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Abstract. In current “Big Data” scenarios, traditional data warehous-
ing and Online Analytical Processing (OLAP) operations on cubes are
clearly not sufficient to address the current data analysis requirements.
Nevertheless, OLAP operations and models can expand the possibilities
of graph analysis beyond the traditional graph-based computation. In
spite of this, there is not much work on the problem of taking OLAP
analysis to the graph data model. In previous work we proposed a mul-
tidimensional (MD) data model for graph analysis, that considers not
only the basic graph data, but background information in the form of
dimension hierarchies as well. The graphs in our model are node- and
edge-labelled directed multi-hypergraphs, called graphoids, defined at
several different levels of granularity. In this paper we show how we im-
plemented this proposal over the widely used Neo4J graph database,
discuss implementation issues, and present a detailed case study to show
how OLAP operations can be used on graphs.

1 Introduction

Online Analytical Processing(OLAP) [14] comprises a set of tools and algorithms
that allow querying multidimensional (MD) databases. In these databases, data
are modelled as data cubes, where each cell contains one or more measures of
interest, that quantify facts. Measure values can be aggregated along dimen-
sions, organized as a set of hierarchies. Traditional Online Analytical Process-
ing(OLAP) queries aggregate fact measure data along a set of dimensions, or
select a portion of the cube. In “Big Data” scenarios, graph databases are be-
coming increasingly popular, although, still, OLAP operations can expand the
possibilities of graph analysis beyond the traditional graph-based computation.
The present paper addresses this problem.

In previous work [12] we proposed a formal MD data model for graph analysis.
Graphs in this model are node- and edge-labelled directed multi-hypergraphs,
called graphoids, defined at several different levels of granularity, according to
dimension hierarchies associated with them. Over this model, graph OLAP op-
erations are defined. These OLAP operations, although analogous to the classic
ones, are more powerful and have their own clearly defined semantics. We proved
that classic OLAP is a particular case of graph OLAP. The running example we
introduce next, gives the flavour of the hypergraph MD model.
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[#DirectedBy] [#StarsIn]
[#Rating, 10, 6/8/1992]

[#Rating, 9, 9/2/1979]

[#Rating, 9.7, 11/18/1992]

[#StarsIn]

[#StarsIn]

[#Actor, 3, Eastwood]

[#Actor, 1, D. Washington]

[#Actor, 2, Ho↵man]

[#Movie, 4, “Malcom X”, Warner Bros.]

[#Movie, 5, “Unforgiven”, Warner Bros.]

[#Movie, 6, “Kramer vs Kramer”, Columbia]

[#Critic, 7, Peter Travers]

Fig. 1. Base movie critic data.

Running example. Our example concerns movies, actors, and movie critics that
publish reviews and scores they gave to actors performing in those movies. The
base graph is given on the left-hand side of Figure 1. The nodes in this exam-
ple are of the type: #Movie, #Actor, and #Critic. Nodes have an identifier as
their first attribute. Further, nodes of type #Movie are described by the movie’s
name, and the studio which produced the movie. Nodes of type #Actor are de-
scribed by the actor’s name. The hyperedges are of type #Rating, #StarsIn and
#DirectedBy. #Rating associates a score and a date with a movie-actor pair.
#StarsIn connects actors to movies in which they played. If an actor directed a
movie, there is an edge of type #DirectedBy. As background information we have
classic OLAP dimensions, like Time, Movie, Actor, and Company. Examples
of these are shown in Figure 2 and explained in Section 3.

This example shows the flexibility of the hypergraph MD model [8], com-
pared with the typical star or snowflake schema relational representations [9]. In
Section 5 we present and implement a real- world use case, and we will analyse
and discuss the advantages of the model in detail.

Contributions and paper organization. In this paper we: (a) present a proof-of-
concept implementation of the data model based on the notion of graphoids;
(b) implement a query language based on the graph OLAP operations; (c) dis-
cuss a real-world case study, using the Internet Movie Database3 data. Section 2
discusses related work, while Section 3 reviews the graphoid data model and
OLAP operations introduced in [12]. Section 4 presents the implementation de-
tails. Section 5 discusses our use case, and present the query language, concluding
in Section 6.

3 http://imdb.com

http://imdb.com
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2 Related Work

There is an extensive bibliography on graph database models, comprehensively
studied in [1,2]. Two database models are used in practice: (a) Models based on
RDF4, oriented to the Semantic Web; and (b) Models based on Property Graphs.
Models of type (a) represent data as sets of triples of the form (subject, predicate,
object), with in turn form an RDF graph. Hartig [7] shows that both models can
be reconciled. In this paper, we work with the model based on Property Graphs.

