
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 2318–2322

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.082

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,  
Zurich, Switzerland

10.1016/j.procs.2017.05.082 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

SW-SGD: The Sliding Window Stochastic Gradient

Descent Algorithm

Imen Chakroun1,3, Tom Haber2,3, Thomas J. Ashby1,3

1 imec, Kapeldreef 75, B-3001 Leuven, Belgium,
ashby@imec.be imen.chakroun@imec.be
2 Expertise Centrum for Digital Media,

Wetenschapspark 2, 3590 Diepenbeek, Belgium tom.haber@uhasselt.be
3 ExaScience Life Lab,

Kapeldreef 75, B-3001 Leuven, Belgium,

Abstract
Stochastic Gradient Descent (SGD, or 1-SGD in our notation) is probably the most popular

family of optimisation algorithms used in machine learning on large data sets due to its ability
to optimise efficiently with respect to the number of complete training set data touches (epochs)
used. Various authors have worked on data or model parallelism for SGD, but there is little
work on how SGD fits with memory hierarchies ubiquitous in HPC machines. Standard practice
suggests randomising the order of training points and streaming the whole set through the
learner, which results in extremely low temporal locality of access to the training set and thus,
when dealing with large data sets, makes minimal use of the small, fast layers of memory in an
HPC memory hierarchy. Mini-batch SGD with batch size n (n-SGD) is often used to control the
noise on the gradient and make convergence smoother and more easy to identify, but this can
reduce the learning efficiency wrt. epochs when compared to 1-SGD whilst also having the same
extremely low temporal locality. In this paper we introduce Sliding Window SGD (SW-SGD)
which uses temporal locality of training point access in an attempt to combine the advantages
of 1-SGD (epoch efficiency) with n-SGD (smoother convergence and easier identification of
convergence) by leveraging HPC memory hierarchies. We give initial results on part of the
Pascal dataset that show that memory hierarchies can be used to improve SGD performance.

Keywords: SGD, sliding window, machine learning, SVM, logistic regression

1 Introduction

Many supervised machine learning algorithms be formulated in terms of a mathematical opti-
mization problem where the key challenge is to identify parameters of a given model so that
the number of miss-classified points is minimized. The learned model is used in the operational
phase to make the predictions for the unlabelled points. In order to capture the quality of the

1

This space is reserved for the Procedia header, do not use it

SW-SGD: The Sliding Window Stochastic Gradient

Descent Algorithm

Imen Chakroun1,3, Tom Haber2,3, Thomas J. Ashby1,3

1 imec, Kapeldreef 75, B-3001 Leuven, Belgium,
ashby@imec.be imen.chakroun@imec.be
2 Expertise Centrum for Digital Media,

Wetenschapspark 2, 3590 Diepenbeek, Belgium tom.haber@uhasselt.be
3 ExaScience Life Lab,

Kapeldreef 75, B-3001 Leuven, Belgium,

Abstract
Stochastic Gradient Descent (SGD, or 1-SGD in our notation) is probably the most popular

family of optimisation algorithms used in machine learning on large data sets due to its ability
to optimise efficiently with respect to the number of complete training set data touches (epochs)
used. Various authors have worked on data or model parallelism for SGD, but there is little
work on how SGD fits with memory hierarchies ubiquitous in HPC machines. Standard practice
suggests randomising the order of training points and streaming the whole set through the
learner, which results in extremely low temporal locality of access to the training set and thus,
when dealing with large data sets, makes minimal use of the small, fast layers of memory in an
HPC memory hierarchy. Mini-batch SGD with batch size n (n-SGD) is often used to control the
noise on the gradient and make convergence smoother and more easy to identify, but this can
reduce the learning efficiency wrt. epochs when compared to 1-SGD whilst also having the same
extremely low temporal locality. In this paper we introduce Sliding Window SGD (SW-SGD)
which uses temporal locality of training point access in an attempt to combine the advantages
of 1-SGD (epoch efficiency) with n-SGD (smoother convergence and easier identification of
convergence) by leveraging HPC memory hierarchies. We give initial results on part of the
Pascal dataset that show that memory hierarchies can be used to improve SGD performance.

