonstrates the undesirable property that the bias of the

estimators depends on all curves in the model. An important difference with the classical

additive models, though, is that in general there is no simplification when X1i and X2i

are independent, because of the Fisher information matrix. There is no obvious way to

improve these results, i.e. to adapt the estimation scheme to obtain a bias expression

depending on one component function only.

A possible solution could be to define a multi-step procedure where for estimation of,

say, θ1(x), a too small bandwidth is used for estimation of the other components, such

that their contribution to the bias will be, at least asymptotically, negligible. In the next

steps, the same procedure is repeated for each other component of the additive model. It

is yet unknown how this procedure will perform in practical situations.

This so-called “non oracle” efficiency of backfitting estimators has also been noticed

by Linton and Nielsen (1995), who proposed an alternative estimation scheme, using

integration approaches, properties of which are also studied by Fan, Härdle and Mammen

(1998). This, however, is also not fully efficient in mean squared error sense. There are

indications that in less general settings, an estimation method combining backfitting and

marginal integration is fully efficient, see, e.g., Linton (1997, 1998).

The main conclusion is that, when using local polynomials, backfitting estimators do

not work optimally for the purpose they are defined: estimating components of additive

models. It should be stressed that this is not only true for additive models having structure

(1), but for any additive structure, e.g., θ(x1, . . . , xD) = θ1(x1, . . . , xk)+θ2(xk+1, . . . , xD).

In the next section we will show that a similar set of estimating equations does “work” in

case the curves are separated, i.e. in a multiparameter context.
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4 Multiparameter models

We here deal with a somewhat different setting. While the estimation method for additive

models in Section 3 is defined for one-parameter models, we now extend the scope of

application to generalized regression models with more than one parameter, which are

all modeled as a function of some covariate(s). All “parameter” curves will be estimated

simultaneously.

To explain the method, we first restrict attention to the relatively simple case of mul-

tiparameter models where each “parameter” is a function of the same univariate covariate

(case II). Later on, we extend this to multiparameter models where each parameter is

an additive function of several covariates (case III). The last category contains the one-

parameter additive models of Section 3 as a special case.

4.1 A univariate covariate

We define two possible sets of local polynomial estimating equations for multiparameter

single covariate models. To each parameter θk (k = 1, . . . , κ) corresponds an estimating

equation ψk, e.g. the partial derivative of a local log likelihood function with respect to this

parameter. Since the parameters can be structurally very different, e.g., one describing

location and the others scale, or shape, there is the need to allow each of the functions to

have its own bandwidth parameter. This is the main contribution of this section.

Local polynomial estimators are obtained by solving the following set of
∑κ

j=1(pj + 1)

equations where for each estimating function ψk a smoothing parameter hk is used. To

avoid unnecessary complicated notation, from here on, we take κ = 2, the two-parameter

case. For example, for k = 1

n∑

i=1

ψ1{Y i;
p1∑

j=0

β1j(x)(Xi − x)j , β20(Xi)}Kh1(Xi − x) = 0

...
n∑

i=1

ψ1{Y i;
p1∑

j=0

β1j(x)(Xi − x)j , β20(Xi)}(Xi − x)p1Kh1(Xi − x) = 0.

(4)

Similar equations are defined for k = 2, where now only the second curve is locally

approximated by a polynomial of degree p2. In order to obtain the estimators at the data

values, we need to solve a total of n× (p1 + p2 + 2) equations, by choosing x to be one of
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these values Xi, i = 1, . . . , n.

Note that the structure of these equations is very different from that of equations (3)

where there is only one global parameter θ(·), and hence a one-dimensional estimating

function ψ(·), while in the set of equations (4) there are κ global parameters θ1(·), . . . , θκ(·)
and also κ estimating functions ψ1(·), . . . , ψκ(·). This also implies that the set of esti-

mating equations (4) does not have identifiability problems, since global parameters are

separated.

Some further notation, for Np be the (p+1)× (p+1) matrix with (k, `)th entry equal

to νk+`−2, the matrix M tpd
(z) is obtained by replacing in Npd

the (t+1)th (t = 0, . . . , pd)

column by (1, z, . . . , zpd)T , and for |Npd
| 6= 0, define Ktpd

(z) = K(z)|M tpd
(z)|/|Npd

|.
Also define Jrs(θ(x)) = E[(∂ψr/∂θs)(Y ; θ(X))|X = x] and J(θ(x)) = [Jrs(θ(x))]r,s,

K(θ(x)) = [Krs(θ(x))]r,s where Krs(θ(x)) = E[ψr{Y ; θ(X)}ψs{Y ; θ(X)}|X = x].

