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Alternative gene splicing is a common phenomenon in which a single gene gives rise to multiple
transcript isoforms. The process is strictly guided and involves a multitude of proteins and regulatory
complexes. Unfortunately, aberrant splicing events have been linked to genetic disorders. Therefore,
understanding mechanisms of alternative splicing regulation and differences in splicing events between
diseased and healthy tissues is crucial in advancing personalized medicine and drug developments. We
propose a linear mixed model, Random Effects for the Identification of Differential Splicing (REIDS),

for the identification of alternative splicing events using Human Transcriptome Arrays (HTA). For each
exon, a splicing score is calculated based on two scores, an exon score and an array score. The junction
information is used to rank the identified exons from strongly confident to less confident candidates
for alternative splicing. The design of junctions was also discussed to highlight the complexity of exon-
exon and exon-junction interactions. Based on a list of Rt-PCR validated probe sets, REIDS outperforms
AltAnalyze and iGems in the % recall rate.

Alternative splicing (AS) was considered to be an uncommon phenomenon until microarray and high-throughput
sequencing technology enabled whole genome expression profiling'. More than 90% of human genes exhibit
multiple transcript isoforms due to exon enrichment or depletion in mRNA transcription®™. Since transcript
isoforms of a single gene are known to vary between tissues and even between developmental stages, alternative
splicing has been proposed as a primary driver of evolution and phenotypic complexity in mammals®~’. Straying
splice variants, however, have been linked to cancers such as mammary tumorigenesis and ovarian cancer®.
Although the underlying relationship between aberrant splicing events and cancer is often not established, the
potential exists to develop new diagnostic and therapeutic interventions when more insight is gained’. Therefore,
a better understanding of the mechanisms of alternative splicing regulation and differences in splicing events
between diseased and healthy tissues is considered crucial in cancer and other medical research!®. By measuring
a relative amount of distinct splice forms, it is possible to test whether a new splice form really constitutes an
important fraction of a gene’s transcript. Several alternative splicing detection methods have been proposed for
RNA sequencing (RNASeq)!! and microarray platforms'>!°. Recent studies emphasize the complementary nature
of RNASeq and microarrays; combined, both technologies have strengths which might overcome their reported
. weaknesses. The primary advantage of RNASeq is its potential to explore the entire diversity of a transcriptome
while a microarray can be used to quantify lower abundance transcripts'. Since the RNASeq is unable to properly
quantify low abundance transcripts and its competitive detection, the diversity of the resulting library is lim-
ited'>!6. The limited diversity can be resolved by relying on microarray platforms such as the Affymetrix Exon ST
arrays'? and the Human Transcriptome Arrays (HTA)'*. Methods for alternative splicing detection using RNASeq
include MATS, DEXSeq and Cufflinks'”~'?. However, these have shown to be insufficient®. Alternative splicing
has been studied with microarray platforms using a variety of methods?'. The Microarray Detection of Alternative
Splicing (MiDAS) method employs gene-level normalized exon intensities in an ANOVA model based on a
Splicing Index (SI)!>?2. The SI method normalizes the exon level expression intensities by their corresponding
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gene level intensities, and compares the normalized intensities between sample groups. More recent methods for
alternative splicing detection include the Robust Alternative Splicing Analysis for Human Transcriptome Arrays
method (RASA)?, Integrated Gene and Exon Model of Splicing iGEMS)', AltAnalyze®* and the Random Effects
model for the Identification of Differential Splicing (REIDS)%.

In this paper, we focus on HTA microarrays®. This array platform does not only assess each exon with more
probes but also contains exon-exon junction probes that cover the region between two exons. In the current paper
we extend the REIDS model® to include junction information. The presence of junction probes can be beneficial
for detecting alternatively spliced exons and for unravelling the composition of transcript isoforms. The analytical
framework presented in this paper consists of two steps. In the first step the REIDS model was used for alternative
splicing detection. In the second step the reliability of the junctions is evaluated to support (or not) alternatively
spliced exons. The REIDS analytical framework model was compared with RASA, iGEMS, the Affymetrix TAC
tool'? and the AltAnalyze software?.

Methods and Materials

Data. The HJAY Platform. The Affymetrix Human Transcriptome Array 1.0 (HJAY, HTA 1.0)% is an expan-
sion of the Human Exon array containing 10 probes per probe set. The HJAY array also contains exon-exon
junctions which are supported by four to eight probes per junction. Junction probes were designed to reveal
alternative splicing events and transcript isoforms. There are three types of junctions: a 5’ end junction, a 3’ end
junction (located at the 5’ end and the 3’ end of the probe sets respectively) and an exclusion junction. The data
we analysed in this paper is described in detail in*. Briefly, the data consists of two tissues, liver and muscle,
each with three replicates. In total 33,516 genes were measured using 298,281 exons and 249,475 junctions, each
represented by eight probes on average. The data is publicly available on the website http://igenomed.stanford.
edu/~junhee/RASA/.

