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Abstract: Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were
inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with
0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive
compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262
was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246
and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd
or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246,
and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive
compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced
stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP)
colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic
interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246
and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with
phytoremediation on Cd and Zn contaminated soils.

Keywords: metal contaminated soil; Helianthus tuberosus; phytoremediation; high biomass crop;
green fluorescent protein; plant growth promoting bacteria

1. Introduction

During the last two decades, the potential use of plants to remediate metal contaminated soils
has been intensively investigated. For application of phytotechnologies on metal contaminated
soils, and especially in the case of phytoextraction, metal availability, uptake and phytotoxicity
are the main limiting factors [1–5]. The interactions between plants and beneficial bacteria may
increase the efficiency of phytoextraction because of increased biomass, metal uptake and plant
tolerance to toxic metals [6–9]. Plant growth can be enhanced: (1) indirectly, by preventing growth
and activity of plant pathogens through the production of antibiotics or through competition
for space and nutrients [10]; and (2) directly, by increasing available nutrients through different
mechanisms such as nitrogen fixation [11], solubilization of minerals such as phosphorous
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and iron [12,13], and production of phytohormones (as IAA, indole-3-acetic acid) [14] and
1-aminocyclopropane-1-carboxylate (ACC) deaminase [15,16]. Metal and nutrient availability can be
enhanced by excreting organic acids that decrease pH in the rhizosphere or by enhancing the Fe(III)
mobility and other cations through production of siderophores [9,17,18]. Some microorganisms are
equipped with metal-resistance/sequestration systems that can contribute to metal detoxification [19].
Plant-associated bacteria can also adsorb metals by binding them to anionic functional groups or
to extracellular polymeric substances of the cell wall [20–22]. This leads to a reduced metal uptake
and translocation inside the plant, improving its growth through decreasing phytotoxicity [8,23].
In a previous study, we showed that bacterial strains isolated from a Zn contaminated soil increased
root length of Brassica napus seedlings in the presence of Cd and Zn under in vitro conditions [24].

Many studies have evaluated the interactions between plants and their associated bacteria for
the removal or stabilization of metals in contaminated soils [25]. In some cases, bacteria isolated from
metal tolerant plants promoted the growth of plants from different taxonomic groups [23,26–28] and
demonstrated high levels of colonization in plant species different from the original host. Several
studies have been performed under hydroponic conditions to evaluate the effects of bacteria on growth,
metal uptake and production of thiobarbituric acid (TBA) reactive compounds for different plants
and metals [29–31]. However, most studies tested the use of single inocula on the same plant species.
In the light of bacteria-stimulated phytoremediation, it is however important to assess the bacterial
colonization of more than one plant cultivar under different metal pollution contexts.

The strategy of bacterial inoculation is one of the most critical steps in phytotechnology
applications [32]. The colonization must be effective in order to achieve beneficial effects on plant growth
and metal uptake [33]. A profound knowledge about plant growth promoting endophytic bacteria
(PGPB) colonization routes and plant–bacteria interactions is essential to develop an effective method
of inoculation [34]. The use of fluorescent proteins in non-invasive microscopy is a well-established
and valuable tool in biology and biotechnology [35]. Labeling with enhanced green fluorescent protein
(EGFP) can be adopted to observe the colonization patterns of bacteria [36–38]. GFP has been described to
be a good marker for studying bacterial behavior in the rhizosphere and the endosphere [39,40]. Recently,
Ma et al. [3] pointed out that endophytes could be a more reliable source of natural biocenosis than
rhizobacteria because of their intimate association with plants, although their effects in phytotechnologies
still should be investigated more in depth.

Helianthus tuberosus L. (Asteraceae) is a high biomass crop used for bio-ethanol production.
It is vegetatively propagated by tubers [41] with low production costs and negligible pests and
disease problems [42,43]. Several studies have demonstrated the tolerance of this crop to metals
such as Cd, Pb and Zn [44–48]. All these characteristics make H. tuberosus a promising candidate for
phytoremediation of metal contaminated soils, as well as to produce renewable energy. Therefore,
the aim of this work was to evaluate the effects of PGPB strains, isolated from B. napus growing on
a metal contaminated soil, on growth, metal uptake and TBA reactive compounds, in two cultivars
of H. tuberosus (VR and D19) exposed to Cd and Zn. Of one particular interesting endophytic strain,
Pseudomonas sp. 262, the colonization of the roots of H. tuberosus was studied using confocal laser
scanning microscopy.

