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Abstract

In this paper we show the relationship between two seemingly un-

related approximation techniques. On the one hand a certain class of

Gaussian process based interpolation methods, and on the other hand

inverse distance weighting, which has been developed in the context

of spatial analysis where there is often a need for interpolating from

irregularly-spaced data to produce a continuous surface. We develop a

generalization of inverse distance weighting and show that it is equiv-

alent to the approximation provided by the class of Gaussian process

based interpolation methods. The equivalence is established via an el-

egant application of Riesz representation theorem concerning the dual

of a Hilbert space. It is thus demonstrated how a classical theorem in

linear algebra connects two disparate domains.

Keywords� Riesz representation theorem; Gaussian process; inverse
distance weighting; interpolation; kriging

1 Introduction

This paper contains a theoretical contribution to some techniques that inter-
polate given observations. In particular, we establish an interesting relation-
ship between inverse distance weighting (IDW) and some Gaussian process
(GP) based interpolation techniques. IDW is a rather intuitive interpolation
method in a metric space setting, originally developed by Shepard in the
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context of spatial analysis and geographic information systems [15]. It is
still applied in many practical approximation problems (see, e.g., [2], [3], [4],
[6], [7]). We refer to Section 4 for a succinct formulation of IDW. A more
advanced class of interpolation techniques is based on Gaussian processes,
which are statistical models where every point in some continuous input
space has an associated output that is conceived as a normally distributed
random variable. Several �elds, such as machine learning and emulation,
make use of Gaussian processes for certain approximation tasks, and the
exact model used for the task can be somewhat di�erent, depending on the
precise goal and the underlying assumptions (e.g. univariate vs. multivariate
data, observations generated by a deterministic function vs. generated by a
stochastic process, . . . ).

Our contribution is the formulation of a more general version of the
originally developed IDW technique, and then proving the mathematical
equivalence of this formulation to certain Gaussian process based interpola-
tion techniques that are constructed in a noise-free environment. The term
noise-free environment is used here in the sense that the given observations
are free of measurement noise. This may seem a severe assumption, but it
should be stressed that the goal of this paper is not to develop a realistic
model to be applied to physical measurements. Instead, our purpose is to
show how seemingly unrelated and independently developed techniques, i.e.
IDW and certain GP based interpolation techniques, are connected to each
other. The fact that IDW has been developed to apply to noise-free obser-
vations explains at once our restriction to noise-free GP based interpolation
methods. Furthermore, it is worth mentioning that there are applications
where the assumption of absence of noise is acceptable. One large category
of such applications is the emulation of expensive deterministic computer
simulation experiments, where the objective is to obtain a fast-running ap-
proximation for a given complex, time-consuming deterministic simulator [8].
The fact that in this case the numerical observations are generated by a com-
puter and that the underlying function is supposedly deterministic together
imply that noise can safely be ignored.

The paper is structured as follows. Section 2 provides some references
to research that considers some connections between other approximation
methods, just meant as interesting background material. The noise-free GP
interpolation that is the focus of this work is outlined in Section 3. Inverse
distance weighting, as it was originally developed by Shepard, is outlined in
Section 4. The same section discusses a generalization of it, together with
the properties of this more general approximation method. In Section 5 we
examine a variation on inverse distance weighting by taking into account
a prior approximation method. Both inverse distance weighting and the
variation on it approximate an unknown value via a convex combination of
known values. The requirement of convexity is dropped in Section 6. It is
shown how this results in the relationship with noise-free GP interpolation.
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2 Related work

Our work extends the amount of connections that have already been es-
tablished between existing approximation methods. Without intending to
be exhaustive, we list some examples of such connections. First, it can be
shown that spline and generalized spline smoothing is equivalent to Bayesian
estimation with a partially improper prior [18]. The authors interpret this
result as saying that spline smoothing is a natural solution to the regression
problem when one is given a set of regression functions but one also wants to
hedge against the possibility that the true model is not exactly in the span
of the given regression functions. Secondly, Neal has shown a connection be-
tween Gaussian processes and arti�cial neural networks [13]. His connection
states that the properties of a neural network with one hidden layer con-
verge to those of a Gaussian process as the number of hidden neurons tends
to in�nity if standard weight decay priors are assumed. This has resulted
in the question whether supervised neural networks should be dismissed in
favor of Gaussian processes [12]. A third and interesting relationship is be-
tween Gaussian processes and the Kalman �lter [11, 14]. This connection
has resulted in hybrid computationally e�cient methods, such as K-nearest
neighbor based Kalman �lter Gaussian process (KNN-KFGP) regression, a
regression method that circumvents some of the computational de�ciencies
of Gaussian processes when the data set is large or spatially nonstationary
[19].

