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Abstract

In batch map matching the objective is to derive from a time series of position data the
sequence of road segments visited by the traveler for posterior analysis. Taking into ac-
count the limited accuracy of both the map and the measurement devices several different
movements over network links may have generated the observed measurements. The set of
candidate solutions can be reduced by adding assumptions about the traveller’s behavior
(e.g. respecting speed limits, using shortest paths, etc). The set of feasible assumptions
however, is constrained by the intended posterior analysis of the link sequences produced
by map matching. This paper proposes a method that only uses the spatio-temporal in-
formation contained in the input data (GPS recordings) not reduced by any additional
assumption.

The method partitions the trace of GPS recordings so that all recordings in a part are
chronologically consecutive and match the same set of road segments. Each such trace
part leads to a collection of partial routes that can be qualified by their likelihood to have
generated the trace part. Since the trace parts are chronologically ordered, an acyclic
directed graph can be used to find the best chain of partial routes. It is used to enumerate
candidate solutions to the map matching problem.

Qualification based on behavioral assumptions is added in a separate later stage. Sep-
arating the stages helps to make the underlying assumptions explicit and adaptable to the
purpose of the map matched results. The proposed technique is a multi-hypothesis technique
(MHT) that does not discard any hypothesized path until the second stage.

A road network extracted from OpenStreetMap (OSM) is used. In order to validate the
method, synthetic realistic GPS traces were generated from randomly generated routes for
different combinations of device accuracy and recording period. Comparing the base truth
to the map matched link sequences shows that the proposed technique achieves a state of
the art accuracy level.

Keywords: GPS Traces, Map Matching, Transportation modeling, Big data analysis

1. Introduction

Map matching combines a road transport network description consisting of nodes and
directed links with a time series of coordinate tuples that describes the movement of a
traveler. A trace is a chronologically ordered sequence of all GPS recordings associated with
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a movement. The purpose is to reconstruct the sequence of links crossed by the traveler in
chronological order. In this section a short overview of existing map matching techniques
and their respective fields of application is given in order to sketch the state of the art. Two
main classes of map matchers are distinguished. The technique proposed in this paper is
aimed at offline (batch) map matching of GPS traces.

1.1. Online Map Matching

Online near real time map matching processes coordinate pairs as soon as they come
available and aim to determine the network link that is actually being traveled. Map
matchers in this class are deployed in navigation aids. Their software operates on dedicated
microprocessors and typically data sampling is in the order of 1 to 100 Hz. In many cases
data from several sensors (odometer, gyroscope, accelerometer, etc) are available for data
fusing along with GPS coordinates. Quddus et al. (2007) provide a comprehensive overview
of online map matchers. Greenfeld (2002); Ochieng et al. (2010); Li et al. (2013); Abdallah
et al. (2011) discuss the data fusion techniques and inference methods. The aim of online
map matching is to determine the link on which the vehicle is moving and to calculate the
position of the vehicle on the link as accurately as possible (e.g. for traffic signal influencing
by buses (Quddus et al. (2007))). The latter is essential in ITS (Intelligent Transportation
Systems) applications and in Advanced Driver Assistance Systems. Nowadays map matchers
are based on the multi-hypothesis technique (MHT) about the position of the vehicle. Such
methods are called Multi-Hypothesis Map Matching (MHMM) in Bonnifait et al. (2009).
In many cases, MHT and sensor data fusing feed maximum likelihood Bayesian inference
engines and often Kalman filtering is used. Recent online map matchers, starting with
Greenfeld (2002), usually incorporate topology constraints.

Velaga et al. (2009) present a topological map matching (tMM) method and describe the
technique used to learn the value for the required weight coefficients. Selecting the initial
link using the first fix (GPS point) is based on weight functions for proximity (distance)
and heading (compared to link direction). Two additional weight functions are used for
link selection at a junction: turn restrictions and link connectivity. All weight functions
can have negative values. The total weight score (TWS) is a linear combination of the
applicable weight function values. The respective weight coefficients are determined using
traces for which the link sequence is known. For all fixes near junctions, weight coefficients
are generated randomly until a tuple is found that correctly identifies the chosen link. Those
tuples are applied to all fixes and the portion of wrong fixes is determined for each case.
Finally the tuple leading to the minimal error is determined by regression. Weight coefficient
tuples for rural, suburban an urban environments are presented.

1.2. Offline Map Matching

Offline or batch map matchers aim to process previously recorded sequences of coordi-
nate pairs in order to extract travel behavior information either for a single moving object
(either person or vehicle) over a long period or for a large set of moving objects. GPS
recordings are either vehicle traces produced by dedicated devices mounted in a vehicle or
person traces recorded by smartphones carried by individuals. The aim is to determine the
sequence of links used by the moving object. Schüssler and Axhausen (2009) state that map
matching of person traces requires high resolution network information. Available data con-
sist of time series of GPS recordings and in some cases from other sources (Bluetooth, Wifi
and mobile phone related events). Large datasets are available and need to be processed ef-
ficiently. In Quddus et al. (2007); Schüssler and Axhausen (2009), map matching techniques
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(both online and offline) are classified as (i) pure geometry based methods, (ii) topological
methods, (iii) probabilistic methods and (iv) advanced procedures. Pure geometric methods
are further classified by Quddus et al. (2007) as point to point matching (finding the nearest
node or shape point), point to curve matching (finding the polyline to which the distance
is minimal) and curve to curve matching (matching the vehicle trajectory against known
roads). Those methods can deliver link sequences that represent non-connected walks in
the network.

The technique proposed by Marchal et al. (2005) solves the problem of non-connected
walks by adding topological constraints. It starts by determining which links are identified
by the first few GPS recordings. Each of those constitutes the first link in a candidate path.
When the next GPS coordinate pair is processed, for each route candidate being built, only
the last link in the sequence and the links that can be reached from that link (forward star)
are investigated when looking for links matched by the new coordinate pair. Since each
route candidate shall consist of a linear sequence of links, route candidates are cloned and
each clone is extended by exactly one member of the forward star. The route candidates
then are assigned a score and in order to avoid huge sets of route candidates, only the N
route candidates having the best scores are kept (N = 30). Scoring is done as follows. Each
GPS point can match at most one link in each route candidate and each link in the route
needs at least one GPS fix. The distance between the point and the link is a measure of
quality of the selection (the lower the better). For each GPS fix, the distance between the
recorded position and the matched link is computed. The sum of those values constitutes
the score for a candidate link sequence. If there are too many candidates, the ones having
the highest scores are discarded. The computational effort and memory requirements grow
with N . Making N too small, can cause promising candidates to be removed prematurely
and hence can decrease the average quality of the final candidates. Schüssler and Axhausen
(2009) evaluate this technique by comparing the quality (score) of the best solutions found
and the corresponding computational effort for several values for the maximal candidate
set size N . The paper concludes that the value reported in Marchal et al. (2005) is a valid
one; the average score per GPS point does not significantly decrease with the candidate set
size for N > 30. It also reports that the processing time per point is between 10[ms] (for
N = 20) and 75[ms] (for N = 100).

Zhou and Golledge (2006) use a similar procedure implemented in ArcGIS. GPS record-
ings are processed sequentially and a pool of candidate solutions is kept. In a preprocessing
stage, they first replace clusters of GPS points by their centroid (cluster reduction) but also
add interpolated GPS points when the distance between two consecutive points is larger
than half of the minimum length for the links in the buffer defined by the two GPS points.
Then a 2-norm (distance) and a rotation measure are used to determine the weight for each
point in the preprocessed dataset. A set of candidate partial paths is kept and extended so
that a connected walk results from the method. In the link selection phase, a Dempster be-
lief function is used to determine the plausibility of the selected link. However, the authors
do not explain what criteria were used.

Feng and Timmermans (2013) use a Bayesian Belief Network (BBN) to replace the ad
hoc rules used in map matchers not making use of the multi-hypothesis technique (MHT),
to select the next road segment candidate in a route. The input for the method consists
of (i) PDOP (Positional Dilution Of Precision), (ii) the difference in direction between the
road segment candidate on one hand and the line segment defined by the last two GPS
points on the other hand, (iii) the distance from the GPS point to the line segment, (iv) the
connectivity between road segments and (v) azimuth information. For a set of routes the
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effectively used line segments have been recorded by the traveler. This dataset serves as the
truth value which is used for training the BBN. While processing a new sequence of GPS
recordings, the BBN is used to determine the probability for a candidate link to become
the next one in the route. The link having the highest probability is selected. In this
procedure, the topological constraint is not forced. Connectivity information is used as
an input variable and the resulting sequence of selected road segments is not necessarily a
connected one.

Chen et al. (2011) propose a probabilistic method to simultaneously detect the road
segment sequence and the transportation modes used. The likelihood that a given multi-
modal path in a network generates the observed sequence of smartphone data is estimated.
The measurement equations establish the probability that a given path generates a given
time series of measurements. The travel model consists of frequency distributions for the
speed estimated for six different modes. The phone measurement model involves GPS
coordinates, speed, acceleration and Bluetooth events.

Bierlaire et al. (2013) further elaborate the proposed probabilistic measurement model
introduced by Chen et al. (2011) and show how to compute the integrals required for like-
lihood evaluation. The path is decomposed into arcs and integrals are evaluated over each
arc and summed. The concept of Domain of Data Relevance (DDR) is used to limit the
computational requirements; e.g. the difference between the arc direction and the reported
heading (in points where the speed is sufficiently high) are used to discard candidate links.
The procedure explicitly takes the map inaccuracy into account and rigorously elaborates
the measurement equations and the traffic model. Network topology is taken into account
during the path generation phase which is similar to the one used in Marchal et al. (2005)
and in Schüssler and Axhausen (2009) but allows to look ahead over multiple links in order
to relax the requirement that each link needs to be matched by at least one GPS recording.

The methods mentioned above process the GPS points in chronological order. For each
point, they decide whether or not to accept a link as the next one in a candidate sequence
based on scoring or rigorous stochastic likelihood calculations respectively. Each procedure
keeps track of a limited set of candidate paths.

