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Abstract 
 

The identification of the minimum effective dose is of high importance in the drug 

development process. In early stage screening experiments, establishing the minimum 

effective dose can be translated into a model selection based on information criteria. The 

presented alternative, Bayesian variable selection approach, allows for selection of the 

minimum effective dose, while taking into account model uncertainty. The performance of 

Bayesian variable selection is compared with the generalized order restricted information 

criterion on two dose-response experiments and through the simulations study. Which 

method has perform better depends on the complexity of underlying model and effect size 

relative to noise. 
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1  Introduction 
   

   

The selection of the minimum effective dose (MED) is an important concept in the drug 

development process (European Medicines Agency, 2002 and Wang et al., 2011). It translates 

into the identification of the lowest dose that causes a desired effect or adverse events. The 

MED is often used in the context of the former case, while the latter is called the lowest 

observed adverse event level (LOAEL, Kodell, 2009) or the maximum safe dose (Hothorn 

and Hauschke, 2000). From a statistical point of view, there is no difference between these 

two concepts, only the interpretation of the response and the findings differ. An analogous 

framework arises when the determination of the maximum effective dose is of primary 

interest (Kong et al., 2014). In this manuscript, we restrict the discussion to the MED. In 

some cases, the clinical significance is included in the definition of the MED (Liu, 2010), 

while other cases are focused on statistical significance only (Kuiper et al., 2014). Note that 

clinical significance of the result can be included in stages following the analysis and treated 

separately. 

The concept of the MED appears in multiple stages of drug development. If a large 

number of doses is used or prior knowledge about the shape of the dose-response profile 

exists, parametric methods can be applied (e.g. the four parameter logistic non-linear 

regression model, Hill’s model, etc., Seber and Wild, 1989, Straetemans, 2012, Pramana et 

al., 2012). The MED is, in this case, based on a particular parametric model. Alternatively, 

methods can be used that combine model selection with parametric modelling, such as MCP-

Mod (Bornkamp et al., 2009). In our framework, there are only few dose levels at which the 

response was measured and typically only limited knowledge about the dose-response 

relationship exists. Therefore, parametric modelling of the whole profile as a continuous 

function of dose is not suitable and an order restricted analysis of variance (ANOVA) is 

preferred. Typically, the monotonicity assumption is a reasonable choice, implying that a 

higher dose induces a stronger effect (positive or negative for upward or downward trend, 

respectively). Note that this assumption is often made in drug development studies (e.g. Bretz 

and Hothorn, 2003, Ohlssen and Racine, 2015). 

The goal of the analysis is to determine the lowest active dose with significant 

difference to a control. For example, in an experiment with a placebo and three active doses, 

we would like to detect which of the three active doses is the MED. To achieve it, we need to 

be able to determine the probability of being the best model among the eight possible models 

(for each direction) shown in Table 1. As MED, we understand lowest dose that exhibits an 

effect, either increasing or decreasing, respectively to monotonocity assumption in place. 

Therefore, the = 2MED  for model 2g  in Table 1 for both Up and Down mean structure. 

Within the frequentist framework, the MED can be viewed either in terms of inference of 

particular increments between consecutive doses or as model selection problem. The former 

approach is represented by multiple comparison procedures (Bretz and Hothorn, 2003), such 

as Dunnett’s test (Dunnett, 1955). This approach may require to pool together some of the 

means in order to maintain a reasonable power, which does not provide complete information 

about the MED and can eventually lead to biased estimates (Hothorn and Hauschke, 2000). 

Multiple contrast tests are generally designed to preform an inference rather than to 

determine the MED (Bretz and Hothorn, 2003). Closed tests procedures can be applied 

instead, but they may lack overall power (Wang and Peng, 2015). Recently, Kuiper et al. 

(2014) suggested to focus on model selection methods and specifically on information criteria 

(IC) based approaches (e.g. Lin et al., 2009, Lin et al., 2012). 
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Within the IC approach, the weights of each one of the candidate models are estimated and 

used for the determination of the MED. It is crucial to realize that the MED cannot be 

established through a classical model selection process that focuses only on the best model 

(among a set of candidate models). Some of the competing models could have the same 

MED, i.e. the same dose that shows first significant effect compared to the mean of control 

dose. For example, the MED for all the models 
1g , 

3g , 
5g  and 

7g  in Table 1 is the first 

active dose. Although one model could have the highest model weights among all models, 

group of competing models with same MED could have higher weight when all pooled 

together. This reasoning suggests that IC is an appropriate approach, since IC based methods 

compare all candidate models and their IC values can be easily converted into weights. Such 

weights can be used to approximate posterior model probabilities (Burnham and Anderson, 

2002) that can be pooled together for appropriate models (Kuiper et al., 2014). 

Note that the set of models in Table 1 is based on strict inequalities. This is not typical 

set of models that would be used in context of IC methods that are designed to work with 

models containing inequalities rather than strict inequalities. The reason to approach the 

problem with strict inequalities models is that our main focus is on Bayesian variable 

selection described below and IC methods are used for comparison. This would lead to issues 

with fitting some strict inequalities models in Section 4. If the model with strict inequality 

between two given doses is fitted, but the observed means result in opposite direction, the 

model with equality is actually fitted, which is represented by another model in our strict 

inequalities based set (e.g. compare models 
2g  and 

0g ). Therefore, model fitting need to be 

approached carefully and fitting of same models multiple times needs to be avoided. Note 

that for proper usage of IC with inequalities, smaller set of models would be used; but by 

extending the set of models and using only those that can be actually fitted, we only loose 

computational time. 