GraphOLAP [3] is a conceptual framework for OLAP on a collection of ho-
mogeneous graphs. Aggregations of the graph are performed by overlaying a
collection of graph snapshots. Along similar lines, Qu et al. [13] present tech-
niques for topological OLAP analysis of graphs, and propose to optimize measure
computation through the different aggregation levels, based on the properties
of the graph measures. GraphCube [16] addresses OLAP cubes computation
through the different levels of aggregation of a graph, targeting single, homo-
geneous, node-attributed graphs. Pagrol [15] studies the use of Map-Reduce for
distributed OLAP analysis of homogeneous attributed graphs. Also, Distributed
Graph Cube [5] is a distributed framework for graph cube computation and ag-
gregation of homogeneous graphs. Finally, in [6] the authors propose a method
to define OLAP cubes from graph data, aimed at extracting the candidate mul-
tidimensional spaces in heterogeneous property graphs limited to binary rela-
tionships between nodes.

Compared to the works described above, our proposal has a key difference:
it supports the notion of OLAP hypergraphs, allowing n-ary, probably dupli-
cated relationships (i.e., multi-hypergraphs), as typically found in real-world
“Big data” scenarios. Some works have addressed hypergraphs in MD databases.
For example, in [8] the authors present an approach based on hypergraphs for
modeling MD databases for dynamic web-based analysis and adaptive users’ re-
quirements. Although they provide some constructs to reprersent MD elements,
OLAP operations are not described, and operations over the hypergraphs are
not detailed. This is another important difference between our work and other
proposals: we base ourselves on the classic OLAP operations, and formally de-
fine their meaning in a graph context. Therefore, a final OLAP user may express
queries conceptually, using the operators she knows well, and also take advantage
of the graph model flexibility.

3 Preliminaries and background

We first review the notions of dimension schema and instance. Details can be
found in [10,11]. Let D be a name for a dimension. A dimension schema σ(D)
for D is a lattice, with a unique top, called All, and a unique bottom, called
Bottom, such that all maximal-length paths in the graph go from Bottom to
All. Any path from Bottom to All in σ(D) is called a hierarchy of σ(D). Each
node in a dimension schema is called a level. For a dimension schema σ(D), and
a level ` of σ(D), a level instance of ` is a non-empty, finite set dom(D.`). If
` = All, dom(D.All) = {all}. If ` = Bottom, then dom(D.Bottom) = dom(D).

4 https://w3c.org/RDF/

https://w3c.org/RDF/
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All

Country

All

Y ear

Month

(a) (b)

City

All

Actor

All

(c)

Movie

Producer

All

(d)

IdCompanyDay

(e)

all

Rome

ItalyUS

Ho↵man Eastwood D. Washington

Mount VernonLos Angeles San Francisco

Fig. 2. (a) Schemas for the background dimensions in the running example; (b) A
dimension instance for the dimension Actor.

A dimension instance I(σ(D)) over σ(D) is a directed acyclic graph with node
set

⋃
` dom(D.`), where the union is taken over all levels in σ(D). Further, let `

and `′ be two levels of σ(D), and let a ∈ dom(D.`) and a′ ∈ dom(D.`′). Then,
only if there is a directed edge from ` to `′ in σ(D), there can be a directed edge
in I(σ(D)) from a to a′. If H is a hierarchy in σ(D), then the hierarchy instance
is the subgraph IH(σ(D)) of I(σ(D)) with nodes from dom(D.`), for ` appearing
in H. Also, if a and b are two nodes in a hierarchy instance IH(σ(D)), such that
(a, b) is in the transitive closure of the edge relation of IH(σ(D)), then we say
that a rolls-up to b and we denote this by ρH(a, b). We assume that we work
with dimension graphs that guarantee that rolling-up from a through different
paths gives the same result [10,11].

Example 1. The left-hand side of Figure 2 shows the schema of the background
dimensions. Dimension Id in (e), represents identifiers (explained later). On the
right-hand side, an instance I(σ(Actor)) for σ(Actor) is shown. ut

