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Probabilistic sensitivity analysis allows to incorporate background knowledge on the consi-
dered input variables more easily than many other existing sensitivity analysis techniques.
Incorporation of such knowledge is performed by constructing a joint density function over
the input domain. However, it rarely happens that available knowledge directly and uniquely
translates into such a density function. A naturally arising question is then to what extent
the choice of density function determines the values of the considered sensitivity measures.
In this paper we perform simulation studies to address this question. Our empirical analy-
sis suggests some guidelines, but also cautions to practitioners in the field of probabilistic
sensitivity analysis.
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1. Introduction

Sensitivity analysis (SA) is an invaluable tool in studying certain relationships between
input variables and output variables. A wide range of techniques have been developed in
the SA domain, each of which measures a certain relationship between input and output
in a different way [1]. Probabilistic sensitivity analysis is becoming increasingly popular,
as it has some desirable features not possessed by many other SA techniques, as dis-
cussed in Section 3.1 below. Especially in situations where some information is available
about the correctness or optimality of certain values of the input variables, the use of
probabilistic SA is advantageous as this technique allows to take into account that one
value is more plausible than another one. This is done by defining a density function over
the input space. However, in virtually all practical applications the available information
on the plausibility of the values belonging to the considered domain is insufficient to
be transformed into a density function in a unique way. It is custom among practition-
ers to solve this ambiguous task by just taking any density function, often uniform or
Gaussian, that matches or at least is not contradictory to the available information (see,
e.g., [2]). However, this rests on the implicit assumption that the measures calculated
with probabilistic SA are insensitive to the choice of density function among all density
functions that are reasonable for the problem at hand. This might not be true and in a
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worst case scenario the sensitivity of the calculated measures with respect to the choice
of density function might be higher than the sensitivity of the output with respect to the
input, making the results of the sensitivity analysis useless.

In this paper we empirically investigate the influence of the choice of density function
on the mean effect and the sensitivity index, two important measures in probabilistic
SA (see Sections 3.2 and 3.3), via two simulation studies where limited information
about the density of the input values is available, conform to many practical situations.
The first simulation study entails a benchmark function and the second one is a real
world application in the context of agent-based models (agent-based models are shortly
reviewed in Section 4.1).

2. Outline of the paper

Section 3 provides an introduction to probabilistic SA and describes the mean effect and
the sensitivity index, the two SA measures that will be calculated for our simulation
studies. In Section 4 we discuss the methods that will play a role in our simulation
studies. First, we consider agent-based models, as one of our simulation studies performs
a probabilistic sensitivity analysis of the parameters of an agent-based model that we
have developed. Secondly, Gaussian process emulation, as agent-based models are very
time-consuming and to reduce computation time to an acceptable level we approximated
our agent-based model with a Gaussian process emulator, which is a member of the class
of surrogate models [3]. Finally, Monte Carlo integration, since the process of probabilistic
SA is in itself also very time-consuming due to the computation of integrals, and Monte
Carlo integration is used to speed up this process. Sections 5 and 6 are the main sections
of this paper, where we empirically investigate the influence of the choice of density
function on the two considered probabilistic SA measures in two completely different
simulation studies, namely one where the model is a benchmark function (Section 5) and
one where the model is an agent-based model that simulates mechanisms in assortative
mating (Section 6). Section 7 summarizes the main findings.

3. Probabilistic sensitivity analysis

This section is strongly based on the material on the MUCM toolkit website1.

3.1. Motivation for probabilistic sensitivity analysis

Sensitivity analysis began as a response to concerns about the consequences of mis-
specifying the values of inputs to a computer model, also called simulator, f which is
assumed here to map vectors to real numbers. Since the true input x̃ is typically unknown,
the user makes use of heuristics to find a good estimate x̂ of the true input. The value
f(x̂) can then be regarded as a good estimate of f(x̃) provided that the output does not
change too quickly with varying inputs. That is, if the output is not sensitive to any
input component. The output is said to be sensitive to a particular input component xj
if the output changes substantially when xj is perturbed slightly. This led to the idea of
measuring sensitivity by differentiation of the function. The measure of sensitivity to xj
is then the derivative ∂f(x)/∂xj , evaluated at x = x̂.