Brakatsoulas et al. (2005) propose three algorithms: (i) a greedy algorithm processing
one point at a time using a distance and an angular criterion to select the next edge, (ii) a
recursive local look-ahead method (inspecting up to 4 network links and GPS points ahead)
and (iii) a global method that minimizes the Fréchet distance between curves. The latter
method consists of the following steps. First the concept of free space is introduced. This
is the set of points on two curves for which the distance is less than a given ε. Curves of
finite length are defined by [0, 1] → R2 so that the free space is a subset of [0, 1]2. It is
observed that if and only if a (monotone) continuous curve from (0,0) to (1,1) does exist in
the free space, the (strong) Fréchet distance between the curves is less than ε. The free space
concept then is extended to free space surface in order to compare a curve C to a graph
(each edge combined with C generates a free space and those are combined into a free space
surface). The sequence of GPS coordinates constitutes a piecewise linear curve. For a given
ε, the free space surface for such curve and each path in the graph is computed. Finally the
minimum value for ε for which a (monotonic) curve can be found in the free space surface,
is determined by parametric search. This results in the globally optimal sequence of links
(i.e. the one that delivers the minimum ε value). This method delivers topologically valid
sequences and does not require each traversed link to be matched by a GPS point. The
complexity of the method using weak Fréchet distance is O(mn · log(mn)) where m is the
number of vertices and edges and n is the number of GPS points. Processing time is not
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given: the paper only states that the runtime for the global methods was much longer than
the runtime for the incremental methods.

Wei et al. (2012) present a clear overview of the information and weight functions used
in published maximal weight methods. A global method based on a hidden Markov model
(HMM) and the Viterbi probability maximization is proposed. Weight functions are chosen
to achieve both high accuracy and processing speed (ten thousand GPS records per second).
In case the links matched by two consecutive GPS fixes are disconnected, shortest paths are
inserted to connect each link matched by the first fix to each link matched by the second
fix. The search for such paths is restricted by an upper bound for the path length derived
from a maximal speed value and the observed travel time between the consecutive fixes.

Deka and Quddus (2015) present a global method for trip based offline map matching
that minimizes the additional data requirements like route choice, mobility patterns etc. The
method selects the candidate path that maximizes the sum of weight function values for
each GPS point over the complete trip. In each step the last two fixes and their projections
on the matched links are used in the weight computation.

In the method presented in this paper (i) a set of multiple initial matches is allowed,
(ii) outliers are processed according to the GPS device accuracy, (iii) the concept of likelihood
(as opposed to weight) is used, (iv) direction is not considered and (v) a graph is build that
allows for enumeration of high likelihood candidate paths for posterior application of rules
based on additional assumptions.

1.3. Contribution

This paper contributes as follows:

1. the proposed MHT does limit the size of candidate routes in advance but provides an
acyclic digraph that allows for efficient enumeration of candidates

2. the GPS trace is subdivided into parts and likely global routes are found by combining
maximum likelihood (MLH) partial routes corresponding to the trace parts

3. behavioral properties are not used by the candidates enumerator and can be used in
a second stage for filtering (depending on the actual research objectives).

Conceptually map matching consists of two stages. The first stage builds a graph containing
space and time information from which all candidate link sequences can be generated.
This graph only contains space-time information extracted from the GPS trace and the
road network. In the second stage, additional assumptions can be added to refine the link
selection (e.g. traveller behavior assumptions). The focus in this paper is on the first stage.

For the convenience of the reader, a symbol table is provided in Appendix A and a list
of abbreviations is provided in Appendix B. In order to avoid confusion between different
graphs in the remainder of the text, symbols denoting graphs, vertices and edges will bear
a superscript.

2. Application Domain - Map Matcher Design Decisions

The intended use of the map matching results influences the tool design. If the result
of the map matching is used as input for other research, one shall be careful about the
assumptions made by the map matching procedure. Let W denote the set of walks in
the graph representing the road network (contiguous link sequences) output by the map
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matching procedure. If subsequent research aims to verify a particular hypothesis H to hold
for W , then the map matcher shall not use any assumptions that affect the hypothesis H
verification. Example: when the final result serves to assess speeding behavior the link
selection stage shall not include speeding related behavior assumptions (e.g. respecting
maximum speed on road segments). A map matching procedure can consist of two stages so
that (i) the first stage is based on information in the GPS trace and in the given map only
and (ii) additional assumptions are concentrated in the second stage. This paper focuses on
the first stage and hence does not make assumptions about the driver behavior.

This section briefly discusses the intended use of the map matcher and some of the design
decisions emerging from the related requirements.

1. Results of map matching are used in research projects that focus on the analysis of
revealed travel behavior. In particular, researchers aim to extract properties of routes
revealed by GPS traces in order to support route choice set generation (i.e. the same
purpose as the one mentioned in Bierlaire et al. (2013)). This leads to the requirement
to efficiently derive the route in the road network that has the highest probability to
have generated the time series of GPS recordings. Such route in general corresponds
to a graph theoretical walk (repeated visits of edges and vertices allowed) and not
necessarily to a path (no repeated visits allowed).

2. The map matched link sequences serves route splitting research reported in Knapen
et al. (2014); Knapen (2015); Knapen et al. (2016) that aims to investigate how re-
vealed routes can be decomposed into a minimum set of least cost subroutes. The size
of such minimum decompositions (the route complexity) is expected to deliver relevant
information to increase the quality of route choice set generation in travel behavior
research. Accurate map matching is required because it heavily affects the complex-
ity of the resulting link sequences (paths in a graph). On one hand, gap filling by
means of shortest route segments in the case of missing recordings reduces the route
complexity; hence it introduces bias and needs to be avoided. On the other hand, the
requirement to have at least one GPS record for each link in unfeasible in practice
because of the occurrence of very short links in junctions of multi-lane roads.

This paper proposes a map matching method based on likelihood maximization in which
the requirement to have at least one GPS record for each link is relaxed.

3. Map Matching: Principle of Operation

The road network is modeled by a directed graph GT (V T , ET ). The superscript T is
used to identify the transportation graph. Each vertex v ∈ V T corresponds to a node in the
network. Each edge e ∈ ET is associated to an ordered pair of nodes 〈vs, vt〉 and identifies
the set of lanes of a particular road segment usable to move from the source vs to the target
vt. A bidirectional road segment is represented by two edges.

The proposed method operates as follows. The trace is subdivided into contiguous
subtraces. Each subtrace corresponds to a subgraph of GT (network of links) that may have
been used to generate the subtrace. Subgraphs for chronologically consecutive subtraces are
constructed so that they are not disjoint and hence particular links or nodes are crossed while
transiting from one subtrace to the next one. In general, multiple candidates do exist for
each subtrace border crossing. Hence, for each subgraph multiple entry-exit combinations
are available. Maximum likelihood (MLH) partial routes are determined for each entry-exit
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combination in each subtrace. A new acyclic digraph is build in which each edge represents
a MLH partial route. Each path in this graph represents a walk in the transportation graph
GT that consists of MLH partial walks. This graph allows to easily find the MLH walk in
GT for the given trace and also allows for enumeration of near maximum likelihood walks.
Map matching a GPS trace proceeds in several steps.

1. In the first step, links matched by GPS recordings are selected for processing. The
distance threshold RI

M is used as a selector and no qualification or evaluation is applied
yet. This is similar to what is done in other methods described in the literature. It
corresponds to what is called Domain of Data Relevance (DDR) by Bierlaire et al.
(2013). The purpose is to discard sufficiently improbable links. Details are explained
in Section 3.4.

2. In the second step, the chronologically ordered sequence of GPS recordings is parti-
tioned into contiguous subsequences so that each recording in a part matches the same
set of links and so that the parts are maximal contiguous subsequences (see Figure 1).
Each such part corresponds to a period in time (denoted by p) which is defined by the
first and last recordings in the part. Potential link use is identified by a link-period
pair 〈l, p〉. Details are explained in Section 3.7.

3. In the third step, the link-period pairs 〈l, p〉 are used as vertices to construct a graph
GU in which each vertex represents the assumption that a specific link l is used in a
specific period p (not necessarily for the full duration of p). The subgraph for period p
is denoted by GU

p . Details are explained in Section 3.7. The links used in GU
p constitute

a (not necessarily connected) subgraph GT
p of the transportation network.

Each subgraph GU
p contains some links that are in use at the start of period p (period

entry links) and some links that in use at the end of p (period exit links). These sets
may be disjoint or intersect. Each pair 〈len,p, lex,p〉 where len,p is an entry link and lex,p
is an exit link is considered. If lex,p can be reached from len,p, all possible trails in
GT,U
p linking the entry to the exit are considered and the trail delivering the maximum

likelihood to have generated the partial GPS trace for period p is retained for the pair
〈len,p, lex,p〉. Details are explained in sections 3.8, 3.10 and 3.9.

4. In the fourth step an acyclic directed graph is constructed by chaining the GU
p graphs

in chronological order. The exit links for GU
p−1 are connected to the entry links for

GU
p : details are explained in Section 3.11. The resulting graph GB contains all the

information that describes the possible road network link use in each period. Note
that this graph is layered : for every i > 0 and j > 0 each path from a link-pair in
GU
p−i to a link-pair in GU

p+j necessarily uses a subpath that connects a entry link to a
exit link in GU

p .

5. Finally, a maximum likelihood link-use trail that connects len,p−1 to lex,p is found
by considering each len,p to transfer from period p − 1 to period p. By repeatedly
applying this, the maximum likelihood path linking en entry link in the first period
to an exit link in the last period is found. Because the graph GB is layered this is
computationally feasible. Graph GB is also used to enumerate sets of routes having
sufficient likelihood: details are explained in Section 3.12.