The HTA-2.0 Platform. The HTA-2.0 microarray is a more recent and updated version of the HJAY platform.
The number of interrogated probe sets is increased to 1,048,904 and the number of junctions to 339,000. On
avergae, exons are measured with 10 probes and junctions with four probes. The analyzed data set contains cell
lines with A549 lung adenocarcinoma that were treated with either scrambled RNA or transfected with a siRNA
that targets SRSF1. Each condition is represented by three independent subjects with three replicates per subjects,
leading to nine samples per condition. The data is publicly available in the GEO database under the accession
number GSE76902%.

Detection of Alternative Spliced Exons: A Mixed Effects Model Approach. This section presents
the extension of REIDS analytical framework to incorporate exon-exon junctions. In the first step the REIDS
model was applied to find alternative spliced (AS) candidates as originally proposed®. In the second step a
scheme was developed using junction formation to classify the identified exons from strongly confident to less
confident candidates for alternative splicing.

The REIDS Model. 'The REIDS model* formulates alternative splicing detection as a variance decomposition
problem based on the assumption that between array variability of an alternatively spliced exon would be higher
than the within array variability among the exons of the same transcript cluster (a gene). A non-alternatively
spliced exon would have a between array variability that is at most the within array variability across all exons of
the same transcript cluster. The two variance components, representing the between and within array variability,
can be estimated using a gene specific mixed model given by

logz(PMijk) =p +c+ by + Eijk- (1)

The observed perfect match (PM) probe intensities are modelled in terms of the jth probe effect (p;, j=1, ...,
J) and the overall effect of the ith array (c;, i=1, ..., I). Both p; and c; are considered to be fixed effects. The spe-
cific deviation of the kth exon from the overall gene effect is captured by the random effects, by, k=1, ..., K. The
random effects b~ N(0, Dy), are assumed to be independent of the background noise, €3 ~ N(0, %), which cap-
tures the within array variability with 2. Differential expression between the arrays is expected to be negated by
incorporating the gene effect parameter c;. As a consequence, the exon specific parameters capture the deviation
of a particular exon from its corresponding gene. A relatively small deviation implies that the exon is present in
the sample while a large deviation indicates that the exon is likely to be absent.

Detection of Alternatively Spliced Exons. 'The advantage of a mixed model formulation for alternative splicing
detection is the existence of a standard score to quantify the trade-off between signal and noise, the so-called
intra-cluster correlation (ICC)%. From here onward we use the term exon score which is given, for the kth exon, by:

P = o + 1), 2)

where 07 is the same for all exons belonging to the same transcript cluster. A value of p, > 0.5 indicates that the
kth exon is likely to be alternatively spliced. Note that the threshold for the exon score could be adjusted to the
relative amount of signal in the data. Given that the kth exon has been identified to have substantial between array
variability, the estimated random effects b;, can be used as array scores to identify arrays in which the alternatively
spliced exon is expressed. Positive array scores denote an enrichment while negative values denote a depletion of
the exon.
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Figure 1. The junction design of probe set PSR010025633 of transcript cluster TC0102569 (CSDEL1). Panel (a):
The design of the 5" and 3’ linking junctions of probe set PSR010025633. Panel (b): The design of the exclusion
junctions of probe set PSR010025633.
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Figure 2. The probe sequences of PSR010025632 (red), JUC0100236357 (blue) and PSR010025633 (green) of
gene TC0102569 (CSDE1) which are shown panel (a) in Fig. 1. The overlap between the junction and the 3’ end
of the probe set on the left is shown in purple and yellow reflects the overlap between the junction the 5’ end of
the probe set on the right.

The REIDS method is applied to each gene to obtain exon and array scores after which the exons are pri-
oritized according to their exon scores. Probe sets with exon scores greater than a pre-specified threshold are
retained for further investigation. The differences in array scores between biological conditions or tissue types are
tested using the t-test for independent groups or the paired t-test for paired data. A probe set is considered to be
alternatively spliced if the difference between the biological conditions or tissue types is statistically significant
after the Benjamini-Hochberg multiplicity correction®.

Using Junction Information to Support Detection of Alternative Splicing Exons.  In this section
we explain how exon-exon junctions can either support or not support an exon to be allternatively spliced.

Motivation and Design. We illustrate the exon-exon junctions by inspecting the design of probe set
PSR010025633 of the transcript cluster TC0102569, annotated to the CSDE1 gene, on the HJAY microarray. This
probe set has five annotated junctions: a 5’ end junction, a 3’ end junction and three exclusion junctions. Figure 1
illustrates the design of the probe set and its junctions.