1http://mucm.aston.ac.uk/toolkit/index.php?page=ThreadTopicSensitivityAnalysis.html
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SA based on derivatives has a number of deficiencies, however. The differential mea-
sures only the impact of an infinitesimal change in xj , and for this reason this kind of
SA is referred to as local SA. If the response of the output to xj is far from linear, then
perturbing xj more than a tiny amount might have an effect that is not well represented
by the derivative. Furthermore, the derivative is not invariant to the units of measure-
ment. If, for instance, we choose to measure xj in kilometers rather than meters, then
∂f(x)/∂xj will change by a factor of 1000, giving the false impression that the sensitivity
has dramatically increased.

A simple alternative to derivative-based SA involves perturbing xj from its nominal
value x̂j , say to a value x′j , with all other input components held at their nominal values.
The resulting change in output is then regarded as a measure of sensitivity to xj . This
is known as one-way SA, because the inputs are varied only one at a time from their
nominal values. One-way SA addresses some problems noted for local SA. First, we do
not consider only infinitesimal perturbations. Secondly, nonlinearities in the response
to xj are automatically accounted for since these nonlinearities are encapsulated in the
function evaluations. Thirdly, changing the units of measurement for xj has no influence
on the output and thus on the change of output neither. However, one-way SA has the
severe limitation that it depends on how far we perturb the considered input component
and in practical situations there is typically not a definite value for the magnitude of
perturbation that can be considered as most relevant. Furthermore, one-way SA fails to
quantify joint effects of perturbing more than one input at the same time. The effect of
perturbing x1 and x2 together cannot be inferred from knowing the effects of perturbing
them individually. An obvious solution is to detect interactions by perturbing more than
one input component at the same time, known as multi-way SA. However, the problem
remains that the sensitivity still depends on the magnitude of the perturbations of the
considered input components.

Probabilistic SA avoids the arbitrary choice of a value for the magnitude of perturbation
by considering a distribution for the inputs. A joint density function ω over the input
space is chosen by the user, such that the value ω(x) in an input x can be interpreted
as a weight assigned to that input value. Typically one will choose ω such that for an
input value x that is more realistic or more likely than another input value x′ it holds
that ω(x) > ω(x′). Consequently, probabilistic SA does not rely on arbitrary choices of
magnitudes of perturbation, since it takes into account all relevant perturbations. Several
measures have been developed that then summarizes the corresponding changes in output
by taking a weighted average of all these changes, where the weights are determined by
ω. In this paper we focus on two important probabilistic SA measures, namely the mean
effect and the sensitivity index. The next two sections briefly review these two measures
in a non general way, assuming two input variables and one output variable, as this
applies to our case studies.

3.2. The mean effect

The mean effect is the weighted average of the simulator output, where the average is
taken over the values of one of two input variables x and y, with the other variable fixed.
Let us say that x is given a fixed value x0. Then we define the corresponding mean effect
M1(x0) as

M1(x0) = E[f(x, y)|x = x0] =

∫
f(x0, y)ω2|1(y|x0)dy (1)
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Thus given a certain value x0 for x, M1(x0) returns the weighted average of the simulator
output over all input values for which x = x0. The weights are provided by the conditional
density ω2|1.

The interpretation of the mean effect is that it allows to analyze the influence of x
to the simulator output. To that end, we consider repeatedly different values for x and
for each of these values we compute the (weighted) average simulator outcome with
respect to the other input variable. Another way to obtain insight into the influence of
x on the output would be to choose a value y0 for y and then calculate the simulator
output for varying values of x, while keeping y at y0. However, M1 would then depend
on the (often arbitrary) choice of value for y, resembling the one-way and multi-way
sensitivity analysis approaches and their related deficiencies as outlined in Section 3.1.
In probabilistic SA we avoid an arbitrary choice of a value for an input variable that is
left out of consideration by computing the simulator outcome for each value, and then
averaging these outcomes according to the weight attached to each of these values, as
given by ω2|1. This is then repeated for different values of x, thereby providing insight
into how the simulator outcome varies as x varies. The definition of M2 is, of course,
completely similar.