Naturally, order restriction needs to be taken into account for IC based methods 

(Anraku, 1999) which leads to the generalized order restricted information criterion (GORIC, 

Kuiper et al., 2011). The advantage of the IC is that they provide the probability for a 

particular model being the best model, given the data, among all fitted models. Hence, 

multiple values of the MED can be computed together with their corresponding posterior 

model probabilities (Kuiper et al., 2014). The main disadvantage of this approach is that it 

requires to fit all the models under consideration. Total amount of possible models increases 

quickly with number of dose levels. For example, for an experiment with five or six dose 

levels, there are 16 or 32 order restricted one-way ANOVA models that may needs to be 

fitted, respectively. Ideally, scientific interest is limited only to the small set of models, but it 

may be the case that wide range of the models need to be explored. Procedures are available 

to reduce the number of models either by an efficient search in the model space (e.g. stepwise 

methods) or by reducing the model space itself (e.g. diversity index, Kim et al., 2014). 

However, they usually require additional input parameters or criteria specification and the 

resulting amount of models to be fitted can still remain prohibitive. 

In such a case, Bayesian variable selection method (George and Mc-Culloch, 1993, 

O'Hara and Sillanpää, 2009) becomes an attractive alternative. In particular, for dose 

response experiments, the BVS approach (Kasim et al., 2012, Otava et al., 2014) allows 

fitting all models simultaneously and provides posterior probabilities for each of them, while 

computational time does not increase in a linear fashion as in case of the IC approach. 

This manuscript is organized as follows. The methodological background for both the 

IC based methods and the BVS is summarized in Section 2. The two case studies analyzed in 

this paper are described in Section 3. The methods are applied for the two case studies in 

Section 4 and the results are evaluated. Further empirical comparison is investigated via 

simulation study and presented in Section 5. Finally, the findings are summarized and 
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discussed in Section 6. 

 

2  Methodology 
  

We consider a dose-response experiment with a control group and 1K   active dose levels. 

Denote the set of observations by 

 

  = , = 0, , 1, =1, , ,ij iY i K j nY K K  

 

where 
in  represents the number of observations of dose i. Our goal is to select the lowest 

dose i that shows a statistically significant difference compared to the control group. Such a 

dose is the MED. We denote such an event as MED = i  and the probability that this event 

occurs as (MED = )P i . Let 
0 , , Rg gK  be a set of 1R  candidate models which are used to 

determine the MED. Based on the observed data and the models that are considered as 

plausible, the quantity of interest is the posterior probability of the particular value of the 

MED, 
0(MED = | data, , , )RP i g gK . The determination of the MED can be translated into a 

model selection problem. For example, for = 4K  it translates to a selection of the best model 

among all models for given direction that are presented in Table 1. Note that multiple models 

induce the same MED, e.g. for = 4K  the probability that the MED is the second dose level is 

equal to 
0 2 0 6 0(MED = 2 | data, , , ) = ( | data, , , ) ( | data, , , )R R RP g g P g g g P g g gK K K , where 

0( | data, , , )r RP g g gK  is the posterior probability of the model 
rg , = 0,1, ,r RK . Therefore, 

the inference about the MED cannot be based on a single model only and our aim is to 

estimate 0( | data, , , )r RP g g gK  for all the suitable models. The posterior probabilities for the 

MED are obtained by summing appropriate posterior model probabilities. To simplify 

notation, from this point onwards, we denote 
0(MED = | data, , , )RP i g gK  and 

0( | data, , , )r RP g g gK  as (MED = | data)P i  and ( | data)rP g , respectively. 

 

2.1  Model averaging techniques 
 

The likelihood based methodology addresses the problem of model selection through 

information criteria (IC) approaches (e.g. Akaike, 1974, Burnham and Anderson, 2002, 

Claeskens and Hjort, 2008, Lin et al., 2012, Kuiper et al., 2014). All candidate models are 

fitted and their corresponding IC values are computed. Based on the IC value, weights are 

calculated for each of the fitted models (as explained in detail below). The resulting weights 

can be considered as an approximation of posterior probabilities of the models being the best 

model among all fitted models, given the data (Burnham and Anderson, 2002). 

As proposed by Burnham and Anderson (2002) and Claeskens and Hjort (2008), for 

set of models 0 1, , , Rg g gK , we can select as the best model such that maximizes the posterior 

model probability given by 

 

 

=1

(data | ) ( )
( | data) = = 0, , .

(data | ) ( )

r r
r R

s ss

P g P g
P g r R

P g P g
K  (1) 

 

The term (data | )rP g  is the model likelihood (Burnham and Anderson, 2002) corrected with 

a penalization term and ( )rP g  is a prespecified prior probability of model rg . In this section, 
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we consider a vague prior knowledge and so we use ( ) =1/ ( 1)rP g R  for all r. Different 

priors may be used in order to incorporate prior scientific knowledge, if available. The model 

likelihood (data | )rP g  is approximated by  

 

 1
2

(data | ) = exp( ),IC r rP g IC   (2) 

 

where 
min=r rIC IC IC  , with =0, ,min = minr R rIC ICK . Hence, combining equations (1) and 

(2) together and assuming equal prior probabilities, we get  

 

 
1
2

1
2=0

exp( )
= ( | data) = .

exp( )

r
r IC r R

ss

IC
w P g

IC

 

 
 (3) 

 

 The properties of this method depend on IC used. 