The upper panel of Fig. 1 shows that junction JUC0100236357 is the 3’ end junction of PSR010025632 and the
5’ end junction of PSR010025633. This implies that the sequence of junction JUC0100236357 is constructed from
the end (3’ end) of PSR010025632 and the start (5’ end) of PSR010025633. This is shown in Fig. 2. Notice how the
sequence of JUC0100236357 overlaps with the sequence of its annotated probe sets. Similarly, JUC0100236756 is
the 3’ end junction of PSR010025633 and the 5’ end junction of PSR010025634. This is shown in Supplementary
Fig. 1.

We expect the presence of a junction only when both of its anchor points are present. This implies that
JUC0100236357 will be quantified when both PSR010025632 and PSR010025633 are present in a transcript
isoform without interruption. Similarly for junction JUC0100236756 and probe sets PSR010025633 and
PSR010025634. Consequently, the presence or absence of the 5’ end and/or 3’ end junctions can indicate the
presence or absence of a link between probe sets. As shown in Fig. 2, Junction JUC0100236357 has a matched
sequence with the designed probes for both PSR010025632 and PSR010025633. This does not hold for all junc-
tions. It is possible for a junction to have no 5’ end and/or 3’ end annotation or that the sequences of the junction
do not match with the sequences of the probe sets. The latter implies that the junction might not quantify the
same transcript as its adjacent probe sets.

The lower panel of Fig. 1 shows three exclusion junctions annotated to probe set PSR010025633:
JUC0100236628, JUC0100236286 and JUC0100236573. These junctions are present when the exon is absent.
Junction JUC0100236628 is annotated as the 3’ end junction of PSR010025630 and the 5’ end junction of
PSR010025634. This entails that it will only be observed if probe sets PSR010025630 and PSR010025634 are
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Figure 3. Alternatively spiced probe sets and annotated junction probe sets between condition A and
condition B. The blue points represent the probes designed to measure a probe set. The blue lines represent the
summarized value of a probe set and the black line shows the summarized value for all probe sets in transcript
cluster (overall gene level). Panel (a): Evidence of linkage between PSR 1 and PSR 2 by the junction JUC, i.e.
the junction reflects the median profile. Panel (b): Lack of evidence of linkage between PSR1 and PSR2, i.e. the
junction (JUC) shows a different pattern.

included in the transcript isoform alongside each other and PSR010025631, PSR010025632 and PSR010025633
are excluded. Equivalently for junction JUC0100236286 which only skips over probe set PSR010025633 and junc-
tion JUC0100236573 which skips over all exons in between PSR010025632 and PSR010025638. In contrast with
the 5’ end and 3’ end junctions, the presence of an exclusion junction informs us of the absence of the exon.
Sequences of the exclusion junctions JUC0100236628 and JUC0100236573 are illustrated in Supplementary
Figs 2 and 3 respectively.

Junction Assessment Procedure.  First, we consider the 5" end and 3’ end linking junctions. The linking junctions
indicate whether the annotated anchor points are neighbouring in a transcript isoform. A linking junction reflects
such a bond if the junction represents both exon probe sets simultaneously, i. e. if the junction probe set reflects
the median profile of the exon probe sets. In order to validate this, a model is fitted on the junction probe set and
it’s annotated exon probe sets. Since the pattern of splicing is more important than the expression values, the val-
ues are transformed to their corresponding ranks (R,;). Next, the ranks of the individual probes of the exon probe
sets (i.e. not of the junction) are averaged and ranked anew to obtain a median profile representing both anchor
points of the junction. Finally, two models were fitted on the averaged ranks of the probe sets and the ranks of
the junction.

M1: ka
M2: ka

probe_set; + group + ey

probe_seti + group + probe_sety X group_ + €y (3)

with k=1, ..., Kand x=1, 2. Both models include a probe set effect and a group effect. The probe set effect is a
factor with two levels either representing the profile of the anchor points or the junction. For the null model, M1,
the junction has the same profile as the probe sets. Hence, no interaction effect is specified. The alternative model,
M2, assumes a conflict between the junction and the probe sets, which is captured by an interaction effect. A sig-
nificant interaction term implies that the junction is not an end product of the two probe sets.

