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Abstract
Using the matrix factorization technique in machine learning is very common mainly in areas like rec-
ommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data,
the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used on large
scale data because of the prohibitive cost. In this paper, we propose a distributed high-performance
parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We
show by using efficient load balancing using work stealing on a single node, and by using asynchronous
communication in the distributed version we beat state of the art implementations.
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1 Introduction
Recommender Systems (RS) have become very common in recent years and are useful in various real-
life applications.

The most popular ones are probably suggestions for movies on Netflix and books for Amazon.
However, they can also be used in more unlikely area such drug discovery where a key problem is the
identification of candidate molecules that affect proteins associated with diseases. One of the approaches
that have been widely used for the design of recommender systems is collaborative filtering (CF). This
approach analyses a large amount of information on some users’ preferences and tries to predict what
other users may like. A key advantage of using collaborative filtering for the recommendation systems
is its capability of accurately recommending complex items (movies, books, music, etc) without having
to understand their meaning. For the rest of the paper, we refer to the items of a recommender system by
movie and user though they may refer to different actors (compound and protein target for the ChEMBL
benchmark for example [2]).

To deal with collaborative filtering challenges such as the size and the sparseness of the data to
analyze, Matrix Factorization (MF) techniques have been successfully used. Indeed, they are usually
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Figure 2: Histogram for the ChEMBL dataset of the
number of ratings per user.

more effective because they take into consideration the factors underlying the interactions between users
and movies called latent features. As sketched in Figure 1, the idea of these methods is to approximate
the user-movie rating matrix R as a product of two low-rank matrices U and V (for the rest of the paper
U refers to the users matrix and V to the movie matrix) such that R ≈ U × V . In this way U and V are
constructed from the known ratings in R, which is usually very sparsely filled. The recommendations
can be made from the approximation U × V which is dense. If M × N is the dimension of R then
U and V will have dimensions M × K and N × K. K represents then number of latent features
characterizing the factors, K � M , K � N .

Popular algorithms for low-rank matrix factorization are alternating least-squares (ALS) [22], stochas-
tic gradient descent (SGD) [11] and the Bayesian probabilistic matrix factorization (BPMF) [16]. Thanks
to the Bayesian approach, BPMF has been proven to be more robust to data-overfitting and released from
cross-validation (needed for the tuning of regularization parameters). In addition, BPMF easily incor-
porates confidence intervals and side-information [12, 17]. Yet BPMF is more computational intensive
and thus more challenging to implement for large datasets. Therefore, the contribution of this work is
to propose a parallel implementation of BPMF that is suitable for large-scale distributed systems. An
earlier version of this work has been published at [19]. Compared to that earlier version, this works adds
efficient asynchronous communication using GASPI [5].

The remainder of this paper is organized as follows. Section 2 describes the BPMF algorithm. In
Section 3, the shared-memory version of the parallel BPMF is described. In Section 4, details about
the distributed BPMF are given. The experimental validation and associated results is presented in
Section 5. In Section 6 existing work dealing with parallel matrix factorization techniques and BPMF
in particular is presented. Some conclusions and perspectives of this work are drawn in Section 7

2 BPMF
The BPMF algorithm [16] puts matrix factorization in a Bayesian framework by assuming a generative
probabilistic model for ratings with prior distributions over parameters. It introduces common multi-
variate Gaussian priors for each user of U and movie in V . To infer these two priors from the data,
BPMF places fixed uninformative Normal-Wishart hyperpriors on them. We use a Gibbs sampler to
sample from the prior and hyperprior distributions.