3 Noise-free GP interpolation

The noise-free case of Gaussian process regression, also called kriging model
[5, 16], and Gaussian process emulation [10] have similar formulations. Gaus-
sian process emulation is a subclass of surrogate modeling [8], where the
objective is to obtain a fast-running approximation for a complex, time-
consuming model. The surrogate model in Gaussian process emulation is
conveniently called the emulator and is intended to approximate a determin-
istic, possibly unknown, function ν. Kriging originated in geostatistics as
a method to perform predictions, given a set of observations. Several ver-
sions of GP emulation and kriging have been developed, and in this paper
we restrict to a noise-free formulation that interpolates the observations. To
describe this formulation we will rely on the initially developed GP emula-
tion framework [10] and on the Bayesian approach to kriging [9, 17]. We
will refer to this formulation as noise-free GP interpolation. To establish the
connection with IDW, which is a non statistical method, we will not pay
much attention to the distributional aspect of the involved Gaussian pro-
cess. The concept of interest in this paper is the posterior mean that results
from a Bayesian analysis and that is used to calculate expected values for
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the random variable in output space associated to some given point in input
space. Some more detail is provided below. We will refer to this posterior
mean as the emulator. Furthermore, we restrict attention to the case where
ν(z) ∈ R, for any given input vector z ∈ Rp for some p ∈ N. This output
ν(z) is considered a realization of a random variable ζ(z).

The construction of the emulator requires pairs of the form (zi, ν(zi)), ob-
tained by applying ν to a limited number of input points z1, . . . , zn. We call
the set of input points to which ν has been applied the training data set and
denote it as > = {z1, . . . , zn}, where it is assumed that zi 6= zj if i 6= j. The
corresponding vector of outputs is denoted as ν(>) = [ν(z1), . . . , ν(zn)]T .
Sections 3.1-3.3 describe the emulator in several stages, starting with a de-
scription of the prior mean that can be considered a �rst approximation to
the output of ν in a given input point, followed by the introduction of a more
general class of correlation functions that are often used in GP applications,
and ending with a description of the posterior mean (also called the emulator
in this paper) that is used as an improvement to approximations provided
by the prior mean.

3.1 Prior mean

The determination of the posterior mean consists of two steps. First, before
training data has been obtained, a prior mean m(z) is considered, which is
modeled as a linear combination of user-chosen regression functions applied
to a given input z. That is

E[ζ(z) |β] =

q∑
i=1

βi hi(z) (1)

with hi the regression functions and with β = [β1, . . . , βq]
T ∈ Rq the coe�-

cients. The value of β is immaterial in our discussion and thus we consider
β an arbitrary vector in Euclidean space.

De�nition 3.1. We de�ne the following matrix, given input vectors x1, . . . ,xl:

H(x1, . . . ,xl) =


h1(x1) . . . hq(x1)

. . .

h1(xl) . . . hq(xl)


With this notation the prior mean can be written in short as

m(z) = H(z)β (2)

De�nition 3.2. We introduce the shorthand notation H = H(z1, . . . , zn).
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3.2 Introduction of a general class of correlation functions

The correlation between two given random variables ζ(z) and ζ(z′) is mod-
eled via a user-chosen correlation function c(z, z′). We introduce here a
general class of correlation functions:

c(z, z′) = Γ(d(z, z′)) (3)

where Γ is as in the following de�nition and where d is a metric.