Figure 3 illustrates two figurative scenarios of alternatively spliced exons between condition A (samples A,
A, and A;) and a condition B (samples B}, B, and B;). Panel (a) reflects a situation in which the median profile of
the exon probe sets (PSR1 and PSR2) is reflected by the linking junction probe set (JUC). The values of the exon
probe sets PSR1 and PSR2 are high in condition A and low in condition B. The median profile of PSR1 and PSR2
shows the expected the behaviour of the linking junction: high in condition A and low in condition B. The expres-
sion values of the junction reflect the same pattern as the prob sets, resulting in an insignificant interaction term.
Therefore, the junction supports the link between PSR1 and PSR2. In the second scenario, presented in panel (b),
the probe sets and the junction show a conflicting pattern. PSR1 is highly expressed in condition A and depleted
in condition B while PSR2 shows a reversed pattern. The resulting median profile is straight line. However, the
observed junction values show a deviating pattern. Consequently, the interaction term will be significant. A real
data example and the conversion to ranks are illustrated in Supplementary Figs 4 and 5.

An exclusion junction is considered to be absent if it is not detected above background (DABG)*! level across
all samples. This means that at least one of the skipped probe sets is considered present in an isoform and the

SCIENTIFICREPORTS| (2018) 8:8331 | DOI:10.1038/s41598-018-26695-9 4



www.nature.com/scientificreports/

PSR010025633 PSR080007308
= o
.o 2+ T
? ®
o $
[oX © -
x
L 0 < 4
&
(o))
o N
< T T T T T T ° T T T T T T
<I m| O| <(I CD‘ OI <\ ml O| <I ml O\
4 — 4 s s s — - ~ = = =

Tissue Samples

Figure 4. Alternative spliced candidates between the liver samples (L_A, LB and L_C) and the muscle samples
(M_A, M_B and M_C). The left panel shows probe set PSR010025633 of transcript TC0102569 and the right
panel shows probe set PSR080007308 of transcript TC0800969. The black and blue lines indicate the mean
profiles of the gene and exon level data respectively. The blue points show the probe level data.

junction does not support an alternative splicing event. Otherwise, the exclusion junction is present and sup-
port Otherwise, the junction is present and supports of the linking bond as well as of the AS candidacy of the
excluded probe sets. The linking probe sets are considered to be neighbouring in at least one isoform, skipping all
probe sets in between. For example in Fig. 1, if JUC0100236573 is deemed present by DABG analysis, probe sets
PSR010025632 and PSR010025638 are neighbouring in at least one transcript isoform. However, if the junction
is deemed absent by DABG analysis, then there is at least one exon probe set in between PSR010025632 and
PSR010025638. DABG scores were calculated using the Affymetrix tool TAC. More information on exclusion
junctions is given in Section 2.2 of the Supplementary Material.

The are four resulting categories of junction assessment of probe sets identified by REIDS: probe sets with
linkages supported by all junctions, probe sets with linkages supported by at least one junction, not supported
probe sets and probe sets without a 5 end or 3’ end junction.

Alternative Splicing Types. Behind an AS identification, there is a specific AS type. This is determined by the
location of the probe set in the transcript isoforms and the pattern of the neighbouring probe sets. The basic
AS types are: a cassette exon, mutually exclusive exons, an alternative 5’ site, an alternative 3’ site, an alternative
last, an alternative first and an intron retention. If information regarding the isoform composition of a transcript
cluster is available, it can be deduced to which class an AS probe set belongs. In combination with the junction
assessment procedure, the number of isoforms can be reduced if a reported linkage between probe sets is unsup-
ported. A probe set is appointed the “complex event” class if the event does not belong to the arbitrary classes.
Mlustrations of AS events with examples of real life data are shown in Supplementary Section 2.3.

Availability of data and materials. The HJAY data can be retrieved from the repository of the RASA
paper? and the HTA-2.0 date set from GEO database under the accession number GSE769022. The code to pro-
cess the data and perform the analysis is bundled into an R package, REIDS, available on CRAN.

Results

The HJAY and HTA-2.0 data were preprocessed with the R package aroma.affymetrix*. An annotated.cdf file was
created by merging the information from the provided.pgf and.clf files. In order to prepare the data for the REIDS
model, the raw.CEL files were background corrected using the rma background correction, normalized with
quantile-normalization and log2-transformed but without summarization. We illustrate the REIDS model with
the HJAY data and benchmark the method with TAC and AltAnalyze based on the HTA-2.0 data.

lllustration of the REIDS model on the HJAY platform. Step I: Identification of Candidate AS Exons.
A total of 33,516 genes were retained after pre-processing the data to probe level, 24,096 out of 33,516 genes had
more than one probe set and were therefore selected for alternative splicing detection. Combined, these genes
had 288,515 exon probe sets of which eventually 17,700 were identified by REIDS as candidates for alternative
splicing. Figure 4 presents probe sets PSR010025633 of transcript TC0102569 and PSR080007308 of transcript
TC0800969 which were found to be alternatively spliced between the liver (L) samples and the muscle samples
(M) in the first step of the analysis.