This sampling algorithm can be expressed as the pseudo code shown in Algorithm 1. Most time is
spent in the loops updating U and V , where each iteration consist of some relatively basic matrix and
vector operations on K×K matrices, and one computationally more expensive K×K matrix inversion.
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more effective because they take into consideration the factors underlying the interactions between users
and movies called latent features. As sketched in Figure 1, the idea of these methods is to approximate
the user-movie rating matrix R as a product of two low-rank matrices U and V (for the rest of the paper
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U and V will have dimensions M × K and N × K. K represents then number of latent features
characterizing the factors, K � M , K � N .
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to the Bayesian approach, BPMF has been proven to be more robust to data-overfitting and released from
cross-validation (needed for the tuning of regularization parameters). In addition, BPMF easily incor-
porates confidence intervals and side-information [12, 17]. Yet BPMF is more computational intensive
and thus more challenging to implement for large datasets. Therefore, the contribution of this work is
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Algorithm 1 BPMF Pseudo Code
for sampling iterations do

sample hyper-parameters movies based on V
for all movies m of M do

update movie model m based on ratings (R) for this movie and model of users that rated this movie, plus randomly
sampled noise

end
sample hyper-parameters users based on U
for all users u of U do

update user u based on ratings (R) for this user and model of movies this user rated, plus randomly sampled noise
end
for all test points do

predict rating and compute RMSE
end

end

These matrix and vector operations are very well supported in Eigen [6] a high-performance modern
C++11 linear algebra library. Sampling from the basic distributions is available in the C++ standard
template library (STL), or can be trivially implemented on top. As a results the Eigen-based C++
version of Algorithm 1 is a mere 35 lines of C++ code.

3 Multi-core BPMF
In this section we describe how to optimize this implementation to run efficiently on a shared memory
multi-core system. A version for distributed systems with multiple compute nodes is explained in a
separate section.

3.1 Single Core Optimizations
Most of time is spent updating users’ and movies’ models. This involves computing a K × K outer
product for the covariance matrix and inverting this matrix to obtain the precision matrix. Since the
precision matrix is used only once, in a matrix-vector product, we can avoid the full inverse and only
compute the Cholesky decomposition. Furthermore, if the number of ratings for a user/movie is small a
rank-one update [18] is more efficient.

Updating a single user in U depends on the movies in V for whom there are ratings in R, Hence,
the access patterns to U and V are determined by the sparsity pattern in R. By reordering the columns
and rows of R, we can improve the data locality and thus the program’s cache behavior. Since the
access pattern in BPMF is similar to access pattern in a Sparse Matrix-Vector Multiplication (SPMV),
we reused the technique proposed in [20].

To sample from the hyper-parameters a global average and covariance across both U and V needs
to be computed. Standalone, the computation of these values is dominated by the long-latency memory
accesses to U and V . However, if we integrate the computation of these aggregates with the updates of
U and V , they become almost free.

3.2 Multi-core-based parallel BPMF
The main challenges for performing BPMF in parallel is how to distribute the data and the computations
amongst parallel workers (threads and/or distributed nodes). For the shared memory architectures, our
main concerns where using as many threads as possible, keeping all threads as busy as possible and
minimizing memory discontinuous accesses. Since the number of users entries (resp. movie entries) are
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Figure 3: Compute time to update one item for the three methods: sequential rank-one update, sequential
Cholesky decomposition, and parallel Cholesky decomposition as a function of the number of ratings.

very large and since they can all be computed in parallel, it make sense to assigned a set of items to each
thread.

Next, balanced work sharing is a major way of avoiding idle parallel threads. Indeed, if the amount
of computations is not balanced some threads are likely to finish their tasks and stay idle waiting for
others to finish. As can be seen in Figure 2, there are items (users or movies) with a large number of
ratings and for whom the amount of compute is substantially larger than those items with less ratings.
To ensure a good load balance, we use a cheaper but serial algorithm using the aforementioned rank-one
update, for items with less than 1000 ratings. For items with more ratings, we use a parallel algorithm
containing a full Cholesky decomposition. This choice is motivate by Figure 3 which shows the time
to update one item versus the number of ratings for the three possible algorithms. By using the parallel
algorithm for more expensive users/movies we effectively split them up in more smaller tasks that can
utilize multiple cores on the system.