3.1 The Base graph and Graphoids

To make this paper self-contained, we next present our graph data model, in a
streamlined fashion (details and proofs are in [12]). We assume that we have
dimensions D1, ..., Dd in our application domain, with schemas σ(D1), ..., σ(Dd),
and instances I(σ(D1)), ..., I(σ(Dd)). There is also a special dimension D0 =
Id, called the Identifier dimension (Figure 2(e)). As a basic data structure we
use the notion of graphoid (analogous to a MD cuboid in classical OLAP). A
graphoid is composed of attributed nodes and edges. There is a finite, non-
empty set N of node types. Nodes are described by attributes A, which are
levels in the background dimensions, i.e., A = {D.` | D ∈ {D0, D1, ..., Dd}
and ` is a level of D}. To each A in A, a domain dom(A) is associated. The first

attribute in a node type corresponds to the Identifier dimension. We assume that
a dimension appears only once in a node type. There is also a finite, non-empty
set E of edge types, disjoint fromN , defined analogously to the node types, except
that no identifier dimension is required. Formally, given D0 = Id, D1, ..., Dd,
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[#DirectedBy]

[#StarsIn]

[#StarsIn]

[#StarsIn]

[#Actor, 1, All]

[#Movie, 4, “All”, All]

[#Critic, 7, Peter Travers]

[#Rating, 9.7, 1992]

[#Rating, 10, 1992]

[#Rating, 9, 1979]

Fig. 3. A minimal (Time.Year,Movie.All,Company.All)-graphoid, for data of Figure 1.

defined as above, and `1, ..., `d, levels for these dimensions, a (D1.`1, ..., Dd.`d)-
graphoid is a multi-hypergraph (i.e., there can be repeated hyperedges), where
all attributes in nodes and edges are defined at the granularity indicated by
Di.`j . The (D1.Bottom, ..., Dd.Bottom)-graphoid is called the base graph, and is
designed to contain all the information of our application domain.

Example 2. Figure 1 shows a base graph with node set N = {1, 2, 3, 4, 5, 6, 7},
and node types #Actor, #Movie, and #Critic. For #Movie, the first attribute is
a node identifier, and then we have the bottom levels of dimensions Movie and
Company. The #Rating edge type represents reviews by a critic for an actor-
movie pair. The #StarsIn edge type tells who performed in a movie. Finally,
#DirectedBy indicates the movie director. ut

Note that more than one (D1.`1, ..., Dd.`d)-graphoid can exist. To define
OLAP operations, we need to produce a normalized equivalent graphoid. For
this, nodes with identical labels, apart from the identifier, are merged, keeping
the node with the smallest one, call it n, and deleting the others. All edges leav-
ing from the latter nodes will be redirected to n. A graphoid built in this way is
denoted a minimal graphoid of G, and it can be proved that it is unique.

Example 3. Figure 3 shows the minimal (Time.Year,Movie.All, Company.All,
Actor.All)-graphoid for the base graph in Figure 1 (see also Example 4). ut

3.2 OLAP Operations on Graphs

We now review the OLAP operations over graphoids, which simulate the typical
OLAP operations on cubes when they are represented as graphs.

Climbing and Aggregation Let #n1, ..., nr be node types in a (D1.`1, ..., Dd.`d)-
graphoid G; and let #e1, ..., es be edge types in G. The Climb(G, {#n1, ...,
#nr,#e1, ...,#es}, Dk.(`k → `′k)) operation along the dimension Dk from level
`k to level `′k in all nodes and edges of type #ni and #ei, respectively, re-
places any attribute value a from dom(Dk.`k) by the new value ρ`k→`′k

(a) from

dom(Dk.`
′
k), in all nodes (edges) of G of types #n (#e), leaving G unaltered

otherwise. Intuitively, the granularity of the graph is modified along Dk.
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[#DirectedBy]

[#StarsIn]

[#StarsIn]

[#StarsIn]

[#Rating, 10, 1992]

[#Rating, 9.7, 1992]

[#Rating, 9, 1979]

[#Movie, 4, All, All]

[#Critic, 7, Peter Travers]

[#Movie, 5, All, All]

[#Movie, 6, All, All]

[#Actor, 1, All]

[#Actor, 2, All]

[#Actor, 3, All]

Fig. 4. Climbing to the Year level along the T ime dimension, and to the All level along
dimensions Movie, Actor, and Company, for data of Figure 1.

Example 4. A climbing operation to the Year level along dimension Time, and
three climbs to the All level, along dimensions Movie, Actor, and Company
produce the (Time.Year,Movie.All, Company.All,Actor.All)-graphoid shown in
Figure 4. Its minimal graphoid is the one in Figure 3. ut

Consider a minimal (D1.`1, ..., Dd.`d)-graphoid G, and a dimension Dk that
appears in the hyperedges of G of type #e, and that plays the role of a measure,
to which the aggregate function Fk can be applied. The aggregation of G over Dk

(using Fk), denoted Aggr(G,#e, Dk, Fk), returns a graphoid G′ over the same
sets of nodes and edges, built as follows: If the hyperedges e1, e2, ..., er are all of
the same type and the nodes and edges agree in all attributes except (possibly)
from an identifier attribute, and apart from the dimension Dk, then e1, e2, ..., er
are replaced by one of them (say e1) of the same type and with the same attribute
values, apart from the identifier. The value of Dk.`k becomes the value of the
function Fk applied to the values of Dk.`k in the edges e1, e2, ..., er. To aggregate
multiple dimensions M1, ...,Mk, using functions F1, ..., Fk, simultaneously, we
write Aggr(G,#e, {M1, ...,Mk}, {F1, ..., Fk}).