2. Results and Discussion

2.1. Plant Growth and Metal Uptake

Exposure to Cd and Zn significantly decreased the weight of H. tuberosus in comparison to
the non-exposed control plants (Figure 1). In particular, the shoot weight decreased by 57% and
the root weight by 67% when plants were exposed to 0.1 mM Cd; the reductions reached 70% and
50% in shoot and root weights in the case plants were grown in presence of 1 mM Zn. Some of the
inoculated bacterial strains significantly improved growth of metal exposed plants. In the presence
of Zn, inoculation of Pseudomonas sp. 228 significantly increased both shoot and root weights of the
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D19 cultivar, by 145% and 263% respectively (Figure 1). Serratia sp. 246 increased the shoot weight
of the VR cultivar under Zn exposure by 78%. In Cd exposed plants of the D19 cultivar, inoculation
of Pseudomonas sp. 262 and Serratia sp. 246 significantly increased the shoot weight by 68% and 46%,
respectively. These beneficial effects on weight are in line with earlier studies in which positive effects
of inoculation with PGPB on growth of plants exposed to metals were reported [49–51]. However,
these positive effects of the endophytes Pseudomonas sp. and Serratia sp. have been not described
before in a tuberous plant exposed to metals.
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Figure 1. Dry weight (mg·plant−1) of the H. tuberosus cultivars VR and D19 after three weeks of growth
in presence of 1 mM Zn or 0.1 mM Cd. * Significant differences between inoculated and non-inoculated
after Tukey’s test, p < 0.05; mean values ± SE; n = 4.

In vitro, the inoculated bacterial strains demonstrated plant growth-promoting characteristics
like production of IAA, acetoin and ACC deaminase activity that can improve the growth of their
host plant (Table 1). Production of IAA and acetoin can stimulate root formation [52,53], and thereby
increase the nutrient absorption capacity of the plant. ACC deaminase activity can reduce the ethylene
levels generated due to stress, improving the growth of plants in presence of toxic concentrations of
metals [16]. It is important to mention that the endophytic bacterial strains that increased the growth
of H. tuberosus also increased the length of the roots of Brassica napus seedlings in vertical agar plates
containing toxic concentrations of Cd and Zn [24]. This suggests that these endophytes are beneficial
for plants from different families.
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Table 1. Metal tolerance and plant growth promoting (PGP) characteristics of selected bacterial strains
for inoculation in H. tuberosus under hydroponic conditions with Cd and Zn, modified from [24].

Comp. 1 Strain Identification Accesion Zn Cd Fe 0 µM Fe 0.25
µM OA ACC IAA Ace Psol N fix

Soil 222 Arthrobacter sp. KT461847+++ +++ − − ++ +++ − − − +
Root 228 Pseudomonas sp. KT461831 ++ ++ + + + ++ + − ++ −
Root 246 Serratia sp. KT461863+++ +++ + + ++ +++ ++ − − −
Root 256 Pseudomonas sp. KT461831+++ + + + - + ++ + +++ ++
Root 262 Pseudomonas sp. KT461831 + + ++ − + +++ ++ + − −

1 Compartment (Comp.), growth in the presence of Zn (1 mM) and Cd (0.8 mM), siderophores (Fe 0 µM and
Fe 0.25 µM), Organic acids (OA), ACC (ACC deaminase activity), IAA (indole-3-acetic acid), Ace (Acetoin),
phosphate solubilization (Psol), nitrogen fixation (N fix). + low, ++ medium, +++ high production, − absence
of production.

