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Mathematical models used to inform study
design or surveillance systems in infectious
diseases: a systematic review
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Abstract

Background: Mathematical models offer the possibility to investigate the infectious disease dynamics over time
and may help in informing design of studies. A systematic review was performed in order to determine to what
extent mathematical models have been incorporated into the process of planning studies and hence inform study
design for infectious diseases transmitted between humans and/or animals.

Methods: We searched Ovid Medline and two trial registry platforms (Cochrane, WHO) using search terms related to
infection, mathematical model, and study design from the earliest dates to October 2016. Eligible publications and
registered trials included mathematical models (compartmental, individual-based, or Markov) which were described
and used to inform the design of infectious disease studies. We extracted information about the investigated infection,
population, model characteristics, and study design.

Results: We identified 28 unique publications but no registered trials. Focusing on compartmental and individual-
based models we found 12 observational/surveillance studies and 11 clinical trials. Infections studied were equally
animal and human infectious diseases for the observational/surveillance studies, while all but one between humans for
clinical trials. The mathematical models were used to inform, amongst other things, the required sample size (n = 16),
the statistical power (n = 9), the frequency at which samples should be taken (n = 6), and from whom (n = 6).

Conclusions: Despite the fact that mathematical models have been advocated to be used at the planning stage of
studies or surveillance systems, they are used scarcely. With only one exception, the publications described theoretical
studies, hence, not being utilised in real studies.
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Background
Infectious diseases contribute substantially to the global
burden of disease and are major public health issues
worldwide [1]. The value of mathematical models for
infectious diseases is widely recognised in various fields
such as ecology or epidemiology [2–4]. These models
have been used with different objectives such as under-
standing infectious disease dynamics, informing public
health policies or guidelines through, for example, the
modelling of potential additional interventions [5], or
computing key indicators [6]. In the context of public

health surveillance in particular, mathematical models
have been also used to detect potential epidemics
making use of (temporal) surveillance system data [7],
evaluate the performances of a surveillance system [8],
or monitor programmes [9].
Mathematical models may also help in informing

design of studies, including cross-sectional studies,
clinical trials, or surveillance systems, and have been
advocated to be used at the planning stage of studies to
inform their design [5, 10–13]. Well-designed clinical
trials and observational studies are needed to investigate
the impact of interventions before they can be used on
large scale. Furthermore, public health authorities also
need efficient tools for monitoring infectious diseases.
Each improvement in design and monitoring of clinical
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trials and observational studies will allow a more effi-
cient usage of resources crucial to current and later im-
plementation, monitoring, and evaluation of promising
interventions.
The current use of mathematical models in planning

studies has to our knowledge never been systematically
summarised. The objective of our study was to systematic-
ally review mathematical models used to inform the design
of a study related to an infectious disease transmitted
between humans, between animals, or between animals
and humans (zoonosis). We documented to which extent
and how mathematical models have been incorporated into
the process of planning studies or surveillance systems.
Finally, by performing this review, we hope to trigger more
attention to the use of mathematical models in planning
studies and to more explicitly document design consider-
ations in mathematical modelling studies in abstract and
keywords.

Methods
We used a protocol to describe the methods in detail for
our systematic review (Additional file 1).

Eligibility criteria
We searched for publications and registered trials in which
mathematical models were described and used to inform
the design of infectious disease studies, i.e. inform study
design in the context of sample sizes and/or selecting the
(number of) sampling times and/or power calculation
and/or from whom to collect samples and/or what should
be monitored. We were interested in implemented studies
as well as in methodological papers.
We included studies that used individual-based models

(IBMs, including agent-based models, microsimulation,
etc.), compartmental models, or Markov models [14, 15].
IBMs are models in which the infection process for every
individual in the population is tracked; compartmental
models are models in which individuals in the population
are subdivided into ‘compartments’ and the models track
the infection process for these individuals collectively; and
Markov models predict how an individual moves from
one health state to another over time, assuming that the
individual is always in one of a finite number of states and
that the transition to the next state depends only on the
values of the current state.
We excluded publications and study protocols of regis-

tered trials if the mathematical model was not used to
design a study, for example, the model was only used for
data analysis or only used for investigating the potential
impact of new interventions on infectious disease spread.