In summary, the trace is partitioned. Each part corresponds to a time period. Each GPS
record in a part matches the same set of links and these links constitute the subnetwork
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that is crossed during the time period. A computationally feasible method is proposed to
find the maximum likelihood walks linking the entries to the exits in the subnetwork. The
subnetworks then are assembled by connecting exits to entries. This results in a layering of
subnetworks for which the maximum likelihood crossing walks are known. A simple recursive
algorithm then is used to fine the maximum likelihood walk for the observed trace.

3.1. GPS Accuracy, Failure Probability and Matching Radius

The accuracy (in meters) a of a GPS device as specified by the manufacturer is inter-
preted as the positional error that is not exceeded with a given probability p (e.g. a = 25[m]
for p = 0.95)).

The proposed method may fail if the GPS trace contains too many consecutive erroneous
recordings. Given the accuracy threshold a and the associated probability p, we derive that
the probability to find Ne consecutive erroneous recordings is given by (1 − p)Ne . Let
pa denote the acceptable probability to experience a matching failure due to GPS errors
causing outlier recordings. The maximum number of consecutive erroneous recordings that
the map matching procedure needs to be able to overcome then is given by N e = d ln(pa)

ln(1−p)
(where dx denotes the minimum integer value not smaller than x). For practical cases,
N1 = N e+1 consecutive recordings can be assumed to contain at least one correct recording.
The accepted failure probability pa shall be near to zero and for the experiments pa ≤ 1e−9
was required. Then N e = d ln 1e−9

ln 0.05
= d−20.72

−2.996
= 7

For each recorded GPS location a circular area is used to find matched links. Radius RI
M

is used to find an initial set of links matched by the chronologically first N1 GPS recordings.
The matching radius is given by RI

M = a+m where
a is the device accuracy [m]
m is the map error [m]

In the remainder of the text the device and map accuracy values are combined in A = a+m.

3.2. GPS Accuracy and Matching Probability

The error for the GPS device is assumed to have a normal distribution with zero mean
and given standard deviation σ for both longitude and latitude: elon = elat ∼ Normal(0, σ).
It is assumed that the error does not exceed a given value a with probability p. Then the
standard deviation follows from the inverse of the cumulative distribution function for the
normal distribution : 1

σ =
a√

2 · erf−1(2 · p− 1)
(1)

The distance d between the true position and the measured one then is given by d =√
e2
lon + e2

lat and has a Rayleigh distribution: d ∼ Rayleigh(σ). The probability that the
error is larger than d is determined as follows. The CDF (cumulative distribution function)
for the Rayleigh distribution is given by

FR(x) = 1− exp(− x2

2 · σ2
) (2)

1expressions for the cumulative distribution function for the normal distribution are found in Weisstein
(1999); Spiegel (1968) and others
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and hence for observed distance d the probability for the measurement to have been gener-
ated from the true position is given by

q(d) = Prob(error > d) = 1− FR(d) = exp(− d2

2 · σ2
) (3)

3.3. Link Match Likelihood

Let ∆ = ∆(l, 〈xg, yg〉) be the minimum distance between the position specified by the
GPS coordinate pair 〈xg, yg〉 and the geometry of link l. Then the probability that the
position error is larger than ∆ (denoted by q(∆)) is taken as an estimate of the likelihood
`(〈xg, yg〉|l) for 〈xg, yg〉 to have been generated from a position on the link. The likelihood
value decreases with the distance between the location specified by the GPS recording and
the link geometry. If the GPS coordinate is exactly on the link, the likelihood equals one.

Note that the likelihood value q(∆) is an approximation and it is an overestimation.
This can be seen as follows: let x(z), y(z) with z ∈ [0, 1] be the parametric specification
of the geometry of the link; z is the developed relative distance measured along the road
between the first vertex and 〈x(z), y(z)〉; sometimes z is called the linear reference. Then
the likelihood for the GPS recording coordinate pair 〈xg, yg〉 to have been generated from
link l is given by

`(〈xg, yg〉|l) =

z=1∫
z=0

q(∆(〈x(z), y(z)〉, 〈xg, yg〉) · p(z)dz (4)

where ∆(〈x(z), y(z)〉, 〈xg, yg〉) is the euclidean distance between 〈x(z), y(z)〉 and 〈xg, yg〉 and
p(z) is the probability density function for z. When the speed is assumed to be constant,

p(z) is constant. Then p(z) = 1 since
z=1∫
z=0

p(z) = 1 and as a consequence

`(〈xg, yg〉|l) =

z=1∫
z=0

q(∆(〈x(z), y(z)〉, 〈xg, yg〉) · dz (5)

Since ∆ is minimum

∀z ∈ [0, 1] : ∆ ≤ ∆(〈x(z), y(z)〉, 〈xg, yg〉) (6)

and as a consequence

`(〈xg, yg〉|l) =

z=1∫
z=0

q(∆(〈x(z), y(z)〉, 〈xg, yg〉)dz ≤
z=1∫
z=0

q(∆)dz = q(∆) (7)

In the proposed method, the likelihood does not depend on the speed. Schüssler and
Axhausen (2009) add a penalty term proportional to the square of the difference between the
actual speed and the free-flow speed in the weight based scoring function. We deliberately
refrain from making the likelihood dependent on the speed because part of the traces are
produced by vehicles in congested traffic. The mentioned speed difference is not related to
the positional measurement error (although the actual speed may be related).
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3.4. Link Matching - Sub-network to Search

A link in the road network is matched by a GPS recording 〈x, y, t〉 if and only if the
minimum distance between the point 〈x, y〉 and the link geometry is not larger than the
matching radius RM .

For each trace, the complete road network is searched for links matched using RM = RI
M

by the first N1 GPS recordings (the N1-head of the GPS trace) because at least one correct
link match is required to start the algorithm. For GPS recording gi with i > N1, link matches
are only searched for in the subnetwork to search (SNTS) which is a small subnetwork of GT

and which evolves as processing proceeds. In the latter cases, the matching radius RM = RE
M

(defined below) is used. The links matched by the N1-head of the trace constitute the initial
SNTS denoted by GT,S

0 .
GPS recordings are processed in chronological order. As soon as a GPS recording does

not match the same set of links as its predecessor, a new SNTS needs to be established.
In order to find the links matched by the i-th recording (i > N1) that does not share the
matched link set (MLS) with its predecessor, the j-th SNTS (denoted by GT,S

j ) is derived as
follows. The set L of links matched by the N1 most recent predecessors {gk|k ∈ [i−N1, i−1]}
is extended with all links that can be reached from at least one link in L when moving at
speed v. The value v is a global upper bound for the speed on the road (not the local speed
limit). The maximum distance driven between two locations for which consecutive GPS
recordings are generated is d = RI

M + v · δ = a+m+ v · δ where
v is the expected upper bound for the speed [m/sec]

δ is the expected upper bound of the recording period [sec] in case no data are lost
(1.5 times the nominal value δsn is considered to be plausible)

The SNTS is not necessarily a connected network. This holds for the initial and all consecu-
tive SNTS. The procedure used to determine the SNTS ensures that each of the consecutively
generated SNTS GT,S

j contains a subnetwork matched by at least one non-erroneous record-

ing. It shows the importance of the N1 = N e + 1 value which is determined by the quality
of the dataset of GPS recordings to be processed.

For each GPS recording beyond the first N1-th, link matching in the SNTS uses RE
M =

d = RI
M + v · d. This may seem counter-intuitive because too many links will be matched

(selected). However, the matching function returns the minimum distance between the loca-
tion determined by the GPS recording and the link geometry. If RI

M were used for matching,
the matched link sets for two consecutive GPS recordings may by disjoint because it is not
required that each crossed link generates at least one GPS record. Then matched links need
to be connected in some way. The proposed method uses a maximum likelihood technique.
The distance returned by the matching function is used to determine the probability for
each link-recording pair 〈l, r〉.

3.5. Matched Link Sets and GPS Trace Partitioning

Similar to other authors, we assume that the timestamp in the GPS records is correct.
GPS recordings are processed in chronological order.

Definition 3.1 (trace).

A trace is a chronologically ordered sequence of GPS recordings for a trip.

Definition 3.2 (subdivision of a trace). A subdivision of a trace T (ordered sequence of
recordings) is a partition so that each part τ consists of a contiguous subsequence i.e. if
gi, gj ∈ τ for i < j then (∀k | i < k < j) : gk ∈ τ where gi, gj, gk denote GPS recordings and
τ ⊆ T is a part in a subdivision of T .
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l1 l2 l3 l4

l5

l6

l7
l8

l9

l10

l11

l12

Period→MLS
p1 →{l1}
p2 →{l1, l2, l5, l12}
p3 →{l1, l2, l5}
p4 →{l5, l6, l7, l8, l9}
p5 →{l7, l8, l9}
p6 →{l8}
p7 →{l4, l8, l10, l11}
p8 →{l11}
p9 →{l2, l3, l9, l10, l12}
p10 →{outlier}
p11 →{l2, l12}
p12 →{l2}
p13 →{l1, l2, l5, l12}
p14 →{l1}

Figure 1: Mapping chronologically contiguous GPS subsequences to
〈
Period,MLS

〉
pairs. Each subsequence

of GPS recordings maps to a CMLS-MP (Complete Matched Link Set for Maximal Period).

The given trace is subdivided as follows.

1. For each recording, the matched link set (MLS) is determined as follows: the SNTS is
searched for links matched by the GPS recordings using the extended matching radius
RE
M = d. This is done because we need a likelihood value for each link that can have

been used and not only for the ones that are within a distance from the GPS recording
defined by the device accuracy. The resulting set is called the matched link set (MLS).

2. Multiple chronologically consecutive recordings may generate the same MLS (illus-
trated in Figure 1). This allows to partition the sequence of recordings into contiguous
subsequences such that two chronologically consecutive recordings belong to the same
part if and only if they share the MLS. Since the GPS sequence is chronologically
ordered, each part corresponds with a time period and the time periods are disjoint.
The partitioning is illustrated by the legend in Figure 1. The left side shows a part
of the road network along with some locations determined by GPS recordings. The
legend on the right side shows contiguous subsequences of the GPS trace and their
mapping onto tuples consisting of a MLS and a period.