De�nition 3.3. Γ is a function on the nonnegative real line with the follow-

ing properties:

1. 0 ≤ Γ(x) ≤ 1, ∀x ≥ 0

2. Γ is non-increasing

3. Γ is continuous

4. Γ(0) = 1

As an example, the widely adopted Gaussian correlation function

cg(z, z
′) = exp

(
−(z− z′)TM(z− z′)

)
(4)

with M a positive-de�nite matrix, is a member of this more general class
of correlation functions. Indeed, let Γ(x) = exp(−x2) such that this Γ has
the properties required by de�nition 3.3. It is then seen that cg(z, z

′) =
Γ(dg(z, z

′)) with

dg(z, z
′) =

√
(z− z′)TM(z− z′).

3.3 Posterior mean

De�nition 3.4. The matrix A contains the correlations between the out-

put random variables corresponding to the training data set, i.e. A(i, j) =
c(zi, zj), where A(i, j) denotes the element on the ith row and jth column of

A.

De�nition 3.5.

U(z) = [c(z, z1), . . . , c(z, zn)]T

for an arbitrary input point z.

De�nition 3.6. We de�ne the following error vector e:

e = ν(>)−Hβ (5)
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The vector e is an error vector in the sense that it contains the di�erences
between known, correct output values in the training data points and the
approximations of these output values via the prior mean.
The posterior mean m?(z) in any input point z is then given by [10]

m?(z) = H(z)β + UT (z)A−1 e (6)

The quantity m?(z) approximates or predicts the value of ν in z in noise-free
GP interpolation.

4 Inverse distance weighting

4.1 Introduction

IDW approximates the unknown value ν(z) in a given point z as a weighted
average of the known values in the training data points > = {z1, . . . , zn},
where each weight decreases with increasing distance to z.
The IDW method as originally proposed by Shepard is given by [15]:

ν̂(z) =

n∑
i=1

wi(z)∑n
j=1wj(z)

ν(zi) if d(z, zi) 6= 0 for all i (7)

= ν(zi) if d(z, zi) = 0 for some i (8)

where

wi(z) =
1

d(z, zi)α
(9)

where d is any metric and where α is a constant larger than zero. From (8) it
is clear that this method interpolates the values in the training data points,
i.e. ν̂(z) = ν(z),∀z ∈ >.

4.2 Generalization

We propose the following generalization of the weights (9):

wi(z) = F (d(z, zi)) (10)

where F is de�ned on the positive real line and has the following properties:

1. F (x) ≥ 0,∀x > 0

2. F is non-increasing

3. F is continuous

4. lim
x→0,x>0

F (x) = +∞
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The �rst property ensures that ν̂(z) is a convex combination of the true
values ν(zi), a property possessed by the IDW method (7)-(9). The second
property ensures a fundamental characteristic of IDW, namely that the in�u-
ence of a certain training data point on the determination of ν(z) diminishes
with increasing distance between z and that training data point. The last
two properties will be used to establish continuity of ν̂ in section 4.3 below.
Continuity of ν̂ might also be considered an essential and desirable feature
of IDW.

For example, F (x) = 1/xα for x > 0 and with α > 0 ful�lls the above
properties, showing that (10) is indeed a generalization of (9).

4.3 Continuity of ν̂

Theorem 4.1. ν̂(z) given by (7)-(8) with wi(z) given by (10) is continuous

in z, where continuity is de�ned with respect to d.

Proof. Consider a given z ∈ Rp and consider any sequence xm → z, which
means that d(xm, z) goes to zero as m goes to in�nity. The triangle inequal-
ity then implies that |d(xm, zi) − d(z, zi)| ≤ d(xm, z) and thus d(xm, zi) →
d(z, zi). From the continuity of F it then follows that F (d(xm, zi)) →
F (d(z, zi)). By (10) this is equivalent to stating that wi(xm)→ wi(z).
We now consider two cases. First, let z 6∈ >. From wi(xm)→ wi(z) and (7)
we then deduce that

ν̂(xm) =
n∑
i=1

wi(xm)∑n
j=1wj(xm)

ν(zi) →
n∑
i=1

wi(z)∑n
j=1wj(z)

ν(zi) = ν̂(z)

showing the continuity of ν̂ in the non-training data points.
Secondly, suppose that z = zk ∈ >. The properties lim

x→0,x>0
F (x) = +∞ and

zi 6= zj if i 6= j imply that

wk(xm)∑n
j=1wj(xm)

→ 1 and
wi(xm)∑n
j=1wj(xm)

→ 0, i 6= k

and thus ν̂(xm)→ ν(zk) = ν̂(zk), thereby making use of (8).
Thus xm → z implies that ν̂(xm)→ ν̂(z) whether z ∈ > or z 6∈ >.