Roll-Up and Drill-Down Let G be a (D1.`1, ..., Dd.`d)-graphoid, and a dimen-
sion Dc, and measure dimensions M1, ...,Mk that appear in the hyperedges of
type #e of G, associated with the aggregate functions F1, ..., Fk; Also, let #ni
and #ei be node and hyperedge types appearing in G. The roll-up of G over
the dimensions M1, ...,Mk (using the functions F1, ..., Fk), along the climbing
dimension Dc from level `c to level `′c in nodes of types #n1, ...,#nr and edges
of types #e1, ...,#es, denoted Roll-Up(G, {#n1, ...,#nr,#e1, ...,#es}, Dc.(`c →
`′c); #e,M1, ...,Mk, F1, ..., Fk), is defined as: Aggr(Minimize(Climb(G, {#n1, ...,
#nr,#e1, ...,#es}, Dc.(`c → `′c))), #e,M1, ...,Mk, F1, ..., Fk).
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[#DirectedBy]

[#StarsIn]
[#StarsIn]

[#StarsIn]

[#Rating, 9.85, 1992]

[#Actor, 1, All]

[#Movie, 4, “All”, All]

[#Critic, 7, Peter Travers]

[#Rating, 9, 1979]

Fig. 5. Roll-Up to Year, Actor, Movie, and Company for data of Figure 1.

Example 5. A Roll-Up(G, {#Rating},Time.(Day → Year); #Rating, score,Avg)
operation over the graphoid of Figure 3, produces the graphoid of Figure 5. In
this case, the hyperedges aggregated are the two ones in Figure 3 that contain
a #Rating node with Year=1992, and scores 9.7 and 10, respectively. ut

The Drill-Down operation does the opposite of Roll-Up, taking a graphoid to
a finer granularity level, along a dimension Dd. Descending from a level `d down
to a level `′d along Dd is equivalent to climbing from the bottom level to the level
`′d along Dd. Thus, we do not discuss this operation further here.

Dice Given a (D1.`1, ..., Dd.`d)-graphoid, and a Boolean formula ϕ, a Boolean
combination of atomic conditions of the form: (a) D.` < c, D.` = c and D.` > c,
where D is a dimension, ` is a level in that dimension, and c ∈ dom(D.`); (b)
m < c, m = c and m > c, where m is a measure and c as in (a). Dice(G,ϕ),
produces a subgraphoid of G, whose nodes are the nodes of G and whose edges
satisfy the conditions expressed by ϕ. When an edge does not satisfy ϕ, the whole
hyperedge is deleted. All other edges of G belong to Dice(G,ϕ). The meaning of
the term ‘satisfy’ above has some subtleties, that we omit here.

Example 6. Applying Dice(G,Actor.Name = “Hoffman”) to the graphoid de-
picted in Figure 1, we obtain the graphoid of Figure 6 (left). ut

Slice The Slice operation on cubes, drops a dimension Ds, and aggregates all
measures over Ds. We first need to roll-up to All along Ds, such that its domain
is a singleton. On graphoids, the slice operation is thus defined as a roll-up to
Ds.All as follows. Given a graphoid G, a dimension Ds that appears in some
nodes and/or hyperedges of G, measure dimensions M1, ...,Mk that appear in the
hyperedges of G, and aggregate functions F1, ..., Fk associated with them; The
slice of the dimension Ds from G, denoted Slice(G,Ds;M1, ...,Mk, F1, ..., Fk), is
defined as Roll-Up(G, ∗, Ds.(`s → All); ∗,M1, ...,Mk, F1, ..., Fk).

Example 7. Applying Slice(G,Movie; Score,Avg), and Slice(G,Company; Score,
Avg) to the graphoid of Figure 1, produces the graphoid of Figure 6 (right). ut

In [12], we have proved the following theorem, that supports our proposal.

Theorem 1. The cube OLAP-operations Roll-Up, Drill-Down, Slice and Dice
can be expressed (or simulated) by OLAP-operations on graphoids.
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[#Rating, 9, 9/2/1979]

[#StarsIn]

[#Actor, 1, D. Washington]

[#Movie, 4, “Malcom X”, Warner Bros.]