4 Distributed parallel BPMF

The multi-core BPMF implementation presented above has been extended to distributed systems using
three different distributed programming models: MPI [13], GASPI [5] and ExaSHARK [3]. In this
section we first describe the three programming models, next how the data is distributed across nodes,
how the work per node is balanced and how communication is handled, for the three approaches.

4.1 Distributed Programming

4.1.1 MPI-3.0

Message Passing Interface (MPI) is a standardized and portable message-passing system for distributed
systems. The latest standard MPI-3.0 includes features important for this BPMF implementation, for
example: support for asynchronous communication, support for hybrid application combining message
passing with shared memory level parallelism like OpenMP [14] or TBB [15].
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Algorithm 1 BPMF Pseudo Code
for sampling iterations do

sample hyper-parameters movies based on V
for all movies m of M do

update movie model m based on ratings (R) for this movie and model of users that rated this movie, plus randomly
sampled noise

end
sample hyper-parameters users based on U
for all users u of U do

update user u based on ratings (R) for this user and model of movies this user rated, plus randomly sampled noise
end
for all test points do

predict rating and compute RMSE
end

end

These matrix and vector operations are very well supported in Eigen [6] a high-performance modern
C++11 linear algebra library. Sampling from the basic distributions is available in the C++ standard
template library (STL), or can be trivially implemented on top. As a results the Eigen-based C++
version of Algorithm 1 is a mere 35 lines of C++ code.

3 Multi-core BPMF
In this section we describe how to optimize this implementation to run efficiently on a shared memory
multi-core system. A version for distributed systems with multiple compute nodes is explained in a
separate section.

3.1 Single Core Optimizations
Most of time is spent updating users’ and movies’ models. This involves computing a K × K outer
product for the covariance matrix and inverting this matrix to obtain the precision matrix. Since the
precision matrix is used only once, in a matrix-vector product, we can avoid the full inverse and only
compute the Cholesky decomposition. Furthermore, if the number of ratings for a user/movie is small a
rank-one update [18] is more efficient.

Updating a single user in U depends on the movies in V for whom there are ratings in R, Hence,
the access patterns to U and V are determined by the sparsity pattern in R. By reordering the columns
and rows of R, we can improve the data locality and thus the program’s cache behavior. Since the
access pattern in BPMF is similar to access pattern in a Sparse Matrix-Vector Multiplication (SPMV),
we reused the technique proposed in [20].

To sample from the hyper-parameters a global average and covariance across both U and V needs
to be computed. Standalone, the computation of these values is dominated by the long-latency memory
accesses to U and V . However, if we integrate the computation of these aggregates with the updates of
U and V , they become almost free.

3.2 Multi-core-based parallel BPMF
The main challenges for performing BPMF in parallel is how to distribute the data and the computations
amongst parallel workers (threads and/or distributed nodes). For the shared memory architectures, our
main concerns where using as many threads as possible, keeping all threads as busy as possible and
minimizing memory discontinuous accesses. Since the number of users entries (resp. movie entries) are
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very large and since they can all be computed in parallel, it make sense to assigned a set of items to each
thread.

Next, balanced work sharing is a major way of avoiding idle parallel threads. Indeed, if the amount
of computations is not balanced some threads are likely to finish their tasks and stay idle waiting for
others to finish. As can be seen in Figure 2, there are items (users or movies) with a large number of
ratings and for whom the amount of compute is substantially larger than those items with less ratings.
To ensure a good load balance, we use a cheaper but serial algorithm using the aforementioned rank-one
update, for items with less than 1000 ratings. For items with more ratings, we use a parallel algorithm
containing a full Cholesky decomposition. This choice is motivate by Figure 3 which shows the time
to update one item versus the number of ratings for the three possible algorithms. By using the parallel
algorithm for more expensive users/movies we effectively split them up in more smaller tasks that can
utilize multiple cores on the system.

4 Distributed parallel BPMF

The multi-core BPMF implementation presented above has been extended to distributed systems using
three different distributed programming models: MPI [13], GASPI [5] and ExaSHARK [3]. In this
section we first describe the three programming models, next how the data is distributed across nodes,
how the work per node is balanced and how communication is handled, for the three approaches.