The identified probe sets were further analysed using their associated junction information. In the conserva-
tive mode we require the support of all annotated junctions. 8,626 out of the 17,700 exon probe sets were identi-
fied as alternative spliced candidates and were supported by all their annotated junctions. 9,946 out of the 17,700
exon probe sets were supported by at least one of their annotated junctions. Finally, 12,323 probe setshad no
supporting junctions. Figure 5 provides an overview of the classification of the probe sets with and without sup-
porting junctions.
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Figure 5. The distribution of the 17,700 exon probe sets that were identified as alternatively spliced by the
REIDS model in the first step of the analytical framework. 8,626 probe sets were found to be AS and supported
by all their annotated junctions. 9,946 probe sets were found to be AS with the support of at least one of their
annotated junctions. There were 12,323 probe sets without junction support.
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Figure 6. An example of a probe set supported by all its annotated junctions to be alternatively spliced between
the liver (L) and muscle samples (M): PSR010025633 of transcript TC0102569. The junction architecture

of PSR010025633 is shown in Fig. 1. The observed probe intensities of PSR010025632, JUC0100236357,
PSR010025633, JUC0100236756 and PSR010025634 are presented relative to the summarized gene level values
of TC0102569. The black and blue lines indicate the mean profiles of the gene and exon level data respectively.
The blue points show the probe level data.

Step 2: Junction Based Classification. We show examples of exon probe sets which had support of all
their annotated junctions to be alternatively spliced and those which had no junction support.

Alternative Splicing With Supporting Junctions. A top ranked probe set is PSR010025633 of transcript
TC0102569 (Fig. 1) with an exon score of 0.99 and a p-value < 0.01 for the significance testing of its array scores
between the liver and the muscle tissues. This exon belongs to category (a) in Fig. 5. Figure 6 shows the probe data
and the summarized values of the probe set, its 5’ end and 3’ end junctions. Probe set PSR010025633 is depleted
in the liver samples and enriched in the muscle samples. This pattern is also seen for the neighbouring probe
sets PSR010025632 and PSR010025634 and the junction probe sets JUC0100236357 and JUC0100236756. Both
linking junctions had a similar pattern as the probe set and support the exon to be alternatively spliced. The three
exclusion junctions are presented in Supplementary Fig. 13 and revealed an opposite pattern. The presence of
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Figure 7. An example of a probse et not supported by all its annotated junctions to be alternatively spliced
between the liver (L) and muscle samples (M): PSR080007308 of transcript TC0800969. The junction architecture
of PSR080007308 is shown in Supplementary Fig. 15. The observed probe intensities of PSR080007307,
JUC0800063802, PSR080007308, JUC0800064097, PSR080007309, PSR080007310, JUC0800063922,
JUC0800064078 and JUC0800064160 are presented relative to the summarized gene level values of TC0800969.
The black and blue lines indicate the mean profiles of the gene and exon level data respectively. The blue points
show the probe level data.

the exclusion junction confirms the absence of the probe set in at least some transcript isoforms. The alternative
splicing detection of PSR010025633 was supported by all its annotated junctions.

Probe set PSR010025632 and PSR010025634 were both identified as constituitive probe sets. This implies
that PSR010025633 is a cassette exon. Further, JUC0100236357 was not DABG in the liver samples. Therefore, a
transcript which contains PSR010025632 and PSR010025633 simultaneously was not present in the liver samples.
In the muscle samples, some transcripts include PSR010025633 while other transcripts exclude this probe set.
Supplementary Fig. 14 shows the transcript composition of TC0102569 confirming the candidacy of probe set
PSR010025633.

Alternative Splicing With At Least One Supporting Junction. Probe set PSR080007308 is part of the TC0800969
transcript annotated to the ASPH gene. It has a 5’ end, a 3’ end and three exclusion junctions. The junction
architecture is shown in Supplementary Fig. 15. Figure 7 illustrates the probe set and its annotated junctions.
In the upper row, 3’ end junction JUC0800063802 reflects the pattern of its anchor points PSR080007308 and
PSR080007307. The junction supports a linkage between the two probe sets. However, in the middle row, the 5/
end junction JUC0800064097 shows probe is depleted for all samples with a DABG p-values < 0.05. A possible
reason could be the pattern of its other anchor point. However, no 3’ end annotation was found for this junction.
The junction was annotated as an exclusion junction for probe sets PSR080007309 and PSR080007310. The con-
sistent presence of either of these probe sets can disrupt the junction sequence leading to its depletion. Probe set
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Figure 8. The cDNA sequence of probe set PSR080007308 of transcript cluster TC0800969 as found in the
Ensembl database.

PSR080007309 was excluded for all samples but the values of PSR080007310 were indicative of an inclusion in at
least a transcript isoform.