An information criterion is a function of likelihood with a penalization term for model 

complexity given by 

 = 2 ( | data) .IC logL    (4) 

 

 Here,   represents the model parameters, ( | data)L   maximum likelihood estimate for 

given model and   is a penalization function. Note that if the order restricted model is 

considered, the likelihood will be computed under such restriction. As IC, Akaike’s 

information criterion (AIC, Akaike, 1974) or Bayesian information criterion (BIC, Schwarz, 

1978) can be applied. The AIC uses the penalty term = 2 A  , with A being number of 

distinct parameters in a model. The main criticism against the AIC is that it evaluates the 

goodness of fit without taking into account sample size (Burnham and Anderson, 2004). 

Small-sample size modification of the criterion was developed (Sugiura, 1978), but often the 

original version is used (Burnham and Anderson, 2004). The BIC uses the penalty term 

= log( )A B  , where B is the number of observations. Hence, the BIC penalty is higher than 

for the AIC, if we have more than seven observations and the BIC favours simpler models as 

sample size increases. Although the criteria seem to be very similar, their motivation is 

grounded in very different principles. While the AIC arises from information theory and tries 

to find the model with the smallest distance to a complex true model, the BIC is related to an 

asymptotic Bayes factor and assumes that true model is contained in available set of models 

(Schwarz, 1978). However, as pointed out by Anraku (1999), none of these criteria is suitable 

in our framework, since they cannot properly evaluate order restrictions. 

The order restricted information criterion (ORIC, Anraku, 1999) uses an order 

restricted likelihood in which the mean response at each dose level is estimated using isotonic 

regression (Barlow et al., 1972) and a penalty term is given by  

 
=1

( ) = 2 ( , , ).
K

ORIC P K  v
l

l l  (5) 

 The level probabilities (Robertson et al., 1988), ( , , )P K vl , are defined under the null model 

(of no dose effect, i.e. under 0g ). We assume that there are K doses for an experiment with a 

control and 1K   dose levels. Then, ( , , )P K vl  represents the probability that number of 

distinct dose-specific means equals to l . The weights are given by = /i i iv n   and they are 

constant for balanced experiment with equal variances. The generalized ORIC (GORIC, 

Kuiper et al., 2011) is an extension for more complicated profiles than simple order 
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restrictions. In our framework, for normally distributed data and monotonicity, GORIC 

reduces back to the ORIC. 

The weights defined in Equation (3) can be used to estimate the dose-specific means 

as weighted average of the means estimated by the 1R  candidate models. This approach is 

closely related to model averaging techniques as discussed, in the context of dose-response 

modelling, in Bretz et al. (2005), Pinheiro et al. (2006), Whitney and Ryan (2009) and Lin et 

al. (2012). 

Note that it is necessary to fit all candidate models 
0 , , Rg gK  in order to compute the 

weights based on the IC described in this section. Therefore, with an increasing number of 

candidate models (e.g. when the number of dose levels increases), the number of fitted 

models increases as well. The number of candidate models can be significantly reduced if 

theory-based models only would be considered. However, in this manuscript, we focus on 

case when scientific knowledge to construct such framework is lacking and all the models 

need to be considered. Additionally, if the focus would be solely at MED and not the models 

themselves, set of models for ICs can be reduced to focus on MED only. 

 

2.2  Order restricted estimation: hierarchical Bayesian approach 
 

In this section we formulate a hierarchical Bayesian model in order to estimate the 

mean of the response at each dose level. The order constraints on the parameters are 

translated into order restrictions on the prior distributions (Klugkist and Mulder, 2008) which 

leads to a simplification of Markov chain Monte Carlo (MCMC) sampling (Gelfand et al., 

1992 and Kasim et al., 2012). Following Klugkist and Mulder (2008) and Kasim et al. (2012), 

we assume a hierarchical one-way ANOVA model  

 2( , ),ij iY N    (6) 

 where i represents the dose and =1, , ij nK  the replicates within each dose. The dose-

specific mean response at the dose level i is given by  

 

0

0

=1

, = 0,

( ) = =
, = 1, , 1.

i
ij i

i

E Y
i K




 





 


 l

l

K
 (7) 

  

 The constraints differ according to the direction of order restriction: 0 l
 for an 

upward trend or 0 l
 for a downward trend (Otava et al., 2014). 

In order to ensure monotonicity among the means, the prior distributions of all 

components of vector 1 2 1= ( , , , )K   K  are truncated (at zero) normal distributions. Note 

that ( = 0) = 0P l , a probability of any of the components to be exactly zero is zero. Hence, 

the parametrization in Equation (7) implies that the model with 1K   (ordered) parameters 

l , is fitted (Dunson and Neelon, 2003). For example, for = 4K , only model 7g  can be 

fitted. Therefore, necessarily MED =1 . However, all the other models 0 1, , Rg g K  can be 

fitted by a slight modification of the parametrization of the mean structure, i.e. by fixing 

appropriate l  to be equal to zero. The deviance information criterion (DIC, Spiegelhalter et 

al., 2002), can be used to select the best model in the spirit of previous section. However, 

such approach shares the disadvantage of necessity to fit all models of interest separately and 

is not appropriate for inequalities. Instead, the model given above can be extended to BVS 

model, as will be shown in following section, by reformulating the mean structure in 

Equation (7) which allows to fit all candidate models 0 , , Rg gK  simultaneously. 
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2.3  BVS model formulation 
  

The Bayesian variable selection (BVS) method is an extension of the Bayesian model in 

equation (7) that allows us to fit all candidate models at once (through one MCMC chain) via 

the internal variable selection procedure. The set of all candidate models is summarized by 

one mixture model and the mixture weights are estimated as additional parameters. 