Keywords: SGD, sliding window, machine learning, SVM, logistic regression

1 Introduction

Many supervised machine learning algorithms be formulated in terms of a mathematical opti-
mization problem where the key challenge is to identify parameters of a given model so that
the number of miss-classified points is minimized. The learned model is used in the operational
phase to make the predictions for the unlabelled points. In order to capture the quality of the

1

This space is reserved for the Procedia header, do not use it

SW-SGD: The Sliding Window Stochastic Gradient

Descent Algorithm

Imen Chakroun1,3, Tom Haber2,3, Thomas J. Ashby1,3

1 imec, Kapeldreef 75, B-3001 Leuven, Belgium,
ashby@imec.be imen.chakroun@imec.be
2 Expertise Centrum for Digital Media,

Wetenschapspark 2, 3590 Diepenbeek, Belgium tom.haber@uhasselt.be
3 ExaScience Life Lab,

Kapeldreef 75, B-3001 Leuven, Belgium,

Abstract
Stochastic Gradient Descent (SGD, or 1-SGD in our notation) is probably the most popular

family of optimisation algorithms used in machine learning on large data sets due to its ability
to optimise efficiently with respect to the number of complete training set data touches (epochs)
used. Various authors have worked on data or model parallelism for SGD, but there is little
work on how SGD fits with memory hierarchies ubiquitous in HPC machines. Standard practice
suggests randomising the order of training points and streaming the whole set through the
learner, which results in extremely low temporal locality of access to the training set and thus,
when dealing with large data sets, makes minimal use of the small, fast layers of memory in an
HPC memory hierarchy. Mini-batch SGD with batch size n (n-SGD) is often used to control the
noise on the gradient and make convergence smoother and more easy to identify, but this can
reduce the learning efficiency wrt. epochs when compared to 1-SGD whilst also having the same
extremely low temporal locality. In this paper we introduce Sliding Window SGD (SW-SGD)
which uses temporal locality of training point access in an attempt to combine the advantages
of 1-SGD (epoch efficiency) with n-SGD (smoother convergence and easier identification of
convergence) by leveraging HPC memory hierarchies. We give initial results on part of the
Pascal dataset that show that memory hierarchies can be used to improve SGD performance.

Keywords: SGD, sliding window, machine learning, SVM, logistic regression

1 Introduction

Many supervised machine learning algorithms be formulated in terms of a mathematical opti-
mization problem where the key challenge is to identify parameters of a given model so that
the number of miss-classified points is minimized. The learned model is used in the operational
phase to make the predictions for the unlabelled points. In order to capture the quality of the

1

The Sliding Window Stochastic Gradient Descent Algorithm Chakroun, Haber and Ashby

model, a cost (also called loss) function calculating the error between the predicted and the real
values on the training set is used. The further away the prediction is from the real value of a
training point, the larger the value of the cost function for that point is. The goal of training
the model is to minimize the total cost over the whole training set.

First order gradient-based optimization methods are popular for minimising this cost. They
attempt to find the values of the model parameters (also called the weights vector) that minimize
the cost function when they cannot be calculated analytically. An iteration of these methods
usually has a form similar to Equation 1 which shows that the method iteratively takes small
steps (α being the step size) in the direction of the negative gradient of the cost function:

wk+1 = wk − αk
∂C(wk)

∂wk
(1)

where αk is the step size at step k, wk is the weight vector at step k, and C is the cost of all
training points for a particular weight vector.

Two simple but effective methods for gradient-based optimization are stochastic gradient
descent (SGD) and batch gradient descent (GD). The difference between both methods is the
size of the sample to consider for computing the gradient. While the batch method uses all
training examples (i.e. the whole training set) to calculate the gradient at each step, the
stochastic gradient method chooses a single training point at random. This difference in the
number of updates per entire training set read leads to two extremes of exploration behaviour:
batch gradient descent can be very slow and expensive as we need to calculate the gradients
for the whole training set to perform one update. The convergence is however smoother and
termination is more easily detectable. SGD is less expensive but suffers from noisy steps and
consequently hard to spot termination.