The observed pattern of the junction might also arise from the design of its probes. The designed sequences
of the probes of the 5’ end junction JUC0800064097 and probe set PSR080007308 are shown in Supplementary
Fig. 16. Both probe sets show overlapping sequences. In contrary, the whole sequence of probe set PSR080007308
has a different beginning in the ensemble genome browser as presented in Fig. 8.

The sequence of PSR080007308 starts with the base pairs “TT” which is not part of the sequence of the
designed junction. The sequence of the junction in the whole genome actually matches with an intron adjacent
to PSR080007308. Consequently, it will not be present in the cDNA sequence and thus cannot be measured with
a microarray. It is difficult to assess whether the pattern of the junction is due to this apparent annotation to an
intron or not.

The exclusion junctions JUC0800064160 and JUC0800064078 do not have two anchor probe sets, but they had
low expression levels. The exclusion junction JUC0800063922 also had low expression levels for all samples. This
is supported by the DABG values which confirms the presence of probe set PSR080007308. The transcript com-
position of PSR080007308 is shown in Supplementary Fig. 17 and shows a cassette exon event for PSR080007308.
Since the probe set is supported by its 3’ end junction and one exclusion junction, it could be considered to be
alternatively spliced. Section 3.3 of the Supplementary Material shows an additional examples in Supplementary
Figs 18 and 19.

Alternative Splicing Without Supporting Junctions. In this section we present exon probe set PSR010016411
which was not supported by its annotated exclusion junction to be alternatively spliced This example belongs to
category d in Fig. 5.

Probe set PSR010016411 is part of transcript TC0101665 referring to the KMO gene. Figure 9 presents the
probe set, the exclusion junction JUC0100146697 and the anchor probe sets of the junction: PSR010016408 and
PSR010016412. The junction is not DABG indicating that PSR010016408 and PSR010016412 are not neighbour-
ing probe sets in the isoform composition in the tissues. The sequence can be interrupted by the presence of either
PSR010016408, PSR010016409 or PSR010016410. It is certain that at least one of these probe sets interrupts the
sequence but without further junction annotation, it is unknown which probe set is continuously included in the
isoforms.

The transcript composition is shown in Supplementary Fig. 20. The ensemble data base indicates that only
the four isoforms containing PSR010016408 are protein coding. Therefore, PSR010016408 can be consid-
ered a constituitive probe set. Complementary examples of difficulties when designing junctions are shown in
Section 3.4 of the Supplementary Material. Example of a probe set supported by all linking junction is provided
in Section 3.5 of the Supplementary Material. A study of transcript cluster TC1601187 is presented in Section 3.6
of the Supplementary Material.

Validation of the REIDS model.  This section assess the performance of the REIDS model on a list of 373 exons
that were identified by the RASA method and validated as alternatively spliced between liver and muscle tissues
by RT-PCR?. A total of 49,014 probe sets were identified as alternatively spliced by the RASA method. As shown
in Fig. 5, REIDS identifies 17,700 candidacies for alternative splicing in the first step of the analytical frame-
work. 8,626 out of the 17,700 probe sets supported by all their annotated junctions while 9,946 probe sets were
supported by at least one of their annotated junctions. The RASA and REIDS model shared 8,273 probe sets in
common after step one but this reduced to 4,973 and 5,736 probe sets depending on whether the probe sets were
supported by all their annotated junction or by at least one of their annotated junctions. Table 1 shows the com-
parison of the REIDS analytical framework with AltAnalyze and iGEMS based on the list of probe sets identified
by RASA and validated by either RNA sequencing or RT-PCR.

The REIDS model identified 287 (77%) probe sets in common with the list without using junction probe
sets, 210 (56%) were supported by all their annotated junctions and 244 (65%) were supported by at least one
of their annotated junctions. This shows that the REIDS analytical framework detected between 65-77% of
the validated exon probe sets. The true positive rates for AltAnalyze and iGEMS were 27% and 62%, respec-
tively. Supplementary Section 4 illustrates differences in identifications between REIDS and RASA on the HJAY
microarray platform.

Comparison with Other Software. ' The REIDS analytical framework was further compared with the Affymetrix
TAC tool and AltAnalyze software using a more recent HTA-2.0 platform. The data set contains A549 lung ade-
nocarcinoma cell lines which were treated with either scrambled RNA (SCR) or transfected with a siRNA that tar-
gets SRSF1. The TAC tool identifies alternatively spliced exons based on a splicing index (SI)*? while AltAnalyze
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Figure 9. An example of a probe set that was not supported by its annotated junctions to be alternatively
spliced between the liver (L) and muscle samples (M): PSR010016411 of transcript TC0101665 (KMO) The
observed probe intensities of PSR010016411, JUC0100146697, PSR010016408 and PSR010016412 are presented
relative to the summarized gene level values of TC0102569. The black and blue lines indicate the mean profiles
of the gene and exon level data respectively. The blue dots show the probe level data.