4.1 Distributed Programming

4.1.1 MPI-3.0

Message Passing Interface (MPI) is a standardized and portable message-passing system for distributed
systems. The latest standard MPI-3.0 includes features important for this BPMF implementation, for
example: support for asynchronous communication, support for hybrid application combining message
passing with shared memory level parallelism like OpenMP [14] or TBB [15].
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4.1.2 GASPI

The Global Address Space Programming Interface (GASPI [5]) is the specification for a PGAS style
programming model for C/C++ and Fortran. The API consists of a set of basic routines. As an alternative
to MPI, its main advantages are i) its one-sided communication layer that can take full advantage of the
hardware capabilities to utilize remote direct memory access (RDMA) for spending no CPU cycles
on communication, ii) the fact that the GASPI library has been optimized to work in a multi-threaded
environment and iii) its seamless interoperability with MPI.

4.1.3 ExaSHARK

Compared to MPI and GASPI, ExaSHARK is a much higher abstraction level library designed to handle
matrices that are physically distributed across multiple nodes. The access to the global array is per-
formed through logical indexing. ExaSHARK is portable since it is built upon widely used technologies
such as MPI and C++ as a programming language. It provides coding via a global-arrays-like interface
which offers template-based functions (dot products, matrix multiplications, unary expressions) which
offers transparent execution across the whole system.

4.2 Data Distribution

We distribute the matrices U and V across the system where each nodes computes their part. When an
item is computed, the rating matrix R determines to what nodes this item needs to be sent.

Our main optimization concern on how to distribute U and V is to make sure the computational
load is distributed equally as possible and the amount of data communication is minimized. Similarly
to the cache optimization mentioned above, we can reorder the rows and columns in R to minimize the
number of items that have to be exchanged, if we split and distribute U and V according to consecutive
regions in R.

Additionally we take work balance in to account when reordering R. For this we use a workload
model derived from Figure 3. The blue curve in the figure give a reasonable idea of the amount of work
for a user or movie in relation to the amount of ratings. As you can see, when the number of ratings
is small, the work per rating is higher than for items with many ratings. Hence we approximate the
workload per user/movie with fixed cost, plus a cost per movie rating.

4.3 Updates and data communication

4.3.1 Communication using ExaSHARK

For the users updates, only one-sided communication is used in the case a user is outside a process
range, namely the GlobalArray::get() routine. Indeed, thanks to the PGAS model, each process
knows which other process owns a particular range of the global array.

4.3.2 Communication using pure MPI

To allow for communication and computation to overlap we send the updated user/movie as soon as it
has been computed. For this we use the asynchronous MPI 3.0 routines MPI Isend and MPI Irecv.
However, the overhead of calling these routines is too much to individually send each item to the nodes
that need it. Additionally, too many messages would be in flight at the same time for the runtime to
handle this efficiently. Hence we store items that need to be sent in a temporary buffer and only send
when the buffer is full.

5

Distributed Bayesian Probabilistic Matrix Factorization Vander Aa, Chakroun and Haber

4.3.3 Communication using GASPI

Because GASPI is more light-weight, we can afford to simply send (gaspi write) an item once it has
been computed.

5 Validation
In this section, we present the experimental results and related discussion for the proposed parallel
implementations of the BPMF described above.

5.1 Hardware platform
We performed experiments on Lynx a cluster with 20 nodes, each equipped with dual 6-core Intel(R)
Westmere CPUs with 12 hardware threads each, a clock speed 2.80GHz and 96 GB of RAM, and on
Anselm a cluster with 209 nodes, each node equipped with 2 8-core Intel(R) Sandy Bridge CPUs with
at least 64GB RAM per node.

5.2 Benchmarks
Two public benchmarks have been used to evaluate the performances of the proposed approaches: the
ChEMBL dataset [2] and the MovieLens [8] database.