The bacterial inoculation also affected the metal concentrations in both cultivars of H. tuberosus
(Table 2). The Zn concentration significantly decreased in roots of the VR cultivar inoculated with
Pseudomonas sp. 228. No significant differences were found between inoculated and non-inoculated
plants of the D19 cultivar. In the case of Cd exposure, the effects were different. Inoculation
of Pseudomonas sp. 228 significantly increased the Cd concentration in roots of the D19 cultivar
in comparison to non-inoculated plants. In contrast, inoculation of Pseudomonas sp. 262 and
Arthrobacter sp. 222 decreased the Cd concentration in roots of the VR cultivar. Serratia sp. 246
and Pseudomonas sp. 262 also decreased the concentrations of Cd in the shoots of, respectively, the VR
and the D19 cultivar. In metal contaminated nutrient solutions, metals are almost entirely available to
plants. Therefore, the effects of the bacteria on the plant uptake could be masked because of the high
metal uptake that usually occurs in these cases. Wan et al. [30] did not observe significant differences in
Cd uptake by hydroponically grown Solanum nigrum after inoculation of Serratia nematodiphila LRE07
in the presence of high Cd concentrations. These authors concluded that the effect of the strain
was more significant at lower concentrations (10 µM of Cd). Moreover, the decreases in Cd and
Zn concentrations in inoculated plants could be due to the capacity of some bacteria to adsorb and
immobilize toxic ions from the solution through the production of extracellular polysaccharides and
proteins that can bind and precipitate metals [54]. It this way, bacteria can reduce the phytotoxic
effects of the metals improving the growth of the host plant [21,23,29]. Several authors have reported
such effect in different plant species and diverse growth conditions. Marques et al. [55] observed
that the Cd and Zn concentrations in roots of Helianthus annuus decreased after inoculation with
Chrysiobacterium humi, isolated from a Cd-Zn contaminated soil. They attributed this effect to the fact
that some bacteria can share the metal load with the plant, thereby decreasing the metal uptake in the
plant. Tripathi et al. [56] described that the growth of Phaseolus vulgaris improved after inoculation
of Pseudomonas putida KNP9 in a soil spiked with Cd and Pb. They suggested that the improved
growth was possibly due to a decreased metal uptake by the plant. Vivas et al. [22] reported that
the inoculation of Brevibacillus sp. alleviated the toxicity of Zn in Trifolium repens by reducing the
metal uptake by plants growing on a Zn contaminated soil. Inoculation with Serratia sp. MSMC541
decreased the metal translocation of Lupinus luteus when growing in a soil spiked with As, Cd, Pb and
Zn [57]. They concluded that this strain protects the plants against metal toxicity by reducing their
uptake and, in this way promoting plant growth. In our work, the weight of D19 plants increased in
presence of Pseudomonas sp. 228 under Zn exposure, and after addition of Pseudomonas sp. 262 and
Serratia sp. 246 in presence of Cd. In the case of the VR cultivar, the weight also increased in plants
inoculated with Serratia sp. 246 in presence of Zn. The concentration of metals tended to decrease in
roots of plants inoculated with Pseudomonas sp. 228 and Serratia sp. 246, although this decrease was
only significant in the case of the D19 cultivar, after inoculation with Pseudomonas sp. 262 in presence
of Cd. Taking this into account, our data support the hypothesis that bacteria have cultivar-dependent
and metal-specific effects on plant growth. Pseudomonas sp. 262 is a promising endophyte because it
can lower metal uptake in presence of Cd, decrease phytotoxicity, and improve plant growth.
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Table 2. Total metal concentrations (mg·kg−1 dry matter) in two cultivars of H. tuberosus grown in
absence (control) and in presence of 1 mM Zn or 0.1 mM Cd.