[#Actor, 3, Eastwood]

[#Movie, 5, “Unforgiven”, Warner Bros.]

[#Actor, 2, Ho↵man]

[#Movie, 6, “Kramer vs Kramer”, Columbia]

[#Critic, 7, Peter Travers]

[#DirectedBy]

[#StarsIn]

[#Rating, 10, 6/8/1992]

[#Rating, 9, 9/2/1979]

[#Rating, 9.7, 11/18/1992]

[#StarsIn]

[#StarsIn]

[#Movie, 4, All, All]

[#Actor, 3, Eastwood]

[#Actor, 2, Ho↵man]

[#Actor, 1, D. Washington]

[#Critic, 7, Peter Travers]

Fig. 6. Dicing the graph for data about Dustin Hoffman for data on the right of Figure 1
(left); Slicing the Movie and Company dimensions for the data on the right of Figure 1.

4 Implementation and Query Language

We are now ready to present our proof-of-concept implementation of the hyper-
graph MD model, and the OLAP operators of Section 3.2. For this, we chose the
widely used Neo4J property graph database.

4.1 Implementation Details and Architecture

We first describe the representation of the background information; then, we
show how the base graph and the graphoids are implemented. The examples in
this section are based on the case study we discuss in detail in Section 5.

Background information. Dimension schemas are represented as trees whose
nodes are dimension levels. These nodes have two labels: the string DimSchema,
and the name of the dimension schema; and a property called level, along with
its value. For example, the schema of a dimension GeoPerson (representing
persons in our case study) is the tree with nodes (DimSchema,GeoPerson,
{level:Person}), (DimSchema,GeoPerson, {level:Country}), and (DimSchema,
GeoPerson, {level:All}), shown on the left-hand side of Figure 7.

Dimension instances are also represented as trees, whose nodes are members
of dimension levels. These nodes are connected according to the information
in the dimension schema. When the Extraction, Transformation and Loading
(ETL) process (that takes source data to the graph database) reads the infor-
mation of level members, it creates the nodes, connects them to each other, and
validates these links against the dimension schema. Moreover, since the ETL
process needs to access the dimension schema graph, we store in the new nodes
the information of the level to which they belong. This avoids looking for this
information while processing OLAP Operations. A dimension instance node con-
tains two labels: DimInstance, and the name of the dimension. There are also
two property-value pairs: one for the member value (called value), and another
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[DimSchema,
GeoPerson, level=All]

[DimSchema,
GeoPerson,
level=Country]

[DimSchema,
GeoPerson,
level=GeoPerson]

[DimInstance,
GeoPerson,
value=USA,
level=Country]

[DimInstance,
value=all,
GeoPerson,
level=All]

[DimInstance,
GeoPerson,
value=Germany,
level=Country]

[DimInstance,
GeoPerson,
value=England,
level=Country]

[DimInstance,
GeoPerson,
value= D.Keaton,
level=GeoPerson]

[DimInstance,
GeoPerson,
value= W.Allen,
level=GeoPerson]

[DimInstance,
GeoPerson,
value= J. Zaks,
level=GeoPerson]

[DimInstance,
GeoPerson,
value= M. Caine,
level=GeoPerson]

Fig. 7. Schema representation for GeoPerson (left); An instance of GeoPerson (right).

one for the level name (called level). The right-hand side of Figure 7 illustrates
this, showing a portion of the dimension instance for the dimension GeoPerson.

We reuse nodes whenever possible. That is, if a node is used multiple times,
we create it only once and also create as many from/to links as needed. For ex-
ample, in a dimension schema with multiple hierarchies, bottom and top levels
are created only once and used multiple times. The same idea is used for dimen-
sion instances. At first sight one may think that this is similar to a snowflake
schema in relational data warehouses, where tables representing dimension levels
are linked via foreign keys. However, in graph databases reusing nodes does not
only save space, but also makes navigation more efficient.