The ChEMBL dataset is related to the drug discovery research field. It contains descriptions for
biological activities involving over a million chemical entities, extracted primarily from scientific liter-
ature. Several version exist since the dataset is updated on a fairly frequent basis. In this work, we used
a subset of the version 20 of the database which was released on February 2015. The subset is selected
based on the half maximal inhibitory concentration (IC50) which is a measure of the effectiveness of a
substance in inhibiting a specific biological or biochemical function. The total ratings number is around
1023952 from 483500 compounds (acting as users) and 5775 targets (acting as movies).

The MovieLens dataset (ml-20m) describes 5-star rating and free-text tagging activity from Movie-
Lens, a movie recommendation service. It contains 20M ratings across 27278 movies. These data were
created by 138493 users between January 09, 1995 and March 31, 2015.

For all the experiments, all the versions of the parallel BPMF reach the same level of prediction
accuracy evaluated using the root mean square error metric (RMSE) which is a used measure of the
differences between values predicted by a model or an estimator and the values actually observed [9].

5.3 Results for Multi-core BPMF
In this section, we compare the performance of the proposed multi-core BPMF with the Graphlab library
which is a state of the art library widely used in machine learning community. We have chosen GraphLab
because it is known to outperform other similar graph processing implementations [7].

The results presented in Figure 4 report the performance in number of updates to U and V per second
for the ChEMBL benchmark suite on a machine with 12 cores for three different version: TBB The
C++ implementation using Intel’s Threading Building Blocks (TBB) for shared memory parallelization;
OpenMP The C++ implementation using Intel’s OpenMP for shared memory parallelization; SHARK
ExaSHARK version; and GraphLab Version using GraphLab

The number of latent features (K) is equal to 50.
The results show that all parallel implementations of the BPMF scale with the increasing number of

used cores. However there is a clear correlation between the abstraction level used and the performance
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such as MPI and C++ as a programming language. It provides coding via a global-arrays-like interface
which offers template-based functions (dot products, matrix multiplications, unary expressions) which
offers transparent execution across the whole system.

4.2 Data Distribution

We distribute the matrices U and V across the system where each nodes computes their part. When an
item is computed, the rating matrix R determines to what nodes this item needs to be sent.

Our main optimization concern on how to distribute U and V is to make sure the computational
load is distributed equally as possible and the amount of data communication is minimized. Similarly
to the cache optimization mentioned above, we can reorder the rows and columns in R to minimize the
number of items that have to be exchanged, if we split and distribute U and V according to consecutive
regions in R.

Additionally we take work balance in to account when reordering R. For this we use a workload
model derived from Figure 3. The blue curve in the figure give a reasonable idea of the amount of work
for a user or movie in relation to the amount of ratings. As you can see, when the number of ratings
is small, the work per rating is higher than for items with many ratings. Hence we approximate the
workload per user/movie with fixed cost, plus a cost per movie rating.

4.3 Updates and data communication

4.3.1 Communication using ExaSHARK

For the users updates, only one-sided communication is used in the case a user is outside a process
range, namely the GlobalArray::get() routine. Indeed, thanks to the PGAS model, each process
knows which other process owns a particular range of the global array.

4.3.2 Communication using pure MPI

To allow for communication and computation to overlap we send the updated user/movie as soon as it
has been computed. For this we use the asynchronous MPI 3.0 routines MPI Isend and MPI Irecv.
However, the overhead of calling these routines is too much to individually send each item to the nodes
that need it. Additionally, too many messages would be in flight at the same time for the runtime to
handle this efficiently. Hence we store items that need to be sent in a temporary buffer and only send
when the buffer is full.
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4.3.3 Communication using GASPI

Because GASPI is more light-weight, we can afford to simply send (gaspi write) an item once it has
been computed.
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In this section, we present the experimental results and related discussion for the proposed parallel
implementations of the BPMF described above.