De�nition 4.2. For z 6∈ >:

W (z) =
[ w1(z)∑n

j=1wj(z)
, . . . ,

wn(z)∑n
j=1wj(z)

]T
With this de�nition (7) can be rewritten using the Euclidean inner prod-

uct < ., . >, such that an equivalent way to describe (7)-(8) is:

ν̂(z) = < W (z), ν(>) > if d(z, zi) 6= 0 for all i (11)

= ν(zi) if d(z, zi) = 0 for some i (12)
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Theorem 4.3. ν̂(z) given by (11)-(12) with wi(z) given by (10) is con-

tinuous in W (z) and in ν(>) where continuity is de�ned in terms of the

Euclidean norm.

Proof. We �rst proof continuity in W (z). Let z ∈ Rp and consider any

sequence Wm →W (z). Thus
∣∣∣∣∣Wm −W (z)

∣∣∣∣∣→ 0 as m→ +∞.

First suppose that z 6∈ >. Using the Cauchy-Schwarz inequality, it follows
that:

| < Wm, ν(>) > − < W (z), ν(>) > | = | < Wm −W (z), ν(>) > |

≤
∣∣∣∣∣Wm −W (z)

∣∣∣∣∣ ∣∣∣∣∣ν(>)
∣∣∣∣∣

This shows that < Wm, ν(>) >→< W (z), ν(>) > as m goes to in�nity. By
(11) this is equivalent to < Wm, ν(>) >→ ν̂(z), showing continuity in W (z)
when z 6∈ >.
Now let z = zk ∈ >. The proof of theorem 4.1 tells us that Wm → ξk,
with ξk the kth Euclidean standard vector. This implies that < Wm, ν(>) >
→< ξk, ν(>) >= ν(zk) = ν̂(zk), using (12). Continuity in W (z) is then
established for all input points z.

We now proof continuity in ν(>). Consider any sequence νm → ν(>) and
any z 6∈ >. As in the �rst part of the proof we then have that < W (z), νm >
→< W (z), ν(>) >= ν̂(z).
Now let z = zk ∈ >. Irrespective of the values that the vector νm contains,
the value ν̂(zk) is given by ν(zk) because of (12). The sequence of interest
corresponding to νm is thus the constant sequence ν̂(zk) which evidently
converges to ν̂(zk).

4.4 Essential properties of ν̂ in IDW

The above considerations show that ν̂ has the following fundamental prop-
erties:

1. ν̂(z) determines an approximation for ν(z) in terms of W (z), a vector
where each component is a weight that decreases with increasing dis-
tance between z and the corresponding training data point, as well as
in terms of ν(>), a vector where each component is the true value of
ν in a training data point.

2. ν̂(z) is continuous in z with respect to d.

3. ν̂(z) is continuous in W (z) and in ν(>) with respect to Euclidean
distance.

4. If z 6∈ >, ν̂(z) is linear in W (z) and in ν(>).

5. ν̂(zk) = ν(zk) for all zk ∈ >.
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5 Error-based inverse distance weighting

In this section we propose a variation on the inverse distance weighting
method, which we call error-based inverse distance weighting (EIDW). The
variation is developed in two steps. First, section 5.1 presents the main mod-
i�cation to IDW by replacing the weighted average of true output values by
the value of a given prior approximation method corrected by a weighted
average of error values. The second step, discussed in section 5.2, is merely
considered to increase elegance by replacing the two expressions that to-
gether describe IDW, given by (7)-(8) or the equivalent description given by
(11)-(12), by a single expression.