Implementation of base graphs and graphoids. We mentioned above that
graphoids are multi-hypergraphs. However, Neo4J (like most graph databases)
supports only binary relationships. Thus, we represent both, node and edges
types, as nodes, where “edge type” nodes are used to connect any number of
node types. The direction of these relationships depends on the application.
For instance, Figure 8 shows a small portion of the base graphoid of our case
study (which we explain below). There are two edge types, #Participated and
#Nomination. The former binds #Person and #Movie node types. The latter
binds #Person, #Movie and #Award node types. A #Nomination edge type has
an incoming edge from and #Award node type, and two outgoing edges to other
node types. Different representations could be possible too. Again, we reuse
nodes in the same graphoid, whenever possible. Node and edge types are labelled
with the terms NodeType and EdgeType, respectively, and a unique name that
indicates to which graph the nodes belong. This name can be the base graph (like
in Figure 8), or a new graph produced by a query (see Section 4.2), that may
act, e.g., as a materialized view. Properties are also used to represent dimensions
or measures (in the case of edge types).
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[NodeType,
BaseGraph,
hashtag=#Award,
id=22
value=J. Zaks]

[NodeType,
BaseGraph,
hashtag=#Person,
id=202
value=D. Keaton]

[NodeType,
BaseGraph,
hashtag=#Movie,
id=1
value=Marvin’s
Room]

[NodeType,
BaseGraph,
hashtag=#Award,
id=3
value=Best Actress,
in a leading Role]

[NodeType,
BaseGraph,
hashtag=#Nomination,
value= 1997,
m2=1, m3=0] [NodeType,

BaseGraph,
hashtag=#Participated,
value=Director,
m1=1]

[NodeType,
BaseGraph,
hashtag=#Participated,
value= Actress,
m1=1]

Fig. 8. Representing a graphoid with Neo4j.

4.2 Implementation of the OLAP Operations

We next describe the implementation of the operations presented in Section 3.2.
Graphoids are represented as explained above, and queries are expressed as a
sequence of graph OLAP operations. The base graphoid is labelled BaseGraph.
All the other graphoids are labelled with a new name created on-the-fly. Thus,
the Neo4J database is composed of as many graphoids as queries were posed,
each labelled with a different name. This way, a previously generated graphoid
can be used in queries posed later, suggesting that this solution may set the
basis for query optimization based on materialized views [15]. We leave this for
future work.

Graph OLAP operations first clone the graphoid over which they are posed;
the new graphoid is then updated according to the query. For instance, the query:

Q1 <- Rollup(Nomination, Award->Organization, sum, sum)

creates a graphoid labelled Q1, containing the information of the graphoid
Nomination, except for the label. Q1 is then modified according to the semantics
of the Rollup operation.

Neo4j comes with a pattern-based query language named Cypher, and pro-
vides an API for embedding, e.g., a Java program. The API allows managing the
underlying database and executing Cypher queries. The OLAP operators were
implemented using this API interface. For example, the API: Rollup(DBConn,
“Nomination”,“Q1”,“Award”,“Award”,“Organization”, SUM, SUM), where DB-
Conn is an object that encapsulates the database connection settings, implements
the query above. The strings “Nomination” and “Q1” are the labels of the input
and output graphoids, respectively. The last three arguments correspond to the
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dimension, source level and target level of the roll-up operation. Finally, SUM
is a Java interface that implements the sum operation over measures of type
‘double’ (in our running example).

5 Case Study

We now present a case study that uses a portion of the Internet Movie Database
(IMDB). The problem consists in the analysis of prizes and nominations for
people working in film making across time. We want to show that, for some
cases, representing the problem as graphs leads to a more natural and powerful
representation than traditional OLAP modelling using cubes (in particular, we
focus on Relational OLAP). For example, we will show that facts involving a
variable number of dimensions and measures can be represented (and therefore
analyzed) in a natural and flexible way. This is a well-known problem in classic
OLAP, quite difficult and inefficient to represent in the usual star or snowflake
models, usually leading to complex implementations [14]. We remark that our
intention at this time is to study how OLAP techniques can enhance graph an-
alytics. Query optimization and performance are thus left for future work, and
we do not present here results for query execution times, since they would not
be representative of actual performance.

5.1 Classic OLAP Modelling

For addressing the problem stated above, the following dimensions are defined
as background information: Movie, with hierarchy Movie → All; GeoPerson,
with hierarchy Person → Country → All; Role, with hierarchy Role → All;
Time, with hierarchy Y ear → All; and Award, with hierarchy Award →
Organization → All. An example of a path instance in the Person hierar-
chy is Woody Allen→ USA→ all; an example of a path instance in the Award
hierarchy is Best Actress in a Leading Role→ OscarAward→ all.

In traditional MD modelling based on facts and dimensions, a possible solu-
tion would be a model based on two fact tables: (a) one to represent the roles in
which a person participated in a movie, e.g., with schema Participation(Movie,
Person,Role, Participates), where the measure Participates represents the oc-
currence of a participation; and (b) one to represent nominations of a person for
an award on a certain year, with schema, Nomination(Movie, Person,Award,
Y ear,Nominated,Won), where the measureWon tells if the award was obtained
or not. We next show some example queries over this data warehouse. Queries
are expressed using a “data type agnostic” query language denoted Cube Alge-
bra [4,10,11]. This language allows querying a data cube regardless its underlying
data structure.