Treatments
VR D19

Zn

Aerial Root Aerial Root

Zn

Control 58 ± 14a 40 ± 10a 75 ± 23a 41 ± 5a
Non-inoculated 1533 ± 149b 4533 ± 945c 1097 ± 175b 3862 ± 1063bc
Serratia sp. 246 1155 ± 23b 4195 ± 355bc 1283 ± 207b 3455 ± 1767b

Pseudomonas sp. 256 1349 ± 183b 4368 ± 442bc 1554 ± 299b 3484 ± 651b
Pseudomonas sp. 228 975 ± 154b 2237 ± 368b 1317 ± 177b 3504 ± 1167b

Cd

Cd

Control 0.43 ± 0.09a 1.2 ± 0.2a 0.6 ± 0.1a 0.5 ± 0.2a
Non-inoculated 152 ± 10c 1118 ± 177def 106 ± 44bc 889 ± 196cde

Arthrobacter sp. 222 83 ± 6bc 492 ± 85bc 58 ± 8b 631 ± 140bc
Pseudomonas sp. 228 112 ± 23bc 1250 ± 320ef 106 ± 18bc 1365 ± 145f

Serratia sp. 246 24 ± 4b 908 ± 314cde 129 ± 45c 798 ± 65bcd
Pseudomonas sp. 262 145 ± 29c 487 ± 57bc 81 ± 5bc 383 ± 107b

Different letters represent significant differences per column, cultivar and metal after Tukey’s test, p < 0.05; mean
values ± SE; n = 4.

2.2. Nutrient Status

In general, inoculation of bacterial strains did not have clear effects on the nutrient concentrations
in both cultivars (Tables S1–S4). Macronutrients as Na and Ca were significantly lower in roots of,
respectively, VR and D19 plants when plants were inoculated with Serratia sp. 246, Pseudomonas sp. 228
and 256 in presence of 1 mM of Zn (Table S1). In the case of exposure of the plants to 0.1 mM Cd,
inoculation of Arthrobacter sp. 222, Serratia sp. 246, Pseudomonas sp. 228 and 262 led to lower K
concentrations in shoots of the VR cultivar (Table S2).

Micronutrient concentrations changed in some cases after bacterial inoculation. When plants were
grown in the presence of Zn, inoculation of Serratia sp. 246, Pseudomonas sp. 228 and 256 significantly
decreased the Cu and Fe concentrations in roots of respectively the VR and D19 cultivars (Table S3).
The concentrations of Cu in roots of Cd exposed plants of the VR cultivar were also lower after
inoculation with Arthrobacter sp. 222, Serratia sp. 246 and Pseudomonas sp. 262 (Table S4). However,
Serratia sp. 246 increased the Fe content in the shoots of the VR cultivar in presence of Zn (Table S3).
The latter strain also increased the weight of VR plants exposed to Zn.

The lower Cu and Fe concentrations in roots of both cultivars when inoculated with
Serratia sp. 246 and Pseudomonas (262 and 256) can be due to the above-mentioned bacterial mechanisms
of metal sequestration and/or biosorption. Microorganisms indeed have developed complex
mechanisms of metal resistance that can affect the availability of metals and nutrients [58,59]. PGPB can
sequestrate elements through extracellular production of polysaccharides, by fixing elements such as
Fe or Cu on the membrane or cell wall or they can precipitate them in the form of hydroxides or other
insoluble metal salts [23,60,61]. Bacterial surfaces hold polar functional groups that can interact with
cations [62]. In our work, the excess of Cd and Zn might induce the bacterial mechanisms of metal
resistance that lower the availability of metals and also the solubility of other nutrients that might be
precipitated on the cell surface.

The synthesis of siderophores is stimulated in presence of toxic metals in order to supply
the appropriate amounts of ions to the plant and diminish the phytotoxicity symptoms [17,29].
This PGP characteristic plays an important role under soil conditions in which the nutrients are
mainly present for the plants in unavailable chemical forms. Therefore, it can be expected that, under
the growth conditions used in this study (sand moistened with half-strength Hoagland whether or
not supplemented with Zn or Cd), the effects of the bacteria on nutrient uptake are less pronounced,
since Fe is supplied in an appropriate concentration with the nutrient solution. Thus, the differences
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observed in the nutrient concentrations in the plants might also be due to the imbalance of nutrients
generated by the presence of metals in the solution.

2.3. Lipid Peroxidation

TBA reactive compounds are produced as a result of peroxidation of membrane lipids.
This process is initiated by excess of free radicals in consequence of oxidative stress. Increased
levels of TBA reactive compounds are an indicator for physiological stress [63]. Many studies reported
that levels of TBA reactive compounds increased in plants exposed to toxic concentrations of metals
such as Cd, Zn, and Pb [64–67].