3. For each MLS a matrix ` is kept. The element `[l, g] with l ∈ MLS and g ∈ T is (an
estimation of) the likelihood for g to have been generated from a position on link l.

Each subsequence (part) determined in item 2 is a complete matched link set for a max-
imal period (CMLS-MP). It is called complete since the link set contains all links matched
by each GPS point in the subsequence. It is maximal since it cannot be extended in the
time dimension (due to the construction rule). The k-th CMLS-MP is described by a tuple
〈〈tfk , tlk〉,MLSk〉 where MLSk is the matched link set and tfk and tlk are the timestamps for

the first and last GPS recording (the tuple 〈tfk , tlk〉 constitutes the period identifier shown in
Figure 1).

Note that an outlier GPS recording may create a part containing the outlier recording
as the only element. Assume three consecutive parts τi−1, τi, τi+1 (corresponding to periods
pi−1, pi, pi+1) in the GPS trace where τi is generated by an erroneous (outlier) recording.
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Then it is possible that the MLSi−1 associated with τi−1 contains some links that have a
node in common with links in the MLSi+1 for τi+1 while none of the links in the MLSi has
any node in common with links in MLSi−1 or MLSi+1 respectively. This phenomenon is
shown in Figure 2 (which is compatible with the example given in Figure 1). Links l2, l3,
l9, l10, l11, l12 are inherited in period p10.

12



p1
p2

p3
p4

p5
p6

p7
p8

p9
p1
0

p1
1

p1
2

p1
3

p1
4

l 1
2

l 1
2

l 1
2

l 1
1

l 1
0

l 1
0

l 9

l 8

l 7

l 6l 5

l 2 l 5

l 3
l 3 l 4

l 1 l 2

l 1
2

l 1
l 1 l 2 l 5

l 5

l 7 l 8 l 9

l 8
l 8

l 9

l 1
1

l 1
1

l 9 l 1
0

l 1
1

l 1
2

l 2 l 3

l 2
l 2

l 2

l 1
l 1

F
ig

u
re

2:
S

am
p

le
C

h
ro

n
oL

in
k
M

at
ch

G
ra

p
h
G

U
(V

U
,E

U
):
p
i

in
d

ic
a
te

p
er

io
d

s,
l j

d
en

o
te

li
n

k
s

in
th

e
ro

a
d

n
et

w
o
rk

.
T

h
e

fi
rs

t
li
n
k
u
se

in
th

e
w

a
lk

co
rr

es
p

o
n

d
s

to
〈p

1
,l

1
〉(

in
it

ia
l

ve
rt

ex
)

an
d

th
e

la
st

li
n
k
u
se

in
th

e
w

al
k

co
rr

es
p

o
n
d

s
to
〈p

1
4
,l

1
〉(

te
rm

in
a
l

ve
rt

ex
).

In
g
en

er
a
l,
G

U
co

n
ta

in
s

m
u

lt
ip

le
in

it
ia

l
a
n

d
te

rm
in

a
l

ve
rt

ic
es

.
R

ed
ve

rt
ic

es
as

w
el

l
as
l 2

an
d
l 1
2

in
p
1
0

re
p

re
se

n
t
pe
ri
od
E
xi
tL
in
ks

:
th

ey
a
re

re
le

va
n
t

fo
r

F
ig

u
re

4
.

G
re

en
ve

rt
ic

es
a
re

in
h

er
it

ed
(n

o
t

m
a
tc

h
ed

in
p
i

b
u

t
m

a
tc

h
ed

(a
t

le
as

t)
in
p
i−

1
).

T
ra

n
sf

er
fr

om
/t

o
an

in
h

er
it

ed
ve

rt
ex

w
it

h
in

a
p

er
io

d
is

n
o
t

a
ll

ow
ed

.
L

in
k

u
se

p
er

io
d
p
1
0

w
as

ca
u

se
d

b
y

a
n

o
u

tl
ie

r
G

P
S

re
co

rd
:

it
s

m
a
tc

h
ed

li
n

k
se

t
(M

L
S

)
is

em
p

ty
;

it
co

n
ta

in
s
in
h
er
it
ed

li
n
ks

(g
re

en
)

o
n

ly
.

In
g
en

er
a
l,

a
p

er
io

d
m

ay
h

av
e

n
o
n

-e
m

p
ty

M
L

S
a
n

d
IL

S
(n

o
t

sh
ow

n
in

o
rd

er
to

ke
ep

th
e

d
ia

g
ra

m
si

m
p

le
).

T
h

e
ro

u
te

w
as

a
to

u
r

si
n

ce
l 1

ap
p

ea
rs

n
o
n
-i
n
h
er
it
ed

in
th

e
fi

rs
t

a
n

d
la

st
p

er
io

d
s.

13



3.6. Inheritance
Consider each period pi and the corresponding matched link set MLSi (which may be

empty). In case the part τi for period pi contains less than N1 recordings, m preceding
periods pi−m, . . . , pi−1 is considered so that

m = min
j∈[0,i]

j |
( ∑
x∈[i−j,i]

|τx| ≥ N1

)
∨
(
j = i

)
(8)

where |τx| denotes the number of recordings in subtrace τx. This selects the minimum
number m of preceding periods for which∑
x∈[i−m,i]

|τx| ≥ N1 (9)

provided that sufficient recordings do exist. The inherited link set consists of all links
contained in the selected predecessors link sets that are not contained in MLSi. The inherited
link set is specified by

ILS(pi) =
( ⋃
x∈[i−m,i−1]

MLSx

)
\MLSi = {y|(y ∈

⋃
x∈[i−m,i−1]

MLSx) ∧ (y 6∈ MLSi)} (10)

3.7. Chronologically and Topologically Consistent Link Match Graph
While generating the CMLS-MP for period pi, a tuple 〈lj, pi〉 is created for each link in

the associated link set MLSi ∪ ILSi. The 〈lj, pi〉 tuples for the matched and inherited links
are used as vertices in a newly constructed digraph. Vertex va = 〈lja , pia〉 is connected to
vertex vb = 〈ljb , pib〉 by a directed edge if

1. either pib = pia (same period) and the target vertex in GT of lja is the source vertex
of ljb (topological constraint): this is used to move to a topologically compatible road
network link within period pia

2. or pib = pia+1 (chronological constraint) and either lja = ljb or the target vertex of lja
in GT is the source vertex of ljb (topological constraint): this allows to either move to
a topologically compatible link or to stay on the same link during the transition to
the next period pib .

The resulting graph GU(V U , EU) is called the ChronoLinkMatchGraph (CLMG). Figure 2
shows an example. Period p3 in Figure 2 is caused by an outlier GPS recording matching
only l5 and represented by the red circle labeled D. Inherited links are represented by green
circles; they appear in all periods that contain less than N1 GPS recordings and not only in
periods generated by outliers. This illustrates the problem described in Section 3.5.

Note that pi+1 denotes the immediate successor period of pi. The resulting graph GU

has a layered structure since each path in the graph GU is defined by a sequence of vertices
v0, v1, . . . , vk, vk+1, . . . for which equation 11 holds:

vk = 〈lx, pm〉 ⇔ vk+1 = 〈ly, pn〉 |(
(pm = pn) ∧ (target(lx) = source(ly))

)
∨
(
(pm+1 = pn) ∧ ((lx = ly) ∨ (target(lx) = source(ly))

)
(11)

There is a one-to-one correspondence between layers and periods. The subgraph consisting
of vertices 〈·, p〉 is the ChronoLinkMatchGraph layer for period p denoted by GU

p . Such
subgraph in general is not acyclic. However, contracting GU by replacing all vertices for a
period p by a single vertex, leads to an acyclic graph (in particular a to linear sequence).
This is easily observed in the sample CLMG in Figure 2.
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3.8. Layers in the ChronoLinkMatchGraph

Following concepts are used.

Definition 3.3 (periodEntryLink). A link is a periodEntryLink for a given period if and
only if it can be in use by the traveler at the start of the period.

For the chronologically first period every matched link is a periodEntryLink ; for consecutive
periods, a link l is a periodEntryLink if and only if l or one of its topological predecessors
was either matched or inherited in the preceding period.

Definition 3.4 (periodExitLink). A link is a periodExitLink for a given period if and only
if it can be in use by the traveler at the end of the period.

Every link matched in the last period is a periodExitLink for that period; for two consecutive
periods, l is a periodExitLink of the chronologically first one if and only if l or a topological
successor is matched or inherited in the succeeding period.

The corresponding link sets periodEntryLinks (denoted by LEn
p ) and periodExitLinks

(denoted by LEx
p ) are determined for each period p.

Definition 3.5 (periodTransferLink). A link l1 is a periodTransferLink for l0 in period pi
if and only if l0 ∈ LEx

pi
and l1 ∈ LEn

pi+1
and either l1 = l0 or l1 is directly reachable from l0.

Link l1 is directly reachable from link l0 if and only if one of it is one of the topological
successors of l0 (i.e. the target vertex of l0 is the source vertex of l1 in the digraph GT ).
The set of periodTransferLinks for link l in period p is denoted by LTx

〈l,p〉. The set of all

periodTransferLinks for period p is denoted by LTx
p =

⋃
l∈LEx

p

LTx
〈l,p〉.

The idea is to consider all pairs 〈ls, lt〉 ∈ LEn
pi
×LEx

pi
for which GT

pi
contains a path leading

from ls to lt. For each such pair, the path having the maximum likelihood (MLH) to have
generated the subtrace τi associated with period pi is determined as explained in Section 3.9.
This leads to a |LEn

pi
| · |LEx

pi
| matrix of MLH values for period pi.