3.3. The sensitivity index

The value provided by M1 or M2 depends on the value that we have assigned to the
input variable of interest. For many purposes, it is helpful to have a single summary of
how sensitive the output is to a given input variable, so that we have a definite answer to
the question whether the input variable has a large effect on the output. The sensitivity
variance V1 measures the magnitude of the influence of x to the output as follows:

V1 =

∫ (
M1(x)−M

)2
ω1(x)dx (2)

with M = E[f(x, y)]. To interpret this measure, we first notice that M is the weighted
average of the simulator outcome. If we would be asked to provide an estimate for the
simulator outcome in an unknown input point, then M would be our best estimate. Now
suppose that the true value of x is known to be x0, while the value of y is unknown. What
would then be the best estimate of the simulator outcome? It would be the (weighted)
average of all simulator outcomes over all inputs of the form (x0, y) where y varies over
all values of its domain. As we know from Section 3.2 this is precisely the value M1(x0).
The squared difference (M1(x)−M)2, which appears in the definition of the sensitivity
variance (2), tells us how large the difference is between the estimate for the simulator
outcome in case we know the value of x and in case we do not. The measure V1 then
takes into account that x can potentially take any value in its domain by calculating this
difference with respect to each value and then taking the weighted average of it. This
description makes clear that if V1 is large, the estimate of the simulator outcome with
or without having information about x is very different. In other words: the larger V1 is,
the more important it is to have information about the true or most likely values of x.
Simply speaking, the larger V1, the more important the variable x. The definition of V2
is, again, completely similar.

The sensitivity variance V1 is in units that are the square of the units of the simulator
output, while it is common to measure sensitivity by a dimensionless index. To that end,
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the sensitivity index S1 has been introduced:

S1 = V1/V (3)

with

V =

∫ (
f(x, y)−M

)2
ω(x, y)dxdy (4)

The sensitivity index S1 also indicates the importance of x, as it is a kind of a normalized
version of V1. It is easily shown that 0 ≤ S1 ≤ 1. On the MUCM toolkit website, it is
stated that, e.g., S1 = 0.5 indicates that uncertainty about x accounts for 50% of the
overall uncertainty in the outcome when no information about the true values of any of
the input variables is available. Or, differently stated, that the uncertainty in the output
would be reduced by 50% if we would know the most likely or true value of x. However,
it is important to appreciate that, in general, it does not hold that S1 + S2 = 1. The
reason is that each sensitivity index restricts attention to one input variable, so that the
interaction between these variables is not taken into account. In general we have that
S1 + S2 < 1. It is thus more correct to state that uncertainty in the output would be
reduced by at least (100 × S1)% it x would be known. Due to the correlation between
x and y, knowing the true value of x will also provide some information about the true
value of y, thereby also reducing the uncertainty about the true value of y which reduces
in turn the uncertainty about the output further. The definition of S2 is analogous.

4. Methods

4.1. Agent-based models

An agent-based model (ABM) is a computer model that simulates the behavior and in-
teractions of agents [4]. An agent is the representation of a main entity of the system
under study, e.g. individuals in a study of marriage markets, or couples in a study of
fertility decisions. Each agent is given certain characteristics that are relevant in the con-
text of the study. For example, the characteristics of an agent representing an individual
on the marriage market might be gender, age, and characteristics of a desirable partner.
Theoretical and empirical considerations guide the assignment of values to each charac-
teristic. Thus, e.g., one might assign partner preferences based on existing survey data.
After specifying the agents, one has to decide on rules that govern the interaction be-
tween them. Such rules are also to be derived from theoretical and empirical background
knowledge, although simplifications are often necessary in order to control the complexity
of the model. A simple rule in case of modeling fertility decisions is that women adopt
a particular birth control strategy when a certain share of the other women in their
personal network have also adopted this strategy. Having specified the ABM, one let
the agents interact in a simulation environment, thereby typically changing the assigned
values of the characteristics. This is then repeated a number of times, until a predefined
number of simulation steps is reached or a stable state is attained. If the resulting sim-
ulation output is close to empirical data, hypotheses to explain the real world behavior
can be obtained in terms of the assigned characteristics of and interactions between the
agents.