Theorem 2 Under the appropriate set of regularity conditions, for p1 = p2 = p odd,

E[θ̂k(Xi)− θk(Xi)|X1, . . . , Xn] = hp+1
k

θ
(p+1)
k (Xi)
(p + 1)!

∫

RXi,hk

zp+1K0p(z)dz + OP (hp+2
k ),

and the conditional variance by

Var(θ̂k(Xi)) =
f−1

X (Xi)
nhk

[J−1(θ(Xi))K(θ(Xi))J−1(θ(Xi))]kk

∫

RXi,hk

K2
0p(z)dz + oP (

1
nhk

).

Proof. The simple formulae in the above theorem follow from the fact that, for each

k, partial derivatives of the estimating equation ψk with respect to each of the intercept

terms βj0(xi) for j 6= k and for all i = 1, . . . , n is O[1/(nhk)], and hence can be ignored

asymptotically since this is of lower order than the leading bias terms. 2

Remark 1. We here focus on the case of local polynomial approximations of the same

degree, motivated by Aerts and Claeskens (1997) where it is shown that the leading term

of the asymptotic bias is determined by the polynomial of the lowest degree. Extensions

to properties of the estimators β̂kj and to κ > 2 are straightforward.

The asymptotic bias and variance expressions in Theorem 2 have an important conse-

quence on the selection of the optimal bandwidth. Since asymptotic mean squared error

(AMSE) for the multiparameter model is simply a sum of the AMSE for each component,

Theorem 2 implies that any of the bandwidth selectors for one-parameter models can

be applied in this multiparameter setting. Alternatively, one can consider a multi-stage
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method which assumes the bandwidths for all but one curve to be fixed, and proceeds

by selecting this one bandwidth, after which the procedure is repeated for each other

component.

There is another set of equations which might be used in case II, a very natural

extension of the multiparameter estimating equations with h1 = h2 = h (Aerts and

Claeskens, 1997). For k = 1, 2,

n∑

i=1

ψk{Y i;
p1∑

j=0

β1j(x)(Xi − x)j ,
p2∑

j=0

β2j(x)(Xi − x)j}Khk
(Xi − x) = 0

... (5)
n∑

i=1

ψk{Y i;
p1∑

j=0

β1j(x)(Xi − x)j ,
p2∑

j=0

β2j(x)(Xi − x)j}(Xi − x)pkKhk
(Xi − x) = 0

An advantage of this set of equations is its computational simplicity. A major disadvantage

of these formulae is that, in general, for each choice of k the bias expression depends on

the complete vector θ(x) = (θ1(x), θ2(x)), and on both bandwidths h1 and h2. For

p1 = p2 = p odd, the conditional bias of θ̂k(x) can be approximated by

E[θ̂k(x)− θk(x)|X1, . . . , Xn]

=
∫

Rx

zp+1K0p(z)dz
2∑

r=1

2∑

`=1

hp+1
`

√
h`

hk

θ
(p+1)
r (x)
(p + 1)!

J`r(θ(x))[J−1(θ(x))]k` (6)

+O(
2∑

r=1

hp+2
r

√
hr

hk
).

The occurrence of the functions θr(·), r 6= k, can be explained by the set of local esti-

mating equations (5). By construction, in the set of equations for estimating θk(x) and

its derivatives up to order pk, there is not only a “local polynomial” for this component,

but also for each other component. In practical situations, one expects the estimators

obtained by (5) to be subject to more bias than the estimators obtained by solving (4).

In an extreme case of very different curvature, the influence of one curve on the other

should be more pronounced in equations (5).

From (6) it is clearly seen that to avoid problems, one might want to take both

bandwidths of the same order, such that the ratios hr/hk are O(1) for all r and k. In this

case, for hk = ckn
δ (for some δ depending on p), the selection of optimal constants c1 and

c2 is difficult because both curves θ1(·) and θ2(·) appear in bias expression (6).

Also the conditional variance of the estimators depends on all parameter curves θk(·)



11

(not shown here). These results in fact discourage the use of different bandwidths for

different components.

Remark 2. For some specific sets of estimating functions ψk, simplifications can

occur. If the “Fisher” information matrix J(θ(x)) is a diagonal matrix, i.e., all off-

diagonal elements are zero, the above bias expression simplifies to:

E[θ̂k(x)− θk(x)|X1, . . . , Xn] = hp+1
k

θ
(p+1)
k (x)
(p + 1)!

∫

Rx

zp+1K0p(z)dz + O(hp+2
k ).

One such example is the set of log-likelihood equations for a Gaussian regression model.