Therefore, the BVS gains a clear advantage over any IC based method, where all the models 

need to be fitted separately. To incorporate all the models in the framework, the components 

of   has to be allowed to be equal to zero in the specification of the mean structure in 

Equation (7). Moreover, a specific selection of a subset of components from   to be equal to 

zero determines unambiguously which model of 
0 , , Rg gK  is used. Hence, the BVS approach 

can be used to choose optimal models, given set of 1R  models. 

Let zl
 be an indicator variable, =1, , 1K l K  such as = 1zl

 if  l
 is included in the 

model and = 0zl
 otherwise and let = z  l l l

. The dose-specific mean structure in Equation 

(7) can be expressed as a BVS model (O'Hara and Sillanpää, 2009) given by  

 
0 0

=1 =1

( ) = = .
i i

ijE Y z     l l l

l l

 (8) 

 

In order to specify prior distributions, we use notation 2( , , , )TN a b   for a truncated 

normal distribution (where   and 2  are the mean and variance parameters of the normal 

distribution and ,a b  are the limits of the truncation interval). The prior distributions of dose 

specific mean in control dose, the increments, the variance and all the hyperparameters are 

specified as  

 

1 6

0
0 0 0

1

0

3 3 6

( , ,0, ), (0,10 ), (1,1),

( , ,0, ), (1,1), ( ),

(10 ,10 ), (0,10 ), (0,1),

i
k k

TN N

TN z Bernoulli

N U

   

  



    

    

  





 

 

 



l

l l

l
l

 (9) 

 

 where =1, , 1K l K . Further, following Kuo and Mallick (1998), we assume independence 

of zl
 and  l

, i.e. ( , ) = ( ) ( )P z P P z  l l l l
. Detailed discussion on the model formulation and 

priors specification can be found in Kasim et al. (2012) and Otava et al. (2014). 

The posterior mean of zl  (obtained through MCMC simulation) represents the posterior 

inclusion probability of  l  in the model (O'Hara and Sillanpää, 2009). Due to the fact that the 

configuration of the vector z determines unambiguously a particular model, the posterior 

probability of a particular configuration of z translates into posterior probability of a 

particular model (Table 1). For example, in case of = 4K , posterior probability of model 1g  

equals to  

  1( | data) = = (1,0,0) | data .P g P cz  (10) 

 

Note that ( | data)rP g  is interpreted as posterior probability of model rg , given the data, the 

priors and the set of all models. Naturally, prior specification can strongly influence the 

results of the analysis. In this way, prior information allows us to include information coming 

from scientific knowledge or previous experiments. Although we usually apply the BVS in 

case that all models are of interest (e.g. all models from Table 1), if a subset of the models is 
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a priori considered impossible, it can be easily omitted by setting its prior probabilities to 

zero. In case of lack of any prior information, non-informative priors can be used instead. 

Following Jeffreys (1961) and Kass and Wasserman (1996), we recommend to use the equal 

weights for all candidate models. 

Analogously to the previous section, the MED can be obtained by summing the 

posterior probabilities of appropriate models. The resulting quantities represent the posterior 

distribution of the MED, i.e. to each possible value of the MED the posterior probability of 

being the true underlying MED is assigned. For example, for = 4K , 

2 6( = 2 | ) = ( | ) ( | )P MED data P g data P g data . Hence, in terms of the inclusion vector z, the 

posterior probability is given by  

 ( = 2 | ) = ( = (0,1,0) | ) ( = (0,1,1) | ).P MED data P data P dataz z  (11) 

 

Note that the estimation of the mean vector μ is computed as its posterior mean   of 

a MCMC chain of B iterations. It holds that 
=1

=1 ˆ/
B

bb
B  , while in each iteration b, one 

model 
rg  is considered and estimate ˆ

b  is obtained. The model 
rg  is selected 

g
r

n  times over 

all the B iterations. Therefore 
=0

=1/ ˆ
R

g gr r r
B n  , where ˆ

g
r

  is the estimate of μ under 

model 
rg . Since posterior probability ( | data) = /r g

r
P g n B , i.e. it corresponds to proportion 

of selection of the model, the equation can be rewritten as 
=0

= ( | data) ˆ
R

r gr r
P g  . 

Therefore, mean estimates   are in fact model averaging based estimates, weighted by the 

posterior probabilities of the models. 

There is very important difference between GORIC and BVS method in terms of 

underlying principles. GORIC (as well as AIC) arises from information theory and it 

estimates Kullback-Leibler divergence (Kullback and Leibler, 1951) between the true model 

and models under consideration. Therefore, it does not assume that the true model is 

necessarily among the candidate models. Candidate models represent potential approximation 

of complex underlying model. However, BVS model simply selects the best model among 

the candidate models, assuming that one of them is really the true underlying model. It fits 

the candidate models to the data in Bayesian framework and evaluates which of the models is 

the most likely to be the best one. Therefore, we do not expect similar performance of the 

methods, since they are constructed within very different frameworks. 

 

3  Data sets 
  

Two data sets, presented in Kuiper et al. (2014), are used for illustration of the BVS method 

and for the comparison between the BVS and the IC based approaches. Both data sets are 

displayed in Figure 1. 

The Angina data set represents dose-response study of a drug to treat angina pectoris. 