A variant of the SGD method called mini-batch SGD (n-SGD) considers a reasonably small
group of training points for computing the gradient at each step, and tries to balance training
set access efficiency against noise; the size of the mini-batch n must usually be specified by the
user. The random selection of which training point to use at a given step for SGD is typically
implemented as a random shuffling of the order of the training vectors rather than genuine
random training point selection. The shuffling can be done once before the algorithm is run, or
after every epoch. In the following, we sometimes use 1-SGD to denote normal one point SGD
in the same notation as n-SGD to avoid ambiguity.

An entire touch of the training set is called an epoch. While having different access patterns
and updates per epoch, SGD and n-SGD have a common characteristic which is low temporal
locality of access to the training set. Each training point is used once, and then not used again
until all the other training points have been visited. This means that a cache layer (e.g. DRAM
caching for data on disk, or SRAM caching for data in DRAM) in the memory hierarchy of a
modern HPC computer system will have little benefit for the algorithm unless all the training
points fit inside that cache.

Various authors have looked at data or model parallelism for SGD to be able to benefit from
the parallelism available in HPC architectures; see [4] for a particular example and an entry
to the literature. However, how to improve the interaction of SGD with memory hierarchies,
another important architectural feature of HPC machines, is largely overlooked, despite the need
to deal with large data sets and the importance of exploiting memory hierarchies to achieve
performance. Sliding Window SGD (SW-SGD), a gradient descent optimization algorithm
which aims to increase the locality of training point accesses while combining the advantages
of SGD and n-SGD in terms of epoch efficiency and smoother convergence respectively.

The remainder of this paper is as follows: in Section 2 the stochastic gradient descent and

2

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.082&domain=pdf


 Imen Chakroun et al. / Procedia Computer Science 108C (2017) 2318–2322 2319

This space is reserved for the Procedia header, do not use it

SW-SGD: The Sliding Window Stochastic Gradient

Descent Algorithm

Imen Chakroun1,3, Tom Haber2,3, Thomas J. Ashby1,3

1 imec, Kapeldreef 75, B-3001 Leuven, Belgium,
ashby@imec.be imen.chakroun@imec.be
2 Expertise Centrum for Digital Media,

Wetenschapspark 2, 3590 Diepenbeek, Belgium tom.haber@uhasselt.be
3 ExaScience Life Lab,

Kapeldreef 75, B-3001 Leuven, Belgium,

Abstract
Stochastic Gradient Descent (SGD, or 1-SGD in our notation) is probably the most popular

family of optimisation algorithms used in machine learning on large data sets due to its ability
to optimise efficiently with respect to the number of complete training set data touches (epochs)
used. Various authors have worked on data or model parallelism for SGD, but there is little
work on how SGD fits with memory hierarchies ubiquitous in HPC machines. Standard practice
suggests randomising the order of training points and streaming the whole set through the
learner, which results in extremely low temporal locality of access to the training set and thus,
when dealing with large data sets, makes minimal use of the small, fast layers of memory in an
HPC memory hierarchy. Mini-batch SGD with batch size n (n-SGD) is often used to control the
noise on the gradient and make convergence smoother and more easy to identify, but this can
reduce the learning efficiency wrt. epochs when compared to 1-SGD whilst also having the same
extremely low temporal locality. In this paper we introduce Sliding Window SGD (SW-SGD)
which uses temporal locality of training point access in an attempt to combine the advantages
of 1-SGD (epoch efficiency) with n-SGD (smoother convergence and easier identification of
convergence) by leveraging HPC memory hierarchies. We give initial results on part of the
Pascal dataset that show that memory hierarchies can be used to improve SGD performance.