In the present work, exposure to 1 mM Zn and 0.1 mM Cd significantly increased the levels of
TBA reactive compounds in roots of both cultivars of H. tuberosus (Figure 2). No significant differences
in TBA-levels were found in leaves of metal-exposed plants compared to non-exposed plants. Nouairi
et al. [68] obtained similar results for leaves of Brassica juncea exposed to 50 µM Cd. According to
them, this result could be related with a tolerance mechanism of the plant to avoid oxidative stress
generated by the presence of metals in the leaves. A reduction of the concentrations of TBA reactive
compounds has been reported to result from increased activities of anti-oxidative enzymes, which
limit H2O2 levels and membrane damage [69].

Interestingly, the inoculation of Serratia sp. 246, Pseudomonas sp. 256 and 228 significantly
decreased the amounts of TBA reactive compounds in roots of the D19 cultivar grown in the presence
of Zn (Figure 2a). The roots of the VR cultivar also contained lower levels of TBA reactive compounds
when plants were inoculated with Pseudomonas sp. 228. In Cd exposed plants, no significant
differences in TBA reactive compounds were observed between inoculated and non-inoculated plants
(Figure 2b). Decreases of TBA reactive compounds after inoculation of PGPB were reported by several
authors in different plant species. Pandey et al. [31] described that inoculation of Ochrobactrum
strain CdSP9 lowered the content of TBA reactive compounds in hydroponically grown Oryza sativa
exposed to Cd. Wan et al. [30] also observed that the inoculation of Serratia nematodiphila LRE07
decreased the concentration of TBA reactive compounds in Solanum nigrum exposed to Cd under
hydroponic conditions.
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Figure 2. Thiobarbituric acid reactive compounds (µM·g−1 fresh weight) in roots of H. tuberosus
cultivars VR and D19 after three weeks of exposure to: 1 mM of Zn (a); and 0.1 mM Cd (b). * Significant
differences between inoculated and non-inoculated after Tukey’s test, p < 0.05; mean values ± SE; n = 4.

These results suggest that the inoculated bacteria can assist metal exposed plants to keep the
oxidative stress under control. In the inoculated plants, the Zn concentrations tended to decrease
which could at least partially explain the lowering of TBA reactive compounds in inoculated plants.

2.4. Colonization of Enhanced Green Fluorescent Protein (EGFP): Tetracycline® Pseudomonas sp. 262 in the
Roots of H. tuberosus

Pseudomonas sp. 262 was able to grow in the presence of 0.8 mM Cd and showed in vitro the
capacity to produce siderophores (in absence of iron), organic acids, indole acetic acid, acetoin and
ACC deaminase (Table 1). Moreover, this bacterial strain increased the shoot weight of the D19 cultivar
of H. tuberosus exposed to 0.1 mM Cd. Taking this into account, Pseudomonas sp. 262 was selected to be
labeled with the EGFP: tetracycline® plasmid to study the bacterial colonization of the roots of the
H. tuberosus D19 cultivar.

Figure 3a demonstrates that the conjugation was effective, since Pseudomonas sp. 262 showed
fluorescence after blue light (488 nm) excitation, and was able to grow in presence of tetracycline
(20 µg·mL−1). In Figure 3b, EGFP-Pseudomonas sp. 262 can be seen as single cells attached to
the surfaces of root hairs. Two days after inoculation, bacterial cells were also found inside the
root hair which can be observed from the orthogonal plot (Figure 3c). These results support that
Pseudomonas sp. 262 is an endophytic strain.

Ma et al. [70] reported that another Pseudomonas sp. A3R3 isolated from roots of Alyssum
serpyllifolium showed a high level of colonization in root and shoot interior of Brassica juncea.
He et al. [27] also observed that Rahnella sp. JN6, originally isolated from Polygonum pubescens,
could colonize the root, stem and leaf tissues of Brassica napus. Rahnella aquatilis SPb, an endophytic
bacterial strain from Ipomoea batatas was inoculated in hybrid poplar and increased the growth of the
cuttings in comparison with non-inoculated conditions, illustrating the beneficial effects of the strains
in growth of another plant species not related with the initial host plant [71].
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adhered soil. 