AS 287 (77%) 210 (56%) 244 (65%) 102 (27%) 230 (62%)
N-AS 86 (23)% 163 (44%) 129 (35%) 98 (26%) 143 (38%)

Table 1. The true positive rates (% recall) for REIDS, AltAnalyze and iGEMS for the 373 RT-PCR validated
alternatively spliced exons. REIDSraw refers to the results obtained from the first step of the REIDS analytical
framework. REIDScon refers to the analysis based on the support of all the annotated junction for each probe
set, while REIDSIib refers to the analysis based on the support of at least one of the annotated junction for each
probe set.

relies on the ASPIRE algorithm?!. The Venn diagram in Fig. 10 compares the number of probe sets identified by
the three methods.

All probe sets identified by REIDS were also identified by TAC and AltAnalyze. TAC identifies the largest
number of probe sets but most of the probe sets had little variation in their intensities with less than 50% signal
(exon scores <0.5) between arrays or biological samples. This means that the TAC method is prone to identifying
probe sets which do not show variation across the conditions and it is therefore likely to be more prone to false
positives. Table 2 shows the top 10 probe sets identified by the REIDS method. Section 3.8 in the Supplementary
Material shows similar tables for the top 10 probe set obtained by AltAnalyze and TAC.

An example of a probe set that was highly ranked by all the three methods is probe set PSR12000150 of tran-
script cluster TC12000010 (WNKI1 gene). The probe set has two annotated 5’ end, one 3’ end and two exclusion
junctions. Figure 11 illustrates the isoform transcriptions of TC12000010. Black probe sets were identified as con-
stituitive while coloured probe sets were identified as alternatively spliced. Green colour indicates an enrichment
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www.nature.com/scientificreports/

REIDS AltAnalyze

1419

3738 4925

563827

TAC

Figure 10. A Venn diagram showing the number of alternatively spliced probe sets identified by the REIDS
method, AltAnalyze and TAC.

1 TC12001539 | PSR12020244 | 0.93 <0.01 | Complex Event 77 294

2 TC12001539 | PSR12020245 | 0.93 <0.01 | Alternative First | 199 2,064
3 TC14000916 | PSR14009987 | 0.92 <0.01 | Alternative Last 29 241

4 TC12000010 | PSR12000150 | 0.92 <0.01 | Complex Event 5 17

5 TC01000469 | PSR01007294 | 0.91 <0.01 | Alternative Last 645 6,564
6 TC06001355 | PSR06016183 | 0.90 <0.01 | Alternative Last — 1

7 TC06001387 | PSR06016266 | 0.90 <0.01 | Alternative Last — 1,437
8 TC12001539 | PSR12020242 | 0.89 <0.01 | Alternative Last 745 2,782
9 TC02000874 | PSR02012906 | 0.88 <0.01 | Alternative First | — 4,949
10 TC05001924 | PSR05026599 | 0.88 <0.01 | Cassette Exon 88 110

Table 2. Comparison of the ranks of the top 10 identified AS probe sets by the REIDS model in TAC and
AltAnalyze.

of a probe set and red colour denotes depletion. Junction which were DABG are shown in blue while depleted
junctions are again shown in red. PSR17017166 was identified as a cassette exon which was enriched in the SCR
samples (upper panel) and depleted in the siRNA samples (lower panel). Supplementary Section 3.7 shows the
junction architecture and expression levels for probe set PSR12000150.

Probe set PSR01003418 was ranked higher by REIDS (32) compared to AltAnalyze (6,119) and TAC (15,074).
The probe set was part of transcript cluster TC01000205 (SZRD1 gene) and was identified as an complex event.
Figure 12 illustrates the composition of transcript cluster TC01000205. The isoform which has probe sets
PSR01003417 and PSR01003417 as neighbouring probe sets seems more prominent in the siRNA samples.

Finally, we present probe set PSR17017175 of transcript cluster TC17001298 (SPAG5 gene) which was ranked
higher by TAC (187) and AltAnalyze (178) than by the REIDS method (4545). Figure 13 shows the gene model.
PSR17017175 was not one of the top ranked probe sets by the REIDS method since the probe set levels reflect the
gene expression levels as shown in Supplementary Section 3.7.

Discussion

The identification of alternative splicing events is important drug targeting. Numerous studies have shown that
aberrant splice variants are involved in cancer development, neurodegenerative diseases, autosomal recessive
diseases and more. Therefore, the identification of alternatively spliced probe set regions is an important step
forward. The HTA microarray platform probe sets target exons as well as exon-exon junctions. An alternatively
used probe set region supported by at least one of its linking junctions is less likely to be false positive compared
to a probe set without junction support.