Keywords: SGD, sliding window, machine learning, SVM, logistic regression

1 Introduction

Many supervised machine learning algorithms be formulated in terms of a mathematical opti-
mization problem where the key challenge is to identify parameters of a given model so that
the number of miss-classified points is minimized. The learned model is used in the operational
phase to make the predictions for the unlabelled points. In order to capture the quality of the

1

This space is reserved for the Procedia header, do not use it

SW-SGD: The Sliding Window Stochastic Gradient

Descent Algorithm

Imen Chakroun1,3, Tom Haber2,3, Thomas J. Ashby1,3

1 imec, Kapeldreef 75, B-3001 Leuven, Belgium,
ashby@imec.be imen.chakroun@imec.be
2 Expertise Centrum for Digital Media,

Wetenschapspark 2, 3590 Diepenbeek, Belgium tom.haber@uhasselt.be
3 ExaScience Life Lab,

Kapeldreef 75, B-3001 Leuven, Belgium,

Abstract
Stochastic Gradient Descent (SGD, or 1-SGD in our notation) is probably the most popular

family of optimisation algorithms used in machine learning on large data sets due to its ability
to optimise efficiently with respect to the number of complete training set data touches (epochs)
used. Various authors have worked on data or model parallelism for SGD, but there is little
work on how SGD fits with memory hierarchies ubiquitous in HPC machines. Standard practice
suggests randomising the order of training points and streaming the whole set through the
learner, which results in extremely low temporal locality of access to the training set and thus,
when dealing with large data sets, makes minimal use of the small, fast layers of memory in an
HPC memory hierarchy. Mini-batch SGD with batch size n (n-SGD) is often used to control the
noise on the gradient and make convergence smoother and more easy to identify, but this can
reduce the learning efficiency wrt. epochs when compared to 1-SGD whilst also having the same
extremely low temporal locality. In this paper we introduce Sliding Window SGD (SW-SGD)
which uses temporal locality of training point access in an attempt to combine the advantages
of 1-SGD (epoch efficiency) with n-SGD (smoother convergence and easier identification of
convergence) by leveraging HPC memory hierarchies. We give initial results on part of the
Pascal dataset that show that memory hierarchies can be used to improve SGD performance.

Keywords: SGD, sliding window, machine learning, SVM, logistic regression

1 Introduction

Many supervised machine learning algorithms be formulated in terms of a mathematical opti-
mization problem where the key challenge is to identify parameters of a given model so that
the number of miss-classified points is minimized. The learned model is used in the operational
phase to make the predictions for the unlabelled points. In order to capture the quality of the

1

This space is reserved for the Procedia header, do not use it

SW-SGD: The Sliding Window Stochastic Gradient

Descent Algorithm

Imen Chakroun1,3, Tom Haber2,3, Thomas J. Ashby1,3

1 imec, Kapeldreef 75, B-3001 Leuven, Belgium,
ashby@imec.be imen.chakroun@imec.be
2 Expertise Centrum for Digital Media,

Wetenschapspark 2, 3590 Diepenbeek, Belgium tom.haber@uhasselt.be
3 ExaScience Life Lab,

Kapeldreef 75, B-3001 Leuven, Belgium,

Abstract
Stochastic Gradient Descent (SGD, or 1-SGD in our notation) is probably the most popular

family of optimisation algorithms used in machine learning on large data sets due to its ability
to optimise efficiently with respect to the number of complete training set data touches (epochs)
used. Various authors have worked on data or model parallelism for SGD, but there is little
work on how SGD fits with memory hierarchies ubiquitous in HPC machines. Standard practice
suggests randomising the order of training points and streaming the whole set through the
learner, which results in extremely low temporal locality of access to the training set and thus,
when dealing with large data sets, makes minimal use of the small, fast layers of memory in an
HPC memory hierarchy. Mini-batch SGD with batch size n (n-SGD) is often used to control the
noise on the gradient and make convergence smoother and more easy to identify, but this can
reduce the learning efficiency wrt. epochs when compared to 1-SGD whilst also having the same
extremely low temporal locality. In this paper we introduce Sliding Window SGD (SW-SGD)
which uses temporal locality of training point access in an attempt to combine the advantages
of 1-SGD (epoch efficiency) with n-SGD (smoother convergence and easier identification of
convergence) by leveraging HPC memory hierarchies. We give initial results on part of the
Pascal dataset that show that memory hierarchies can be used to improve SGD performance.