Query 1 “Number of movies where Woody Allen participated as an actor”.

The query reads in Cube Algebra:

Q1 <- Dice(Participation, Person=’Woody Allen’)
Q2 <- Dice(Q1, Role=’Actor’)
Q3 <- Slice(Q2, Role, count)
Q4 <- Slice(Q3, Movie, count)



12

Here the result will be a one-dimensional cube, with one cell containing the
actor’s name and the number of movies. Note that Person was not sliced out.
Thus, in a relational representation, the result will be a two-column table.

Query 2 “Total number of Oscar nominations and prizes by movie”.

This is expressed in Cube Algebra as:

Q5 <- Rollup(Nomination, Award->Organization, sum, sum)
Q6 <- Slice(Q5, GeoPerson, sum, sum)
Q7 <- Dice(Q6, Award.Organization=’Oscar Award’)
Q8 <- Slice(Q7, Time, sum, sum)

The result will contain, e.g., the tuple (or ‘cell’) (Manhattan, OscarAward, 2, 0),
since it was nominated for two Oscars, winning none of them. Note that the
resulting cube (or table) will contain two dimensions, since GeoPerson and
Time are sliced out in the query.

Finally, we show a rather more complex query, involving the two cubes (or
fact tables).

Query 3 “Pairs of Movies and Persons, such that only people who played more
than one role in it (other than Director), participated, listing only persons who
were nominated for an Oscar in that movie, but did not win the award”.

This is expressed as:

Q9 <- Dice(Participacion, Role<>’Director’)
Q10 <- Slice(Q9, Role, SUM)
Q11 <- Dice(Q10, Participates > 1 )
Q12 <- RollUp(Nomination, Award->Organization, SUM, SUM)
Q13 <- Dice(Q12, Award.Organization=Oscar Award AND Won=0)
Q14 <- Slice(Q13, Award, SUM, SUM)
Q15 <- Slice(Q14, Year, SUM, SUM )
Q16 <- DrillAcross(Q11, Q15)

Here, two Cubes are queried: Participation, to compute the multiple roles played
by a person in a movie, excluding the Director role; and Nomination, to find
people and movies nominated to the Oscars, but who did not won it. Finally, a
Drill Across operation between both cubes is performed. Behind the scenes, this
operation is translated into an expensive join operator between two fact tables.

5.2 OLAP Modelling of Graphs

The same problem will be addressed next, using graph OLAP instead of the clas-
sic solution. We consider the same dimensions and hierarchies as in Section 5.1.
There are also three node types, each one corresponding to a background di-
mension: #Movie, #Person, and #Award. Each node type is associated with a
dimension as follows: (a) (#Movie, id,Movie); (b) (#Person, id, GeoPerson); (c)
(#Award, id, Award). Two edge types are also defined: (a) (#Participated, Role,
m1); (b) #Nomination, T ime,m2,m3). The edge type #Participated indicates
who participated in a movie, and in which role. Measure m1 is analogous to
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Fig. 9. IMDB use case in Graph OLAP.

Participates in the OLAP cube Participation of Section 5.1. The edge type
#Nomination links a person with a movie and an award. Measures m2 and m3
represent the number of nominations and of successful nominations, respectively,
similarly to both measures in the OLAP cube Nomination. Note the use of di-
mensions Role and Time in the graph representation. These dimensions here
appear in the edge types, rather than as node types. Figure 9 shows a small
portion of the IMDB database, represented as a Neo4j graph. Let us consider
the #Person node for Woody Allen (on the left of the figure). We can see that
he performed and directed the movie “Annie Hall” (there are two #Participated
hyperedges, one with the role attribute Director, and the other with the role
attribute Actor). We can also see (close to the top-left part of the figure) two
#Nomination hyperedges, composed of the node types #Award, #Person, and
#Movie. These indicate the Oscar and BAFTA awards for best direction. The
Oscar nomination is represented by the hyperedge with identifier ‘116’, while the
node identifier for the BAFTA nomination is ‘124’. The graph also shows that
Diane Keaton was nominated (and won) the “Best Actress in a Leading Role”
Oscar, and the “Best Actress” BAFTA awards. Note that the two cubes in the
previous section are now represented in a single graph, which is more natural,
and closer to the real world situation. We show next how the queries above are
expressed over this graph and the background information.