3.9. Finding Maximum Likelihood Walks in a CLMG Layer

Consider the matched link set MLSi for period pi. Per construction MLSi ⊆ SNTSi
holds. The graph GT

i (V T
i , E

T
i ) ⊆ GT can be considered as a time-space prism i.e. as the

subgraph that may have been visited during period pi taking into account (i) distances
along the road and (ii) a global upper bound for the moving speed. GT

i is not necessarily
connected. LEn

pi
⊆ MLSi ∪ ILSi = ET

i and LEx
pi
⊆ MLSi ∪ ILSi = ET

i . It is possible that
l1 ∈ LEx

i is not reachable from l0 ∈ LEn
i in GT

i .
According to Section 3.4 all links in MLSi are matched by all recordings in τi (but

MLSi may be empty). According to Section 3.6 at least one edge in ET
i is matched by a

non-erroneous recording.
Figure 3 shows graphs used to determine the maximum likelihood assignment of GPS

recordings to network links. The recordings in τi are processed in chronological order and
each recording gk(τi) needs to be assigned to an edge in GT

i . The graph defined by the
links MLSi ∪ ILSi = ET

i ⊆ ET in Figure 3a shows the part of the transportation network
involved.

The graph GA
i shown in Figure 3b represents the GPS record assignment state. A vertex

in GA
i represents a pair 〈lX , k〉 where lX ∈ ET

i is a link in the transportation network and k
denotes the number of GPS recordings in τi that already have been assigned to the links in
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ET
i . In order to ease interpretation, the vertices have been arranged in a grid. The subgraphs

in the columns except for the last one are isomorphic and each column corresponds to a
particular k value. A subgraph in a column labeled k = j corresponds to the state in which
the first j recordings of τi already have been assigned.

Edges within a column (subnetwork for a particular value of k) correspond to transitions
from a link eTx to a link eTy with x 6= y without assigning recording gk(τi) to eTx . An edge
eAx in a row of the grid in Figure 3b that connects 〈eTx , k〉 to 〈eTx , k + 1〉 corresponds to
the assignment of gk(τi) to the link eTx which means that gk(τi) is assumed to have been
generated from a position on eTx .

Each edge is labeled with a value v = − ln(`) where ` is the likelihood associated with
the transition. All edge labels are non-negative and finite since ` ∈ (0, 1]. The higher the
likelihood, the lower the corresponding v value. The values are determined as follows.

Let Prob(eTx ) be the probability that the moving object is positioned on edge eTx ; it is
based on the link length and the speed and is estimated by

∆s = length(eTx )/v (12)

Prob(eTx ) = e−∆s/∆r (13)

where ∆s is the expected duration to travel the link based on the value for the speed and
∆r is the duration of the nominal recording period. This is based on the distribution for
the time to wait for the first occurrence of a Poisson event. Because the Dijkstra (1959)
algorithm requires the edge cost to be constant (independent of the head of the path being
evaluated), a constant value v is assumed (v = 16[m/s] for the experiments mentioned
below) while ∆r is given.

Let Prob(gk(τi), e
T
x ) denote the conditional probability that gk(τi) was generated from a

position on eTx provided that the moving object is positioned on eTx .
The likelihood is estimated as follows:

` =

{
Prob(eTx ) · Prob(gk(τi), e

T
x ) for an edge 〈〈eTx , k〉, 〈eTx , k + 1〉〉

1− Prob(eTx ) for an edge 〈〈eTx , k〉, 〈eTy , k〉〉
(14)

The edge labels in GA
i are interpreted as edge traversal costs. In order to find the MLH

path linking a periodEntryLink lEnx to a periodExitLink lExy the least cost path in GA
i from

〈lEnx , 0〉 to 〈lExy , |τi|〉 is determined using the Dijkstra (1959) algorithm. Note that the shortest
path concept applies to minimization of unlikelihood and not to minimization of the distance
along the road.

3.10. Using Layers in the CLMG to find Maximum Likelihood Walks

The link sequence in the transportation network that most likely generated the GPS
trace is looked for. Several candidate links are matched by the head and tail recordings
respectively resulting in candidate sets for the initial and terminal links in the link sequence
looked for. MLH walks with given initial and terminal links are built in a piecewise manner
as follows.

A MLH candidate walk (link sequence) in GT is a concatenation of MLH subsequences
corresponding to subtraces τi and hence to periods pi. For each period pi, every pair
〈lEnpi , lExpi 〉 ∈ LEn

pi
× LEx

pi
is considered. If lExpi is reachable from lEnpi in the graph constituted

by the MLS and ILS for period pi, the link sequence starting with lEnpi and ending with
lExpi having the largest probability to have generated the GPS subtrace τi is retained and

denoted by w(lEnpi , l
Ex
pi

). The corresponding probability is denoted by Probpi(l
En
pi
, lExpi ).
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(a) Part of the transportation graph associated with period pi: it is defined by MLSi ∪ ILSi =
GTi ⊆ GT . This graph is used to construct the graph in Figure 3b. Note that an edge in the
transportation graph occurs in multiple vertices in Figure 3b.
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(b) Graph GAi used to assign GPS recordings to transport network links for period pi. A vertex
labeled X in the column labeled k = j represents a pair 〈lX , j〉 where X is a transport network
link shown in Figure 3a and j is the number of GPS recordings that already are assigned to a link
in GTi (hence j is the offset in τi of the first GPS recording that shall be assigned to a link). A
green colored vertex in the leftmost column belongs to LEn

i . A red colored vertex in the rightmost
column belongs to LEx

i . A least cost path linking a green colored vertex (in column k = 0) to a
red colored vertex (in column k = |τi|) is to be found to determine a maximum likelihood (MLH)
assignment.

Figure 3: Graph used to determine the maximum likelihood assignment of GPS recordings to links.
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Let `tail(l, pi) denote the maximum likelihood for the head sequence of GPS recordings
in T up to and including the recordings in period pi to have been generated by a link
sequence for which l is the tail. Then the maximum likelihood for a periodExitLink lExpi is
computed by considering the maximum likelihood for each periodEntryLink and multiplying
it with the likelihood for the walk extension that can be realized in period pi. More formally:

`tail(l
Ex
pi
, pi) =


max
l∈LEn

pi

(
Probpi(l, l

Ex
pi

)
)

if i = 0

max
λ,l | (λ∈LEx

pi−1
)∧(l∈LTx

λ,pi−1
)
(`tail(λ, pi−1) · Probpi

(
l, lExpi

)
) if > 0

(15)

The first case in equation (15) holds because the periodEntryLinks in the first period do
not have predecessors and their prior likelihood equals one. As a consequence, the MLH for
each periodExitLink in period pi can be computed either directly (for i = 0) or from the
MLH for the periodExitLinks in period pi−1 (for i > 0).

By appropriate vertex contraction in CLMG layers as explained in Section 3.7 a directed
acyclic graph (DAG) of periodExitLinks can be constructed and the MLH for each possible
concatenation of link sequences for subtraces τi can be computed efficiently.

3.11. Maximum Likelihood Walk Generation

Finally, the PeriodBoundaryLinkGraph GB(V B, EB) is considered. An example is shown
in Figure 4. A vertex vB ∈ V B is a pair 〈l, p〉 where p is a period and l is an edge in the
road network graph for which (l ∈ LEn

p ∧ p = 0) ∨ (l ∈ LEx
p ) (the periodEntryLinks for the

first period and the periodExitLinks for all periods). Vertex vB0 = 〈lT0 , p0〉 is connected to
vB1 = 〈lT1 , p1〉 by an edge if and only if one of the following conditions is fulfilled:

1. Case p1 = p0 = 0: the vertices vB0 and vB1 belong to the same period p = 0 and a path
from vB0 = 〈lT0 , p〉 to vB1 = 〈lT1 , p〉 was found in GA

p (which means that the likelihood
for a walk in GT

0 linking lT0 to lT1 in period p is non-zero). Note that LEx
0 ⊆ LEn

0 since
for p = 0 each link is a periodEntryLink.

2. Case p1 = p0 + 1: link lT0 has a periodTransferLink l ∈ LEn
p1

that leads to lT1 ∈ LEx
p1

in
period p1 (which means that a path was found in GA

p1
from l to lT1 ).

The PeriodBoundaryLinkGraph GB is an acyclic digraph. An edge eBx is labeled with
(i) the maximum likelihood value found using GA

p which is a link additive quantity denoted
by w(eBx ) and (ii) the corresponding MLH subwalk (to enable walk reconstruction). The
value for a path Px,y in GB connecting vBx to vBy is the sum of the corresponding edge
likelihood values: w(Px,y) =

∑
eBz ∈Px,y

w(eBz ). Let N denote the size of the partition discussed

in Section 3.5. The graph GB is used to find the path in GB that delivers the largest value:

w = max
x∈LEn

0 ,y∈LEx
N−1

w(Px,y) (16)

Since the PeriodBoundaryLinkGraph is an acyclic digraph, this can be achieved by means
of an efficient recursive procedure. From this path in GB, the maximum likelihood walk in
GT is easily derived.
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Figure 4: PeriodBoundaryLinkGraph GB derived from the ChronoLinkMatchGraph GU shown in Figure 2
by connecting the periodExitLinks for pi to the reachable periodExitLinks in pi+1. Each edge is labeled with
a likelihood value.

3.12. Sufficient Likelihood Walk Generation

The set of paths leading to near maximal likelihood provides insight with respect to the
uncertainty of the solution. The more paths have near maximal likelihood, the higher the
uncertainty about which one was effectively used.

Let ` = ew denote the maximum likelihood value found in Section 3.11. Once the
maximum likelihood path is found, GB can be used to deliver paths delivering a sufficient
likelihood f · ` with f ∈ (0, 1]. Assume that the periods are numbered from 0 to Np−1. We
look for a set of paths connecting any vBx = 〈lTx , 0〉 to any vBx = 〈lTy , pN−1〉 in GB delivering

a predefined fraction of the maximum value `(Px,y) ≥ f · ` where f ∈ (0, 1]. Hence we look
for paths for which ln(`(Px,y)) ≥ ln(f) + ln(`) (note that ln(f) < 0 and finite). This is done
as follows:

1. Following concepts are used.

Definition 3.6 (achievable value increase for a vertex pair). The achievable value
increase aW2 for a specific vertex pair 〈va, vb〉 is the maximum value difference that
can be realized by considering every path from va to vb.