5.1 Hardware platform
We performed experiments on Lynx a cluster with 20 nodes, each equipped with dual 6-core Intel(R)
Westmere CPUs with 12 hardware threads each, a clock speed 2.80GHz and 96 GB of RAM, and on
Anselm a cluster with 209 nodes, each node equipped with 2 8-core Intel(R) Sandy Bridge CPUs with
at least 64GB RAM per node.

5.2 Benchmarks
Two public benchmarks have been used to evaluate the performances of the proposed approaches: the
ChEMBL dataset [2] and the MovieLens [8] database.

The ChEMBL dataset is related to the drug discovery research field. It contains descriptions for
biological activities involving over a million chemical entities, extracted primarily from scientific liter-
ature. Several version exist since the dataset is updated on a fairly frequent basis. In this work, we used
a subset of the version 20 of the database which was released on February 2015. The subset is selected
based on the half maximal inhibitory concentration (IC50) which is a measure of the effectiveness of a
substance in inhibiting a specific biological or biochemical function. The total ratings number is around
1023952 from 483500 compounds (acting as users) and 5775 targets (acting as movies).

The MovieLens dataset (ml-20m) describes 5-star rating and free-text tagging activity from Movie-
Lens, a movie recommendation service. It contains 20M ratings across 27278 movies. These data were
created by 138493 users between January 09, 1995 and March 31, 2015.

For all the experiments, all the versions of the parallel BPMF reach the same level of prediction
accuracy evaluated using the root mean square error metric (RMSE) which is a used measure of the
differences between values predicted by a model or an estimator and the values actually observed [9].

5.3 Results for Multi-core BPMF
In this section, we compare the performance of the proposed multi-core BPMF with the Graphlab library
which is a state of the art library widely used in machine learning community. We have chosen GraphLab
because it is known to outperform other similar graph processing implementations [7].

The results presented in Figure 4 report the performance in number of updates to U and V per second
for the ChEMBL benchmark suite on a machine with 12 cores for three different version: TBB The
C++ implementation using Intel’s Threading Building Blocks (TBB) for shared memory parallelization;
OpenMP The C++ implementation using Intel’s OpenMP for shared memory parallelization; SHARK
ExaSHARK version; and GraphLab Version using GraphLab

The number of latent features (K) is equal to 50.
The results show that all parallel implementations of the BPMF scale with the increasing number of
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Figure 4: Performance of the multi-core BPMF on the ChEMBL dataset in number of updates to U and
V versus the number of parallel threads.
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Figure 5: Performance of the distributed BPMF on the ChEMBL dataset (left) and MovieLens dataset
(right) in number of updates to U and V per second versus the number of cores used.

obtained. The TBB and OpenMP versions are the most low-level and obtain highest performance,
higher-level libraries like ExaSHARK and GraphLab focus less on performance and this gap is clearly
visible in the graph. GraphLab, for example, uses TCP sockets and ehternet instead of MPI and Infini-
Band.

The TBB version performs better than the OpenMP version because TBB’s support for nested par-
allelism and because TBB uses a work-stealing scheduler that can better balance the work.

5.4 Distributed BPMF

In this section, the strong scaling of the different versions of distributed BPMF is studied. We first
present results for the ChEMBL dataset on a relatively small cluster with 12 nodes, comparing the dif-
ferent MPI, GASPI and ExaSHARK versions, showing the benefit of asynchronous communication even
at such small scales. Then we show that there are large differences between the different asynchronous
versions for larger clusters, and we find the limits of scaling such a tightly integrated algorithm as BPMF.

Figure 5 (left) shows a clear advantage of two asynchronous communication version being the
GASPI version and the MPI version using MPI Isend and MPI Irecv. For these version communi-
cation happens in the background, in parallel with computation, while for the two other versions, the
ExaSHARK version and the version using MPI broadcast (MPI bcast) communication is happening
after the computation and thus the performance gained by adding more nodes, is lost again by the time
spent communicating.
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Figure 6: Time spent computing, communicating and doing both for the MPI implementation (left) and
GASPI implementation (right).