ABMs are especially useful when substantial background knowledge about individual
behavior is available, but where the resulting macro level behavior is not known or

5



December 26, 2015 16:17 Journal of Statistical Computation and Simulation paper˙Statistical˙Computation˙Simulation˙2

not understood well. That is, in cases where knowledge of the parts does not imply
understanding of the whole. As an example, it has been observed that even when all
drivers try to drive fluently, vehicles are sometimes stopped by phantom traffic jams,
i.e. jams without an obvious reason such as an accident or bottleneck [5, 6]. The social
sciences are a prime example of a domain where ABMs have proven to be a major
methodology to analyze dynamic systems [7, 8].

4.2. Gaussian process emulation

Gaussian process emulation [9], or emulation for short, is a subclass of surrogate modeling
[3], where the objective is to obtain a fast-running approximation to a complex, time-
consuming model. The surrogate model in emulation is conveniently called the emulator,
while the time-consuming model is often referred to as the simulator.

The emulator is determined via a Bayesian analysis as follows. In the first step the
output of the simulator in any point is modeled as a Gaussian distribution. The mean of
this distribution is modeled as a linear combination of user-chosen regression functions
applied to the given input, while the variance is a constant and expresses the uncertainty
about the true value of the simulator. Output values in different points are typically not
independent, as output values corresponding to input values that are close to each other
are also close to each other in most practical applications. This is taken into account by
modeling the correlation between output values. The resulting prior model is a Gaussian
process, i.e. any finite collection of output values is modeled as a multivariate normal
distribution. In a second step, training data are obtained by running the simulator on
selected input points. Selection of appropriate training data input points is often done via
the Latin hypercube method [10]. In a third and final step the parameters of the emulator,
consisting of the constant variance and the coefficients in the linear combination of the
regression functions, are optimized, typically via maximum likelihood. Using Bayes’ rule,
the Gaussian distribution in each output value is updated to a Student’s t-distribution,
although for all practical applications this distribution is approximated by a Gaussian
distribution. For each input vector x the emulator then provides a distribution for the
corresponding output value. The mean of this distribution is denoted as m(x) and is
considered as approximation to the unknown (except for training data points) output
of the simulator in x. The variance of this distribution can be used to obtain a credible
interval around m(x). The larger this credible interval, the more likely that m(x) is not
a good approximation to the simulator output in x, and vice versa.

4.3. Monte Carlo integration

To explain the basic principles of Monte Carlo integration, we assume that the integral
I of a function F : R → R over an interval [a, b] has to be determined numerically. It is
basic knowledge [11] that for a large class of functions, I can be approximated by

În =

n∑
i=1

F (xi)(xi − xi−1) (5)

6
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where x0 = a < x1 < . . . < xn = b, for sufficiently large n. We can take xi − xi−1 as a
constant, namely (b− a)/n. Then:

În =
b− a
n

n∑
i=1

F (xi) (6)

Thus we find that I can be approximated by the average of values of F in chosen input
points multiplied by the length of the interval. Notice that the factors xi − xi−1, which
are present in (5), have been removed in the above approximation and thus it is not
required anymore that xi−1 < xi. The basic Monte Carlo method chooses the input
points xi ∈ [a, b] according to the uniform distribution over [a, b].
This method is easily extended to higher dimensions.

Some important advantages of Monte Carlo integration are outlined in [12]:

• The Monte Carlo technique typically outperforms other numerical approximation
methods when the input domain is higher dimensional. The efficiency of Monte Carlo
integration relative to other methods increases when the dimension of the problem in-
creases. For example, quadrature formulae [13] become very complex while the Monte
Carlo integration technique remains almost unchanged in more than one dimension.