Let P(va, vb) denote the set of all possible paths between va and vb, then

aW2(va, vb) = max
P∈P(va,vb)

w(P ) (17)

Definition 3.7 (achievable value for a vertex). The achievable value aWv for a specific
vertex v is the maximum value that can be achieved by considering every path starting
in an initial vertex and ending in v.

aWv(v) = max
vi∈{〈l,0〉 | l∈LEn

0 }
aW2(vi, v) (18)
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Name Value Unit Note
dmin 5 000 m Lower bound for sampled trip length
dmax 50 000 m Upper bound for sampled trip length

Table 1: Limits for the trip length used in the data generator.

Definition 3.8 (required value difference for a vertex pair). The required value rW2

for a specific vertex pair 〈va, vb〉 is the minimum value required in va so that there is
a path P (va, vb) achieving a given value W in vb.

rW2(W, va, vb) = W − aW2(va, vb) (19)

Definition 3.9 (required value for a vertex). The required value rWv for a specific
vertex v is the minimum value required in v in order to achieve a given value W in at
least one terminal vertex vt using a path containing v.

rWv(W, v) = min
vt∈〈LEx

pN−1
,N−1〉

rW2(W, v, vt) (20)

2. The overall maximum achievable value is computed as w = max
v∈{〈l,pN−1〉 | l∈LEx

N−1}
aWv(v).

3. The sufficient value then is given by f ·w. This value is registered with each terminal
vertex as the required value and the required value rWv(v) for every other vertex v is
calculated recursively.

Enumerating the paths delivering sufficient value, is done by successively starting in
each initial vertex vi ∈ {〈l, 0〉 | l ∈ LEn

0 }, recursively extending the path with a vertex
v and calculating the achievable vertex pair value aW2(vi, v). If for a given vertex v
the achievable value is sufficient (i.e. aW2(vi, v) ≥ rWv(W, v)) then v is used to extend
the path in the PeriodBoundaryLinkGraph GB. Every time the recursive procedure
reaches a terminal vertex, a sufficient value walk in the transportation network is
found and reported.

4. Validation - Experimental Results

Collecting a large set of traces for which the base truth is known by trustworthy recording
of link sequences is nearly impossible. Hence, the proposed technique was evaluated by
means of synthetic traces so that for each trip both the link sequence and the associated
GPS trace were available. Different parameter sets have been used to generate several cases
for which the map matching accuracy was evaluated.

4.1. Link Sequence Generator

A set of trips on the Belgian road network has been created by means of a generator
that takes as input the required approximate travel distance d and a value for the bearing β
(direction). For each trip the uniformly distributed parameters d ∼ U(dmin, dmax) (limits
specified in Table 1) and β ∼ U(0, 2 · π) are sampled.

A uniformly sampled random node is chosen as the start location. In each junction, all
links leading to a previously unvisited node are considered for trip extension (this means
that the trip will be a path). If at least one such node is found, the link with the smallest
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Name Value Unit Note
σs 1.0 sec Standard deviation for the sample period
fmin 0.6 - Fraction of the allowed speed that is used as a lower bound for the

sampled target speed on a link
fmax 1.1 - Fraction of the allowed speed that is used as a upper bound for

the sampled target speed on a link (some speeding is considered)
amin -2.0 m/s2 Lower bound for acceleration (upper bound for deceleration)
amax 1.5 m/s2 Upper bound for acceleration
c 50.0 - Specifies a gamma distribution with mean equal to one which is

used to modulate the standard deviation of the GPS error

Table 2: Parameters used for GPS trace generation.

absolute deviation between the direction defined by the endnodes and the specified bearing
β is selected. That process is repeated recursively until the total length of the generated
link sequence exceeds the given distance d.

Since the network is restricted to Belgium, it is finite and frequent backtracking may
occur when a partial trip bounces to a border. This leads to complicated routes which
ensures that the validation also covers cases that are more difficult than what realistically
may be expected (see Figure 8).

4.2. GPS Trace Generator

For each synthetic trip a GPS trace is generated. The values used for the parameters are
shown in Table 2. The generation process is straightforward. The moving object is assumed
to start in the first node of the specified link sequence at a specified time t0.

The nominal sample period δsn is given. The actual duration δsa between two consecutive
recordings in a trace is stochastic δsa ∼ gamma(k, θ) and is sampled for each pair. The
expected value for the period equals E[δsa] = δsn. The standard deviation σs was estimated
using available GPS traces. Then from the equations δsn = k · θ and (σs)2 = k · θ2 holding
for the gamma distribution, it follows that θ = (σs)2/δsn and k = (δs/σs)2.

The moving speed is sampled for each recording. The target speed value V (t, l) for the
instantaneous speed at time t on link l is uniformly distributed V (t, l) ∼ U(vmin, vmax) =
U(fmin, fmax) ·vl where vl is the allowed speed on the link and 0 ≤ fmin < fmax. The effective
speed value v(ti, l) is derived from the target value V (ti, l) and is constrained by the limiting
values amin and amax for the acceleration. This requires to account for the remaining distance
on the link and to look ahead at the speed limit on the next link. The speed equals zero in
the first and last positions of the trip.

Let 〈xi, yi, ti〉 denote the computed (true) position on a link and the associated time. A
pseudo GPS record 〈x̃i, ỹi, ti〉 is generated using

x̃i = xi + εx,i (21)

ỹi = yi + εy,i (22)

εy,i, εy,i ∼ N(0, σ · αi) (23)

αi ∼ gamma(c,
1

c
) (24)

The position errors in both dimensions εx,i and εy,i obey a normal distribution with zero
mean and given standard deviation. The generator allows to adjust the standard deviation
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Quantity Set of values Unit Note
σ {10, 12, 15} [m] Standard deviation for the positional error, derived

from the device accuracy specification
δs {2,5,10,30} [s] Nominal length for the period between successive of

GPS recordings

Table 3: Values for the standard deviation s of the device error and the nominal recording period δ used to
generate synthetic traces. Each combination was used resulting in 12 validation experiments.

Number of edges in directed graph for network (Belgium) = 1 239 002
Number of vertices in the network (Belgium) = 584 795

(a) Sizes for the vertex (node) and edge (link) sets.

’Track’, ’motorway’, ’motorway link’, ’junction’, ’trunk link’, ’residential’, ’primary’,
’secondary’, ’track’, ’mini roundabout’, ’tertiary’, ’trunk’, ’tertiary link’, ’driveway’,
’secondary link’, ’primary link’, ’platform’, ’road’

(b) Link types selected from the OSM database.

Table 4: Properties of the road network used in the experiments. The network is extracted from Open-
StreetMap.

using a factor αi having a gamma distribution for which the mean equals one in order to
simulate the variation in accuracy (as reported by the devices).

4.3. Evaluation by means of Synthetic Traces

Synthetic traces for several combinations of the standard deviation of the device accuracy
σx,y and the nominal sampling period δsn have been generated using the values shown in
Table 3. The other generation parameters were the same for each case and are given in
Table 2.

4.4. Map Data

The road network was extracted from OpenStreetMap. Its properties have been sum-
marized in Table 4. Since the synthetic trips and the corresponding traces were generated
from this map, the map error is considered to equal zero in the validation process.

Map accuracy has been discussed in Ochieng et al. (2010) and in Bierlaire et al. (2013).
Map errors cannot be ignored by the map matching process. In the case of effectively
recorded traces, the map error and GPS device error are combined into a single value.
The expected value for the positional error for roads in the map is added as a term in the
definition of the matching radius RM (see Section 3). This method is chosen although the
map errors for points on a single polyline cannot be expected to be mutually independent.

Haklay et al. (2010) investigated the positional accuracy for OpenStreetMap roads in the
Greater London area. 109 different roads having a total length of 328[km] were compared to
their counterpart in ITN (Integrated Transport Network) maps for which it can be assumed
that the error is below 1[m]. It is concluded that if 15 contributors are active in an area,
the positional error for the road is well below 6[m]. In complete areas the average error
is 9.57[m] with a standard deviation is 6.51[m]. In incomplete areas the average error is
11.72[m] and the standard deviation is 7.73[m]. Completeness is defined as ‘a measure of
the lack of data’ and examined for specific areas by Haklay (2010) using visual inspection
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Name CPU nCores Memory OS postgres postgis
AU/PP

A Intel(R) Xeon(R) 28/56 128 Debian 9.4 2.1
E5-2660 v4 @ 2.00GHz 8.10

B Intel(R) Xeon(R) 8/40 128 Ubuntu SMP 9.5 2.2
E5-2630 v4 @ 2.20GHz 4.4.0-67

C Intel(R) Xeon(R) 8/16 48 Ubuntu SMP 9.3 2.1
X5570 @ 2.93GHz 3.16.0-73

D Intel(R) Xeon(R) 6/8 32 Debian 9.4 2.1
E5440 @ 2.83GHz 8.10

Table 5: Properties for the machines used in the experiments. Under the heading nCores, AU/PP specifies
the number of cores available for use by the map matcher (specified as an argument to the map matching
program) vs. the physically present number of cores.

of maps and by comparing (by means of GIS) the total road length found in OSM and in
reference maps respectively.

For the practical calculations we assume that Belgium constitutes a complete area and
m = 10[m] is used. From several non-authoritative website sources we derived that the
accuracy threshold a at 95% can be assumed to be 20[m]. Hence A = a+m = 30[m] is used
to determine the matching radius.

4.5. Computing Infrastructure Used

The map matcher is written in Java 7. The experiments ran on several machines; their
properties are listed in Table 5.

4.6. Map Matching Quality

Table 6 summarizes accuracy values for the validation runs. For each of the 12 combi-
nations of device accuracy (standard deviation for the device error σx,y) on one hand and
recording period on the other hand, 1024 trips and their associated GPS traces were gener-
ated; this resulted in a set of 12 288 traces for validation. All average values are computed
over the 1024 traces for the respective case.