5.1 First modi�cation

Instead of de�ning approximations in terms of a weighted average of true
values, we may use weighted averages of error values to correct the value
determined by another approximation method, which we call the prior ap-
proximation method ρ. To be more precise, let the prior approximation
method be given by a linear combination of user-chosen regression functions
with already determined coe�cients. That is, we choose it as the prior mean
in Gaussian process emulation: ρ(z) = H(z)β, as given by (2). The vector
e = [e1, . . . , en]T , de�ned by (5), then contains the errors between the correct
output values in the training points and their approximations by the prior
approximation method. A variation on IDW is then to determine ν̂(z) as
the value determined by the prior approximation method corrected with a
weighted average of the error values ek, where the weight increases as d(z, zk)
decreases:

ν̂(z) = H(z)β + < W (z), e > if d(z, zi) 6= 0 for all i (13)

= H(z)β + ei if d(z, zi) = 0 for some i (14)

The strong similarity with (11)-(12) is obvious.

5.2 Second modi�cation

We return to IDW described in section 4. It would be more elegant if the
two expressions (11)-(12) that de�ne IDW could be combined into a single
expression.
One intuitive idea to accomplish this is to allow that the expression (11) for
ν̂(z) in non-training data points z is applicable to all data points. However,
this is prevented by de�nition 4.2, where W (z) is only de�ned for z 6∈ >.
The reason for this limitation is that wi(zi) is not necessarily de�ned for
i ∈ {1, . . . , n}. Indeed, for the original IDW method developed by Shepard
we see from (9) that lim

z→zi
wi(z) = +∞. This property was retained when, in

section 4.2, we generalized wi(z) in Shepard's method to wi(z) = F (d(z, zi))
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by imposing that lim
x→0,x>0

F (x) = +∞. We used this property in showing

that ν̂ is continuous in the training data points, see theorem 4.1.
A closer look at the proof of theorem 4.1 reveals that this speci�c property of
F was used to deduce that if xm → zi then W (xm)→ ξi, where ξi denotes
the ith Euclidean standard vector. Continuity in zi ∈ > was then implied by
this assertion. Consequently, the property lim

x→0,x>0
F (x) = +∞ is not needed

if we extend the de�nition of W (z) to all z as follows:

W (z) =
[ w1(z)∑n

j=1wj(z)
, . . . ,

wn(z)∑n
j=1wj(z)

]T
if z 6∈ > (15)

= ξi if z = zi ∈ > (16)

With this de�nition, ν̂ =< W (z), ν(>) > is well de�ned for all z and not just
for the non-training data points as in (11) where W (z) is given by de�nition
4.2.

It might be objected that no increase in elegance has been acquired, as
the single expression for ν̂ is obtained by introducing an extra expression
for W (z). This objection is completely justi�ed. As a next step, we observe
that (15)-(16) can equivalently be expressed as the vector

W̃ (z) = [w̃1(z), . . . , w̃n(z)]T (17)

with 0 ≤ w̃i(z) ≤ 1,
∑

i w̃i(z) = 1 and w̃i(zk) = δik, where δik = 1 if i = k
and 0 otherwise. The components w̃i(z) of W̃ (z) can then still be de�ned as

w̃i(z) = F (d(z, zi)) (18)

in the same way as we de�ned the components ofW (z) by wi(z) = F (d(z, zi)),
see (9). The main di�erences between W (z) and W̃ (z) are that we have
dropped the property lim

x→0,x>0
F (x) = +∞ and that we introduced the addi-

tional requirements 0 ≤ w̃i(z) ≤ 1,
∑

i w̃i(z) = 1 and w̃i(zk) = δik.

Instead of imposing the conditions 0 ≤ w̃i(z) ≤ 1 and w̃i(zk) = δik
we may equally well impose the following additional properties on F : 0 ≤
F (x) ≤ 1,∀x ≥ 0, and F (0) = 1. We notice that the properties of F are
now exactly these of Γ, given in de�nition 3.3. Thus one consequence of our
second modi�cation is that F has been changed into Γ.