• The convergence of Monte Carlo integration is independent of dimensionality regardless
of the smoothness of the integrand.

• Monte Carlo integration is simple since only two basic operations are required, namely
sampling and function evaluation.

All integrals in the simulation studies below have been calculated with the Monte Carlo
method.

5. Simulation study of probabilistic sensitivity analysis for benchmark
function

In our first simulation study the simulator is a real valued benchmark function with
two input variables having one global optimum. In a typical application, the analytical
expression of the function would not be known, and therefore we will not make use
of information about sensitivity of the output on the inputs that can be derived from
the analytical formulation. On the other hand, it is not uncommon to have a situation
where inputs corresponding to the optimal value are at the same time also more likely to
occur in the real world application at hand, and where information is available about the
location of such ’optimal inputs’ (see, for example, the next simulation study). Therefore,
we incorporate the location of the optimum in our probabilistic sensitivity analysis, but
not any other information.

5.1. Description of benchmark function

The benchmark function we consider is the so-called Leon function [14]:

f(x, y) = 100(y − x2)2 + (1− x)2 (7)

with −1.2 ≤ x, y ≤ 1.2. A global minimum is located at (1, 1) with f(1, 1) = 0.

7
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5.2. Description of density functions

We consider two classes of density functions for the input variables. The first class is the
normal density function where the mean is located at (1,1), the point that corresponds
to the unique global optimum. The standard deviation is given varying values, namely
0.5, 1, 1.5, 2, 2.5 and 3. The correlation is chosen either as 0 or 0.5. This gives 6 ×
2 = 12 Gaussian density functions. The second class is the uniform density function.
Although this function does not take into account any available information, it is useful
as a ’baseline density function’, i.e. a kind of reference for comparison of our research
findings. For example, although we hope that SA measures do not vary much with the
choice of density function as long as the density function is compatible with the available
information, we also hope that the measures do vary noticeably when changing such a
density function into the uniform density function, since otherwise this would imply that
probabilistic SA is not able to incorporate available information.

5.3. Results

Figures 1 and 2 show the results for M1 and M2. Three important observations can
be made. First, the difference between the measures for the Gaussian density functions
appear to become larger for values of the considered input variable closer to the boundary.
Except for M1 in case the correlation is 0, the lowest value of both measures over all
Gaussian density functions is around 100 when the value of the considered input variable
is -1.2, while the highest value in -1.2 is around 250, i.e. 2.5 times larger. Secondly, the
measures differ notably depending on whether a Gaussian density or the uniform density
is used. The difference is especially striking for M1. Comparing the Gaussian densities
with the uniform density, it is again observed that the difference is more noticeable near
the end points of the interval. A third observation is that although the exact values of
M1 and M2 depend on the chosen density function, the general trend of both measures
for varying input values is rather independent of this choice. That is, M1 decreases until
around x = 0 and then increases again, except for the Gaussian density with standard
deviation 0.5, while M2 sharply decreases until around y = 0.4 and then increases slightly.

Figures 3 and 4 display S1 and S2. It is clear that both S1 and S2 are remarkably larger
in case the uniform density is used. Restricting attention to the Gaussian densities, the
difference between the values of S1 is acceptable, with the smallest value of S1 being
about 0.1 (density with standard deviation equal to 1 and correlation equal to 0) and
the largest value of S2 being about 0.17 (density with standard deviation equal to 0.5
and correlation equal to 0.5). However, the difference between the values of S2 are much
larger, with the smallest value being about 0.1 (density with standard deviation equal
to 0.5 and correlation equal to 0), and the largest value being about 0.37 (density with
standard deviation equal to 1 and correlation equal to 0.5).
It is also important to evaluate S1/S2, since the ratio of both measures is an indication of
the relative importance of both input variables. Figure 5 shows this ratio. The difference
between its value for the Gaussian density function with standard deviation equal to
0.5, especially when the correlation equals 0.5, and the other density functions is very
striking. While all values clearly indicate that the second input variable is much more
important than the first one (in the sense that S1/S2 < 1), the value in case of the
Gaussian density with standard deviation 0.5 indicates the opposite.
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Figure 1. M1 for benchmark function (above: correlation = 0, below: correlation = 0.5), d1 refers to Gaussian

density with standard deviation between parentheses, d2 refers to uniform density
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Figure 2. M2 for benchmark function (above: correlation = 0, below: correlation = 0.5), d1 refers to Gaussian

density with standard deviation between parentheses, d2 refers to uniform density
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Figure 3. S1 for benchmark function, d1 refers to Gaussian density with standard deviation and correlation resp.