3.2. PGPB Strains 

Cultivable bacteria were isolated from soil, rhizosphere and plant-endosphere of Brassica napus 
growing on a Zn-contaminated site in Belgium [24]. Based on their PGP characteristics (Table 1), 3 
Zn-tolerant strains (Serratia sp. strain 246, Pseudomonas sp. strain 228, and Pseudomonas sp. strain 256) 
and 4 Cd-tolerant strains (Arthrobacter sp. strain 222, Pseudomonas sp. strain 228, Pseudomonas sp. 
strain 262, and Serratia sp. strain 246) were selected to inoculate H. tuberosus. Serratia sp. strain 246 
and Pseudomonas sp. strain 228 were inoculated in the presence of Zn and Cd because both strains 
showed high tolerance to grow with both metals. The strains were grown in 869 liquid medium [72] 
at 30 °C under shaking conditions. 

3.3. Inoculation of PGPB Strains in H. tuberosus 

Tuber slices with buds were incubated in 1 L plastic pots filled with moist quartz sand that were 
placed in a growth chamber at 25/12 °C, 14/12 h of photoperiod. The following conditions were 
established after one week of growth: (i) control plants grown in sand without metal and bacteria; 
(ii) non-inoculated, metal-exposed plants grown in the presence of metals (Cd or Zn), but without 
bacteria; (iii) plants inoculated with bacterial strains (Arthrobacter sp. 222, Pseudomonas sp. 228, 262 
and Serratia sp. 246) and grown in presence of Cd; and (iv) plants inoculated with bacterial strains 
(Pseudomonas sp. 228, 256 and Serratia sp. 246) and grown in presence of Zn. 

Figure 3. Confocal images of EGFP-labeled Pseudomonas sp. 262 colonising the root hairs of
one-week-old seedlings of H. tuberosus D19 cultivar: (a) solution with EGFP-labeled Pseudomonas sp.
strain 262 with blue light (488 nm) excitation; (b) single cells attached to a root hair; and (c) ortho-image
of the root hair, showing bacterial cells (green) inside plant cells (in blue).

In our study, the EGFP-labeled bacterial strain was found in the root interior of H. tuberosus in the
studied conditions. Since the inoculated bacterial cells were also found attached to the root hair surface,
we suggest this one of the entry routes of the bacterial cells to the plant. Moreover, after inoculation of
this strain, the growth of the H. tuberosus D19 cultivar improved significantly when exposed to Cd.
This beneficial effect on plant growth, together with the visualization of the bacteria on the root hair
surfaces and inside roots, indicates that a beneficial plant–microbe interaction was established.

3. Materials and Methods

3.1. Plant Material

Tubers of two cultivars of H. tuberosus (Violet de Rennes abbreviated as VR, and Blanc Précoce
commonly named D19) were collected in spring in the field collection of IMIDRA (Instituto Madrileño
de Investigación y Desarrollo Rural, Agrario y Alimentario; Madrid, Spain) to perform the experiments.
The tubers were kept during two weeks at 4 ◦C for vernalization. After this period and before starting
the experiments, the tubers were vigorously washed in tap water to remove the adhered soil.

3.2. PGPB Strains

Cultivable bacteria were isolated from soil, rhizosphere and plant-endosphere of Brassica napus
growing on a Zn-contaminated site in Belgium [24]. Based on their PGP characteristics (Table 1),
3 Zn-tolerant strains (Serratia sp. strain 246, Pseudomonas sp. strain 228, and Pseudomonas sp. strain 256)
and 4 Cd-tolerant strains (Arthrobacter sp. strain 222, Pseudomonas sp. strain 228, Pseudomonas sp. strain 262,
and Serratia sp. strain 246) were selected to inoculate H. tuberosus. Serratia sp. strain 246 and Pseudomonas sp.
strain 228 were inoculated in the presence of Zn and Cd because both strains showed high tolerance to grow
with both metals. The strains were grown in 869 liquid medium [72] at 30 ◦C under shaking conditions.