5.3 Synthesis of the modi�cations

Combining the modi�cations to IDW described in sections 5.1 and 5.2 results
in the following description of EIDW:

ν̂(z) = H(z)β + < W̃ (z), e > (19)
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with

W̃ (z) = [w̃1(z), . . . , w̃n(z)]T (20)

where the components w̃i(z) of W̃ (z) ful�ll

1. w̃i(z) = Γ(d(z, zi)) (21)

2.
∑
i

w̃i(z) = 1 (22)

and this for all input points z.

The second modi�cation made F equivalent to Γ. From (3) and (18)
it thus follows that w̃i(z) = c(z, zi). From (5) and (20) it is seen that
W̃ (z) = U(z). An equivalent description of EIDW is thus given by

ν̂(z) = H(z)β + < U(z), e > (23)

with ∑
i

c(z, zi) = 1 (24)

and this for all input points z.

We have developed EIDW as a variation on IDW. An alternative view is
to consider it a generalization of IDW, since it is easy to show that the above
description reduces to (11)-(12) by choosing hi = 0 for all i ∈ {1, . . . , q}.

5.4 Essential properties of ν̂ in EIDW

Which of the properties of IDW described in section 4.4 still hold under
EIDW?

Instead of the �rst property a variation now holds. It is the essence of
EIDW that ν̂ is not de�ned anymore in terms of W (z) and ν(>), but in
terms of W̃ (z), e and a prior approximation method, as seen in (19).

Provided that all regression functions hi are continuous in z with respect
to d, the second property still holds. The proof is completely similar to the
�rst part of the proof of theorem 4.1.

A modi�ed form of property 3 is still valid, namely continuity of ν̂ in
W̃ (z) and in e. This follows from the continuity of an inner product.

Property 4 also still holds in a modi�ed form, namely linearity of the error
term in W̃ (z), and this for all z, and in e. This follows from the bilinearity
of an inner product.

The last property is also retained, as shown by the following theorem.
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Theorem 5.1. If zk ∈ >, then ν̂(zk) = ν(zk), where ν̂ is de�ned by (19)-

(22).

Proof. By (19) we have that ν̂(zk) = H(zk)β + < W̃ (zk), e >. Properties
(21) and (22) imply that w̃k(zk) = Γ(0) = 1, using property 4 of Γ in
de�nition 3.3, and that w̃i(zk) = 0 for i 6= k. In other words W̃ (zk) = ξk.
Thus

ν̂(zk) = H(zk)β + < ξk, e >

= H(zk)β + ek

= H(zk)β + ν(zk)−H(zk)β

= ν(zk)

where we used de�nition 3.6 of e.

In summary, the main properties of ν̂ in EIDW are

1. ν̂(z) determines an approximation for ν(z) in terms of W̃ (z), e and a
prior approximation method.

2. ν̂(z) is continuous in z with respect to d, provided that all hi are
continuous in z with respect to d.

3. ν̂(z) is continuous in W̃ (z) and in e with respect to Euclidean distance.

4. The error term of ν̂(z) is linear in W̃ (z) and in e.

5. ν̂(zk) = ν(zk) for all zk ∈ >.

6 Generalized error-based inverse distance weight-

ing

6.1 Generalization of EIDW

We present a generalization of EIDW (and thus a further generalization of
IDW), which we call for that reason generalized error-based inverse distance
weighting (GEIDW). The generalization has to do with the requirement∑

i w̃i(z) = 1, given in (22). This constraint is highly undesirable, which
is motivated as follows. Let z and z′ be two points of the input space with
d(z′, zi) > d(z, zi) for all i = 1, . . . , n. Since Γ is non-increasing it follows
from (21) that w̃i(z

′) ≤ w̃i(z), i = 1, . . . , n. Due to property (22) this is only
possible if w̃i(z

′) = w̃i(z) for all i. Thus although the distance to each train-
ing data point has been increased, the contribution of each error component
ei has remained constant. Having a prior approximation method at our dis-
posal, it is preferable to take this into account by giving more con�dence to
this prior method for input points that are far away from the training data
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points, since the large distance means that we should not expect to gain
much information from the values of ν in the training data points, and vice
versa. This urges us to drop constraint (22).