Keywords: SGD, sliding window, machine learning, SVM, logistic regression

1 Introduction

Many supervised machine learning algorithms be formulated in terms of a mathematical opti-
mization problem where the key challenge is to identify parameters of a given model so that
the number of miss-classified points is minimized. The learned model is used in the operational
phase to make the predictions for the unlabelled points. In order to capture the quality of the

1

The Sliding Window Stochastic Gradient Descent Algorithm Chakroun, Haber and Ashby

model, a cost (also called loss) function calculating the error between the predicted and the real
values on the training set is used. The further away the prediction is from the real value of a
training point, the larger the value of the cost function for that point is. The goal of training
the model is to minimize the total cost over the whole training set.

First order gradient-based optimization methods are popular for minimising this cost. They
attempt to find the values of the model parameters (also called the weights vector) that minimize
the cost function when they cannot be calculated analytically. An iteration of these methods
usually has a form similar to Equation 1 which shows that the method iteratively takes small
steps (α being the step size) in the direction of the negative gradient of the cost function:

wk+1 = wk − αk
∂C(wk)

∂wk
(1)

where αk is the step size at step k, wk is the weight vector at step k, and C is the cost of all
training points for a particular weight vector.

Two simple but effective methods for gradient-based optimization are stochastic gradient
descent (SGD) and batch gradient descent (GD). The difference between both methods is the
size of the sample to consider for computing the gradient. While the batch method uses all
training examples (i.e. the whole training set) to calculate the gradient at each step, the
stochastic gradient method chooses a single training point at random. This difference in the
number of updates per entire training set read leads to two extremes of exploration behaviour:
batch gradient descent can be very slow and expensive as we need to calculate the gradients
for the whole training set to perform one update. The convergence is however smoother and
termination is more easily detectable. SGD is less expensive but suffers from noisy steps and
consequently hard to spot termination.

A variant of the SGD method called mini-batch SGD (n-SGD) considers a reasonably small
group of training points for computing the gradient at each step, and tries to balance training
set access efficiency against noise; the size of the mini-batch n must usually be specified by the
user. The random selection of which training point to use at a given step for SGD is typically
implemented as a random shuffling of the order of the training vectors rather than genuine
random training point selection. The shuffling can be done once before the algorithm is run, or
after every epoch. In the following, we sometimes use 1-SGD to denote normal one point SGD
in the same notation as n-SGD to avoid ambiguity.

An entire touch of the training set is called an epoch. While having different access patterns
and updates per epoch, SGD and n-SGD have a common characteristic which is low temporal
locality of access to the training set. Each training point is used once, and then not used again
until all the other training points have been visited. This means that a cache layer (e.g. DRAM
caching for data on disk, or SRAM caching for data in DRAM) in the memory hierarchy of a
modern HPC computer system will have little benefit for the algorithm unless all the training
points fit inside that cache.

Various authors have looked at data or model parallelism for SGD to be able to benefit from
the parallelism available in HPC architectures; see [4] for a particular example and an entry
to the literature. However, how to improve the interaction of SGD with memory hierarchies,
another important architectural feature of HPC machines, is largely overlooked, despite the need
to deal with large data sets and the importance of exploiting memory hierarchies to achieve
performance. Sliding Window SGD (SW-SGD), a gradient descent optimization algorithm
which aims to increase the locality of training point accesses while combining the advantages
of SGD and n-SGD in terms of epoch efficiency and smoother convergence respectively.

The remainder of this paper is as follows: in Section 2 the stochastic gradient descent and

2



2320 Imen Chakroun et al. / Procedia Computer Science 108C (2017) 2318–2322The Sliding Window Stochastic Gradient Descent Algorithm Chakroun, Haber and Ashby

the mini batch stochastic gradient descent are described. The sliding window SGD is introduced
in Section 3. Experimental results and associated discussion are presented in Section 4. Some
conclusions and perspectives on this work are drawn in Section 5.