between parentheses, d2 refers to uniform density

Figure 4. S2 for benchmark function, d1 refers to Gaussian density with standard deviation and correlation resp.

between parentheses, d2 refers to uniform density
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Figure 5. S1/S2 for benchmark function, d1 refers to Gaussian density with standard deviation and correlation
resp. between parentheses, d2 refers to uniform density

6. Simulation study of probabilistic sensitivity analysis for agent-based
model

6.1. Description of our agent-based model

We have developed an ABM that simulates the mechanisms that might have linked the
reversal of gender inequality in higher education with changes in patterns of educational
assortative mating in Belgium [15]. Educational assortative mating refers to the sorting
of individuals into relations based on educational attainment. Empirical evidence shows a
reversal of gender inequality in educational attainment from the 1970s on. That is, while
men have almost always received more education than women before that turning point,
this imbalance has turned around in large parts of the world. In many countries, women
now outperform men in participation and success in higher education [16]. Research
indicates that this reversal affects patterns of assortative mating [17, 18].

We do not discuss the specification of the characteristics of and the interaction between
the agents, as this has been described extensively in our previous work. What is important
for the purpose of our current work is that our ABM comprises two parameters, denoted

as wfs and wms , that determine the importance that female and male agents attach to
the education of prospective partners. The higher their values, the more agents prefer
partners with similar educational attainment, and the more willing they become to marry
similarly educated agents. The allowable values of these parameters are the interval [0,2].
The simulation outcome is the fraction of hypogamic couples, i.e. couples in which the
woman has a higher educational attainment than her partner. For given values x and y

of wfs and wms resp. we denote this outcome as f(x, y).
In previous work optimal values for the two parameters were determined by using a

genetic algorithm that finds the parameter values for which the corresponding simulation

12
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output is closest to the empirical value of the fraction of hypogamic couples. Interestingly,
it was found that there is not a finite number of optimal values, but that the optimal

values of wfs and wms lie along a straight line L given by

wms = −1.2034wfs + 2.4360 (8)

as described in [19].
Since our ABM is very time consuming, we approximate the ABM by an emulator.

The details of the construction of the emulator are discussed in [19].

6.2. Description of density functions

We consider three classes of density functions.
To construct the first class we start by considering a function w that is constant on

the line segment S that arises by taking the intersection of the line (8) and the square
[0, 2] × [0, 2], and decreases linearly with increasing distance d from L for points within
[0, 2] × [0, 2] and that is zero outside this square. Since points outside [0, 2] × [0, 2] will
be given weight 0, it is appropriate to give the point that belongs to [0, 2] × [0, 2] and
that is furthest away from L weight 0. To find this point we notice the following. Since
S lies above the diagonal from (0,2) to (2,0) it is clear that this point lies in the triangle
formed by the 3 points (0,0), (0,2), (2,0). All points on lines parallel to L are at the same
distance of L. Thus the point that is sought is on a line parallel to L and belongs to the
considered triangle. Moving such a parallel line away from L increases the distance to
L. The line that is parallel to L and that goes through (0,0) is the parallel line that is
furthest away from L while still containing a point from [0, 2]× [0, 2]. The sought point
is thus (0,0) and the distance from it to L is d((0, 0), L) ≡ γ ≈ 1.557.
We then define w as

w(x, y) = −d((x, y), L) + γ if (x, y) ∈ [0, 2]× [0, 2]

= 0 otherwise

A joint density function ω is obtained by normalizing w as follows:

ω(x, y) = 1/c w(x, y) (9)

with c such that

c

∫ 2

0

∫ 2

0
w(x0, y0) dx0dy0 = 1

For the second class we start from a function w that is constant on S and that decreases
exponentially with increasing distance from S:

w(x, y) = exp(−β d(x, y))− exp(−β γ) if (x, y) ∈ [0, 2]× [0, 2]

= 0 otherwise

where β > 0 is a parameter. In our simulation study we assign values 0.5, 1, 1.5, 2 and
2.5 to β. The term involving γ is to ensure that w(0, 0) = 0, as in the case of the first
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class of density functions. A density function is then obtained from w in the same way
as for the first class.

The third density function is, again, the uniform density.

6.3. Results

Figures 6 and 7 show M1 and M2. The values for M1 and M2 now appear to be rather
independent of the choice of density function. Differences are again larger as values move
towards the endpoints of the interval.

Figure 8 shows that the differences between the values of S1 are moderate for the several
density functions, although the difference between the smallest value of about 0.38 and
the largest value of about 0.61 is far from negligible. All values of S2 are rather similar, as
seen from Figure 9, except the one for the uniform density function which is significantly
larger than the other values. Figure 10 shows the ratio of S1 and S2. Although the values
vary from about 1.6 (uniform density) to 2.7 (second class of density functions with
β = 1.5) they all point to the same conclusion, namely that the first input variable, i.e.

wfs , is much more important than the second input variable, i.e. wms .

Figure 6. M1 for ABM, di, i = 1, 2, 3 refers to ith class of density functions with value for β between parentheses

for the second class
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Figure 7. M2 for ABM, di, i = 1, 2, 3 refers to ith class of density functions with value for β between parentheses

for the second class

Figure 8. S1 for ABM, di, i = 1, 2, 3 refers to ith class of density functions with value for β between parentheses

for the second class
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Figure 9. S2 for ABM, di, i = 1, 2, 3 refers to ith class of density functions with value for β between parentheses

for the second class

Figure 10. S1/S2 for ABM, di, i = 1, 2, 3 refers to ith class of density functions with value for β between

parentheses for the second class

7. Summary

In this paper we empirically analyzed, via two simulation studies, the influence of the
choice of density function for the input variables on the mean effect and on the sensitivity
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index, two often used sensitivity measures in probabilistic sensitivity analysis. Although
further research is obviously required to increase understanding of the mechanisms in-
volved, some preliminary conclusions can be drawn from our empirical analysis which
can serve as hypotheses to be tested in further research, or as guidelines and cautions to
practitioners in the field of probabilistic sensitivity analysis.
First, if background knowledge is available that tells something on which values are more
likely or more correct than other values, this information should be incorporated in the
density function. Ignoring this principle, e.g. by considering the uniform density for the
sake of convenience, might produce significantly different values for the considered sen-
sitivity measures which are, therefore, probably not trustworthy.
Secondly, it is important that the obtained values for the sensitivity measures are not
interpreted too strictly. That is, in case of the mean effect focus should be on the gene-
ral trend of the related graphs and in case of the sensitivity index attention should be
directed towards the relative importance of the input variables. An analysis in terms of
the exact values of the measures, e.g. ’the first input variable is 2.2 times more important
than the second input variable’, is meaningless, given that it is impossible to construct a
unique density function that is in a one-to-one correspondence with available information
for virtually all practical applications.
Thirdly, and related to the foregoing remark, our empirical analysis suggests that a ge-
neral analysis (i.e. not in terms of exact values of the sensitivity measures) is rather
insensitive to the choice of density function, as long as a certain level of background
information is incorporated in the construction of the density function. In our simulation
studies all conclusions concerning the trend of the mean effect and the relative impor-
tance of the input variables where very similar in case information on the optimality of
the input variables was taken into account in the density function, except for M1 and
the S1/S2 ratio for the benchmark function where a Gaussian density with standard
deviation 0.5 was used. Thus, depending on the application, it might be important to
know, at least, whether the standard deviation is ’small’ or ’large’.
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