3.3. Inoculation of PGPB Strains in H. tuberosus

Tuber slices with buds were incubated in 1 L plastic pots filled with moist quartz sand that were
placed in a growth chamber at 25/12 ◦C, 14/12 h of photoperiod. The following conditions were
established after one week of growth: (i) control plants grown in sand without metal and bacteria;
(ii) non-inoculated, metal-exposed plants grown in the presence of metals (Cd or Zn), but without
bacteria; (iii) plants inoculated with bacterial strains (Arthrobacter sp. 222, Pseudomonas sp. 228, 262
and Serratia sp. 246) and grown in presence of Cd; and (iv) plants inoculated with bacterial strains
(Pseudomonas sp. 228, 256 and Serratia sp. 246) and grown in presence of Zn.

Half strength modified Hoagland’s solution (1 mM Ca (NO3)2·4H2O, 1.5 mM KNO3, 0.5 mM
NH4H2PO4, 0.25 mM MgSO4·7H2O, 1 µM MnSO4·H2O, 12.5 µM H3BO3, 0.25 µM (NH4)6Mo7O4,
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0.05 µM CuSO4·5H2O, 1 µM ZnSO4·7H2O, 10 µM NaFeIII-EDTA, and demineralized water buffered
with 1 mM of 2-(N-morpholino) ethanesulfonic acid, at pH 5.5 ± 0.5) was added to the sand until
saturation. Metal exposures were performed by adding 0.1 mM of Cd (added as CdSO4·8H2O) or 1 mM
of Zn (added as ZnSO4·7H2O) to the nutrient solution. Plants were watered every two days with the
nutrient solution supplemented with metals. The metal concentrations used in this experiment were
chosen based on a former study [73]. Two plants were put per pot with four independent replicates
per treatment. The bacterial suspension (108 cfu·mL−1) in buffer (10 mM MgSO4) was added into the
pots. Buffer (10 mM MgSO4) without bacteria was added to the controls. After 3 weeks of growth,
plants were harvested.

3.4. Plant Analysis

After harvest, the roots were rinsed in 10 mM sodium ethylenediaminetetraacetic acid (Na2EDTA)
to remove the adhering metal-containing particles, and subsequently washed in distilled water. Plants
were subdivided into leaves, stems and roots, weighed and dried in a forced air oven for 48 h at 60 ◦C
to determine the dry weights. Subsequently, the dried tissues were individually ground and digested
(30 mg) according to [47]. Total concentrations of metals and macro/micronutrients were determined
by flame atomic absorption spectrometry (Fast Sequential Model AA240FS, Varian, Santa Clara,
CA, USA). The quality of the digestion and analytical methods was verified by including blanks and
certified reference materials (NCS DC73348 Brush Branches and Leaves, China National Analysis
Center for Iron and Steel, and CTA-VTL-2 Virginia Tobacco Leaves, Polish Academy of Sciences and
Institute of Nuclear Chemistry and Technology) with every set of samples. The recovery percentages
for metals were: Cd (~95%) and Zn (~101%).

The membrane lipid peroxidation in the plant tissues was estimated in terms of the content
of thiobarbituric acid reactive (TBA) compounds according to the method of [74], modified by [75].
The calibration curve was carried out with every set of samples, using 1,1,3,3-Tetraethoxypropane
(TEP) as precursor of malondialdehyde (MDA). Absorbances were determined with a UV–Vis light
spectrophotometer (Thermo Spectronic Helios Alpha, Thermo Fisher Scientific, Madison, WI, USA).

3.5. Evaluation of the Colonization Process: Localization of Inoculated EGFP Labeled Pseudomonas sp. 262

3.5.1. Bacterial Strains and Growth Conditions

The receptor, Pseudomonas sp. 262 was grown in 284 minimal medium [76] supplemented with
0.4 mM of Cd (added as CdSO4·8H2O) at 30 ◦C. The donor, Escherichia coli strain dH5a, carrying the
EGFP pMP4655 plasmid, was grown in 869 medium [72] supplemented with 20 µg·mL−1 tetracycline
at 30 ◦C. The helper, E. coli strain dH5a, carrying the pRK2013 plasmid, was grown in 869 medium
at 30 ◦C. Donor and helper were constructed in the Institute of Biology Leiden, Leiden University
(The Netherlands) [39].