The response is the duration (in minutes) of pain-free walking after treatment relative to the 

values before treatment. Four active doses were used together with a control dose (placebo 

only). Ten patients per dose were examined. Large values indicate positive effects on 

patients. The data were taken from Westfall et al. (1999, p. 164) and are available under the 

name angina in the package mratios (Djira et al., 2012) of the R software (R Core Team, 

2014). 

The Toxicity data set was introduced by Yanagawa and Kikuchi (2001, p. 320). It 

represents results of a chronic toxicity study on Mosapride Citrate (Fitzhugh et al., 1964). 
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Liver weight relative to the body weight was measured for 24 dogs. Three active doses of 

Mosapride Citrate were used and a control dose was added, six dogs were treated in each 

group. An increasing response suggests an increasing toxicity of the drug. 

 

4  Results 
  

We apply the BVS model, GORIC, the AIC and the BIC methods for the Toxicity and the 

Angina data sets described in Section 3. The attention is given to the comparison between the 

BVS and GORIC, since they are both taking into account order constraints within the 

estimation procedure of the MED. The model weights based on the IC are interpreted, in 

terms of Equation (3), as posterior model probabilities. In order to distinguish between the 

results of the methods, we denote posterior probabilities as 
GORICP  and 

BVSP  for respective 

method. The analysis for all methods was done using the R software (R Core Team, 2014) 

version 3.1.1. For the BVS model, the MCMC was run using the package runjags (Denwood, 

In Review) together with the JAGS software (Plummer, 2003). 

The results for the BVS model are shown in Figure 2 and Figure 3 for the Angina data 

and the Toxicity data, respectively. The left panels show the data, the BVS weighted average 

of mean estimates (solid line) and the best model selected by BVS (dashed line). For both 

case studies, the effect of model averaging is clearly seen. The right panels of both figures 

show the posterior model probabilities. While there is much clearer candidate for the best 

model for Toxicity data, 
1g  with 

1( | ) = 0.38BVSP g data , the result for Angina data supports 

nearly equally two models, 
9g  (

9( | ) = 0.249BVSP g data ) and 
10g  (

10( | ) = 0.269BVSP g data ). 

Note that the results are conditional on specification of priors (for details see Section 2.3). 

The posterior model probabilities obtained for the BVS and GORIC for the Angina 

data set are shown in left panel of Figure 4. For both methods, the highest posterior 

probabilities were obtained for models with an increment between the last two doses. 

However, GORIC tends to prefer more complex models with smaller increments across 

multiple doses (
13g , 

15g ), while the BVS selects models with just few larger increments (
9g , 

10g ). The posterior probabilities of the MED are shown in the right panel of Figure 4. Both 

GORIC and the BVS assigned the highest posterior probability of being MED to the first 

dose. However, there is a difference between the two methods. Since GORIC method selects 

models with more parameters, it gives higher probability to models with increment already 

between first and second dose and therefore (MED =1| data)P  is estimated with large 

posterior probability, (MED =1| data) = 0.741GORICP . It also assigns nearly zero probability to 

(MED = 4 | data) = 0.002GORICP . In contrast, the BVS method gives much lower posterior 

probability to (MED =1| data) = 0.490BVSP  and the posterior distribution of the MED is more 

equally spread over all doses, i.e.  (MED = 2 | data) = 0.325BVSP  and 

(MED = 4 | data) = 0.041BVSP . The complete results are presented in Table 2 (the mean 

structure of the models is shown in Table S1 of the supplementary appendix). We can see that 

the results obtained for the AIC and BIC methods lie between the results obtained for GORIC 

and the BVS methods. Note that the results for the BIC are much closer to results of the BVS. 

Similar pattern can be seen for the Toxicity data in Figure 5. While GORIC prefers a 

more complex model 5g  (having three different means) with MED =1 , the BVS suggests 

that the best model is 1g , while giving much higher posterior probabilities to other models, 

such as 0g , 4g  and 5g . Once again, both methods estimated the highest posterior probability 
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of being the MED for the same dose level, with GORIC estimate 

(MED =1| data) = 0.833GORICP  and the BVS estimate (MED =1| data) = 0.644BVSP . Similarly 

to the Angina data, GORIC assigns very high posterior probability to MED =1  (see right 

panel of Figure 5), while BVS spread probability more equally, estimating relatively high 

posterior probabilities for other doses. Note that in Table 3 not all models were fitted for 

GORIC, AIC and BIC. That is caused by the violation of monotonicity assumption in the 

observed means between dose 2 and dose 3 (see Figure 3). As mentioned above, isotonic 

regression was used to estimate the order restricted means. While we incorporate the order 

restrictions for maximum likelihood estimation, the models with increase between dose 2 and 

dose 3 reduced to models that have a flat mean profile between dose 2 and dose 3 (e.g. model 

2g  will reduce to model 
0g ). Therefore, only a subset of models 

0 1 4 5, , ,g g g g  with no 

increment between the dose 2 and dose 3 can be actually fitted and estimated. This property 

does not apply to the BVS model, because it does not use isotonic regression for the 

estimation of the means. 