The error is expressed as a function of missed and extra links.

L is the set of links in the given effective trip that generated the trace
L+ is the set of extra links (links identified by the map matcher that were not in the

effective trip link sequence)
L− is the set of missed links (links not identified by the map matcher but present in the

effective trip link sequence)

The following accuracy figures are computed for each trip for evaluation:

A+
n : accuracy based on the number of extra links

A−n : accuracy based on the number of missed links
A+
d : accuracy based on the total length (distance) of the extra links.

A−d : accuracy based on the total length (distance) of the missed links.

The following numbers were computed as average values over the respective sets and reported
in Table 6 and Figure 5.
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An : accuracy based on the number of correctly mapped links
Ad : accuracy based on the total length (distance) of the correctly mapped links.

The accuracy figures are defined by

A+
n = max(0, 1− |L+|/|L|) (25)

A−n = 1− |L−|/|L| (26)

An =
∑

Tk∈CT (σx,y ,δsn)

(A+
n + A−n )/2 (27)

A+
d = max(0, 1−

∑
l∈L+

d(l)/
∑
l∈L

d(l)) (28)

A−d = 1−
∑
l∈L−

d(l)/
∑
l∈L

d(l) (29)

Ad =
∑

Tk∈CT (σx,y ,δsn)

(A+
d + A−d )/2 (30)

where CT (σx,y, δ
s
n) denotes the collection of traces generated for a specific 〈σx,y, δsn〉 pair.

where d(l) denotes the developed link length (distance along the road). The maximum is
taken in order to avoid negative accuracy values in cases of extremely short trips where
|L| ≈ |L+| ≈ |L−| ≈ 1. Table 6 shows
σx,y : the standard deviation used to generate measurement errors for both easting

(x) and northing (y) coordinates expressed in meters. Due to the assumed
normal distribution, the error is less than about twice the σx,y for 95% of the
recordings.

δsn : nominal length in seconds of the (recording) period between consecutive GPS
fixes

nLinks : average number of links per trip
An : average link count based map matching accuracy expressed as the fraction of

the correctly matched links in the trip
distance : average trip length. The trip length is the sum of the lengths in meters mea-

sured along the road of all links in the trip. The lengths of the first and last
links accounted for completely because the synthetic GPS traces always start
and end in a network node

Ad : average distance based map matching accuracy expressed as the total length of
the correctly matched links divided by the trip distance

The accuracy value based on distance (Ad) is slightly lower for the 2[s] recording period
than for the 5[s] recording period. The effect is less prominent for the accuracy based on the
number of correctly matched links (An). It may have been caused by incorrect selection of
short links in the 2[s] case because, on average, more GPS recordings are available for each
link. This may cause overfitting of short links to noisy GPS coordinates in the assignment
stage described in Section 3.11.

Taken into account the average link length of 159[m] and the fact that at 36[km/h]
300[m] is traveled in 30[s], the accuracy for the 30[s] period is acceptable.

Figure 5 shows results for two extreme cases 〈σx,y = 10,δsn = 2〉 and 〈σx,y = 15, δsn = 30〉
respectively. Relative frequency histograms are shown in subfigures 5a and 5c respectively).
Cumulative relative frequencies are shown in 5b and 5d. The x-axis shows the accuracy
value. Note that in the case 〈σx,y = 10, δsn = 2〉 80% of the traces have an the accuracy
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Std.Dev Recording nLinks An distance Ad
σx,y [m] Period δsn [s] [m]

10 2 140.0 0.980 25 865.8 0.989
10 5 136.2 0.980 25 166.1 0.994
10 10 127.4 0.977 25 859.9 0.993
10 30 139.8 0.947 25 709.8 0.977
12 2 133.4 0.979 25 434.1 0.987
12 5 128.5 0.980 25 633.8 0.993
12 10 125.6 0.973 25 517.4 0.992
12 30 153.2 0.942 25 503.7 0.973
15 2 146.2 0.974 24 326.2 0.984
15 5 132.3 0.974 24 927.9 0.992
15 10 129.3 0.971 25 596.9 0.991
15 30 127.5 0.941 25 783.1 0.975

Table 6: Accuracy for map matching of synthetic traces. For each 〈σx,y, δsn〉 case 1024 traces were processed.
nLinks is the average number of links in the trips. An is the average fraction of correctly matched links.
distance is the average trip length. Ad is the average fraction of the correctly matched distance.

larger than 0.96 while for the case 〈σx,y = 15, δsn = 30〉 80% of the traces still have an
accuracy larger than 0.90.

4.7. Samples

This section discusses some typical samples. Figure 6 shows part of a trip crossing a
quite dense part of the network. The GPS trace belongs to the 〈σx,y = 12[m], δsn = 30[s]〉
case. Figure 6a shows the road network, the base truth generating trip and the link sequence
resulting from map matching. In Figure 6b the road network is omitted to show the overlap
of the base truth (blue) and the map matched sequence (red). They only differ in two
locations (the quadrangles near the center of the map). The quality figures are:
n = 337 d = 34573.18[m] A−n = 0.938 A+

n = 0.973 A−d = 0.970 and A+
d = 0.987

Figure 7 shows a detail of a trip where the map matcher identified a plausible shortcut due
to lack of sufficient GPS recordings. The GPS trace belongs to the 〈σx,y = 15[m], δsn = 30[s]〉
case. Figure 7a shows the road network and the base truth generating trip. In Figure 7b
the road network is omitted. It shows the overlap of the base truth (blue) and the map
matched sequence (red). They only differ by the missed roundabout. The quality figures
are:
n = 360 d = 37211.29[m] A−n = 0.906 A+

n = 0.961 A−d = 0.945 and A+
d = 0.966

Figure 8 shows the trace for a trip that starts near the border of the map, heads to
the north-east. The GPS trace belongs to the 〈σx,y = 12[m], δsn = 10[s]〉 case. Figure 8a
shows the road network and the base truth generating trip. In Figure 8b the road network
is omitted. It shows the overlap of the base truth (blue) and the map matched sequence
(poorly visible due to complete overlap). The quality figures are:
n = 356 d = 41995.37[m] A−n = 1.000 A+

n = 1.000 A−d = 1.000 and A+
d = 1.000
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(b) Distribution: σx,y = 10[m], δsn = 2[s]
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(c) Density: σx,y = 15[m], δsn = 30[s]
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(d) Distribution: σx,y = 15[m], δsn = 30[s]

Figure 5: Histograms (5a and 5c) and cumulative relative frequency diagrams (5b and 5d) for two extreme
cases. The accuracy is shown on the x-axis (only the range [0.8,1.0] is shown since lower value do occur
infrequently.

100 0 100 200 300 400 m

(a) Network links, given trip, matched links and
GPS locations.

100 0 100 200 300 400 m

(b) Given trip, matched links and GPS locations.

Figure 6: Trip for the case 〈σx,y = 12[m], δsn = 30[s]〉 crossing a dense part of the network. Two matching
errors near the center. Road network (light blue), given trip (dark blue) and matched link sequence (red,
mostly covered). Dots represent the recorded GPS locations.
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250 0 250 500 750 1000 m

(a) Network links, given trip, matched links and
GPS locations.

250 0 250 500 750 1000 m

(b) Given trip, matched links and GPS locations.

Figure 7: Part of a trip for the case 〈σx,y = 15[m], δsn = 30[s]〉 crossing a dense part of the network. The
roundabout near the lower left is missed due to lack of recordings. Road network (light blue), given trip
(dark blue) and matched link sequence (red, mostly covered). Dots represent the recorded GPS locations.

500 0 500 1000 1500 2000 m

(a) Network links, given trip, matched links and
GPS locations.

500 0 500 1000 1500 2000 m

(b) Given trip, matched links and GPS locations.

Figure 8: Curvy trip caused by recursive attempts by the trip generator to produce a sufficiently long
trip length when the start location is near the border and the specified bearing points to the outside of
the bounded network. The trip was matched without any error. The GPS trace belongs to the 〈σx,y =
12[m], δsn = 10[s]〉 case. Road network (light blue), given trip (dark blue) and matched link sequence (red,
mostly covered). Dots represent the recorded GPS locations.
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CPU σx,y Rec # GPS nLinks nG/nL Init Ext Total Time/GPS
[m] Prd [s] Rec [-] [-] [-] [s] [s] Time[s] [ms]

D 10 2 956 192 143 368 6.67 232 23 856 24 088 25.2
D 10 5 366 044 139 485 2.62 228 8 312 8 540 23,3
C 10 10 187 819 130 475 1.44 321 3 592 3 913 20.8
A 10 30 62 331 143 195 0.44 221 27 946 28 167 451.9
A 12 2 940 238 136 611 6.88 216 6 157 6 373 6.8
B 12 5 372 585 131 588 2.83 205 3 580 3 785 10.2
C 12 10 185 522 128 639 1.44 323 3 642 3 965 21.4
A 12 30 61 979 156 880 0.40 222 38 191 38 413 619.8
B 15 2 900 573 149 718 6.02 204 9 449 9 653 10.7
B 15 5 362 544 135 467 2.68 208 3 568 3 776 10.4
C 15 10 185 824 132 421 1.40 359 3 883 4 242 22.8
C 15 30 62 535 130 582 0.48 334 73 299 73 633 1177.0

Table 7: Runtime in milliseconds per GPS record for map matching of synthetic GPS traces. For each case
1024 traces were processed. The measurement error is between two and three times the specified standard
deviation.

4.8. Performance

Processing times for the validation runs are reported in Table 7. The allocation of runs
to machines was determined by practical concerns and is somewhat unfortunate for easy
interpretation of performance figures. Nevertheless conclusions can be drawn. Both stages
of the map matcher software are designed for multi-threading. In the initial matching stage
each Java thread uses its own postgresql/postgis process.