Information source
We searched Ovid Medline, Cochrane Central Register of
Controlled Trials, and WHO International Clinical Trials

Registry Platform from the earliest date of the database to
October 2016 without language restrictions. Search strat-
egies used subject headings specific to each database and
free text search that combined terms for: infection, math-
ematical models, and study designs (see Appendix 1 in
Additional file 1 for the detailed search strategies). Refer-
ence lists of included publications and study protocols of
registered trials were screened to identify additional rele-
vant publications.

Selection
Two reviewers (SH, SB) screened titles and abstracts of
retrieved publications and description of registered trials in
the database. Discrepancies were solved by discussion or
by consulting a third reviewer (NH). Any publication or
registered trial selected as being potentially eligible was
retained for review of the full text; for registered trials we
made three attempts to retrieve the study protocol by
contacting electronically the principal investigator (listed in
the trial registry).

Outcomes
The primary outcomes were the description of the
characteristics of the mathematical models incorporated,
and the description of the design part considered in the
process of planning studies or surveillance systems.

Data collection and analysis
The two reviewers (SH, SB) independently extracted data
and discrepancies were solved by discussion or by consult-
ing the third reviewer (NH). An extraction sheet was
developed using Microsoft Excel and piloted to extract
information about the investigated infection, population,
model characteristics, and study design.
The characteristics of mathematical models used in

planning studies were summarised stratified by study type,
i.e. observational and surveillance studies, and clinical
trials. We described the infections and populations
studied, the main characteristics of the mathematical
model used, the main outcome of the study, and the
design outcomes (see Table 1) investigated by the authors.
If there were multiple publications using the same model
for the same setting to investigate the same study design,
the earliest publication was considered to be the original
(see further). We also documented model reporting items
(e.g. diagram of the model or parameters values) and how
the infection transmission was modelled.

Results
Our literature searches identified 571 unique publications/
registered trials; 68 full-text publications were screened
and 6 principal investigators of registered trials were con-
tacted; 30 eligible publications were included [16–45].
Reasons for exclusion are summarised in Fig. 1. Of these
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30 publications, 28 were considered to be unique, i.e. dif-
ferent models were used for different settings and study
designs. There were two publications referring to the same
randomised controlled trial (RCT) and reporting the same
model (Cori 2014 [35] and Hayes 2014 [40]), and one pub-
lication re-stated the results from a previous publication
(Wu 2005 [39] and Wu 2002 [30]).With only one excep-
tion (Cori 2014 [35]), the publications described theoret-
ical studies, hence, not being utilised in real trials.
We focused on the characteristics of the 23 studies

which used IBMs or compartmental models to inform
the study design because, in the context of infectious
diseases, these types of models are most used and allow
infectious disease dynamics (e.g. herd immunity) to be
directly incorporated. There were 12 observational or
surveillance studies [16–27] (Table 2, Additional file 2:
Table S1) and 11 clinical trials [28–38] (Table 3, Add-
itional file 2: Table S2). The characteristics of the 5 stud-
ies which used Markov models [41–45] (all clinical trials
for humans) are given in Additional file 2 (Table S3 and
Table S4).
Results of the considered 23 studies show that com-

partmental models were the most commonly used
models (8 observational/surveillance studies, 10 clinical
trials). Infections studied were equally animal and hu-
man infectious diseases for the observational or surveil-
lance studies, while all but one between humans for
clinical trials. Epidemiological categories of infections
transmitted between humans were sexually transmitted
infections (STIs, mainly HIV; 6 clinical trials), respira-
tory infections (2 observational/surveillance studies, 2
clinical trials), nosocomial infections (2 observational/
surveillance studies), vector-borne infections (2 observa-
tional/surveillance studies), water-borne infections (1
observational/surveillance study), hypothetical bacterial
infection (1 observational/surveillance study). Influenza
(avian, n = 4, or in ferrets, n = 1) was the infection the