However, this has an unwanted side-e�ect, since it is then no longer
guaranteed that ν̂ is an interpolator, which is a basic property in IDW and
in EIDW. Indeed, property (22) was essential in proving theorem 5.1 on the
interpolation property of ν̂ in EIDW.

Is it possible to modify EIDW such that the constraint (22), or equiv-
alently property (24), is not required, without giving up the interpolation
property and, preferably, without giving up the other properties of ν̂ in
EIDW?

To this end, we generalize the correction term < U(z), e > of ν̂ in (23)
to g(U(z), e) where g is, for the time being, any bounded, bilinear form.
Imposing these characteristics on g then already ensures that properties 1
and 4 of ν̂ in EIDW, described in section 5.4, are retained. Property 3
also still holds, since a bounded linear transformation is continuous. The
next step is to impose further characteristics on g such that, if possible,
ν̂(z) = H(z)β + g(U(z), e) is an interpolator. This gives the following
theorem.

Theorem 6.1. Given is the approximation method

ν̂ = H(z)β + g(U(z), e) (25)

where g is bilinear and bounded. The only method of this form that ensures

ν̂(zk) = ν(zk), k = 1, . . . , n, is given by

ν̂(z) = H(z)β + UT (z)A−1e (26)

provided that A is invertible.

Proof. Consider any bounded bilinear form g. According to Riesz represen-
tation theorem for bounded sesquilinear forms on the Cartesian product of
a Hilbert space with itself, there exists a unique matrix Sg, such that (25) is
represented as

ν̂(z) = H(z)β + < Sg U(z), e >

The requirement ν̂(zk), k = 1, . . . , n, is then equivalent to

H(z)β + < Sg U
T (zk), e > = ν(zk) (27)

= ek +H(z)β (28)

taking into account de�nition 3.6. From de�nitions 3.4 and 3.5 it follows
that UT (zk) = Aξk such that (28) becomes

< Sg Aξk, e > = ek

⇔ (SgA)(., k) = ξk
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where (SgA)(., k) denotes the kth column of SgA. Since this should hold for
all k ∈ {1, . . . , n}, it follows that SgA = I. If A is invertible it follows that

ν̂(z) = H(z)β + < A−1 U(z), e > (29)

Noticing that A−1 is symmetric completes the proof.

Comparing (6) and (26), we have thus shown that generalized error-based
inverse distance weighting is equivalent to noise-free GP interpolation.

One consequence of this equivalence is that it immediately follows that
the posterior mean interpolates the training data points, i.e. m?(zi) =
ν(zi), ∀zi ∈ >, a well known property in GP emulation [1].

We notice again that the term generalized error-based inverse distance
weighting is appropriate, as (23) is a special case of (29), and thus of (26),
with A the identity matrix. Whereas in EIDW the interpolation property
is ensured by the condition

∑
i c(z, zi) = 1, in GEIDW it is the inverse of

the correlation matrix that maintains this property. That is, the role of
the inverse of the correlation matrix is to ensure the interpolation property
while at the same time establishing another desired property, namely that
the in�uence of the correction term diminishes as the distance of a considered
input point to all training data points increases. This last property is not
possessed by EIDW as discussed above.

It is easily checked that all properties of EIDW described in section 5.4
remain valid in the GEIDW setting.

7 Conclusion

In this paper we have developed a generalization of inverse distance weight-
ing. In inverse distance weighting an approximation for an unknown value is
obtained as a convex combination of known, correct output values in given
input points. In the proposed generalization an approximation results as a
correction to the value determined by another, given approximation method,
where the correction is a convex combination of the components of an er-
ror vector. A further generalization is obtained by dropping the constraint
of convexity, thereby allowing a more adequate trade-o� between the prior
approximation term and the correction term, by putting more weight to the
prior approximation method as the considered input point moves away from
all training data points, and vice versa. All fundamental properties of inverse
distance weighting are essentially retained in this setting. The presented gen-
eralization of inverse distance weighting is equivalent to noise-free Gaussian
process interpolation. The unique relationship between both methodologies
is established by Riesz representation theorem for bounded, bilinear forms
on the Cartesian product of a Hilbert space with itself.
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