2 Stochastic Gradient Descent

SGD is popular and has proven to achieve state of-the-art performance on a variety of machine
learning tasks such as in [5] and [3]. SGD includes a parameter called the learning rate to
define the length of the next step to take when moving forward in the direction of the gradient.
Choosing a proper learning rate is a research field in itself and several contributions exist in
this context. Generally speaking, a learning rate that is too small leads to slow convergence,
while a learning rate that is too large can hinder convergence and cause the loss function to
fluctuate around the minimum or even to diverge. In this work, we have opted for a learning
rate that is adjusted during the training according to a pre-defined schedule similarly to [5].
The step size is however bigger for n-SGD than for SGD since the noise on the gradient for one
point SGD makes it harder to take larger steps without risking preventing convergence.

In n-SGD, the model is updated based on small groups of training samples called mini-
batches. In this case, the batch size is set to n, being the number of points to consider in the
computation of the gradient. The advantages of using mini-batch gradient descent are two fold:
(1) it allows the model to converge nearly as quick as SGD (in terms of time) while (2) having
convergence nearly as smooth as GD.

3 Sliding window SGD

The accesses to data items in the cache have much lower latency and much higher bandwidth
than accesses to data items in the large memory. Modern HPC systems consist of many layers of
memory in a hierarchy, where each pair of adjacent layers has this relationship. If the training
set is larger that the cache capacity, then there is no benefit from the cache memory when
accessing the data in the large memory by streaming the whole training set and using each
item once during an epoch, in the manner that SGD, n-SGD and GD do. Due to the higher
bandwidth, the CPU can access potentially many training points in the cache in the time that
it takes for a new training point to be fully loaded from the large memory into the cache.
SW-SGD is motivated by this observation.

The gradient in SW-SGD is computed using new training points that have just been loaded
from the large memory, along with some number of training points that are still in the cache.
These extra training points in the cache are essentially free to use, due to the cache effect
and the fact that accessing them uses otherwise dead time whilst waiting for new points to
load into the cache. Using these extra points in a gradient calculation should provide some
extra smoothing similar to the extra points used in n-SGD. Ideally the smoothing would be
as effective as that in n-SGD, and SW-SGD would achieve lower noise whilst having the same
data touch efficiency as 1 point SGD (after accounting for pipeline-fill effects).

The points used by SW-SGD to calculate gradients are sketched in Figure 1 for a version
of the algorithm that uses batch size 1 to update the cache at each step, and cache size 4. For
SW-SGD, all but the newest vector in each iteration is available (for free) from the cache.

3

The Sliding Window Stochastic Gradient Descent Algorithm Chakroun, Haber and Ashby

Figure 1: Comparing the data touched with six iterations of 1-SGD, 4-SGD (mini batch) and
SW-SGD with cache size 4. The training points accessed at each iteration are under a bracket.
The total number of training points accessed after 6 iterations are marked in red.

4 Experiments

4.1 Experimental results

The experiments presented in this section have been conducted on a benchmark dataset ex-
tracted from the Pascal challenge on large scale hierarchical classification [1] which is a text
classification challenge. The data set is composed of 250,000 training points and 250,000 test
points. The used model is a LogLoss support vector machine (SVM) trained with gradient
descent. The initialization of the step size is set based on a pre-training phase applied to a
subset of the complete dataset such as performed in [5].

Preliminary experiments ran on the Pascal dataset and comparing the loss function obtained
with one point SGD and with n-SGD using different batch sizes, have shown that using a mini
batch size of 25 converges faster than the other batch sizes. Therefore, for the rest of the
experiments a batch size of 25 data points is considered when speaking about the n-SGD.

In Figure 2, different sizes of SW-SGD are compared (left). Besides a mini batch sized
25, old already visited points are also considered in the computation of the gradient at each
iteration. The results show that computing the gradient using 25 new points and 50 old points
gives the better convergence speed and accuracy. This observation is a result of a comparison
with two other configurations: a) 25 new points + 25 old points, and b) 25 new points + 75 old
points. The less efficient SW-SGD scenario (in terms of smoothness) namely the combination
of 25 old points and 25 new points is compared in Figure 2 (right side) to the 25-SGD (only 25
new points). The results show that the fluctuation in the 25-SGD are higher than the variation
observed with SW-SGD and that SW-SGD converges slightly earlier. This shows that SW-SGD
does indeed improve smoothness, and our results show that increasing cache size improves the
smoothness; SW-SGD with 25 new points + 75 old points can be seen to be significantly better
than standard 25-SGD in terms of smoothness when comparing the two parts of Figure 2.