Scaling further to 128 nodes, the difference between the asynchronous versions becomes apparent.
Figure 5 (right) shows the GASPI version scales better than the asynchronous MPI version, achieving
more than 70% parallel efficiency for 128 nodes compared to 10% for the MPI version. This is due to
two factors. Firstly the GASPI communication library is much more light-weight than the MPI version,
spending about 2.5x less time than MPI per message sent. And because of this, secondly the GASPI
version allows you to hide 85% of the communication time (for 128 nodes), while for the MPI version
this is a mere 10%. The overlap of communication and computation is displayed in Figure 6. In this
figure both means that the network hardware is sending data (communicating) while the processor is
busy doing computations. A clear difference between MPI on the left and GASPI on the right is visible.

As can already be seen from the GASPI results on 128 nodes, we also expect the performance of
the GASPI version to level off. This is due to the general decrease in the amount of work per node (less
items) and increase in the amount of communication (more nodes). We need changes to the algorithm
itself to keep scaling.

6 Related Work
Apart from Bayesian Probabilistic Matrix Factorization (BPMF) [16], the most popular algorithms for
low-row matrix factorization are probably alternating least-squares (ALS) [22] and stochastic gradient
descent (SGD) [11].

SGD randomly loops through all observed interactions user-movie, computes the error of the pre-
diction for each interaction and modifies the model parameters in the opposite direction of the gradient.
The ALS technique repeatedly keeps one of the matrices U and V fixed, so that the other one can be
optimally re-computed. ALS then rotates between re-computing the rows of U in one step and the
columns of V in the subsequent step. The advantage of BPMF is that the predictions are averaged over
all the samples from the posterior distribution and all the model parameters are integrated.

While a growing number of works studied parallel implementations of the SGD [11, 4] and ALS
[22], less research work dealt with a parallelization of the BPMF [10, 1]. Indeed, computing the pos-
terior inference which time complexity per iteration is cubic with the respect of the rank of the factor
matrix (≈K3), may become very exorbitant when the number of users and movies runs into millions.
SGD, in the other hand, is computationally less expensive even if it needs more iterations to reach a
good enough prediction and its performance is sensitive to the choice of the learning rate. For ALS,
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Figure 4: Performance of the multi-core BPMF on the ChEMBL dataset in number of updates to U and
V versus the number of parallel threads.
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obtained. The TBB and OpenMP versions are the most low-level and obtain highest performance,
higher-level libraries like ExaSHARK and GraphLab focus less on performance and this gap is clearly
visible in the graph. GraphLab, for example, uses TCP sockets and ehternet instead of MPI and Infini-
Band.

The TBB version performs better than the OpenMP version because TBB’s support for nested par-
allelism and because TBB uses a work-stealing scheduler that can better balance the work.

5.4 Distributed BPMF

In this section, the strong scaling of the different versions of distributed BPMF is studied. We first
present results for the ChEMBL dataset on a relatively small cluster with 12 nodes, comparing the dif-
ferent MPI, GASPI and ExaSHARK versions, showing the benefit of asynchronous communication even
at such small scales. Then we show that there are large differences between the different asynchronous
versions for larger clusters, and we find the limits of scaling such a tightly integrated algorithm as BPMF.

Figure 5 (left) shows a clear advantage of two asynchronous communication version being the
GASPI version and the MPI version using MPI Isend and MPI Irecv. For these version communi-
cation happens in the background, in parallel with computation, while for the two other versions, the
ExaSHARK version and the version using MPI broadcast (MPI bcast) communication is happening
after the computation and thus the performance gained by adding more nodes, is lost again by the time
spent communicating.
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Scaling further to 128 nodes, the difference between the asynchronous versions becomes apparent.
Figure 5 (right) shows the GASPI version scales better than the asynchronous MPI version, achieving
more than 70% parallel efficiency for 128 nodes compared to 10% for the MPI version. This is due to
two factors. Firstly the GASPI communication library is much more light-weight than the MPI version,
spending about 2.5x less time than MPI per message sent. And because of this, secondly the GASPI
version allows you to hide 85% of the communication time (for 128 nodes), while for the MPI version
this is a mere 10%. The overlap of communication and computation is displayed in Figure 6. In this
figure both means that the network hardware is sending data (communicating) while the processor is
busy doing computations. A clear difference between MPI on the left and GASPI on the right is visible.