SCIENTIFICREPORTS| (2018) 8:8331 | DOI:10.1038/s41598-018-26695-9 10



/
(%]
&
—
o
a
o
—
()
B
=
c
@
(9}
(2]
~
S
o
()
)
—
=)
2
(]
=
2
2
2

m9/100021dSd
WG/100021dSd
7210002 HSd
€210002HSd
2210002 1dSd
121000214Sd
010002 HSd
6910002 IHSd
8910002 IHSd
/910002 1HSd
G910002 1HSd
7910002 IHSd
€910002 1HSd
2910002 HSd
1910002 14Sd
0910002 lHSd
6510002 HSd
8510002 1HSd
£G10002HSd
9610002 1HSd
GG10002 IHSd
510002 HSd
€G10002 HSd
1G100021dSd
010002 HSd
6710002 IHSd
87710002 I HSd
L¥10002HSd

L71000214Sd
Wm0 100021dSd
m8€100021HSd
L€10002HSd
9€10002 HSd
GE1000C HSd
W1E100021HSd
M62100021HSd
m82100021dSd

b/ 1000Z+HSd
££10002+HSd
2/10002+HSd
1210002 +HSd
0£+000Z 1 4Sd
6910002 HSd
8910002 lHSd
/910002 +HSd
5910002 HHSd
910002 LHSd
£910002 HHSd
2910002 1S d
1910002 HSd
0910002 +HSd
6510002 +HSd
8510002 HSd
1510002 1HSd

- 9510002 HHSd

& 5510002 1 HSd
¥G10002 1 HSd
55100021 4Sd
1510002 +HSd
05100021 4Sd
6710002 HSd
8110002 lHSd
/10002 +HSd

m9/1000214Sd
WG/100021dSd

S¥100021HSd
710002 1 HSd
€¥100021H4Sd
2¥100021HSd
L¥100021HSd
#0¥1000214Sd
W8€1000214Sd
L€10002 1 HSd
9€10002HSd
SEL000CHSd
WL€100021HSd
W621000214Sd
m82100021dSd

(b)
enrichment of a probe set while red colour denotes a depletion. Junctions which are DABG are shown in blue
while depleted junctions are again shown in red. Panel (a) shows the probe sets for the SCR samples and panel

Figure 11. Illustration of transcript cluster TC12000010 (WNXK1). Black probe sets were identified as
(b) for the siRNA samples.
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(b)

enrichment of a probe set while red colour denotes a depletion. Junctions which are DABG are shown in blue
while depleted junctions are again shown in red. Panel (a) shows the probe sets for the SCR samples and panel
We proposed an extended REIDS analytical framework to incorporate information from junction probe sets.
The REIDS analytical frame work outperforms AltAnalyze and iGEMS based on validated alternatively splcied
this is partly because of the exon score filtering step. This filtering step assumed that transcript clusters with low
variation between exons are not likely to be alternatively spliced. The REIDS method was further compared with

(b) for the siRNA samples.
exons. Although, only 65-77% of the validated alternatively spliced exons were detected by the REIDS method,

Figure 12. Illustration of transcript cluster TC01000205 (SZRD1). Black probe sets were identified as
constituitive while coloured probe sets were identified as alternatively spliced. Green colour indicates an
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Figure 13. Illustration of transcript TC17001298 (SPAGS5). Black probe sets were identified as constituitive
while coloured probe sets were identified as alternatively spliced. Green colour indicates an enrichment of a
probe set while red colour denotes a depletion. Junctions which are DABG are shown in blue while depleted
junctions are again shown in red. Panel (a) shows the probe sets for the SCR samples and panel (b) for the
siRNA samples.

TAC and AltAnalyze based on a more recent HTA-2.0 microarray platform. The REIDS method performs as good
AltAnalyze, and is less prone to false positives than TAC.

The presence of exon-exon junctions provides valuable information on reducing the false positive rates in the
detection of alternative spliced events using a microarray platform. However, caution is needed. In some cases
behaviour of junction probe sets cannot be wholly captured by a test statistic or numeric metric. A careful inspec-
tion of the different junctions and their annotated transcript could provide useful information on the composition
of the transcript isoforms. This means in addition to the numerical algorithms, a careful qualitative inspection of
the different junctions and annotations is important in minimising false positive rates. In conclusion, the REIDS
method incorporates exon-exon junctions to robustly identified alternatively spliced events. We have shown how
junction information can be used to make a more adequate decision about alternatively spliced events. Like any
other numerical method, the REIDS analytical framework has its drawback because of the pre-specified threshold
required for exon score. A careful consideration of an appropriate threshold should be considered before applying
the proposed REIDS analytical framework™®.
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