3.5.2. Introduction of the EGFP: Tetracycline into Pseudomonas sp. 262

Triparental mating was carried out to label Pseudomonas sp. 262 with the EGFP: tetracycline®plasmid.
The strains were grown in 869 medium at 30 ◦C under shaking conditions. Growth curves were obtained
by diluting an overnight culture in order to verify the time needed to reach the appropriate optical
density (OD) for conjugation (donor and helper OD 0.3–0.4, and receptor OD 0.7). The OD was measured
at 660 nm every 30 min using a Visible Diode Array Spectrophotometer, Novaspec Plus, Amersham
Biosciences, Piscataway, New York, United States. Once the appropriate OD was reached, the bacterial
strains were centrifuged at 3000 rpm during 10 min, and then added to the mating filter in a Petri dish with
869 medium. After the conjugation, 284 minimal medium supplemented with 0.4 mM of Cd (added as
CdSO4·8H2O) and tetracycline (20 µg·mL−1) was used to isolate the receptor labeled strains. Fluorescence
of the strains was checked using a Nikon 80i fluorescence microscope (High-pressure Mercury Lamp;
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Excitation filters: 465–495 nm, dichroic mirror 505 nm, emission filter 515–555 nm. Objectives used:
40×/0.95 Air Plan Apo WD 0.14 mm and 100×/1.25 Oil Plan Apo WD 0.17 mm).

3.5.3. Inoculation of EGFP Pseudomonas sp. 262 on Roots of H. tuberosus

Tuber slices with buds of H. tuberosus cultivar D19 were grown on coarse perlite moistened with
a half strength modified Hoagland’s solution (see above) under greenhouse conditions (25–30 ◦C
temperature and 70–90% relative humidity). The bacterial suspension (108 cfu·mL−1) was added to
the pots (0.2 L) after appearance of the first roots (at 5 days). Four repetitions were used.

3.5.4. Confocal Laser Scanning Microscopy

After 48 h of incubation, one-week-old plant roots were washed to remove weakly adhered
bacterial cells and, subsequently, intact root preparations (at 25 ◦C) were observed with a Zeiss
LSM510 confocal laser scanning microscope (Carl Zeiss, Jena, Germany) mounted on an Axiovert
200M. The objective used was 40×/1.1 water immersion (Zeiss LD C-Apochomat 40×/1.1 WKorr
UV–VIS-IR, Carl Zeiss).

Excitation was performed at 488 nm using an Argon laser source. Backward GFP signal was
filtered using a 500–550 nm band pass filter. Images were edited using the software Zen 2009 Light
Edition (Carl Zeiss MicroImaging GmbH, Jena, Germany).

3.6. Statistical Analysis

Statistical analysis of data was performed using the IBM SPSS Statistics 19.0 software (Armonk,
NY, USA). Two-way analysis of variance (ANOVA) and Tukey’s test were applied. Differences at
p < 0.05 levels were considered significant.

4. Conclusions

The effects of the bacterial strains on the growth of H. tuberosus differed in function of the
metal, the inoculated bacterial strain and the plant cultivar. The improvement of growth and the
decrease of the metal-induced stress were more pronounced in the D19 cultivar than in the VR
cultivar. Three endophytes of Brassica napus enhanced the growth of the D19 cultivar exposed Cd
or Zn. Only Pseudomonas sp. 228 increased Cd uptake. Using confocal microscopy, we observed
that, two days after inoculation, EGFP-labeled Pseudomonas sp. 262 colonized the root surface and
interior of H. tuberosus. In combination with the growth promotion that was observed after inoculation,
this demonstrates an established plant–microbe interaction. Therefore, use of the D19 cultivar in
combination with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for
application in phytoremediation strategies on Cd-Zn contaminated soils.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/10/2026/s1.
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