5.3 OLAP queries over Graphoids

Query 1 “Number of movies in which Woody Allen participated as an actor”,

The base graphoid is named BaseGraph. Thus, the query, in our implementation
is written as the following sequence of function calls:
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Operators.Dice(graphDB,"BaseGraph","Q1","GeoPerson","GeoPerson",
"=","Woody Allen" );

Operators.Dice(graphDB,"Q1","Q2","Role","Role","=","Actor");
Operators.Slice(graphDB, "Q2","Q3","Role",Arrays.asList("m1","m2",

"m3"),Arrays.asList(COUNT,COUNT,COUNT));
Operators.Slice(graphDB,"Q3","Q4","Movie",Arrays.asList("m1",

"m2","m3"),Arrays.asList(COUNT,COUNT,COUNT));

Note that the sequence of API calls replicates the sequence of Cube Algebra
operations, which would makes it simple to implement a higher-level interface
that can hide the API interface details. Figure 11 (left) shows a portion of the
resulting graphoid, telling the number of movies in the sample database, where
Woody Allen performed.

Query 2 “Total number of Oscar nominations and prizes by movie”

Operators.Rollup(graphDB,"BaseGraph","Q5",
Arrays.asList({#Award}, Award.(Award->Organization),
"#Nomination", Arrays.asList("m1", "m2", "m3"),
Arrays.asList(SUM,SUM,SUM));

Operators.Slice(graphDB,"Q5","Q6","GeoPerson",
Arrays.asList("m1","m2","m3"),Arrays.asList(SUM,SUM,SUM));

Operators.Dice(graphDB,"Q6","Q7","Award","Organization","=",
"Oscar Award");

Operators.Slice(graphDB,"Q7","Q8","Year",Arrays.asList("m1","m2",
"m3"),Arrays.asList(SUM,SUM,SUM));

A portion of the result is shown in Figure 10. We can see information of
four movies. “Cafe Society” appears as an isolated node, because it did not
receive any Oscar nomination. The node type #Person was sliced out by the
query, thus, it appears with value “all”. The node type #Award appears with
the value “Oscar”, since this node was rolled-up to the level Organization and
later diced. The edge type #Nomination appears with attribute “all” on the
Time dimension. Its measures show the number of (summarized) nominations
and prizes. For instance, “Manhattan” received two Oscar nominations but won
none of them, at it is shown in the leftmost path in the figure.

Query 3 “Pairs of Movies and Persons, such that only people who played more
than one role in it (other than Director) are considered, listing only persons who
were nominated for an Oscar in that movie, but did not win the award”.

Operators.Dice(graphDB,"BaseGraph","Q9","Role","Role","<>",
"Director");

Operators.Slice(graphDB,"Q9","Q10","Role",
Arrays.asList("m1","m2","m3"),Arrays.asList(SUM,SUM,SUM));

Operators.Dice(graphDB,"Q10","Q11","measures","m1","<>","1.0");
Operators.Rollup(graphDB,"Q11","Q12",Arrays.asList("#Award"),

"Award", "Award", "Organization","#Nomination",
Arrays.asList("m1","m2","m3"),Arrays.asList(SUM,SUM,SUM));
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Fig. 10. Subgraph with a subset of the result of Query 2.

Operators.Dice(graphDB,"Q12","Q13","Award","Organization","=",
"Oscar Award" );

Operators.Dice(graphDB,"Q13","Q14","measures","m3","=","0");
Operators.Slice(graphDB, "Q14","Q15","Award",

Arrays.asList("m1","m2","m3"),Arrays.asList(SUM,SUM,SUM));
Operators.Slice(graphDB, "Q15","Q16","Year",

Arrays.asList("m1","m2","m3"),Arrays.asList(SUM,SUM,SUM));

Here we can clearly see the advantage of the graph approach over the relational
OLAP one. The query is answered navigating a single graph, avoiding joining
tables, or drilling across two or more cubes (which is required by the represen-
tation shown in Section 5.1). In a real-world ‘Big Data” setting, this can also
simplify the ETL process, specially when source data come as unstructured data.
Figure 11 (right) shows part of the result.

6 Conclusion and Future Work

We have presented a proof-of-concept implementation (over a Neo4j database)
of a MD data model for graph analysis, and its associated OLAP operators.
We also discussed a case study, showing that modelling an analysis problem as
graphs may lead to a more natural and efficient solution. Our next steps will
focus on efficiency, and, for that, we think on using the graphoids as materialized
views, along the lines suggested in [15].
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Fig. 11. Portion of the result for Q1 (left); Portion of the result for Q3 (right).
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