In both data sets, GORIC seems to support models with less equalities (i.e. more 

complex models) compared to the BVS and therefore estimates higher posterior probabilities 

for the lower values of the MED. Both methods tend to select similar patterns, but small 

differences between consecutive doses are treated as flat by the BVS but as increments by 

GORIC. The cause of this difference is due to the fact that the penalty of GORIC is rather 

low when additional parameters are added to the model. Hence, GORIC supports more 

complex models and results in much higher (MED =1| data)GORICP . On the other hand, the 

results for the BVS suggest that a model reduction step is addressed automatically within the 

procedure and a relatively large difference among doses is needed to include the increment in 

the model. As a consequence, the distribution of (MED = | data)BVSP i  is spread more equally 

across the doses. The AIC and BIC are somewhere between the other two methods, AIC 

being closer to GORIC and BIC closer to BVS. This is expected since compared to the AIC, 

the BIC has a tendency to select less complex models due to a high penalty term. 

As expected, the choice of the criterion determines the posterior distribution of MED. 

Although the MED with the highest posterior probability could be the same for different 

methods, substantial differences can be observed in the underlying posterior distribution that 

quantifies the uncertainty in the choice of MED. On the other hand, the choice of the criterion 

can incorporate our preference for a more or less complex model in the process of the 

estimation of the posterior probabilities. 

 

5  Simulation study 
  

5.1  Simulation setting 
 

Considering the findings in Section 4, we conducted a simulation study to explore the 

performance of various methods according to a true underlying model. The simulation setting 

represents an experiment with = 4K  dose levels with = 3n  observations per dose. The 

configuration for the mean structure 0 1 2 3, , ,     followed the specification given by Marcus 

(1976) (details are given in Section S4 in the supplementary appendix for the manuscript). 

Data were generated according to an order restricted model defined in Equation (6), 
2( , )ij iY N   , with 2 =1 , for each of the models 0 7, ,g gK . The values of =1,2,3  

were used, representing different magnitudes of true effect. In total, =1000N  data sets were 

generated for each combination of a specific model and   (i.e. in total 22 combinations were 
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simulated, 7 3  for 
1 7, ,g gK  and one for 

0g , each 1000 times). 

For all the methods, an assumption of a non-decreasing trend was made. As explained 

in the previous section, not all the models can be fitted for the IC methods in each simulated 

data set (when violation of monotonicity in simulated means occurs), while the BVS provided 

posterior probability for all the models in each simulated data set. The posterior model 

probabilities, ( | data)rP g , were computed according to the BVS, AIC, BIC and GORIC 

methods. The posterior probabilities for the MED, (MED = | data)P i , were derived by 

summation of appropriate posterior model probabilities. The methods were evaluated based 

on two criteria: the correct identification of the true underlying model and the correct 

identification of the true underlying MED. Additionally, the setting when the best model and 

the second best model are considered for evaluation is briefly discussed in Section 6 and the 

full results are shown in Section S4 of the supplementary appendix for the manuscript. 

 

5.2  Simulation results 
 

As shown in Table 4, performance according to model complexity is profound in simulation 

study results. While the BVS clearly performs better for simple models with only one or two 

different mean levels (
0g , 

1g , 
2g  and 

4g ), GORIC achieves better results for complex 

models (
3g , 

6g , 
7g ). The result for model 

5g  highlights another interesting point. While the 

magnitude of the difference is getting higher, GORIC seems to prefer more complex models 

(splitting high increment among more dose levels). Therefore, if = 3 , the BVS overtakes 

GORIC in terms of correct selection of the model 
5g  and reduces the difference for models 

3g  and 6g . Clearly, GORIC is better method for the detection of model 7g . On the other 

hand, it shows the worst performance for the simplest model 
0g  that can be of profound 

interest, representing absence of dose-response relationship. Interestingly, the AIC method 

performs well. While being always between BVS and GORIC, it shows good performance, 

except for model 7g . Performance of BIC is rather poor, being among the worst methods for 

all the possible models (and except 
0g , being always worse than AIC). The complexity of the 

models selected by a specific method depends on the penalty term of that method. Typically, 

it holds that penalty of GORIC is smaller than penalty of the AIC that is (for > 7n ) smaller 

than penalty of the BIC. Therefore, the AIC and GORIC may select more complex models. 

As was pointed out in Section 2, the AIC and GORIC methods do not assume that the true 

model is necessarily among the candidate models and they try to approximate it, while BVS 

model assumes that the true model is among the candidate models. Additional results for 

varying number of doses ( = 4,5K ) and replicates within dose ( = 3,4,5,10n ) indicate the 

same patterns and are presented in Section S4 in the supplementary appendix for the 

manuscript. 

The main goal of the analysis is to estimate the MED. The selection was done after 

summing up posterior probabilities of the models with respective MED. The evaluation of 

methods based on correct identification of the MED, presented in Table 5, leads to different 

conclusions than correct model selection based analysis. We can see an overall improvement 

in the correct identification rate. This is due to the fact that if the true model is not selected, 

the methods tend to select the model with the same MED. The clearest improvement occurs 

for GORIC, especially for model 1g . The magnitude of the increment, represented by  , 

seems to be an important factor for a correct MED determination. Clearly, GORIC performs 

better for =1  for most of the models, while the BVS outperforms GORIC for nearly all of 
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the models if = 3 . The model complexity factor stays clearly visible only for model 
4g  

(increment only in last dose) and 
7g  (increment in all doses). The AIC seems very suitable 

for MED selection. It has never been the best method, but it has never had worse performance 

than both BVS and GORIC simultaneously. The BIC does not provide good results, in some 

cases it performed slightly better than other methods, but it is often the worst method with 

rather poor overall performance. Similar results for additional settings are presented in 

Section S4 in the supplementary appendix for the manuscript. 