It is important here to remember that using a n-SGD with size of 50 new points is less
efficient than using just 25 new points (25 being the best mini batch size found in preliminary
experiments). The added value here is therefore brought by the characteristic of considering
old visited points in the computation and not because of a bigger batch size.

Note that the experiment described above is phrased in terms of iteration counts, and not
in terms of actual machine performance. The paper is indeed investigating the principle of
whether SW-SGD can work, rather than the practical implementation details.

4



 Imen Chakroun et al. / Procedia Computer Science 108C (2017) 2318–2322 2321The Sliding Window Stochastic Gradient Descent Algorithm Chakroun, Haber and Ashby

the mini batch stochastic gradient descent are described. The sliding window SGD is introduced
in Section 3. Experimental results and associated discussion are presented in Section 4. Some
conclusions and perspectives on this work are drawn in Section 5.

2 Stochastic Gradient Descent

SGD is popular and has proven to achieve state of-the-art performance on a variety of machine
learning tasks such as in [5] and [3]. SGD includes a parameter called the learning rate to
define the length of the next step to take when moving forward in the direction of the gradient.
Choosing a proper learning rate is a research field in itself and several contributions exist in
this context. Generally speaking, a learning rate that is too small leads to slow convergence,
while a learning rate that is too large can hinder convergence and cause the loss function to
fluctuate around the minimum or even to diverge. In this work, we have opted for a learning
rate that is adjusted during the training according to a pre-defined schedule similarly to [5].
The step size is however bigger for n-SGD than for SGD since the noise on the gradient for one
point SGD makes it harder to take larger steps without risking preventing convergence.

In n-SGD, the model is updated based on small groups of training samples called mini-
batches. In this case, the batch size is set to n, being the number of points to consider in the
computation of the gradient. The advantages of using mini-batch gradient descent are two fold:
(1) it allows the model to converge nearly as quick as SGD (in terms of time) while (2) having
convergence nearly as smooth as GD.

3 Sliding window SGD

The accesses to data items in the cache have much lower latency and much higher bandwidth
than accesses to data items in the large memory. Modern HPC systems consist of many layers of
memory in a hierarchy, where each pair of adjacent layers has this relationship. If the training
set is larger that the cache capacity, then there is no benefit from the cache memory when
accessing the data in the large memory by streaming the whole training set and using each
item once during an epoch, in the manner that SGD, n-SGD and GD do. Due to the higher
bandwidth, the CPU can access potentially many training points in the cache in the time that
it takes for a new training point to be fully loaded from the large memory into the cache.
SW-SGD is motivated by this observation.

The gradient in SW-SGD is computed using new training points that have just been loaded
from the large memory, along with some number of training points that are still in the cache.
These extra training points in the cache are essentially free to use, due to the cache effect
and the fact that accessing them uses otherwise dead time whilst waiting for new points to
load into the cache. Using these extra points in a gradient calculation should provide some
extra smoothing similar to the extra points used in n-SGD. Ideally the smoothing would be
as effective as that in n-SGD, and SW-SGD would achieve lower noise whilst having the same
data touch efficiency as 1 point SGD (after accounting for pipeline-fill effects).

The points used by SW-SGD to calculate gradients are sketched in Figure 1 for a version
of the algorithm that uses batch size 1 to update the cache at each step, and cache size 4. For
SW-SGD, all but the newest vector in each iteration is available (for free) from the cache.

3

The Sliding Window Stochastic Gradient Descent Algorithm Chakroun, Haber and Ashby

Figure 1: Comparing the data touched with six iterations of 1-SGD, 4-SGD (mini batch) and
SW-SGD with cache size 4. The training points accessed at each iteration are under a bracket.
The total number of training points accessed after 6 iterations are marked in red.