most studied among infections transmitted between ani-
mals. A population structure was reflected in 14 models
(9 observational/surveillance studies, 5 clinical trials)
and a network of contacts between individuals was expli-
citly modelled in 8 models (5 observational/surveillance
studies, 3 clinical trials).
We observed diverse patterns of model reporting

across the publications (Additional file 2: Table S1 and
Table S2). Almost all publications described - to a cer-
tain extent - the model structure, some reported equa-
tions, figures, and how the course of infection was
implemented, while others reported only one or even
none of those. For three publications [17, 23, 28] we had
to obtain the model type from the referenced original
publication [46–48]. About a third of the publications
reported the software in which the mathematical model
was implemented but code is available, either as a sup-
plementary material or through request to the authors,
in only two publications [36, 38]. The sources for the
model parameters used were mostly a mixture of cali-
bration, assumptions by authors, and estimations from
other data.
In observational or surveillance studies, the design

outcome most studied was sample size (n = 10), followed
by frequency of sampling and population from whom to
sample (n = 5), monitoring and power (n = 2), and num-
ber of samples and timing of sampling (n = 2). In clinical
trials, the most studied design outcome was power (n =
7), followed by sample size (n = 6), timing of sampling
and follow-up (n = 3), monitoring (n = 2), frequency of
sampling, number of samples and population from
whom to sample (n = 1). Seven research question cat-
egories were identified among the studies included: de-
tect infection early, estimate epidemiological parameters,
compare different trial arms, include potentially good re-
sponders in an RCT, follow trial progression, detect
changes in infection values over time, and determine

Table 1 Description of design outcomes

Design outcome Description

Follow-up The model was used to determine/inform the follow-up time of the study.

Timing of sampling The model was used to determine/inform at which time point(s) sampling
should be performed.

Frequency The model was used to determine/inform the frequency at which sampling
has to be collected (over time) during the study.

Number The model was used to determine/inform the number of sampling to collect
over time during the study.

Monitoring The model was used to identify parameters or indicators that should be
monitored during the study.

Sample size The model was used to determine/inform the sample size.

Whom The model was used to determine/inform which subgroups of the population
studied should be sampled.

Power The model was used to perform statistical power calculations.
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appropriate time point(s) to estimate a parameter.
Table 4 shows for each design outcome which research
questions were investigated. More details about the
study designs can be found in Additional file 2: Table S1
and Table S2.

Discussion
We found in this systematic review 28 unique publica-
tions but no registered trials in which mathematical
models were described and used to inform the design of
infectious disease studies. Only one mathematical model
was effectively used to plan a study (a three-arm cluster
RCT) whereas all others described theoretical studies.

Focusing on the 23 compartmental and individual-based
models, we found almost equal amount of observational
or surveillance studies and clinical trials whereby com-
partmental models were most commonly used. Various
infection categories have been investigated with equal
numbers of animal and human infections studied among
the observational or surveillance studies and mainly hu-
man infections among the clinical trials. Enough details
are provided for the compartmental models, except for
two [17, 22], to replicate the model. For IBMs more de-
tails are needed in order to replicate the model if the
source code is not available. For example, the ‘ODD’
(Overview, Design concepts, and Details) protocol has
been proposed to standardize reporting of individual-
based and agent-based models [49, 50]. None of the five
IBM publications followed or mentioned this protocol,
however, one provides the model source code [36]. The
mathematical models were utilised to inform, amongst
other things, the following design outcomes: required
sample size, statistical power, frequency at which sam-
ples should be taken, and from whom.
One explanation of the scarcity of mathematical model-

ling to design real studies, despite the anticipated gain in
study efficiency, is arguably the lack of fundamental re-
search in the sense that there are no existing databases or
software to access mathematical models which are already
implemented in a study design framework in contrast to
classical sample size calculation with freely-available or
chargeable software. In our systematic review, only a third
of the publications reported the software used for the
mathematical model and only two mentioned availability
of code. Additionally, it is even difficult to ascertain which
mathematical models already exist for a specific infection
in order to extend them to the study design framework.
Account should be taken of the fact that building a (well-
validated) model is time-consuming and modelling expert-
ise specific to the infectious disease of interest is needed.
On the other hand, finding the optimal sample size, fre-
quency of sampling, etc. using a mathematical model can
lead to computer intense processing steps.
Sample size is not the only design outcome which can