 

6  Discussion 
  

The manuscript discusses the Bayesian variable selection method for the model selection and 

the estimation of the minimum effective dose. A comparison with competing methods based 

on information criteria GORIC, AIC and BIC was conducted in both case studies and 

simulation study. The AIC and BIC are not designed for comparison of order restricted 

models, but their performance was not entirely poor. In most of the cases they have been 

behaving in between GORIC and BVS, while being rather close to worse of them, especially 

in case of MED selection. Therefore, focus is put on comparison of BVS and GORIC. 

General advantage of BVS compared to IC based methods is its unified framework 

for inference, estimation and model selection. While posterior probabilities 

0( | data, , , )r RP g g gK  can be used as a model selection tool, the dose-specific means 

estimates are based on the weighted average of model-specific estimates according to the 

posterior model probabilities. Therefore, the BVS model provides estimates for the dose-

specific means while taking model uncertainty into account. Similarly, the model averaged 

estimates can be obtained for IC methods by using model-specific maximum likelihood 

estimates weighted by appropriate model weights. 

Additionally, the BVS fits all the models simultaneously. In contrast with the IC 

based methods, the number of fitted models does not increase with increasing number of dose 

levels. For > 5K , the amount of models to be fitted can become prohibitive for IC based 

methods if fitting many candidate models is required. Ideally, the set of candidate models can 

be reduced by focusing on informative hypothesis framework, but multiple models always 

need to be considered. If the set of hypotheses is based on strict inequalities, as in our case, 

the careful interpretation of IC based models is needed. As we have seen in the simulation 

study and case studies, some of the models in the set could reduce to single model in fitting 

stage, which may lead to underestimation of certain posterior model probabilities, if violation 

of monotonicity in the dose-specific means is present. Such issue does not occur for BVS. 

However, note that this is not general property of IC based methods and it arises from fact 

that strict inequality based set is used in order to compare the Ic methods with BVS model. 

There is clear pattern when BVS and GORIC are compared. The BVS model 

outperforms GORIC in case of less complex underlying models or higher magnitude of 

overall difference ( ), mainly for models 2g  and 4g . However, in case of small overall 

differences, it tends to oversimplify the models, especially for the most complex model 7g . 

In contrast, GORIC method prefers complex models, performing best for 7g  and often for 5g

. However, this leads to its poor performance in case of high magnitude of difference and 

simplest models as 0g  or 1g . 

While taking into account not only the best model, but also the second best model 

(with respect to posterior probability), the BVS model performs much better, relatively to 

GORIC (details are presented in Section S4 in the supplementary appendix). 

Regarding the MED selection, the performance for higher magnitudes ( ) is of main 
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interest from an application point of view. As mentioned in the Section 1, the MED is 

typically related to the clinical significance as well as to the statistical significance. 

Therefore, cases of small overall effects are not of imminent interest. The bigger the overall 

dose effect is, the higher is the chance that MED would be relevant and its correct estimate is 

needed. 

In summary, we have seen that both BVS and GORIC have its strong points. BVS 

performs better for the less complex models from the candidates set, while GORIC is able to 

select correctly models that are more complex. Therefore, GORIC will tend to select as MED 

lower doses, while BVS will tend to select higher doses, because GORIC will tend to split the 

overall effect across multiple doses (more complex model), while BVS will keep it rather at 

one particular dose (less complex models). Due to its insensitivity to model 
0g , GORIC 

should be only used after initial filtering step, in case that the model selection is would be 

interpreted in terms of inference. 

Based on our findings, the choice of methodology depends on the scope of the 

particular project and interpretation. Our main recommendation to the readers is to keep this 

fact in mind and not to select any of these methods as automatic preference, but always 

carefully evaluate, which set of models is considered, if strict inequalities are assumed and if 

set of candidate models can be a priori reduced based on scientific knowledge. 
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Figure  1:  The two case studies. Crosses represent dose-specific means. Left panel: the 

Angina data set. Right panel: the Toxicity data set. 
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Figure  2:  The Angina data. Left panel: Observed data, sample means (crosses) and 

posterior means of the BVS model (solid line) and model 
10g  (dashed line). Right panel: 

Posterior probability for 
rg , = 0, ,15r K . Notation corresponds to the model numbers 

presented in Table 1, extended respectively for = 5K  (see Table S1 in a supplementary 

appendix of the manuscript). 
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Figure  3:  The Toxicity data. Left panel: Observed data, sample means (crosses) and 

posterior means of the BVS model (solid line) and model 
1g  (dashed line). Right panel: 

Posterior probability for 
rg , = 0, ,7r K . Notation corresponds to the model numbers 

presented in Table 1. 
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Figure  4:  The Angina data. The BVS results (black) and GORIC results (grey) comparison. 

Left panel: Posterior probability for 
rg , = 0, ,15r K . Right panel: Posterior probability for 

the MED. 
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Figure  5:  The Toxicity data. The BVS results (black) and GORIC results (grey) comparison. 

Left panel: Posterior probability for 
rg , = 0, ,7r K . Right panel: Posterior probability of 

the MED. 
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Table  1:  The set of eight possible monotonic dose-response models for an experiment with 

four dose levels (including placebo). Denote 
i  the mean response of dose level. The model 

0g  represents the null model of no dose effect. 