As can already be seen from the GASPI results on 128 nodes, we also expect the performance of
the GASPI version to level off. This is due to the general decrease in the amount of work per node (less
items) and increase in the amount of communication (more nodes). We need changes to the algorithm
itself to keep scaling.

6 Related Work
Apart from Bayesian Probabilistic Matrix Factorization (BPMF) [16], the most popular algorithms for
low-row matrix factorization are probably alternating least-squares (ALS) [22] and stochastic gradient
descent (SGD) [11].

SGD randomly loops through all observed interactions user-movie, computes the error of the pre-
diction for each interaction and modifies the model parameters in the opposite direction of the gradient.
The ALS technique repeatedly keeps one of the matrices U and V fixed, so that the other one can be
optimally re-computed. ALS then rotates between re-computing the rows of U in one step and the
columns of V in the subsequent step. The advantage of BPMF is that the predictions are averaged over
all the samples from the posterior distribution and all the model parameters are integrated.

While a growing number of works studied parallel implementations of the SGD [11, 4] and ALS
[22], less research work dealt with a parallelization of the BPMF [10, 1]. Indeed, computing the pos-
terior inference which time complexity per iteration is cubic with the respect of the rank of the factor
matrix (≈K3), may become very exorbitant when the number of users and movies runs into millions.
SGD, in the other hand, is computationally less expensive even if it needs more iterations to reach a
good enough prediction and its performance is sensitive to the choice of the learning rate. For ALS,
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although its time complexity per iteration, previous related work [22] showed that it is well suited for
parallelization.

In [1], a distributed Bayesian matrix factorization algorithm using stochastic gradient Markov Chain
Monte Carlo (MCMC) is proposed. This work is much more similar to this work than the aforemen-
tioned ALS and SGD. In the paper, the authors extended the Distributed Stochastic Gradient Langevin
Dynamics (DSGLD) for more efficient learning. For the sake of increasing prediction’s accuracy, they
use multiple parallel chains in order to collect samples at a much faster rate and to explore different
modes of parameter space. In this work, the Gibbs sampler is used because it is popular for its best
quality samples even though it is more difficult to parallelize.

From parallel programming prospective, a master slave model is considered in [1]. The initial matrix
R is grid into as many independent blocks as used workers. At each iteration, the master picks a
block using a block scheduler and sends the corresponding chunk of U and V to the block’s worker.
Upon reception, the worker updates these chunks by running DSGLD using its local block of ratings.
Afterwards, the worker sends the chunks back to the master. Upon reception, this later updates its
global copy of the matrices U and V . Two levels of parallelism are used by the authors as a way of
compensating the low mixing rate of SGLD: a parallel execution of the same sampling step (chain) and
different samples in parallel.

In this work, a PGAS approach is used where the computation is totally decentralized and where
the matrices are defined as global arrays. In such a decentralized model, no global barrier is needed
to update the matrices neither for synchronizing the block distribution scheduling such as in [1]. No
bottleneck is also created when the updates of the matrices are exchanged.

7 Conclusion and Future Work

This work proposed a high-performance distributed implementation of the Bayesian probabilistic matrix
factorization algorithm. We have shown that load balancing and low-overhead asynchronous commu-
nication are essential to achieve good parallel efficiency, clearly outperforming more common syn-
chronous approaches like GraphLab. The achieved speed-up allowed us to speed up machine learning
for drug discovery on an industrial dataset from 15 days for the initial Julia-based version to 5 minutes
using the distributed version with TBB and GASPI.

Future work includes extending the framework to support more matrix factorization methods such
as Group Factor Analysis [21] or Macau [17], but also a look at more scalable MF algorithms.
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