be investigated by the mathematical models as shown in
our results. Interestingly, mathematical models have
been used to determine the appropriate time point(s) at
which a parameter such as the effect size of the inter-
vention should be estimated. For example, a publication
in the field of vaccination investigated two different esti-
mates of vaccine efficacy (prevalence odds ratio and
prevalence ratios) and their change over time. The au-
thors found that the timing of sample collection can
affect the interpretation of results about vaccine efficacy
against bacterial carriage in an RCT [37].
We observed that the same research question was in-

vestigated looking at different design outcomes. For

Fig. 1 Flow diagram of included and excluded publications and
registered trials
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example, the question about early detection of an infec-
tion was studied by exploring the frequency at which
samples should be taken, the number of samples to be
collected, and the sample size but also from whom sam-
ples should be taken, and what parameters or indicators
should be monitored during a study [16–23, 26].
There is no guarantee that a study would not fail to

show the expected effect size in case the study team
used a mathematical model at the planning stage of a
study. A mathematical model always implies under-
lying assumptions by its structure and parameter
values. However, those assumptions for mathematical

models can be taken into account in uncertainty and
sensitivity analyses for the effect size of interest. The
estimated effect size and its uncertainty, in turn, can
be considered in, for example, sample size calcula-
tions. Most importantly, mathematical models can be
used to deal with the complexity of infectious dis-
eases like the dependency between individuals and
give insights how this can influence the study design.
The strength of our study is that the search of pub-

lications and registered trials had no restriction about
the type of infection or the transmission route. Add-
itionally, this is, to our knowledge, the first systematic

Table 3 Characteristics of publications – Clinical trials (N = 11)

First author,
year

Infection Population Model Main outcome Design
outcome(s)

Remarks

Epidemiological
category

Name Type a Structured/
Network b

Atlas, 1993
[28]

Human,
water-borne

Cryptosporidium Volunteer
subjects

Compartmental
- deterministicc

No/No Probability of
infection

- Sample size Exprimental
study

Lipsitch,
2001 [29]

Human,
respiratory

Streptococcus
pneumoniae

Not described Compartmental
- deterministic

No/No Simple and
conditional
odds-ratios

- Timing of
sampling

−

Wu, 2002
[30]; Wu,
2005 [39]

Human, STI HIV Within-host
(cells)

Compartmental
- deterministic

No/No HIV viral load change - Timing of
sampling
- Frequency
- Number
- Sample size
- Power

Statistical
model used
for fitting
data

Clermont,
2004 [31]

Human,
bacterial

Generic
Gram-negative
pathogen

Within-host
(virtual infected
patients)

Compartmental
- deterministic

Yes/No Identify people who
will well respond to
the anti-tumor necrosis
factor

- Whom −

Hallett,
2008 [32]

Human, STI HIV Heterosexual
population

Compartmental
- deterministic

Yes/Yes HIV incidence
rate ratio

- Follow-up
- Sample size
- Power

−

Dimitrov,
2013 [33]

Human, STI HIV Heterosexual
population
representative
of sub-saharan
Africa

Compartmental
- deterministic

Yes/No HIV incidence - Sample size
- Power

−

Nishiura,
2013 [34]

Animal influenza A
viruses

Ferret in cages Compartmental
- stochastic

No/No Number of pairs to
include in 1-to-1
transmission studies

- Sample size
- Power

−

Cori, 2014
[35]; Hayes,
2014 [40]

Human, STI HIV Adults, 18-44y,
South Africa
and Zambia

Compartmental
- deterministic

Yes/Yes HIV incidence - Monitoring
- Power

Effectively
used to plan
a three-arm
cluster RCT

Cuadros,
2014 [36]

Human, STI HIV Serodiscordant
couples; male
population

IBM No/Yes HIV incidence - Power −

Scott, 2014
[37]