       

  Model   Up: Mean Structure   Down: Mean Structure 

0g    
0 1 2 3= = =       

0 1 2 3= = =     

1g    
0 1 2 3< = =       

0 1 2 3> = =     

2g    
0 1 2 3= < =       

0 1 2 3= > =     

3g    
0 1 2 3< < =       

0 1 2 3> > =     

4g    
0 1 2 3= = <       

0 1 2 3= = >     

5g    
0 1 2 3< = <       

0 1 2 3> = >     

6g    
0 1 2 3= < <       

0 1 2 3= > >     

7g    
0 1 2 3< < <       

0 1 2 3> > >     

 

   



Acc
ep

ted
 M

an
us

cri
pt

24 LBPS_A_1295247 
 

Table  2: Estimated posterior model probabilities for the Angina data for GORIC, 

AIC, BIC and BVS. First column: Order restricted log-likelihood. 

      

  

  Profile   ORLL   GORIC   AIC   BIC   BVS  

0g    –149.77   0.00   0.00   0.00   0.00  

1g    –144.55   0.00   0.00   0.00   0.00  

2g    –141.46   0.00   0.00   0.00   0.00  

3g    –140.80   0.00   0.00   0.00   0.00  

4g    –138.65   0.00   0.00   0.00   0.00  

5g    –136.92   0.00   0.00   0.00   0.00  

6g    –137.39   0.00   0.00   0.00   0.00  

7g    –136.61   0.00   0.00   0.00   0.00  

8g    –135.97   0.00   0.01   0.04   0.04  

9g    –132.31   0.06   0.13   0.21   0.25  

10g   –131.99   0.09   0.18   0.29   0.27  

11g   –131.01   0.18   0.17   0.11   0.09  

12g   –133.01   0.03   0.06   0.11   0.14  

13g   –130.82   0.22   0.21   0.13   0.13  

14g   –131.42   0.13   0.12   0.07   0.06  

15g   –130.43   0.28   0.11   0.03   0.02  
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Table  3: Estimated posterior model probabilities for the Toxicity data for GORIC, AIC, BIC 

and BVS. First column: Order restricted log-likelihood. Note that, as explained in Section 4, 

some of the models were not fitted for IC; due to the incorporated order restrictions they 

reduced to other models. 

      

  

  Profile  ORLL   GORIC   AIC   BIC   BVS  

0g    –82.98   0.04   0.08   0.16   0.12  

1g    –80.32   0.33   0.42   0.46   0.38  

2g    —   0   0   0   0.06  

3g    —   0   0   0   0.05  

4g    –81.28   0.13   0.16   0.18   0.16  

5g    –79.51   0.50   0.34   0.21   0.21  

6g    —   0   0   0   0.02  

7g    —   0   0   0   0.01  
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Table  4: Comparison of proportion of time the true model is selected based on 1000 

simulated data sets for BVS, GORIC, AIC and BIC criterion for = 4K , = 3n . 

      

  

      Profile   BVS   GORIC   AIC   BIC  

  
0g    0.73   0.59   0.76   0.81  

1  
1g    0.57   0.51   0.53   0.49  

  
2g    0.46   0.42   0.47   0.46  

  
3g    0.03   0.16   0.05   0.03  

  
4g    0.55   0.48   0.51   0.48  

  
5g    0.08   0.22   0.09   0.07  

  
6g    0.02   0.16   0.04   0.02  

  
7g    0.00   0.03   0.00   0.00  

2  
1g    0.83   0.63   0.78   0.80  

  
2g    0.78   0.54   0.73   0.77  

  
3g    0.22   0.48   0.30   0.23  

  
4g    0.82   0.61   0.78   0.79  

  
5g    0.43   0.54   0.49   0.42  

  
6g    0.23   0.46   0.29   0.24  

  7g    0.01   0.28   0.04   0.02  

3  
1g    0.88   0.63   0.79   0.83  

  
2g    0.84   0.55   0.76   0.81  

  
3g    0.59   0.66   0.64   0.60  

  
4g    0.86   0.62   0.80   0.83  

  5g    0.79   0.67   0.77   0.77  

  
6g    0.57   0.65   0.63   0.59  

  
7g    0.09   0.62   0.25   0.19  
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Table  5: Comparison of proportion of time the true MED is selected based on 1,000 

simulated data sets for BVS, GORIC, AIC and BIC criterion for = 4K , = 3n .  

      

  

      Profile   BVS   GORIC   AIC   BIC  

  
0g    0.73   0.59   0.76   0.81  

1  
1g    0.62   0.73   0.61   0.55  

  
2g    0.47   0.51   0.49   0.47  

  
3g    0.40   0.53   0.39   0.34  

  
4g    0.55   0.48   0.51   0.48  

  
5g    0.39   0.53   0.39   0.35  

  
6g    0.32   0.40   0.36   0.34  

  
7g    0.32   0.44   0.32   0.29  

2  
1g    0.96   0.99   0.96   0.94  

  
2g    0.83   0.72   0.82   0.83  

  
3g    0.61   0.81   0.65   0.59  

  
4g    0.82   0.61   0.78   0.79  

  
5g    0.70   0.85   0.74   0.71  

  
6g    0.57   0.60   0.59   0.59  

  7g    0.48   0.70   0.53   0.48  

3  
1g    1.00   1.00   1.00   1.00  

  
2g    0.91   0.72   0.86   0.90  

  
3g    0.82   0.94   0.86   0.83  

  
4g    0.86   0.62   0.80   0.83  

  5g    0.90   0.98   0.93   0.91  

  
6g    0.75   0.69   0.76   0.76  

  
7g    0.64   0.86   0.71   0.66  

 

  

  

 