Remark 3. Results also simplify in multi-stage equations where, for example, esti-

mating function ψk is a function of θ1, . . . , θk, but not of the other θ`’s (` > k). This

implies that J(θ(x)) is a lower triangular matrix, i.e., Jrs(θ(x)) = 0 for all r < s. Be-

cause of this structure, only terms containing quotients hs/hr with r < s will occur in the

leading terms of the conditional bias expressions. More explicitly, for a two parameter

model,

E[θ̂1(x)− θ1(x)|X1, . . . , Xn]

=

(
hp+1

1

θ
(p+1)
1 (x)
(p + 1)!

+ hp+1
2

√
h2

h1

{
θ
(p+1)
1 (x)
(p + 1)!

J21(θ(x)) +
θ
(p+1)
2 (x)
(p + 1)!

J22(θ(x))

}

×[J−1(θ(x))]12

)∫

R
zp+1K0p(z)dz + O(hp+2

1 + hp+2
2

√
h2

h1
),

E[θ̂2(x)− θ2(x)|X1, . . . , Xn]

= hp+1
2

(
θ
(p+1)
2 (x)
(p + 1)!

+
θ
(p+1)
1 (x)
(p + 1)!

J21(θ(x))[J−1(θ(x))]22

) ∫

R
zp+1K0p(z)dz + O(hp+2

2 ).

The function θ1(·) appears in both estimating functions ψ1 and ψ2 but θ2(·) only in ψ2, a

fact which is clearly reflected in the conditional bias expression. Also here, it will be safe

to take h2/h1 = O(1).

An example of two-stage equations are the GEE2 equations (see, e.g., Zhao and Pren-

tice, 1990) where the first estimating equation yields an estimator for the mean response

and where the second estimating equation is used to obtain an estimator of the correlation

structure of the multivariate response vector, given an estimator of the mean.
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4.2 A multivariate covariate

From the previous discussion it should be clear that also for multiparameter additive

models, problems are to be expected when the backfitting estimation scheme is used to

estimate the additive components by local polynomials.

For simplicity of notation, assume that we have a two-parameter model κ = 2, where

each parameter is an additive function of the covariates:

θk(xk) = θk1(xk1) + . . . + θkdk
(xkDk

)

where xk = (xk1, . . . , xkDk
), k = 1, . . . , κ. Assume that the expectation of each of these

component functions θkd(Xkd) equals zero, and include an intercept term, such that, for

the ith observation, the contribution to the global, unweighted estimating function for

the kth parameter at the true parameter values is given by

ψk{Y i; α1 + θ11(X11i) + . . . + θ1D1(X1D1i), α2 + θ21(X21i) + . . . + θ2D2(X2D2i)}.

A set of local estimating equations is now defined as:

ψ1(β(X11)) = . . . = ψ1(β(X1n)) = 0 = ψ2(β(X21)) = . . . = ψ2(β(X2n))

where, ψ1(x1) =





n∑

i=1

ψ1{Y i;α1 +
p11∑

j=0

β11j(x11)(X11i − x11)j + β120(X12i) + . . . + β1D10(X1D1i),

α2 + β210(X21i) + . . . + β2D20(X2D2i)}Kh1(X11i − x11) (1, · · · , (X11i − x11)p11)T

...
n∑

i=1

ψ1{Y i;α1 + β110(X11i) + . . . + β1,D1−1,0(X1,D1−1,i)

+
p1D1∑

j=0

β1D1j(x1D1)(X1D1i − x1D1)
j , α2 + β210(X21i) + . . . + β2D20(X2D2i)}

×Kh1(X1D1i − x1D1) (1, · · · , (X1D1i − x1D1)
p1D1 )T ,

and similarly for ψ2(x2).

It should be stressed that the optimality property of the “separated” components

(e.g. the marginal means in previous example) remains to hold. Moreover, this property

also holds if we don’t assume an additive structure but use multivariate smoothing tech-

niques instead of estimating each of these separated curves. For example, for a bivariate
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linear model with two covariates, we can estimate θ1(x1, x2) and θ2(x1, x2) each with

its own optimal bandwidth matrix by solving a set of local estimating equations similar

to (4).

5 Discussion

From these results, it is clear that the way estimating equations are defined is important.

A wrong choice of estimating equations will yield estimators with undesirable statistical

properties. In additive models we observe, from the conditional bias in Theorem 1, that

the backfitting approach does not achieve the “optimal” asymptotic bias. In classical

regression models (as studied by Opsomer and Ruppert, 1997), this dependence of the

bias on all components of the additive model disappears when the covariates are mutually

independent. In this case, the asymptotic bias of the estimator for, say, θ1(·) does not

depend on additive components other than θ1(·). In general models, this property does

not hold.

The main message of this paper is that for a multiparameter model, there is a set of

estimating equations yielding optimal smoothers. It allows full flexibility in selecting the

different optimal smoothing parameters for the different curves. An interesting topic for

further research is to investigate the performance of data-driven bandwidth selectors.
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