For the second stage, it was verified for all cases on all machines that the the allowed
number of cores (see Table 5) was effectively used. Machines B and C were in use by other
applications too; machines A and D had nearly no other workload. For each machine the
runtime in milliseconds per GPS record seems to remain nearly constant for the recording
periods up to 10 seconds. Processing time however heavily grows with the recording period
and becomes too high. The matching radius RM is proportional to the recording period
(time-space prism) and hence the SNTS grows which causes more options to be evaluated.

Let nG denote the number of links in a trip and nG the number of GPS records in the
corresponding trace. Values for nG/nL in Table 7 are average values computed over all links
in the generated trips. nG/nL ≥ 1 does not mean that for each link in the trip at least
pseudo GPS record was generated.

For the cases applying to a recording period of up to 10 seconds, the total processing time
is in the same order as the one reported in Schüssler and Axhausen (2009) i.e. 10[msec/point]
for a 20 candidates set and 75[msec/point] for 100 candidates using single-threaded code.

5. Discussion - Future Research

5.1. MLH Estimation Heuristic

1. The proposed method is based on estimates for the likelihood for a GPS recording
to have been generated from a particular link. In order to limit the computational
effort the estimates are based on (i) the shortest distance between the link geometry
and the recorded coordinates and (ii) a globally constant speed upper bound which
enables a simple method to determine the SNTS and allows to keep the edge traversal
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cost in the GA graph constant so that the Dijkstra (1959) algorithm can be used as
explained in Section 3.10. Notwithstanding the use of these heuristics, the method
seems to produce accurate results. A more accurate estimate for the likelihood may
increase the accuracy; on the other hand, it may also increase the computation time.

2. The simple heuristic poses a problem for short trips consisting of a single link. This
is because information embedded in the chronology of recordings on a single link is
ignored. In addition, the network representation for a bidirectional link has only one
geometry specification shared by both directions; hence, each direction delivers the
same likelihood value for a given GPS recording. As a consequence, they cannot be
distinguished. The selection between them is solely based on the network topology
and the link use chronology (as defined (i) by the ChronoLinkMatchGraph layers and
(ii) by the technique used to find a MLH subwalk in the GB graph).

5.2. Graph for Enumeration

It is not necessarily possible to enumerate all near MLH walks in decreasing likelihood
order. This is not only due to the potentially large collection that can emerge from the
GB graph. A fundamental reason is the way we construct the walks. Some high likelihood
walks may not be represented by the graph GB since GB only represents walks that are
concatenations of MLH subwalks for a particular partition of the trace.

Properties of the completeness of the near MLH walk set (for a particular likelihood
estimator) have not yet been proved nor disproved.

5.3. Route Candidates Set - Global evaluation

This section compares the proposed method to other procedures for batch processing of
large sets of GPS recordings. The PeriodBoundaryLinkGraph GB replaces the candidate
sets maintained in the methods proposed by Marchal et al. (2005), Schüssler and Axhausen
(2009) and Bierlaire et al. (2013). GB is an acyclic digraph and contains all information
required to enumerate a set of near MLH paths. Furthermore, that data structure allows
for easy determination of the corresponding walk in GT for every possible path in the
PeriodBoundaryLinkGraph GB without regeneration of any data. This results in the set of
near MLH routes looked for.

The evaluation of these walks in GT using particular (travel behaviour related) scoring
functions requires a simple extension of the tool. This can be compared to the evaluation of
the Fréchet distance for each path in Brakatsoulas et al. (2005). In both cases all information
contained in the complete sequence of GPS points is used in the selection of each link
transition in the walk. This technique avoids premature dropping of promising partial
walks.

5.4. Online Map Matching

The proposed technique is aimed at link sequence reconstruction and as such not suited
for realtime use where accurate positioning on the link is required. However, when one is
not interested in the enumeration of near MLH solutions, completed graph layers can be
discarded as soon as the MLH for each periodEntryLink is known for the ChronoLinkMatch-
Graph layer currently being processed. The technique is then usable for online operation
but it needs to be extended with a facility to estimate the position on the last link of each
intermediate candidate sequence.
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5.5. Comparison to related Methods

The U-turn problem mentioned in Schüssler and Axhausen (2009) did not require any
particular technique to be implemented in the proposed method. Weight accumulation
based methods may suffer from spikes in the resulting link sequence. These are short visits
of a link resulting in a U-turn. Spikes emerge because they increase the weight which is the
quantity to be maximized. Such spikes however decrease the likelihood because likelihood
values are smaller than one unless the GPS fix is exactly on the link geometry. Hence, they
are avoided from first principles in the proposed method.

The proposed procedure and the one presented by Deka and Quddus (2015) share some
properties. Both aim at processing batches of GPS recordings, compute a score for the
complete path and evolve by keeping a list of next link candidates. The methods differ in
following aspects: (i) likelihood is used for scoring instead of weight functions, (ii) gap filling
is done by unlikelihood minimization in GA as opposed to travel distance minimization in
GT , (iii) heavy weight resp. likelihood paths are kept in different ways before delivery for
further evaluation and finally (iv) link geometry is handled differently (linear segments vs.
OSM-based link geometries). The use of link geometries does not allow for easy heading
verification unless the geometries are expanded to line segments or on-link positions are
estimated.

5.6. Future Research - Extensions

1. Investigation of the number of near MLH sequences and of their properties is required.
This includes estimating the effects on performance and accuracy of changes of the
assumed global upper bound for the speed.

2. Investigation of the distribution for the results of behaviour related scoring functions
to the set of near MLH walks.

3. Determination and evaluation of a heuristic likelihood estimate that takes timing into
account at a finer level. The current technique derives the link sequence order from
topology and chronology but the GPS times are not used to determine consecutive
positions on a single link. Extending the method in this way may solve the problem
with single link trips mentioned in Section 5.1 item 2 but it may also improve the
estimate of the likelihood and hence the accuracy of the method.

4. Computational performance for cases where the recording period is large needs to be
increased.

6. Conclusion

A new technique for map matching GPS traces is presented. Topological, geometric and
chronological constraints are used to derive near maximum likelihood link sequences from
the observed traces. The method does not require each link to be matched by at least one
GPS record. Lack of link matches is not solved by bridging gaps using shortest paths but
by minimizing unlikelihood using the available GPS trace. Validation by means of a set of
12 288 traces shows that the method delivers accurate results despite the use of a simple
heuristic for likelihood estimation.

Apart from the coordinates and the order induced by the timestamps, no other informa-
tion is required. The information available in the complete GPS trace is used to evaluate
every candidate route. Partial route candidates are not dropped until the complete trace
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has been processed. After processing the GPS trace, a set of near maximal likelihood routes
can easily be enumerated and mutually compared using additional scoring functions that
are based on parameters of travel behaviour.

The technique shows similar computational performance as state-of-the art map match-
ing tools, based on the Multi-Hypothesis-Technique, that keep track of a limited number of
candidate routes but is slower when the nominal period between successive GPS fixes grows.
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Appendices
A. Symbols Used

Symbols for which the scope is limited to a small context (a particular sentence, para-
graph or non-subdivided section) are not mentioned here.

Table 8: Symbols Used

Symbol Meaning
〈x, y〉 Ordered pair of elements x and y
a accuracy of a GPS device as specified by the manufacturer
δsn Nominal value for the GPS recording period duration.

δ Expected upper bound for the recording period duration. This applies to in
the case where no recordings are lost and hence reflects the error on the timing.

∆(p0, p1) Euclidean distance between two points p0 = 〈x0, y0〉 and p1 = 〈x1, y1〉
∆(p, l) Shortest (Euclidean) distance between a point p = 〈x, y〉 and the geometry of

link l
GA
i Graph that represents the GPS record assignment state for a particular sub-

trace τi
GB PeriodBoundaryLinkGraph, acyclic digraph. It specifies the likelihood for a

link to have been used at the end of period pi as a function of similar likelihoods
for the previous period pi−1

GU Graph in which each vertex 〈l, p〉 represents the presence of the moving object
on a particular network link l in period p, the ChronoLinkMatchGraph

GT Transportation graph representing the road network
GT,S
p GT,S

p ⊆ GT : Subnet to search (SNTS) for period p

GT
p GT

p ⊆ GT : Subnetwork constituted by the road network links used in period p

` Likelihood
L Log likelihood: L(x) = ln(`(x))
〈l, p〉 Link-period pair
LMp Matched link set (MLS) for period p

LEn
p Set of periodEntryLinks for period p

LEx
p Set of periodExitLinks for period p

LTx
p Set of periodTransferLinks for period p

N e Maximum number of consecutive erroneous recordings that needs to be sup-
ported by the map matcher without causing trouble

N1 Minimum number of consecutive recordings that is assumed to contain at least
one correct recording: N1 = N e + 1

Np Size of the partition of the trace by determining CMLS-MP.
p Period of time
pi i-th period of time in a partition of chronologically ordered GPS recordings

(where each part is a contiguous subsequence τi)
P Paths in a graph.
P Set of paths in a graph.
Continued on next page. . .
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Table 8 – Continued
Symbol Meaning
RE
M Radius for circular area used for extended link matching (selection) in order

to determine the subnetwork to search (SNTS) for a GPS record beyond the
head of the trace

RI
M Radius for circular area used for initial link matching (selection) in order to

determine the subnetwork to search (SNTS) for a GPS record belonging to the
head of the trace

σx,y Standard deviation for the normally distributed error on the GPS x and y
coordinates expressed in meters and derived from the stated device accuracy a

T Trace, chronologically ordered set (sequence) of all GPS recordings for a move-
ment

τi i-th part (contiguous subsequence) of trace τ (i is the offset), corresponds to pi
v Overall maximum value for speed
W Set of walks (link sequences) output by the map matching procedure for a

given trace of GPS recordings

B. Abbreviations Used

Table 9: Abbreviations Used

Acronym Expansion
CMLS-MP Complete Matched Link Set for Maximal Period
MLH Maximum likelihood
MLS Matched Link Set
SNTS Sub Network To Search
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