Human,
respiratory

Streptococcus
pneumoniae

Infants Compartmental
- deterministic

Yes/No Vaccine efficacy
against acquisition
and/or duration

- Follow-up
- Timing of
sampling
- Monitoring

−

Herzog,
2015 [38]

Human, STI Chlamydia
trachomatis

Women Compartmental
- deterministic

No/No Pelvic inflammatory
disease incidence

- Follow-up
- Sample size
- Power

−

amodel type: IBM – individual based model; b structured: population structure is reflected in model, network: network of contacts between individuals is explicitly
modelled; c model seen as compartmental model
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review of the current use of mathematical models in
planning infectious disease studies. A weakness of this
review is that the literature search might have missed
some relevant publications and registered trials be-
cause there is neither a single MeSH term for math-
ematical models nor a general usage of keywords to
describe mathematical models, a problem observed
also in other systematic reviews [51, 52]. In addition,
for some infections, like HIV, only the abbreviation is
commonly stated. Hence, no variation of the word
‘infection’ is used in the title, abstract, or especially in
the description of the registered trial on the trial
registry platform. We tested the inclusion of specific
infections (HIV, malaria, and tuberculosis) which re-
sulted in a limited number of additional hits, of
which only two would meet our inclusion criteria [53,
54]. We tried to overcome the limitations of keywords
and MeSH terms used by building a search strategy
which uses different terms to identify models and in-
fections and by searching for additional publications
in the reference lists of included publications. How-
ever, we do not present mathematical models that are
only described in grey literature like reports or that
are not publicly available. Similarly, publications that
only used indirect modelling results without describ-
ing the mathematical model were not included.

Conclusion
Despite the fact that mathematical models have been ad-
vocated to be used at the planning stage of studies or
surveillance systems [5, 10–13], they are used scarcely as
shown by this systematic review. With only one excep-
tion, the publications described theoretical studies,
hence, not being utilised in real studies. Generic statis-
tical approaches for sample size calculations, most often
assuming independence between individuals, do not cap-
ture the complex nature of infectious disease epidemi-
ology. This is an oversimplification as e.g. treating
infected persons may affect the people around them by
reducing the spreading of the infection; mathematical
modelling could thus be used to account for such char-
acteristics. The results of this systematic review offer an
overview of the current use of mathematical models in
the context of study design and indicate that future re-
search is needed.
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Table 4 Design outcomes and corresponding research question

Design
outcomes

References by main research questions

Follow-up Determine appropriate time point to estimate a parameter:
Mizumoto [24]; Lipsitch [29]; Wu [30]; Scott [37]; Herzog [38];
Hallett [32]

Timing of
sampling

Determine appropriate time point to estimate a parameter:
Mizumoto [24]; Lipsitch [29]; Wu [30]; Scott [37]; Herzog [38];
Hallett [32]

Frequency Detect infection early: Graat [16]; Michael [17]; Gonzales [22]
Estimate epidemiological parameters: Pinsent [25]; Vinh [27]
Compare different trial arms: Wu [30]

Number Detect infection early: Gonzales [22]
Compare different trial arms: Wu [30]

Monitoring Detect infection early: Michael [17]; Savill [18]
Follow trial progression: Cori [35]; Scott [37]

Sample
size

Detect infection early: Graat [16]; Michael [17]; Arnold [19];
Smieszek [20]; Ciccolini [21]; Gonzales [22]; Leslie [23]; van
Bunnik [26]
Estimate epidemiological parameters: Atlas [28]; Pinsent
[25]; Vinh [27]
Compare different trial arms: Wu [30]; Hallett [32]; Dimitrov
[33], Nishiura [34]; Herzog [38]

Whom Detect infection early: Arnold [19]; Smieszek [20]; Ciccolini
[21]; Leslie [23]; van Bunnik [26]
Include potentially good responders in a RCT: Clermont [31]

Power Estimate epidemiological parameters: Vinh [27]
Compare different trial arms: Wu [30]; Hallett [32]; Dimitrov
[33]; Nishiura [34]; Cori [35]; Cuadros [36]; Herzog [38]
Detect changes in infection values over time: Michael [17]
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