4 Experiments

4.1 Experimental results

The experiments presented in this section have been conducted on a benchmark dataset ex-
tracted from the Pascal challenge on large scale hierarchical classification [1] which is a text
classification challenge. The data set is composed of 250,000 training points and 250,000 test
points. The used model is a LogLoss support vector machine (SVM) trained with gradient
descent. The initialization of the step size is set based on a pre-training phase applied to a
subset of the complete dataset such as performed in [5].

Preliminary experiments ran on the Pascal dataset and comparing the loss function obtained
with one point SGD and with n-SGD using different batch sizes, have shown that using a mini
batch size of 25 converges faster than the other batch sizes. Therefore, for the rest of the
experiments a batch size of 25 data points is considered when speaking about the n-SGD.

In Figure 2, different sizes of SW-SGD are compared (left). Besides a mini batch sized
25, old already visited points are also considered in the computation of the gradient at each
iteration. The results show that computing the gradient using 25 new points and 50 old points
gives the better convergence speed and accuracy. This observation is a result of a comparison
with two other configurations: a) 25 new points + 25 old points, and b) 25 new points + 75 old
points. The less efficient SW-SGD scenario (in terms of smoothness) namely the combination
of 25 old points and 25 new points is compared in Figure 2 (right side) to the 25-SGD (only 25
new points). The results show that the fluctuation in the 25-SGD are higher than the variation
observed with SW-SGD and that SW-SGD converges slightly earlier. This shows that SW-SGD
does indeed improve smoothness, and our results show that increasing cache size improves the
smoothness; SW-SGD with 25 new points + 75 old points can be seen to be significantly better
than standard 25-SGD in terms of smoothness when comparing the two parts of Figure 2.

It is important here to remember that using a n-SGD with size of 50 new points is less
efficient than using just 25 new points (25 being the best mini batch size found in preliminary
experiments). The added value here is therefore brought by the characteristic of considering
old visited points in the computation and not because of a bigger batch size.

Note that the experiment described above is phrased in terms of iteration counts, and not
in terms of actual machine performance. The paper is indeed investigating the principle of
whether SW-SGD can work, rather than the practical implementation details.

4



2322 Imen Chakroun et al. / Procedia Computer Science 108C (2017) 2318–2322The Sliding Window Stochastic Gradient Descent Algorithm Chakroun, Haber and Ashby

Figure 2: Comparing different sizes of SW-SGD (left) and n-SGD with SW-SGD (right).

5 Conclusion and future work

In this paper, we introduced SW-SGD which adapts SGD to the access characteristics of modern
HPC memory to gain extra gradient noise smoothing, hopefully for free. In this way it combines
the epoch efficiency of 1-SGD with the lower noise and easier to spot convergence of n-SGD. We
compare the approach to 1-SGD and n-SGD in some initial experiments on the Pascal data set.
We show that SW-SGD can improve over n-SGD in terms of gradient noise and convergence,
for a given number of loads of training points from the large slow memory level. In subsequent
work we will expand the experiments to better understand under what circumstances SW-SGD
should be used, and how to dimension the cache and implement the algorithm such that the
overall performance is better than n-SGD, in terms of total time to solution.

Acknowledgements

This work is funded by the European project ExCAPE [2] which received funding from the
European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement
no. 671555.

References

[1] http://lshtc.iit.demokritos.gr/node/1.

[2] http://www.excape-h2020.eu/

[3] S. Ahn, A. Korattikara, N. Liu, S. Rajan and M. Welling. Large-Scale Distributed Bayesian Ma-
trix Factorization using Stochastic Gradient MCMC. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. New York, USA, 2015.

[4] J. Keuper, F-J. Pfreundt. Asynchronous parallel stochastic gradient descent: a numeric core for
scalable distributed machine learning algorithms. In Proceedings of the Workshop on Machine
Learning in High-Performance Computing Environments. New York, USA, 2015.

[5] L. Bottou: Large-Scale Machine Learning with Stochastic Gradient Descent, Proceedings of the 19th
International Conference on Computational Statistics (COMPSTAT’2010), pp. 177–187, Edited by
Yves Lechevallier and Gilbert Saporta, Paris, France, August 2010, Springer.

5


